Sample records for valid therapeutic strategy

  1. Bridging the gap to therapeutic strategies based on connexin/pannexin biology.

    PubMed

    Naus, Christian C; Giaume, Christian

    2016-11-29

    A unique workshop was recently held focusing on enhancing collaborations leading to identify and update the development of therapeutic strategies targeting connexin/pannexin large pore channels. Basic scientists exploring the functions of these channels in various pathologies gathered together with leading pharma companies which are targeting gap junction proteins for specific therapeutic applications. This highlights how paths of discovery research can converge with therapeutic strategies in innovative ways to enhance target identification and validation.

  2. Therapeutic communication in the interaction between health workers and hypertensive patients in the family health strategy.

    PubMed

    Torres, Geanne Maria Costa; Figueiredo, Inês Dolores Teles; Cândido, José Auricélio Bernardo; Pinto, Antonio Germane Alves; Morais, Ana Patrícia Pereira; Araújo, Maria Fátima Maciel; Almeida, Maria Irismar de

    2017-01-01

    OBJECTIVE To analyze the therapeutic communication in the interaction between health professionals and hypertensive patients in the Family Health Strategy. METHODS Descriptive study with qualitative approach. The sample consisted of 14 hypertensive patients and two health professionals of the Family Health Strategy (ESF - "Estratégia Saúde Família") in a city of the state of Ceará, Brazil, in 2016. In the data collection, a checklist was used for non-participant systematic observation containing the strategies of therapeutic communication, namely: expression, clarity, validation, and a field diary, being these subjected to content analysis. RESULTS It was noted that ESF professionals do not adequately use therapeutic communication, indicating the need of investment in this device, which acts as a bridge for users, enhances care practices and opens paths that instrumentalize interpersonal relationships. CONCLUSIONS It was realized that health professionals are not fully exploring therapeutic communication strategies, therefore being necessary to develop skills to use these techniques correctly when caring for hypertensive patients.

  3. Challenges in validating candidate therapeutic targets in cancer

    PubMed Central

    Sawyers, Charles L; Hunter, Tony

    2018-01-01

    More than 30 published articles have suggested that a protein kinase called MELK is an attractive therapeutic target in human cancer, but three recent reports describe compelling evidence that it is not. These reports highlight the caveats associated with some of the research tools that are commonly used to validate candidate therapeutic targets in cancer research. PMID:29417929

  4. Complex adaptive therapeutic strategy (CATS) for cancer.

    PubMed

    Cho, Yong Woo; Kim, Sang Yoon; Kwon, Ick Chan; Kim, In-San

    2014-02-10

    Tumors begin with a single cell, but as each tumor grows and evolves, it becomes a wide collection of clones that display remarkable heterogeneity in phenotypic features, which has posed a big challenge to current targeted anticancer therapy. Intra- and inter-tumoral heterogeneity is attributable in part to genetic mutations but also to adaptation and evolution of tumors to heterogeneity in tumor microenvironments. If tumors are viewed not only as a disease but also as a complex adaptive system (CAS), tumors should be treated as such and a more systemic approach is needed. Some of many tumors therapeutic strategies are discussed here from a view of a tumor as CAS, which can be collectively called a complex adaptive therapeutic strategy (CATS). The central theme of CATS is based on three intermediate concepts: i) disruption of artifacts, ii) disruption of connections, and iii) reprogramming of cancer-immune dynamics. Each strategy presented here is a piece of the puzzle for CATS. Although each piece by itself may be neither novel nor profound, an assembled puzzle could be a novel and innovative cancer therapeutic strategy. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. [The place of a new drug in the therapeutic strategy].

    PubMed

    Castaigne, A; Goehrs, J M; Ravoire, S

    A therapeutic strategy is a hierarchical set of appropriate measures to provide an answer to a pathological state. A drug is a part of this set (together with the diagnosis, the environment and the other medicinal interventions or not). A new drug's place in a therapeutic strategy can be evaluated according to one or several referential(s) when it (or they) exist, referentials which express the state of knowledge before launch of the new drug. The drug's profile (indication or contraindication, etc.), at the point when the marketing authorization is given, is purely theoretical. One must evaluate the real place of the drug under its real conditions of use (pragmatic trials, observable surveys). A new drugs' place in a therapeutic strategy can only be evaluated in the course of time unless a therapeutic revolution occurs.

  6. Adolescent depression: clinical features and therapeutic strategies.

    PubMed

    Nardi, B; Francesconi, G; Catena-Dell'osso, M; Bellantuono, C

    2013-06-01

    Major depressive disorder (MDD) is a common disorder during adolescence and it is associated with an increased risk of suicide, poor school performance, impaired social skills, social withdrawal and substance abuse. Further, as many depressive episode in adolescents do not reach the diagnostic threshold for MDD, the disorder remains undetected. This review aims to provide an update of clinical features of adolescent MDD and to focus on the most appropriate therapeutic strategies to adopt in clinical practice. We reviewed the international literature to identify studies focusing on clinical features and therapeutic options in adolescents affected by MDD. PubMed, Medline and Cochrane Library databases were searched for English language papers. The clinical picture of depression is variable with sex and age. Somatic complaints, particularly headache and fatigue, are a common presentation in adolescent MDD. Irritability is present most frequently in female and it is related to the severity of MDD. Adolescent MDD is also characterized by a high rates of suicides. The therapeutic strategy in adolescent depression includes psychotropic medications, psychotherapy or a combination of both treatments, with selection of the most appropriate strategy depending on symptom severity. As first-line treatment the traditional cognitive behavioural therapy (CBT), as well as the cognitive Post-Rationalist (PR) approach, are so far considered the goal standard. The therapeutic approach to the adolescent affected by MMD should respect the person in his/her psycho-physical entirety. The intervention may help the subject in seeking a more stable and adaptable identity. It is relevant to have a good knowledge of the peculiar clinical picture of adolescent MDD in order to make an early identification of the disorder and to define an appropriate personalized therapeutic program.

  7. Therapeutic Strategies against Cyclin E1-Amplified Ovarian Cancers

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0564 TITLE : Therapeutic Strategies against Cyclin E1-Amplified Ovarian Cancers PRINCIPAL INVESTIGATOR: Panagiotis A...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Therapeutic Strategies against Cyclin E1-Amplified Ovarian Cancers 5b. GRANT NUMBER W81XWH-15-1-0564 5c... box protein M1, Retinoblastoma 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON

  8. INSULIN RESISTANCE POST-BURN: UNDERLYING MECHANISMS AND CURRENT THERAPEUTIC STRATEGIES

    PubMed Central

    Gauglitz, Gerd G.; Herndon, David N.; Jeschke, Marc G.

    2014-01-01

    The profound hypermetabolic response to burn injury is associated with insulin resistance and hyperglycemia, significantly contributing to the incidence of morbidity and mortality in this patient population. These responses are present in all trauma, surgical, or critically ill patients, but the severity, length, and magnitude is unique for burn patients. Although advances in therapeutic strategies to attenuate the post-burn hypermetabolic response have significantly improved the clinical outcome of these patients over the past years, therapeutic approaches to overcome stress-induced hyperglycemia have remained challenging. Intensive insulin therapy has been shown to significantly reduce morbidity and mortality in critically ill patients. High incidence of hypoglycemic events and difficult blood glucose titrations have led to investigation of alternative strategies, including the use of metformin, a biguanide, or fenofibrate, a PPAR-γ agonist. Nevertheless, weaknesses and potential side affects of these drugs reinforces the need for better understanding of the molecular mechanisms underlying insulin resistance post-burn that may lead to novel therapeutic strategies further improving the prognosis of these patients. This review aims to discuss the mechanisms underlying insulin resistance induced hyperglycemia post-burn and outlines current therapeutic strategies that are being used to modulate hyperglycemia following thermal trauma. PMID:18695610

  9. [Hodgkin lymphoma: Current and future therapeutic strategies].

    PubMed

    Turpin, Anthony; Michot, Jean-Marie; Kempf, Emmanuelle; Mazeron, Renaud; Dartigues, Peggy; Terroir, Marie; Boros, Angela; Bonnetier, Serge; Castilla-Llorente, Cristina; Coman, Tereza; Danu, Alina; Ghez, David; Pilorge, Sylvain; Arfi-Rouche, Julia; Dercle, Laurent; Soria, Jean-Charles; Carde, Patrice; Ribrag, Vincent; Fermé, Christophe; Lazarovici, Julien

    2018-01-01

    Hodgkin lymphoma (HL) is a cancer that mostly affects young people, in which modern therapeutic strategies using chemotherapy and radiotherapy result in a cure rate exceeding 80%. Survivors are exposed to long-term consequences of treatments, such as secondary malignancies and cardiovascular diseases, whose mortality exceeds the one of the disease itself, with long-term follow-up. The current therapeutic strategy in HL, based on the assessment of initial risk factors, is the result of large clinical trials led by the main international cooperating groups. More recently, several groups have tried to develop treatment strategies adapted to the response to chemotherapy, evaluated by interim PET/CT scan. However to date, the combined treatment with chemotherapy followed by radiation therapy remains a standard in most of the above-diaphragmatic localized forms. Immune checkpoint inhibitors, and especially anti-PD1 antibodies, have shown dramatic results in some serious forms of relapsed or refractory HL, with limited toxicity, and may contribute in the future to reduce the toxicities of treatments. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  10. [Therapeutic strategy for different types of epicanthus].

    PubMed

    Gaofeng, Li; Jun, Tan; Zihan, Wu; Wei, Ding; Huawei, Ouyang; Fan, Zhang; Mingcan, Luo

    2015-11-01

    To explore the reasonable therapeutic strategy for different types of epicanthus. Patients with epicanthus were classificated according to the shape, extent and inner canthal distance and treated with different methods appropriately. Modified asymmetric Z plasty with two curve method was used in lower eyelid type epicanthus, inner canthus type epicanthus and severe upper eyelid type epicanthus. Moderate upper epicanthus underwent '-' shape method. Mild Upper epicanthus in two conditions which underwent nasal augumentation and double eyelid formation with normal inner canthal distance need no correction surgery. The other mild epicanthus underwent '-' shape method. A total of 66 cases underwent the classification and the appropriate treatment. All wounds healed well. During 3 to 12 months follow-up period, all epicanthus were corrected completely with natural contour and unconspicuous scars. All patients were satisfied with the results. Classification of epicanthus hosed on the shape, extent and inner canthal distance and correction with appropriate methods is a reasonable therapeutic strategy.

  11. Therapeutic and prevention strategies against human enterovirus 71 infection

    PubMed Central

    Kok, Chee Choy

    2015-01-01

    Human enterovirus 71 (HEV71) is the cause of hand, foot and mouth disease and associated neurological complications in children under five years of age. There has been an increase in HEV71 epidemic activity throughout the Asia-Pacific region in the past decade, and it is predicted to replace poliovirus as the extant neurotropic enterovirus of highest global public health significance. To date there is no effective antiviral treatment and no vaccine is available to prevent HEV71 infection. The increase in prevalence, virulence and geographic spread of HEV71 infection over the past decade provides increasing incentive for the development of new therapeutic and prevention strategies against this emerging viral infection. The current review focuses on the potential, advantages and disadvantages of these strategies. Since the explosion of outbreaks leading to large epidemics in China, research in natural therapeutic products has identified several groups of compounds with anti-HEV71 activities. Concurrently, the search for effective synthetic antivirals has produced promising results. Other therapeutic strategies including immunotherapy and the use of oligonucleotides have also been explored. A sound prevention strategy is crucial in order to control the spread of HEV71. To this end the ultimate goal is the rapid development, regulatory approval and widespread implementation of a safe and effective vaccine. The various forms of HEV71 vaccine designs are highlighted in this review. Given the rapid progress of research in this area, eradication of the virus is likely to be achieved. PMID:25964873

  12. Factors associated with therapeutic inertia in hypertension: validation of a predictive model.

    PubMed

    Redón, Josep; Coca, Antonio; Lázaro, Pablo; Aguilar, Ma Dolores; Cabañas, Mercedes; Gil, Natividad; Sánchez-Zamorano, Miguel Angel; Aranda, Pedro

    2010-08-01

    To study factors associated with therapeutic inertia in treating hypertension and to develop a predictive model to estimate the probability of therapeutic inertia in a given medical consultation, based on variables related to the consultation, patient, physician, clinical characteristics, and level of care. National, multicentre, observational, cross-sectional study in primary care and specialist (hospital) physicians who each completed a questionnaire on therapeutic inertia, provided professional data and collected clinical data on four patients. Therapeutic inertia was defined as a consultation in which treatment change was indicated (i.e., SBP >or= 140 or DBP >or= 90 mmHg in all patients; SBP >or= 130 or DBP >or= 80 in patients with diabetes or stroke), but did not occur. A predictive model was constructed and validated according to the factors associated with therapeutic inertia. Data were collected on 2595 patients and 13,792 visits. Therapeutic inertia occurred in 7546 (75%) of the 10,041 consultations in which treatment change was indicated. Factors associated with therapeutic inertia were primary care setting, male sex, older age, SPB and/or DBP values close to normal, treatment with more than one antihypertensive drug, treatment with an ARB II, and more than six visits/year. Physician characteristics did not weigh heavily in the association. The predictive model was valid internally and externally, with acceptable calibration, discrimination and reproducibility, and explained one-third of the variability in therapeutic inertia. Although therapeutic inertia is frequent in the management of hypertension, the factors explaining it are not completely clear. Whereas some aspects of the consultations were associated with therapeutic inertia, physician characteristics were not a decisive factor.

  13. Optimization of Therapeutic Strategies for Organophosphate Poisoning

    DTIC Science & Technology

    2008-03-01

    chemical (Szinicz, 2005:173). Researchers later created various forms of the organophosphate and applied the chemicals as insecticides (Szinicz, 2005:173...of organophosphorus insecticides and nerve agents (Cannard, 2006:87). Organophosphates poison an estimated 100,000 people each year throughout the...quantifiable result in order to facilitate comparison among different therapeutic strategies. Justification and Applicability Organophosphorus insecticides are

  14. Non-coding RNAs: Therapeutic Strategies and Delivery Systems.

    PubMed

    Ling, Hui

    The vast majority of the human genome is transcribed into RNA molecules that do not code for proteins, which could be small ones approximately 20 nucleotide in length, known as microRNAs, or transcripts longer than 200 bp, defined as long noncoding RNAs. The prevalent deregulation of microRNAs in human cancers prompted immediate interest on the therapeutic value of microRNAs as drugs and drug targets. Many features of microRNAs such as well-defined mechanisms, and straightforward oligonucleotide design further make them attractive candidates for therapeutic development. The intensive efforts of exploring microRNA therapeutics are reflected by the large body of preclinical studies using oligonucleotide-based mimicking and blocking, culminated by the recent entry of microRNA therapeutics in clinical trial for several human diseases including cancer. Meanwhile, microRNA therapeutics faces the challenge of effective and safe delivery of nucleic acid therapeutics into the target site. Various chemical modifications of nucleic acids and delivery systems have been developed to increase targeting specificity and efficacy, and reduce the associated side effects including activation of immune response. Recently, long noncoding RNAs become attractive targets for therapeutic intervention because of their association with complex and delicate phenotypes, and their unconventional pharmaceutical activities such as capacity of increasing output of proteins. Here I discuss the general therapeutic strategies targeting noncoding RNAs, review delivery systems developed to maximize noncoding RNA therapeutic efficacy, and offer perspectives on the future development of noncoding RNA targeting agents for colorectal cancer.

  15. International intellectual property strategies for therapeutic antibodies

    PubMed Central

    2011-01-01

    Therapeutic antibodies need international patent protection as their markets expand to include industrialized and emerging countries. Because international intellectual property strategies are frequently complex and costly, applicants require sound information as a basis for decisions regarding the countries in which to pursue patents. While the most important factor is the size of a given market, other factors should also be considered. PMID:22123063

  16. Oncogenic Human Papillomavirus: Application of CRISPR/Cas9 Therapeutic Strategies for Cervical Cancer.

    PubMed

    Zhen, Shuai; Li, Xu

    2017-01-01

    Oncogenic human papillomaviruses (HPVs) cause different types of cancer especially cervical cancer. HPV-associated carcinogenesis provides a classical model system for clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) based cancer therapies since the viral oncogenes E6 and E7 are exclusively expressed in cancerous cells. Sequence-specific gene knockdown/knockout using CRISPR/Cas9 shows promise as a novel therapeutic approach for the treatment of a variety of diseases that currently lack effective treatments. However, CRISPR/Cas9-based targeting therapy requires further validation of its efficacy in vitro and in vivo to eliminate the potential off-target effects, necessitates verification of the delivery vehicles and the combinatory use of conventional therapies with CRISPR/Cas9 to ensure the feasibility and safety. In this review we discuss the potential of combining CRISPR/Cas9 with other treatment options as therapies for oncogenic HPVs-associated carcinogenesis. and present our assessment of the promising path to the development of CRISPR/Cas9 therapeutic strategies for clinical settings. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Can Preconditioning Strategies Improve Therapeutic Efficacy?

    PubMed

    Schäfer, Richard; Spohn, Gabriele; Baer, Patrick C

    2016-07-01

    Mesenchymal stem/stromal cells (MSCs) are becoming increasingly important for the development of cell therapeutics in regenerative medicine. Featuring immunomodulatory potential as well as secreting a variety of trophic factors, MSCs showed remarkable therapeutic effects in numerous preclinical disease models. However, sustainable translation of MSC therapies to the clinic is hampered by heterogeneity of MSCs and non-standardized in vitro culture technologies. Moreover, potent MSC therapeutics require MSCs with maximum regenerative capacity. There is growing evidence that in vitro preconditioning strategies of MSCs can optimize their therapeutic potential. In the following we will discuss achievements and challenges of the development of MSC therapies in regenerative medicine highlighting specific in vitro preconditioning strategies prior to cell transplantation to increase their therapeutic efficacy.

  18. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Can Preconditioning Strategies Improve Therapeutic Efficacy?

    PubMed Central

    Schäfer, Richard; Spohn, Gabriele; Baer, Patrick C.

    2016-01-01

    Mesenchymal stem/stromal cells (MSCs) are becoming increasingly important for the development of cell therapeutics in regenerative medicine. Featuring immunomodulatory potential as well as secreting a variety of trophic factors, MSCs showed remarkable therapeutic effects in numerous preclinical disease models. However, sustainable translation of MSC therapies to the clinic is hampered by heterogeneity of MSCs and non-standardized in vitro culture technologies. Moreover, potent MSC therapeutics require MSCs with maximum regenerative capacity. There is growing evidence that in vitro preconditioning strategies of MSCs can optimize their therapeutic potential. In the following we will discuss achievements and challenges of the development of MSC therapies in regenerative medicine highlighting specific in vitro preconditioning strategies prior to cell transplantation to increase their therapeutic efficacy. PMID:27721701

  19. Antibody-Based Preventive and Therapeutic Strategies Against HIV.

    PubMed

    Fabra-Garcia, Amanda; Beltran, Carolina; Sanchez-Merino, Victor; Yuste, Eloisa

    2016-01-01

    Over the years, numerous studies have been carried out demonstrating the role of antibodies in HIV control leading to the development of antibody-based therapeutic and prophylactic strategies. The objective of this review is to provide updated information on the role of antibodies in the prevention and control of HIV infection and the strategies against HIV that have been designed based on this information. Passive transfer of anti-HIV antibodies in animal models has proven the efficacy of certain antibodies in the prevention and treatment of infection. The capacity of antibodies to control the virus was first attributed to their neutralizing capacity. However, we now know that there are other Fc-mediated antibody activities associated with virus protection. When it comes to better understanding protection against HIV, we ought to pay particular attention to mucosal immune responses. The evidence accumulated so far indicates that an effective vaccine against HIV should generate both mucosal IgAs and systemic IgGs. Due to the problematic induction of protective anti-HIV antibodies, several groups have developed alternative approaches based on antibody delivery via gene therapy vectors. Experiments in animal models with these vectors have shown impressive protection levels and this strategy is now being clinically trialed. Taking into account all the information included in this review, it seems evident that anti-HIV-1 antibodies play an important role in virus control and prevention. This review aims to give an overview of the strategies used and the advances in antibody-based preventive and therapeutic strategies against HIV-1.

  20. Targeting Beta-Amyloid at the CSF: A New Therapeutic Strategy in Alzheimer's Disease.

    PubMed

    Menendez-Gonzalez, Manuel; Padilla-Zambrano, Huber S; Alvarez, Gabriel; Capetillo-Zarate, Estibaliz; Tomas-Zapico, Cristina; Costa, Agustin

    2018-01-01

    Although immunotherapies against the amyloid-β (Aβ) peptide tried so date failed to prove sufficient clinical benefit, Aβ still remains the main target in Alzheimer's disease (AD). This article aims to show the rationale of a new therapeutic strategy: clearing Aβ from the CSF continuously (the "CSF-sink" therapeutic strategy). First, we describe the physiologic mechanisms of Aβ clearance and the resulting AD pathology when these mechanisms are altered. Then, we review the experiences with peripheral Aβ-immunotherapy and discuss the related hypothesis of the mechanism of action of "peripheral sink." We also present Aβ-immunotherapies acting on the CNS directly. Finally, we introduce alternative methods of removing Aβ including the "CSF-sink" therapeutic strategy. As soluble peptides are in constant equilibrium between the ISF and the CSF, altering the levels of Aβ oligomers in the CSF would also alter the levels of such proteins in the brain parenchyma. We conclude that interventions based in a "CSF-sink" of Aβ will probably produce a steady clearance of Aβ in the ISF and therefore it may represent a new therapeutic strategy in AD.

  1. Novel therapeutic Strategies for Targeting Liver Cancer Stem Cells

    PubMed Central

    Oishi, Naoki; Wang, Xin Wei

    2011-01-01

    The cancer stem cell (CSC) hypothesis was first proposed over 40 years ago. Advances in CSC isolation were first achieved in hematological malignancies, with the first CSC demonstrated in acute myeloid leukemia. However, using similar strategies and technologies, and taking advantage of available surface markers, CSCs have been more recently demonstrated in a growing range of epithelial and other solid organ malignancies, suggesting that the majority of malignancies are dependent on such a compartment. Primary liver cancer consists predominantly of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). It is believed that hepatic progenitor cells (HPCs) could be the origin of some HCCs and ICCs. Furthermore, stem cell activators such as Wnt/β-catenin, TGF-β, Notch and Hedgehog signaling pathways also expedite tumorigenesis, and these pathways could serve as molecular targets to assist in designing cancer prevention strategies. Recent studies indicate that additional factors such as EpCAM, Lin28 or miR-181 may also contribute to HCC progression by targeting HCC CSCs. Various therapeutic drugs that directly modulate CSCs have been examined in vivo and in vitro. However, CSCs clearly have a complex pathogenesis, with a considerable crosstalk and redundancy in signaling pathways, and hence targeting single molecules or pathways may have a limited benefit for treatment. Many of the key signaling molecules are shared by both CSCs and normal stem cells, which add further challenges for designing molecularly targeted strategies specific to CSCs but sparing normal stem cells to avoid side effects. In addition to the direct control of CSCs, many other factors that are needed for the maintenance of CSCs, such as angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance, should be taken into consideration when designing therapeutic strategies for HCC. Here we provide a brief review of

  2. Current and future therapeutic strategies for Parkinson's disease.

    PubMed

    Outeiro, Tiago Fleming; Ferreira, Joaquim

    2009-01-01

    The heterogeneity of symptoms and disease progression observed in synucleinopathies, of which Parkinson's disease (PD) is the most common representative, poses large problems for its treatment and for the discovery of novel therapeutics. The molecular basis for pathology is currently unclear, both in familial and in sporadic cases. While the therapeutic effects of L-DOPA and dopamine receptor agonists are still the gold standards for symptomatic treatment in PD, the development of neuroprotective and/or neurorestorative treatments for these disorders faces significant challenges due to the poor knowledge of the putative targets involved. Recent experimental evidence strongly suggests a central role for neurotoxic alpha-synuclein oligomeric species in neurodegeneration. The events leading to protein oligomerization, as well as the oligomeric species themselves, are likely amenable to modulation by small molecules, which are beginning to emerge in high throughput compound screens in a variety of model organisms. The therapeutic potential of small molecule modulators of oligomer formation demands further exploration and validation in cellular and animal disease models in order to accelerate human drug development.

  3. Alpha-Mannosidosis: Therapeutic Strategies.

    PubMed

    Ceccarini, Maria Rachele; Codini, Michela; Conte, Carmela; Patria, Federica; Cataldi, Samuela; Bertelli, Matteo; Albi, Elisabetta; Beccari, Tommaso

    2018-05-17

    Alpha-mannosidosis (α-mannosidosis) is a rare lysosomal storage disorder with an autosomal recessive inheritance caused by mutations in the gene encoding for the lysosomal α-d-mannosidase. So far, 155 variants from 191 patients have been identified and in part characterized at the biochemical level. Similarly to other lysosomal storage diseases, there is no relationship between genotype and phenotype in alpha-mannosidosis. Enzyme replacement therapy is at the moment the most effective therapy for lysosomal storage disease, including alpha-mannosidosis. In this review, the genetic of alpha-mannosidosis has been described together with the results so far obtained by two different therapeutic strategies: bone marrow transplantation and enzyme replacement therapy. The primary indication to offer hematopoietic stem cell transplantation in patients affected by alpha-mannosidosis is preservation of neurocognitive function and prevention of early death. The results obtained from a Phase I⁻II study and a Phase III study provide evidence of the positive clinical effect of the recombinant enzyme on patients with alpha-mannosidosis.

  4. Current and novel therapeutic strategies in celiac disease.

    PubMed

    Kurada, Satya; Yadav, Abhijeet; Leffler, Daniel A

    2016-09-01

    A gluten free diet (GFD) is the only available treatment for celiac disease (CD). However many patients fail to respond fully clinically or histologically. Several surveys highlight the psychosocial implications of adherence to a GFD. Hence, efforts are ongoing to develop therapeutic strategies beyond a GFD. We conducted a search of PubMed and clinicaltrials.gov to extract articles on CD using keywords including 'celiac disease' and 'refractory celiac disease' (RCD) and focused on articles conducting pathophysiologic and therapeutic research in/ex-vivo models and human trials. We highlight novel therapeutics that manipulate these mechanisms including tight junction regulators, glutenases, gluten sequestrants and immunotherapy using vaccines, nanoparticles that may serve as adjuncts to a GFD or more ambitiously to allow for gluten consumption. We also highlight the role of anti-inflammatories, immunosuppressants and monoclonal antibodies in RCD. Expert commentary: Therapeutics including tight junction regulators, glutenases have the potential to be approved for non-responsive CD or as gluten adjuncts. We expect results of various phase 1/2 trials using AMG 714, BL 7010, IgY antibodies to be published. In the interim, off-label use of 5 amino-salicylates, budesonide, nucleoside analogues and newer biologics developed for other inflammatory diseases will be used in RCD.

  5. Therapeutic strategies to improve control of hypertension.

    PubMed

    Armario, Pedro; Waeber, Bernard

    2013-03-01

    Blood pressure is poorly controlled in most European countries and the control rate is even lower in high-risk patients such as patients with chronic kidney disease, diabetic patients or previous coronary heart disease. Several factors have been associated with poor control, some of which involve the characteristic of the patients themselves, such as socioeconomic factors, or unsuitable life-styles, other factors related to hypertension or to associated comorbidity, but there are also factors directly associated with antihypertensive therapy, mainly involving adherence problems, therapeutic inertia and therapeutic strategies unsuited to difficult-to-control hypertensive patients. It is common knowledge that only 30% of hypertensive patients can be controlled using monotherapy; all the rest require a combination of two or more antihypertensive drugs, and this can be a barrier to good adherence and log-term persistence in patients who also often need to use other drugs, such as antidiabetic agents, statins or antiplatelet agents. The fixed combinations of three antihypertensive agents currently available can facilitate long-term control of these patients in clinical practice. If well tolerated, a long-term therapeutic regimen that includes a diuretic, an ACE inhibitor or an angiotensin receptor blocker, and a calcium channel blocker is the recommended optimal triple therapy.

  6. Targeting microbial biofilms: current and prospective therapeutic strategies

    PubMed Central

    Koo, Hyun; Allan, Raymond N; Howlin, Robert P; Hall-Stoodley, Luanne; Stoodley, Paul

    2017-01-01

    Biofilm formation is a key virulence factor for a wide range of microorganisms that cause chronic infections. The multifactorial nature of biofilm development and drug tolerance imposes great challenges for the use of conventional antimicrobials, and indicates the need for multi-targeted or combinatorial therapies. In this review, we focus on current therapeutic strategies and those that are under development that target vital structural and functional traits of microbial biofilms and drug tolerance mechanisms, including the extracellular matrix and dormant cells. We emphasize strategies that are supported by in vivo or ex vivo studies, highlight emerging biofilm-targeting technologies, and provide a rationale for multi-targeted therapies that are aimed at disrupting the complex biofilm microenvironment. PMID:28944770

  7. Selective BET bromodomain inhibition as an antifungal therapeutic strategy

    PubMed Central

    Mietton, Flore; Ferri, Elena; Champleboux, Morgane; Zala, Ninon; Maubon, Danièle; Zhou, Yingsheng; Harbut, Mike; Spittler, Didier; Garnaud, Cécile; Courçon, Marie; Chauvel, Murielle; d'Enfert, Christophe; Kashemirov, Boris A.; Hull, Mitchell; Cornet, Muriel; McKenna, Charles E.; Govin, Jérôme; Petosa, Carlo

    2017-01-01

    Invasive fungal infections cause significant morbidity and mortality among immunocompromised individuals, posing an urgent need for new antifungal therapeutic strategies. Here we investigate a chromatin-interacting module, the bromodomain (BD) from the BET family of proteins, as a potential antifungal target in Candida albicans, a major human fungal pathogen. We show that the BET protein Bdf1 is essential in C. albicans and that mutations inactivating its two BDs result in a loss of viability in vitro and decreased virulence in mice. We report small-molecule compounds that inhibit C. albicans Bdf1 with high selectivity over human BDs. Crystal structures of the Bdf1 BDs reveal binding modes for these inhibitors that are sterically incompatible with the human BET-binding pockets. Furthermore, we report a dibenzothiazepinone compound that phenocopies the effects of a Bdf1 BD-inactivating mutation on C. albicans viability. These findings establish BET inhibition as a promising antifungal therapeutic strategy and identify Bdf1 as an antifungal drug target that can be selectively inhibited without antagonizing human BET function. PMID:28516956

  8. Update in therapeutic strategies for Parkinson's disease.

    PubMed

    Kulisevsky, Jaime; Oliveira, Lais; Fox, Susan H

    2018-05-08

    To review recent advances in therapeutics for motor and nonmotor symptoms of Parkinson's disease. Neuroprotection remains a large area of investigation with preliminary safety data on alpha synuclein immunotherapy and glucagon-like peptide-1 agonists. Novel Monoamine Oxidase B and Caetchol-O-methyltransferase-inhibitors for motor fluctuations have shown benefit and are recently approved for clinical use. Long-acting amantadine has also been approved to reduce dyskinesia. Alternative delivery strategies (sublingual, inhaled) dopaminergics may prove useful for rapid reversal of Parkinson's disease motor symptoms. Advanced therapies (surgery and infusional therapies) continue to be useful in subgroups of patients for motor complications with improved safety and also benefit on some nonmotor symptoms, including neuropsychiatric issues. Specific therapeutics for cognition, swallowing, sleep, and mood disorders had moderate to limited benefits. Exercise-based therapy appears beneficial at all stages of Parkinson's disease. The motor symptoms of Parkinson's disease can be reasonably treated and managed. However, therapies to slow or prevent disease progression remain a focus of research. Despite increased studies, treating nonmotor symptoms remains a challenge and an ongoing priority.

  9. Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach

    PubMed Central

    Bilia, Anna Rita; Guccione, Clizia; Isacchi, Benedetta; Righeschi, Chiara; Firenzuoli, Fabio; Bergonzi, Maria Camilla

    2014-01-01

    Essential oils are complex blends of a variety of volatile molecules such as terpenoids, phenol-derived aromatic components, and aliphatic components having a strong interest in pharmaceutical, sanitary, cosmetic, agricultural, and food industries. Since the middle ages, essential oils have been widely used for bactericidal, virucidal, fungicidal, antiparasitical, insecticidal, and other medicinal properties such as analgesic, sedative, anti-inflammatory, spasmolytic, and locally anaesthetic remedies. In this review their nanoencapsulation in drug delivery systems has been proposed for their capability of decreasing volatility, improving the stability, water solubility, and efficacy of essential oil-based formulations, by maintenance of therapeutic efficacy. Two categories of nanocarriers can be proposed: polymeric nanoparticulate formulations, extensively studied with significant improvement of the essential oil antimicrobial activity, and lipid carriers, including liposomes, solid lipid nanoparticles, nanostructured lipid particles, and nano- and microemulsions. Furthermore, molecular complexes such as cyclodextrin inclusion complexes also represent a valid strategy to increase water solubility and stability and bioavailability and decrease volatility of essential oils. PMID:24971152

  10. [Enuresis aetological approaches and therapeutic strategies (author's transl)].

    PubMed

    Holm-Hadulla, M

    1980-06-01

    Enuresis is a frequent disease in childhood--entailing personal misery, shame, and discredit for the children concerned as well as irritation and a bigger workload for the responsible adults. Parents and teachers often tend to react to this uncontrolled urinating as to a personal provocation. The following study is meant to summarize different aetiological approaches from which therapeutic strategies are derived and classified according to pragmatic considerations. By resorting to common psychotherapeutic methods pediatricians can successfully treat 2/3--3/4 of all cases.

  11. Therapeutic Strategies against Cyclin E1-Amplified Ovarian Cancers

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0566 TITLE : Therapeutic Strategies against Cyclin E1-Amplified Ovarian Cancers PRINCIPAL INVESTIGATOR: Dipanjan...RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE October 2016 2. REPORT TYPE Annual 3. DATES COVERED 30 Sep 2015 - 29 Sep 2016 4. TITLE AND...amplification, Homologous Recombination, Platinum analogues, MicroRNAs, Heat shock protein 90 inhibitors, Forkhead box protein M1, Retinoblastoma 16

  12. RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies.

    PubMed

    Malhotra, Meenakshi; Toulouse, André; Godinho, Bruno M D C; Mc Carthy, David John; Cryan, John F; O'Driscoll, Caitriona M

    2015-10-01

    Malignant primary brain tumors are aggressive cancerous cells that invade the surrounding tissues of the central nervous system. The current treatment options for malignant brain tumors are limited due to the inability to cross the blood-brain barrier. The advancements in current research has identified and characterized certain molecular markers that are essential for tumor survival, progression, metastasis and angiogenesis. These molecular markers have served as therapeutic targets for the RNAi based therapies, which enable site-specific silencing of the gene responsible for tumor proliferation. However, to bring about therapeutic success, an efficient delivery carrier that can cross the blood-brain barrier and reach the targeted site is essential. The current review focuses on the potential of targeted, non-viral and viral particles containing RNAi therapeutic molecules as delivery strategies specifically for brain tumors.

  13. A Brief Overview of Tauopathy: Causes, Consequences, and Therapeutic Strategies.

    PubMed

    Orr, Miranda E; Sullivan, A Campbell; Frost, Bess

    2017-07-01

    There are currently no disease-modifying therapies for the treatment of tauopathies, a group of progressive neurodegenerative disorders that are pathologically defined by the presence of tau protein aggregates in the brain. Current challenges for the treatment of tauopathies include the inability to diagnose early and to confidently discriminate between distinct tauopathies in patients, alongside an incomplete understanding of the cellular mechanisms involved in pathogenic tau-induced neuronal death and dysfunction. In this review, we describe current diagnostic and therapeutic strategies, known drivers of pathogenic tau formation, recent contributions to our current mechanistic understanding of how pathogenic tau induces neuronal death, and potential diagnostic and therapeutic approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Oligo/Polynucleotide-Based Gene Modification: Strategies and Therapeutic Potential

    PubMed Central

    Sargent, R. Geoffrey; Kim, Soya

    2011-01-01

    Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential. PMID:21417933

  15. Therapeutic strategies impacting cancer cell glutamine metabolism

    PubMed Central

    Lukey, Michael J; Wilson, Kristin F; Cerione, Richard A

    2014-01-01

    The metabolic adaptations that support oncogenic growth can also render cancer cells dependent on certain nutrients. Along with the Warburg effect, increased utilization of glutamine is one of the metabolic hallmarks of the transformed state. Glutamine catabolism is positively regulated by multiple oncogenic signals, including those transmitted by the Rho family of GTPases and by c-Myc. The recent identification of mechanistically distinct inhibitors of glutaminase, which can selectively block cellular transformation, has revived interest in the possibility of targeting glutamine metabolism in cancer therapy. Here, we outline the regulation and roles of glutamine metabolism within cancer cells and discuss possible strategies for, and the consequences of, impacting these processes therapeutically. PMID:24047273

  16. A novel strategy for development of recombinant antitoxin therapeutics tested in a mouse botulism model.

    PubMed

    Mukherjee, Jean; Tremblay, Jacqueline M; Leysath, Clinton E; Ofori, Kwasi; Baldwin, Karen; Feng, Xiaochuan; Bedenice, Daniela; Webb, Robert P; Wright, Patrick M; Smith, Leonard A; Tzipori, Saul; Shoemaker, Charles B

    2012-01-01

    Antitoxins are needed that can be produced economically with improved safety and shelf life compared to conventional antisera-based therapeutics. Here we report a practical strategy for development of simple antitoxin therapeutics with substantial advantages over currently available treatments. The therapeutic strategy employs a single recombinant 'targeting agent' that binds a toxin at two unique sites and a 'clearing Ab' that binds two epitopes present on each targeting agent. Co-administration of the targeting agent and the clearing Ab results in decoration of the toxin with up to four Abs to promote accelerated clearance. The therapeutic strategy was applied to two Botulinum neurotoxin (BoNT) serotypes and protected mice from lethality in two different intoxication models with an efficacy equivalent to conventional antitoxin serum. Targeting agents were a single recombinant protein consisting of a heterodimer of two camelid anti-BoNT heavy-chain-only Ab V(H) (VHH) binding domains and two E-tag epitopes. The clearing mAb was an anti-E-tag mAb. By comparing the in vivo efficacy of treatments that employed neutralizing vs. non-neutralizing agents or the presence vs. absence of clearing Ab permitted unprecedented insight into the roles of toxin neutralization and clearance in antitoxin efficacy. Surprisingly, when a post-intoxication treatment model was used, a toxin-neutralizing heterodimer agent fully protected mice from intoxication even in the absence of clearing Ab. Thus a single, easy-to-produce recombinant protein was as efficacious as polyclonal antiserum in a clinically-relevant mouse model of botulism. This strategy should have widespread application in antitoxin development and other therapies in which neutralization and/or accelerated clearance of a serum biomolecule can offer therapeutic benefit.

  17. Development and face validation of strategies for improving consultation skills.

    PubMed

    Lefroy, Janet; Thomas, Adam; Harrison, Chris; Williams, Stephen; O'Mahony, Fidelma; Gay, Simon; Kinston, Ruth; McKinley, R K

    2014-12-01

    While formative workplace based assessment can improve learners' skills, it often does not because the procedures used do not facilitate feedback which is sufficiently specific to scaffold improvement. Provision of pre-formulated strategies to address predicted learning needs has potential to improve the quality and automate the provision of written feedback. To systematically develop, validate and maximise the utility of a comprehensive list of strategies for improvement of consultation skills through a process involving both medical students and their clinical primary and secondary care tutors. Modified Delphi study with tutors, modified nominal group study with students with moderation of outputs by consensus round table discussion by the authors. 35 hospital and 21 GP tutors participated in the Delphi study and contributed 153 new or modified strategies. After review of these and the 205 original strategies, 265 strategies entered the nominal group study to which 46 year four and five students contributed, resulting in the final list of 249 validated strategies. We have developed a valid and comprehensive set of strategies which are considered useful by medical students. This list can be immediately applied by any school which uses the Calgary Cambridge Framework to inform the content of formative feedback on consultation skills. We consider that the list could also be mapped to alternative skills frameworks and so be utilised by schools which do not use the Calgary Cambridge Framework.

  18. Which therapeutic strategy will achieve a cure for HIV-1?

    PubMed

    Cillo, Anthony R; Mellors, John W

    2016-06-01

    Strategies to achieve a cure for HIV-1 infection can be broadly classified into three categories: eradication cure (elimination of all viral reservoirs), functional cure (immune control without reservoir eradication), or a hybrid cure (reservoir reduction with improved immune control). The many HIV-1 cure strategies being investigated include modification of host cells to resist HIV-1, engineered T cells to eliminate HIV-infected cells, broadly HIV-1 neutralizing monoclonal antibodies, and therapeutic vaccination, but the 'kick and kill' strategy to expose latent HIV-1 with latency reversing agents (LRAs) and kill the exposed cells through immune effector functions is currently the most actively pursued. It is unknown, however, whether LRAs can deplete viral reservoirs in vivo or whether current LRAs are sufficiently safe for clinical use. Copyright © 2016. Published by Elsevier B.V.

  19. Glioblastoma: new therapeutic strategies to address cellular and genomic complexity

    PubMed Central

    Cai, Xue; Sughrue, Michael E.

    2018-01-01

    Glioblastoma (GBM) is the most invasive and devastating primary brain tumor with a median overall survival rate about 18 months with aggressive multimodality therapy. Its unique characteristics of heterogeneity, invasion, clonal populations maintaining stem cell-like cells and recurrence, have limited responses to a variety of therapeutic approaches, and have made GBM the most difficult brain cancer to treat. A great effort and progress has been made to reveal promising molecular mechanisms to target therapeutically. Especially with the emerging of new technologies, the mechanisms underlying the pathology of GBM are becoming more clear. The purpose of this review is to summarize the current knowledge of molecular mechanisms of GBM and highlight the novel strategies and concepts for the treatment of GBM. PMID:29507709

  20. CRISPR-Cas9 therapeutics in cancer: promising strategies and present challenges.

    PubMed

    Yi, Lang; Li, Jinming

    2016-12-01

    Cancer is characterized by multiple genetic and epigenetic alterations that drive malignant cell proliferation and confer chemoresistance. The ability to correct or ablate such mutations holds immense promise for combating cancer. Recently, because of its high efficiency and accuracy, the CRISPR-Cas9 genome editing technique has been widely used in cancer therapeutic explorations. Several studies used CRISPR-Cas9 to directly target cancer cell genomic DNA in cellular and animal cancer models which have shown therapeutic potential in expanding our anticancer protocols. Moreover, CRISPR-Cas9 can also be employed to fight oncogenic infections, explore anticancer drugs, and engineer immune cells and oncolytic viruses for cancer immunotherapeutic applications. Here, we summarize these preclinical CRISPR-Cas9-based therapeutic strategies against cancer, and discuss the challenges and improvements in translating therapeutic CRISPR-Cas9 into clinical use, which will facilitate better application of this technique in cancer research. Further, we propose potential directions of the CRISPR-Cas9 system in cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A Novel Strategy for Development of Recombinant Antitoxin Therapeutics Tested in a Mouse Botulism Model

    PubMed Central

    Leysath, Clinton E.; Ofori, Kwasi; Baldwin, Karen; Feng, Xiaochuan; Bedenice, Daniela; Webb, Robert P.; Wright, Patrick M.; Smith, Leonard A.; Tzipori, Saul; Shoemaker, Charles B.

    2012-01-01

    Antitoxins are needed that can be produced economically with improved safety and shelf life compared to conventional antisera-based therapeutics. Here we report a practical strategy for development of simple antitoxin therapeutics with substantial advantages over currently available treatments. The therapeutic strategy employs a single recombinant ‘targeting agent’ that binds a toxin at two unique sites and a ‘clearing Ab’ that binds two epitopes present on each targeting agent. Co-administration of the targeting agent and the clearing Ab results in decoration of the toxin with up to four Abs to promote accelerated clearance. The therapeutic strategy was applied to two Botulinum neurotoxin (BoNT) serotypes and protected mice from lethality in two different intoxication models with an efficacy equivalent to conventional antitoxin serum. Targeting agents were a single recombinant protein consisting of a heterodimer of two camelid anti-BoNT heavy-chain-only Ab VH (VHH) binding domains and two E-tag epitopes. The clearing mAb was an anti-E-tag mAb. By comparing the in vivo efficacy of treatments that employed neutralizing vs. non-neutralizing agents or the presence vs. absence of clearing Ab permitted unprecedented insight into the roles of toxin neutralization and clearance in antitoxin efficacy. Surprisingly, when a post-intoxication treatment model was used, a toxin-neutralizing heterodimer agent fully protected mice from intoxication even in the absence of clearing Ab. Thus a single, easy-to-produce recombinant protein was as efficacious as polyclonal antiserum in a clinically-relevant mouse model of botulism. This strategy should have widespread application in antitoxin development and other therapies in which neutralization and/or accelerated clearance of a serum biomolecule can offer therapeutic benefit. PMID:22238680

  2. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury.

    PubMed

    Pachori, Alok S; Melo, Luis G; Hart, Melanie L; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D; Stahl, Gregory L; Pratt, Richard E; Dzau, Victor J

    2004-08-17

    Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.

  3. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury

    PubMed Central

    Pachori, Alok S.; Melo, Luis G.; Hart, Melanie L.; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D.; Stahl, Gregory L.; Pratt, Richard E.; Dzau, Victor J.

    2004-01-01

    Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury. PMID:15302924

  4. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury

    NASA Astrophysics Data System (ADS)

    Pachori, Alok S.; Melo, Luis G.; Hart, Melanie L.; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D.; Stahl, Gregory L.; Pratt, Richard E.; Dzau, Victor J.

    2004-08-01

    Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.

  5. [Surgical therapeutic strategy in vital risk polytrauma with multiple organ injuries, case report].

    PubMed

    Munteanu, Iulia; Stefan, S; Isloi, Anca; Coca, I C; Baroi, Genoveva; Radu, L; Lăpuşneanu, A; Tamaş, Camelia

    2008-01-01

    The medical interest for trauma pathology is incresing, due to the gravity of the given injuries. The surgical therapeutic strategy used is directly related to the localization and to the type of the trauma. The supplementary lesions and their vital risk also matter. The multidisciplinary team approach is the key to resolve this type of lesions with a good outcome. We recently observed an increasing tendency toward the rise of number and variety of patients with trauma, due to the great diversity of the etiopathogenic agents. The most important factor, during the assessment of a politraumatised patient is to diagnose correctly the functional deficits of vital organs and establish the vital prognosis. It is necessary to adopt the best and fast therapeutic strategy in order to obtain rapid life-saving decisions.

  6. Targeting cancer’s weaknesses (not its strengths): Therapeutic strategies suggested by the atavistic model

    PubMed Central

    Lineweaver, Charles H.; Davies, Paul C.W.; Vincent, Mark D.

    2014-01-01

    In the atavistic model of cancer progression, tumor cell dedifferentiation is interpreted as a reversion to phylogenetically earlier capabilities. The more recently evolved capabilities are compromised first during cancer progression. This suggests a therapeutic strategy for targeting cancer: design challenges to cancer that can only be met by the recently evolved capabilities no longer functional in cancer cells. We describe several examples of this target-the-weakness strategy. Our most detailed example involves the immune system. The absence of adaptive immunity in immunosuppressed tumor environments is an irreversible weakness of cancer that can be exploited by creating a challenge that only the presence of adaptive immunity can meet. This leaves tumor cells more vulnerable than healthy tissue to pathogenic attack. Such a target-the-weakness therapeutic strategy has broad applications, and contrasts with current therapies that target the main strength of cancer: cell proliferation. PMID:25043755

  7. The therapeutic strategies against Naegleria fowleri.

    PubMed

    Bellini, Natália Karla; Santos, Thomás Michelena; da Silva, Marco Túlio Alves; Thiemann, Otavio Henrique

    2018-04-01

    Naegleria fowleri is a pathogenic amoeboflagellate most prominently known for its role as the etiological agent of the Primary Amoebic Meningoencephalitis (PAM), a disease that afflicts the central nervous system and is fatal in more than 95% of the reported cases. Although being fatal and with potential risks for an increase in the occurrence of the pathogen in populated areas, the organism receives little public health attention. A great underestimation in the number of PAM cases reported is assumed, taking into account the difficulty in obtaining an accurate diagnosis. In this review, we summarize different techniques and methods used in the identification of the protozoan in clinical and environmental samples. Since it remains unclear whether the protozoan infection can be successfully treated with the currently available drugs, we proceed to discuss the current PAM therapeutic strategies and its effectiveness. Finally, novel compounds for potential treatments are discussed as well as research on vaccine development against PAM. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Therapeutic Symptomatic Strategies in the Parasomnias.

    PubMed

    Manni, Raffaele; Toscano, Gianpaolo; Terzaghi, Michele

    2018-06-05

    The purpose of this review was to discuss the currently available pharmacologic and non-pharmacologic treatment options for parasomnias. Recent pathophysiological findings about sleep structure in parasomnias helped understanding several drug mechanisms of action. Serotoninergic theory accounts for the effect of serotoninergic drugs. Study about spectral analysis of sleep showed the effect of clonazepam on spectral bands. Cannabinoids proved to be effective in some of parasomnias, as in many other neurological disorders. A series of therapeutic strategies were analyzed and compared. Benzodiazepines, antidepressant drugs, and L-5-hydroxytryptophan may be beneficial in DOA. SSRI and topiramate are effective in SRED. RBD responds to clonazepam, melatonin, and to a lesser extent to dopaminergic and anticholinergic agents. Prazosin and cannabinoids are effective in nightmare disorder. Sleep paralysis may respond to antidepressant agents. Tricyclic antidepressant may be effective in sleep-related hallucinations and exploding head syndrome. Sleep enuresis may be successfully treated with desmopressin, anticholinergic drugs, and imipramine.

  9. Neuroprotective and Therapeutic Strategies against Parkinson’s Disease: Recent Perspectives

    PubMed Central

    Sarkar, Sumit; Raymick, James; Imam, Syed

    2016-01-01

    Parkinsonism is a progressive motor disease that affects 1.5 million Americans and is the second most common neurodegenerative disease after Alzheimer’s. Typical neuropathological features of Parkinson’s disease (PD) include degeneration of dopaminergic neurons located in the pars compacta of the substantia nigra that project to the striatum (nigro-striatal pathway) and depositions of cytoplasmic fibrillary inclusions (Lewy bodies) which contain ubiquitin and α-synuclein. The cardinal motor signs of PD are tremors, rigidity, slow movement (bradykinesia), poor balance, and difficulty in walking (Parkinsonian gait). In addition to motor symptoms, non-motor symptoms that include autonomic and psychiatric as well as cognitive impairments are pressing issues that need to be addressed. Several different mechanisms play an important role in generation of Lewy bodies; endoplasmic reticulum (ER) stress induced unfolded proteins, neuroinflammation and eventual loss of dopaminergic neurons in the substantia nigra of mid brain in PD. Moreover, these diverse processes that result in PD make modeling of the disease and evaluation of therapeutics against this devastating disease difficult. Here, we will discuss diverse mechanisms that are involved in PD, neuroprotective and therapeutic strategies currently in clinical trial or in preclinical stages, and impart views about strategies that are promising to mitigate PD pathology. PMID:27338353

  10. Strategies for Validation Testing of Ground Systems

    NASA Technical Reports Server (NTRS)

    Annis, Tammy; Sowards, Stephanie

    2009-01-01

    In order to accomplish the full Vision for Space Exploration announced by former President George W. Bush in 2004, NASA will have to develop a new space transportation system and supporting infrastructure. The main portion of this supporting infrastructure will reside at the Kennedy Space Center (KSC) in Florida and will either be newly developed or a modification of existing vehicle processing and launch facilities, including Ground Support Equipment (GSE). This type of large-scale launch site development is unprecedented since the time of the Apollo Program. In order to accomplish this successfully within the limited budget and schedule constraints a combination of traditional and innovative strategies for Verification and Validation (V&V) have been developed. The core of these strategies consists of a building-block approach to V&V, starting with component V&V and ending with a comprehensive end-to-end validation test of the complete launch site, called a Ground Element Integration Test (GEIT). This paper will outline these strategies and provide the high level planning for meeting the challenges of implementing V&V on a large-scale development program. KEY WORDS: Systems, Elements, Subsystem, Integration Test, Ground Systems, Ground Support Equipment, Component, End Item, Test and Verification Requirements (TVR), Verification Requirements (VR)

  11. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer.

    PubMed

    Liu, Qiuping; Luo, Qing; Halim, Alexander; Song, Guanbin

    2017-08-10

    One of the most important metabolic hallmarks of cancer cells is deregulation of lipid metabolism. In addition, enhancing de novo fatty acid (FA) synthesis, increasing lipid uptake and lipolysis have also been considered as means of FA acquisition in cancer cells. FAs are involved in various aspects of tumourigenesis and tumour progression. Therefore, targeting lipid metabolism is a promising therapeutic strategy for human cancer. Recent studies have shown that reprogramming lipid metabolism plays important roles in providing energy, macromolecules for membrane synthesis, and lipid signals during cancer progression. Moreover, accumulation of lipid droplets in cancer cells acts as a pivotal adaptive response to harmful conditions. Here, we provide a brief review of the crucial roles of FA metabolism in cancer development, and place emphasis on FA origin, utilization and storage in cancer cells. Understanding the regulation of lipid metabolism in cancer cells has important implications for exploring a new therapeutic strategy for management and treatment of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Immunomodulation as a neuroprotective and therapeutic strategy for Parkinson's disease.

    PubMed

    Olson, Katherine E; Gendelman, Howard E

    2016-02-01

    While immune control is associated with nigrostriatal neuroprotection for Parkinson's disease, direct cause and effect relationships have not yet been realized, and modulating the immune system for therapeutic gain has been openly debated. Here, we review how innate and adaptive immunity affect disease pathobiology, and how each could be harnessed for treatment. The overarching idea is to employ immunopharmacologics as neuroprotective strategies for disease. The aim of the current work is to review disease-modifying treatments that are currently being developed as neuroprotective strategies for PD in experimental animal models and for human disease translation. The long-term goal of this research is to effectively harness the immune system to slow or prevent PD pathobiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Therapeutic strategies with oral fluoropyrimidine anticancer agent, S-1 against oral cancer.

    PubMed

    Harada, Koji; Ferdous, Tarannum; Ueyama, Yoshiya

    2017-08-01

    Oral cancer has been recognized as a tumor with low sensitivity to anticancer agents. However, introduction of S-1, an oral cancer agent is improving treatment outcome for patients with oral cancer. In addition, S-1, as a main drug for oral cancer treatment in Japan can be easily available for outpatients. In fact, S-1 exerts high therapeutic effects with acceptable side effects. Moreover, combined chemotherapy with S-1 shows higher efficacy than S-1 alone, and combined chemo-radiotherapy with S-1 exerts remarkable therapeutic effects. Furthermore, we should consider the combined therapy of S-1 and molecular targeting agents right now as these combinations were reportedly useful for oral cancer treatment. Here, we describe our findings related to S-1 that were obtained experimentally and clinically, and favorable therapeutic strategies with S-1 against oral cancer with bibliographic considerations.

  14. Hydrogels for central nervous system therapeutic strategies.

    PubMed

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described. © IMechE 2015.

  15. Pathophysiology and Therapeutic Strategies for Symptomatic Uncomplicated Diverticular Disease of the Colon.

    PubMed

    Scaioli, Eleonora; Colecchia, Antonio; Marasco, Giovanni; Schiumerini, Ramona; Festi, Davide

    2016-03-01

    Colonic diverticulosis imposes a significant burden on industrialized societies. The current accepted causes of diverticula formation include low fiber content in the western diet with decreased intestinal content and size of the lumen, leading to the transmission of muscular contraction pressure to the wall of the colon, inducing the formation of diverticula usually at the weakest point of the wall where penetration of the blood vessels occurs. Approximately 20 % of the patients with colonic diverticulosis develop abdominal symptoms (i.e., abdominal pain and discomfort, bloating, constipation, and diarrhea), a condition which is defined as symptomatic uncomplicated diverticular disease (SUDD). The pathogenesis of SUDD symptoms remains uncertain and even less is known about how to adequately manage bowel symptoms. Recently, low-grade inflammation, altered intestinal microbiota, visceral hypersensitivity, and abnormal colonic motility have been identified as factors leading to symptom development, thus changing and improving the therapeutic approach. In this review, a comprehensive search of the literature regarding on SUDD pathogenetic hypotheses and pharmacological strategies was carried out. The pathogenesis of SUDD, although not completely clarified, seems to be related to an interaction between colonic microbiota alterations, and immune, enteric nerve, and muscular system dysfunction (Cuomo et al. in United Eur Gastroenterol J 2:413-442, 2014). Greater understanding of the inflammatory pathways and gut microbiota composition in subjects affected by SUDD has increased therapeutic options, including the use of gut-directed antibiotics, mesalazine, and probiotics (Bianchi et al. in Aliment Pharmacol Ther 33:902-910, 2011; Comparato et al. in Dig Dis Sci 52:2934-2941, 2007; Tursi et al. in Aliment Pharmacol Ther 38:741-751, 2013); however, more research is necessary to validate the safety, effectiveness, and cost-effectiveness of these interventions.

  16. [Work-related musculoskeletal disorders in dentistry professionals. 2. Prevention, ergonomic strategies and therapeutic programs].

    PubMed

    Sartorio, F; Franchignoni, F; Ferriero, G; Vercelli, S; Odescalchi, L; Augusti, D; Migliario, M

    2005-01-01

    In dental professionals the risk of developing work-related musculoskeletal disorders (WMSD) can be minimized through a combination of prevention, ergonomic strategies, and specific therapeutic programs. Prevention includes early identification of symptoms, analysis of working posture and activity, and the evaluation of equipment (such as dental instruments, position of the dental unit, patient and operator chairs, and lighting). The ergonomic strategies are based on identifying the best daily timetable (including periodic pauses) and most efficient team organization, as well as establishing the correct position that should be held at the patient chair. Finally specific therapeutic programs are very important in preventing or treating WMSD. In fact, fitness exercises such as mobilization, stretching or muscular and cardiovascular training are recognized as fundamental for dental professionals, and when WMSD occurs physiatric care and physical therapy are recommended.

  17. Long noncoding RNAs and tumorigenesis: genetic associations, molecular mechanisms, and therapeutic strategies.

    PubMed

    Zhang, Fan; Zhang, Liang; Zhang, Caiguo

    2016-01-01

    The human genome contains a large number of nonprotein-coding sequences. Recently, new discoveries in the functions of nonprotein-coding sequences have demonstrated that the "Dark Genome" significantly contributes to human diseases, especially with regard to cancer. Of particular interest in this review are long noncoding RNAs (lncRNAs), which comprise a class of nonprotein-coding transcripts that are longer than 200 nucleotides. Accumulating evidence indicates that a large number of lncRNAs exhibit genetic associations with tumorigenesis, tumor progression, and metastasis. Our current understanding of the molecular bases of these lncRNAs that are associated with cancer indicate that they play critical roles in gene transcription, translation, and chromatin modification. Therapeutic strategies based on the targeting of lncRNAs to disrupt their expression or their functions are being developed. In this review, we briefly summarize and discuss the genetic associations and the aberrant expression of lncRNAs in cancer, with a particular focus on studies that have revealed the molecular mechanisms of lncRNAs in tumorigenesis. In addition, we also discuss different therapeutic strategies that involve the targeting of lncRNAs.

  18. Validation of the Self-Regulation Strategy Inventory-Parent Rating Scale

    ERIC Educational Resources Information Center

    Lubin, Audrey Ruth

    2015-01-01

    The current dissertation gathered empirical evidence of convergent and predictive validity for the Self-Regulation Strategies Inventory-Parent Rating Scale (SRSI-PRS), which measures parents' perception of their child's use of self-regulated learning (SRL) strategies during mathematics activities. The SRSI-PRS, which is part of the larger SRSI…

  19. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.

    PubMed

    Nuti, Ramya; Goud, Nerella S; Saraswati, A Prasanth; Alvala, Ravi; Alvala, Mallika

    2017-01-01

    Antimicrobial resistance (AMR) has posed a serious threat to global public health and it requires immediate action, preferably long term. Current drug therapies have failed to curb this menace due to the ability of microbes to circumvent the mechanisms through which the drugs act. From the drug discovery point of view, the majority of drugs currently employed for antimicrobial therapy are small molecules. Recent trends reveal a surge in the use of peptides as drug candidates as they offer remarkable advantages over small molecules. Newer synthetic strategies like organometalic complexes, Peptide-polymer conjugates, solid phase, liquid phase and recombinant DNA technology encouraging the use of peptides as therapeutic agents with a host of chemical functions, and tailored for specific applications. In the last decade, many peptide based drugs have been successfully approved by the Food and Drug Administration (FDA). This success can be attributed to their high specificity, selectivity and efficacy, high penetrability into the tissues, less immunogenicity and less tissue accumulation. Considering the enormity of AMR, the use of Antimicrobial Peptides (AMPs) can be a viable alternative to current therapeutics strategies. AMPs are naturally abundant allowing synthetic chemists to develop semi-synthetics peptide molecules. AMPs have a broad spectrum of activity towards microbes and they possess the ability to bypass the resistance induction mechanisms of microbes. The present review focuses on the potential applications of AMPs against various microbial disorders and their future prospects. Several resistance mechanisms and their strategies have also been discussed to highlight the importance in the current scenario. Breakthroughs in AMP designing, peptide synthesis and biotechnology have shown promise in tackling this challenge and has revived the interest of using AMPs as an important weapon in fighting AMR. Copyright© Bentham Science Publishers; For any queries

  20. Current therapeutic vaccination and immunotherapy strategies for HPV-related diseases

    PubMed Central

    Skeate, Joseph G.; Woodham, Andrew W.; Einstein, Mark H.; Da Silva, Diane M.; Kast, W. Martin

    2016-01-01

    ABSTRACT Carcinomas of the anogenital tract, in particular cervical cancer, remains one of the most common cancers in women, and represent the most frequent gynecological malignancies and the fourth leading cause of cancer death in women worldwide. Human papillomavirus (HPV)-induced lesions are immunologically distinct in that they express viral antigens, which are necessary to maintain the cancerous phenotype. The causal relationship between HPV infection and anogenital cancer has prompted substantial interest in the development of therapeutic vaccines against high-risk HPV types targeting the viral oncoproteins E6 and E7. This review will focus on the most recent clinical trials for immunotherapies for mucosal HPV-induced lesions as well as emerging therapeutic strategies that have been tested in pre-clinical models for HPV-induced diseases. Progress in peptide- and protein-based vaccines, DNA-based vaccines, viral/bacterial vector-based vaccines, immune checkpoint inhibition, immune response modifiers, and adoptive cell therapy for HPV will be discussed. PMID:26835746

  1. Current therapeutic vaccination and immunotherapy strategies for HPV-related diseases.

    PubMed

    Skeate, Joseph G; Woodham, Andrew W; Einstein, Mark H; Da Silva, Diane M; Kast, W Martin

    2016-06-02

    Carcinomas of the anogenital tract, in particular cervical cancer, remains one of the most common cancers in women, and represent the most frequent gynecological malignancies and the fourth leading cause of cancer death in women worldwide. Human papillomavirus (HPV)-induced lesions are immunologically distinct in that they express viral antigens, which are necessary to maintain the cancerous phenotype. The causal relationship between HPV infection and anogenital cancer has prompted substantial interest in the development of therapeutic vaccines against high-risk HPV types targeting the viral oncoproteins E6 and E7. This review will focus on the most recent clinical trials for immunotherapies for mucosal HPV-induced lesions as well as emerging therapeutic strategies that have been tested in pre-clinical models for HPV-induced diseases. Progress in peptide- and protein-based vaccines, DNA-based vaccines, viral/bacterial vector-based vaccines, immune checkpoint inhibition, immune response modifiers, and adoptive cell therapy for HPV will be discussed.

  2. [ARDS and severe brain injury. Therapeutic strategies in conflict].

    PubMed

    Bein, T; Kuhr, L P; Metz, C; Woertgen, C; Philipp, A; Taeger, K

    2002-07-01

    The development of adult respiratory distress syndrome (ARDS) complicates the treatment of patients with severe head injury, since special therapeutic strategies for both conditions might lead to a "conflict of interest". We report on the intensive care treatment of a young man who suffered severe brain injury (Glasgow Coma Scale = 3) due to a traffic accident and simultaneously developed ARDS from the aspiration of gastric content. We performed extensive monitoring of cerebral hemodynamics and metabolism (intracranial pressure measurement, jugular bulb oxymetry, estimation of arterial-jugular bulb lactate concentration difference) to prevent cerebral hypoxia and to control cerebral hyperemia. The application of a "lung protective strategy" with "permissive hypercapnia" led to a conflict, since the development of cranial hyperemia combined with cranial hypertension a few days after trauma, warranted the concept of controlled, temporary hyperventilation. Therefore, we applied a pumpless extracorporeal lung assist to improve carbon dioxide elimination. Furthermore, we started the ventilation in the prone position, since arterial oxygenation continued to deteriorate, although there is a lack of data describing the effect of a prone position on acute cerebral injury. Positioning the patient prone, we observed a prompt increase in intracranial pressure, which resulted in pharmacological intervention (mannitol). Treating the patient by intermittent prone position, by continuous extracorporeal lung assist and aerosolized prostacyclin administration in the following period, lung function improved and ARDS was treated successfully. After withdrawing the analgo-sedation the patient's vigilance rose continuously. The patient was transferred to a rehabilitation ward 33 days after admission to the intensive care unit. The combination of ARDS and severe brain injury needs special treatment, which includes extensive monitoring techniques to find a solution for therapeutic

  3. Validating Work Discrimination and Coping Strategy Models for Sexual Minorities

    ERIC Educational Resources Information Center

    Chung, Y. Barry; Williams, Wendi; Dispenza, Franco

    2009-01-01

    The purpose of this study was to validate and expand on Y. B. Chung's (2001) models of work discrimination and coping strategies among lesbian, gay, and bisexual persons. In semistructured individual interviews, 17 lesbians and gay men reported 35 discrimination incidents and their related coping strategies. Responses were coded based on Chung's…

  4. Validation of optimization strategies using the linear structured production chains

    NASA Astrophysics Data System (ADS)

    Kusiak, Jan; Morkisz, Paweł; Oprocha, Piotr; Pietrucha, Wojciech; Sztangret, Łukasz

    2017-06-01

    Different optimization strategies applied to sequence of several stages of production chains were validated in this paper. Two benchmark problems described by ordinary differential equations (ODEs) were considered. A water tank and a passive CR-RC filter were used as the exemplary objects described by the first and the second order differential equations, respectively. Considered in the work optimization problems serve as the validators of strategies elaborated by the Authors. However, the main goal of research is selection of the best strategy for optimization of two real metallurgical processes which will be investigated in an on-going projects. The first problem will be the oxidizing roasting process of zinc sulphide concentrate where the sulphur from the input concentrate should be eliminated and the minimal concentration of sulphide sulphur in the roasted products has to be achieved. Second problem will be the lead refining process consisting of three stages: roasting to the oxide, oxide reduction to metal and the oxidizing refining. Strategies, which appear the most effective in considered benchmark problems will be candidates for optimization of the mentioned above industrial processes.

  5. Understanding Foreign Language Learning Strategies: A Validation Study

    ERIC Educational Resources Information Center

    Tragant, Elsa; Thompson, Marilyn S.; Victori, Mia

    2013-01-01

    The present work aims to contribute to our understanding of the underlying dimensions of language learning strategies in foreign language contexts. The study analyzes alternative factor structures underlying a recently developed instrument (Tragant and Victori, 2012) and it includes the age factor in the examination of its construct validity. The…

  6. Cell-based therapeutic strategies for multiple sclerosis

    PubMed Central

    Scolding, Neil J; Pasquini, Marcelo; Reingold, Stephen C; Cohen, Jeffrey A; Atkins, Harold; Banwell, Brenda; Bar-Or, Amit; Bebo, Bruce; Bowen, James; Burt, Richard; Calabresi, Peter; Cohen, Jeffrey; Comi, Giancarlo; Connick, Peter; Cross, Anne; Cutter, Gary; Derfuss, Tobias; Ffrench-Constant, Charles; Freedman, Mark; Galipeau, Jacques; Goldman, Myla; Goldman, Steven; Goodman, Andrew; Green, Ari; Griffith, Linda; Hartung, Hans-Peter; Hemmer, Bernhard; Hyun, Insoo; Iacobaeus, Ellen; Inglese, Matilde; Jubelt, Burk; Karussis, Dimitrios; Küry, Patrick; Landsman, Douglas; Laule, Cornelia; Liblau, Roland; Mancardi, Giovanni; Ann Marrie, Ruth; Miller, Aaron; Miller, Robert; Miller, David; Mowry, Ellen; Muraro, Paolo; Nash, Richard; Ontaneda, Daniel; Pasquini, Marcelo; Pelletier, Daniel; Peruzzotti-Jametti, Luca; Pluchino, Stefano; Racke, Michael; Reingold, Stephen; Rice, Claire; Ringdén, Olle; Rovira, Alex; Saccardi, Riccardo; Sadiq, Saud; Sarantopoulos, Stefanie; Savitz, Sean; Scolding, Neil; Soelberg Sorensen, Per; Pia Sormani, Maria; Stuve, Olaf; Tesar, Paul; Thompson, Alan; Trojano, Maria; Uccelli, Antonio; Uitdehaag, Bernard; Utz, Ursula; Vukusic, Sandra; Waubant, Emmanuelle; Wilkins, Alastair

    2017-01-01

    Abstract The availability of multiple disease-modifying medications with regulatory approval to treat multiple sclerosis illustrates the substantial progress made in therapy of the disease. However, all are only partially effective in preventing inflammatory tissue damage in the central nervous system and none directly promotes repair. Cell-based therapies, including immunoablation followed by autologous haematopoietic stem cell transplantation, mesenchymal and related stem cell transplantation, pharmacologic manipulation of endogenous stem cells to enhance their reparative capabilities, and transplantation of oligodendrocyte progenitor cells, have generated substantial interest as novel therapeutic strategies for immune modulation, neuroprotection, or repair of the damaged central nervous system in multiple sclerosis. Each approach has potential advantages but also safety concerns and unresolved questions. Moreover, clinical trials of cell-based therapies present several unique methodological and ethical issues. We summarize here the status of cell-based therapies to treat multiple sclerosis and make consensus recommendations for future research and clinical trials. PMID:29053779

  7. Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine

    PubMed Central

    Nguyen, Minh Khanh; Alsberg, Eben

    2014-01-01

    Polymer hydrogels have been widely explored as therapeutic delivery matrices because of their ability to present sustained, localized and controlled release of bioactive factors. Bioactive factor delivery from injectable biopolymer hydrogels provides a versatile approach to treat a wide variety of diseases, to direct cell function and to enhance tissue regeneration. The innovative development and modification of both natural-(e.g., alginate (ALG), chitosan, hyaluronic acid (HA), gelatin, heparin (HEP), etc.) and synthetic-(e.g., polyesters, polyethyleneimine (PEI), etc.) based polymers has resulted in a variety of approaches to design drug delivery hydrogel systems from which loaded therapeutics are released. This review presents the state-of-the-art in a wide range of hydrogels that are formed though self-assembly of polymers and peptides, chemical crosslinking, ionic crosslinking and biomolecule recognition. Hydrogel design for bioactive factor delivery is the focus of the first section. The second section then thoroughly discusses release strategies of payloads from hydrogels for therapeutic medicine, such as physical incorporation, covalent tethering, affinity interactions, on demand release and/or use of hybrid polymer scaffolds, with an emphasis on the last 5 years. PMID:25242831

  8. Immune evasion in cancer: Mechanistic basis and therapeutic strategies.

    PubMed

    Vinay, Dass S; Ryan, Elizabeth P; Pawelec, Graham; Talib, Wamidh H; Stagg, John; Elkord, Eyad; Lichtor, Terry; Decker, William K; Whelan, Richard L; Kumara, H M C Shantha; Signori, Emanuela; Honoki, Kanya; Georgakilas, Alexandros G; Amin, Amr; Helferich, William G; Boosani, Chandra S; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I; Azmi, Asfar S; Keith, W Nicol; Bilsland, Alan; Bhakta, Dipita; Halicka, Dorota; Fujii, Hiromasa; Aquilano, Katia; Ashraf, S Salman; Nowsheen, Somaira; Yang, Xujuan; Choi, Beom K; Kwon, Byoung S

    2015-12-01

    Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Developing therapeutic microRNAs for cancer

    PubMed Central

    Bader, AG; Brown, D; Stoudemire, J; Lammers, P

    2014-01-01

    Despite substantial progress in understanding the cancer-signaling network, effective therapies remain scarce due to insufficient disruption of oncogenic pathways, drug resistance and drug-induced toxicity. This complexity of cancer defines an urgent goal for researchers and clinicians to develop novel therapeutic strategies. The discovery of microRNAs (miRNAs) provides new hope for accomplishing this task. Supported by solid evidence for a critical role in cancer and bolstered by a unique mechanism of action, miRNAs are likely to yield a new class of targeted therapeutics. In contrast to current cancer medicines, miRNA-based therapies function by subtle repression of gene expression on a yet large number of oncogenic factors and are, therefore, anticipated to be highly efficacious. After the completion of target validation for several candidates, the development of therapeutic miRNAs is now moving to a new stage that involves pharmacological drug delivery, preclinical toxicology and regulatory guidelines. PMID:21633392

  10. Developing a novel therapeutic strategy targeting Kallikrein-4 to inhibit prostate cancer growth and metastasis

    DTIC Science & Technology

    Kallikrein-related peptidase 4 (KLK4) is a rational therapeutic target for prostate cancer (PCa) as it is up-regulated in both localised and bone ...in PCa homing to bone . We therefore hypothesize that blockade of KLK4 activity will inhibit PCa growth and prevent metastasis to secondary sites like... bone . This project aims to develop a novel therapeutic strategy targeting KLK4 specifically in PCa. KLK4 siRNA is incorporated into a novel polymeric

  11. Physical and Chemical Strategies for Therapeutic Delivery by Using Polymeric Nanoparticles

    PubMed Central

    Morachis, José M.; Mahmoud, Enas A.

    2012-01-01

    A significant challenge that most therapeutic agents face is their inability to be delivered effectively. Nanotechnology offers a solution to allow for safe, high-dose, specific delivery of pharmaceuticals to the target tissue. Nanoparticles composed of biodegradable polymers can be designed and engineered with various layers of complexity to achieve drug targeting that was unimaginable years ago by offering multiple mechanisms to encapsulate and strategically deliver drugs, proteins, nucleic acids, or vaccines while improving their therapeutic index. Targeting of nanoparticles to diseased tissue and cells assumes two strategies: physical and chemical targeting. Physical targeting is a strategy enabled by nanoparticle fabrication techniques. It includes using size, shape, charge, and stiffness among other parameters to influence tissue accumulation, adhesion, and cell uptake. New methods to measure size, shape, and polydispersity will enable this field to grow and more thorough comparisons to be made. Physical targeting can be more economically viable when certain fabrication techniques are used. Chemical targeting can employ molecular recognition units to decorate the surface of particles or molecular units responsive to diseased environments or remote stimuli. In this review, we describe sophisticated nanoparticles designed for tissue-specific chemical targeting that use conjugation chemistry to attach targeting moieties. Furthermore, we describe chemical targeting using stimuli responsive nanoparticles that can respond to changes in pH, heat, and light. PMID:22544864

  12. Targeting of adhesion molecules as a therapeutic strategy in multiple myeloma.

    PubMed

    Neri, Paola; Bahlis, Nizar J

    2012-09-01

    Multiple myeloma (MM) is a clonal disorder of plasma cells that remains, for the most part, incurable despite the advent of several novel therapeutic agents. Tumor cells in this disease are cradled within the bone marrow (BM) microenvironment by an array of adhesive interactions between the BM cellular residents, the surrounding extracellular matrix (ECM) components such as fibronectin (FN), laminin, vascular cell adhesion molecule-1 (VCAM-1), proteoglycans, collagens and hyaluronan, and a variety of adhesion molecules on the surface of MM cells including integrins, hyaluronan receptors (CD44 and RHAMM) and heparan sulfate proteoglycans. Several signaling responses are activated by these interactions, affecting the survival, proliferation and migration of MM cells. An important consequence of these direct adhesive interactions between the BM/ECM and MM cells is the development of drug resistance. This phenomenon is termed "cell adhesion-mediated drug resistance" (CAM-DR) and it is thought to be one of the major mechanisms by which MM cells escape the cytotoxic effects of therapeutic agents. This review will focus on the adhesion molecules involved in the cross-talk between MM cells and components of the BM microenvironment. The complex signaling networks downstream of these adhesive molecules mediated by direct ligand binding or inside-out soluble factors signaling will also be reviewed. Finally, novel therapeutic strategies targeting these molecules will be discussed. Identification of the mediators of MM-BM interaction is essential to understand MM biology and to elucidate novel therapeutic targets for this disease.

  13. Current therapeutic strategies for premature ejaculation and future perspectives

    PubMed Central

    Xin, Zhong-Cheng; Zhu, Yi-Chen; Yuan, Yi-Ming; Cui, Wan-Shou; Jin, Zhe; Li, Wei-Ren; Liu, Tao

    2011-01-01

    Premature ejaculation (PE) is a common sexual disorder in men that is mediated by disturbances in the peripheral and central nervous systems. Although all pharmaceutical treatments for PE are currently used ‘off-label', some novel oral agents and some newer methods of drug administration now provide important relief to PE patients. However, the aetiology of this condition has still not been unified, primarily because of the lack of a standard animal model for basic research and the absence of a widely accepted definition and assessment tool for evidence-based clinical studies in patients with PE. In this review, we focus on the current therapeutic strategies and future treatment perspectives for PE. PMID:21532601

  14. Modulating Neurotrophin Receptor Signaling as a Therapeutic Strategy for Huntington’s Disease

    PubMed Central

    Simmons, Danielle A.

    2017-01-01

    Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG repeat expansions in the IT15 gene which encodes the huntingtin (HTT) protein. Currently, no treatments capable of preventing or slowing disease progression exist. Disease modifying therapeutics for HD would be expected to target a comprehensive set of degenerative processes given the diverse mechanisms contributing to HD pathogenesis including neuroinflammation, excitotoxicity, and transcription dysregulation. A major contributor to HD-related degeneration is mutant HTT-induced loss of neurotrophic support. Thus, neurotrophin (NT) receptors have emerged as therapeutic targets in HD. The considerable overlap between NT signaling networks and those dysregulated by mutant HTT provides strong theoretical support for this approach. This review will focus on the contributions of disrupted NT signaling in HD-related neurodegeneration and how targeting NT receptors to augment pro-survival signaling and/or to inhibit degenerative signaling may combat HD pathologies. Therapeutic strategies involving NT delivery, peptidomimetics, and the targeting of specific NT receptors (e.g., Trks or p75NTR), particularly with small molecule ligands, are discussed. PMID:29254102

  15. Prioritizing therapeutic targets using patient-derived xenograft models

    PubMed Central

    Lodhia, K.A; Hadley, A; Haluska, P; Scott, C.L

    2015-01-01

    Effective systemic treatment of cancer relies on the delivery of agents with optimal therapeutic potential. The molecular age of medicine has provided genomic tools that can identify a large number of potential therapeutic targets in individual patients, heralding the promise of personalized treatment. However, determining which potential targets actually drive tumor growth and should be prioritized for therapy is challenging. Indeed, reliable molecular matches of target and therapeutic agent have been stringently validated in the clinic for only a small number of targets. Patient-derived xenografts (PDX) are tumor models developed in immunocompromised mice using tumor procured directly from the patient. As patient surrogates, PDX models represent a powerful tool for addressing individualized therapy. Challenges include humanizing the immune system of PDX models and ensuring high quality molecular annotation, in order to maximise insights for the clinic. Importantly, PDX can be sampled repeatedly and in parallel, to reveal clonal evolution, which may predict mechanisms of drug resistance and inform therapeutic strategy design. PMID:25783201

  16. PCSK9 Inhibitors: Novel Therapeutic Strategies for Lowering LDL-Cholesterol.

    PubMed

    Liu, Zhao-Peng; Wang, Yan

    2018-04-22

    Statins are currently the major therapeutic strategies to lower low-density lipoprotein cholesterol (LDL-C) levels. However, a number of hypercholesterolemia patients still have a residual cardiovascular disease (CVD) risk despite taking the maximum-tolerated dose of statins. Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low-density lipoprotein receptor (LDLR), inducing its degradation in the lysosome and inhibiting LDLR recirculating to the cell membranes. The gain-of-function mutations in PCSK9 elevate the LDL-C levels in plasma. Therefore, PCSK9 inhibitors become novel therapeutic approaches in the treatment of hypercholesterolemia. Several PCSK9 inhibitors have been under investigation, and much progress has been made in clinical trials, especially for monoclonal antibodies (MoAbs). Two MoAbs, evolocumab and alirocumab, are now in clinical use. In this review, we summarize the development of PCSK9 inhibitors, including antisense oligonucleotides (ASOs), small interfering RNA (siRNA), small molecule inhibitor, MoAbs, mimetic peptides and adnectins, and the related safety issues. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction.

    PubMed

    Cheng, Hao; Garrick, Dorian J; Fernando, Rohan L

    2017-01-01

    A random multiple-regression model that simultaneously fit all allele substitution effects for additive markers or haplotypes as uncorrelated random effects was proposed for Best Linear Unbiased Prediction, using whole-genome data. Leave-one-out cross validation can be used to quantify the predictive ability of a statistical model. Naive application of Leave-one-out cross validation is computationally intensive because the training and validation analyses need to be repeated n times, once for each observation. Efficient Leave-one-out cross validation strategies are presented here, requiring little more effort than a single analysis. Efficient Leave-one-out cross validation strategies is 786 times faster than the naive application for a simulated dataset with 1,000 observations and 10,000 markers and 99 times faster with 1,000 observations and 100 markers. These efficiencies relative to the naive approach using the same model will increase with increases in the number of observations. Efficient Leave-one-out cross validation strategies are presented here, requiring little more effort than a single analysis.

  18. A window on disease pathogenesis and potential therapeutic strategies: molecular imaging for arthritis

    PubMed Central

    2011-01-01

    Novel molecular imaging techniques are at the forefront of both preclinical and clinical imaging strategies. They have significant potential to offer visualisation and quantification of molecular and cellular changes in health and disease. This will help to shed light on pathobiology and underlying disease processes and provide further information about the mechanisms of action of novel therapeutic strategies. This review explores currently available molecular imaging techniques that are available for preclinical studies with a focus on optical imaging techniques and discusses how current and future advances will enable translation into the clinic for patients with arthritis. PMID:21345267

  19. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies

    PubMed Central

    Ju, Cynthia; Tacke, Frank

    2016-01-01

    Macrophages represent a major cell type of innate immunity and have emerged as a critical player and therapeutic target in many chronic inflammatory diseases. Hepatic macrophages consist of Kupffer cells, which are originated from the fetal yolk-sack, and infiltrated bone marrow-derived monocytes/macrophages. Hepatic macrophages play a central role in maintaining homeostasis of the liver and in the pathogenesis of liver injury, making them an attractive therapeutic target for liver diseases. However, the various populations of hepatic macrophages display different phenotypes and exert distinct functions. Thus, more research is required to better understand these cells to guide the development of macrophage-based therapeutic interventions. This review article will summarize the current knowledge on the origins and composition of hepatic macrophages, their functions in maintaining hepatic homeostasis, and their involvement in both promoting and resolving liver inflammation, injury, and fibrosis. Finally, the current strategies being developed to target hepatic macrophages for the treatment of liver diseases will be reviewed. PMID:26908374

  20. Therapeutic strategies in Sickle Cell Anemia: The past present and future.

    PubMed

    Fernandes, Queenie

    2017-06-01

    Sickle Cell Anemia (SCA) was one of the first hemoglobinopathies to be discovered. It is distinguished by the mutation-induced expression of a sickle cell variant of hemoglobin (HbS) that triggers erythrocytes to take a characteristic sickled conformation. The complex physiopathology of the disease and its associated clinical complications has initiated multi-disciplinary research within its field. This review attempts to lay emphasis on the evolution, current standpoint and future scope of therapeutic strategies in SCA. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Asian Perspectives on Diagnostic and Therapeutic Strategies in Inflammatory Bowel Disease: Report and Analysis of a Survey with Questionnaires.

    PubMed

    Yoshida, Atsushi; Ueno, Fumiaki; Morizane, Toshio; Joh, Takashi; Kamiya, Takeshi; Takahashi, Shin''ichi; Tokunaga, Kengo; Iwakiri, Ryuichi; Kinoshita, Yoshikazu; Suzuki, Hidekazu; Naito, Yuji; Uchiyama, Kazuhiko; Fukodo, Shin; Chan, Francis K L; Halm, Ki-Baik; Kachintorn, Udom; Fock, Kwong Ming; Rani, Abdul Aziz; Syam, Ari Fahrial; Sollano, Jose D; Zhu, Qi

    2017-01-01

    Diagnostic and therapeutic strategies in inflammatory bowel disease (IBD) vary among countries in terms of availability of modalities, affordability of health care resource, health care policy and cultural background. This may be the case in different countries in Eastern Asia. The aim of this study was to determine and understand the differences in diagnostic and therapeutic strategies of IBD between Japan and the rest of Asian countries (ROA). Questionnaires with regard to clinical practice in IBD were distributed to members of the International Gastroenterology Consensus Symposium Study Group. The responders were allowed to select multiple items for each question, as multiple modalities are frequently utilized in the diagnosis and the management of IBD. Dependency and independency of selected items for each question were evaluated by the Bayesian network analysis. The selected diagnostic modalities were not very different between Japan and ROA, except for those related to small bowel investigations. Balloon-assisted enteroscopy and small bowel follow through are frequently used in Japan, while CT/MR enterography is popular in ROA. Therapeutic modalities for IBD depend on availability of such modalities in clinical practice. As far as modalities commonly available in both regions are concerned, there seemed to be similarity in the selection of each therapeutic modality. However, evaluation of dependency of separate therapeutic modalities by Bayesian network analysis disclosed some difference in therapeutic strategies between Japan and ROA. Although selected modalities showed some similarity, Bayesian network analysis elicited certain differences in the clinical approaches combining multiple modalities in various aspects of IBD between Japan and ROA. © 2016 S. Karger AG, Basel.

  2. Cell-based therapeutic strategies for multiple sclerosis.

    PubMed

    Scolding, Neil J; Pasquini, Marcelo; Reingold, Stephen C; Cohen, Jeffrey A

    2017-11-01

    The availability of multiple disease-modifying medications with regulatory approval to treat multiple sclerosis illustrates the substantial progress made in therapy of the disease. However, all are only partially effective in preventing inflammatory tissue damage in the central nervous system and none directly promotes repair. Cell-based therapies, including immunoablation followed by autologous haematopoietic stem cell transplantation, mesenchymal and related stem cell transplantation, pharmacologic manipulation of endogenous stem cells to enhance their reparative capabilities, and transplantation of oligodendrocyte progenitor cells, have generated substantial interest as novel therapeutic strategies for immune modulation, neuroprotection, or repair of the damaged central nervous system in multiple sclerosis. Each approach has potential advantages but also safety concerns and unresolved questions. Moreover, clinical trials of cell-based therapies present several unique methodological and ethical issues. We summarize here the status of cell-based therapies to treat multiple sclerosis and make consensus recommendations for future research and clinical trials. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  3. FDIR Strategy Validation with the B Method

    NASA Astrophysics Data System (ADS)

    Sabatier, D.; Dellandrea, B.; Chemouil, D.

    2008-08-01

    In a formation flying satellite system, the FDIR strategy (Failure Detection, Isolation and Recovery) is paramount. When a failure occurs, satellites should be able to take appropriate reconfiguration actions to obtain the best possible results given the failure, ranging from avoiding satellite-to-satellite collision to continuing the mission without disturbance if possible. To achieve this goal, each satellite in the formation has an implemented FDIR strategy that governs how it detects failures (from tests or by deduction) and how it reacts (reconfiguration using redundant equipments, avoidance manoeuvres, etc.). The goal is to protect the satellites first and the mission as much as possible. In a project initiated by the CNES, ClearSy experiments the B Method to validate the FDIR strategies developed by Thales Alenia Space, of the inter satellite positioning and communication devices that will be used for the SIMBOL-X (2 satellite configuration) and the PEGASE (3 satellite configuration) missions and potentially for other missions afterward. These radio frequency metrology sensor devices provide satellite positioning and inter satellite communication in formation flying. This article presents the results of this experience.

  4. Validation Relaxation: A Quality Assurance Strategy for Electronic Data Collection

    PubMed Central

    Gordon, Nicholas; Griffiths, Thomas; Kraemer, John D; Siedner, Mark J

    2017-01-01

    Background The use of mobile devices for data collection in developing world settings is becoming increasingly common and may offer advantages in data collection quality and efficiency relative to paper-based methods. However, mobile data collection systems can hamper many standard quality assurance techniques due to the lack of a hardcopy backup of data. Consequently, mobile health data collection platforms have the potential to generate datasets that appear valid, but are susceptible to unidentified database design flaws, areas of miscomprehension by enumerators, and data recording errors. Objective We describe the design and evaluation of a strategy for estimating data error rates and assessing enumerator performance during electronic data collection, which we term “validation relaxation.” Validation relaxation involves the intentional omission of data validation features for select questions to allow for data recording errors to be committed, detected, and monitored. Methods We analyzed data collected during a cluster sample population survey in rural Liberia using an electronic data collection system (Open Data Kit). We first developed a classification scheme for types of detectable errors and validation alterations required to detect them. We then implemented the following validation relaxation techniques to enable data error conduct and detection: intentional redundancy, removal of “required” constraint, and illogical response combinations. This allowed for up to 11 identifiable errors to be made per survey. The error rate was defined as the total number of errors committed divided by the number of potential errors. We summarized crude error rates and estimated changes in error rates over time for both individuals and the entire program using logistic regression. Results The aggregate error rate was 1.60% (125/7817). Error rates did not differ significantly between enumerators (P=.51), but decreased for the cohort with increasing days of application

  5. Validation Relaxation: A Quality Assurance Strategy for Electronic Data Collection.

    PubMed

    Kenny, Avi; Gordon, Nicholas; Griffiths, Thomas; Kraemer, John D; Siedner, Mark J

    2017-08-18

    The use of mobile devices for data collection in developing world settings is becoming increasingly common and may offer advantages in data collection quality and efficiency relative to paper-based methods. However, mobile data collection systems can hamper many standard quality assurance techniques due to the lack of a hardcopy backup of data. Consequently, mobile health data collection platforms have the potential to generate datasets that appear valid, but are susceptible to unidentified database design flaws, areas of miscomprehension by enumerators, and data recording errors. We describe the design and evaluation of a strategy for estimating data error rates and assessing enumerator performance during electronic data collection, which we term "validation relaxation." Validation relaxation involves the intentional omission of data validation features for select questions to allow for data recording errors to be committed, detected, and monitored. We analyzed data collected during a cluster sample population survey in rural Liberia using an electronic data collection system (Open Data Kit). We first developed a classification scheme for types of detectable errors and validation alterations required to detect them. We then implemented the following validation relaxation techniques to enable data error conduct and detection: intentional redundancy, removal of "required" constraint, and illogical response combinations. This allowed for up to 11 identifiable errors to be made per survey. The error rate was defined as the total number of errors committed divided by the number of potential errors. We summarized crude error rates and estimated changes in error rates over time for both individuals and the entire program using logistic regression. The aggregate error rate was 1.60% (125/7817). Error rates did not differ significantly between enumerators (P=.51), but decreased for the cohort with increasing days of application use, from 2.3% at survey start (95% CI 1

  6. Human organ-on-a-chip BioMEMS devices for testing new diagnostic and therapeutic strategies

    NASA Astrophysics Data System (ADS)

    Leary, James F.; Key, Jaehong; Vidi, Pierre-Alexandre; Cooper, Christy L.; Kole, Ayeeshik; Reece, Lisa M.; Lelièvre, Sophie A.

    2013-03-01

    MEMS human "organs-on-a-chip" can be used to create model human organ systems for developing new diagnostic and therapeutic strategies. They represent a promising new strategy for rapid testing of new diagnostic and therapeutic approaches without the need for involving risks to human subjects. We are developing multicomponent, superparamagnetic and fluorescent nanoparticles as X-ray and MRI contrast agents for noninvasive multimodal imaging and for antibody- or peptide-targeted drug delivery to tumor and precancerous cells inside these artificial organ MEMS devices. Magnetic fields can be used to move the nanoparticles "upstream" to find their target cells in an organs-on-achip model of human ductal breast cancer. Theoretically, unbound nanoparticles can then be removed by reversing the magnetic field to give a greatly enhanced image of tumor cells within these artificial organ structures. Using branched PDMS microchannels and 3D tissue engineering of normal and malignant human breast cancer cells inside those MEMS channels, we can mimic the early stages of human ductal breast cancer with the goal to improve the sensitivity and resolution of mammography and MRI of very small tumors and test new strategies for treatments. Nanomedical systems can easily be imaged by multicolor confocal microscopy inside the artificial organs to test targeting and therapeutic responses including the differential viability of normal and tumor cells during treatments. Currently we are using 2-dimensional MEMS structures, but these studies can be extended to more complex 3D structures using new 3D printing technologies.

  7. Novel therapeutic strategies in myelodysplastic syndromes: do molecular genetics help?

    PubMed

    Chung, Stephen S

    2016-03-01

    Many studies over the past decade have together identified genes that are recurrently mutated in the myelodysplastic syndromes (MDS). We will summarize how this information has informed our understanding of disease pathogenesis and behavior, with an emphasis on how this information may inform therapeutic strategies. Genomic sequencing techniques have allowed for the identification of many recurrently mutated genes in MDS, with the most common mutations being found in epigenetic modifiers and components of the splicing machinery. Although many mutations are associated with clinical outcomes and disease phenotypes, at the current time they add relatively little to already robust clinical prognostic algorithms. However, as molecular genetic data are accumulated in larger numbers of patients, it is likely that the clinical significance of co-occurring mutations and less common mutations will come to light. Finally, mutated genes may identify biologically distinct subgroups of MDS that may benefit from novel therapies, and a subset of these genes may themselves serve as therapeutic targets. Advances in our knowledge of the molecular genetics of MDS have significantly improved our understanding of disease biology and promise to improve tools for clinical decision-making and identify new therapies for patients.

  8. Therapeutic potential of systemic brain rejuvenation strategies for neurodegenerative disease

    PubMed Central

    Horowitz, Alana M.; Villeda, Saul A.

    2017-01-01

    Neurodegenerative diseases are a devastating group of conditions that cause progressive loss of neuronal integrity, affecting cognitive and motor functioning in an ever-increasing number of older individuals. Attempts to slow neurodegenerative disease advancement have met with little success in the clinic; however, a new therapeutic approach may stem from classic interventions, such as caloric restriction, exercise, and parabiosis. For decades, researchers have reported that these systemic-level manipulations can promote major functional changes that extend organismal lifespan and healthspan. Only recently, however, have the functional effects of these interventions on the brain begun to be appreciated at a molecular and cellular level. The potential to counteract the effects of aging in the brain, in effect rejuvenating the aged brain, could offer broad therapeutic potential to combat dementia-related neurodegenerative disease in the elderly. In particular, results from heterochronic parabiosis and young plasma administration studies indicate that pro-aging and rejuvenating factors exist in the circulation that can independently promote or reverse age-related phenotypes. The recent demonstration that human umbilical cord blood similarly functions to rejuvenate the aged brain further advances this work to clinical translation. In this review, we focus on these blood-based rejuvenation strategies and their capacity to delay age-related molecular and functional decline in the aging brain. We discuss new findings that extend the beneficial effects of young blood to neurodegenerative disease models. Lastly, we explore the translational potential of blood-based interventions, highlighting current clinical trials aimed at addressing therapeutic applications for the treatment of dementia-related neurodegenerative disease in humans. PMID:28815019

  9. Antioxidants as a Potential Preventive and Therapeutic Strategy for Cadmium.

    PubMed

    Brzóska, Malgorzata M; Borowska, Sylwia; Tomczyk, Michal

    2016-01-01

    Epidemiological studies provide a growing number of evidences that chronic exposure to relatively low levels of cadmium (Cd), nowadays taking place in industrialized countries, may cause health hazard. Thus, growing interest has been focused on effective ways of protection from adverse effects of exposure to this heavy metal. Because numerous effects to Cd's toxic action result from its prooxidative properties, it seems reasonable that special attention should be directed to agents that can prevent or reduce this metal-induced oxidative stress and its consequences in tissues, organs and systems at risk of toxicity, including liver, kidneys, testes, ears, eyes, cardiovascular system and nervous system as well as bone tissue. This review discusses a wide range of natural (plant and animal origin) and synthetic antioxidants together with many plant extracts (e.g. black and green tea, Aronia melanocarpa, Allium sativum, Allium cepa, Ocimum sanctum, Phoenix dactylifera, Physalis peruviana, Zingiber officinale) that have been shown to prevent from Cd toxicity. Moreover, some attention has been focused on the fact that substances not possessing antioxidative potential may also prevent Cd-induced oxidative stress and its consequences. So far, most of the data on the protective effects of the natural and synthetic antioxidants and plant extracts come from studies in animals' models; however, numerous of them seem to be promising preventive/therapeutic strategies for Cd toxicity in humans. Further investigation of prophylactic and therapeutic use of antioxidants in populations exposed to Cd environmentally and occupationally is warranted, given that therapeutically effective chelation therapy for this toxic metal is currently lacking.

  10. LC-MS/MS strategies for therapeutic antibodies and investigation into the quantitative impact of antidrug-antibodies.

    PubMed

    Ewles, Matthew; Mannu, Ranbir; Fox, Chris; Stanta, Johannes; Evans, Graeme; Goodwin, Lee; Duffy, James; Bell, Len; Estdale, Sian; Firth, David

    2016-12-01

    We aimed to establish novel, high-throughput LC-MS/MS strategies for quantification of monoclonal antibodies in human serum and examine the potential impact of antidrug antibodies. We present two strategies using a thermally stable immobilized trypsin. The first strategy uses whole serum digestion and the second introduces Protein G enrichment to improve the selectivity. The impact of anti-trastuzumab antibodies on the methods was tested. Whole serum digestion has been validated for trastuzumab (LLOQ 0.25 µg/ml). Protein G enrichment has been validated for trastuzumab (LLOQ 0.1 µg/ml), bevacizumab (LLOQ 0.1 µg/ml) and adalimumab (LLOQ 0.25 µg/ml). We have shown the potential for anti-drug antibodies to impact on the quantification and we have subsequently established a strategy to overcome this impact where total quantification is desired.

  11. Novel therapeutic strategies for the homozygous familial hypercholesterolemia.

    PubMed

    Mombelli, Giuliana; Pavanello, Chiara

    2013-08-01

    HoFH is an autosomal co-dominant disease with a prevalence of one in 1,000,000. Mutations of LDL-R gene are responsible for this disease. HoFH needs to be distinguished from autosomal recessive hypercholesterolemia protein (ARH) that causes a similar clinical phenotype. HoFH induces aggressive cardiovascular disease that can develop from birth. These patients possess high LDL-C levels, cutaneous and tendon xanthomas, and accelerated atherosclerosis shown in the first 2 decades of life. Current treatment modalities include life-style modifications, lipid-lowering therapy and LDL-apheresis. However, the treatment goal cannot be achieved only by statin therapy. New therapeutic strategies to lower LDL-C have been developed over recent years. These include monoclonal antibodies binding to PCSK9, inhibition of ApoB production and MTP-inhibitors. This review is focused on new treatments for HoFH and their patents. It is known to be an important contribution in this rare disease, which is difficult to manage.

  12. Therapeutic Strategies in Fragile X Syndrome: Dysregulated mGluR Signaling and Beyond

    PubMed Central

    Gross, Christina; Berry-Kravis, Elizabeth M; Bassell, Gary J

    2012-01-01

    Fragile X syndrome (FXS) is an inherited neurodevelopmental disease caused by loss of function of the fragile X mental retardation protein (FMRP). In the absence of FMRP, signaling through group 1 metabotropic glutamate receptors is elevated and insensitive to stimulation, which may underlie many of the neurological and neuropsychiatric features of FXS. Treatment of FXS animal models with negative allosteric modulators of these receptors and preliminary clinical trials in human patients support the hypothesis that metabotropic glutamate receptor signaling is a valuable therapeutic target in FXS. However, recent research has also shown that FMRP may regulate diverse aspects of neuronal signaling downstream of several cell surface receptors, suggesting a possible new route to more direct disease-targeted therapies. Here, we summarize promising recent advances in basic research identifying and testing novel therapeutic strategies in FXS models, and evaluate their potential therapeutic benefits. We provide an overview of recent and ongoing clinical trials motivated by some of these findings, and discuss the challenges for both basic science and clinical applications in the continued development of effective disease mechanism-targeted therapies for FXS. PMID:21796106

  13. Magnetic responsive cell based strategies for diagnostic and therapeutics.

    PubMed

    Gonçalves, Ana I; Miranda, Margarida S; Rodrigues, Márcia T; Reis, Rui Luis; Gomes, Manuela

    2018-05-24

    The potential of magnetically assisted strategies within the remit of cell-based therapies is increasing and creates new opportunities in biomedical platforms and in the field of tissue engineering and regenerative medicine (TERM). Among the magnetic elements approached to build magnetically responsive strategies, superparamagnetic iron oxide nanoparticles (SPIONs) represent tunable and precise tools whose properties can be modelled for detection, diagnosis, targeting and therapy purposes. The most investigated clinical role of SPIONs is as contrast imaging agents for tracking and monitoring cells and tissues. Nevertheless, magnetic detection also includes biomarker mapping, cell labelling and cell/drug targeting to monitor cell events and anticipate the disruption of homeostatic conditions and progression of disease. Additionally, isolation and screening techniques of cell subsets in heterogeneous populations or of proteins of interest have been explored in a magnetic sorting context. More recently, SPIONs-based technologies have been applied to stimulate cell differentiation and mechanotransduction processes and to transport genetic or drug cargo to study biological mechanisms and contribute for improved therapies. Magnetically based strategies significantly contribute for magnetic tissue engineering (magTE), in which magnetically responsive actuators built from magnetic labelled cells or magnetic functionalized systems can be remotely controlled and spatially manipulated upon the actuation of an external magnetic field for delivery or target of TE solutions. SPIONs functionalities combined with the magnetic responsiveness in multifactorial magnetically assisted platforms can revolutionize diagnosis and therapeutics providing new diagnosis and theranostic tools, encouraging regenerative medicine approaches and holding potential for more effective therapies. This review will address the contribution of SPIONs based technologies as

  14. Evolving therapeutic strategies for Duchenne muscular dystrophy: targeting downstream events.

    PubMed

    Tidball, James G; Wehling-Henricks, Michelle

    2004-12-01

    Duchenne muscular dystrophy (DMD) is a progressive, lethal, muscle wasting disease that affects 1 of 3500 boys born worldwide. The disease results from mutation of the dystrophin gene that encodes a cytoskeletal protein associated with the muscle cell membrane. Although gene therapy will likely provide the cure for DMD, it remains on the distant horizon, emphasizing the need for more rapid development of palliative treatments that build on improved understanding of the complex pathology of dystrophin deficiency. In this review, we have focused on therapeutic strategies that target downstream events in the pathologic progression of DMD. Much of this work has been developed initially using the dystrophin-deficient mdx mouse to explore basic features of the pathophysiology of dystrophin deficiency and to test potential therapeutic interventions to slow, reverse, or compensate for functional losses that occur in muscular dystrophy. In some cases, the initial findings in the mdx model have led to clinical treatments for DMD boys that have produced improvements in muscle function and quality of life. Many of these investigations have concerned interventions that can affect protein balance in muscle, by inhibiting specific proteases implicated in the DMD pathology, or by providing anabolic factors or depleting catabolic factors that can contribute to muscle wasting. Other investigations have exploited the use of anti-inflammatory agents that can reduce the contribution of leukocytes to promoting secondary damage to dystrophic muscle. A third general strategy is designed to increase the regenerative capacity of dystrophic muscle and thereby help retain functional muscle mass. Each of these general approaches to slowing the pathology of dystrophin deficiency has yielded encouragement and suggests that targeting downstream events in dystrophinopathy can yield worthwhile, functional improvements in DMD.

  15. Psychometrics and life history strategy: the structure and validity of the High K Strategy Scale.

    PubMed

    Copping, Lee T; Campbell, Anne; Muncer, Steven

    2014-03-22

    In this paper, we critically review the conceptualization and implementation of psychological measures of life history strategy associated with Differential K theory. The High K Strategy Scale (HKSS: Giosan, 2006) was distributed to a large British sample (n = 809) with the aim of assessing its factor structure and construct validity in relation to theoretically relevant life history variables: age of puberty, age of first sexual encounter, and number of sexual partners. Exploratory and confirmatory factor analyses indicated that the HKSS in its current form did not show an adequate statistical fit to the data. Modifications to improve fit indicated four correlated factors (personal capital, environmental stability, environmental security, and social capital). Later puberty in women was positively associated with measures of the environment and personal capital. Among men, contrary to Differential K predictions but in line with female mate preferences, earlier sexual debut and more sexual partners were positively associated with more favorable environments and higher personal and social capital. We raise concerns about the use of psychometric indicators of lifestyle and personality as proxies for life history strategy when they have not been validated against objective measures derived from contemporary life history theory and when their status as causes, mediators, or correlates has not been investigated.

  16. New Therapeutic Strategies for Primary Sclerosing Cholangitis.

    PubMed

    Williamson, Kate D; Chapman, Roger W

    2016-02-01

    Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease, which in the majority of patients progresses to liver transplantation or death. To date, no medical treatment has been proven to be of benefit, although ursodeoxycholic acid is widely used. The etiopathogenesis of PSC is unclear, although it is associated with inflammatory bowel disease. Various hypotheses have been suggested, which have led to different therapeutic strategies. Recent studies have suggested that the microbiome may play a role in PSC, raising the possibility of efficacy of antibiotics and fecal microbiota transplantation. Gut-homing T cells may be important in the pathogenesis of PSC, and several agents are in development, targeting various receptors, integrins, and ligands on this pathway, including VAP-1, MAdCAM-1, α4β7, and CCR9. Nuclear receptor agonists such as obeticholic acid and fibrates hold promise, as do other therapies that alter bile acid composition such as norUDCA. Antifibrotic agents such as Loxl2 inhibitors are also being assessed. In conclusion, it is likely that an effective drug therapy for PSC will become available over the next decade. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Updates in hyperkalemia: Outcomes and therapeutic strategies.

    PubMed

    Kovesdy, Csaba P

    2017-03-01

    Hyperkalemia is a frequent clinical abnormality in patients with chronic kidney disease, and it is associated with higher risk of mortality and malignant arrhythmias. Severe hyperkalemia is a medical emergency, which requires immediate therapies, followed by interventions aimed at preventing its recurrence. Current treatment paradigms for chronic hyperkalemia management are focused on eliminating predisposing factors, such as high potassium intake in diets or supplements, and the use of medications known to raise potassium level. Among the latter, inhibitors of the renin-angiotensin aldosterone system are some of the most commonly involved medications, and their discontinuation is often the first step taken by clinicians to prevent the recurrence of hyperkalemia. While this strategy is usually successful, it also deprives patients of the recognized benefits of this class, such as their renoprotective effects. The development of novel potassium binders has ushered in a new era of hyperkalemia management, with a focus on chronic therapy while maintaining the use of beneficial, but hyperkalemia-inducing medications such as renin-angiotensin aldosterone system inhibitors. This review article examines the incidence and clinical consequences of hyperkalemia, and its various treatment options, with special emphasis on novel therapeutic agents and the potential benefits of their application.

  18. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications

    PubMed Central

    2015-01-01

    Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574

  19. Recommendations for the validation of cell-based assays used for the detection of neutralizing antibody immune responses elicited against biological therapeutics.

    PubMed

    Gupta, Shalini; Devanarayan, Viswanath; Finco, Deborah; Gunn, George R; Kirshner, Susan; Richards, Susan; Rup, Bonita; Song, An; Subramanyam, Meena

    2011-07-15

    The administration of biological therapeutics may result in the development of anti-drug antibodies (ADAs) in treated subjects. In some cases, ADA responses may result in the loss of therapeutic efficacy due to the formation of neutralizing ADAs (NAbs). An important characteristic of anti-drug NAbs is their direct inhibitory effect on the pharmacological activity of the therapeutic. Neutralizing antibody responses are of particular concern for biologic products with an endogenous homolog whose activity can be potentially dampened or completely inhibited by the NAbs leading to an autoimmune-type deficiency syndrome. Therefore, it is important that ADAs are detected and characterized appropriately using sensitive and reliable methods. The design, development and optimization of cell-based assays used for detection of NAbs have been published previously by Gupta et al. 2007 [1]. This paper provides recommendations on best practices for the validation of cell-based NAb assay and suggested validation parameters based on the experience of the authors. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. A Questionnaire-Based Validation of Multidimensional Models of Self-Regulated Learning Strategies

    ERIC Educational Resources Information Center

    Teng, Lin Sophie; Zhang, Lawrence Jun

    2016-01-01

    This study aimed to validate a newly-developed instrument, The Writing Strategies for Self-Regulated Learning (SRL) Questionnaire, with respect to its multifaceted structure of SRL strategies in English as a foreign language (EFL) writing. A total of 790 undergraduate students from 6 universities in Northeast China volunteered to be participants.…

  1. Concurrent Validity of the Classroom Strategies Scale for Elementary School--Observer Form

    ERIC Educational Resources Information Center

    Reddy, Linda A.; Fabiano, Gregory A.; Dudek, Christopher M.

    2013-01-01

    The present study is an initial investigation of the concurrent validity of a new assessment, the Classroom Strategies Scale (CSS version 2.0) for Elementary School--Observer Form. The CSS assesses teachers' use of instructional and behavioral management strategies. In the present study, the CSS is compared to the Classroom Assessment Scoring…

  2. Encapsulation Strategies of Bacteriophage (Felix O1) for Oral Therapeutic Application.

    PubMed

    Islam, Golam S; Wang, Qi; Sabour, Parviz M

    2018-01-01

    Due to emerging antibiotic-resistant strains among the pathogens, a variety of strategies, including therapeutic application of bacteriophages, have been suggested as a possible alternative to antibiotics in food animal production. As pathogen-specific biocontrol agents, bacteriophages are being studied intensively. Primarily their applications in the food industry and animal production have been recognized in the USA and Europe, for pathogens including Salmonella, Campylobacter, Escherichia coli, and Listeria. However, the viability of orally administered phage may rapidly reduce under the harsh acidic conditions of the stomach, presence of enzymes and bile. It is evident that bacteriophages, intended for phage therapy by oral administration, require efficient protection from the acidic environment of the stomach and should remain active in the animal's gastrointestinal tract where pathogen colonizes. Encapsulation of phages by spray drying or extrusion methods can protect phages from the simulated hostile gut conditions and help controlled release of phages to the digestive system when appropriate formulation strategy is implemented.

  3. HIV-1 Latency: An Update of Molecular Mechanisms and Therapeutic Strategies

    PubMed Central

    Battistini, Angela; Sgarbanti, Marco

    2014-01-01

    The major obstacle towards HIV-1 eradication is the life-long persistence of the virus in reservoirs of latently infected cells. In these cells the proviral DNA is integrated in the host’s genome but it does not actively replicate, becoming invisible to the host immune system and unaffected by existing antiviral drugs. Rebound of viremia and recovery of systemic infection that follows interruption of therapy, necessitates life-long treatments with problems of compliance, toxicity, and untenable costs, especially in developing countries where the infection hits worst. Extensive research efforts have led to the proposal and preliminary testing of several anti-latency compounds, however, overall, eradication strategies have had, so far, limited clinical success while posing several risks for patients. This review will briefly summarize the more recent advances in the elucidation of mechanisms that regulates the establishment/maintenance of latency and therapeutic strategies currently under evaluation in order to eradicate HIV persistence. PMID:24736215

  4. Reliability and concurrent and construct validity of the Strategies for Weight Management measure for adults.

    PubMed

    Kolodziejczyk, Julia K; Norman, Gregory J; Rock, Cheryl L; Arredondo, Elva M; Roesch, Scott C; Madanat, Hala; Patrick, Kevin

    2016-01-01

    This study evaluates the reliability and validity of the strategies for weight management (SWM) measure, a questionnaire that assesses weight management strategies for adults. The SWM includes 20 items that are categorized within the following subscales: (1) energy intake, (2) energy expenditure, (3) self-monitoring, and (4) self-regulation. Baseline and 6-month data were collected from 404 overweight/obese adults (mean age=22±3.8 years, 68% ethnic minority) enrolled in a randomized controlled trial aiming to reduce weight by improving diet and physical activity behaviours. Reliability and validity were assessed for each subscale separately. Cronbach alpha was conducted to assess reliability. Concurrent, construct I (sensitivity to the study treatment condition), and construct II (relationship to the outcomes) validity were assessed using linear regressions with the following outcome measures: weight, self-reported diet, and weekly energy expenditure. All subscales showed strong internal consistency. The strength of the validity evidence depended on subscale and validity type. The strongest validity evidence was concurrent validity of the energy intake and energy expenditure subscales; construct I validity of the energy intake and self-monitoring subscales; and construct II validity of the energy intake, energy expenditure, and self-regulation subscales. Results indicate that the SWM can be used to assess weight management strategies among an ethnically diverse sample of adults as each subscale showed evidence of reliability and select types of validity. As validity is an accumulation of evidence over multiple studies, this study provides initial reliability and validity evidence in one population segment. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  5. TU-EF-210-00: Therapeutic Strategies and Image Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less

  6. Understanding HIV infection for the design of a therapeutic vaccine. Part II: Vaccination strategies for HIV.

    PubMed

    de Goede, A L; Vulto, A G; Osterhaus, A D M E; Gruters, R A

    2015-05-01

    HIV infection leads to a gradual loss CD4(+) T lymphocytes comprising immune competence and progression to AIDS. Effective treatment with combined antiretroviral drugs (cART) decreases viral load below detectable levels but is not able to eliminate the virus from the body. The success of cART is frustrated by the requirement of expensive lifelong adherence, accumulating drug toxicities and chronic immune activation resulting in increased risk of several non-AIDS disorders, even when viral replication is suppressed. Therefore, there is a strong need for therapeutic strategies as an alternative to cART. Immunotherapy, or therapeutic vaccination, aims to increase existing immune responses against HIV or induce de novo immune responses. These immune responses should provide a functional cure by controlling viral replication and preventing disease progression in the absence of cART. The key difficulty in the development of an HIV vaccine is our ignorance of the immune responses that control of viral replication, and thus how these responses can be elicited and how they can be monitored. Part one of this review provides an extensive overview of the (patho-) physiology of HIV infection. It describes the structure and replication cycle of HIV, the epidemiology and pathogenesis of HIV infection and the innate and adaptive immune responses against HIV. Part two of this review discusses therapeutic options for HIV. Prevention modalities and antiretroviral therapy are briefly touched upon, after which an extensive overview on vaccination strategies for HIV is provided, including the choice of immunogens and delivery strategies. Copyright © 2014. Published by Elsevier Masson SAS.

  7. Dual targeting of MDM2 and BCL2 as a therapeutic strategy in neuroblastoma.

    PubMed

    Van Goethem, Alan; Yigit, Nurten; Moreno-Smith, Myrthala; Vasudevan, Sanjeev A; Barbieri, Eveline; Speleman, Frank; Shohet, Jason; Vandesompele, Jo; Van Maerken, Tom

    2017-08-22

    Wild-type p53 tumor suppressor activity in neuroblastoma tumors is hampered by increased MDM2 activity, making selective MDM2 antagonists an attractive therapeutic strategy for this childhood malignancy. Since monotherapy in cancer is generally not providing long-lasting clinical responses, we here aimed to identify small molecule drugs that synergize with idasanutlin (RG7388). To this purpose we evaluated 15 targeted drugs in combination with idasanutlin in three p53 wild type neuroblastoma cell lines and identified the BCL2 inhibitor venetoclax (ABT-199) as a promising interaction partner. The venetoclax/idasanutlin combination was consistently found to be highly synergistic in a diverse panel of neuroblastoma cell lines, including cells with high MCL1 expression levels. A more pronounced induction of apoptosis was found to underlie the synergistic interaction, as evidenced by caspase-3/7 and cleaved PARP measurements. Mice carrying orthotopic xenografts of neuroblastoma cells treated with both idasanutlin and venetoclax had drastically lower tumor weights than mice treated with either treatment alone. In conclusion, these data strongly support the further evaluation of dual BCL2/MDM2 targeting as a therapeutic strategy in neuroblastoma.

  8. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies.

    PubMed

    Deng, Yan; Wang, Chi Chiu; Choy, Kwong Wai; Du, Quan; Chen, Jiao; Wang, Qin; Li, Lu; Chung, Tony Kwok Hung; Tang, Tao

    2014-04-01

    During recent decades there have been remarkable advances in biology, in which one of the most important discoveries is RNA interference (RNAi). RNAi is a specific post-transcriptional regulatory pathway that can result in silencing gene functions. Efforts have been done to translate this new discovery into clinical applications for disease treatment. However, technical difficulties restrict the development of RNAi, including stability, off-target effects, immunostimulation and delivery problems. Researchers have attempted to surmount these barriers and improve the bioavailability and safety of RNAi-based therapeutics by optimizing the chemistry and structure of these molecules. This paper aimed to describe the principles of RNA interference, review the therapeutic potential in various diseases and discuss the new strategies for in vivo delivery of RNAi to overcome the challenges. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Emerging techniques for the discovery and validation of therapeutic targets for skeletal diseases.

    PubMed

    Cho, Christine H; Nuttall, Mark E

    2002-12-01

    Advances in genomics and proteomics have revolutionised the drug discovery process and target validation. Identification of novel therapeutic targets for chronic skeletal diseases is an extremely challenging process based on the difficulty of obtaining high-quality human diseased versus normal tissue samples. The quality of tissue and genomic information obtained from the sample is critical to identifying disease-related genes. Using a genomics-based approach, novel genes or genes with similar homology to existing genes can be identified from cDNA libraries generated from normal versus diseased tissue. High-quality cDNA libraries are prepared from uncontaminated homogeneous cell populations harvested from tissue sections of interest. Localised gene expression analysis and confirmation are obtained through in situ hybridisation or immunohistochemical studies. Cells overexpressing the recombinant protein are subsequently designed for primary cell-based high-throughput assays that are capable of screening large compound banks for potential hits. Afterwards, secondary functional assays are used to test promising compounds. The same overexpressing cells are used in the secondary assay to test protein activity and functionality as well as screen for small-molecule agonists or antagonists. Once a hit is generated, a structure-activity relationship of the compound is optimised for better oral bioavailability and pharmacokinetics allowing the compound to progress into development. Parallel efforts from proteomics, as well as genetics/transgenics, bioinformatics and combinatorial chemistry, and improvements in high-throughput automation technologies, allow the drug discovery process to meet the demands of the medicinal market. This review discusses and illustrates how different approaches are incorporated into the discovery and validation of novel targets and, consequently, the development of potentially therapeutic agents in the areas of osteoporosis and osteoarthritis

  10. 5-HT1 receptor augmentation strategies as enhanced efficacy: therapeutics for psychiatric disorders.

    PubMed

    Dawson, Lee A; Bromidge, Steve M

    2008-01-01

    Since the initial observations linking 5-HT to psychiatric illness, evidence for a role of 5-HT and, in particular, a decreased brain serotonergic function in the pathology of a plethora of related disorders, has grown. However, it is the role of 5-HT in the pathogenesis of anxiety disorders and depression and the mechanism of action of antidepressants which has received the most attention. Thus enhanced serotonergic neurotransmission has become one of the unifying mechanisms of action of modern day antidepressants/anxiolytics such as monoamine oxidase inhibitors, tricyclic antidepressants, and serotonin reuptake inhibitors. Interestingly all of these treatments are associated with a delay to therapeutic efficacy and in some cases treatment resistance, despite immediate enhancements in serotonergic neurotransmission. The postulated reason for this is the need for temporal neuroplastic changes in the control of serotonergic neurotransmission, and more specifically changes in 5-HT(1) autoreceptor function. Thus significant research has gone into pharmacologically targeting these 5-HT(1) autoreceptors as a means of augmenting the efficacy of current therapeutic mechanisms. Here we will review the rationale behind the various augmentation strategies adopted and the progress made in identifying novel therapeutics for conditions such as depression and anxiety disorders.

  11. Importance of hepatitis C virus-associated insulin resistance: Therapeutic strategies for insulin sensitization

    PubMed Central

    Kawaguchi, Takumi; Sata, Michio

    2010-01-01

    Insulin resistance is one of the pathological features in patients with hepatitis C virus (HCV) infection. Generally, persistence of insulin resistance leads to an increase in the risk of life-threatening complications such as cardiovascular diseases. However, these complications are not major causes of death in patients with HCV-associated insulin resistance. Indeed, insulin resistance plays a crucial role in the development of various complications and events associated with HCV infection. Mounting evidence indicates that HCV-associated insulin resistance may cause (1) hepatic steatosis; (2) resistance to anti-viral treatment; (3) hepatic fibrosis and esophageal varices; (4) hepatocarcinogenesis and proliferation of hepatocellular carcinoma; and (5) extrahepatic manifestations. Thus, HCV-associated insulin resistance is a therapeutic target at any stage of HCV infection. Although the risk of insulin resistance in HCV-infected patients has been documented, therapeutic guidelines for preventing the distinctive complications of HCV-associated insulin resistance have not yet been established. In addition, mechanisms for the development of HCV-associated insulin resistance differ from lifestyle-associated insulin resistance. In order to ameliorate HCV-associated insulin resistance and its complications, the efficacy of the following interventions is discussed: a late evening snack, coffee consumption, dietary iron restriction, phlebotomy, and zinc supplements. Little is known regarding the effect of anti-diabetic agents on HCV infection, however, a possible association between use of exogenous insulin or a sulfonylurea agent and the development of HCC has recently been reported. On the other hand, insulin-sensitizing agents are reported to improve sustained virologic response rates. In this review, we summarize distinctive complications of, and therapeutic strategies for, HCV-associated insulin resistance. Furthermore, we discuss supplementation with branched

  12. Psychometric Validation of the "Motivated Strategies for Learning Questionnaire" with Mexican University Students

    ERIC Educational Resources Information Center

    Ramirez-Dorantes, Maria del Carmen; Canto y Rodriguez, Jose Enrique; Bueno-Alvarez, Jose Antonio; Echazarreta-Moreno, Alejandro

    2013-01-01

    Introduction: The "Motivated Strategies for Learning Questionnaire" (MSLQ) is a self-report instrument designed to assess students' motivation and learning strategies (cognitive, meta-cognitive, and resource management). In the present study, we focused on translate, adapt and validate the MSLQ to Mexican educational context. Method: The…

  13. Comprehensive review on therapeutic strategies of gouty arthritis.

    PubMed

    Akram, Muhammad; Usmanghani, Khan; Ahmed, Iqbal; Azhar, Iqbal; Hamid, Abdul

    2014-09-01

    Traditional medicines are practiced worldwide for treatment of gouty arthritis since ancient times. Herbs and plants always have been used in the treatment of different diseases such as gout. The present article deals with the therapeutic strategies and options for the cure of gouty arthritis. Bibliographic investigation was carried out by analyzing classical textbooks and peer reviewed papers, consulting worldwide accepted scientific databases. In this article a detailed introduction, classification, epidemiology, risk factors, symptoms, diagnosis and treatment of gout with reference to modern and Unani system of medicines have been discussed. It is also tried to provide a list of plants used in the treatment of gout along with their formulations used in Unani system of medicine. The herbs and formulations have been used in different systems of medicine particularly Unani system of medicines exhibit their powerful role in the management and cure of gout and arthritis. Most of herbs and plants have been chemically evaluated and some of them are in clinical trials. Their results are magnificent and considerable. However their mechanisms of actions are still on the way.

  14. New targets for neuropathic pain therapeutics.

    PubMed

    Kinloch, Ross A; Cox, Peter J

    2005-08-01

    Neuropathic pain (NeP) is initiated by a lesion or dysfunction in the nervous system. Unlike physiological pain it serves no useful purpose and is usually sustained and chronic. NeP encompasses a wide range of pain syndromes of diverse aetiologies which together account for > 12 million sufferers in the US. Currently, there are a number of therapies available for NeP, including gabapentin, pregabalin, anticonvulsants (tiagabine HCl), tricyclic antidepressants (amitriptyline, nortriptyline) and acetaminophen/opioid combination products (Vicodin, Tylenol #3). However, these products do not provide sufficient pain relief and a significant proportion of sufferers are refractory (60%). Therefore, there is a need for new therapies that provide more predictable efficacy in all patients with improved tolerability. Over the last decade, understanding of the basic mechanisms contributing to the generation of NeP in preclinical animal models has greatly improved. Together with the completion of the various genome sequencing projects and significant advances in microarray and target validation strategies, new therapeutic approaches are being rigourously pursued. This article reviews the rationale behind a number of these mechanism-based approaches, briefly discusses specific challenges that they face, and finally, speculates on the potential of emerging technologies as alternative therapeutic strategies to the traditional 'small-molecule' approach.

  15. Goethe's anxieties, depressive episodes and (self-)therapeutic strategies: a contribution to method integration in psychotherapy.

    PubMed

    Holm-Hadulla, Rainer M

    2013-01-01

    In psychiatry and psychotherapy, abstract scientific principles need to be exemplified by narrative case reports to gain practical precision. Goethe was one of the most creative writers, productive scientists, and effective statesmen that ever lived. His descriptions of feelings, emotions, and mental states related to anxieties, depressive episodes, dysthymia, and creativity are unique in their phenomenological precision and richness. His life and work can thus serve as an excellent example enhancing our understanding of the relationship between anxiety, depression and creativity. Furthermore, he described (self-)therapeutic strategies that reinforce and refine modern views. Goethe's self-assessments in his works and letters, and the descriptions by others are analyzed under the perspective of current psychiatric classification. His therapeutic techniques and recommendations are compared with cognitive-behavioral, psychodynamic, and existential psychotherapy to amplify modern concepts of psychotherapy. From a scientific perspective, several distinctive depressive episodes can be diagnosed in Goethe's life. They were characterized by extended depressive moods, lack of drive, and loss of interest and self-esteem combined with social retreat. Goethe displayed diffuse and phobic anxieties as well as dysthymia. His (self-)therapeutic strategies were: (a) the systematic use of helping alliances, (b) behavioral techniques, (c) cognitive reflection on meanings and beliefs, (d) psychodynamic and psychoanalytic remembering, repeating, and working through, and (e) existential striving for self-actualization, social commitment, meaning, and creativity. In Goethe's life, creative incubation, illumination, and elaboration appear to have been associated with psychic instability and dysthymia, sometimes with depressive episodes in a clinical sense. On the one hand, his creative work was triggered by anxieties, dysthymia, and depressive moods. On the other hand, his creativity

  16. Updates in hyperkalemia: Outcomes and therapeutic strategies

    PubMed Central

    Kovesdy, Csaba P

    2016-01-01

    Hyperkalemia is a frequent clinical abnormality in patients with chronic kidney disease, and it is associated with higher risk of mortality and malignant arrhythmias. Severe hyperkalemia is a medical emergency, which requires immediate therapies, followed by interventions aimed at preventing its recurrence. Current treatment paradigms for chronic hyperkalemia management are focused on eliminating predisposing factors, such as high potassium intake in diets or supplements, and the use of medications known to raise potassium level. Among the latter, inhibitors of the renin-angiotensin aldosterone system are some of the most commonly involved medications, and their discontinuation is often the first step taken by clinicians to prevent the recurrence of hyperkalemia. While this strategy is usually successful, it also deprives patients of the recognized benefits of this class, such as their renoprotective effects. The development of novel potassium binders has ushered in a new era of hyperkalemia management, with a focus on chronic therapy while maintaining the use of beneficial, but hyperkalemia-inducing medications such as renin-angiotensin aldosterone system inhibitors. This review article examines the incidence and clinical consequences of hyperkalemia, and its various treatment options, with special emphasis on novel therapeutic agents and the potential benefits of their application. PMID:27600582

  17. Measuring Therapeutic Alliance with Children in Residential Treatment and Therapeutic Day Care

    ERIC Educational Resources Information Center

    Roest, Jesse; van der Helm, Peer; Strijbosch, Eefje; van Brandenburg, Mariëtte; Stams, Geert Jan

    2016-01-01

    Purpose: This study examined the construct validity and reliability of a therapeutic alliance measure (Children's Alliance Questionnaire [CAQ]) for children with psychosocial and/or behavioral problems, receiving therapeutic residential care or day care in the Netherlands. Methods: Confirmatory factor analysis of a one-factor model ''therapeutic…

  18. Therapeutic strategies in severe neuropsychiatric systemic lupus erythematosus: experience from a tertiary referral centre.

    PubMed

    Bortoluzzi, A; Padovan, M; Farina, I; Galuppi, E; De Leonardis, F; Govoni, M

    2012-12-20

    The management of neuropsychiatric systemic lupus erythematosus (NPSLE) still remains empirical and based on clinical experience due to the lack of randomized controlled trials. To report the experience accumulated in a single tertiary referral centre about treatment of severe cases of NPSLE patients and to discuss therapeutic strategies on the background of EULAR recommendations. Retrospective analysis of all consecutive cases of severe NPSLE treated in our centre since 1990 to 2010, satisfying the 1999 ACR criteria. Among 633 SLE patients who consecutively attended our centre, 231 (36%) displayed at least one neuropsychiatric (NP) manifestation for a total of 408 events attributable to SLE. Thirty-one patients (4.8%), 27 females and 4 males, experienced 35 major NP events requiring immunosuppressive therapy (including 3 relapses and 1 new event). An aggressive immunosuppressive strategy was applied to those patients with an immune mediated inflammatory NP event and to those patients with an increased disease activity as judged by ECLAM and SLEDAI scores. Overall at the end of the therapy 74% of the patients reached clinical remission or significant improvement of their symptoms measured by mean SLEDAI (from 10.09 ± 1.09 to 2.04 ± 0.52, P<0.0001) and ECLAM (from 4 ± 0.34 to 1.38 ± 0.37, P<0.001) scores. The prevalence of NP involvement, described in our case series, is similar to those reported in literature as well as the treatment strategies applied. Nowadays, it is not possible to establish a standardized approach for each single NPSLE manifestation, and different therapeutic strategies must be tailored taking into account the most probable pathogenic mechanism involved, the general disease activity background, the co-morbidities, the type and the stage of the systemic involvement.

  19. STAT3 targeting by polyphenols: Novel therapeutic strategy for melanoma.

    PubMed

    Momtaz, Saeideh; Niaz, Kamal; Maqbool, Faheem; Abdollahi, Mohammad; Rastrelli, Luca; Nabavi, Seyed Mohammad

    2017-05-06

    Melanoma or malignant melanocytes appear with the low incidence rate, but very high mortality rate worldwide. Epidemiological studies suggest that polyphenolic compounds contribute for prevention or treatment of several cancers particularly melanoma. Such findings motivate to dig out novel therapeutic strategies against melanoma, including research toward the development of new chemotherapeutic and biologic agents that can target the tumor cells by different mechanisms. Recently, it has been found that signal transducer and activator of transcription 3 (STAT3) is activated in many cancer cases surprisingly. Different evidences supply the aspect that STAT3 activation plays a vital role in the metastasis, including proliferation of cells, survival, invasion, migration, and angiogenesis. This significant feature plays a vital role in various cellular processes, such as cell proliferation and survival. Here, we reviewed the mechanisms of the STAT3 pathway regulation and their role in promoting melanoma. Also, we have evaluated the emerging data on polyphenols (PPs) specifically their contribution in melanoma therapies with an emphasis on their regulatory/inhibitory actions in relation to STAT3 pathway and current progress in the development of phytochemical therapeutic techniques. An understanding of targeting STAT3 by PPs brings an opportunity to melanoma therapy. © 2016 BioFactors, 43(3):347-370, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  20. HER2-positive breast cancer: Current and new therapeutic strategies.

    PubMed

    Escrivá-de-Romaní, Santiago; Arumí, Miriam; Bellet, Meritxell; Saura, Cristina

    2018-06-01

    Since the identification of the HER2 receptor amplification as an adverse prognostic factor that defined a special subtype of metastatic breast cancer, there has been a substantial improvement in survival of patients affected with this disease due to the development of anti-HER2 targeted therapies. The approval of trastuzumab and pertuzumab associated to a taxane in first line and subsequent treatment with the antibody-drug conjugate T-DM1 has certainly contributed to achieve these outcomes. The Tyrosine Kinase Inhibitor lapatinib was also approved in the basis of an improvement in progression free survival, becoming another commonly used treatment in combination with capecitabine. Inevitably, despite these therapeutic advances most patients progress on therapy due to primary or acquired resistance or because of an incorrect HER2 positivity assessment. Hence, it is crucial to correctly categorize HER2 amplified tumors and define mechanisms of resistance to design effective new treatment approaches. In addition, identifying biomarkers of response or resistance permits to tailor the therapeutic options for each patient sparing them from unnecessary toxicity as well as improving their outcomes. The aim of this review is to examine new strategies in development to treat HER2-positive metastatic breast cancer referring to the mechanisms of action of new drugs and new combinations including results reported so far. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Identifying novel interventional strategies for psychiatric disorders: integrating genomics, 'enviromics' and gene-environment interactions in valid preclinical models.

    PubMed

    McOmish, Caitlin E; Burrows, Emma L; Hannan, Anthony J

    2014-10-01

    Psychiatric disorders affect a substantial proportion of the population worldwide. This high prevalence, combined with the chronicity of the disorders and the major social and economic impacts, creates a significant burden. As a result, an important priority is the development of novel and effective interventional strategies for reducing incidence rates and improving outcomes. This review explores the progress that has been made to date in establishing valid animal models of psychiatric disorders, while beginning to unravel the complex factors that may be contributing to the limitations of current methodological approaches. We propose some approaches for optimizing the validity of animal models and developing effective interventions. We use schizophrenia and autism spectrum disorders as examples of disorders for which development of valid preclinical models, and fully effective therapeutics, have proven particularly challenging. However, the conclusions have relevance to various other psychiatric conditions, including depression, anxiety and bipolar disorders. We address the key aspects of construct, face and predictive validity in animal models, incorporating genetic and environmental factors. Our understanding of psychiatric disorders is accelerating exponentially, revealing extraordinary levels of genetic complexity, heterogeneity and pleiotropy. The environmental factors contributing to individual, and multiple, disorders also exhibit breathtaking complexity, requiring systematic analysis to experimentally explore the environmental mediators and modulators which constitute the 'envirome' of each psychiatric disorder. Ultimately, genetic and environmental factors need to be integrated via animal models incorporating the spatiotemporal complexity of gene-environment interactions and experience-dependent plasticity, thus better recapitulating the dynamic nature of brain development, function and dysfunction. © 2014 The British Pharmacological Society.

  2. Arterial stiffness and stroke: de-stiffening strategy, a therapeutic target for stroke

    PubMed Central

    Chen, Yajing; Shen, Fanxia; Liu, Jianrong; Yang, Guo-Yuan

    2017-01-01

    Stroke is the second leading cause of mortality and morbidity worldwide. Early intervention is of great importance in reducing disease burden. Since the conventional risk factors cannot fully account for the pathogenesis of stroke, it is extremely important to detect useful biomarkers of the vascular disorder for appropriate intervention. Arterial stiffness, a newly recognised reliable feature of arterial structure and function, is demonstrated to be associated with stroke onset and serve as an independent predictor of stroke incidence and poststroke functional outcomes. In this review article, different measurements of arterial stiffness, especially pressure wave velocity, were discussed. We explained the association between arterial stiffness and stroke occurrence by discussing the secondary haemodynamic changes. We reviewed clinical data that support the prediction role of arterial stiffness on stroke. Despite the lack of long-term randomised double-blind controlled therapeutic trials, it is high potential to reduce stroke prevalence through a significant reduction of arterial stiffness (which is called de-stiffening therapy). Pharmacological interventions or lifestyle modification that can influence blood pressure, arterial function or structure in either the short or long term are promising de-stiffening therapies. Here, we summarised different de-stiffening strategies including antihypertension drugs, antihyperlipidaemic agents, chemicals that target arterial remodelling and exercise training. Large and well-designed clinical trials on de-stiffening strategy are needed to testify the prevention effect for stroke. Novel techniques such as modern microscopic imaging and reliable animal models would facilitate the mechanistic analyses in pathophysiology, pharmacology and therapeutics. PMID:28959494

  3. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases

    PubMed Central

    Jones, Melissa K.; Lu, Bin; Girman, Sergey; Wang, Shaomei

    2017-01-01

    Cell-based therapeutics offer diverse options for treating retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). AMD is characterized by both genetic and environmental risks factors, whereas RP is mainly a monogenic disorder. Though treatments exist for some patients with neovascular AMD, a majority of retinal degenerative patients have no effective therapeutics, thus indicating a need for universal therapies to target diverse patient populations. Two main cell-based mechanistic approaches are being tested in clinical trials. Replacement therapies utilize cell-derived retinal pigment epithelial (RPE) cells to supplant lost or defective host RPE cells. These cells are similar in morphology and function to native RPE cells and can potentially supplant the responsibilities of RPE in vivo. Preservation therapies utilize supportive cells to aid in visual function and photoreceptor preservation partially by neurotrophic mechanisms. The goal of preservation strategies is to halt or slow the progression of disease and maintain remaining visual function. A number of clinical trials are testing the safety of replacement and preservation cell therapies in patients; however, measures of efficacy will need to be further evaluated. In addition, a number of prevailing concerns with regards to the immune-related response, longevity, and functionality of the grafted cells will need to be addressed in future trials. This review will summarize the current status of cell-based preclinical and clinical studies with a focus on replacement and preservation strategies and the obstacles that remain regarding these types of treatments. PMID:28111323

  4. [Psychic aspects of the premenstrual dysphoric disorders. New therapeutic strategies: our experience with Vitex agnus castus].

    PubMed

    Ciotta, L; Pagano, I; Stracquadanio, M; Di Leo, S; Andò, A; Formuso, C

    2011-06-01

    The premenstrual dysphoric disorder (PMDD) is one of the main problems of the premenstrual phase. It consists of symptoms that sometimes invalidate the scope of employment, social and psycho-affective of patients, requiring thus a diagnostic and therapeutic approach as detailed and accurate as possible. The therapeutic strategies available for this disease are many, but recently the emphasis has been on Vitex agnus castus (VAC), considered by many as evidence drug of choice for both PMS and for the PMDD, being with satisfactory therapeutic properties and small side effects. Our study evaluated a group of patients suffering from PMDD and the clinical efficacy of treatment with VAC (and compared the effectiveness of the results of a more homogeneous group of patients treated with fluoxetine). This study confirms the data reported in the literature regarding the effectiveness of VAC therapy with no side effects.

  5. Revisiting therapeutic strategies in radiation casualties.

    PubMed

    Hérodin, Francis; Grenier, Nancy; Drouet, Michel

    2007-04-01

    Nuclear/radiological threats have evolved and scenarios for terrorist attacks involving radioactive material have been identified as complex situations. Mass casualty scenarios may happen, and individuals may be exposed to intentionally hidden sources of high activity, resulting in delayed diagnosis and treatment of acute radiation syndrome (ARS). Moreover, ARS must be considered as an emergency in order to better anticipate delayed radiation toxicity. In this context, therapeutic strategies in radiation casualties have to be revisited and new pharmacological approaches developed. B6D2F1 mice were total-body irradiated (TBI) with a 9 Gy gamma dose and then received intraperitoneal doses of either early (stem cell factor + FLT-3 ligand + thrombopoietin + interleukin-3 [SFT3] +/- keratinocyte growth factor (KGF); stem cell factor + erythropoietin + Peg-filgrastim [SEG]) or delayed treatments (SFT3 +/- KGF, erythropoietin, or hyaluronic acid). Survival was monitored and bone marrow hematopoiesis evaluated at 300 days following early treatments. SFT3 anti-apoptotic cytokine combination administered early (2 hours and 24 hours) after lethal TBI induced 60% survival versus 5% in controls. Early SEG treatment may be an alternative to SFT3 in terms of survival (55%), but SEG benefit might be obtained at the expense of long-term hematopoiesis. SFT3 + KGF induced 75% survival. No effectiveness was observed, over antimicrobial supportive care, when administration of SFT3 or its tested combinations was delayed at 48 hours. As a potentially multi-organ failure, ARS requires global therapy, beyond the hematopoietic syndrome, which may include pleiotropic cytokines such as KGF.

  6. Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer's disease.

    PubMed

    Faustino, Célia; Rijo, Patrícia; Reis, Catarina Pinto

    2017-06-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with amyloid-β peptide misfolding and aggregation. Neurotrophic factors, such as nerve growth factor (NGF), can prevent neuronal damage and rescue the cholinergic neurons that undergo cell death in AD, reverse deposition of extracellular amyloid plaques and improve cognitive deficits. However, NGF administration is hampered by the poor pharmacokinetic profile of the therapeutic protein and its inability to cross the blood-brain barrier, which requires specialised drug delivery systems (DDS) for efficient NGF delivery to the brain. This review covers the main therapeutic approaches that have been developed for NGF delivery targeting the brain, from polymeric implants to gene and cell-based therapies, focusing on the role of nanoparticulate systems for the sustained release of NGF in the brain as a neuroprotective and disease-modifying approach toward AD. Lipid- and polymer-based delivery systems, magnetic nanoparticles and quantum dots are specifically addressed as promising nanotechnological strategies to overcome the current limitations of NGF-based therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Freud's Therapeutic Mistake with Jung's Disclosure of Childhood Sexual Abuse: Narrative Lessons in the Do's and Don'ts of Validation.

    ERIC Educational Resources Information Center

    Gasker, Janice

    1999-01-01

    Examines the life narratives of over 25 "victims" and "survivors" of sexual victimization, including that of Carl Jung, as revealed in his letters to Sigmund Freud. Looks at the devastating results of Freud's invalidating response. Discusses categories of successful therapeutic validation. (SR)

  8. Linking rare and common disease: mapping clinical disease-phenotypes to ontologies in therapeutic target validation.

    PubMed

    Sarntivijai, Sirarat; Vasant, Drashtti; Jupp, Simon; Saunders, Gary; Bento, A Patrícia; Gonzalez, Daniel; Betts, Joanna; Hasan, Samiul; Koscielny, Gautier; Dunham, Ian; Parkinson, Helen; Malone, James

    2016-01-01

    The Centre for Therapeutic Target Validation (CTTV - https://www.targetvalidation.org/) was established to generate therapeutic target evidence from genome-scale experiments and analyses. CTTV aims to support the validity of therapeutic targets by integrating existing and newly-generated data. Data integration has been achieved in some resources by mapping metadata such as disease and phenotypes to the Experimental Factor Ontology (EFO). Additionally, the relationship between ontology descriptions of rare and common diseases and their phenotypes can offer insights into shared biological mechanisms and potential drug targets. Ontologies are not ideal for representing the sometimes associated type relationship required. This work addresses two challenges; annotation of diverse big data, and representation of complex, sometimes associated relationships between concepts. Semantic mapping uses a combination of custom scripting, our annotation tool 'Zooma', and expert curation. Disease-phenotype associations were generated using literature mining on Europe PubMed Central abstracts, which were manually verified by experts for validity. Representation of the disease-phenotype association was achieved by the Ontology of Biomedical AssociatioN (OBAN), a generic association representation model. OBAN represents associations between a subject and object i.e., disease and its associated phenotypes and the source of evidence for that association. The indirect disease-to-disease associations are exposed through shared phenotypes. This was applied to the use case of linking rare to common diseases at the CTTV. EFO yields an average of over 80% of mapping coverage in all data sources. A 42% precision is obtained from the manual verification of the text-mined disease-phenotype associations. This results in 1452 and 2810 disease-phenotype pairs for IBD and autoimmune disease and contributes towards 11,338 rare diseases associations (merged with existing published work [Am J Hum Genet

  9. Development and Construct Validity of the Classroom Strategies Scale-Observer Form

    ERIC Educational Resources Information Center

    Reddy, Linda A.; Fabiano, Gregory; Dudek, Christopher M.; Hsu, Louis

    2013-01-01

    Research on progress monitoring has almost exclusively focused on student behavior and not on teacher practices. This article presents the development and validation of a new teacher observational assessment (Classroom Strategies Scale) of classroom instructional and behavioral management practices. The theoretical underpinnings and empirical…

  10. Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies.

    PubMed

    Marie, Pierre J

    2015-04-01

    Several metabolic, genetic and oncogenic bone diseases are characterized by defective or excessive bone formation. These abnormalities are caused by dysfunctions in the commitment, differentiation or survival of cells of the osteoblast lineage. During the recent years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the osteoblast dysfunctions in osteoporosis, skeletal dysplasias and primary bone tumors. This led to suggest novel therapeutic approaches to correct these abnormalities such as the modulation of WNT signaling, the pharmacological modulation of proteasome-mediated protein degradation, the induction of osteoprogenitor cell differentiation, the repression of cancer cell proliferation and the manipulation of epigenetic mechanisms. This article reviews our current understanding of the major cellular and molecular mechanisms inducing osteoblastic cell abnormalities in age-related bone loss, genetic skeletal dysplasias and primary bone tumors, and discusses emerging therapeutic strategies to counteract the osteoblast abnormalities in these disorders of bone formation.

  11. RNA interference-based therapeutics: new strategies to fight infectious disease.

    PubMed

    López-Fraga, M; Wright, N; Jiménez, A

    2008-12-01

    For many years, there has been an ongoing search for new compounds that can selectively alter gene expression as a new way to treat human disease by addressing targets that are otherwise "undruggable" with traditional pharmaceutical approaches involving small molecules or proteins. RNA interference (RNAi) strategies have raised a lot of attention and several compounds are currently being tested in clinical trials. Viruses are the obvious target for RNAi-therapy, as most are difficult to treat with conventional drugs, they become rapidly resistant to drug treatment and their genes differ substantially from human genes, minimizing side effects. Antisense strategy offers very high target specificity, i.e., any viral sequence could potentially be targeted using the complementary oligonucleotide sequence. Consequently, new antisense-based therapeutics have the potential to lead a revolution in the anti-infective drug development field. Additionally, the relatively short turnaround for efficacy testing of potential RNAi molecules and that any pathogen is theoretically amenable to rapid targeting, make them invaluable tools for treating a wide range of diseases. This review will focus on some of the current efforts to treat infectious disease with RNAi-based therapies and some of the obstacles that have appeared on the road to successful clinical intervention.

  12. Rigor or Reliability and Validity in Qualitative Research: Perspectives, Strategies, Reconceptualization, and Recommendations.

    PubMed

    Cypress, Brigitte S

    Issues are still raised even now in the 21st century by the persistent concern with achieving rigor in qualitative research. There is also a continuing debate about the analogous terms reliability and validity in naturalistic inquiries as opposed to quantitative investigations. This article presents the concept of rigor in qualitative research using a phenomenological study as an exemplar to further illustrate the process. Elaborating on epistemological and theoretical conceptualizations by Lincoln and Guba, strategies congruent with qualitative perspective for ensuring validity to establish the credibility of the study are described. A synthesis of the historical development of validity criteria evident in the literature during the years is explored. Recommendations are made for use of the term rigor instead of trustworthiness and the reconceptualization and renewed use of the concept of reliability and validity in qualitative research, that strategies for ensuring rigor must be built into the qualitative research process rather than evaluated only after the inquiry, and that qualitative researchers and students alike must be proactive and take responsibility in ensuring the rigor of a research study. The insights garnered here will move novice researchers and doctoral students to a better conceptual grasp of the complexity of reliability and validity and its ramifications for qualitative inquiry.

  13. Modeling complex treatment strategies: construction and validation of a discrete event simulation model for glaucoma.

    PubMed

    van Gestel, Aukje; Severens, Johan L; Webers, Carroll A B; Beckers, Henny J M; Jansonius, Nomdo M; Schouten, Jan S A G

    2010-01-01

    Discrete event simulation (DES) modeling has several advantages over simpler modeling techniques in health economics, such as increased flexibility and the ability to model complex systems. Nevertheless, these benefits may come at the cost of reduced transparency, which may compromise the model's face validity and credibility. We aimed to produce a transparent report on the construction and validation of a DES model using a recently developed model of ocular hypertension and glaucoma. Current evidence of associations between prognostic factors and disease progression in ocular hypertension and glaucoma was translated into DES model elements. The model was extended to simulate treatment decisions and effects. Utility and costs were linked to disease status and treatment, and clinical and health economic outcomes were defined. The model was validated at several levels. The soundness of design and the plausibility of input estimates were evaluated in interdisciplinary meetings (face validity). Individual patients were traced throughout the simulation under a multitude of model settings to debug the model, and the model was run with a variety of extreme scenarios to compare the outcomes with prior expectations (internal validity). Finally, several intermediate (clinical) outcomes of the model were compared with those observed in experimental or observational studies (external validity) and the feasibility of evaluating hypothetical treatment strategies was tested. The model performed well in all validity tests. Analyses of hypothetical treatment strategies took about 30 minutes per cohort and lead to plausible health-economic outcomes. There is added value of DES models in complex treatment strategies such as glaucoma. Achieving transparency in model structure and outcomes may require some effort in reporting and validating the model, but it is feasible.

  14. Recent Progress in Therapeutic Treatments and Screening Strategies for the Prevention and Treatment of HPV-Associated Head and Neck Cancer

    PubMed Central

    Whang, Sonia N.; Filippova, Maria; Duerksen-Hughes, Penelope

    2015-01-01

    The rise in human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HNSCC) has elicited significant interest in the role of high-risk HPV in tumorigenesis. Because patients with HPV-positive HNSCC have better prognoses than do their HPV-negative counterparts, current therapeutic strategies for HPV+ HNSCC are increasingly considered to be overly aggressive, highlighting a need for customized treatment guidelines for this cohort. Additional issues include the unmet need for a reliable screening strategy for HNSCC, as well as the ongoing assessment of the efficacy of prophylactic vaccines for the prevention of HPV infections in the head and neck regions. This review also outlines a number of emerging prospects for therapeutic vaccines, as well as for targeted, molecular-based therapies for HPV-associated head and neck cancers. Overall, the future for developing novel and effective therapeutic agents for HPV-associated head and neck tumors is promising; continued progress is critical in order to meet the challenges posed by the growing epidemic. PMID:26393639

  15. Histone Deacetylase Inhibitors: An Attractive Therapeutic Strategy Against Breast Cancer.

    PubMed

    Damaskos, Christos; Garmpis, Nikolaos; Valsami, Serena; Kontos, Michael; Spartalis, Eleftherios; Kalampokas, Theodoros; Kalampokas, Emmanouil; Athanasiou, Antonios; Moris, Demetrios; Daskalopoulou, Afrodite; Davakis, Spyridon; Tsourouflis, Gerasimos; Kontzoglou, Konstantinos; Perrea, Despina; Nikiteas, Nikolaos; Dimitroulis, Dimitrios

    2017-01-01

    With a lifetime risk estimated to be one in eight in industrialized countries, breast cancer is the most frequent type of cancer among women worldwide. Patients are often treated with anti-estrogens, but it is common that some tumors develop resistance to therapy. The causation and progression of cancer is controlled by epigenetic processes, so there is an ongoing interest in research into mechanisms, genes and signaling pathways associating carcinogenesis with epigenetic modulation of gene expression. Given the fact that histone deacetylases (HDACs) have a great impact on chromatin remodeling and epigenetics, their inhibitors have become a very interesting field of research. This review focused on the use of HDAC inhibitors as anticancer treatment and explains the mechanisms of therapeutic effects on breast cancer. We anticipate further clinical benefits of this new class of drugs, both as single agents and in combination therapy. Molecules such as suberoylanilide hydroxamic acid, trichostatin A, suberoylbis-hydroxamic acid, panobinostat, entinostat, valproic acid, sodium butyrate, SK7041, FTY720, N-(2-hydroxyphenyl)-2-propylpentanamide, Scriptaid, YCW1, santacruzamate A and ferrocenyl have shown promising antitumor effects against breast cancer. HDAC inhibitors consists an attractive field for targeted therapy against breast cancer. Future therapeutic strategies will include combination of HDAC inhibitors and chemotherapy or other inhibitors, in order to target multiple oncogenic signaling pathways. More trials are needed. Copyright© 2017 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Therapeutic Strategies for Modulating the Extracellular Matrix to Improve Pancreatic Islet Function and Survival After Transplantation.

    PubMed

    Smink, Alexandra M; de Vos, Paul

    2018-05-19

    Extracellular matrix (ECM) components modulate the interaction between pancreatic islet cells. During the islet isolation prior to transplantation as treatment for type 1 diabetes, the ECM is disrupted impacting functional graft survival. Recently, strategies for restoring ECM have shown to improve transplantation outcomes. This review discusses the current therapeutic strategies to modulate ECM components to improve islet engraftment. Approaches applied are seeding islets in ECM of decellularized organs, supplementation of specific ECM components in polymeric scaffolds or immunoisolating capsules, and stimulating islet ECM production with specific growth factors or ECM-producing cells. These strategies have shown success in improving functional islet survival. However, the same experiments show that caution should be taken as some ECM components may negatively impact islet function and engraftment. ECM restoration resulted in improved transplantation outcomes, but careful selection of beneficial ECM components and strategies is warranted.

  17. Targeting the renin-angiotensin system as novel therapeutic strategy for pulmonary diseases.

    PubMed

    Tan, Wan Shun Daniel; Liao, Wupeng; Zhou, Shuo; Mei, Dan; Wong, Wai-Shiu Fred

    2017-12-27

    The renin-angiotensin system (RAS) plays a major role in regulating electrolyte balance and blood pressure. RAS has also been implicated in the regulation of inflammation, proliferation and fibrosis in pulmonary diseases such as asthma, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and pulmonary arterial hypertension (PAH). Current therapeutics suffer from some drawbacks like steroid resistance, limited efficacies and side effects. Novel intervention is definitely needed to offer optimal therapeutic strategy and clinical outcome. This review compiles and analyses recent investigations targeting RAS for the treatment of inflammatory lung diseases. Inhibition of the upstream angiotensin (Ang) I/Ang II/angiotensin receptor type 1 (AT 1 R) pathway and activation of the downstream angiotensin-converting enzyme 2 (ACE2)/Ang (1-7)/Mas receptor pathway are two feasible strategies demonstrating efficacies in various pulmonary disease models. More recent studies favor the development of targeting the downstream ACE2/Ang (1-7)/Mas receptor pathway, in which diminazene aceturate, an ACE2 activator, GSK2586881, a recombinant ACE2, and AV0991, a Mas receptor agonist, showed much potential for further development. As the pathogenesis of pulmonary diseases is so complex that RAS modulation may be used alone or in combination with existing drugs like corticosteroids, pirfenidone/nintedanib or endothelin receptor antagonists for different pulmonary diseases. Personalized medicine through genetic screening and phenotyping for angiotensinogen or ACE would aid treatment especially for non-responsive patients. This review serves to provide an update on the latest development in the field of RAS targeting for pulmonary diseases, and offer some insights into future direction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The Paradoxical Signals of Two TrkC Receptor Isoforms Supports a Rationale for Novel Therapeutic Strategies in ALS

    PubMed Central

    Barcelona, Pablo F.; Galan, Alba; Aboulkassim, Tahar; Teske, Katrina; Rogers, Mary-Louise; Bertram, Lisa; Wang, Jing; Yousefi, Masoud; Rush, Robert; Fabian, Marc; Cashman, Neil

    2016-01-01

    Full length TrkC (TrkC-FL) is a receptor tyrosine kinase whose mRNA can be spliced to a truncated TrkC.T1 isoform lacking the kinase domain. Neurotrophin-3 (NT-3) activates TrkC-FL to maintain motor neuron health and function and TrkC.T1 to produce neurotoxic TNF-α; hence resulting in opposing pathways. In mouse and human ALS spinal cord, the reduction of miR-128 that destabilizes TrkC.T1 mRNA results in up-regulated TrkC.T1 and TNF-α in astrocytes. We exploited conformational differences to develop an agonistic mAb 2B7 that selectively activates TrkC-FL, to circumvent TrkC.T1 activation. In mouse ALS, 2B7 activates spinal cord TrkC-FL signals, improves spinal cord motor neuron phenotype and function, and significantly prolongs life-span. Our results elucidate biological paradoxes of receptor isoforms and their role in disease progression, validate the concept of selectively targeting conformational epitopes in naturally occurring isoforms, and may guide the development of pro-neuroprotective (TrkC-FL) and anti-neurotoxic (TrkC.T1) therapeutic strategies. PMID:27695040

  19. Review article: moving towards common therapeutic goals in Crohn's disease and rheumatoid arthritis.

    PubMed

    Allen, P B; Olivera, P; Emery, P; Moulin, D; Jouzeau, J-Y; Netter, P; Danese, S; Feagan, B; Sandborn, W J; Peyrin-Biroulet, L

    2017-04-01

    Crohn's disease (CD) and rheumatoid arthritis are chronic, progressive and disabling conditions that frequently lead to structural tissue damage. Based on strategies originally developed for rheumatoid arthritis, the treatment goal for CD has recently moved from exclusively controlling symptoms to both clinical remission and complete mucosal healing (deep remission), with the final aim of preventing bowel damage and disability. To review the similarities and differences in treatment goals between CD and rheumatoid arthritis. This review examined manuscripts from 1982 to 2016 that discussed and/or proposed therapeutic goals with their supportive evidence in CD and rheumatoid arthritis. Proposed therapeutic strategies to improve outcomes in both rheumatoid arthritis and CD include: (i) evaluation of musculoskeletal or organ damage and disability, (ii) tight control, (iii) treat-to-target, (iv) early intervention and (v) disease modification. In contrast to rheumatoid arthritis, there is a paucity of disease-modification trials in CD. Novel therapeutic strategies in CD based on tight control of objective signs of inflammation are expected to change disease course and patients' lives by halting progression or, ideally, preventing the occurrence of bowel damage. Most of these strategies require validation in prospective studies, whereas several disease-modification trials have addressed these issues in rheumatoid arthritis over the last decade. The recent approval of new drugs in CD such as vedolizumab and ustekinumab should facilitate initiation of disease-modification trials in CD in the near future. © 2017 John Wiley & Sons Ltd.

  20. Therapeutic Misconception in Research Subjects: Development and Validation of a Measure

    PubMed Central

    Appelbaum, Paul S.; Anatchkova, Milena; Albert, Karen; Dunn, Laura B.; Lidz, Charles W.

    2013-01-01

    Background Therapeutic misconception (TM), which occurs when research subjects fail to appreciate the distinction between the imperatives of clinical research and ordinary treatment, may undercut the process of obtaining meaningful consent to clinical research participation. Previous studies have found TM is widespread, but progress in addressing TM has been stymied by the absence of a validated method for assessing its presence. Purpose The goal of this study was to develop and validate a theoretically grounded measure of TM, assess its diagnostic accuracy, and test previous findings regarding its prevalence. Methods 220 participants were recruited from clinical trials at 4 academic medical centers in the U.S. Participants completed a 28-item Likert-type questionnaire to assess the presence of beliefs associated with TM, and a semi-structured TM interview designed to elicit their perceptions of the nature of the clinical trial in which they were participating. Data from the questionnaires were subjected to factor analysis and items with poor factor loadings were excluded. This resulted in a 10-item scale, with 3 strongly correlated factors and excellent internal consistency; the fit indices of the model across 10 training sets were consistent with the original results, suggesting a stable factor solution. Results The scale was validated against the TM interview, with significantly higher scores among subjects coded as displaying evidence of TM. ROC analysis based on a 10-fold internal cross-validation yielded AUC=.682 for any evidence of TM. When sensitivity (0.72) and specificity (0.61) were both optimized, Positive Predictive Value was 0.65 and Negative Predictive Value was 0.68, with a Positive Likelihood Ratio of 1.89, and a Negative Likelihood Ratio of 0.47. 50.5% (n=101) of participants manifested evidence of TM on the TM interview, a somewhat lower rate than in most previous studies. Limitations The predictive value of the scale compared with the

  1. Emerging Strategies for Developing Next-Generation Protein Therapeutics for Cancer Treatment.

    PubMed

    Kintzing, James R; Filsinger Interrante, Maria V; Cochran, Jennifer R

    2016-12-01

    Protein-based therapeutics have been revolutionizing the oncology space since they first appeared in the clinic two decades ago. Unlike traditional small-molecule chemotherapeutics, protein biologics promote active targeting of cancer cells by binding to cell-surface receptors and other markers specifically associated with or overexpressed on tumors versus healthy tissue. While the first approved cancer biologics were monoclonal antibodies, the burgeoning field of protein engineering is spawning research on an expanded range of protein formats and modifications that allow tuning of properties such as target-binding affinity, serum half-life, stability, and immunogenicity. In this review we highlight some of these strategies and provide examples of modified and engineered proteins under development as preclinical and clinical-stage drug candidates for the treatment of cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases

    PubMed Central

    Forte, Maurizio; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A.; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases. PMID:27651855

  3. The evolving landscape of therapeutic drug development for hepatocellular carcinoma.

    PubMed

    Chong, Dawn Qingqing; Tan, Iain Beehuat; Choo, Su-Pin; Toh, Han Chong

    2013-11-01

    Currently, only one drug, sorafenib, is FDA approved for the treatment of advanced hepatocellular carcinoma (HCC), achieving modest objective response rates while still conferring an overall survival benefit. Unlike other solid tumors, no oncogenic addiction loops have been validated as clinically actionable targets in HCC. Outcomes of HCC could potentially be improved if critical molecular subclasses with distinct therapeutic vulnerabilities can be identified, biomarkers that predict recurrence or progression early can be determined and key epigenetic, genetic or microenvironment drivers that determine best response to a specific targeting treatment can be uncovered. Our group and others have examined the molecular heterogeneity of hepatocellular carcinoma. We have developed a panel of patient derived xenograft models to enable focused pre-clinical drug development of rationally designed therapies in specific molecular subgroups. We observed unique patterns, including synergies, of drug activity across our molecularly diverse HCC xenografts, pointing to specific therapeutic vulnerabilities for individual tumors. These efforts inform clinical trial designs and catalyze therapeutic development. It also argues for efficient strategic allocation of patients into appropriate enriched clinical trials. Here, we will discuss some of the recent important therapeutic studies in advanced HCC and also some of the potential strategies to optimize clinical therapeutic development moving forward. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila

    NASA Astrophysics Data System (ADS)

    Apostol, Barbara L.; Kazantsev, Alexsey; Raffioni, Simona; Illes, Katalin; Pallos, Judit; Bodai, Laszlo; Slepko, Natalia; Bear, James E.; Gertler, Frank B.; Hersch, Steven; Housman, David E.; Marsh, J. Lawrence; Michels Thompson, Leslie

    2003-05-01

    The formation of polyglutamine-containing aggregates and inclusions are hallmarks of pathogenesis in Huntington's disease that can be recapitulated in model systems. Although the contribution of inclusions to pathogenesis is unclear, cell-based assays can be used to screen for chemical compounds that affect aggregation and may provide therapeutic benefit. We have developed inducible PC12 cell-culture models to screen for loss of visible aggregates. To test the validity of this approach, compounds that inhibit aggregation in the PC12 cell-based screen were tested in a Drosophila model of polyglutamine-repeat disease. The disruption of aggregation in PC12 cells strongly correlates with suppression of neuronal degeneration in Drosophila. Thus, the engineered PC12 cells coupled with the Drosophila model provide a rapid and effective method to screen and validate compounds.

  5. Iron acquisition in the cystic fibrosis lung and potential for novel therapeutic strategies

    PubMed Central

    Tyrrell, Jean

    2016-01-01

    Iron acquisition is vital to microbial survival and is implicated in the virulence of many of the pathogens that reside in the cystic fibrosis (CF) lung. The multifaceted nature of iron acquisition by both bacterial and fungal pathogens encompasses a range of conserved and species-specific mechanisms, including secretion of iron-binding siderophores, utilization of siderophores from other species, release of iron from host iron-binding proteins and haemoproteins, and ferrous iron uptake. Pathogens adapt and deploy specific systems depending on iron availability, bioavailability of the iron pool, stage of infection and presence of competing pathogens. Understanding the dynamics of pathogen iron acquisition has the potential to unveil new avenues for therapeutic intervention to treat both acute and chronic CF infections. Here, we examine the range of strategies utilized by the primary CF pathogens to acquire iron and discuss the different approaches to targeting iron acquisition systems as an antimicrobial strategy. PMID:26643057

  6. Validation through Understanding Test-Taking Strategies: An Illustration With the CELPIP-General Reading Pilot Test Using Structural Equation Modeling

    ERIC Educational Resources Information Center

    Wu, Amery D.; Stone, Jake E.

    2016-01-01

    This article explores an approach for test score validation that examines test takers' strategies for taking a reading comprehension test. The authors formulated three working hypotheses about score validity pertaining to three types of test-taking strategy (comprehending meaning, test management, and test-wiseness). These hypotheses were…

  7. [Validation of the German Version of Tinnitus Functional Index (TFI)].

    PubMed

    Brüggemann, Petra; Szczepek, Agnieszka J; Kleinjung, Tobias; Ojo, Michael; Mazurek, Birgit

    2017-09-01

    Tinnitus belongs to seriously debilitating auditory conditions and is often complicated by comorbidities such as insomnia, difficulties with concentration, depression, frustration and irritability. To facilitate the grading of symptoms and the effects of therapeutic strategies, we validated a German-version Tinnitus Functional Index (TFI) in 229 subjects suffering from chronic tinnitus. Outcome validity was assessed using the Tinnitus Questionnaire (TQ, German adaptation by Goebel u. Hiller [1998]). Construct validity was assessed using the "Hamburger Allgemeine Depressionsskala" (HADS). The German TFI featured excellent internal consistency (total score Cronbach's α=0.93). Factor analysis disclosed eight TFI subscales as proposed earlier by Meikle et al. [2012]. Intercorrelations were strong both between the TFI and the TQ (r=0.83), and between the TFI and the HADS (depression r=0.49, anxiety r=0.51). The German-version TFI qualifies as a rapid and statistically robust tool for grading the impact of tinnitus on daily living and for the measurements of therapeutic effects. Regarding depressive symptomatology, sensitivity of the TFI was comparable to that of the TQ. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Concurrent Validity of the Classroom Strategies Scale-Teacher Form: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Reddy, Linda A.; Dudek, Christopher M.; Rualo, Angelique J.; Fabiano, Gregory A.

    2016-01-01

    The present study investigated the concurrent validity of the Classroom Strategies Scale-Teacher Form (CSS-T), a multidimensional teacher formative assessment of instructional and behavioral management practices. The CSS-T is compared with the Classroom Assessment Scoring System (CLASS), a well-known teacher assessment of overall classroom…

  9. Variables and Strategies in Development of Therapeutic Post-Transcriptional Gene Silencing Agents

    PubMed Central

    Sullivan, Jack M.; Yau, Edwin H.; Kolniak, Tiffany A.; Sheflin, Lowell G.; Taggart, R. Thomas; Abdelmaksoud, Heba E.

    2011-01-01

    Post-transcriptional gene silencing (PTGS) agents such as ribozymes, RNAi and antisense have substantial potential for gene therapy of human retinal degenerations. These technologies are used to knockdown a specific target RNA and its cognate protein. The disease target mRNA may be a mutant mRNA causing an autosomal dominant retinal degeneration or a normal mRNA that is overexpressed in certain diseases. All PTGS technologies depend upon the initial critical annealing event of the PTGS ligand to the target RNA. This event requires that the PTGS agent is in a conformational state able to support hybridization and that the target have a large and accessible single-stranded platform to allow rapid annealing, although such platforms are rare. We address the biocomplexity that currently limits PTGS therapeutic development with particular emphasis on biophysical variables that influence cellular performance. We address the different strategies that can be used for development of PTGS agents intended for therapeutic translation. These issues apply generally to the development of PTGS agents for retinal, ocular, or systemic diseases. This review should assist the interested reader to rapidly appreciate critical variables in PTGS development and facilitate initial design and testing of such agents against new targets of clinical interest. PMID:21785698

  10. Current Therapeutic Strategies for Adipose Tissue Defects/Repair Using Engineered Biomaterials and Biomolecule Formulations.

    PubMed

    Mahoney, Christopher M; Imbarlina, Cayla; Yates, Cecelia C; Marra, Kacey G

    2018-01-01

    Tissue engineered scaffolds for adipose restoration/repair has significantly evolved in recent years. Patients requiring soft tissue reconstruction, caused by defects or pathology, require biomaterials that will restore void volume with new functional tissue. The gold standard of autologous fat grafting (AFG) is not a reliable option. This review focuses on the latest therapeutic strategies for the treatment of adipose tissue defects using biomolecule formulations and delivery, and specifically engineered biomaterials. Additionally, the clinical need for reliable off-the-shelf therapies, animal models, and challenges facing current technologies are discussed.

  11. The Third Round of the Czech Validation of the Motivated Strategies for Learning Questionnaire (MSLQ)

    ERIC Educational Resources Information Center

    Vaculíková, Jitka

    2016-01-01

    The authors present findings on the third round of the Czech validation of the Motivated Strategies for learning questionnaire (MSLQ), originally developed by Pintrich et al. (1991). The validation only covered an area designed to access motivation in self-regulated learning. Data was collected from a sample of university students in regular…

  12. Strategy Inventory for Language Learning-ELL Student Form: Testing for Factorial Validity

    ERIC Educational Resources Information Center

    Ardasheva, Yuliya; Tretter, Thomas R.

    2013-01-01

    As the school-aged English language learner (ELL) population continues to grow in the United States and other English-speaking countries, psychometrically sound instruments to measure their language learning strategies (LLS) become ever more critical. This study adapted and validated an adult-oriented measure of LLS (50-item "Strategy…

  13. Strategies to assess the validity of recommendations: a study protocol

    PubMed Central

    2013-01-01

    Background Clinical practice guidelines (CPGs) become quickly outdated and require a periodic reassessment of evidence research to maintain their validity. However, there is little research about this topic. Our project will provide evidence for some of the most pressing questions in this field: 1) what is the average time for recommendations to become out of date?; 2) what is the comparative performance of two restricted search strategies to evaluate the need to update recommendations?; and 3) what is the feasibility of a more regular monitoring and updating strategy compared to usual practice?. In this protocol we will focus on questions one and two. Methods The CPG Development Programme of the Spanish Ministry of Health developed 14 CPGs between 2008 and 2009. We will stratify guidelines by topic and by publication year, and include one CPG by strata. We will develop a strategy to assess the validity of CPG recommendations, which includes a baseline survey of clinical experts, an update of the original exhaustive literature searches, the identification of key references (reference that trigger a potential recommendation update), and the assessment of the potential changes in each recommendation. We will run two alternative search strategies to efficiently identify important new evidence: 1) PLUS search based in McMaster Premium LiteratUre Service (PLUS) database; and 2) a Restrictive Search (ReSe) based on the least number of MeSH terms and free text words needed to locate all the references of each original recommendation. We will perform a survival analysis of recommendations using the Kaplan-Meier method and we will use the log-rank test to analyse differences between survival curves according to the topic, the purpose, the strength of recommendations and the turnover. We will retrieve key references from the exhaustive search and evaluate their presence in the PLUS and ReSe search results. Discussion Our project, using a highly structured and transparent

  14. A combined pre-clinical meta-analysis and randomized confirmatory trial approach to improve data validity for therapeutic target validation.

    PubMed

    Kleikers, Pamela W M; Hooijmans, Carlijn; Göb, Eva; Langhauser, Friederike; Rewell, Sarah S J; Radermacher, Kim; Ritskes-Hoitinga, Merel; Howells, David W; Kleinschnitz, Christoph; Schmidt, Harald H H W

    2015-08-27

    Biomedical research suffers from a dramatically poor translational success. For example, in ischemic stroke, a condition with a high medical need, over a thousand experimental drug targets were unsuccessful. Here, we adopt methods from clinical research for a late-stage pre-clinical meta-analysis (MA) and randomized confirmatory trial (pRCT) approach. A profound body of literature suggests NOX2 to be a major therapeutic target in stroke. Systematic review and MA of all available NOX2(-/y) studies revealed a positive publication bias and lack of statistical power to detect a relevant reduction in infarct size. A fully powered multi-center pRCT rejects NOX2 as a target to improve neurofunctional outcomes or achieve a translationally relevant infarct size reduction. Thus stringent statistical thresholds, reporting negative data and a MA-pRCT approach can ensure biomedical data validity and overcome risks of bias.

  15. Immunologic Regulation in Pregnancy: From Mechanism to Therapeutic Strategy for Immunomodulation

    PubMed Central

    Chen, Shyi-Jou; Liu, Yung-Liang; Sytwu, Huey-Kang

    2012-01-01

    The immunologic interaction between the fetus and the mother is a paradoxical communication that is regulated by fetal antigen presentation and/or by recognition of and reaction to these antigens by the maternal immune system. There have been significant advances in understanding of abnormalities in the maternal-fetal immunologic relationship in the placental bed that can lead to pregnancy disorders. Moreover, immunologic recognition of pregnancy is vital for the maintenance of gestation, and inadequate recognition of fetal antigens may cause abortion. In this paper, we illustrate the complex immunologic aspects of human reproduction in terms of the role of human leukocyte antigen (HLA), immune cells, cytokines and chemokines, and the balance of immunity in pregnancy. In addition, we review the immunologic processes of human reproduction and the current immunologic therapeutic strategies for pathological disorders of pregnancy. PMID:22110530

  16. Cutaneous scarring: Pathophysiology, molecular mechanisms, and scar reduction therapeutics Part II. Strategies to reduce scar formation after dermatologic procedures.

    PubMed

    Tziotzios, Christos; Profyris, Christos; Sterling, Jane

    2012-01-01

    The evidence base underpinning most traditional scar reduction approaches is limited, but some of the novel strategies are promising and accumulating. We review a number of commonly adopted strategies for scar reduction. The outlined novel agents are paradigmatic of the value of translational medical research and are likely to change the scenery in the much neglected but recently revived field of scar reduction therapeutics. Copyright © 2012 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  17. College and Career Readiness Assessment: Validation of the Key Cognitive Strategies Framework

    ERIC Educational Resources Information Center

    Lombardi, Allison R.; Conley, David T.; Seburn, Mary A.; Downs, Andrew M.

    2013-01-01

    In this study, the authors examined the psychometric properties of the key cognitive strategies (KCS) within the CollegeCareerReady[TM] School Diagnostic, a self-report measure of critical thinking skills intended for high school students. Using a cross-validation approach, an exploratory factor analysis was conducted with a randomly selected…

  18. Initiating therapeutic relaxation in Britain: a twentieth-century strategy for health and wellbeing

    PubMed Central

    Nathoo, Ayesha

    2016-01-01

    In 1972, a British charity, Relaxation for Living, was established “to promote the teaching of physical relaxation, to combat stress, strain, anxiety and the tension of modern life, and to reduce fatigue”. This article explores the origins and development of “physical relaxation” techniques and ideologies, starting in the interwar period, and the development of practical, therapeutic, social and cultural frameworks necessary for such an organization to come into being in 1970s Britain. It traces how relaxation was reconstituted as a scientifically-based skill that could be learnt and taught, imbued with therapeutic value for combating and preventing specific physical ailments and enhancing individual health and wellbeing. The article explores how relaxation techniques gained currency among particular demographic and clinical groups, ranging from middle-class, child-bearing women to middle-aged, “coronary-prone” men. This analysis highlights the role that relaxation practitioners played in both creating and responding to demand for individualistic health-management strategies, many of which have shaped contemporary health and wellbeing agendas. This article is published as part of a collection entitled “On balance: lifestyle, mental health and wellbeing”. PMID:27563437

  19. Therapeutic strategy for granulomatous lobular mastitis: a clinicopathological study of 12 patients.

    PubMed

    Akahane, Kazuhisa; Tsunoda, Nobuyuki; Kato, Masamichi; Noda, Sumiyo; Shimoyama, Yoshie; Ishigakis, Satoko; Satake, Hiroko; Nakamura, Shigeo; Nagino, Masato

    2013-08-01

    Granulomatous lobular mastitis (GLM) is a rare inflammatory pseudotumor. No therapeutic modality for this disease has been established because of its rarity. The purpose of this study is to evaluate the treatment strategies of GLM. Twelve women who met the histological criteria for GLM were retrospectively studied. The clinical data and the presentation, histopathology, and management of the disease were analyzed by reviewing the patients' medical records. The diagnosis of GLM was confirmed histologically by core needle biopsy in 9 cases, by vacuum-assisted biopsy in 2 cases, and by excisional biopsy in 1 case. Ten patients received corticosteroid treatment and another two patients were treated with local excision or incision and drainage. The median initial dosage of corticosteroid (Prednisolone) was 30 mg/day (range: 15-60 mg/day), and the dosages were tapered according to improvement. The median duration of corticosteroid treatment was 5 months (range: 1-12 months). The median follow-up period was 22 months (range: 6-104 months), and no patient treated with corticosteroid demonstrated recurrence. However, patients treated with excision or incision and drainage had recurrences. These results suggest that steroid treatment may be the first choice in treatment strategies for GLM.

  20. Strategies for Implementing and Sustaining Therapeutic Lifestyle Changes as Part of Hypertension Management in African Americans

    PubMed Central

    Scisney-Matlock, Margaret; Bosworth, Hayden B.; Giger, Joyce Newman; Strickland, Ora L.; Van Harrison, R.; Coverson, Dorothy; Shah, Nirav R.; Dennison, Cheryl R.; Dunbar-Jacob, Jacqueline M.; Jones, Loretta; Ogedegbe, Gbenga; Batts-Turner, Marian L.; Jamerson, Kenneth A.

    2009-01-01

    African Americans with high blood pressure (BP) can benefit greatly from therapeutic lifestyle changes (TLC) such as diet modification, physical activity, and weight management. However, they and their health care providers face many barriers in modifying health behaviors. A multidisciplinary panel synthesized the scientific data on TLC in African Americans for efficacy in improving BP control, barriers to behavioral change, and strategies to overcome those barriers. Therapeutic lifestyle change interventions should emphasize patient self-management, supported by providers, family, and the community. Interventions should be tailored to an individual’s cultural heritage, beliefs, and behavioral norms. Simultaneously targeting multiple factors that impede BP control will maximize the likelihood of success. The panel cited limited progress with integrating the Dietary Approaches to Stop Hypertension (DASH) eating plan into the African American diet as an example of the need for more strategically developed interventions. Culturally sensitive instruments to assess impact will help guide improved provision of TLC in special populations. The challenge of improving BP control in African Americans and delivery of hypertension care requires changes at the health system and public policy levels. At the patient level, culturally sensitive interventions that apply the strategies described and optimize community involvement will advance TLC in African Americans with high BP. PMID:19491553

  1. The Students' Perceptions of School Success Promoting Strategies Inventory (SPSI): development and validity evidence based studies.

    PubMed

    Moreira, Paulo A S; Oliveira, João Tiago; Dias, Paulo; Vaz, Filipa Machado; Torres-Oliveira, Isabel

    2014-08-04

    Students' perceptions about school success promotion strategies are of great importance for schools, as they are an indicator of how students perceive the school success promotion strategies. The objective of this study was to develop and analyze the validity evidence based of The Students' Perceptions of School Success Promoting Strategies Inventory (SPSI), which assesses both individual students' perceptions of their school success promoting strategies, and dimensions of school quality. A structure of 7 related factors was found, which showed good adjustment indices in two additional different samples, suggesting that this is a well-fitting multi-group model (p < .001). All scales presented good reliability values. Schools with good academic results registered higher values in Career development, Active learning, Proximity, Educational Technologies and Extra-curricular activities (p < .05). SPSI showed to be adequate to measure within-schools (students within schools) dimensions of school success. In addition, there is preliminary evidence for its adequacy for measuring school success promotion dimensions between schools for 4 dimensions. This study supports the validity evidence based of the SPSI (validity evidence based on test content, on internal structure, on relations to other variables and on consequences of testing). Future studies should test for within- and between-level variance in a bigger sample of schools.

  2. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics.

    PubMed

    Selbo, Pål Kristian; Bostad, Monica; Olsen, Cathrine Elisabeth; Edwards, Victoria Tudor; Høgset, Anders; Weyergang, Anette; Berg, Kristian

    2015-08-01

    Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours. Cancer stem cells (CSCs) or tumour-initiating cells are intrinsically and notoriously resistant to conventional cancer therapies and are proposed to be responsible for the recurrence of tumours after therapy. According to the CSC hypothesis, it is imperative to develop novel anticancer agents or therapeutic strategies that take into account the biology and role of CSCs. The present review outlines our recent study on photochemical internalisation (PCI) using the clinically relevant photosensitiser TPCS2a/Amphinex® as a rational, non-invasive strategy for the light-controlled endosomal escape of CSC-targeting drugs. PCI is an intracellular drug delivery method based on light-induced ROS-generation and a subsequent membrane-disruption of endocytic vesicles, leading to cytosolic release of the entrapped drugs of interest. In different proof-of-concept studies we have demonstrated that PCI of CSC-directed immunotoxins targeting CD133, CD44, CSPG4 and EpCAM is a highly specific and effective strategy for killing cancer cells and CSCs. CSCs overexpressing CD133 are PDT-resistant; however, this is circumvented by PCI of CD133-targeting immunotoxins. In view of the fact that TPCS2a is not a substrate of the efflux pumps ABCG2 and P-glycoprotein (ABCB1), the PCI-method is a promising anti-CSC therapeutic strategy. Due to a laser-controlled exposure, PCI of CSC-targeting drugs will be confined exclusively to the tumour tissue, suggesting that this drug delivery method has the potential to spare distant normal stem cells.

  3. Cerebral collateral therapeutics in acute ischemic stroke: A randomized preclinical trial of four modulation strategies.

    PubMed

    Beretta, Simone; Versace, Alessandro; Carone, Davide; Riva, Matteo; Dell'Era, Valentina; Cuccione, Elisa; Cai, Ruiyao; Monza, Laura; Pirovano, Silvia; Padovano, Giada; Stiro, Fabio; Presotto, Luca; Paternò, Giovanni; Rossi, Emanuela; Giussani, Carlo; Sganzerla, Erik P; Ferrarese, Carlo

    2017-10-01

    Cerebral collaterals are dynamically recruited after arterial occlusion and highly affect tissue outcome in acute ischemic stroke. We investigated the efficacy and safety of four pathophysiologically distinct strategies for acute modulation of collateral flow (collateral therapeutics) in the rat stroke model of transient middle cerebral artery (MCA) occlusion. A composed randomization design was used to assign rats (n = 118) to receive phenylephrine (induced hypertension), polygeline (intravascular volume load), acetazolamide (cerebral arteriolar vasodilation), head down tilt (HDT) 15° (cerebral blood flow diversion), or no treatment, starting 30 min after MCA occlusion. Compared to untreated animals, treatment with collateral therapeutics was associated with lower infarct volumes (62% relative mean difference; 51.57 mm 3 absolute mean difference; p < 0.001) and higher chance of good functional outcome (OR 4.58, p < 0.001). Collateral therapeutics acutely increased cerebral perfusion in the medial (+40.8%; p < 0.001) and lateral (+19.2%; p = 0.016) MCA territory compared to pretreatment during MCA occlusion. Safety indicators were treatment-related mortality and cardiorespiratory effects. The highest efficacy and safety profile was observed for HDT. Our findings suggest that acute modulation of cerebral collaterals is feasible and provides a tissue-saving effect in the hyperacute phase of ischemic stroke prior to recanalization therapy.

  4. Building a pipeline to discover and validate novel therapeutic targets and lead compounds for Alzheimer's disease

    PubMed Central

    Bennett, David A.; Yu, Lei; De Jager, Philip L.

    2014-01-01

    Cognitive decline, Alzheimer's disease (AD) and other causes are major public health problems worldwide. With changing demographics, the number of persons with dementia will increase rapidly. The treatment and prevention of AD and other dementias, therefore, is an urgent unmet need. There have been considerable advances in understanding the biology of many age-related disorders that cause dementia. Gains in understanding AD have led to the development of ante-mortem biomarkers of traditional neuropathology and the conduct of several phase III interventions in the amyloid-β cascade early in the disease process. Many other intervention strategies are in various stages of development. However, efforts to date have met with limited success. A recent National Institute on Aging Research Summit led to a number of requests for applications. One was to establish multi-disciplinary teams of investigators who use systems biology approaches and stem cell technology to identify a new generation of AD targets. We were recently awarded one of three such grants to build a pipeline that integrates epidemiology, systems biology, and stem cell technology to discover and validate novel therapeutic targets and lead compounds for AD treatment and prevention. Here we describe the two cohorts that provide the data and biospecimens being exploited for our pipeline and describe the available unique datasets. Second, we present evidence in support of a chronic disease model of AD that informs our choice of phenotypes as the target outcome. Third, we provide an overview of our approach. Finally, we present the details of our planned drug discovery pipeline. PMID:24508835

  5. The ubiquitin-proteasome pathway an emerging anticancer strategy for therapeutics: a patent analysis.

    PubMed

    Jain, Chakresh K; Arora, Shivam; Khanna, Aparna; Gupta, Money; Wadhwa, Gulshan; Sharma, Sanjeev K

    2015-01-01

    The degradation of intracellular proteins is targeted by ubiquitin via non-lysosomal proteolytic pathway in the cell system. These ubiquitin molecules have been found to be conserved from yeast to humans. Ubiquitin proteasome machinery utilises ATP and other mechanisms for degrading proteins of cytosol as well as nucleus. This process of ubiquitination is regulated by activating the E3 enzyme ligase, involved in phosphorylation. In humans, proteins which regulate the cell cycle are controlled by ubiquitin; therefore the ubiquitin-proteasome pathway can be targeted for novel anti-cancer strategies. Dysregulation of the components of the ubiquitin system has been linked to many diseases like cancer and inflammation. The primary triggering mechanism (apoptosis) of these diseases can also be induced when TNF-related apoptosis-inducing ligand (TRAIL) binds to its specific receptor DR4 and DR5. In this review, the emerging prospects and importance of ubiquitin proteasome pathway as an evolving anticancer strategy have been discussed. Current challenges in the field of drug discovery have also been discussed on the basis of recent patents on cancer diagnosis and therapeutics.

  6. ANCA-associated vasculitis: diagnostic and therapeutic strategy.

    PubMed

    Ozaki, Shoichi

    2007-06-01

    Among small-vessel vasculitides, microscopic polyangiitis (MPA), Wegener's granulomatosis (WG), and allergic granulomatous angiitis (AGA) are known collectively as ANCA-associated vasculitis (AAV) because of the involvement of anti-neutrophil cytoplasmic antibodies (ANCA) as the common pathogenesis. Major target antigens of ANCA associated with vasculitis are myeloperoxidase (MPO) and proteinase 3 (PR3). MPO-ANCA is related to MPA and AGA, and PR3-ANCA is the marker antibody in WG. MPO-ANCA-associated vasculitis is more frequent in Japan, whereas PR3-ANCA-associated vasculitis is more common in Europe and USA. ANCA appears to induce vasculitis by directly activating neutrophils. Therefore, no immunoglobulins or complement components are detected in the vasculitis lesions; hence, AAV is called pauci-immune vasculitis (pauci = few/little). Untreated patients with severe AAV with multi-organ involvement have a poor prognosis, which is improved by combination therapy with cyclophosphamide and high-dose corticosteroid. Randomized controlled trials (RCT) regarding induction and maintenance of remission of AAV indicated that the rate of remission induction by the standard regimen is approximately 90% in 6 months, that maintenance of remission can be achieved with oral azathioprine as well as cyclophosphamide, and that methotrexate can be used only for non-renal mild AAV. As these data were obtained mostly in patients positive for PR3-ANCA, caution must be taken in applying these findings to Japanese patients, most of whom are positive for MPO-ANCA. A prospective study is now underway to clarify the effectiveness of the standard regimen in Japanese patients with MPO-ANCA-associated vasculitis. This article describes the diagnostic criteria and the recent evidence-based therapeutic strategy of AAV.

  7. Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases

    PubMed Central

    Oh, Doo-Byoung

    2015-01-01

    Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy. [BMB Reports 2015; 48(8): 438-444] PMID:25999178

  8. Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases.

    PubMed

    Oh, Doo-Byoung

    2015-08-01

    Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy.

  9. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies

    PubMed Central

    Distrutti, Eleonora; Monaldi, Lorenzo; Ricci, Patrizia; Fiorucci, Stefano

    2016-01-01

    In the last decade the impressive expansion of our knowledge of the vast microbial community that resides in the human intestine, the gut microbiota, has provided support to the concept that a disturbed intestinal ecology might promote development and maintenance of symptoms in irritable bowel syndrome (IBS). As a correlate, manipulation of gut microbiota represents a new strategy for the treatment of this multifactorial disease. A number of attempts have been made to modulate the gut bacterial composition, following the idea that expansion of bacterial species considered as beneficial (Lactobacilli and Bifidobacteria) associated with the reduction of those considered harmful (Clostridium, Escherichia coli, Salmonella, Shigella and Pseudomonas) should attenuate IBS symptoms. In this conceptual framework, probiotics appear an attractive option in terms of both efficacy and safety, while prebiotics, synbiotics and antibiotics still need confirmation. Fecal transplant is an old treatment translated from the cure of intestinal infective pathologies that has recently gained a new life as therapeutic option for those patients with a disturbed gut ecosystem, but data on IBS are scanty and randomized, placebo-controlled studies are required. PMID:26900286

  10. A novel interplay between HOTAIR and DNA methylation in osteosarcoma cells indicates a new therapeutic strategy.

    PubMed

    Li, Xingang; Lu, Hongming; Fan, Guilian; He, Miao; Sun, Yu; Xu, Kai; Shi, Fengjun

    2017-11-01

    Osteosarcoma (OS) is one of the most prevalent primary malignant bone tumors in adolescent. HOTAIR is highly expressed and associated with the epigenetic modifications, especially DNA methylation, in cancer. However, the regulation mechanism between HOTAIR and DNA methylation and the biological effects of them in the pathogenesis of osteosarcoma remains elusive. Through RNA-sequencing and computational analysis, followed by a variety of experimental validations, we report a novel interplay between HOTAIR, miR-126, and DNA methylation in OS. We found that HOTAIR is highly expressed in OS cells and the knockdown of HOTAIR leads to the down-regulation of DNMT1, as well as the decrease of global DNA methylation level. RNA-sequencing analysis of HOTAIR-regulated gene shows that CDKN2A is significantly repressed by HOTAIR. A series of experiments show that HOTAIR represses the expression of CDKN2A through inhibiting the promoter activity of CDKN2A by DNA hypermethylation. Further evidence shows that HOTAIR activates the expression of DNMT1 through repressing miR-126, which is the negative regulator of DNMT1. Functionally, HOTAIR depletion increases the sensibility of OS cells to DNMT1 inhibitor through regulating the viability and apoptosis of OS cells via HOTAIR-miR126-DNMT1-CDKN2A axis. These results not only enrich our understanding of the regulation relationship between non-coding RNA, DNA methylation, and gene expression, however, also provide a novel direction in developing more sophisticated therapeutic strategies for OS patients.

  11. Cellular therapies supplement: strategies for improving transplant efficiency in the context of cellular therapeutics.

    PubMed

    Jimenez, Antonio; Fung, Henry C; Christopherson, Kent W

    2011-11-01

    The field of hematopoietic stem cell transplantation (HSCT) has overcome many obstacles that have led to our current clinical ability to utilize cells collected from marrow, mobilized peripheral blood, or umbilical cord blood for the treatment of malignant and nonmalignant hematologic diseases. It is in this context that it becomes evident that future progress will lie in our development of an understanding of the biology by which the process of HSCT is regulated. By understanding the cellular components and the mechanisms by which HSCT is either enhanced or suppressed it will then be possible to design therapeutic strategies to improve rates of engraftment that will have a positive impact on immune reconstitution post-HSCT. In this review we focus primarily on allogeneic hematopoietic stem cell transplantation (allo-HSCT), the current challenges associated with allo-HSCT, and some developing strategies to improve engraftment in this setting. © 2011 American Association of Blood Banks.

  12. A Validity and Reliability Study of the Motivated Strategies for Learning Questionnaire

    ERIC Educational Resources Information Center

    Erturan Ilker, Gökçe; Arslan, Yunus; Demirhan, Giyasettin

    2014-01-01

    The aim of this study is to determine the validity and reliability of the Motivated Strategies for Learning Questionnaire (MSLQ) for high school students. In total, 1605 students (829 girls, 776 boys, average age = 15.67 ± 1.19) from three different high schools in the central district of Ankara voluntarily participated in the study. The MSLQ was…

  13. Factor Validity of the Motivated Strategies for Learning Questionnaire (MSLQ) in Asynchronous Online Learning Environments (AOLE)

    ERIC Educational Resources Information Center

    Cho, Moon-Heum; Summers, Jessica

    2012-01-01

    The purpose of this study was to investigate the factor validity of the Motivated Strategies for Learning Questionnaire (MSLQ) in asynchronous online learning environments. In order to check the factor validity, confirmatory factor analysis (CFA) was conducted with 193 cases. Using CFA, it was found that the original measurement model fit for…

  14. Dedifferentiated Liposarcoma: Updates on Morphology, Genetics, and Therapeutic Strategies.

    PubMed

    Thway, Khin; Jones, Robin L; Noujaim, Jonathan; Zaidi, Shane; Miah, Aisha B; Fisher, Cyril

    2016-01-01

    Well-differentiated liposarcoma (WDL) and dedifferentiated liposarcoma (DDL) form the largest subgroup of liposarcomas, and represent a morphologic and behavioral spectrum of 1 disease entity, which arises typically in middle to late adult life, most frequently within the retroperitoneum or extremities. DDL is defined as nonlipogenic sarcoma that is juxtaposed to WDL, occurs as a recurrence of WDL or which can arise de novo, and typically has the appearance of undifferentiated pleomorphic or spindle cell sarcoma. DDL have a propensity for local recurrence, whereas distant metastasis is rarer, and behavior is related to anatomic site, with retroperitoneal neoplasms showing a significantly worse prognosis. Surgical resection remains the mainstay of treatment, and medical options for patients with aggressive recurrent or metastatic disease are limited. DDL share similar genetic abnormalities to WDL, with high-level amplifications of chromosome 12q14-15, including the MDM2 and CDK4 cell cycle oncogenes, and DDL harbor additional genetic changes, particularly coamplifications of 6q23 and 1p32. Novel therapies targeted at the gene products of chromosome 12 are being tested in clinical trials. We review the pathology and genetics of DDL, discussing morphologic patterns, immunohistochemical and genetic findings, the differential diagnosis, and future therapeutic strategies.

  15. [Emerging novel therapeutic strategy for α-dystroglycanopathy by Large].

    PubMed

    Saito, Fumiaki

    2011-11-01

    The past decade of researches have revealed mutations of known or putative glycosyltransferases in several types of muscular dystrophy, including Fukuyama-type congenital muscular dystrophy. In these disorders, the function of α-dystroglycan is severely decreased, therefore they are called α-dystroglycanopathy. Recently, putative glycosyltransferase Large was shown to restore the defective function of α-dystroglycan, thus, it is an intriguing idea to apply this effect to the therapy of α-dystroglycanopathy. In the present study, we sought to test this possibility. Using several cultured cell lines, we confirmed that the overexpression of Large results in hyperglycosylation and marked enhancement of the function of α-dystroglycan. For this effect, the whole luminal domain of Large was shown to be necessary using several deletion constructs. We further generated transgenic mice overexpressing Large ubiquitously. In each tissue of the mice, the glycosylation of α-dystroglycan and its laminin binding activity was remarkably increased. Moreover, the morphological analyses on each tissue stained by H-E revealed no significant abnormality in the transgenic mice, suggesting no serious side effects by the overexpression of Large. Taken together, these results indicate that the restoration of the function of α-dystroglycan by Large should be an important molecular target to develop therapeutic strategies for α-dystroglycanopathy.

  16. Therapeutic touch for anxiety disorders.

    PubMed

    Robinson, J; Biley, F C; Dolk, H

    2007-07-18

    Anxiety disorders are a common occurrence in today's society. There is interest from the community in the use of complementary therapies for anxiety disorders. This review examined the currently available evidence supporting the use of therapeutic touch in treating anxiety disorders. To examine the efficacy and adverse effects of therapeutic touch for anxiety disorders. We searched the Cochrane Collaboration Depression, Anxiety and Neurosis Controlled Trials Registers (CCDANCTR-Studies and CCDANCTR-References) (search date 13/01/06), the Controlled Trials website and Dissertation Abstracts International. Searches of reference lists of retrieved papers were also carried out and experts in the field were contacted. Inclusion criteria included all published and unpublished randomised and quasi-randomised controlled trials comparing therapeutic touch with sham (mimic) TT, pharmacological therapy, psychological treatment, other treatment or no treatment /waiting list. The participants included adults with an anxiety disorder defined by the Diagnostic and Statistical Manual (DSM-IV),the International Classification of Diseases (ICD-10), validated diagnostic instruments, or other validated clinician or self-report instruments. Two review authors independently applied inclusion criteria. Further information was sought from trialists where papers contained insufficient information to make a decision about eligibility. No randomised or quasi-randomised controlled trials of therapeutic touch for anxiety disorders were identified. Given the high prevalence of anxiety disorders and the current paucity of evidence on therapeutic touch in this population, there is a need for well conducted randomised controlled trials to examine the effectiveness of therapeutic touch for anxiety disorders.

  17. MRI - 3D Ultrasound - X-ray Image Fusion with Electromagnetic Tracking for Transendocardial Therapeutic Injections: In-vitro Validation and In-vivo Feasibility

    PubMed Central

    Hatt, Charles R.; Jain, Ameet K.; Parthasarathy, Vijay; Lang, Andrew; Raval, Amish N.

    2014-01-01

    Myocardial infarction (MI) is one of the leading causes of death in the world. Small animal studies have shown that stem-cell therapy offers dramatic functional improvement post-MI. An endomyocardial catheter injection approach to therapeutic agent delivery has been proposed to improve efficacy through increased cell retention. Accurate targeting is critical for reaching areas of greatest therapeutic potential while avoiding a life-threatening myocardial perforation. Multimodal image fusion has been proposed as a way to improve these procedures by augmenting traditional intra-operative imaging modalities with high resolution pre-procedural images. Previous approaches have suffered from a lack of real-time tissue imaging and dependence on X-ray imaging to track devices, leading to increased ionizing radiation dose. In this paper, we present a new image fusion system for catheter-based targeted delivery of therapeutic agents. The system registers real-time 3D echocardiography, magnetic resonance, X-ray, and electromagnetic sensor tracking within a single flexible framework. All system calibrations and registrations were validated and found to have target registration errors less than 5 mm in the worst case. Injection accuracy was validated in a motion enabled cardiac injection phantom, where targeting accuracy ranged from 0.57 to 3.81 mm. Clinical feasibility was demonstrated with in-vivo swine experiments, where injections were successfully made into targeted regions of the heart. PMID:23561056

  18. Concurrent validity of the Learning and Study Strategies Inventory (LASSI): a study of African American precollege students.

    PubMed

    Flowers, Lamont A; Bridges, Brian K; Moore III, James L

    2012-01-01

    Concurrent validation procedures were employed, using a sample of African American precollege students, to determine the extent to which scale scores obtained from the first edition of the Learning and Study Strategies Inventory (LASSI) were appropriate for diagnostic purposes. Data analysis revealed that 2 of the 10 LASSI scales (i.e., Anxiety and Test Strategies) significantly correlated with a measure of academic ability. These results suggested that scores obtained from these LASSI scales may provide valid assessments of African American precollege students’ academic aptitude. Implications for teachers, school counselors, and developmental studies professionals were discussed.

  19. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment.

    PubMed

    Yoshida, Go J

    2017-03-09

    The 2016 Nobel Prize in Physiology or Medicine was awarded to the researcher that discovered autophagy, which is an evolutionally conserved catabolic process which degrades cytoplasmic constituents and organelles in the lysosome. Autophagy plays a crucial role in both normal tissue homeostasis and tumor development and is necessary for cancer cells to adapt efficiently to an unfavorable tumor microenvironment characterized by hypo-nutrient conditions. This protein degradation process leads to amino acid recycling, which provides sufficient amino acid substrates for cellular survival and proliferation. Autophagy is constitutively activated in cancer cells due to the deregulation of PI3K/Akt/mTOR signaling pathway, which enables them to adapt to hypo-nutrient microenvironment and exhibit the robust proliferation at the pre-metastatic niche. That is why just the activation of autophagy with mTOR inhibitor often fails in vain. In contrast, disturbance of autophagy-lysosome flux leads to endoplasmic reticulum (ER) stress and an unfolded protein response (UPR), which finally leads to increased apoptotic cell death in the tumor tissue. Accumulating evidence suggests that autophagy has a close relationship with programmed cell death, while uncontrolled autophagy itself often induces autophagic cell death in tumor cells. Autophagic cell death was originally defined as cell death accompanied by large-scale autophagic vacuolization of the cytoplasm. However, autophagy is a "double-edged sword" for cancer cells as it can either promote or suppress the survival and proliferation in the tumor microenvironment. Furthermore, several studies of drug re-positioning suggest that "conventional" agents used to treat diseases other than cancer can have antitumor therapeutic effects by activating/suppressing autophagy. Because of ever increasing failure rates and high cost associated with anticancer drug development, this therapeutic development strategy has attracted increasing

  20. Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies.

    PubMed

    Stan, Ana D; Lewis, David A

    2012-06-01

    Altered markers of cortical GABA neurotransmission are among the most consistently observed abnormalities in postmortem studies of schizophrenia. The altered markers are particularly evident between the chandelier class of GABA neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons. For example, in the dorsolateral prefrontal cortex of subjects with schizophrenia immunoreactivity for the GABA membrane transporter is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABAA receptor α2 subunit is increased in postsynaptic AIS. Both of these molecular changes appear to be compensatory responses to a presynaptic deficit in GABA synthesis, and thus could represent targets for novel therapeutic strategies intended to augment the brain's own compensatory mechanisms. Recent findings that GABA inputs from neocortical chandelier neurons can be powerfully excitatory provide new ideas about the role of these neurons in the pathophysiology of cortical dysfunction in schizophrenia, and consequently in the design of pharmacological interventions.

  1. Cancer stem cell-targeted therapeutics and delivery strategies.

    PubMed

    Ahmad, Gulzar; Amiji, Mansoor M

    2017-08-01

    Cancer initiating or stem cells (CSCs) are a small population of cells in the tumor mass, which have been reported to be present in different types of cancers. CSCs usually reside within the tumor and are responsible for reoccurrence of cancer. The imprecise, inaccessible nature and increased efflux of conventional therapeutic drugs make these cells resistant to drugs. We discuss the specific markers for identification of these cells, role of CSCs in chemotherapy resistance and use of different therapeutic means to target them, including elucidation of specific cell markers, exploitation of different signaling pathways and use of nanotechnology. Area covered: This review covers cancer stem cell signaling which are used by these cells to maintain their quiescence, stemness and resistant phenotype, distinct cell surface markers, contribution of these cells in drug resistance, inevitability to cure cancer and use of nanotechnology to overcome this hurdle. Expert opinion: Cancer stem cells are the main culprit of our failure to cure cancer. In order to cure cancer along with other cells types in cancer, cancer stem cells need to be targeted in the tumor bed. Nanotechnology solutions can facilitate clinical translation of the therapeutics along with other emerging technologies to cure cancer.

  2. THERAPEUTIC STRATEGY FOR GRANULOMATOUS LOBULAR MASTITIS: A CLINICOPATHOLOGICAL STUDY OF 12 PATIENTS

    PubMed Central

    AKAHANE, KAZUHISA; TSUNODA, NOBUYUKI; KATO, MASAMICHI; NODA, SUMIYO; SHIMOYAMA, YOSHIE; ISHIGAKI, SATOKO; SATAKE, HIROKO; NAKAMURA, SHIGEO; NAGINO, MASATO

    2013-01-01

    ABSTRACT Granulomatous lobular mastitis (GLM) is a rare inflammatory pseudotumor. No therapeutic modality for this disease has been established because of its rarity. The purpose of this study is to evaluate the treatment strategies of GLM. Twelve women who met the histological criteria for GLM were retrospectively studied. The clinical data and the presentation, histopathology, and management of the disease were analyzed by reviewing the patients’ medical records. The diagnosis of GLM was confirmed histologically by core needle biopsy in 9 cases, by vacuum-assisted biopsy in 2 cases, and by excisional biopsy in 1 case. Ten patients received corticosteroid treatment and another two patients were treated with local excision or incision and drainage. The median initial dosage of corticosteroid (Prednisolone) was 30 mg/day (range: 15–60 mg/day), and the dosages were tapered according to improvement. The median duration of corticosteroid treatment was 5 months (range: 1–12 months). The median follow-up period was 22 months (range: 6–104 months), and no patient treated with corticosteroid demonstrated recurrence. However, patients treated with excision or incision and drainage had recurrences. These results suggest that steroid treatment may be the first choice in treatment strategies for GLM. PMID:24640175

  3. A "methyl extension" strategy for polyketide natural product linker site validation and its application to dictyostatin.

    PubMed

    Ho, Stephen; Sackett, Dan L; Leighton, James L

    2015-11-11

    An approach to the validation of linker strategies for polyketide natural products with few or no obvious handles for linker attachment, and its application to dictyostatin, are described. Analogues in which the C(6)- and C(12)-methyl groups were replaced by 4-azidobutyl groups were prepared and shown to retain the low nanomolar potency of dictyostatin. Further, conjugation of the C(6) analogue with a cyclooctyne resulted in only minor attenuations in potency. Together, these results shed light on the binding of dictyostatin to β-tubulin, establish a validated linker strategy for dictyostatin, and set the stage for the synthesis and study of dictyostatin conjugates.

  4. Predictive validity of the classroom strategies scale-observer form on statewide testing scores: an initial investigation.

    PubMed

    Reddy, Linda A; Fabiano, Gregory A; Dudek, Christopher M; Hsu, Louis

    2013-12-01

    The present study examined the validity of a teacher observation measure, the Classroom Strategies Scale--Observer Form (CSS), as a predictor of student performance on statewide tests of mathematics and English language arts. The CSS is a teacher practice observational measure that assesses evidence-based instructional and behavioral management practices in elementary school. A series of two-level hierarchical generalized linear models were fitted to data of a sample of 662 third- through fifth-grade students to assess whether CSS Part 2 Instructional Strategy and Behavioral Management Strategy scale discrepancy scores (i.e., ∑ |recommended frequency--frequency ratings|) predicted statewide mathematics and English language arts proficiency scores when percentage of minority students in schools was controlled. Results indicated that the Instructional Strategy scale discrepancy scores significantly predicted mathematics and English language arts proficiency scores: Relatively larger discrepancies on observer ratings of what teachers did versus what should have been done were associated with lower proficiency scores. Results offer initial evidence of the predictive validity of the CSS Part 2 Instructional Strategy discrepancy scores on student academic outcomes. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  5. Trans-synaptic (GABA-dopamine) modulation of cocaine induced dopamine release: A potential therapeutic strategy for cocaine abuse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewey, S.L.; Straughter-Moore, R.; Chen, R.

    We recently developed a new experimental strategy for measuring interactions between functionally-linked neurotransmitter systems in the primate and human brain with PET. As part of this research, we demonstrated that increases in endogenous GABA concentrations significantly reduced striatal dopamine concentrations in the primate brain. We report here the application of the neurotransmitter interaction paradigm with PET and with microdialysis to the investigation of a novel therapeutic strategy for treating cocaine abuse based on the ability of GABA to inhibit cocaine induced increases in striatal dopamine. Using gamma-vinyl GABA (GVG, a suicide inhibitor of GABA transaminase), we performed a series ofmore » PET studies where animals received a baseline PET scan with labeled raclopride injection, animals received cocaine (2.0 mg/kg). Normally, a cocaine challenge significantly reduces the striatal binding of {sup 11}C-raclopride. However, in animals pretreated with GVG, {sup 11}C-raclopride binding was less affected by a cocaine challenge compared to control studies. Furthermore, microdialysis studies in freely moving rats demonstrate that GVG (300 mg/kg) significantly inhibited cocaine-induced increases in extracellular dopamine release. GVG also attenuated cocaine-induced increases in locomotor activity. However, at a dose of 100 mg/kg, GVG had no effect. Similar findings were obtained with alcohol. Alcohol pretreatment dose dependantly (1-4 g/kg) inhibited cocaine-induced increases in extracellular dopamine concentrations in freely moving rats. Taken together, these studies suggest that therapeutic strategies targeted at increasing central GABA concentrations may be beneficial for the treatment of cocaine abuse.« less

  6. Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies.

    PubMed

    Agnihotri, Sameer; Burrell, Kelly E; Wolf, Amparo; Jalali, Sharzhad; Hawkins, Cynthia; Rutka, James T; Zadeh, Gelareh

    2013-02-01

    Glioblastoma (GBM) is the most common and lethal primary brain tumor. Over the past few years tremendous genomic and proteomic characterization along with robust animal models of GBM have provided invaluable data that show that "GBM", although histologically indistinguishable from one another, are comprised of molecularly heterogenous diseases. In addition, robust pre-clinical models and a better understanding of the core pathways disrupted in GBM are providing a renewed optimism for novel strategies targeting these devastating tumors. Here, we summarize a brief history of the disease, our current molecular knowledge, lessons from animal models and emerging concepts of angiogenesis, invasion, and metabolism in GBM that may lend themselves to therapeutic targeting.

  7. Retinopathy of Prematurity: Therapeutic Strategies Based on Pathophysiology.

    PubMed

    Cayabyab, Rowena; Ramanathan, Rangasamy

    2016-01-01

    retinal detachment. Long-term complications such as refractory errors, recurrence of ROP and risk of retinal detachment require continued follow-up with an ophthalmologist through adolescence and beyond. Optimal nutrition including adequate intake of omega-3 polyunsaturated fatty acids and decreasing infection/inflammation to promote normal vascularization are important strategies. Screening guidelines for ROP based on local incidence of ROP in different regions of the world are very important. Oxygen therapy is clearly a modifiable risk factor to decrease ROP that needs further study. Understanding the two phases of ROP will help to identify appropriate therapeutic strategies and improve visual outcomes in many preterm infants globally. © 2016 S. Karger AG, Basel.

  8. Genetically modified "obligate" anaerobic Salmonella typhimurium as a therapeutic strategy for neuroblastoma.

    PubMed

    Guo, Zhu-Ling; Yu, Bin; Ning, Bo-Tao; Chan, Shing; Lin, Qiu-Bin; Li, James Chun-Bong; Huang, Jian-Dong; Chan, Godfrey Chi-Fung

    2015-08-19

    Neuroblastoma currently has poor prognosis, therefore we proposed a new strategy by targeting neuroblastoma with genetically engineered anaerobic Salmonella (Sal-YB1). Nude and nonobese diabetic-severe combined immunodeficiency (NOD-SCID) orthotopic mouse models were used, and Sal-YB1 was administered via tail vein. The therapeutic effectiveness, bio-safety, and mechanisms were studied. No mice died of therapy-related complications. Tumor size reduction was 70 and 30% in nude and NOD-SCID mice, respectively. No Salmonella was detected in the urine; 75% mice had positive stool culture if diaminopimelic acid was added, but all turned negative subsequently. Tumor tissues had more Sal-YB1 infiltration, necrosis, and shrinkage in Sal-YB1-treated mice. Significantly higher expression of TLR4, TNF-stimulated gene 6 protein (TSG6), and cleaved caspase 1, 3, 8, and 9 was found in the tumor masses of the Sal-YB1-treated group with a decrease of interleukin 1 receptor-associated kinase (IRAK) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα). There was a high release of TNFα both in human macrophages and mouse tumor tissues with Sal-YB1 treatment. The antitumor effect of the supernatant derived from macrophages treated with Sal-YB1 could be reversed with TNFα and pan-caspase inhibitors. This new approach in targeting neuroblastoma by bio-engineered Salmonella with the assistance of macrophages indirectly may have a clinical therapeutic impact in the future.

  9. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments

    PubMed Central

    Mouriño, Viviana; Cattalini, Juan Pablo; Boccaccini, Aldo R.

    2012-01-01

    This article provides an overview on the application of metallic ions in the fields of regenerative medicine and tissue engineering, focusing on their therapeutic applications and the need to design strategies for controlling the release of loaded ions from biomaterial scaffolds. A detailed summary of relevant metallic ions with potential use in tissue engineering approaches is presented. Remaining challenges in the field and directions for future research efforts with focus on the key variables needed to be taken into account when considering the controlled release of metallic ions in tissue engineering therapeutics are also highlighted. PMID:22158843

  10. Development and validation of a liquid chromatography-tandem mass spectrometry analytical method for the therapeutic drug monitoring of eight novel anticancer drugs.

    PubMed

    Herbrink, M; de Vries, N; Rosing, H; Huitema, A D R; Nuijen, B; Schellens, J H M; Beijnen, J H

    2018-04-01

    To support therapeutic drug monitoring of patients with cancer, a fast and accurate method for simultaneous quantification of the registered anticancer drugs afatinib, axitinib, ceritinib, crizotinib, dabrafenib, enzalutamide, regorafenib and trametinib in human plasma using liquid chromatography tandem mass spectrometry was developed and validated. Human plasma samples were collected from treated patients and stored at -20°C. Analytes and internal standards (stable isotopically labeled analytes) were extracted with acetonitrile. An equal amount of 10 mm NH 4 CO 3 was added to the supernatant to yield the final extract. A 2 μL aliquot of this extract was injected onto a C 18 -column, gradient elution was applied and triple-quadrupole mass spectrometry in positive-ion mode was used for detection. All results were within the acceptance criteria of the latest US Food and Drug Administration guidance and European Medicines Agency guidelines on method validation, except for the carry-over of ceritinib and crizotinib. These were corrected for by the injection order of samples. Additional stability tests were carried out for axitinib and dabrafenib in relation to their reported photostability. In conclusion, the described method to simultaneously quantify the eight selected anticancer drugs in human plasma was successfully validated and applied for therapeutic drug monitoring in cancer patients treated with these drugs. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Therapeutic enhancement: nursing intervention category for patients diagnosed with Readiness for Therapeutic Regimen Management.

    PubMed

    Kelly, Cynthia W

    2008-04-01

    To present a new nursing intervention category called therapeutic enhancement. Fewer than half of North Americans follow their physician's recommendations for diet and exercise, even when such are crucial to their health or recovery. It is imperative that nurses consider new ways to promote healthy behaviours. Therapeutic enhancement is intended to provide such a fresh approach. Traditional intervention techniques focusing on education, contracts, social support and more frequent interaction with physicians appear not to be effective when used alone. Successful strategies have been multidisciplinary; and have included interventions by professional nurses who assist patients to understand their disease and the disease process and that helps them to develop disease-management and self-management skills. Therapeutic enhancement incorporates The Stages of Change Theory, Commitment to Health Theory, Motivational Interviewing techniques and instrumentation specifically designed for process evaluation of health-promoting interventions. This is a critical review of approaches that, heretofore, have not been synthesised in a single published article. Based on the commonly used Stages of Change model, therapeutic enhancement is useful for patients who are at the action stage of change. Using therapeutic enhancement as well as therapeutic strategies identified in Stages of Change Theory, such as contingency management, helping relationships, counterconditioning, stimulus control and Motivational Interviewing techniques, nursing professionals can significantly increase the chances of patients moving from action to the maintenance stage of change for a specific health behaviour. Using the nursing intervention category, therapeutic enhancement can increase caregivers' success in helping patients maintain healthy behaviours.

  12. Making processes reliable: a validated pubmed search strategy for identifying new or emerging technologies.

    PubMed

    Varela-Lema, Leonora; Punal-Riobóo, Jeanette; Acción, Beatriz Casal; Ruano-Ravina, Alberto; García, Marisa López

    2012-10-01

    Horizon scanning systems need to handle a wide range of sources to identify new or emerging health technologies. The objective of this study is to develop a validated Medline bibliographic search strategy (PubMed search engine) to systematically identify new or emerging health technologies. The proposed Medline search strategy combines free text terms commonly used in article titles to denote innovation within index terms that make reference to the specific fields of interest. Efficacy was assessed by running the search over a period of 1 year (2009) and analyzing its retrieval performance (number and characteristics). For comparison purposes, all article abstracts published during 2009 in six preselected key research journals and eight high impact surgery journals were scanned. Sensitivity was defined as the proportion of relevant new or emerging technologies published in key journals that would be identified in the search strategy within the first 2 years of publication. The search yielded 6,228 abstracts of potentially new or emerging technologies. Of these, 459 were classified as new or emerging (383 truly new or emerging and 76 new indications). The scanning of 12,061 journal abstracts identified 35 relevant new or emerging technologies. Of these, twenty-nine were located within the Medline search strategy during the first 2 years of publication (sensitivity = 83 percent). The current search strategy, validated against key journals, has demonstrated to be effective for horizon scanning. Even though it can require adaptations depending on the scope of the horizon scanning system, it could serve to simplify and standardize scanning processes.

  13. Myasthenia gravis: subgroup classification and therapeutic strategies.

    PubMed

    Gilhus, Nils Erik; Verschuuren, Jan J

    2015-10-01

    Myasthenia gravis is an autoimmune disease that is characterised by muscle weakness and fatigue, is B-cell mediated, and is associated with antibodies directed against the acetylcholine receptor, muscle-specific kinase (MUSK), lipoprotein-related protein 4 (LRP4), or agrin in the postsynaptic membrane at the neuromuscular junction. Patients with myasthenia gravis should be classified into subgroups to help with therapeutic decisions and prognosis. Subgroups based on serum antibodies and clinical features include early-onset, late-onset, thymoma, MUSK, LRP4, antibody-negative, and ocular forms of myasthenia gravis. Agrin-associated myasthenia gravis might emerge as a new entity. The prognosis is good with optimum symptomatic, immunosuppressive, and supportive treatment. Pyridostigmine is the preferred symptomatic treatment, and for patients who do not adequately respond to symptomatic therapy, corticosteroids, azathioprine, and thymectomy are first-line immunosuppressive treatments. Additional immunomodulatory drugs are emerging, but therapeutic decisions are hampered by the scarcity of controlled studies. Long-term drug treatment is essential for most patients and must be tailored to the particular form of myasthenia gravis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Translational strategies for therapeutic development in nicotine addiction: rethinking the conventional bench to bedside approach.

    PubMed

    Le Foll, Bernard; Pushparaj, Abhiram; Pryslawsky, Yaroslaw; Forget, Benoit; Vemuri, Kiran; Makriyannis, Alexandros; Trigo, Jose M

    2014-07-03

    Tobacco produces an impressive burden of disease resulting in premature death in half of users. Despite effective smoking cessation medications (nicotine replacement therapies, bupropion and varenicline), there is a very high rate of relapse following quit attempts. The use of efficient strategies for the development of novel treatments is a necessity. A 'bench to bedside strategy' was initially used to develop cannabinoid CB1 receptor antagonists for the treatment of nicotine addiction. Unfortunately, after being tested on experimental animals, what seemed to be an interesting approach for the treatment of nicotine addiction resulted in serious unwanted side effects when tested in humans. Current research is focusing again on pre-clinical models in an effort to eliminate unwanted side effects while preserving the initially observed efficacy. A 'bed side to bench strategy' was used to study the role of the insula (part of the frontal cortex) in nicotine addiction. This line of research started based on clinical observations that patients suffering stroke-induced lesions to the insula showed a greater likelihood to report immediate smoking cessation without craving or relapse. Subsequently, animal models of addiction are used to explore the role of insula in addiction. Due to the inherent limitations existing in clinical versus preclinical studies, the possibility of close interaction between both models seems to be critical for the successful development of novel therapeutic strategies for nicotine dependence. © 2013.

  15. Interventional and surgical therapeutic strategies for pulmonary arterial hypertension: Beyond palliative treatments.

    PubMed

    Sandoval, Julio; Gomez-Arroyo, Jose; Gaspar, Jorge; Pulido-Zamudio, Tomas

    2015-10-01

    Despite significant advances in pharmacological treatments, pulmonary arterial hypertension remains an incurable disease with an unreasonably high morbidity and mortality. Although specific pharmacotherapies have shifted the survival curves of patients and improved exercise endurance as well as quality of life, it is also true that these pharmacological interventions are not always accessible (particularly in developing countries) and, perhaps most importantly, not all patients respond similarly to these drugs. Furthermore, many patients will continue to deteriorate and will eventually require an additional, non-pharmacological, intervention. In this review we analyze the role of atrial septostomy and Potts anastomosis in the management of patients with pulmonary arterial hypertension, we summarize the current worldwide clinical experience (case reports and case series), and discuss why these interventional/surgical strategies might have a therapeutic role beyond that of a "bridge" to transplantation. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  16. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.

    PubMed

    Liu, Chang; Zhang, Li; Liu, Hao; Cheng, Kun

    2017-11-28

    The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Neuropathic Pain and Lung Delivery of Nanoparticulate Drugs: An Emerging Novel Therapeutic Strategy.

    PubMed

    Islam, Nazrul; Abbas, Muzaffar; Rahman, Shafiqur

    2017-01-01

    Neuropathic pain is a chronic neurological disorder affecting millions of people around the world. The currently available pharmacologic agents for the treatment of neuropathic pain have limited efficacy and are associated with dose related unwanted adverse effects. Due to the limited access of drug molecules across blood-brain barrier, a small percentage of drug that is administered systematically, reaches the central nervous system in active form. These therapeutic agents also require daily treatment regimen that is inconvenient and potentially impact patient compliance. Application of nanoparticulate drugs for enhanced delivery system has been explored extensively in the last decades. Pulmonary delivery of nanomedicines for the management of various diseases has become an emerging treatment strategy that ensures the targeted delivery of drugs both for systemic and local effects with low dose and limited adverse effects. To the best of our knowledge, there are no inhaled drug products available on market for the treatment of neuropathic pain. The advantages of delivering therapeutics into deep lungs include non-invasive drug delivery, higher bioavailability with low dose, lower systemic toxicity, and potentially greater blood-brain barrier penetration. This review discusses and highlights the important issues on the application of emerging nanoparticulate lung delivery of drugs for the effective treatment of neuropathic pain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. [Prescribing monitoring in clinical practice: from enlightened empiricism to rational strategies].

    PubMed

    Buclin, Thierry; Herzig, Lilli

    2013-05-15

    Monitoring of a medical condition is the periodic measurement of one or several physiological or biological variables to detect a signal regarding its clinical progression or its response to treatment. We distinguish different medical situations between diagnostic, clinical and therapeutic process to apply monitoring. Many clinical, variables can be used for monitoring, once their intrinsic properties (normal range, critical difference, kinetics, reactivity) and external validity (pathophysiological importance, predictive power for clinical outcomes) are established. A formal conceptualization of monitoring is being developed and should support the rational development of monitoring strategies and their validation through appropriate clinical trials.

  19. Verification and Validation Strategy for LWRS Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carl M. Stoots; Richard R. Schultz; Hans D. Gougar

    2012-09-01

    One intension of the Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to create advanced computational tools for safety assessment that enable more accurate representation of a nuclear power plant safety margin. These tools are to be used to study the unique issues posed by lifetime extension and relicensing of the existing operating fleet of nuclear power plants well beyond their first license extension period. The extent to which new computational models / codes such as RELAP-7 can be used for reactor licensing / relicensing activities depends mainly upon the thoroughness with which they have been verifiedmore » and validated (V&V). This document outlines the LWRS program strategy by which RELAP-7 code V&V planning is to be accomplished. From the perspective of developing and applying thermal-hydraulic and reactivity-specific models to reactor systems, the US Nuclear Regulatory Commission (NRC) Regulatory Guide 1.203 gives key guidance to numeric model developers and those tasked with the validation of numeric models. By creating Regulatory Guide 1.203 the NRC defined a framework for development, assessment, and approval of transient and accident analysis methods. As a result, this methodology is very relevant and is recommended as the path forward for RELAP-7 V&V. However, the unique issues posed by lifetime extension will require considerations in addition to those addressed in Regulatory Guide 1.203. Some of these include prioritization of which plants / designs should be studied first, coupling modern supporting experiments to the stringent needs of new high fidelity models / codes, and scaling of aging effects.« less

  20. How'd they do it? Malingering strategies on symptom validity tests.

    PubMed

    Tan, Jing Ee; Slick, Daniel J; Strauss, Esther; Hultsch, David F

    2002-12-01

    Twenty-five undergraduate students were instructed to feign believable impairment following a brain injury from a car accident and 27 students were told to perform like they had recovered from such an injury. Three forced-choice tests, the Test of Memory Malingering (TOMM), Victoria Symptom Validity Test (VSVT), and Word Memory Test (WMT) were given. Test-taking strategies were evaluated by means of a questionnaire given at the end of the test session. The results revealed that all the tasks differentiated between groups. Using conventional cut-scores, the WMT proved most efficient while the VSVT captured the most participants in the definitive below-chance category. Individuals instructed to feign injury were more likely to prepare prior to the experiment, with feigning of memory loss as the most frequently reported strategy. Regardless, preparation effort did not translate into believable performance on the tests.

  1. Interactive Design Strategy for a Multi-Functional PAMAM Dendrimer-Based Nano-Therapeutic Using Computational Models and Experimental Analysis

    PubMed Central

    Lee, Inhan; Williams, Christopher R.; Athey, Brian D.; Baker, James R.

    2010-01-01

    Molecular dynamics simulations of nano-therapeutics as a final product and of all intermediates in the process of generating a multi-functional nano-therapeutic based on a poly(amidoamine) (PAMAM) dendrimer were performed along with chemical analyses of each of them. The actual structures of the dendrimers were predicted, based on potentiometric titration, gel permeation chromatography, and NMR. The chemical analyses determined the numbers of functional molecules, based on the actual structure of the dendrimer. Molecular dynamics simulations calculated the configurations of the intermediates and the radial distributions of functional molecules, based on their numbers. This interactive process between the simulation results and the chemical analyses provided a further strategy to design the next reaction steps and to gain insight into the products at each chemical reaction step. PMID:20700476

  2. Combination therapeutics in complex diseases.

    PubMed

    He, Bing; Lu, Cheng; Zheng, Guang; He, Xiaojuan; Wang, Maolin; Chen, Gao; Zhang, Ge; Lu, Aiping

    2016-12-01

    The biological redundancies in molecular networks of complex diseases limit the efficacy of many single drug therapies. Combination therapeutics, as a common therapeutic method, involve pharmacological intervention using several drugs that interact with multiple targets in the molecular networks of diseases and may achieve better efficacy and/or less toxicity than monotherapy in practice. The development of combination therapeutics is complicated by several critical issues, including identifying multiple targets, targeting strategies and the drug combination. This review summarizes the current achievements in combination therapeutics, with a particular emphasis on the efforts to develop combination therapeutics for complex diseases. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. Therapeutic strategies of meconium obstruction of the small bowel in very-low-birthweight neonates.

    PubMed

    Koshinaga, Tsugumichi; Inoue, Mikiya; Ohashi, Kensuke; Sugito, Kiminobu; Ikeda, Taro; Tomita, Ryouichi

    2011-06-01

    Meconium obstruction without cystic fibrosis in low-birthweight neonates is a distinct clinical entity. We aimed to determine what therapeutic strategies work best in very-low-birthweight neonates with meconium obstruction of the small bowel under varied clinical conditions caused by the associated diseases of prematurity. Medical records of very-low-birthweight neonates with meconium obstruction of the small bowel treated from 1998 to 2008 were retrospectively reviewed. Pre- and postnatal data, treatments, and clinical outcomes were assessed. Nine patients with perinatal complications were identified. Mean gestational age and birthweight were 26.9 weeks and 863 g, respectively. Abdominal distension developed from 1 to 7 days of life. Five patients were initially treated with Gastrografin enema, three of whom had successful outcomes. Two hemodynamically unstable patients failed to respond to Gastrografin treatment; they ultimately died of sepsis. The remaining four without Gastrografin treatment underwent enterostomy to resolve the obstructions with good results. Gastrografin and surgical treatments should be appropriately selected based on the underlying pathologies of meconium obstruction of the small bowel. Therapeutic Gastrografin enema is effective, safe and repeatable; however, it is not recommended for hemodynamically unstable patients. Surgical intervention is reserved for those who develop rapid abdominal distension that risks perforation. © 2011 The Authors.Pediatrics International © 2011 Japan Pediatric Society.

  4. Prostanoid receptor antagonists: development strategies and therapeutic applications

    PubMed Central

    Jones, RL; Giembycz, MA; Woodward, DF

    2009-01-01

    Identification of the primary products of cyclo-oxygenase (COX)/prostaglandin synthase(s), which occurred between 1958 and 1976, was followed by a classification system for prostanoid receptors (DP, EP1, EP2 …) based mainly on the pharmacological actions of natural and synthetic agonists and a few antagonists. The design of potent selective antagonists was rapid for certain prostanoid receptors (EP1, TP), slow for others (FP, IP) and has yet to be achieved in certain cases (EP2). While some antagonists are structurally related to the natural agonist, most recent compounds are ‘non-prostanoid’ (often acyl-sulphonamides) and have emerged from high-throughput screening of compound libraries, made possible by the development of (functional) assays involving single recombinant prostanoid receptors. Selective antagonists have been crucial to defining the roles of PGD2 (acting on DP1 and DP2 receptors) and PGE2 (on EP1 and EP4 receptors) in various inflammatory conditions; there are clear opportunities for therapeutic intervention. The vast endeavour on TP (thromboxane) antagonists is considered in relation to their limited pharmaceutical success in the cardiovascular area. Correspondingly, the clinical utility of IP (prostacyclin) antagonists is assessed in relation to the cloud hanging over the long-term safety of selective COX-2 inhibitors. Aspirin apart, COX inhibitors broadly suppress all prostanoid pathways, while high selectivity has been a major goal in receptor antagonist development; more targeted therapy may require an intermediate position with defined antagonist selectivity profiles. This review is intended to provide overviews of each antagonist class (including prostamide antagonists), covering major development strategies and current and potential clinical usage. PMID:19624532

  5. VALIDITY AND RELIABILITY OF THE SPIRITUAL COPING STRATEGIES SCALE ARABIC VERSION IN SAUDI PATIENTS UNDERGOING HAEMODIALYSIS.

    PubMed

    Cruz, Jonas P; Baldacchino, Donia R; Alquwez, Nahed

    2016-06-01

    Patients often resort to religious and spiritual activities to cope with physical and mental challenges. The effect of spiritual coping on overall health, adaptation and health-related quality of life among patients undergoing haemodialysis (HD) is well documented. Thus, it is essential to establish a valid and reliable instrument that can assess both the religious and non-religious coping methods in patients undergoing HD. This study aimed to assess the validity and reliability of the Spiritual Coping Strategies Scale Arabic version (SCS-A) in Saudi patients undergoing HD. A convenience sample of 60 Saudi patients undergoing HD was recruited for this descriptive, cross-sectional study. Data were collected between May and June 2015. Forward-backward translation was used to formulate the SCS-A. The SCS-A, Muslim Religiosity Scale and the Quality of Life Index Dialysis Version III were used to procure the data. Internal consistency reliability, stability reliability, factor analysis and construct validity tests were performed. Analyses were set at the 0.05 level of significance. The SCS-A showed an acceptable internal consistency and strong stability reliability over time. The EFA produced two factors (non-religious and religious coping). Satisfactory construct validity was established by the convergent and divergent validity and known-groups method. The SCS-A is a reliable and valid tool that can be used to measure the religious and non-religious coping strategies of patients undergoing HD in Saudi Arabia and other Muslim and Arabic-speaking countries. © 2016 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  6. Assessing Self-Regulated Strategies for School Writing: Cross-Cultural Validation of a Triadic Measure

    ERIC Educational Resources Information Center

    Malpique, Anabela Abreu; Veiga Simão, Ana Margarida

    2015-01-01

    This study reports on the construction of a questionnaire to assess ninth-grade students' use of self-regulated strategies for school writing tasks. Exploratory and confirmatory factorial analyses were conducted to validate the factor structure of the instrument. The initial factor analytic stage (n = 296) revealed a 13-factor scale, accounting…

  7. Drosophila Models of Parkinson's Disease: Discovering Relevant Pathways and Novel Therapeutic Strategies

    PubMed Central

    Muñoz-Soriano, Verónica; Paricio, Nuria

    2011-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder and is mainly characterized by the selective and progressive loss of dopaminergic neurons, accompanied by locomotor defects. Although most PD cases are sporadic, several genes are associated with rare familial forms of the disease. Analyses of their function have provided important insights into the disease process, demonstrating that three types of cellular defects are mainly involved in the formation and/or progression of PD: abnormal protein aggregation, oxidative damage, and mitochondrial dysfunction. These studies have been mainly performed in PD models created in mice, fruit flies, and worms. Among them, Drosophila has emerged as a very valuable model organism in the study of either toxin-induced or genetically linked PD. Indeed, many of the existing fly PD models exhibit key features of the disease and have been instrumental to discover pathways relevant for PD pathogenesis, which could facilitate the development of therapeutic strategies. PMID:21512585

  8. Targeting mitochondrial respiration as a therapeutic strategy for cervical cancer.

    PubMed

    Tian, Shenglan; Chen, Heng; Tan, Wei

    2018-05-23

    Targeting mitochondrial respiration has been documented as an effective therapeutic strategy in cancer. However, the impact of mitochondrial respiration inhibition on cervical cancer cells are not well elucidated. Using a panel of cervical cancer cell lines, we show that an existing drug atovaquone is active against the cervical cancer cells with high profiling of mitochondrial biogenesis. Atovaquone inhibited proliferation and induced apoptosis with varying efficacy among cervical cancer cell lines regardless of HPV infection, cellular origin and their sensitivity to paclitaxel. We further demonstrated that atovaquone acts on cervical cancer cells via inhibiting mitochondrial respiration. In particular, atovaquone specifically inhibited mitochondrial complex III but not I, II or IV activity, leading to respiration inhibition and energy crisis. Importantly, we found that the different sensitivity of cervical cancer cell lines to atovaquone were due to their differential level of mitochondrial biogenesis and dependency to mitochondrial respiration. In addition, we demonstrated that the in vitro observations were translatable to in vivo cervical cancer xenograft mouse model. Our findings suggest that the mitochondrial biogenesis varies among patients with cervical cancer. Our work also suggests that atovaquone is a useful addition to cervical cancer treatment, particularly to those with high dependency on mitochondrial respiration. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Therapeutic HPV vaccines.

    PubMed

    Hancock, Gemma; Hellner, Karin; Dorrell, Lucy

    2018-02-01

    High-risk human papillomavirus (HPV) infection is known to be a necessary factor for cervical and anogenital malignancies. Cervical cancers account for over a quarter of a million deaths annually. Despite the availability of prophylactic vaccines, HPV infections remain extremely common worldwide. Furthermore, these vaccines are ineffective at clearing pre-existing infections and associated preinvasive lesions. As cervical dysplasia can regress spontaneously, a therapeutic HPV vaccine that boosts host immunity could have a significant impact on the morbidity and mortality associated with HPV. Therapeutic vaccines differ from prophylactic vaccines in that they are aimed at generating cell-mediated immunity rather than neutralising antibodies. This review will cover various therapeutic vaccine strategies in development for the treatment of HPV-associated lesions and cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. In situ eNOS/NO up-regulation—a simple and effective therapeutic strategy for diabetic skin ulcer

    PubMed Central

    Yang, Ye; Yin, Dengke; Wang, Fei; Hou, Ziyan; Fang, Zhaohui

    2016-01-01

    Decreased nitric oxide (NO) synthesis and increased NO consumption in diabetes induces the inadequate blood flow to tissues that is primarily responsible for the pathogenesis and refractoriness of diabetic skin ulcers. The present study proposed a simple and effective therapeutic strategy for diabetic skin ulcers—in situ up-regulation of endothelial nitric oxide synthase (eNOS) expression and NO synthesis by statin-loaded tissue engineering scaffold (TES). In vitro experiments on human umbilical vein endothelial cells indicated that the statin-loaded TES relieved the high-glucose induced decrease in cell viability and promoted NO synthesis under high-glucose conditions. In a rat model of diabetes, the statin-loaded TES promoted eNOS expression and NO synthesis in/around the regenerated tissues. Subsequently, accelerated vascularization and elevated blood supply were observed, followed by rapid wound healing. These findings suggest that the in situ up-regulation of eNOS/NO by a statin-loaded TES may be a useful therapeutic method for intractable diabetic skin wounds. PMID:27453476

  11. Petri net-based prediction of therapeutic targets that recover abnormally phosphorylated proteins in muscle atrophy.

    PubMed

    Jung, Jinmyung; Kwon, Mijin; Bae, Sunghwa; Yim, Soorin; Lee, Doheon

    2018-03-05

    Muscle atrophy, an involuntary loss of muscle mass, is involved in various diseases and sometimes leads to mortality. However, therapeutics for muscle atrophy thus far have had limited effects. Here, we present a new approach for therapeutic target prediction using Petri net simulation of the status of phosphorylation, with a reasonable assumption that the recovery of abnormally phosphorylated proteins can be a treatment for muscle atrophy. The Petri net model was employed to simulate phosphorylation status in three states, i.e. reference, atrophic and each gene-inhibited state based on the myocyte-specific phosphorylation network. Here, we newly devised a phosphorylation specific Petri net that involves two types of transitions (phosphorylation or de-phosphorylation) and two types of places (activation with or without phosphorylation). Before predicting therapeutic targets, the simulation results in reference and atrophic states were validated by Western blotting experiments detecting five marker proteins, i.e. RELA, SMAD2, SMAD3, FOXO1 and FOXO3. Finally, we determined 37 potential therapeutic targets whose inhibition recovers the phosphorylation status from an atrophic state as indicated by the five validated marker proteins. In the evaluation, we confirmed that the 37 potential targets were enriched for muscle atrophy-related terms such as actin and muscle contraction processes, and they were also significantly overlapping with the genes associated with muscle atrophy reported in the Comparative Toxicogenomics Database (p-value < 0.05). Furthermore, we noticed that they included several proteins that could not be characterized by the shortest path analysis. The three potential targets, i.e. BMPR1B, ROCK, and LEPR, were manually validated with the literature. In this study, we suggest a new approach to predict potential therapeutic targets of muscle atrophy with an analysis of phosphorylation status simulated by Petri net. We generated a list of the potential

  12. MicroRNA therapeutics in cardiovascular medicine

    PubMed Central

    Thum, Thomas

    2012-01-01

    Cardiovascular diseases are the most common causes of human morbidity and mortality despite significant therapeutic improvements by surgical, interventional and pharmacological approaches in the last decade. MicroRNAs (miRNAs) are important and powerful mediators in a wide range of diseases and thus emerged as interesting new drug targets. An array of animal and even human miRNA-based therapeutic studies has been performed, which validate miRNAs as being successfully targetable to treat a wide range of diseases. Here, the current knowledge about miRNAs therapeutics in cardiovascular diseases on their way to clinical use are reviewed and discussed. PMID:22162462

  13. Therapeutic cloning in individual parkinsonian mice

    PubMed Central

    Tabar, Viviane; Tomishima, Mark; Panagiotakos, Georgia; Wakayama, Sayaka; Menon, Jayanthi; Chan, Bill; Mizutani, Eiji; Al-Shamy, George; Ohta, Hiroshi; Wakayama, Teruhiko; Studer, Lorenz

    2009-01-01

    Cell transplantation with embryonic stem (ES) cell progeny requires immunological compatibility with host tissue. ‘Therapeutic cloning’ is a strategy to overcome this limitation by generating nuclear transfer (nt)ES cells that are genetically matched to an individual. Here we establish the feasibility of treating individual mice via therapeutic cloning. Derivation of 187 ntES cell lines from 24 parkinsonian mice, dopaminergic differentiation, and transplantation into individually matched host mice showed therapeutic efficacy and lack of immunological response. PMID:18376409

  14. Emerging therapeutic targets currently under investigation for the treatment of systemic amyloidosis.

    PubMed

    Nuvolone, Mario; Merlini, Giampaolo

    2017-12-01

    Systemic amyloidosis occurs when one of a growing list of circulating proteins acquires an abnormal fold, aggregates and gives rise to extracellular amyloid deposits in different body sites, leading to organ dysfunction and eventually death. Current approaches are mainly aimed at lowering the supply of the amyloidogenic precursor or at stabilizing it in a non-amyloidogenic state, thus interfering with the initial phases of amyloid formation and toxicity. Areas covered: Improved understanding of the pathophysiology is indicating novel steps and molecules that could be therapeutically targeted. Here, we will review emerging molecular targets and therapeutic approaches against the main forms of systemic amyloidosis at the early preclinical level. Expert opinion: Conspicuous efforts in drug design and drug discovery have provided an unprecedented list of potential new drugs or therapeutic strategies, from gene-based therapies to small molecules and peptides, from novel monoclonal antibodies to engineered cell-based therapies. The challenge will now be to validate and optimize the most promising candidates, cross the bridge from the preclinical phase to the clinics and identify, through innovative trials design, the safest and most effective combination therapies, striving for a better care, possibly a definitive cure for these diseases.

  15. Potential Therapeutic Benefits of Strategies Directed to Mitochondria

    PubMed Central

    Lesnefsky, Edward J.; Stowe, David F.

    2010-01-01

    Abstract The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy. Antioxid. Redox Signal. 13, 279–347. PMID:20001744

  16. Validity and Reliability of a Systematic Database Search Strategy to Identify Publications Resulting From Pharmacy Residency Research Projects.

    PubMed

    Kwak, Namhee; Swan, Joshua T; Thompson-Moore, Nathaniel; Liebl, Michael G

    2016-08-01

    This study aims to develop a systematic search strategy and test its validity and reliability in terms of identifying projects published in peer-reviewed journals as reported by residency graduates through an online survey. This study was a prospective blind comparison to a reference standard. Pharmacy residency projects conducted at the study institution between 2001 and 2012 were included. A step-wise, systematic procedure containing up to 8 search strategies in PubMed and EMBASE for each project was created using the names of authors and abstract keywords. In order to further maximize sensitivity, complex phrases with multiple variations were truncated to the root word. Validity was assessed by obtaining information on publications from an online survey deployed to residency graduates. The search strategy identified 13 publications (93% sensitivity, 100% specificity, and 99% accuracy). Both methods identified a similar proportion achieving publication (19.7% search strategy vs 21.2% survey, P = 1.00). Reliability of the search strategy was affirmed by the perfect agreement between 2 investigators (k = 1.00). This systematic search strategy demonstrated a high sensitivity, specificity, and accuracy for identifying publications resulting from pharmacy residency projects using information available in residency conference abstracts. © The Author(s) 2015.

  17. [Medico-economic evaluation of therapeutic strategies at hospital: A systematic review of French studies].

    PubMed

    Baudouin, A; Armoiry, X; Dussart, C

    2017-05-01

    Therapeutic innovation contributes to the increase of health care expenditures in France. Medico-economic evaluation has still a minor role in the decision-making for the registration of drugs and medical devices in hospitals. This study aimed to systematically review published works on medico-economic studies conducted within French hospitals. A literature review was carried out to search for medico-economic studies conducted by hospital teams on therapeutic or diagnostic strategies employed within French hospitals and published from 2010 to 2014. Quality assessment of selected studies was performed according to Drummond et al.'s checklist, which is also used within French guidelines. Of the 44 analyzed articles, methods for identification and measure of costs and results complied with guidelines in 95 % of cases. For results interpretation, compliance was 91 %. Costs discounting (29 %) and the use of sensitivity analysis to account for results uncertainty (70 %) were the parameters with the lowest compliance to guidelines. A good training of health professionals in using economic and statistic tools, and the transferability of results of medico-economic studies are essential and should be optimized to enable a broader use of medico-economic evaluation within the scope of decision-making in French hospitals. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  18. Therapeutic Antibodies by Phage Display.

    PubMed

    Shim, Hyunbo

    2016-01-01

    Antibody phage display is a major technological platform for the generation of fully human antibodies for therapeutic purposes. The in vitro binder selection by phage display allows researchers to have more extensive control over binding parameters and facilitates the isolation of clinical candidate antibodies with desired binding and/or functional profiles. Since the invention of antibody phage display in late 1980s, significant technological advancements in the design, construction, and selection of the antibody libraries have been made, and several fully human antibodies generated by phage display are currently approved or in various clinical development stages. In this review, the background and details of antibody phage display technology, and representative antibody libraries with natural or synthetic sequence diversity and different construction strategies are described. The generation, optimization, functional and biophysical properties, and preclinical and clinical developments of some of the phage display-derived therapeutic antibodies approved for use in patients or in late-stage clinical trials are also discussed. With evolving novel disease targets and therapeutic strategies, antibody phage display is expected to continue to play a central role in the development of the next generation of therapeutic antibodies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. The cost-effectiveness of alternative therapeutic strategies for the management of chronic hepatitis B in Poland.

    PubMed

    Orlewska, Ewa

    2002-01-01

    The aim of the study was to estimate the cost-effectiveness of alternative therapeutic strategies for the management of chronic hepatitis B (CHB) in Poland. The model for the Polish health-care context was based on clinical data from the literature and local data on health-care resource utilization and unit costs. Costs and effects of a population of CHB patients were modeled using four scenarios, which attempt to reflect real-life practice in which patients may receive any of the treatment options available and in which a proportion of patients may still receive no treatment because therapy is not suitable. Strategies A and B assumed the availability of both treatment options: the first choice of treatment is in A, lamivudine, and in B, interferon alpha (IFN-alpha). In strategy C, the only approved treatment is IFN-alpha, and in strategy D, the patients receive no antiviral treatment. The outcome measures were HBeAg seroconversion and nonprogression to cirrhosis-the surrogate marker with predictive value for improved survival. Only direct medical costs were analyzed. The payer's perspective and time horizon of 1 year were adopted. One-way sensitivity analysis and extreme scenario analysis were performed. The best results in terms of seroconversion and nonprogression to cirrhosis were achieved for strategy A, costs were lowest for strategy D, and strategies B and C were dominated by strategy A. The incremental cost/effectiveness ratio (ICER) comparing strategy A with strategy D was 57,855 Polish new zloty (PLN) per extra seroconversion and 79,550 PLN per cirrhosis case avoided. Cirrhosis reduces estimated life expectancy by 37.76 years and by 20 years among 30- and 50-year-olds, respectively. The ICER for strategies A and D was 2105 PLN and 3978 PLN per life-years gained for the population at ages 30 and 50, respectively, and was below the suggested threshold for cost-effectiveness, based on treatment costs for 1 year of hemodialysis in Poland (62,400 PLN

  20. Examining Evidence for the Validity of PISA Learning Strategy Scales Based on Student Response Processes

    ERIC Educational Resources Information Center

    Hopfenbeck, Therese N.; Maul, Andrew

    2011-01-01

    The aim of this study was to investigate response-process based evidence for the validity of the Programme for International Student Assessment's (PISA) self-report questionnaire scales as measures of specific psychological constructs, with a focus on scales meant to measure inclination toward specific learning strategies. Cognitive interviews (N…

  1. [Modulating the survival and maturation system of B lymphocytes: Current and future new therapeutic strategies in systemic lupus erythematosus].

    PubMed

    Valor, Lara; López-Longo, Francisco Javier

    2015-09-07

    Systemic lupus erythematosus is an autoimmune disease associated with an aberrant production of autoantibodies by self-reactive B lymphocytes. The study of the phenotypic characteristics of B lymphocytes and the identification of their surface receptors such as BAFF-R, TACI and BCMA, which are responsible of their survival and maturation, have contributed to the development of new therapeutic strategies in recent years. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  2. P-8A Poseidon strategy for modeling & simulation verification validation & accreditation (VV&A)

    NASA Astrophysics Data System (ADS)

    Kropp, Derek L.

    2009-05-01

    One of the first challenges in addressing the need for Modeling & Simulation (M&S) Verification, Validation, & Accreditation (VV&A) is to develop an approach for applying structured and formalized VV&A processes. The P-8A Poseidon Multi-Mission Maritime Aircraft (MMA) Program Modeling and Simulation Accreditation Strategy documents the P-8A program's approach to VV&A. The P-8A strategy tailors a risk-based approach and leverages existing bodies of knowledge, such as the Defense Modeling and Simulation Office Recommended Practice Guide (DMSO RPG), to make the process practical and efficient. As the program progresses, the M&S team must continue to look for ways to streamline the process, add supplemental steps to enhance the process, and identify and overcome procedural, organizational, and cultural challenges. This paper includes some of the basics of the overall strategy, examples of specific approaches that have worked well, and examples of challenges that the M&S team has faced.

  3. Cellulose degradation: a therapeutic strategy in the improved treatment of Acanthamoeba infections.

    PubMed

    Lakhundi, Sahreena; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2015-01-14

    Acanthamoeba is an opportunistic free-living amoeba that can cause blinding keratitis and fatal brain infection. Early diagnosis, followed by aggressive treatment is a pre-requisite in the successful treatment but even then the prognosis remains poor. A major drawback during the course of treatment is the ability of the amoeba to enclose itself within a shell (a process known as encystment), making it resistant to chemotherapeutic agents. As the cyst wall is partly made of cellulose, thus cellulose degradation offers a potential therapeutic strategy in the effective targeting of trophozoite encased within the cyst walls. Here, we present a comprehensive report on the structure of cellulose and cellulases, as well as known cellulose degradation mechanisms with an eye to target the Acanthamoeba cyst wall. The disruption of the cyst wall will make amoeba (concealed within) susceptible to chemotherapeutic agents, and at the very least inhibition of the excystment process will impede infection recurrence, as we bring these promising drug targets into focus so that they can be explored to their fullest.

  4. DELIVERY OF THERAPEUTIC PROTEINS

    PubMed Central

    Pisal, Dipak S.; Kosloski, Matthew P.; Balu-Iyer, Sathy V.

    2009-01-01

    The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g. liposomes, polymeric microspheres, polymeric nanoparticles). Such strategies have the potential to develop as next generation protein therapeutics. This review includes a general discussion on these delivery approaches. PMID:20049941

  5. Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance.

    PubMed

    Hegazy, Ahmed M; Yamada, Daisuke; Kobayashi, Masahiko; Kohno, Susumu; Ueno, Masaya; Ali, Mohamed A E; Ohta, Kumiko; Tadokoro, Yuko; Ino, Yasushi; Todo, Tomoki; Soga, Tomoyoshi; Takahashi, Chiaki; Hirao, Atsushi

    2016-10-07

    Although abnormal metabolic regulation is a critical determinant of cancer cell behavior, it is still unclear how an altered balance between ATP production and consumption contributes to malignancy. Here we show that disruption of this energy balance efficiently suppresses aggressive malignant gliomas driven by mammalian target of rapamycin complex 1 (mTORC1) hyperactivation. In a mouse glioma model, mTORC1 hyperactivation induced by conditional Tsc1 deletion increased numbers of glioma-initiating cells (GICs) in vitro and in vivo Metabolic analysis revealed that mTORC1 hyperactivation enhanced mitochondrial biogenesis, as evidenced by elevations in oxygen consumption rate and ATP production. Inhibition of mitochondrial ATP synthetase was more effective in repressing sphere formation by Tsc1-deficient glioma cells than that by Tsc1-competent glioma cells, indicating a crucial function for mitochondrial bioenergetic capacity in GIC expansion. To translate this observation into the development of novel therapeutics targeting malignant gliomas, we screened drug libraries for small molecule compounds showing greater efficacy in inhibiting the proliferation/survival of Tsc1-deficient cells compared with controls. We identified several compounds able to preferentially inhibit mitochondrial activity, dramatically reducing ATP levels and blocking glioma sphere formation. In human patient-derived glioma cells, nigericin, which reportedly suppresses cancer stem cell properties, induced AMPK phosphorylation that was associated with mTORC1 inactivation and induction of autophagy and led to a marked decrease in sphere formation with loss of GIC marker expression. Furthermore, malignant characteristics of human glioma cells were markedly suppressed by nigericin treatment in vivo Thus, targeting mTORC1-driven processes, particularly those involved in maintaining a cancer cell's energy balance, may be an effective therapeutic strategy for glioma patients. © 2016 by The American

  6. Recent advances in therapeutic recruitment of mammalian RNAi and bacterial CRISPR-Cas DNA interference pathways as emerging antiviral strategies.

    PubMed

    Chin, Wei-Xin; Ang, Swee Kim; Chu, Justin Jang Hann

    2017-01-01

    In invertebrate eukaryotes and prokaryotes, respectively, the RNAi and clustered regularly interspaced short palindromic repeats-CRISPR-associated (CRISPR-Cas) pathways are highly specific and efficient RNA and DNA interference systems, and are well characterised as potent antiviral systems. It has become possible to recruit or reconstitute these pathways in mammalian cells, where they can be directed against desired host or viral targets. The RNAi and CRISPR-Cas systems can therefore yield ideal antiviral therapeutics, capable of specific and efficient viral inhibition with minimal off-target effects, but development of such therapeutics can be slow. This review covers recent advances made towards developing RNAi or CRISPR-Cas strategies for clinical use. These studies address the delivery, toxicity or target design issues that typically plague the in vivo or clinical use of these technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. [Proposal of new trace elements classification to be used in nutrition, oligotherapy and other therapeutics strategies].

    PubMed

    Ramírez Hernández, Javier; Bonete Pérez, María José; Martínez Espinosa, Rosa María

    2014-12-17

    1) to propose a new classification of the trace elements based on a study of the recently reported research; 2) to offer detailed and actualized information about trace elements. the analysis of the research results recently reported reveals that the advances of the molecular analysis techniques point out the importance of certain trace elements in human health. A detailed analysis of the catalytic function related to several elements not considered essential o probably essentials up to now is also offered. To perform the integral analysis of the enzymes containing trace elements informatics tools have been used. Actualized information about physiological role, kinetics, metabolism, dietetic sources and factors promoting trace elements scarcity or toxicity is also presented. Oligotherapy uses catalytic active trace elements with therapeutic proposals. The new trace element classification here presented will be of high interest for different professional sectors: doctors and other professions related to medicine; nutritionist, pharmaceutics, etc. Using this new classification and approaches, new therapeutic strategies could be designed to mitigate symptomatology related to several pathologies, particularly carential and metabolic diseases. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  8. Therapeutic Targeting of Siglecs using Antibody- and Glycan-based Approaches

    PubMed Central

    Angata, Takashi; Nycholat, Corwin M.; Macauley, Matthew S.

    2015-01-01

    The sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of immunomodulatory receptors whose functions are regulated by their glycan ligands. Siglecs are attractive therapeutic targets because of their cell-type specific expression pattern, endocytic properties, high expression on certain lymphomas/leukemias, and ability to modulate receptor signaling. Siglec-targeting approaches with therapeutic potential encompass antibody- and glycan-based strategies. Several antibody-based therapies are in clinical trials and continue to be developed for the treatment of lymphoma/leukemia and autoimmune disease, while the therapeutic potential of glycan-based strategies for cargo-delivery and immunomodulation is a promising new approach. Here, we review these strategies with special emphasis on emerging approaches and disease areas that may benefit from targeting the Siglec family. PMID:26435210

  9. Optimization and validation of an existing, surgical and robust dry eye rat model for the evaluation of therapeutic compounds.

    PubMed

    Joossen, Cedric; Lanckacker, Ellen; Zakaria, Nadia; Koppen, Carina; Joossens, Jurgen; Cools, Nathalie; De Meester, Ingrid; Lambeir, Anne-Marie; Delputte, Peter; Maes, Louis; Cos, Paul

    2016-05-01

    The aim of this research was to optimize and validate an animal model for dry eye, adopting clinically relevant evaluation parameters. Dry eye was induced in female Wistar rats by surgical removal of the exorbital lacrimal gland. The clinical manifestations of dry eye were evaluated by tear volume measurements, corneal fluorescein staining, cytokine measurements in tear fluid, MMP-9 mRNA expression and CD3(+) cell infiltration in the conjunctiva. The animal model was validated by treatment with Restasis(®) (4 weeks) and commercial dexamethasone eye drops (2 weeks). Removal of the exorbital lacrimal gland resulted in 50% decrease in tear volume and a gradual increase in corneal fluorescein staining. Elevated levels of TNF-α and IL-1α have been registered in tear fluid together with an increase in CD3(+) cells in the palpebral conjunctiva when compared to control animals. Additionally, an increase in MMP-9 mRNA expression was recorded in conjunctival tissue. Reference treatment with Restasis(®) and dexamethasone eye drops had a positive effect on all evaluation parameters, except on tear volume. This rat dry eye model was validated extensively and judged appropriate for the evaluation of novel compounds and therapeutic preparations for dry eye disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A systems pharmacology-oriented discovery of a new therapeutic use of the TCM formula Liuweiwuling for liver failure.

    PubMed

    Wang, Jia-Bo; Cui, He-Rong; Wang, Rui-Lin; Zhang, Cong-En; Niu, Ming; Bai, Zhao-Fang; Xu, Gen-Hua; Li, Peng-Yan; Jiang, Wen-Yan; Han, Jing-Jing; Ma, Xiao; Cai, Guang-Ming; Li, Rui-Sheng; Zhang, Li-Ping; Xiao, Xiao-He

    2018-04-04

    Multiple components of traditional Chinese medicine (TCM) formulae determine their treatment targets for multiple diseases as opposed to a particular disease. However, discovering the unexplored therapeutic potential of a TCM formula remains challenging and costly. Inspired by the drug repositioning methodology, we propose an integrated strategy to feasibly identify new therapeutic uses for a formula composed of six herbs, Liuweiwuling. First, we developed a comprehensive systems approach to enrich drug compound-liver disease networks to analyse the major predicted diseases of Liuweiwuling and discover its potential effect on liver failure. The underlying mechanisms were subsequently predicted to mainly attribute to a blockade of hepatocyte apoptosis via a synergistic combination of multiple effects. Next, a classical pharmacology experiment was designed to validate the effects of Liuweiwuling on different models of fulminant liver failure induced by D-galactosamine/lipopolysaccharide (GalN/LPS) or thioacetamide (TAA). The results indicated that pretreatment with Liuweiwuling restored liver function and reduced lethality induced by GalN/LPS or TAA in a dose-dependent manner, which was partially attributable to the abrogation of hepatocyte apoptosis by multiple synergistic effects. In summary, the integrated strategy discussed in this paper may provide a new approach for the more efficient discovery of new therapeutic uses for TCM formulae.

  11. Current Opinion on the Role of Neurogenesis in the Therapeutic Strategies for Alzheimer Disease, Parkinson Disease, and Ischemic Stroke; Considering Neuronal Voiding Function

    PubMed Central

    Lee, Eun-Hye

    2016-01-01

    Neurological diseases such as Alzheimer, Parkinson, and ischemic stroke have increased in occurrence and become important health issues throughout the world. There is currently no effective therapeutic strategy for addressing neurological deficits after the development of these major neurological disorders. In recent years, it has become accepted that adult neural stem cells located in the subventricular and subgranular zones have the ability to proliferate and differentiate in order to replace lost or damaged neural cells. There have been many limitations in the clinical application of both endogenous and exogenous neurogenesis for neurological disorders. However, many studies have investigated novel mechanisms in neurogenesis and have shown that these limitations can potentially be overcome with appropriate stimulation and various approaches. We will review concepts related to possible therapeutic strategies focused on the perspective of neurogenesis for the treatment of patients diagnosed with Alzheimer disease, Parkinson disease, and ischemic stroke based on current reports. PMID:28043116

  12. Caspase-3 short hairpin RNAs: a potential therapeutic agent in neurodegeneration of aluminum-exposed animal model.

    PubMed

    Zhang, Qinli; Li, Na; Jiao, Xia; Qin, Xiujun; Kaur, Ramanjit; Lu, Xiaoting; Song, Jing; Wang, Linping; Wang, Junming; Niu, Qiao

    2014-01-01

    There is abundant evidence supporting the role of caspases in the development of neurodegenerative disease, including Alzheimer's disease (AD). Therefore, regulating the activity of caspases has been considered as a therapeutic target. However, all the efforts on AD therapy using pan-caspase inhibitors have failed because of uncontrolled adverse effects. Alternatively, the specific knockdown of caspase-3 gene through RNA interference (RNAi) could serve as a future potential therapeutic strategy. The aim of the present study is to down-regulate the expression of caspase-3 gene using lentiviral vector-mediated caspase-3 short hairpin RNA (LV-Caspase-3 shRNA). The effect of LV-Caspase-3 shRNA on apoptosis induced by aluminum (Al) was investigated in primary cultured cortical neurons and validated in C57BL/6J mice. The results indicated an increase in apoptosis and caspase-3 expression in primary cultured neurons and the cortex ofmice exposed to Al, which could be down-regulated by LV-Caspase-3 shRNA. Furthermore, LV-Caspase-3 shRNA reduced neural cell death and improved learning and memory in C57BL/6J mice treated with Al. Our results suggest that LV-caspase-3 shRNA is a potential therapeutic agent to prevent neurodegeneration and cognitive dysfunction in aluminum- exposed animal models. The findings provide a rational gene therapy strategy for AD.

  13. Therapeutic implication of HER2 in advanced biliary tract cancer

    PubMed Central

    Cha, Yongjun; Ha, Hyerim; Park, Ji Eun; Bang, Ju-Hee; Jin, Mei Hua; Lee, Kyung-Hun; Kim, Tae-Yong; Han, Sae-Won; Im, Seock-Ah; Kim, Tae-You; Oh, Do-Youn; Bang, Yung-Jue

    2016-01-01

    Currently, there is no validated therapeutic target for biliary tract cancer (BTC). This study aimed to investigate the pre-clinical and clinical implication of HER2 as a therapeutic target in BTC. We established two novel HER2-amplified BTC cell lines, SNU-2670 and SNU-2773, from gallbladder cancer patients. SNU-2670 and SNU-2773 cells were sensitive to trastuzumab, dacomitinib, and afatinib compared with nine HER2-negative BTC cell lines. Dacomitinib and afatinib led to G1 cell cycle arrest in SNU-2773 cells and apoptosis in SNU-2670 cells. Furthermore, dacomitinib, afatinib, and trastuzumab showed synergistic cytotoxicity when combined with some cytotoxic drugs including gemcitabine, cisplatin, paclitaxel, and 5-fluorouracil. In a SNU-2670 mouse xenograft model, trastuzumab demonstrated a good anti-tumor effect as a monotherapy and in combination with gemcitabine increasing apoptosis. In our clinical data, 13.0% of patients with advanced BTC were defined as HER2-positive. Of these, three patients completed HER2-targeted chemotherapy. Two of them demonstrated a partial response, and the other one showed stable disease for 18 weeks. In summary, these pre-clinical and clinical data suggest that HER2 could be a therapeutic target, and that a HER2-targeting strategy should be developed further in patients with HER2-positive advanced BTC. PMID:27517322

  14. Radical surgery after chemotherapy: a new therapeutic strategy to envision in grade II glioma.

    PubMed

    Duffau, Hugues; Taillandier, Luc; Capelle, Laurent

    2006-11-01

    While surgery is proned in low-grade glioma (LGG), the invasion of functional areas frequently prevents a complete resection. We report the first case of a patient operated on for a left frontal LGG, diagnosed because of seizures, with partial resection due to an invasion of the controlateral hemisphere. Chemotherapy enabled a regression of this controlateral extension. Postchemotherapy surgery performed with intraoperative functional mapping then allowed a complete resection, without sequelae. The patient has a normal socio-professional life, with no seizure. No other treatment was given. There was no recurrence, with a follow-up of 2 years since the second surgery (3.5 years since the first symptom). We propose a new therapeutic strategy in unresectable LGG, with preoperative chemotherapy, to make a radical surgery possible in a second step, while preserving the quality of life.

  15. Chained lightning: part III--Emerging technology, novel therapeutic strategies, and new energy modalities for radiosurgery.

    PubMed

    Hoh, Daniel J; Liu, Charles Y; Chen, Joseph C T; Pagnini, Paul G; Yu, Cheng; Wang, Michael Y; Apuzzo, Michael L J

    2007-12-01

    Radiosurgery is fundamentally the harnessing of energy and delivering it to a focal target for a therapeutic effect. The evolution of radiosurgical technology and practice has served toward refining methodologies for better conformal energy delivery. In the past, this has resulted in developing strategies for improved beam generation and delivery. Ultimately, however, our current instrumentation and treatment modalities may be approaching a practical limit with regard to further optimizing energy containment. In looking forward, several strategies are emerging to circumvent these limitations and improve conformal radiosurgery. Refinement of imaging techniques through functional imaging and nanoprobes for cancer detection may benefit lesion localization and targeting. Methods for enhancing the biological effect while reducing radiation-induced changes are being examined through dose fractionation schedules. Radiosensitizers and photosensitizers are being investigated as agents for modulating the biological response of tissues to radiation and alternative energy forms. Discovery of new energy modalities is being pursued through development of microplanar beams, free electron lasers, and high-intensity focused ultrasound. The exploration of these future possibilities will provide the tools for radiosurgical treatment of a broader spectrum of diseases for the next generation.

  16. Development of a peptide conjugate vaccine for inducing therapeutic anti-IgE antibodies.

    PubMed

    Licari, Amelia; Castagnoli, Riccardo; De Sando, Elisabetta; Marseglia, Gian Luigi

    2017-04-01

    Given the multifaceted effector functions of IgE in immediate hypersensitivity, late-phase reactions, regulation of IgE receptor expression and immune modulation, IgE antibodies have long represented an attractive target for therapeutic agents in asthma and other allergic diseases. Effective pharmacologic blockade of the binding of IgE to its receptors has become one of most innovative therapeutic strategies in the field of allergic diseases in the last 10 years. Areas covered: The latest strategies targeting IgE include the development of a therapeutic vaccine, able to trigger our own immune systems to produce therapeutic anti-IgE antibodies, potentially providing a further step forward in the treatment of allergic diseases. The aim of this review is to discuss the discovery strategy, preclinical and early clinical development of a peptide conjugate vaccine for inducing therapeutic anti-IgE antibodies. Expert opinion: Outside the area of development of humanized anti-IgE monoclonal antibodies, the research field of therapeutic IgE-targeted vaccines holds potential benefits for the treatment of allergic diseases. However, most of the experimental observations in animal models have not yet been translated into new treatments and evidence of human efficacy and safety of this new therapeutic strategy are still lacking.

  17. The Therapeutic Relationship: Enhancing Referrals.

    PubMed

    Coyle, Mary Kathleen

    2018-05-19

    This article focuses on the ways rehabilitation nurses use the therapeutic relationship to lessen barriers some veterans experience when a referral to mental health treatment is recommended. Veterans presenting with posttraumatic stress symptoms are discussed, and possible interventions within the therapeutic relationship are proposed. Veterans' perception of mental health stigma, building a collaborative therapeutic relationship, recommending a referral and assessments of stress responses, posttraumatic stress symptoms, suicide risk, and intervention strategies are proposed. When changes in functioning and suicidality occur in veterans with posttraumatic stress disorder symptoms, it is important to screen and engage veterans at risk. When veterans in the rehabilitation process present with a need for mental health referral, barriers to treatment may include the stigma of mental health treatment. Rehabilitation nurses using the therapeutic relationship act as change agents to assist veterans in overcoming these barriers to treatment. The therapeutic relationship provides nurses with a foundation to provide opportunities for veterans to be supported and to seek treatment.

  18. Targeting methionine cycle as a potential therapeutic strategy for immune disorders.

    PubMed

    Li, Heng; Lu, Huimin; Tang, Wei; Zuo, Jianping

    2017-08-23

    Methionine cycle plays an essential role in regulating many cellular events, especially transmethylation reactions, incorporating the methyl donor S-adenosylmethionine (SAM). The transmethylations and substances involved in the cycle have shown complicated effects and mechanisms on immunocytes developments and activations, and exert crucial impacts on the pathological processes in immune disorders. Areas covered: Methionine cycle has been considered as an effective means of drug developments. This review discussed the role of methionine cycle in immune responses and summarized the potential therapeutic strategies based on the cycle, including SAM analogs, methyltransferase inhibitors, S-adenosylhomocysteine hydrolase (SAHH) inhibitors, adenosine receptors specific agonists or antagonists and homocysteine (Hcy)-lowering reagents, in treating human immunodeficiency virus (HIV) infections, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic sclerosis (SSc) and other immune disorders. Expert opinion: New targets and biomarkers grown out of methionine cycle have developed rapidly in the past decades. However, impacts of epigenetic regulations on immune disorders are unclear and whether the substances in methionine cycle can be clarified as biomarkers remains controversial. Therefore, further elucidation on the role of epigenetic regulations and substances in methionine cycle may contribute to exploring the cycle-derived biomarkers and drugs in immune disorders.

  19. Therapeutic Self-Disclosure within DBT, Schema Therapy, and CBASP: Opportunities and Challenges.

    PubMed

    Köhler, Stephan; Guhn, Anne; Betzler, Felix; Stiglmayr, Christian; Brakemeier, Eva-Lotta; Sterzer, Philipp

    2017-01-01

    In recent years, various therapeutic interventions have been established that extended behavior and cognitive behavior therapy (CBT) by so-called "third-wave" strategies. In order to address specific therapeutic challenges in certain subgroups of patients who do not sufficiently respond to "classical CBT," some of these third-wave strategies put particular emphasis on therapist self-disclosure. This article highlights therapeutic self-disclosure as a means to address interpersonal problems by comparing three third-wave strategies: (a) acceptance and change strategies as used in Dialectical Behavioral Therapy (DBT), (b) the concept of "limited reparenting" as used in Schema Therapy (ST), and (c) disciplined personal involvement as used in the Cognitive Behavioral Analysis System of Psychotherapy (CBASP). On the basis of a critical discussion on opportunities and challenges within these three concepts, self-disclosure is proposed to be a promising therapeutic tool that is worth to be investigated in more depth in future studies.

  20. Therapeutic Self-Disclosure within DBT, Schema Therapy, and CBASP: Opportunities and Challenges

    PubMed Central

    Köhler, Stephan; Guhn, Anne; Betzler, Felix; Stiglmayr, Christian; Brakemeier, Eva-Lotta; Sterzer, Philipp

    2017-01-01

    In recent years, various therapeutic interventions have been established that extended behavior and cognitive behavior therapy (CBT) by so-called “third-wave” strategies. In order to address specific therapeutic challenges in certain subgroups of patients who do not sufficiently respond to “classical CBT,” some of these third-wave strategies put particular emphasis on therapist self-disclosure. This article highlights therapeutic self-disclosure as a means to address interpersonal problems by comparing three third-wave strategies: (a) acceptance and change strategies as used in Dialectical Behavioral Therapy (DBT), (b) the concept of “limited reparenting” as used in Schema Therapy (ST), and (c) disciplined personal involvement as used in the Cognitive Behavioral Analysis System of Psychotherapy (CBASP). On the basis of a critical discussion on opportunities and challenges within these three concepts, self-disclosure is proposed to be a promising therapeutic tool that is worth to be investigated in more depth in future studies. PMID:29238317

  1. The Development and Validation of the "Academic Spoken English Strategies Survey (ASESS)" for Non-Native English Speaking Graduate Students

    ERIC Educational Resources Information Center

    Schroeder, Rui M.

    2016-01-01

    This study reports on the three-year development and validation of a new assessment tool--the Academic Spoken English Strategies Survey (ASESS). The questionnaire is the first of its kind to assess the listening and speaking strategy use of non-native English speaking (NNES) graduate students. A combination of sources was used to develop the…

  2. Therapeutic Vaccines for Chronic Infections

    NASA Astrophysics Data System (ADS)

    Autran, Brigitte; Carcelain, Guislaine; Combadiere, Béhazine; Debre, Patrice

    2004-07-01

    Therapeutic vaccines aim to prevent severe complications of a chronic infection by reinforcing host defenses when some immune control, albeit insufficient, can already be demonstrated and when a conventional antimicrobial therapy either is not available or has limited efficacy. We focus on the rationale and challenges behind this still controversial strategy and provide examples from three major chronic infectious diseases-human immunodeficiency virus, hepatitis B virus, and human papillomavirus-for which the efficacy of therapeutic vaccines is currently being evaluated.

  3. The importance of therapeutic farriery in equine practice.

    PubMed

    Werner, Harry W

    2012-08-01

    For an equine practice to offer therapeutic farriery as a professional service, that service must be founded in individual competence and cooperation between veterinarian and farrier. Inadequate farriery education and experience may result in substandard or even contraindicated therapeutic farriery prescriptions and farrier care. Within continuing education for equine practitioners, excellent opportunities to advance one's understanding of and clinical competence in therapeutic farriery are increasingly available. It is the obligation of the veterinarian to acquire and maintain a working understanding of both basic and therapeutic farriery to work effectively with the farrier and offer a valid service to the client. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Breast Cancer Stem Cell Therapeutics, Multiple Strategies Versus Using Engineered Mesenchymal Stem Cells With Notch Inhibitory Properties: Possibilities and Perspectives.

    PubMed

    Bose, Bipasha; Sen, Utsav; Shenoy P, Sudheer

    2018-01-01

    Relapse cases of cancers are more vigorous and difficult to control due to the preponderance of cancer stem cells (CSCs). Such CSCs that had been otherwise dormant during the first incidence of cancer gradually appear as radiochemoresistant cancer cells. Hence, cancer therapeutics aimed at CSCs would be an effective strategy for mitigating the cancers during relapse. Alternatively, CSC therapy can also be proposed as an adjuvant therapy, along-with the conventional therapies. As regenerative stem cells (RSCs) are known for their trophic effects, anti-tumorogenicity, and better migration toward an injury site, this review aims to address the use of adult stem cells such as dental pulp derived; cord blood derived pure populations of regenerative stem cells for targeting CSCs. Indeed, pro-tumorogenicity of RSCs is of concern and hence has also been dealt with in relation to breast CSC therapeutics. Furthermore, as notch signaling pathways are upregulated in breast cancers, and anti-notch antibody based and sh-RNA based therapies are already in the market, this review focuses the possibilities of engineering RSCs to express notch inhibitory proteins for breast CSC therapeutics. Also, we have drawn a comparison among various possibilities of breast CSC therapeutics, about, notch1 inhibition. J. Cell. Biochem. 119: 141-149, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Biochemical basis for pharmacological intervention as a reprogramming strategy against hypertension and kidney disease of developmental origin.

    PubMed

    Tain, You-Lin; Chan, Samuel H H; Chan, Julie Y H

    2018-07-01

    The concept of "developmental origins of health and disease" (DOHaD) stipulates that both hypertension and kidney disease may take origin from early-life insults. The DOHaD concept also offers reprogramming strategies aiming at shifting therapeutic interventions from adulthood to early life, even before clinical symptoms are evident. Based on those two concepts, this review will present the evidence for the existence of, and the programming mechanisms in, kidney developmental programming that may lead to hypertension and kidney disease. This will be followed by potential pharmacological interventions that may serve as a reprogramming strategy to counter the rising epidemic of hypertension and kidney disease. We point out that before patients could benefit from this strategy, the most pressing issue is for the growing body of evidence from animal studies in support of pharmacological intervention as a reprogramming strategy to long-term protect against hypertension and kidney disease of developmental origins to be validated clinically and the critical window, drug dose, dosing regimen, and therapeutic duration identified. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Recent Advances on Inorganic Nanoparticle-Based Cancer Therapeutic Agents

    PubMed Central

    Wang, Fenglin; Li, Chengyao; Cheng, Jing; Yuan, Zhiqin

    2016-01-01

    Inorganic nanoparticles have been widely investigated as therapeutic agents for cancer treatments in biomedical fields due to their unique physical/chemical properties, versatile synthetic strategies, easy surface functionalization and excellent biocompatibility. This review focuses on the discussion of several types of inorganic nanoparticle-based cancer therapeutic agents, including gold nanoparticles, magnetic nanoparticles, upconversion nanoparticles and mesoporous silica nanoparticles. Several cancer therapy techniques are briefly introduced at the beginning. Emphasis is placed on how these inorganic nanoparticles can provide enhanced therapeutic efficacy in cancer treatment through site-specific accumulation, targeted drug delivery and stimulated drug release, with elaborations on several examples to highlight the respective strategies adopted. Finally, a brief summary and future challenges are included. PMID:27898016

  7. Recent Advances on Inorganic Nanoparticle-Based Cancer Therapeutic Agents.

    PubMed

    Wang, Fenglin; Li, Chengyao; Cheng, Jing; Yuan, Zhiqin

    2016-11-25

    Inorganic nanoparticles have been widely investigated as therapeutic agents for cancer treatments in biomedical fields due to their unique physical/chemical properties, versatile synthetic strategies, easy surface functionalization and excellent biocompatibility. This review focuses on the discussion of several types of inorganic nanoparticle-based cancer therapeutic agents, including gold nanoparticles, magnetic nanoparticles, upconversion nanoparticles and mesoporous silica nanoparticles. Several cancer therapy techniques are briefly introduced at the beginning. Emphasis is placed on how these inorganic nanoparticles can provide enhanced therapeutic efficacy in cancer treatment through site-specific accumulation, targeted drug delivery and stimulated drug release, with elaborations on several examples to highlight the respective strategies adopted. Finally, a brief summary and future challenges are included.

  8. Systematic approach identifies RHOA as a potential biomarker therapeutic target for Asian gastric cancer.

    PubMed

    Chang, Hae Ryung; Nam, Seungyoon; Lee, Jinhyuk; Kim, Jin-Hee; Jung, Hae Rim; Park, Hee Seo; Park, Sungjin; Ahn, Young Zoo; Huh, Iksoo; Balch, Curt; Ku, Ja-Lok; Powis, Garth; Park, Taesung; Jeong, Jin-Hyun; Kim, Yon Hui

    2016-12-06

    Gastric cancer (GC) is a highly heterogeneous disease, in dire need of specific, biomarker-driven cancer therapies. While the accumulation of cancer "Big Data" has propelled the search for novel molecular targets for GC, its specific subpathway and cellular functions vary from patient to patient. In particular, mutations in the small GTPase gene RHOA have been identified in recent genome-wide sequencing of GC tumors. Moreover, protein overexpression of RHOA was reported in Chinese populations, while RHOA mutations were found in Caucasian GC tumors. To develop evidence-based precision medicine for heterogeneous cancers, we established a systematic approach to integrate transcriptomic and genomic data. Predicted signaling subpathways were then laboratory-validated both in vitro and in vivo, resulting in the identification of new candidate therapeutic targets. Here, we show: i) differences in RHOA expression patterns, and its pathway activity, between Asian and Caucasian GC tumors; ii) in vitro and in vivo perturbed RHOA expression inhibits GC cell growth in high RHOA-expressing cell lines; iii) inverse correlation between RHOA and RHOB expression; and iv) an innovative small molecule design strategy for RHOA inhibitors. In summary, RHOA, and its oncogenic signaling pathway, represent a strong biomarker-driven therapeutic target for Asian GC. This comprehensive strategy represents a promising approach for the development of "hit" compounds.

  9. Short- and longtime stability of therapeutic ultrasound reference sources for dosimetry and exposimetry purposes

    NASA Astrophysics Data System (ADS)

    Haller, J.; Wilkens, V.

    2017-03-01

    The objective of this work was to create highly stable therapeutic ultrasound fields with well-known exposimetry and dosimetry parameters that are reproducible and hence predictable with well-known uncertainties. Such well- known and reproducible fields would allow validation and secondary calibrations of different measuring capabilities, which is already a widely accepted strategy for diagnostic fields. For this purpose, a reference setup was established that comprises two therapeutic ultrasound sources (one High-Intensity Therapeutic Ultrasound (HITU) source and one physiotherapy-like source), standard rf electronics for signal creation, and computer-controlled feedback to stabilize the input voltage. The short- and longtime stability of the acoustic output were evaluated - for the former, measurements over typical laboratory measurement time periods (i.e. some seconds or minutes) of the input voltage stability with and without feedback control were performed. For the latter, measurements of typical acoustical exposimetry parameters were performed bimonthly over one year. The measurement results show that the short- and the longtime stability of the reference setup are very good and that it is especially significantly improved in comparison to a setup without any feedback control.

  10. Recent developments in emerging therapeutic targets of osteoarthritis.

    PubMed

    Sun, Margaret Man-Ger; Beier, Frank; Pest, Michael A

    2017-01-01

    Despite the tremendous individual suffering and socioeconomic burden caused by osteoarthritis, there are currently no effective disease-modifying treatment options. This is in part because of our incomplete understanding of osteoarthritis disease mechanism. This review summarizes recent developments in therapeutic targets identified from surgical animal models of osteoarthritis that provide novel insight into osteoarthritis pathology and possess potential for progression into preclinical studies. Several candidate pathways and processes that have been identified include chondrocyte autophagy, growth factor signaling, inflammation, and nociceptive signaling. Major strategies that possess therapeutic potential at the cellular level include inhibiting autophagy suppression and decreasing reactive oxygen species (ROS) production. Cartilage anabolism and prevention of cartilage degradation has been shown to result from growth factor signaling modulation, such as TGF-β, TGF-α, and FGF; however, the results are context-dependent and require further investigation. Pain assessment studies in rodent surgical models have demonstrated potential in employing anti-NGF strategies for minimizing osteoarthritis-associated pain. Studies of potential therapeutic targets in osteoarthritis using animal surgical models are helping to elucidate osteoarthritis pathology and propel therapeutics development. Further studies should continue to elucidate pathological mechanisms and therapeutic targets in various joint tissues to improve overall joint health.

  11. Middle Childhood Attachment Strategies: validation of an observational measure.

    PubMed

    Brumariu, Laura E; Giuseppone, Kathryn R; Kerns, Kathryn A; Van de Walle, Magali; Bureau, Jean-François; Bosmans, Guy; Lyons-Ruth, Karlen

    2018-02-05

    The purpose of this study was to assess behavioral manifestations of attachment in middle childhood, and to evaluate their relations with key theoretical correlates. The sample consisted of 87 children (aged 10-12 years) and their mothers. Dyads participated in an 8-min videotaped discussion of a conflict in their relationships, later scored with the Middle Childhood Attachment Strategies Coding System (MCAS) for key features of all child attachment patterns described in previous literature (secure, ambivalent, avoidant, disorganized-disoriented, caregiving/role-confused, hostile/punitive). To assess validity, relations among MCAS dimensions and other measures of attachment, parenting, and psychological adjustment were evaluated. Results provide preliminary evidence for the psychometric properties of the MCAS in that its behaviorally assessed patterns were associated with theoretically relevant constructs, including maternal warmth/acceptance and psychological control, and children's social competence, depression, and behavioral problems. The MCAS opens new grounds for expanding our understanding of attachment and its outcomes in middle childhood.

  12. Therapeutic strategy for hair regeneration: Hair cycle activation, niche environment modulation, wound-induced follicle neogenesis and stem cell engineering

    PubMed Central

    Chueh, Shan-Chang; Lin, Sung-Jan; Chen, Chih-Chiang; Lei, Mingxing; Wang, Ling Mei; Widelitz, Randall B.; Hughes, Michael W.; Jiang, Ting-Xing; Chuong, Cheng Ming

    2013-01-01

    Introduction There are major new advancements in the fields of stem cell biology, developmental biology, regenerative hair cycling, and tissue engineering. The time is ripe to integrate, translate and apply these findings to tissue engineering and regenerative medicine. Readers will learn about new progress in cellular and molecular aspects of hair follicle development, regeneration and potential therapeutic opportunities these advances may offer. Areas covered Here we use hair follicle formation to illustrate this progress and to identify targets for potential strategies in therapeutics. Hair regeneration is discussed in four different categories. (1) Intra-follicle regeneration (or renewal) is the basic production of hair fibers from hair stem cells and dermal papillae in existing follicles. (2) Chimeric follicles via epithelial-mesenchymal recombination to identify stem cells and signaling centers. (3) Extra-follicular factors including local dermal and systemic factors can modulate the regenerative behavior of hair follicles, and may be relatively easy therapeutic targets. (4) Follicular neogenesis means the de novo formation of new follicles. In addition, scientists are working to engineer hair follicles, which require hair forming competent epidermal cells and hair inducing dermal cells. Expert opinion Ideally self-organizing processes similar to those occurring during embryonic development should be elicited with some help from biomaterials. PMID:23289545

  13. Molecular Mechanisms of Diabetic Retinopathy, General Preventive Strategies, and Novel Therapeutic Targets

    PubMed Central

    Safi, Sher Zaman; Kumar, Selva; Ismail, Ikram Shah Bin

    2014-01-01

    The growing number of people with diabetes worldwide suggests that diabetic retinopathy (DR) and diabetic macular edema (DME) will continue to be sight threatening factors. The pathogenesis of diabetic retinopathy is a widespread cause of visual impairment in the world and a range of hyperglycemia-linked pathways have been implicated in the initiation and progression of this condition. Despite understanding the polyol pathway flux, activation of protein kinase C (KPC) isoforms, increased hexosamine pathway flux, and increased advanced glycation end-product (AGE) formation, pathogenic mechanisms underlying diabetes induced vision loss are not fully understood. The purpose of this paper is to review molecular mechanisms that regulate cell survival and apoptosis of retinal cells and discuss new and exciting therapeutic targets with comparison to the old and inefficient preventive strategies. This review highlights the recent advancements in understanding hyperglycemia-induced biochemical and molecular alterations, systemic metabolic factors, and aberrant activation of signaling cascades that ultimately lead to activation of a number of transcription factors causing functional and structural damage to retinal cells. It also reviews the established interventions and emerging molecular targets to avert diabetic retinopathy and its associated risk factors. PMID:25105142

  14. Iron depletion is a novel therapeutic strategy to target cancer stem cells

    PubMed Central

    Ninomiya, Takayuki; Ohara, Toshiaki; Noma, Kazuhiro; Katsura, Yuki; Katsube, Ryoichi; Kashima, Hajime; Kato, Takuya; Tomono, Yasuko; Tazawa, Hiroshi; Kagawa, Shunsuke; Shirakawa, Yasuhiro; Kimura, Fumiaki; Chen, Ling; Kasai, Tomonari; Seno, Masaharu; Matsukawa, Akihiro; Fujiwara, Toshiyoshi

    2017-01-01

    Adequate iron levels are essential for human health. However, iron overload can act as catalyst for the formation of free radicals, which may cause cancer. Cancer stem cells (CSCs), which maintain the hallmark stem cell characteristics of self-renewal and differentiation capacity, have been proposed as a driving force of tumorigenesis and metastases. In the present study, we investigated the role of iron in the proliferation and stemness of CSCs, using the miPS-LLCcm cell model. Although the anti-cancer agents fluorouracil and cisplatin suppressed the proliferation of miPS-LLCcm cells, these drugs did not alter the expression of stemness markers, including Nanog, SOX2, c-Myc, Oct3/4 and Klf4. In contrast, iron depletion by the iron chelators deferasirox and deferoxamine suppressed the proliferation of miPS-LLCcm cells and the expression of stemness markers. In an allograft model, deferasirox inhibited the growth of miPS-LLCcm implants, which was associated with decreased expression of Nanog and Sox2. Altogether, iron appears to be crucial for the proliferation and maintenance of stemness of CSCs, and iron depletion may be a novel therapeutic strategy to target CSCs. PMID:29228699

  15. Internal Factor Structure and Convergent Validity Evidence: The Self-Report Version of Self-Regulation Strategy Inventory

    ERIC Educational Resources Information Center

    Cleary, Timothy J.; Dembitzer, Leah; Kettler, Ryan J.

    2015-01-01

    Using a sample of 348 middle school students, we gathered evidence regarding the internal consistency of scores, as well as the internal factor structure and convergent validity evidence for inferences from a self-report questionnaire called the Self-Regulation Strategy Inventory-Self Report. Confirmatory factor analysis revealed that the fit…

  16. Personalized therapeutic strategies for patients with retinitis pigmentosa.

    PubMed

    Zheng, Andrew; Li, Yao; Tsang, Stephen H

    2015-03-01

    Retinitis pigmentosa (RP) encompasses many different hereditary retinal degenerations that are caused by a vast array of different gene mutations and have highly variable disease presentations and severities. This heterogeneity poses a significant therapeutic challenge, although an answer may eventually be found through two recent innovations: induced pluripotent stem cells (iPSCs) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas genome editing. This review discusses the wide-ranging applications of iPSCs and CRISPR-including disease modelling, diagnostics and therapeutics - with an ultimate view towards understanding how these two technologies can come together to address disease heterogeneity and orphan genes in a novel personalized medicine platform. An extensive literature search was conducted in PubMed and Google Scholar, with a particular focus on high-impact research published within the last 1 - 2 years and centered broadly on the subjects of retinal gene therapy, iPSC-derived outer retina cells, stem cell transplantation and CRISPR/Cas gene editing. For the retinal pigment epithelium, autologous transplantation of gene-corrected grafts derived from iPSCs may well be technically feasible in the near future. Photoreceptor transplantation faces more significant unresolved technical challenges but remains an achievable, if more distant, goal given the rapid pace of advancements in the field.

  17. [Econometric and ethical validation of regression logistics. Reducing of the number of patients in the evaluation of mortality].

    PubMed

    Castiel, D; Herve, C

    1992-01-01

    In general, a large number of patients is needed to conclude whether the results of a therapeutic strategy are significant or not. One can lower this number with a logit. The method has been proposed in an article published recently (Cost-utility analysis of early thrombolytic therapy, Pharmaco Economics, 1992). The present article is an essay aimed at validating the method, both from the econometric and ethical points of view.

  18. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells.

    PubMed

    Kang, N-H; Hwang, K-A; Kim, S U; Kim, Y-B; Hyun, S-H; Jeung, E-B; Choi, K-C

    2012-08-01

    As stem cells are capable of self-renewal and can generate differentiated progenies for organ development, they are considered as potential source for regenerative medicine and tissue replacement after injury or disease. Along with this capacity, stem cells have the therapeutic potential for treating human diseases including cancers. According to the origins, stem cells are broadly classified into two types: embryonic stem cells (ESCs) and adult stem cells. In terms of differentiation potential, ESCs are pluripotent and adult stem cells are multipotent. Amnion, which is a membranous sac that contains the fetus and amniotic fluid and functions in protecting the developing embryo during gestation, is another stem cell source. Amnion-derived stem cells are classified as human amniotic membrane-derived epithelial stem cells, human amniotic membrane-derived mesenchymal stem cells and human amniotic fluid-derived stem cells. They are in an intermediate stage between pluripotent ESCs and lineage-restricted adult stem cells, non-tumorigenic, and contribute to low immunogenicity and anti-inflammation. Furthermore, they are easily available and do not cause any controversial issues in their recovery and applications. Not only are amnion-derived stem cells applicable in regenerative medicine, they have anticancer capacity. In non-engineered stem cells transplantation strategies, amnion-derived stem cells effectively target the tumor and suppressed the tumor growth by expressing cytotoxic cytokines. Additionally, they also have a potential as novel delivery vehicles transferring therapeutic genes to the cancer formation sites in gene-directed enzyme/prodrug combination therapy. Owing to their own advantageous properties, amnion-derived stem cells are emerging as a new candidate in anticancer therapy.

  19. Novel delivery approaches for cancer therapeutics.

    PubMed

    Mitra, Ashim K; Agrahari, Vibhuti; Mandal, Abhirup; Cholkar, Kishore; Natarajan, Chandramouli; Shah, Sujay; Joseph, Mary; Trinh, Hoang M; Vaishya, Ravi; Yang, Xiaoyan; Hao, Yi; Khurana, Varun; Pal, Dhananjay

    2015-12-10

    Currently, a majority of cancer treatment strategies are based on the removal of tumor mass mainly by surgery. Chemical and physical treatments such as chemo- and radiotherapies have also made a major contribution in inhibiting rapid growth of malignant cells. Furthermore, these approaches are often combined to enhance therapeutic indices. It is widely known that surgery, chemo- and radiotherapy also inhibit normal cells growth. In addition, these treatment modalities are associated with severe side effects and high toxicity which in turn lead to low quality of life. This review encompasses novel strategies for more effective chemotherapeutic delivery aiming to generate better prognosis. Currently, cancer treatment is a highly dynamic field and significant advances are being made in the development of novel cancer treatment strategies. In contrast to conventional cancer therapeutics, novel approaches such as ligand or receptor based targeting, triggered release, intracellular drug targeting, gene delivery, cancer stem cell therapy, magnetic drug targeting and ultrasound-mediated drug delivery, have added new modalities for cancer treatment. These approaches have led to selective detection of malignant cells leading to their eradication with minimal side effects. Lowering multi-drug resistance and involving influx transportation in targeted drug delivery to cancer cells can also contribute significantly in the therapeutic interventions in cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Imaging enabled platforms for development of therapeutics

    NASA Astrophysics Data System (ADS)

    Celli, Jonathan; Rizvi, Imran; Blanden, Adam R.; Evans, Conor L.; Abu-Yousif, Adnan O.; Spring, Bryan Q.; Muzikansky, Alona; Pogue, Brian W.; Finkelstein, Dianne M.; Hasan, Tayyaba

    2011-03-01

    Advances in imaging and spectroscopic technologies have enabled the optimization of many therapeutic modalities in cancer and noncancer pathologies either by earlier disease detection or by allowing therapy monitoring. Amongst the therapeutic options benefiting from developments in imaging technologies, photodynamic therapy (PDT) is exceptional. PDT is a photochemistry-based therapeutic approach where a light-sensitive molecule (photosensitizer) is activated with light of appropriate energy (wavelength) to produce reactive molecular species such as free radicals and singlet oxygen. These molecular entities then react with biological targets such as DNA, membranes and other cellular components to impair their function and lead to eventual cell and tissue death. Development of PDT-based imaging also provides a platform for rapid screening of new therapeutics in novel in vitro models prior to expensive and labor-intensive animal studies. In this study we demonstrate how an imaging platform can be used for strategizing a novel combination treatment strategy for multifocal ovarian cancer. Using an in vitro 3D model for micrometastatic ovarian cancer in conjunction with quantitative imaging we examine dose and scheduling strategies for PDT in combination with carboplatin, a chemotherapeutic agent presently in clinical use for management of this deadly form of cancer.

  1. 3p22.1p21.31 microdeletion identifies CCK as Asperger syndrome candidate gene and shows the way for therapeutic strategies in chromosome imbalances.

    PubMed

    Iourov, Ivan Y; Vorsanova, Svetlana G; Voinova, Victoria Y; Yurov, Yuri B

    2015-01-01

    In contrast to other autism spectrum disorders, chromosome abnormalities are rare in Asperger syndrome (AS) or high-functioning autism. Consequently, AS was occasionally subjected to classical positional cloning. Here, we report on a case of AS associated with a deletion of the short arm of chromosome 3. Further in silico analysis has identified a candidate gene for AS and has suggested a therapeutic strategy for manifestations of the chromosome rearrangement. Using array comparative genomic hybridization, an interstitial deletion of 3p22.1p21.31 (~2.5 Mb in size) in a child with Asperger's syndrome, seborrheic dermatitis and chronic pancreatitis was detected. Original bioinformatic approach to the prioritization of candidate genes/processes identified CCK (cholecystokinin) as a candidate gene for AS. In addition to processes associated with deleted genes, bioinformatic analysis of CCK gene interactome indicated that zinc deficiency might be a pathogenic mechanism in this case. This suggestion was supported by plasma zinc concentration measurements. The increase of zinc intake produced a rise in zinc plasma concentration and the improvement in the patient's condition. Our study supported previous linkage findings and had suggested a new candidate gene in AS. Moreover, bioinformatic analysis identified the pathogenic mechanism, which was used to propose a therapeutic strategy for manifestations of the deletion. The relative success of this strategy allows speculating that therapeutic or dietary normalization of metabolic processes altered by a chromosome imbalance or genomic copy number variations may be a way for treating at least a small proportion of cases of these presumably incurable genetic conditions.

  2. Spinal Muscular Atrophy: Current Therapeutic Strategies

    NASA Astrophysics Data System (ADS)

    Kiselyov, Alex S.; Gurney, Mark E.

    Proximal spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by death of motor neurons in the spinal cord. SMA is caused by deletion and/or mutation of the survival motor neuron gene (SMN1) on chromosome 5q13. There are variable numbers of copies of a second, related gene named SMN2 located in the proximity to SMN1. Both genes encode the same protein (Smn). Loss of SMN1 and incorrect splicing of SMN2 affect cellular levels of Smn triggering death of motor neurons. The severity of SMA is directly related to the normal number of copies of SMN2 carried by the patient. A considerable effort has been dedicated to identifying modalities including both biological and small molecule agents that increase SMN2 promoter activity to upregulate gene transcription and produce increased quantities of full-length Smn protein. This review summarizes recent progress in the area and suggests potential target product profile for an SMA therapeutic.

  3. Molecular, genetic and stem cell-mediated therapeutic strategies for spinal muscular atrophy (SMA).

    PubMed

    Zanetta, Chiara; Riboldi, Giulietta; Nizzardo, Monica; Simone, Chiara; Faravelli, Irene; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania

    2014-02-01

    Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease. It is the first genetic cause of infant mortality. It is caused by mutations in the survival motor neuron 1 (SMN1) gene, leading to the reduction of SMN protein. The most striking component is the loss of alpha motor neurons in the ventral horn of the spinal cord, resulting in progressive paralysis and eventually premature death. There is no current treatment other than supportive care, although the past decade has seen a striking advancement in understanding of both SMA genetics and molecular mechanisms. A variety of disease modifying interventions are rapidly bridging the translational gap from the laboratory to clinical trials. In this review, we would like to outline the most interesting therapeutic strategies that are currently developing, which are represented by molecular, gene and stem cell-mediated approaches for the treatment of SMA. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies

    PubMed Central

    Yadav, Saveg; Pandey, Shrish Kumar; Singh, Vinay Kumar; Goel, Yugal; Kumar, Ajay

    2017-01-01

    Altered metabolism is an emerging hallmark of cancer, as malignant cells display a mammoth up-regulation of enzymes responsible for steering their bioenergetic and biosynthetic machinery. Thus, the recent anticancer therapeutic strategies focus on the targeting of metabolic enzymes, which has led to the identification of specific metabolic inhibitors. One of such inhibitors is 3-bromopyruvate (3-BP), with broad spectrum of anticancer activity due to its ability to inhibit multiple metabolic enzymes. However, the molecular characterization of its binding to the wide spectrum of target enzymes remains largely elusive. Therefore, in the present study we undertook in silico investigations to decipher the molecular nature of the docking of 3-BP with key target enzymes of glycolysis and TCA cycle by PatchDock and YASARA docking tools. Additionally, derivatives of 3-BP, dibromopyruvate (DBPA) and propionic acid (PA), with reported biological activity, were also investigated for docking to important target metabolic enzymes of 3-BP, in order to predict their therapeutic efficacy versus that of 3-BP. A comparison of the docking scores with respect to 3-BP indicated that both of these derivatives display a better binding strength to metabolic enzymes. Further, analysis of the drug likeness of 3-BP, DBPA and PA by Lipinski filter, admetSAR and FAF Drug3 indicated that all of these agents showed desirable drug-like criteria. The outcome of this investigation sheds light on the molecular characteristics of the binding of 3-BP and its derivatives with metabolic enzymes and thus may significantly contribute in designing and optimizing therapeutic strategies against cancer by using these agents. PMID:28463978

  5. Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies.

    PubMed

    Yadav, Saveg; Pandey, Shrish Kumar; Singh, Vinay Kumar; Goel, Yugal; Kumar, Ajay; Singh, Sukh Mahendra

    2017-01-01

    Altered metabolism is an emerging hallmark of cancer, as malignant cells display a mammoth up-regulation of enzymes responsible for steering their bioenergetic and biosynthetic machinery. Thus, the recent anticancer therapeutic strategies focus on the targeting of metabolic enzymes, which has led to the identification of specific metabolic inhibitors. One of such inhibitors is 3-bromopyruvate (3-BP), with broad spectrum of anticancer activity due to its ability to inhibit multiple metabolic enzymes. However, the molecular characterization of its binding to the wide spectrum of target enzymes remains largely elusive. Therefore, in the present study we undertook in silico investigations to decipher the molecular nature of the docking of 3-BP with key target enzymes of glycolysis and TCA cycle by PatchDock and YASARA docking tools. Additionally, derivatives of 3-BP, dibromopyruvate (DBPA) and propionic acid (PA), with reported biological activity, were also investigated for docking to important target metabolic enzymes of 3-BP, in order to predict their therapeutic efficacy versus that of 3-BP. A comparison of the docking scores with respect to 3-BP indicated that both of these derivatives display a better binding strength to metabolic enzymes. Further, analysis of the drug likeness of 3-BP, DBPA and PA by Lipinski filter, admetSAR and FAF Drug3 indicated that all of these agents showed desirable drug-like criteria. The outcome of this investigation sheds light on the molecular characteristics of the binding of 3-BP and its derivatives with metabolic enzymes and thus may significantly contribute in designing and optimizing therapeutic strategies against cancer by using these agents.

  6. Inhibition of c-Met as a Therapeutic Strategy for Esophageal Adenocarcinoma

    PubMed Central

    Watson, Gregory A; Zhang, Xinglu; Stang, Michael T; Levy, Ryan M; Queiroz de Oliveira, Pierre E; Gooding, William E; Christensen, James G; Hughes, Steven J

    2006-01-01

    Abstract The hepatocyte growth factor (HGF) receptor c-Met is a tyrosine kinase receptor with established oncogenic properties. We have previously shown that c-Met is usually overexpressed in esophageal adenocarcinoma (EA), yet the implications of c-Met inhibition in EA remain unknown. Three c-Met-overexpressing EA cell lines (Seg-1, Bic-1, and Flo-1) were used to examine the effects of a c-Met-specific small molecule inhibitor (PHA665752) on cell viability, apoptosis, motility, invasion, and downstream signaling pathways. PHA665752 demonstrated dose-dependent inhibition of constitutive and/or HGF-induced phosphorylation of c-Met, which correlated with reduced cell viability and inhibition of extracellular regulated kinase 1/2 phosphorylation in all three EA cell lines. In contrast, PHA665752 induced apoptosis and reduced motility and invasion in only one EA cell line, Flo-1. Interestingly, Flo-1 was the only cell line in which phosphatidylinositol 3-kinase (PI3K)/Akt was induced following HGF stimulation. The PI3K inhibitor LY294002 produced effects equivalent to those of PHA665752 in these cells. We conclude that inhibition of c-Met may be a useful therapeutic strategy for EA. Factors other than receptor overexpression, such as c-Met-dependent PI3K/Akt signaling, may be predictive of an individual tumor's response to c-Met inhibition. PMID:17132227

  7. Assessing self-regulation strategies: development and validation of the tempest self-regulation questionnaire for eating (TESQ-E) in adolescents.

    PubMed

    De Vet, Emely; De Ridder, Denise; Stok, Marijn; Brunso, Karen; Baban, Adriana; Gaspar, Tania

    2014-09-02

    Applying self-regulation strategies have proven important in eating behaviors, but it remains subject to investigation what strategies adolescents report to use to ensure healthy eating, and adequate measures are lacking. Therefore, we developed and validated a self-regulation questionnaire applied to eating (TESQ-E) for adolescents. Study 1 reports a four-step approach to develop the TESQ-E questionnaire (n = 1097). Study 2 was a cross-sectional survey among adolescents from nine European countries (n = 11,392) that assessed the TESQ-E, eating-related behaviors, dietary intake and background characteristics. In study 3, the TESQ-E was administered twice within four weeks to evaluate test-retest reliability (n = 140). Study 4 was a cross-sectional survey (n = 93) that assessed the TESQ-E and related psychological constructs (e.g., motivation, autonomy, self-control). All participants were aged between 10 and 17 years. Study 1 resulted in a 24-item questionnaire assessing adolescent-reported use of six specific strategies for healthy eating that represent three general self-regulation approaches. Study 2 showed that the easy-to-administer theory-based TESQ-E has a clear factor structure and good subscale reliabilities. The questionnaire was related to eating-related behaviors and dietary intake, indicating predictive validity. Study 3 showed good test-retest reliabilities for the TESQ-E. Study 4 indicated that TESQ-E was related to but also distinguishable from general self-regulation and motivation measures. The TESQ-E provides a reliable and valid measure to assess six theory-based self-regulation strategies that adolescents may use to ensure their healthy eating.

  8. Culturally Adapted Skill Use as a Therapeutic Alliance Catalyst

    ERIC Educational Resources Information Center

    Lewicki, Todd

    2015-01-01

    Purpose: In this article, I explore how the therapeutic alliance, along with culturally competent and adapted skill use can be positively correlated with treatment outcome when using the ecological validity model as the frame. The ecological validity model refers to the degree to which there is consistency between the environment as experienced by…

  9. Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer.

    PubMed

    Pandima Devi, Kasi; Rajavel, Tamilselvam; Daglia, Maria; Nabavi, Seyed Fazel; Bishayee, Anupam; Nabavi, Seyed Mohammad

    2017-10-01

    In the recent years, polyphenols have gained significant attention in scientific community owing to their potential anticancer effects against a wide range of human malignancies. Epidemiological, clinical and preclinical studies have supported that daily intake of polyphenol-rich dietary fruits have a strong co-relationship in the prevention of different types of cancer. In addition to direct antioxidant mechanisms, they also regulate several therapeutically important oncogenic signaling and transcription factors. However, after the discovery of microRNA (miRNA), numerous studies have identified that polyphenols, including epigallocatechin-3-gallate, genistein, resveratrol and curcumin exert their anticancer effects by regulating different miRNAs which are implicated in all the stages of cancer. MiRNAs are short, non-coding endogenous RNA, which silence the gene functions by targeting messenger RNA (mRNA) through degradation or translation repression. However, cancer associated miRNAs has emerged only in recent years to support its applications in cancer therapy. Preclinical experiments have suggested that deregulation of single miRNA is sufficient for neoplastic transformation of cells. Indeed, the widespread deregulation of several miRNA profiles of tumor and healthy tissue samples revealed the involvement of many types of miRNA in the development of numerous cancers. Hence, targeting the miRNAs using polyphenols will be a novel and promising strategy in anticancer chemotherapy. Herein, we have critically reviewed the potential applications of polyphenols on various human miRNAs, especially which are involved in oncogenic and tumor suppressor pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. In vivo optical activation of astrocytes as a potential therapeutic strategy for neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Chen, Yuanxin; Mancuso, James; Zhao, Zhen; Li, Xuping; Xue, Zhong; Wong, Stephen T. C.

    2013-03-01

    Neurovascular dysfunction in many neurodegenerative diseases, such as Alzheimer's disease (AD), reduces blood flow to affected brain areas and causes neuronal dysfunction and loss. A new optical imaging technique is developed to activate astrocytes in live animal models in order to investigate the increase of local cerebral blood flow as a potential therapeutic strategy for AD. The technique uses fluorescent labeling of vasculature and astrocytes coupled with intravital 2-photon microscopy to visualize the astrocyte-vasculature interactions in live animals. Using femtosecond laser stimulation, calcium uncaging is applied to specifically target and activate astrocytes in vivo with high spatial and temporal resolutions. Intravital 2-photon microscopy imaging was employed to demonstrate that single endfoot optical activation around an arteriole induced a 25% increase in arteriole diameter, which in turn increased cerebral local blood flow in down-stream capillaries. This quantitative result indicates the potential of using optical activation of astrocytes in afflicted brain areas of neurodegeneration to restore normal neurovascular functions.

  11. Therapeutic touch and agitation in individuals with Alzheimer's disease.

    PubMed

    Hawranik, Pamela; Johnston, Pat; Deatrich, Judith

    2008-06-01

    Limited effective strategies exist to alleviate or treat disruptive behaviors in people with Alzheimer's disease. Fifty-one residents of a long-term care facility with Alzheimer's disease were randomly assigned to one of three intervention groups. A multiple time series, blinded, experimental design was used to compare the effectiveness of therapeutic touch, simulated therapeutic touch, and usual care on disruptive behavior. Three forms of disruptive behavior comprised the dependent variables: physical aggression, physical nonaggression, and verbal agitation. Physical nonaggressive behaviors decreased significantly in those residents who received therapeutic touch compared with those who received the simulated version and the usual care. No significant differences in physically aggressive and verbally agitated behaviors were observed across the three study groups. The study provided preliminary evidence for the potential for therapeutic touch in dealing with agitated behaviors by people with dementia. Researchers and practitioners must consider a broad array of strategies to deal with these behaviors.

  12. Advances in Therapeutic Cancer Vaccines.

    PubMed

    Wong, Karrie K; Li, WeiWei Aileen; Mooney, David J; Dranoff, Glenn

    2016-01-01

    Therapeutic cancer vaccines aim to induce durable antitumor immunity that is capable of systemic protection against tumor recurrence or metastatic disease. Many approaches to therapeutic cancer vaccines have been explored, with varying levels of success. However, with the exception of Sipuleucel T, an ex vivo dendritic cell vaccine for prostate cancer, no therapeutic cancer vaccine has yet shown clinical efficacy in phase 3 randomized trials. Though disappointing, lessons learned from these studies have suggested new strategies to improve cancer vaccines. The clinical success of checkpoint blockade has underscored the role of peripheral tolerance mechanisms in limiting vaccine responses and highlighted the potential for combination therapies. Recent advances in transcriptome sequencing, computational modeling, and material engineering further suggest new opportunities to intensify cancer vaccines. This review will discuss the major approaches to therapeutic cancer vaccination and explore recent advances that inform the design of the next generation of cancer vaccines. © 2016 Elsevier Inc. All rights reserved.

  13. Therapeutic strategies based on modified U1 snRNAs and chaperones for Sanfilippo C splicing mutations.

    PubMed

    Matos, Liliana; Canals, Isaac; Dridi, Larbi; Choi, Yoo; Prata, Maria João; Jordan, Peter; Desviat, Lourdes R; Pérez, Belén; Pshezhetsky, Alexey V; Grinberg, Daniel; Alves, Sandra; Vilageliu, Lluïsa

    2014-12-10

    Mutations affecting RNA splicing represent more than 20% of the mutant alleles in Sanfilippo syndrome type C, a rare lysosomal storage disorder that causes severe neurodegeneration. Many of these mutations are localized in the conserved donor or acceptor splice sites, while few are found in the nearby nucleotides. In this study we tested several therapeutic approaches specifically designed for different splicing mutations depending on how the mutations affect mRNA processing. For three mutations that affect the donor site (c.234 + 1G > A, c.633 + 1G > A and c.1542 + 4dupA), different modified U1 snRNAs recognizing the mutated donor sites, have been developed in an attempt to rescue the normal splicing process. For another mutation that affects an acceptor splice site (c.372-2A > G) and gives rise to a protein lacking four amino acids, a competitive inhibitor of the HGSNAT protein, glucosamine, was tested as a pharmacological chaperone to correct the aberrant folding and to restore the normal trafficking of the protein to the lysosome. Partial correction of c.234 + 1G > A mutation was achieved with a modified U1 snRNA that completely matches the splice donor site suggesting that these molecules may have a therapeutic potential for some splicing mutations. Furthermore, the importance of the splice site sequence context is highlighted as a key factor in the success of this type of therapy. Additionally, glucosamine treatment resulted in an increase in the enzymatic activity, indicating a partial recovery of the correct folding. We have assayed two therapeutic strategies for different splicing mutations with promising results for the future applications.

  14. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies.

    PubMed

    Lopez Sanchez, M I G; Crowston, J G; Mackey, D A; Trounce, I A

    2016-09-01

    Optic neuropathies are an important cause of blindness worldwide. The study of the most common inherited mitochondrial optic neuropathies, Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA) has highlighted a fundamental role for mitochondrial function in the survival of the affected neuron-the retinal ganglion cell. A picture is now emerging that links mitochondrial dysfunction to optic nerve disease and other neurodegenerative processes. Insights gained from the peculiar susceptibility of retinal ganglion cells to mitochondrial dysfunction are likely to inform therapeutic development for glaucoma and other common neurodegenerative diseases of aging. Despite it being a fast-evolving field of research, a lack of access to human ocular tissues and limited animal models of mitochondrial disease have prevented direct retinal ganglion cell experimentation and delayed the development of efficient therapeutic strategies to prevent vision loss. Currently, there are no approved treatments for mitochondrial disease, including optic neuropathies caused by primary or secondary mitochondrial dysfunction. Recent advances in eye research have provided important insights into the molecular mechanisms that mediate pathogenesis, and new therapeutic strategies including gene correction approaches are currently being investigated. Here, we review the general principles of mitochondrial biology relevant to retinal ganglion cell function and provide an overview of the major optic neuropathies with mitochondrial involvement, LHON and ADOA, whilst highlighting the emerging link between mitochondrial dysfunction and glaucoma. The pharmacological strategies currently being trialed to improve mitochondrial dysfunction in these optic neuropathies are discussed in addition to emerging therapeutic approaches to preserve retinal ganglion cell function. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Marketing therapeutic recreation services.

    PubMed

    Thorn, B E

    1984-01-01

    The use of marketing strategies can enhance the delivery of therapeutic recreation services. This article discusses how agencies can adapt marketing techniques and use them to identify potential markets, improve image, evaluate external pressures, and maximize internal strengths. Four variables that can be controlled and manipulated in a proposed marketing plan are product, price, place and promotion.

  16. Ebola virus (EBOV) infection: Therapeutic strategies.

    PubMed

    De Clercq, Erik

    2015-01-01

    Within less than a year after its epidemic started (in December 2013) in Guinea, Ebola virus (EBOV), a member of the filoviridae, has spread over a number of West-African countries (Guinea, Sierra Leone and Liberia) and gained allures that have been unprecedented except by human immunodeficiency virus (HIV). Although EBOV is highly contagious and transmitted by direct contact with body fluids, it could be counteracted by the adequate chemoprophylactic and -therapeutic interventions: vaccines, antibodies, siRNAs (small interfering RNAs), interferons and chemical substances, i.e. neplanocin A derivatives (i.e. 3-deazaneplanocin A), BCX4430, favipiravir (T-705), endoplasmic reticulum (ER) α-glucosidase inhibitors and a variety of compounds that have been found to inhibit EBOV infection blocking viral entry or by a mode of action that still has to be resolved. Much has to be learned from the mechanism of action of the compounds active against VSV (vesicular stomatitis virus), a virus belonging to the rhabdoviridae, that in its mode of replication could be exemplary for the replication of filoviridae. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Quercetin as an Emerging Anti-Melanoma Agent: A Four-Focus Area Therapeutic Development Strategy.

    PubMed

    Harris, Zoey; Donovan, Micah G; Branco, Gisele Morais; Limesand, Kirsten H; Burd, Randy

    2016-01-01

    Replacing current refractory treatments for melanoma with new prevention and therapeutic approaches is crucial in order to successfully treat this aggressive cancer form. Melanoma develops from neural crest cells, which express tyrosinase - a key enzyme in the pigmentation pathway. The tyrosinase enzyme is highly active in melanoma cells and metabolizes polyphenolic compounds; tyrosinase expression thus makes feasible a target for polyphenol-based therapies. For example, quercetin (3,3',4',5,7-pentahydroxyflavone) is a highly ubiquitous and well-classified dietary polyphenol found in various fruits, vegetables, and other plant products including onions, broccoli, kale, oranges, blueberries, apples, and tea. Quercetin has demonstrated antiproliferative and proapoptotic activity in various cancer cell types. Quercetin is readily metabolized by tyrosinase into various compounds that promote anticancer activity; additionally, given that tyrosinase expression increases during tumorigenesis, and its activity is associated with pigmentation changes in both early- and late-stage melanocytic lesions, it suggests that quercetin can be used to target melanoma. In this review, we explore the potential of quercetin as an anti-melanoma agent utilizing and extrapolating on evidence from previous in vitro studies in various human malignant cell lines and propose a "four-focus area strategy" to develop quercetin as a targeted anti-melanoma compound for use as either a preventative or therapeutic agent. The four areas of focus include utilizing quercetin to (i) modulate cellular bioreduction potential and associated signaling cascades, (ii) affect transcription of relevant genes, (iii) regulate epigenetic processes, and (iv) develop effective combination therapies and delivery modalities/protocols. In general, quercetin could be used to exploit tyrosinase activity to prevent, and/or treat, melanoma with minimal additional side effects.

  18. Therapeutic gene editing: delivery and regulatory perspectives.

    PubMed

    Shim, Gayong; Kim, Dongyoon; Park, Gyu Thae; Jin, Hyerim; Suh, Soo-Kyung; Oh, Yu-Kyoung

    2017-06-01

    Gene-editing technology is an emerging therapeutic modality for manipulating the eukaryotic genome by using target-sequence-specific engineered nucleases. Because of the exceptional advantages that gene-editing technology offers in facilitating the accurate correction of sequences in a genome, gene editing-based therapy is being aggressively developed as a next-generation therapeutic approach to treat a wide range of diseases. However, strategies for precise engineering and delivery of gene-editing nucleases, including zinc finger nucleases, transcription activator-like effector nuclease, and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease Cas9), present major obstacles to the development of gene-editing therapies, as with other gene-targeting therapeutics. Currently, viral and non-viral vectors are being studied for the delivery of these nucleases into cells in the form of DNA, mRNA, or proteins. Clinical trials are already ongoing, and in vivo studies are actively investigating the applicability of CRISPR/Cas9 techniques. However, the concept of correcting the genome poses major concerns from a regulatory perspective, especially in terms of safety. This review addresses current research trends and delivery strategies for gene editing-based therapeutics in non-clinical and clinical settings and considers the associated regulatory issues.

  19. Therapeutic gene editing: delivery and regulatory perspectives

    PubMed Central

    Shim, Gayong; Kim, Dongyoon; Park, Gyu Thae; Jin, Hyerim; Suh, Soo-Kyung; Oh, Yu-Kyoung

    2017-01-01

    Gene-editing technology is an emerging therapeutic modality for manipulating the eukaryotic genome by using target-sequence-specific engineered nucleases. Because of the exceptional advantages that gene-editing technology offers in facilitating the accurate correction of sequences in a genome, gene editing-based therapy is being aggressively developed as a next-generation therapeutic approach to treat a wide range of diseases. However, strategies for precise engineering and delivery of gene-editing nucleases, including zinc finger nucleases, transcription activator-like effector nuclease, and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease Cas9), present major obstacles to the development of gene-editing therapies, as with other gene-targeting therapeutics. Currently, viral and non-viral vectors are being studied for the delivery of these nucleases into cells in the form of DNA, mRNA, or proteins. Clinical trials are already ongoing, and in vivo studies are actively investigating the applicability of CRISPR/Cas9 techniques. However, the concept of correcting the genome poses major concerns from a regulatory perspective, especially in terms of safety. This review addresses current research trends and delivery strategies for gene editing-based therapeutics in non-clinical and clinical settings and considers the associated regulatory issues. PMID:28392568

  20. Understanding and Therapeutic Strategies of Chinese Medicine on Gut-Derived Uremic Toxins in Chronic Kidney Disease.

    PubMed

    Guo, Chuan; Rao, Xiang-Rong

    2018-05-11

    Chronic kidney disease (CKD) is a major disease that threatens human health. With the progression of CKD, the risk of cardiovascular death increases, which is associated with the elevated levels of uremic toxins (UTs). Representative toxins such as indoxyl sulfate and p-cresyl sulfate are involed in CKD progression and cardiovascular events inseparable from the key role of endothelial dysfunction. The therapeutic strategies of UTs are aimed at signaling pathways that target the levels and damage of toxins in modern medicine. There is a certain relevance between toxins and "turbid toxin" in the theory of Chinese medicine (CM). CM treatments have been demonstrated to reduce the damage of gut-derived toxins to the heart, kidney and blood vessels. Modern medicine still lacks evidence-based therapies, so it is necessary to explore the treatments of CM.

  1. Therapeutic Substance Abuse Treatment for Incarcerated Women

    PubMed Central

    Finfgeld-Connett, Deborah; Johnson, E. Diane

    2011-01-01

    The purpose of this qualitative systematic review was to explicate attributes of optimal therapeutic strategies for treating incarcerated women who have a history of substance abuse. An expansive search of electronic databases for qualitative research reports relating to substance abuse treatment for incarcerated women was conducted. Nine qualitative research reports comprised the sample for this review. Findings from these reports were extracted, placed into a data analysis matrix, coded, and categorized. Memos were written, and strategies for treating incarcerated women with alcohol problems were identified. Therapeutic effects of treatment programs for incarcerated women with substance-abuse problems appear to be enhanced when trust-based relationships are established, individualized and just care is provided, and treatment facilities are separate from the general prison environment. PMID:21771929

  2. Targeting activator protein 1 signaling pathway by bioactive natural agents: Possible therapeutic strategy for cancer prevention and intervention.

    PubMed

    Tewari, Devesh; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad; Sureda, Antoni; Farooqi, Ammad Ahmad; Atanasov, Atanas G; Vacca, Rosa Anna; Sethi, Gautam; Bishayee, Anupam

    2018-02-01

    Activator protein 1 (AP-1) is a key transcription factor in the control of several cellular processes responsible for cell survival proliferation and differentiation. Dysfunctional AP-1 expression and activity are involved in several severe diseases, especially inflammatory disorders and cancer. Therefore, targeting AP-1 has recently emerged as an attractive therapeutic strategy for cancer prevention and therapy. This review summarizes our current understanding of AP-1 biology and function as well as explores and discusses several natural bioactive compounds modulating AP-1-associated signaling pathways for cancer prevention and intervention. Current limitations, challenges, and future directions of research are also critically discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Future Perspectives: Therapeutic Targeting of Notch Signalling May Become a Strategy in Patients Receiving Stem Cell Transplantation for Hematologic Malignancies

    PubMed Central

    Ersvaer, Elisabeth; Hatfield, Kimberley J.; Reikvam, Håkon; Bruserud, Øystein

    2011-01-01

    The human Notch system consists of 5 ligands and 4 membrane receptors with promiscuous ligand binding, and Notch-initiated signalling interacts with a wide range of other intracellular pathways. The receptor signalling seems important for regulation of normal and malignant hematopoiesis, development of the cellular immune system, and regulation of immune responses. Several Notch-targeting agents are now being developed, including natural receptor ligands, agonistic and antagonistic antibodies, and inhibitors of intracellular Notch-initiated signalling. Some of these agents are in clinical trials, and several therapeutic strategies seem possible in stem cell recipients: (i) agonists may be used for stem cell expansion and possibly to enhance posttransplant lymphoid reconstitution; (ii) receptor-specific agonists or antagonists can be used for immunomodulation; (iii) Notch targeting may have direct anticancer effects. Although the effects of therapeutic targeting are difficult to predict due to promiscuous ligand binding, targeting of this system may represent an opportunity to achieve combined effects with earlier posttransplant reconstitution, immunomodulation, or direct anticancer effects. PMID:22046566

  4. Systematic approach identifies RHOA as a potential biomarker therapeutic target for Asian gastric cancer

    PubMed Central

    Jung, Hae Rim; Park, Hee Seo; Park, Sungjin; Ahn, Young Zoo; Huh, Iksoo; Balch, Curt; Ku, Ja-Lok; Powis, Garth; Park, Taesung; Jeong, Jin-Hyun; Kim, Yon Hui

    2016-01-01

    Gastric cancer (GC) is a highly heterogeneous disease, in dire need of specific, biomarker-driven cancer therapies. While the accumulation of cancer “Big Data” has propelled the search for novel molecular targets for GC, its specific subpathway and cellular functions vary from patient to patient. In particular, mutations in the small GTPase gene RHOA have been identified in recent genome-wide sequencing of GC tumors. Moreover, protein overexpression of RHOA was reported in Chinese populations, while RHOA mutations were found in Caucasian GC tumors. To develop evidence-based precision medicine for heterogeneous cancers, we established a systematic approach to integrate transcriptomic and genomic data. Predicted signaling subpathways were then laboratory-validated both in vitro and in vivo, resulting in the identification of new candidate therapeutic targets. Here, we show: i) differences in RHOA expression patterns, and its pathway activity, between Asian and Caucasian GC tumors; ii) in vitro and in vivo perturbed RHOA expression inhibits GC cell growth in high RHOA-expressing cell lines; iii) inverse correlation between RHOA and RHOB expression; and iv) an innovative small molecule design strategy for RHOA inhibitors. In summary, RHOA, and its oncogenic signaling pathway, represent a strong biomarker-driven therapeutic target for Asian GC. This comprehensive strategy represents a promising approach for the development of “hit” compounds. PMID:27806312

  5. Inferences of drug responses in cancer cells from cancer genomic features and compound chemical and therapeutic properties

    PubMed Central

    Wang, Yongcui; Fang, Jianwen; Chen, Shilong

    2016-01-01

    Accurately predicting the response of a cancer patient to a therapeutic agent is a core goal of precision medicine. Existing approaches were mainly relied primarily on genomic alterations in cancer cells that have been treated with different drugs. Here we focus on predicting drug response based on integration of the heterogeneously pharmacogenomics data from both cell and drug sides. Through a systematical approach, named as PDRCC (Predict Drug Response in Cancer Cells), the cancer genomic alterations and compound chemical and therapeutic properties were incorporated to determine the chemotherapeutic response in cancer patients. Using the Cancer Cell Line Encyclopedia (CCLE) study as the benchmark dataset, all pharmacogenomics data exhibited their roles in inferring the relationships between cancer cells and drugs. When integrating both genomic resources and compound information, the prediction coverage was significantly increased. The validity of PDRCC was also supported by its effective in uncovering the unknown cell-drug associations with database and literature evidences. It set the stage for clinical testing of novel therapeutic strategies, such as the sensitive association between cancer cell ‘A549_LUNG’ and compound ‘Topotecan’. In conclusion, PDRCC offers the possibility for faster, safer, and cheaper the development of novel anti-cancer therapeutics in the early-stage clinical trails. PMID:27645580

  6. Inferences of drug responses in cancer cells from cancer genomic features and compound chemical and therapeutic properties

    NASA Astrophysics Data System (ADS)

    Wang, Yongcui; Fang, Jianwen; Chen, Shilong

    2016-09-01

    Accurately predicting the response of a cancer patient to a therapeutic agent is a core goal of precision medicine. Existing approaches were mainly relied primarily on genomic alterations in cancer cells that have been treated with different drugs. Here we focus on predicting drug response based on integration of the heterogeneously pharmacogenomics data from both cell and drug sides. Through a systematical approach, named as PDRCC (Predict Drug Response in Cancer Cells), the cancer genomic alterations and compound chemical and therapeutic properties were incorporated to determine the chemotherapeutic response in cancer patients. Using the Cancer Cell Line Encyclopedia (CCLE) study as the benchmark dataset, all pharmacogenomics data exhibited their roles in inferring the relationships between cancer cells and drugs. When integrating both genomic resources and compound information, the prediction coverage was significantly increased. The validity of PDRCC was also supported by its effective in uncovering the unknown cell-drug associations with database and literature evidences. It set the stage for clinical testing of novel therapeutic strategies, such as the sensitive association between cancer cell ‘A549_LUNG’ and compound ‘Topotecan’. In conclusion, PDRCC offers the possibility for faster, safer, and cheaper the development of novel anti-cancer therapeutics in the early-stage clinical trails.

  7. Inferences of drug responses in cancer cells from cancer genomic features and compound chemical and therapeutic properties.

    PubMed

    Wang, Yongcui; Fang, Jianwen; Chen, Shilong

    2016-09-20

    Accurately predicting the response of a cancer patient to a therapeutic agent is a core goal of precision medicine. Existing approaches were mainly relied primarily on genomic alterations in cancer cells that have been treated with different drugs. Here we focus on predicting drug response based on integration of the heterogeneously pharmacogenomics data from both cell and drug sides. Through a systematical approach, named as PDRCC (Predict Drug Response in Cancer Cells), the cancer genomic alterations and compound chemical and therapeutic properties were incorporated to determine the chemotherapeutic response in cancer patients. Using the Cancer Cell Line Encyclopedia (CCLE) study as the benchmark dataset, all pharmacogenomics data exhibited their roles in inferring the relationships between cancer cells and drugs. When integrating both genomic resources and compound information, the prediction coverage was significantly increased. The validity of PDRCC was also supported by its effective in uncovering the unknown cell-drug associations with database and literature evidences. It set the stage for clinical testing of novel therapeutic strategies, such as the sensitive association between cancer cell 'A549_LUNG' and compound 'Topotecan'. In conclusion, PDRCC offers the possibility for faster, safer, and cheaper the development of novel anti-cancer therapeutics in the early-stage clinical trails.

  8. [Therapeutic strategies against myasthenia gravis].

    PubMed

    Utsugisawa, Kimiaki; Nagane, Yuriko

    2013-05-01

    Many patients with myasthenia gravis (MG) still find it difficult to maintain daily activities due to chronic residual fatigability and long-term side effects of oral corticosteroids, since full remission is not common. Our analysis demonstrated that disease severity, oral corticosteroids, and depressive state are the major factors negatively associated with QOL, and that QOL of MM status patients taking < or = 5 mg prednisolne/day is identically good as that seen in CSR and is a target of treatment. In order to achieve early MM or better status with prednisolne < or = 5 mg/day, we advocate the early aggressive treatment strategy that can achieve early improvement by performing an aggressive therapy using combined treatment with plasmapheresis and high-dose intravenous methylprednisolone and then maintain an improved status using low-dose oral corticosteroids and calcineurin inhibitors.

  9. Enteric microbiota leads to new therapeutic strategies for ulcerative colitis.

    PubMed

    Chen, Wei-Xu; Ren, Li-Hua; Shi, Rui-Hua

    2014-11-14

    Ulcerative colitis (UC) is a leading form of inflammatory bowel disease that involves chronic relapsing or progressive inflammation. As a significant proportion of UC patients treated with conventional therapies do not achieve remission, there is a pressing need for the development of more effective therapies. The human gut contains a large, diverse, and dynamic population of microorganisms, collectively referred to as the enteric microbiota. There is a symbiotic relationship between the human host and the enteric microbiota, which provides nutrition, protection against pathogenic organisms, and promotes immune homeostasis. An imbalance of the normal enteric microbiota composition (termed dysbiosis) underlies the pathogenesis of UC. A reduction of enteric microbiota diversity has been observed in UC patients, mainly affecting the butyrate-producing bacteria, such as Faecalibacterium prausnitzii, which can repress pro-inflammatory cytokines. Many studies have shown that enteric microbiota plays an important role in anti-inflammatory and immunoregulatory activities, which can benefit UC patients. Therefore, manipulation of the dysbiosis is an attractive approach for UC therapy. Various therapies targeting a restoration of the enteric microbiota have shown efficacy in treating patients with active and chronic forms of UC. Such therapies include fecal microbiota transplantation, probiotics, prebiotics, antibiotics, helminth therapy, and dietary polyphenols, all of which can alter the abundance and composition of the enteric microbiota. Although there have been many large, randomized controlled clinical trials assessing these treatments, the effectiveness and safety of these bacteria-driven therapies need further evaluation. This review focuses on the important role that the enteric microbiota plays in maintaining intestinal homeostasis and discusses new therapeutic strategies targeting the enteric microbiota for UC.

  10. N-Palmitoylethanolamine and Neuroinflammation: a Novel Therapeutic Strategy of Resolution.

    PubMed

    Skaper, Stephen D; Facci, Laura; Barbierato, Massimo; Zusso, Morena; Bruschetta, Giuseppe; Impellizzeri, Daniela; Cuzzocrea, Salvatore; Giusti, Pietro

    2015-10-01

    Inflammation is fundamentally a protective cellular response aimed at removing injurious stimuli and initiating the healing process. However, when prolonged, it can override the bounds of physiological control and becomes destructive. Inflammation is a key element in the pathobiology of chronic pain, neurodegenerative diseases, stroke, spinal cord injury, and neuropsychiatric disorders. Glia, key players in such nervous system disorders, are not only capable of expressing a pro-inflammatory phenotype but respond also to inflammatory signals released from cells of immune origin such as mast cells. Chronic inflammatory processes may be counteracted by a program of resolution that includes the production of lipid mediators endowed with the capacity to switch off inflammation. These naturally occurring lipid signaling molecules include the N-acylethanolamines, N-arachidonoylethanolamine (an endocannabinoid), and its congener N-palmitoylethanolamine (palmitoylethanolamide or PEA). PEA may play a role in maintaining cellular homeostasis when faced with external stressors provoking, for example, inflammation. PEA is efficacious in mast cell-mediated models of neurogenic inflammation and neuropathic pain and is neuroprotective in models of stroke, spinal cord injury, traumatic brain injury, and Parkinson disease. PEA in micronized/ultramicronized form shows superior oral efficacy in inflammatory pain models when compared to naïve PEA. Intriguingly, while PEA has no antioxidant effects per se, its co-ultramicronization with the flavonoid luteolin is more efficacious than either molecule alone. Inhibiting or modulating the enzymatic breakdown of PEA represents a complementary therapeutic approach to treat neuroinflammation. This review is intended to discuss the role of mast cells and glia in neuroinflammation and strategies to modulate their activation based on leveraging natural mechanisms with the capacity for self-defense against inflammation.

  11. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies.

    PubMed

    Ciechanover, Aaron; Kwon, Yong Tae

    2015-03-13

    Mammalian cells remove misfolded proteins using various proteolytic systems, including the ubiquitin (Ub)-proteasome system (UPS), chaperone mediated autophagy (CMA) and macroautophagy. The majority of misfolded proteins are degraded by the UPS, in which Ub-conjugated substrates are deubiquitinated, unfolded and cleaved into small peptides when passing through the narrow chamber of the proteasome. The substrates that expose a specific degradation signal, the KFERQ sequence motif, can be delivered to and degraded in lysosomes via the CMA. Aggregation-prone substrates resistant to both the UPS and the CMA can be degraded by macroautophagy, in which cargoes are segregated into autophagosomes before degradation by lysosomal hydrolases. Although most misfolded and aggregated proteins in the human proteome can be degraded by cellular protein quality control, some native and mutant proteins prone to aggregation into β-sheet-enriched oligomers are resistant to all known proteolytic pathways and can thus grow into inclusion bodies or extracellular plaques. The accumulation of protease-resistant misfolded and aggregated proteins is a common mechanism underlying protein misfolding disorders, including neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), prion diseases and Amyotrophic Lateral Sclerosis (ALS). In this review, we provide an overview of the proteolytic pathways in neurons, with an emphasis on the UPS, CMA and macroautophagy, and discuss the role of protein quality control in the degradation of pathogenic proteins in neurodegenerative diseases. Additionally, we examine existing putative therapeutic strategies to efficiently remove cytotoxic proteins from degenerating neurons.

  12. Advances in sarcoma genomics and new therapeutic targets

    PubMed Central

    Taylor, Barry S.; Barretina, Jordi; Maki, Robert G.; Antonescu, Cristina R.; Singer, Samuel; Ladanyi, Marc

    2012-01-01

    Preface Increasingly, human mesenchymal malignancies are classified by the abnormalities that drive their pathogenesis. While many of these aberrations are highly prevalent within particular sarcoma subtypes, few are currently targeted therapeutically. Indeed, most subtypes of sarcoma are still treated with traditional therapeutic modalities and in many cases are resistant to adjuvant therapies. In this Review, we discuss the core molecular determinants of sarcomagenesis and emphasize the emerging genomic and functional genetic approaches that, coupled to novel therapeutic strategies, have the potential to transform the care of patients with sarcoma. PMID:21753790

  13. [Premenstrual dysphoric disorder: diagnosis and therapeutic strategy].

    PubMed

    Bianchi-Demicheli, F

    2006-02-08

    Prementrual dysphoric disorder (PMDD) is considered to be a very severe form of the premenstrual syndrome (PMS) that occurs regularly in the last week of the luteal phase of the cycle and begin to remit after the onset of follicular phase and is absent in the week postmenses. What sets PMDD apart from PMS is its severity and its dominant psychiatric symptoms. PMDD includes depression, anxiety, tension, irritability and moodiness. Moreover, women with PMDD find that it has a very disruptive effect on their everyday lives. Although, many treatments have been used for PMDD over the years, PMDD remains difficult to be cured. Until recently, only few of these treatments were evaluated in carefully designed research studies and even fewer were shown to be effective. Here, we discuss the different therapeutic options for PMDD.

  14. MicroRNA-targeted therapeutics for lung cancer treatment.

    PubMed

    Xue, Jing; Yang, Jiali; Luo, Meihui; Cho, William C; Liu, Xiaoming

    2017-02-01

    Lung cancer is one of the leading causes of cancer-related mortality worldwide. MicroRNAs (miRNAs) are endogenous non-coding small RNAs that repress the expression of a broad array of target genes. Many efforts have been made to therapeutically target miRNAs in cancer treatments using miRNA mimics and miRNA antagonists. Areas covered: This article summarizes the recent findings with the role of miRNAs in lung cancer, and discusses the potential and challenges of developing miRNA-targeted therapeutics in this dreadful disease. Expert opinion: The development of miRNA-targeted therapeutics has become an important anti-cancer strategy. Results from both preclinical and clinical trials of microRNA replacement therapy have shown some promise in cancer treatment. However, some obstacles, including drug delivery, specificity, off-target effect, toxicity mediation, immunological activation and dosage determination should be addressed. Several delivery strategies have been employed, including naked oligonucleotides, liposomes, aptamer-conjugates, nanoparticles and viral vectors. However, delivery remains a main challenge in miRNA-targeting therapeutics. Furthermore, immune-related serious adverse events are also a concern, which indicates the complexity of miRNA-based therapy in clinical settings.

  15. Challenges and new strategies for therapeutic peptide delivery to the CNS.

    PubMed

    McGowan, Jeremy Wd; Bidwell, Gene L; Vig, Parminder Js

    2015-07-01

    Therapeutic peptides represent a largely untapped resource in medicine today, especially in the central nervous system. Despite their ease of design and remarkably high target specificity, it is difficult to deliver them beyond the blood-brain barrier or into the required intracellular compartments. In addition, the instability of these peptides in vivo precludes their use to combat the symptoms of numerous neurological disorders including Alzheimer's disease and spinocerebellar ataxia. In this review, we aim to characterize recent advances in the delivery of therapeutic peptides to the central nervous system past the blood-brain barrier and discuss the advantages and disadvantages of the examined methods as well as explore new potential directions.

  16. A therapeutic-only versus prophylactic platelet transfusion strategy for preventing bleeding in patients with haematological disorders after myelosuppressive chemotherapy or stem cell transplantation

    PubMed Central

    Crighton, Gemma L; Estcourt, Lise J; Wood, Erica M; Trivella, Marialena; Doree, Carolyn; Stanworth, Simon

    2015-01-01

    expected by The Cochrane Collaboration. Main results We identified seven RCTs that compared therapeutic platelet transfusions to prophylactic platelet transfusions in haematology patients undergoing myelosuppressive chemotherapy or HSCT. One trial is still ongoing, leaving six trials eligible with a total of 1195 participants. These trials were conducted between 1978 and 2013 and enrolled participants from fairly comparable patient populations. We were able to critically appraise five of these studies, which contained separate data for each arm, and were unable to perform quantitative analysis on one study that did not report the numbers of participants in each treatment arm. Overall the quality of evidence per outcome was low to moderate according to the GRADE approach. None of the included studies were at low risk of bias in every domain, and all the studies identified had some threats to validity. We deemed only one study to be at low risk of bias in all domains other than blinding. Two RCTs (801 participants) reported at least one bleeding episode within 30 days of the start of the study. We were unable to perform a meta-analysis due to considerable statistical heterogeneity between studies. The statistical heterogeneity seen may relate to the different methods used in studies for the assessment and grading of bleeding. The underlying patient diagnostic and treatment categories also appeared to have some effect on bleeding risk. Individually these studies showed a similar effect, that a therapeutic-only platelet transfusion strategy was associated with an increased risk of clinically significant bleeding compared with a prophylactic platelet transfusion policy. Number of days with a clinically significant bleeding event per participant was higher in the therapeutic-only group than in the prophylactic group (one RCT; 600 participants; mean difference 0.50, 95% confidence interval (CI) 0.10 to 0.90; moderate-quality evidence). There was insufficient evidence to determine

  17. Therapeutic Modalities in Diabetic Nephropathy: Future Approaches*

    PubMed Central

    Reeves, William Brian; Rawal, Bishal B.; Abdel-Rahman, Emaad M.; Awad, Alaa S.

    2012-01-01

    Diabetes mellitus is the leading cause of end stage renal disease and is responsible for more than 40% of all cases in the United States. Several therapeutic interventions for the treatment of diabetic nephropathy have been developed and implemented over the past few decades with some degree of success. However, the renal protection provided by these therapeutic modalities is incomplete. More effective approaches are therefore urgently needed. Recently, several novel therapeutic strategies have been explored in treating DN patients including Islet cell transplant, Aldose reductase inhibitors, Sulodexide (GAC), Protein Kinase C (PKC) inhibitors, Connective tissue growth factor (CTGF) inhibitors, Transforming growth factor-beta (TGF-β) inhibitors and bardoxolone. The benefits and risks of these agents are still under investigation. This review aims to summarize the utility of these novel therapeutic approaches. PMID:23293752

  18. [Therapeutic itineraries of users of medication in a unit of the Family Heatlh Strategy].

    PubMed

    Guerin, Giliane Dorneles; Rossoni, Eloá; Bueno, Denise

    2012-11-01

    Therapeutic itineraries represent the trajectories taken by individuals in an attempt to resolve their health problems. The objective of this study was to analyze the trajectory when user prescription medication needs were not met in a Family Health Strategy Unit of the city of Porto Alegre. A database of users whose prescription needs were not fully met and the application of a questionnaire during home visits was performed. Users interviewed were between 53 and 85 years of age. The main problems reported were lack of money, physical difficulty in locomotion, side effects, illegible prescriptions, unavailability of medication in the local pharmacies of the city, fear of effects attributed to the medication, and "bureaucracy." When the medication is not available at the health unit, most users (60%) reported buying it. With respect to the communication of the family health team in the orientation of ways that the user can gain access to the medication, 25% of the respondents reported that the team did not provide necessary information about the alternate location for the acquisition of the medication that was lacking.

  19. Combined Gemcitabine and Metronidazole Is a Promising Therapeutic Strategy for Cancer Stem-like Cholangiocarcinoma.

    PubMed

    Kawamoto, Makoto; Umebayashi, Masayo; Tanaka, Hiroto; Koya, Norihiro; Nakagawa, Sinichiro; Kawabe, Ken; Onishi, Hideya; Nakamura, Masafumi; Morisaki, Takashi

    2018-05-01

    Metronidazole (MNZ) is a common antibiotic that exerts disulfiram-like effects when taken together with alcohol. However, the relationship between MNZ and aldehyde dehydrogenase (ALDH) activity remains unclear. This study investigated whether MNZ reduces cancer stemness by suppressing ALDH activity and accordingly reducing the malignancy of cholangiocarcinoma (CCA). We developed gemcitabine (GEM)-resistant TFK-1 cells and originally established CCA cell line from a patient with GEM-resistant CCA. Using these cell lines, we analyzed the impacts of MNZ for cancer stem cell markers, invasiveness, and chemosensitivity. MNZ reduced ALDH activity in GEM-resistant CCA cells, leading to decreased invasiveness and enhanced chemosensitivity. MNZ diminished the invasiveness by inducing mesenchymal-epithelial transition and enhancing chemosensitivity by increasing ENT1 (equilibrative nucleoside transporter 1) and reducing RRM1 (ribonucleotide reductase M1). MNZ reduced cancer stemness in GEM-resistant CCA cells. Combined GEM and MNZ would be a promising therapeutic strategy for cancer stem-like CAA. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Nanoformulation: A Useful Therapeutic Strategy for Improving Neuroprotection and the Neurorestorative Potential in Experimental Models of Parkinson's Disease.

    PubMed

    Lafuente, Jose V; Requejo, Catalina; Carrasco, Alejandro; Bengoetxea, Harkaitz

    2017-01-01

    Parkinson's disease (PD) is the second most frequent neurodegenerative disorder, but current therapies are only symptomatic. Experimental models are necessary to go deeper in the comprehension of pathophysiological mechanism and to assess new therapeutic strategies. The unilateral 6-hydroxydopamine (6-OHDA) lesion either in medial forebrain bundle (MFB) or into the striatum in rats affords to study various stages of PD depending on the evolution time lapsed. A promising alternative to address the neurodegenerative process is the use of neurotrophic factors; but its clinical use has been limited due to its short half-life and rapid degradation after in vivo administration, along with difficulties for crossing the blood-brain barrier (BBB). Tyrosine hydroxylase (TH) immunostaining revealed a significant decrease of the TH-immunopositive striatal volume in 6-OHDA group from rostral to caudal one. The loss of TH-ir neurons and axodendritic network (ADN) was higher in caudal sections showing a selective vulnerability of the topological distributed dopaminergic system. In addition to a remarkable depletion of dopamine in the nigrostriatal system, the administration of 6-OHDA into MFB induces some other neuropathological changes such as an increase of glial fibrillary acidic protein (GFAP) positive cells in substantia nigra (SN) as well as in striatum. Intrastriatal implantation of micro- or nanosystems delivering neurotrophic factor in parkinsonized rats for bypassing BBB leads to a significative functional and morphological recovery. Neurorestorative morphological changes (preservation of the TH-ir cells and ADN) along the rostrocaudal axis of caudoputamen complex and SN have been probed supporting a selective recovering after the treatment as well. Others innovative therapeutic strategies, such as the intranasal delivery, have been recently assessed in order to search the NTF effects. In addition some others methodological key points are reviewed. © 2017 Elsevier Inc

  1. Novel Therapeutic Strategy for the Prevention of Bone Fractures

    DTIC Science & Technology

    2011-06-01

    application seeks to develop myostatin inhibitors as novel therapeutic agents for improving muscle and bone strength, and preventing falls and fractures...for aging veterans. Our goals for year 1 of the project were to determine how the expression of myostatin , its receptor, and the myostatin antagonist...in the orthopaedic clinic. Our findings so far demonstrate that, in skeletal muscles from mice, myostatin expression does not change with age but

  2. SATPdb: a database of structurally annotated therapeutic peptides

    PubMed Central

    Singh, Sandeep; Chaudhary, Kumardeep; Dhanda, Sandeep Kumar; Bhalla, Sherry; Usmani, Salman Sadullah; Gautam, Ankur; Tuknait, Abhishek; Agrawal, Piyush; Mathur, Deepika; Raghava, Gajendra P.S.

    2016-01-01

    SATPdb (http://crdd.osdd.net/raghava/satpdb/) is a database of structurally annotated therapeutic peptides, curated from 22 public domain peptide databases/datasets including 9 of our own. The current version holds 19192 unique experimentally validated therapeutic peptide sequences having length between 2 and 50 amino acids. It covers peptides having natural, non-natural and modified residues. These peptides were systematically grouped into 10 categories based on their major function or therapeutic property like 1099 anticancer, 10585 antimicrobial, 1642 drug delivery and 1698 antihypertensive peptides. We assigned or annotated structure of these therapeutic peptides using structural databases (Protein Data Bank) and state-of-the-art structure prediction methods like I-TASSER, HHsearch and PEPstrMOD. In addition, SATPdb facilitates users in performing various tasks that include: (i) structure and sequence similarity search, (ii) peptide browsing based on their function and properties, (iii) identification of moonlighting peptides and (iv) searching of peptides having desired structure and therapeutic activities. We hope this database will be useful for researchers working in the field of peptide-based therapeutics. PMID:26527728

  3. Fluoroscopically Guided Diagnostic and Therapeutic Intra-Articular Sacroiliac Joint Injections: A Systematic Review.

    PubMed

    Kennedy, David J; Engel, Andrew; Kreiner, D Scott; Nampiaparampil, Devi; Duszynski, Belinda; MacVicar, John

    2015-08-01

    To assess the validity of fluoroscopically guided diagnostic intra-articular injections of local anesthetic and effectiveness of intra-articular steroid injections in treating sacroiliac joint (SIJ) pain. Systematic review. Ten reviewers independently assessed 45 publications on diagnostic validity or effectiveness of fluoroscopically guided intra-articular SIJ injections. For diagnostic injections, the primary outcome was validity; for therapeutic injections, analgesia. Secondary outcomes were also described. Of 45 articles reviewed, 39 yielded diagnostic data on physical exam findings, provocation tests, and SIJ injections for diagnosing SIJ pain, and 15 addressed therapeutic effectiveness. When confirmed by comparative local anesthetic blocks with a high degree of pain relief, no single physical exam maneuver predicts response to diagnostic injections. When at least three physical exam findings are present, sensitivity, and specificity increases significantly. The prevalence of SIJ pain is likely 20-30% among patients that have suspected SIJ pain based on history and physical examination. This estimate may be higher in certain subgroups such as the elderly and fusion patients. Two randomized controlled trials and multiple observational studies supported the effectiveness of therapeutic sacroiliac joint injections. Based on this literature, it is unclear whether image-guided intra-articular diagnostic injections of local anesthetic predict positive responses to therapeutic agents. The overall quality of evidence is moderate for the effectiveness of therapeutic SIJ injections. Wiley Periodicals, Inc.

  4. Using Multidimensional Rasch Analysis to Validate the Chinese Version of the Motivated Strategies for Learning Questionnaire (MSLQ-CV)

    ERIC Educational Resources Information Center

    Lee, John Chi-Kin; Zhang, Zhonghua; Yin, Hongbiao

    2010-01-01

    This article used the multidimensional random coefficients multinomial logit model to examine the construct validity and detect the substantial differential item functioning (DIF) of the Chinese version of motivated strategies for learning questionnaire (MSLQ-CV). A total of 1,354 Hong Kong junior high school students were administered the…

  5. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I

    PubMed Central

    Pey, Angel L.; Albert, Armando; Salido, Eduardo

    2013-01-01

    Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP) as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis. PMID:23956997

  6. Cell- and Gene-Based Therapeutic Strategies for Periodontal Regenerative Medicine

    PubMed Central

    Rios, Hector F.; Lin, Zhao; Oh, BiNa; Park, Chan Ho; Giannobile, William V.

    2012-01-01

    Inflammatory periodontal diseases are a leading cause of tooth loss and are linked to multiple systemic conditions, such as cardiovascular disease and stroke. Reconstruction of the support and function of affected tooth-supporting tissues represents an important therapeutic endpoint for periodontal regenerative medicine. An improved understanding of periodontal biology coupled with current advances in scaffolding matrices has introduced novel treatments that use cell and gene therapy to enhance periodontal tissue reconstruction and its biomechanical integration. Cell and gene delivery technologies have the potential to overcome limitations associated with existing periodontal therapies, and may provide a new direction in sustainable inflammation control and more predictable tissue regeneration of supporting alveolar bone, periodontal ligament, and cementum. This review provides clinicians with the current status of these early-stage and emerging cell- and gene-based therapeutics in periodontal regenerative medicine, and introduces their future application in clinical periodontal treatment. The paper concludes with prospects on the application of cell and gene tissue engineering technologies for reconstructive periodontology. PMID:21284553

  7. IGF system targeted therapy: Therapeutic opportunities for ovarian cancer.

    PubMed

    Liefers-Visser, J A L; Meijering, R A M; Reyners, A K L; van der Zee, A G J; de Jong, S

    2017-11-01

    The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (IR) -A and -B. These receptors are activated upon binding to their respective growth factor ligands, IGF-I, IGF-II and insulin, and play an important role in development, maintenance, progression, survival and chemotherapeutic response of ovarian cancer. In many pre-clinical studies anti-IGF-1R/IR targeted strategies proved effective in reducing growth of ovarian cancer models. In addition, anti-IGF-1R targeted strategies potentiated the efficacy of platinum based chemotherapy. Despite the vast amount of encouraging and promising pre-clinical data, anti-IGF-1R/IR targeted strategies lacked efficacy in the clinic. The question is whether targeting the IGF-1R/IR signaling pathway still holds therapeutic potential. In this review we address the complexity of the IGF-1R/IR signaling pathway, including receptor heterodimerization within and outside the IGF system and downstream signaling. Further, we discuss the implications of this complexity on current targeted strategies and indicate therapeutic opportunities for successful targeting of the IGF-1R/IR signaling pathway in ovarian cancer. Multiple-targeted approaches circumventing bidirectional receptor tyrosine kinase (RTK) compensation and prevention of system rewiring are expected to have more therapeutic potential. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Therapeutic Strategies for Bone Metastases and Their Clinical Sequelae in Prostate Cancer

    PubMed Central

    Autio, Karen A.; Scher, Howard I.

    2013-01-01

    Opinion statement Skeletal metastases threaten quality of life, functionality, and longevity in patients with metastatic castration-resistant prostate cancer (mCRPC). Therapeutic strategies for bone metastases in prostate cancer can palliate pain, delay/prevent skeletal complications, and prolong survival. Pharmacologic agents representing several drug classes have demonstrated the ability to achieve these treatment goals in men with mCRPC. Skeletal-related events such as fracture and the need for radiation can be delayed using drugs that target the osteoclast/osteoblast pathway. Cancer-related bone pain can be palliated using beta-emitting bone-seeking radiopharmaceuticals such as samarium-153 EDTMP and strontium-89. Also, prospective randomized studies have demonstrated that cytotoxic chemotherapy can palliate bone pain. For the first time, bone-directed therapy has been shown to prolong survival using the novel alpha-emitting radiopharmaceutical radium-223. Given these multifold clinical benefits, treatments targeting bone metabolism, tumor-bone stromal interactions, and bone metastases themselves are now central elements of routine clinical care. Decisions about which agents, alone or in combination, will best serve the patient’s and clinician’s clinical goals is contingent on the treatment history to date, present disease manifestations, and symptomatology. Clinical trials exploring novel agents such as those targeting c-Met and Src are under way, using endpoints that directly address how patients feel, function, and survive. PMID:22528368

  9. Validation of a search strategy to identify nutrition trials in PubMed using the relative recall method.

    PubMed

    Durão, Solange; Kredo, Tamara; Volmink, Jimmy

    2015-06-01

    To develop, assess, and maximize the sensitivity of a search strategy to identify diet and nutrition trials in PubMed using relative recall. We developed a search strategy to identify diet and nutrition trials in PubMed. We then constructed a gold standard reference set to validate the identified trials using the relative recall method. Relative recall was calculated by dividing the number of references from the gold standard our search strategy identified by the total number of references in the gold standard. Our gold standard comprised 298 trials, derived from 16 included systematic reviews. The initial search strategy identified 242 of 298 references, with a relative recall of 81.2% [95% confidence interval (CI): 76.3%, 85.5%]. We analyzed titles and abstracts of the 56 missed references for possible additional terms. We then modified the search strategy accordingly. The relative recall of the final search strategy was 88.6% (95% CI: 84.4%, 91.9%). We developed a search strategy to identify diet and nutrition trials in PubMed with a high relative recall (sensitivity). This could be useful for establishing a nutrition trials register to support the conduct of future research, including systematic reviews. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Therapeutics Insight with Inclusive Immunopharmacology Explication of Human Rotavirus A for the Treatment of Diarrhea.

    PubMed

    Hossain, Mohammad Uzzal; Hashem, Abu; Keya, Chaman Ara; Salimullah, Md

    2016-01-01

    Rotavirus is the most common cause of severe infant and childhood diarrhea worldwide, and the morbidity and mortality rate is going to be outnumbered in developing countries like Bangladesh. To mitigate this substantial burden of disease, new therapeutics such as vaccine and drug are swiftly required against rotavirus. The present therapeutics insight study was performed with comprehensive immunoinformatics and pharmacoinformatics approach. T and B-cell epitopes were assessed in the conserved region of outer capsid protein VP4 among the highly reviewed strains from different countries including Bangladesh. The results suggest that epitope SU1 (TLKNLNDNY) could be an ideal candidate among the predicted five epitopes for both T and B-cell epitopes for the development of universal vaccine against rotavirus. This research also suggests five novel drug compounds from medicinal plant Rhizophora mucronata Lamk. for better therapeutics strategies against rotavirus diarrhea based on 3D structure building, pharmacophore, ADMET, and QSAR properties. The exact mode of action between drug compounds and target protein VP4 were revealed by molecular docking analysis. Drug likeness and oral bioavailability further confirmed the effectiveness of the proposed drugs against rotavirus diarrhea. This study might be implemented for experimental validation to facilitate the novel vaccine and drug design.

  11. Ebola virus outbreak, updates on current therapeutic strategies.

    PubMed

    Elshabrawy, Hatem A; Erickson, Timothy B; Prabhakar, Bellur S

    2015-07-01

    Filoviruses are enveloped negative-sense single-stranded RNA viruses, which include Ebola and Marburg viruses, known to cause hemorrhagic fever in humans with a case fatality of up to 90%. There have been several Ebola virus outbreaks since the first outbreak in the Democratic Republic of Congo in 1976 of which, the recent 2013-2015 epidemic in Guinea, Liberia, and Sierra Leone is the largest in recorded history. Within a few months of the start of the outbreak in December 2013, thousands of infected cases were reported with a significant number of deaths. As of March 2015, according to the Centers for Disease Control and Prevention, there have been nearly 25,000 suspected cases, with 15,000 confirmed by laboratory testing, and over 10,000 deaths. The large number of cases and the high mortality rate, combined with the lack of effective Food and Drug Administration-approved treatments, necessitate the development of potent and safe therapeutic measures to combat the current and future outbreaks. Since the beginning of the outbreak, there have been considerable efforts to develop and characterize protective measures including vaccines and antiviral small molecules, and some have proven effective in vitro and in animal models. Most recently, a cocktail of monoclonal antibodies has been shown to be highly effective in protecting non-human primates from Ebola virus infection. In this review, we will discuss what is known about the nature of the virus, phylogenetic classification, genomic organization and replication, disease transmission, and viral entry and highlight the current approaches and efforts, in the development of therapeutics, to control the outbreak. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review)

    PubMed Central

    GAMBARI, ROBERTO; BROGNARA, ELEONORA; SPANDIDOS, DEMETRIOS A.; FABBRI, ENRICA

    2016-01-01

    MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects. PMID:27175518

  13. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    PubMed

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. [Anorexia nervosa in children and adolescent: new therapeutic approaches].

    PubMed

    Doyen, C; Le Heuzey, M F; Cook, S; Flého, F; Mouren-Siméoni, M C

    1999-11-01

    Classical therapeutic recommendations requires that girls with anorexia nervosa be separated from their parents. Refeeding, and later individual psychodynamic approaches were also emphasized. These guidelines are now broadened towards psychotherapeutic approaches (psychodynamic, familial, cognitive-behavioral) associated with psychoeducational and dietetic strategies. In the Child and Adolescent Psychopathology Unit of Robert-Debre Hospital in Paris, individual therapeutic programs are applied to young anorectic girls and their families. These programs are implemented within an inpatient (full-time, part-time) or outpatient (consultations, weekly day-therapeutic program) framework. In order to forge a therapeutic alliance with parents and restore "parental competences" feelings, we do not separate any longer anorectic girls from their parents during hospitalization, and we have developed an alternative therapeutic model to full-time hospitalization.

  15. The validation of peer review through research impact measures and the implications for funding strategies.

    PubMed

    Gallo, Stephen A; Carpenter, Afton S; Irwin, David; McPartland, Caitlin D; Travis, Joseph; Reynders, Sofie; Thompson, Lisa A; Glisson, Scott R

    2014-01-01

    There is a paucity of data in the literature concerning the validation of the grant application peer review process, which is used to help direct billions of dollars in research funds. Ultimately, this validation will hinge upon empirical data relating the output of funded projects to the predictions implicit in the overall scientific merit scores from the peer review of submitted applications. In an effort to address this need, the American Institute of Biological Sciences (AIBS) conducted a retrospective analysis of peer review data of 2,063 applications submitted to a particular research program and the bibliometric output of the resultant 227 funded projects over an 8-year period. Peer review scores associated with applications were found to be moderately correlated with the total time-adjusted citation output of funded projects, although a high degree of variability existed in the data. Analysis over time revealed that as average annual scores of all applications (both funded and unfunded) submitted to this program improved with time, the average annual citation output per application increased. Citation impact did not correlate with the amount of funds awarded per application or with the total annual programmatic budget. However, the number of funded applications per year was found to correlate well with total annual citation impact, suggesting that improving funding success rates by reducing the size of awards may be an efficient strategy to optimize the scientific impact of research program portfolios. This strategy must be weighed against the need for a balanced research portfolio and the inherent high costs of some areas of research. The relationship observed between peer review scores and bibliometric output lays the groundwork for establishing a model system for future prospective testing of the validity of peer review formats and procedures.

  16. The Validation of Peer Review through Research Impact Measures and the Implications for Funding Strategies

    PubMed Central

    Gallo, Stephen A.; Carpenter, Afton S.; Irwin, David; McPartland, Caitlin D.; Travis, Joseph; Reynders, Sofie; Thompson, Lisa A.; Glisson, Scott R.

    2014-01-01

    There is a paucity of data in the literature concerning the validation of the grant application peer review process, which is used to help direct billions of dollars in research funds. Ultimately, this validation will hinge upon empirical data relating the output of funded projects to the predictions implicit in the overall scientific merit scores from the peer review of submitted applications. In an effort to address this need, the American Institute of Biological Sciences (AIBS) conducted a retrospective analysis of peer review data of 2,063 applications submitted to a particular research program and the bibliometric output of the resultant 227 funded projects over an 8-year period. Peer review scores associated with applications were found to be moderately correlated with the total time-adjusted citation output of funded projects, although a high degree of variability existed in the data. Analysis over time revealed that as average annual scores of all applications (both funded and unfunded) submitted to this program improved with time, the average annual citation output per application increased. Citation impact did not correlate with the amount of funds awarded per application or with the total annual programmatic budget. However, the number of funded applications per year was found to correlate well with total annual citation impact, suggesting that improving funding success rates by reducing the size of awards may be an efficient strategy to optimize the scientific impact of research program portfolios. This strategy must be weighed against the need for a balanced research portfolio and the inherent high costs of some areas of research. The relationship observed between peer review scores and bibliometric output lays the groundwork for establishing a model system for future prospective testing of the validity of peer review formats and procedures. PMID:25184367

  17. Biased and unbiased strategies to identify biologically active small molecules.

    PubMed

    Abet, Valentina; Mariani, Angelica; Truscott, Fiona R; Britton, Sébastien; Rodriguez, Raphaël

    2014-08-15

    Small molecules are central players in chemical biology studies. They promote the perturbation of cellular processes underlying diseases and enable the identification of biological targets that can be validated for therapeutic intervention. Small molecules have been shown to accurately tune a single function of pluripotent proteins in a reversible manner with exceptional temporal resolution. The identification of molecular probes and drugs remains a worthy challenge that can be addressed by the use of biased and unbiased strategies. Hypothesis-driven methodologies employs a known biological target to synthesize complementary hits while discovery-driven strategies offer the additional means of identifying previously unanticipated biological targets. This review article provides a general overview of recent synthetic frameworks that gave rise to an impressive arsenal of biologically active small molecules with unprecedented cellular mechanisms. Copyright © 2014. Published by Elsevier Ltd.

  18. Preliminary development and validation of the Supervisee Attachment Strategies Scale (SASS).

    PubMed

    Menefee, Deleene S; Day, Susan X; Lopez, Frederick G; McPherson, Robert H

    2014-04-01

    The influence of counselor trainees' adult attachment orientations in the context of supervision has the potential to inform both training and supervision practice. However, the pursuit of such research requires the availability of appropriate assessment tools. The present study describes the development and validation of the Supervisee Attachment Strategies Scale (SASS), a theory-based measure of counseling trainees' attachment orientations toward their clinical supervisors. Participants were recruited online through their training directors at Association of Psychology Postdoctoral and Internship Centers member programs. Data were nationally collected from 352 trainees representing programs in the United States and Canada. Exploratory factor analysis yielded 2 interpretable factors along the adult attachment dimensions of avoidance vs. engagement and rejection concern vs. security. These 2 factors accounted for 55.85% of the interitem variance in the rotated solution of the 22-item SASS scale. SASS subscale scores were negatively correlated with the supervisory working alliance and predicted greater endorsement of role conflict and role ambiguity in the current supervisory relationship. Higher avoidance (but not rejection concern) predicted diminished perceptions of satisfaction with the overall training experience. Findings from this study suggest that trainees who engaged in adaptive attachment strategies may be more likely to address conflict, negotiate additional explorative opportunities in training, and seek out their supervisors in times of uncertainty. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  19. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches.

    PubMed

    Hira, Vashendriya V V; Van Noorden, Cornelis J F; Carraway, Hetty E; Maciejewski, Jaroslaw P; Molenaar, Remco J

    2017-08-01

    Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies

    PubMed Central

    2009-01-01

    The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway. PMID:19961595

  1. Therapeutic impact of toll-like receptors on inflammatory bowel diseases: a multiple-edged sword.

    PubMed

    Cario, Elke

    2008-03-01

    Recent studies have begun to define the mechanisms through which Toll-like receptors (TLRs) regulate intestinal homeostasis in health and disease. Current therapies for inflammatory bowel diseases (IBDs) mostly aim at interrupting the inflammatory cascade through agents that regulate TH1 or TH2 cytokine responses. As recognition grows for TLR dysfunction to play a role in IBD pathogenesis, TLRs could provide another valid interventional target for novel therapy development. However, seemingly contradictory results from studying different murine models of colitis have so far confounded whether therapeutically useful modulation of TLRs is best accomplished by activating, inhibiting, or rather a combination of both at different stages of mucosal disease. This review evaluates potential strategies as well as their rationale and future prospects.

  2. [Therapeutic cloning. Biology, perspectives and alternatives].

    PubMed

    Maddox-Hyttel, Poul

    2003-02-24

    Certain diseases are caused by or cause irreversible loss of cells and may in the future be treated by cell-based therapies where spare cells are introduced into the body. Therapeutic cloning constitutes a scientifically and ethically challenging route to the generation of autologous patient specific spare cells: Stem cells for subsequent differentiation and transplantation are isolated from one week old embryos, which are produced by cloning by nuclear transfer from normal cells retrieved from a patient. Research in therapeutic cloning should be pursued in line with alternative strategies for obtaining stem cells. Finally, the molecular biology of cloning by nuclear transfer may hold the key to understanding trans-differentiation, which ultimately may allow for de-differentiation and subsequent re-differentiation of adult somatic cells for therapeutic purposes.

  3. Complementary and Alternative Medicine Strategies for Therapeutic Gut Microbiota Modulation in Inflammatory Bowel Disease and their Next-Generation Approaches.

    PubMed

    Basson, Abigail R; Lam, Minh; Cominelli, Fabio

    2017-12-01

    The human gut microbiome exerts a major impact on human health and disease, and therapeutic gut microbiota modulation is now a well-advocated strategy in the management of many diseases, including inflammatory bowel disease (IBD). Scientific and clinical evidence in support of complementary and alternative medicine, in targeting intestinal dysbiosis among patients with IBD, or other disorders, has increased dramatically over the past years. Delivery of "artificial" stool replacements for fecal microbiota transplantation (FMT) could provide an effective, safer alternative to that of human donor stool. Nevertheless, optimum timing of FMT administration in IBD remains unexplored, and future investigations are essential. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Multidisciplinary perspectives for Alzheimer's and Parkinson's diseases: hydrogels for protein delivery and cell-based drug delivery as therapeutic strategies.

    PubMed

    Giordano, Carmen; Albani, Diego; Gloria, Antonio; Tunesi, Marta; Batelli, Sara; Russo, Teresa; Forloni, Gianluigi; Ambrosio, Luigi; Cigada, Alberto

    2009-12-01

    This review presents two intriguing multidisciplinary strategies that might make the difference in the treatment of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The first proposed strategy is based on the controlled delivery of recombinant proteins known to play a key role in these neurodegenerative disorders that are released in situ by optimized polymer-based systems. The second strategy is the use of engineered cells, encapsulated and delivered in situ by suitable polymer-based systems, that act as drug reservoirs and allow the delivery of selected molecules to be used in the treatment of Alzheimer's and Parkinson's diseases. In both these scenarios, the design and development of optimized polymer-based drug delivery and cell housing systems for central nervous system applications represent a key requirement. Materials science provides suitable hydrogel-based tools to be optimized together with suitably designed recombinant proteins or drug delivering-cells that, once in situ, can provide an effective treatment for these neurodegenerative disorders. In this scenario, only interdisciplinary research that fully integrates biology, biochemistry, medicine and materials science can provide a springboard for the development of suitable therapeutic tools, not only for the treatment of Alzheimer's and Parkinson's diseases but also, prospectively, for a wide range of severe neurodegenerative disorders.

  5. TGF-β Blockade Reduces Mortality and Metabolic Changes in a Validated Murine Model of Pancreatic Cancer Cachexia.

    PubMed

    Greco, Stephanie H; Tomkötter, Lena; Vahle, Anne-Kristin; Rokosh, Rae; Avanzi, Antonina; Mahmood, Syed Kashif; Deutsch, Michael; Alothman, Sara; Alqunaibit, Dalia; Ochi, Atsuo; Zambirinis, Constantinos; Mohaimin, Tasnima; Rendon, Mauricio; Levie, Elliot; Pansari, Mridul; Torres-Hernandez, Alejandro; Daley, Donnele; Barilla, Rocky; Pachter, H Leon; Tippens, Daniel; Malik, Hassan; Boutajangout, Allal; Wisniewski, Thomas; Miller, George

    2015-01-01

    Cancer cachexia is a debilitating condition characterized by a combination of anorexia, muscle wasting, weight loss, and malnutrition. This condition affects an overwhelming majority of patients with pancreatic cancer and is a primary cause of cancer-related death. However, few, if any, effective therapies exist for both treatment and prevention of this syndrome. In order to develop novel therapeutic strategies for pancreatic cancer cachexia, appropriate animal models are necessary. In this study, we developed and validated a syngeneic, metastatic, murine model of pancreatic cancer cachexia. Using our model, we investigated the ability of transforming growth factor beta (TGF-β) blockade to mitigate the metabolic changes associated with cachexia. We found that TGF-β inhibition using the anti-TGF-β antibody 1D11.16.8 significantly improved overall mortality, weight loss, fat mass, lean body mass, bone mineral density, and skeletal muscle proteolysis in mice harboring advanced pancreatic cancer. Other immunotherapeutic strategies we employed were not effective. Collectively, we validated a simplified but useful model of pancreatic cancer cachexia to investigate immunologic treatment strategies. In addition, we showed that TGF-β inhibition can decrease the metabolic changes associated with cancer cachexia and improve overall survival.

  6. TGF-β Blockade Reduces Mortality and Metabolic Changes in a Validated Murine Model of Pancreatic Cancer Cachexia

    PubMed Central

    Rokosh, Rae; Avanzi, Antonina; Mahmood, Syed Kashif; Deutsch, Michael; Alothman, Sara; Alqunaibit, Dalia; Ochi, Atsuo; Zambirinis, Constantinos; Mohaimin, Tasnima; Rendon, Mauricio; Levie, Elliot; Pansari, Mridul; Torres-Hernandez, Alejandro; Daley, Donnele; Barilla, Rocky; Pachter, H. Leon; Tippens, Daniel; Malik, Hassan; Boutajangout, Allal; Wisniewski, Thomas; Miller, George

    2015-01-01

    Cancer cachexia is a debilitating condition characterized by a combination of anorexia, muscle wasting, weight loss, and malnutrition. This condition affects an overwhelming majority of patients with pancreatic cancer and is a primary cause of cancer-related death. However, few, if any, effective therapies exist for both treatment and prevention of this syndrome. In order to develop novel therapeutic strategies for pancreatic cancer cachexia, appropriate animal models are necessary. In this study, we developed and validated a syngeneic, metastatic, murine model of pancreatic cancer cachexia. Using our model, we investigated the ability of transforming growth factor beta (TGF-β) blockade to mitigate the metabolic changes associated with cachexia. We found that TGF-β inhibition using the anti-TGF-β antibody 1D11.16.8 significantly improved overall mortality, weight loss, fat mass, lean body mass, bone mineral density, and skeletal muscle proteolysis in mice harboring advanced pancreatic cancer. Other immunotherapeutic strategies we employed were not effective. Collectively, we validated a simplified but useful model of pancreatic cancer cachexia to investigate immunologic treatment strategies. In addition, we showed that TGF-β inhibition can decrease the metabolic changes associated with cancer cachexia and improve overall survival. PMID:26172047

  7. Cystic Fibrosis Transmembrane Conductance Regulator Potentiation as a Therapeutic Strategy for Pulmonary Edema: A Proof-of-Concept Study in Pigs.

    PubMed

    Li, Xiaopeng; Vargas Buonfiglio, Luis G; Adam, Ryan J; Stoltz, David A; Zabner, Joseph; Comellas, Alejandro P

    2017-12-01

    To determine the feasibility of using a cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor (VX-770/Kalydeco, Vertex Pharmaceuticals, Boston, MA), as a therapeutic strategy for treating pulmonary edema. Prospective laboratory animal investigation. Animal research laboratory. Newborn and 3 days to 1 week old pigs. Hydrostatic pulmonary edema was induced in pigs by acute volume overload. Ivacaftor was nebulized into the lung immediately after volume overload. Grams of water per grams of dry lung tissue were determined in the lungs harvested 1 hour after volume overload. Ivacaftor significantly improved alveolar liquid clearance in isolated pig lung lobes ex vivo and reduced edema in a volume overload in vivo pig model of hydrostatic pulmonary edema. To model hydrostatic pressure-induced edema in vitro, we developed a method of applied pressure to the basolateral surface of alveolar epithelia. Elevated hydrostatic pressure resulted in decreased cystic fibrosis transmembrane conductance regulator activity and liquid absorption, an effect which was partially reversed by cystic fibrosis transmembrane conductance regulator potentiation with ivacaftor. Cystic fibrosis transmembrane conductance regulator potentiation by ivacaftor is a novel therapeutic approach for pulmonary edema.

  8. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents.

    PubMed

    Conlon, J Michael; Al-Ghaferi, Nadia; Abraham, Bency; Leprince, Jérôme

    2007-08-01

    The emergence of strains of pathogenic microorganisms with resistance to commonly used antibiotics has necessitated a search for novel types of antimicrobial agents. Many frog species produce amphipathic alpha-helical peptides with broad spectrum antimicrobial activity in the skin but their therapeutic potential is limited by varying degrees of cytolytic activity towards eukaryotic cells. Methods for development of such peptides into anti-infective drugs are illustrated by the example of temporin-1DRa (HFLGTLVNLAK KIL.NH(2)). Studies with model alpha-helical peptides have shown that increase in cationicity promotes antimicrobial activity whereas increases in hydrophobicity, helicity and amphipathicity promote hemolytic activity and loss of selectivity for microorganisms. Analogs of temporin-1DRa in which each amino acid is replaced by L-lysine and D-lysine were synthesized and their cytolytic activities tested against a range of microorganisms and human erythrocytes. Small changes in structure produced marked changes in conformation, as determined by retention time on reversed-phase HPLC, and in biological activity. However, peptides containing the substitutions (Val(7) -->L-Lys), (Thr(5)-->D-Lys) and (Asn(8)-->D-Lys) retained the high solubility and potent, broad spectrum antimicrobial activity of the naturally occurring peptide but were appreciably (up to 10-fold) less hemolytic. In contrast, analogs in which Leu(9) and Ile(13) were replaced by the more hydrophobic cyclohexylglycine residue showed slightly increased antimicrobial potencies (up to 2-fold) but a 4-fold increase in hemolytic activity. The data suggest a strategy of selective increases in cationicity concomitant with decreases in helicity and hydrophobicity in the transformation of naturally-occurring antimicrobial peptides into non-toxic therapeutic agents.

  9. A Teacher-Report Measure of Children's Task-Avoidant Behavior: A Validation Study of the Behavioral Strategy Rating Scale

    ERIC Educational Resources Information Center

    Zhang, Xiao; Nurmi, Jari-Erik; Kiuru, Noona; Lerkkanen, Marja-Kristiina; Aunola, Kaisa

    2011-01-01

    This study aims to validate a teacher-report measure of children's task-avoidant behavior, namely the Behavioral Strategy Rating Scale (BSRS), in a sample of 352 Finnish children. In each of the four waves from Kindergarten to Grade 2, teachers rated children's task-avoidant behavior using the BSRS, children completed reading and mathematics…

  10. Strategy for selecting nanotechnology carriers to overcome immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics.

    PubMed

    Dobrovolskaia, Marina A; McNeil, Scott E

    2015-07-01

    Clinical translation of nucleic acid-based therapeutics (NATs) is hampered by assorted challenges in immunotoxicity, hematotoxicity, pharmacokinetics, toxicology and formulation. Nanotechnology-based platforms are being considered to help address some of these challenges due to the nanoparticles' ability to change drug biodistribution, stability, circulation half-life, route of administration and dosage. Addressing toxicology and pharmacology concerns by various means including NATs reformulation using nanotechnology-based carriers has been reviewed before. However, little attention was given to the immunological and hematological issues associated with nanotechnology reformulation. This review focuses on application of nanotechnology carriers for delivery of various types of NATs, and how reformulation using nanoparticles affects immunological and hematological toxicities of this promising class of therapeutic agents. NATs share several immunological and hematological toxicities with common nanotechnology carriers. In order to avoid synergy or exaggeration of undesirable immunological and hematological effects of NATs by a nanocarrier, it is critical to consider the immunological compatibility of the nanotechnology platform and its components. Since receptors sensing nucleic acids are located essentially in all cellular compartments, a strategy for developing a nanoformulation with reduced immunotoxicity should first focus on precise delivery to the target site/cells and then on optimizing intracellular distribution.

  11. Recent Progress in Nanomedicine: Therapeutic, Diagnostic and Theranostic Applications

    PubMed Central

    Rizzo, Larissa Y.; Theek, Benjamin; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2013-01-01

    In recent years, the use of nanomedicine formulations for therapeutic and diagnostic applications has increased exponentially. Many different systems and strategies have been developed for drug targeting to pathological sites, as well as for visualizing and quantifying important (patho-) physiological processes. In addition, ever more efforts have been undertaken to combine diagnostic and therapeutic properties within a single nanomedicine formulation. These so-called nanotheranostics are able to provide valuable information on drug delivery, drug release and drug efficacy, and they are considered to be highly useful for personalizing nanomedicine-based (chemo-) therapeutic interventions. PMID:23578464

  12. A Multiphase Validation of Atlas-Based Automatic and Semiautomatic Segmentation Strategies for Prostate MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Spencer; Rodrigues, George, E-mail: george.rodrigues@lhsc.on.ca; Department of Epidemiology/Biostatistics, University of Western Ontario, London

    2013-01-01

    Purpose: To perform a rigorous technological assessment and statistical validation of a software technology for anatomic delineations of the prostate on MRI datasets. Methods and Materials: A 3-phase validation strategy was used. Phase I consisted of anatomic atlas building using 100 prostate cancer MRI data sets to provide training data sets for the segmentation algorithms. In phase II, 2 experts contoured 15 new MRI prostate cancer cases using 3 approaches (manual, N points, and region of interest). In phase III, 5 new physicians with variable MRI prostate contouring experience segmented the same 15 phase II datasets using 3 approaches: manual,more » N points with no editing, and full autosegmentation with user editing allowed. Statistical analyses for time and accuracy (using Dice similarity coefficient) endpoints used traditional descriptive statistics, analysis of variance, analysis of covariance, and pooled Student t test. Results: In phase I, average (SD) total and per slice contouring time for the 2 physicians was 228 (75), 17 (3.5), 209 (65), and 15 seconds (3.9), respectively. In phase II, statistically significant differences in physician contouring time were observed based on physician, type of contouring, and case sequence. The N points strategy resulted in superior segmentation accuracy when initial autosegmented contours were compared with final contours. In phase III, statistically significant differences in contouring time were observed based on physician, type of contouring, and case sequence again. The average relative timesaving for N points and autosegmentation were 49% and 27%, respectively, compared with manual contouring. The N points and autosegmentation strategies resulted in average Dice values of 0.89 and 0.88, respectively. Pre- and postedited autosegmented contours demonstrated a higher average Dice similarity coefficient of 0.94. Conclusion: The software provided robust contours with minimal editing required. Observed time savings

  13. [Trigeminal autonomic cephalgias: diagnostic and therapeutic implications].

    PubMed

    Rosenberg-Nordmann, Mirjam; Tölle, Thomas R; Sprenger, Till

    2007-09-06

    Trigeminal autonomic cephalgias (TACs) are primary headache syndromes characterized by severe short-lasting headaches accompanied by ipsilateral facial autonomic symptoms. The group includes cluster headache (CH), paroxysmal hemicrania (PH), and short-lasting neuralgiform headache with conjunctival injection and tearing (SUNCT). By far, Cluster headache is the most frequent of these syndromes. Similar hypothalamic and trigeminovascular mechanisms have been discussed as pathophysiologic mechanisms for all TACs. The therapeutic strategies, however, differ considerably. Although unusual, structural lesions in TACs have been described, affecting the therapeutic management.

  14. Targeting iodothyronine deiodinases locally in the retina is a therapeutic strategy for retinal degeneration.

    PubMed

    Yang, Fan; Ma, Hongwei; Belcher, Joshua; Butler, Michael R; Redmond, T Michael; Boye, Sanford L; Hauswirth, William W; Ding, Xi-Qin

    2016-12-01

    Recent studies have implicated thyroid hormone (TH) signaling in cone photoreceptor viability. Using mouse models of retinal degeneration, we found that antithyroid treatment preserves cones. This work investigates the significance of targeting intracellular TH components locally in the retina. The cellular TH level is mainly regulated by deiodinase iodothyronine (DIO)-2 and -3. DIO2 converts thyroxine (T4) to triiodothyronine (T3), which binds to the TH receptor, whereas DIO3 degrades T3 and T4. We examined cone survival after overexpression of DIO3 and inhibition of DIO2 and demonstrated the benefits of these manipulations. Subretinal delivery of AAV5-IRBP/GNAT2-DIO3, which directs expression of human DIO3 specifically in cones, increased cone density by 30-40% in a Rpe65 -/- mouse model of Lebers congenital amaurosis (LCA) and in a Cpfl1 mouse with Pde6c defect model of achromatopsia, compared with their respective untreated controls. Intravitreal and topical delivery of the DIO2 inhibitor iopanoic acid also significantly improved cone survival in the LCA model mice. Moreover, the expression levels of DIO2 and Slc16a2 were significantly higher in the diseased retinas, suggesting locally elevated TH signaling. We show that targeting DIOs protects cones, and intracellular inhibition of TH components locally in the retina may represent a novel strategy for retinal degeneration management.-Yang, F., Ma, H., Belcher, J., Butler, M. R., Redmond, T. M., Boye, S. L., Hauswirth, W. W., Ding, X.-Q. Targeting iodothyronine deiodinases locally in the retina is a therapeutic strategy for retinal degeneration. © FASEB.

  15. Therapeutic RNA interference for neurodegenerative diseases: From promise to progress.

    PubMed

    Gonzalez-Alegre, Pedro

    2007-04-01

    RNA interference (RNAi) has emerged as a powerful tool to manipulate gene expression in the laboratory. Due to its remarkable discriminating properties, individual genes, or even alleles can be targeted with exquisite specificity in cultured cells or living animals. Among its many potential biomedical applications, silencing of disease-linked genes stands out as a promising therapeutic strategy for many incurable disorders. Neurodegenerative diseases represent one of the more attractive targets for the development of therapeutic RNAi. In this group of diseases, the progressive loss of neurons leads to the gradual appearance of disabling neurological symptoms and premature death. Currently available therapies aim to improve the symptoms but not to halt the process of neurodegeneration. The increasing prevalence and economic burden of some of these diseases, such as Alzheimer's disease (AD) or Parkinson's disease (PD), has boosted the efforts invested in the development of interventions, such as RNAi, aimed at altering their natural course. This review will summarize where we stand in the therapeutic application of RNAi for neurodegenerative diseases. The basic principles of RNAi will be reviewed, focusing on features important for its therapeutic manipulation. Subsequently, a stepwise strategy for the development of therapeutic RNAi will be presented. Finally, the different preclinical trials of therapeutic RNAi completed in disease models will be summarized, stressing the experimental questions that need to be addressed before planning application in human disease.

  16. Amelogenesis imperfecta: therapeutic strategy from primary to permanent dentition across case reports.

    PubMed

    Toupenay, Steve; Fournier, Benjamin Philippe; Manière, Marie-Cécile; Ifi-Naulin, Chantal; Berdal, Ariane; de La Dure-Molla, Muriel

    2018-06-15

    Hereditary enamel defect diseases are regrouped under the name "Amelogenesis Imperfecta" (AIH). Both dentitions are affected. Clinical expression is heterogeneous and varies between patients. Mutations responsible for this multigene disease may alter various genes and the inheritance can be either autosomal dominant or recessive, or X-linked. Until now, no therapeutic consensus has emerged for this rare disease. The purpose of this article was to report treatments of AIH patients from childhood to early adulthood. Treatment of three patients of 3, 8 16 years old are described. Each therapeutic option was discussed according to patients' age and type of enamel alteration. Paediatric crowns and resin based bonding must be preferred in primary teeth. In permanent teeth, non-invasive or minimally invasive dentistry should be the first choice in order to follow a therapeutic gradient from the less invasive options to prosthodontic treatments. Functional and aesthetic issues require patients to be treated; this clinical care should be provided as early as possible to enable a harmonious growth of the maxillofacial complex and to prevent pain.

  17. Therapeutic Strategies for Sleep Apnea in Hypertension and Heart Failure

    PubMed Central

    Noda, Akiko; Miyata, Seiko; Yasuda, Yoshinari

    2013-01-01

    Sleep-disordered breathing (SDB) causes hypoxemia, negative intrathoracic pressure, and frequent arousal, contributing to increased cardiovascular disease mortality and morbidity. Obstructive sleep apnea syndrome (OSAS) is linked to hypertension, ischemic heart disease, and cardiac arrhythmias. Successful continuous positive airway pressure (CPAP) treatment has a beneficial effect on hypertension and improves the survival rate of patients with cardiovascular disease. Thus, long-term compliance with CPAP treatment may result in substantial blood pressure reduction in patients with resistant hypertension suffering from OSAS. Central sleep apnea and Cheyne-Stokes respiration occur in 30–50% of patients with heart failure (HF). Intermittent hypoxemia, nocturnal surges in sympathetic activity, and increased left ventricular preload and afterload due to negative intrathoracic pressure all lead to impaired cardiac function and poor life prognosis. SDB-related HF has been considered the potential therapeutic target. CPAP, nocturnal O2 therapy, and adaptive servoventilation minimize the effects of sleep apnea, thereby improving cardiac function, prognosis, and quality of life. Early diagnosis and treatment of SDB will yield better therapeutic outcomes for hypertension and HF. PMID:23509623

  18. EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers

    PubMed Central

    Wilson, Joanna B.; Manet, Evelyne; Fahraeus, Robin

    2018-01-01

    The presence of the Epstein-Barr virus (EBV)-encoded nuclear antigen-1 (EBNA1) protein in all EBV-carrying tumours constitutes a marker that distinguishes the virus-associated cancer cells from normal cells and thereby offers opportunities for targeted therapeutic intervention. EBNA1 is essential for viral genome maintenance and also for controlling viral gene expression and without EBNA1, the virus cannot persist. EBNA1 itself has been linked to cell transformation but the underlying mechanism of its oncogenic activity has been unclear. However, recent data are starting to shed light on its growth-promoting pathways, suggesting that targeting EBNA1 can have a direct growth suppressing effect. In order to carry out its tasks, EBNA1 interacts with cellular factors and these interactions are potential therapeutic targets, where the aim would be to cripple the virus and thereby rid the tumour cells of any oncogenic activity related to the virus. Another strategy to target EBNA1 is to interfere with its expression. Controlling the rate of EBNA1 synthesis is critical for the virus to maintain a sufficient level to support viral functions, while at the same time, restricting expression is equally important to prevent the immune system from detecting and destroying EBNA1-positive cells. To achieve this balance EBNA1 has evolved a unique repeat sequence of glycines and alanines that controls its own rate of mRNA translation. As the underlying molecular mechanisms for how this repeat suppresses its own rate of synthesis in cis are starting to be better understood, new therapeutic strategies are emerging that aim to modulate the translation of the EBNA1 mRNA. If translation is induced, it could increase the amount of EBNA1-derived antigenic peptides that are presented to the major histocompatibility (MHC) class I pathway and thus, make EBV-carrying cancers better targets for the immune system. If translation is further suppressed, this would provide another means to cripple

  19. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies.

    PubMed

    Lim, Sun Min; Syn, Nicholas L; Cho, Byoung Chul; Soo, Ross A

    2018-04-01

    The tyrosine kinase inhibitors (TKIs) directed at sensitizing mutations in the epidermal growth factor receptor (EGFR) gene represents a critical pillar in non-small cell lung cancer treatment. Despite the excellent disease control with initial EGFR TKI therapy, acquired resistance is ubiquitous and remains a key challenge. Investigations into the mechanisms which foster resistance to EGFR TKIs has led to the discovery of novel biomarkers and drug targets, and in turn has enabled the development of third-generation TKIs and proposals for rational therapeutic combinations. The threonine-to-methionine substitution mutation at position 790 (T790M) is clinically validated to engender refractoriness to first- and second-generation TKIs, and is a standard-of-care predictive biomarker used in therapeutic stratification. Clinical use of liquid biopsy approaches for assessment of T790M mutations continues to increase, with growing advocacy for serial monitoring of tumor evolution. For patients who are T790M-negative, cytotoxic chemotherapy or protracted EGFR TKI treatment are acceptable treatment standards after disease progression, although combinations of targeted therapies and checkpoint blockade immunotherapy may offer promising alternatives in the future. Among T790M-positive patients, the third-generation EGFR TKI, osimertinib, has shown superiority over both platinum-doublet chemotherapy and 1st generation EGFR TKI in randomized clinical trials, and exhibits enhanced in vitro selectivity for mutant EGFR receptors and pharmacokinetics compared to earlier-generation TKIs. This article appraises the key literature on the contemporary management of non-small cell lung cancer patients with acquired resistance to EGFR TKIs, and envisions future directions in translational and clinical research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The therapeutic impact of new migraine discoveries.

    PubMed

    Vécsei, Laszlo; Lukács, Melinda; Tajti, Janos; Fülöp, Ferenc; Toldi, Jozsef; Edvinsson, Lars

    2018-05-29

    Migraine is one the most disabling neurological conditions and associates with high socio-economic costs. Though certain aspects of the pathomechanism of migraine are still incompletely understood, the leading hypothesis implicates the role of the activation of the trigeminovascular system. Triptans are considered the current gold standard therapy for migraine attacks; however, their use in clinical practice is limited. Prophylactic treatment includes non-specific approaches for migraine prevention. All these support the need for future studies in order to develop innovative anti-migraine drugs. The present study is a review of the current literature regarding new therapeutic lines in migraine research. A systematic literature search in the database of PUBMED was conducted concerning therapeutic strategies in migraine published until July 2017. Ongoing clinical trials with 5-HT1F receptor agonists and glutamate receptor antagonists offer promising new aspects for acute migraine treatment. Monoclonal antibodies against CGRP and the CGRP receptor are revolutionary in preventive treatment; however, further long-term studies are needed to test their tolerability. Preclinical studies show positive results with PACAP- and kynurenic acid-related treatments. Other promising therapeutic strategies (such as those targeting TRPV1, substance P, NOS, or orexin) have failed to show efficacy in clinical trials. Due to their side-effects, current therapeutic approaches are not suitable for all migraine patients. Especially frequent episodic and chronic migraine represents a therapeutic challenge for researchers. Clinical and preclinical studies are needed to untangle the pathophysiology of migraine in order to develop new and migraine-specific therapies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Protein based therapeutic delivery agents: Contemporary developments and challenges.

    PubMed

    Yin, Liming; Yuvienco, Carlo; Montclare, Jin Kim

    2017-07-01

    As unique biopolymers, proteins can be employed for therapeutic delivery. They bear important features such as bioavailability, biocompatibility, and biodegradability with low toxicity serving as a platform for delivery of various small molecule therapeutics, gene therapies, protein biologics and cells. Depending on size and characteristic of the therapeutic, a variety of natural and engineered proteins or peptides have been developed. This, coupled to recent advances in synthetic and chemical biology, has led to the creation of tailor-made protein materials for delivery. This review highlights strategies employing proteins to facilitate the delivery of therapeutic matter, addressing the challenges for small molecule, gene, protein and cell transport. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Measuring teacher self-report on classroom practices: Construct validity and reliability of the Classroom Strategies Scale-Teacher Form.

    PubMed

    Reddy, Linda A; Dudek, Christopher M; Fabiano, Gregory A; Peters, Stephanie

    2015-12-01

    This article presents information about the construct validity and reliability of a new teacher self-report measure of classroom instructional and behavioral practices (the Classroom Strategies Scales-Teacher Form; CSS-T). The theoretical underpinnings and empirical basis for the instructional and behavioral management scales are presented. Information is provided about the construct validity, internal consistency, test-retest reliability, and freedom from item-bias of the scales. Given previous investigations with the CSS Observer Form, it was hypothesized that internal consistency would be adequate and that confirmatory factor analyses (CFA) of CSS-T data from 293 classrooms would offer empirical support for the CSS-T's Total, Composite and subscales, and yield a similar factor structure to that of the CSS Observer Form. Goodness-of-fit indices of χ2/df, Root Mean Square Error of Approximation, Goodness of Fit Index, and Adjusted Goodness of Fit Index suggested satisfactory fit of proposed CFA models whereas the Comparative Fit Index did not. Internal consistency estimates of .93 and .94 were obtained for the Instructional Strategies and Behavioral Strategies Total scales respectively. Adequate test-retest reliability was found for instructional and behavioral total scales (r = .79, r = .84, percent agreement 93% and 93%). The CSS-T evidences freedom from item bias on important teacher demographics (age, educational degree, and years of teaching experience). Implications of results are discussed. (c) 2015 APA, all rights reserved).

  3. Validating multiplexes for use in conjunction with modern interpretation strategies.

    PubMed

    Taylor, Duncan; Bright, Jo-Anne; McGoven, Catherine; Hefford, Christopher; Kalafut, Tim; Buckleton, John

    2016-01-01

    In response to requests from the forensic community, commercial companies are generating larger, more sensitive, and more discriminating STR multiplexes. These multiplexes are now applied to a wider range of samples including complex multi-person mixtures. In parallel there is an overdue reappraisal of profile interpretation methodology. Aspects of this reappraisal include 1. The need for a quantitative understanding of allele and stutter peak heights and their variability, 2. An interest in reassessing the utility of smaller peaks below the often used analytical threshold, 3. A need to understand not just the occurrence of peak drop-in but also the height distribution of such peaks, and 4. A need to understand the limitations of the multiplex-interpretation strategy pair implemented. In this work we present a full scheme for validation of a new multiplex that is suitable for informing modern interpretation practice. We predominantly use GlobalFiler™ as an example multiplex but we suggest that the aspects investigated here are fundamental to introducing any multiplex in the modern interpretation environment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Immunogenicity of therapeutics: a matter of efficacy and safety.

    PubMed

    Nechansky, Andreas; Kircheis, Ralf

    2010-11-01

    The unwanted immunogenicity of therapeutic proteins is a major concern regarding patient safety. Furthermore, pharmacokinetic, pharmacodynamic and clinical efficacy can be seriously affected by the immunogenicity of therapeutic proteins. Authorities have fully recognized this issue and demand appropriate and well-characterized assays to detect anti-drug antibodies (ADAs). We provide an overview of the immunogenicity topic in general, the regulatory background and insight into underlying immunological mechanisms and the limited ability to predict clinical immunogenicity a priori. Furthermore, we comment on the analytical testing approach and the status-quo of appropriate method validation. The review provides insight regarding the analytical approach that is expected by regulatory authorities overseeing immunogenicity testing requirements. Additionally, the factors influencing immunogenicity are summarized and key references regarding immunogenicity testing approaches and method validation are discussed. The unwanted immunogenicity of protein therapeutics is of major concern because of its potential to affect patient safety and drug efficacy. Analytical testing is sophisticated and requires more than one assay. Because immunogenicity in humans is hardly predictable, assay development has to start in a timely fashion and for clinical studies immunogenicity assay validation is mandatory prior to analyzing patient serum samples. Regarding ADAs, the question remains as to when such antibodies are regarded of clinical relevance and what levels are, if at all, acceptable. In summary, the detection of ADAs should raise the awareness of the physician concerning patient safety and of the sponsor/manufacture concerning the immunogenic potential of the drug product.

  5. A three-stage experimental strategy to evaluate and validate an interplate IC50 format.

    PubMed

    Rodrigues, Daniel J; Lyons, Richard; Laflin, Philip; Pointon, Wayne; Kammonen, Juha

    2007-12-01

    The serial dilution of compounds to establish potency against target enzymes or receptors can at times be a rate-limiting step in project progression. We have investigated the possibility of running 50% inhibitory concentration experiments in an interplate format, with dose ranges constructed across plates. The advantages associated with this format include a faster reformatting time for the compounds while also increasing the number of doses that can be potentially generated. These two factors, in particular, would lend themselves to a higher-throughput and more timely testing of compounds, while also maximizing chances to capture fully developed dose-response curves. The key objective from this work was to establish a strategy to assess the feasibility of an interplate format to ensure that the quality of data generated would be equivalent to historical formats used. A three-stage approach was adopted to assess and validate running an assay in an interplate format, compared to an intraplate format. Although the three-stage strategy was tested with two different assay formats, it would be necessary to investigate the feasibility for other assay types. The recommendation is that the three-stage experimental strategy defined here is used to assess feasibility of other assay formats used.

  6. Validation and implementation of model based control strategies at an industrial wastewater treatment plant.

    PubMed

    Demey, D; Vanderhaegen, B; Vanhooren, H; Liessens, J; Van Eyck, L; Hopkins, L; Vanrolleghem, P A

    2001-01-01

    In this paper, the practical implementation and validation of advanced control strategies, designed using model based techniques, at an industrial wastewater treatment plant is demonstrated. The plant under study is treating the wastewater of a large pharmaceutical production facility. The process characteristics of the wastewater treatment were quantified by means of tracer tests, intensive measurement campaigns and the use of on-line sensors. In parallel, a dynamical model of the complete wastewater plant was developed according to the specific kinetic characteristics of the sludge and the highly varying composition of the industrial wastewater. Based on real-time data and dynamic models, control strategies for the equalisation system, the polymer dosing and phosphorus addition were established. The control strategies are being integrated in the existing SCADA system combining traditional PLC technology with robust PC based control calculations. The use of intelligent control in wastewater treatment offers a wide spectrum of possibilities to upgrade existing plants, to increase the capacity of the plant and to eliminate peaks. This can result in a more stable and secure overall performance and, finally, in cost savings. The use of on-line sensors has a potential not only for monitoring concentrations, but also for manipulating flows and concentrations. This way the performance of the plant can be secured.

  7. Validation of the nursing workload scoring systems "Nursing Activities Score" (NAS), and "Therapeutic Intervention Scoring System For Critically Ill Children" (TISS-C) in a Greek Paediatric Intensive Care Unit.

    PubMed

    Nieri, Alexandra-Stavroula; Manousaki, Kalliopi; Kalafati, Maria; Padilha, Katia Grilio; Stafseth, Siv K; Katsoulas, Theodoros; Matziou, Vasiliki; Giannakopoulou, Margarita

    2018-04-11

    To assess the reliability and validity of the Greek version of Nursing Activities Score (NAS), and Therapeutic Intervention Scoring System for Critically Ill Children (TISS-C) in a Greek Paediatric Intensive Care Unit (PICU). A methodological study was performed in one PICU of the largest Paediatric Hospital in Athens-Greece. The culturally adapted and validated Greek NAS version, enriched according to the Norwegian paediatric one (P-NAS), was used. TISS-C and Norwegian paediatric interventions were translated to Greek language and backwards. Therapeutic Intervention Scoring System (TISS-28) was used as a gold standard. Two independent observers simultaneously recorded 30 daily P-NAS and TISS-C records. Totally, 188 daily P-NAS, TISS-C and TISS-28 reports in a sample of 29 patients have been obtained during 5 weeks. Descriptive statistics, reliability and validity measures were applied using SPSS (ver 22.0) (p ≤ 0.05). Kappa was 0.963 for P-NAS and 0.9895 for TISS-C (p < 0.001) and Intraclass Correlation Coefficient for all scale items of TISS-C was 1.00 (p < 0.001). P-NAS, TISS-28 and TISS-C measurements were significantly correlated (0.680 ≤ rho ≤ 0.743, p < 0.001). The mean score(±SD) for TISS-28, P-NAS and TISS-C was 23.05(±5.72), 58.14(±13.98) and 20.21(±9.66) respectively. These results support the validity of P-NAS and TISS-C scales to be used in Greek PICUs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Industry update: what is new in the field of therapeutic delivery?

    PubMed

    Harris, Elaine

    2018-02-01

    The present industry update covers the period 1-30 November 2017. Sources of information include company press releases, regulatory and patent agencies' notices, scientific literature and various news websites. A number of companies reported positive clinical trial results for therapeutic candidates enabled by different delivery strategies including Vascular Therapies, Adapt and Altemia. November also saw the announcement of some significant collaborations and acquisitions; Cerenis Therapeutics acquired Lypro Biosciences, which gives them access to a proprietary drug delivery nanotechnology platform, NanoDisk ® , and Takeda announced a collaboration with Portal Instruments to develop a needle-free delivery device for its biological therapeutics. From a patenting perspective, Allergan's strategy of transferring the rights of some of their patents to Saint Regis Mohawk Tribe has drawn scrutiny (and criticism) from US Senators.

  9. Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use

    PubMed Central

    Gimona, Mario; Pachler, Karin; Laner-Plamberger, Sandra; Schallmoser, Katharina; Rohde, Eva

    2017-01-01

    Extracellular vesicles (EVs) derived from stem and progenitor cells may have therapeutic effects comparable to their parental cells and are considered promising agents for the treatment of a variety of diseases. To this end, strategies must be designed to successfully translate EV research and to develop safe and efficacious therapies, whilst taking into account the applicable regulations. Here, we discuss the requirements for manufacturing, safety, and efficacy testing of EVs along their path from the laboratory to the patient. Development of EV-therapeutics is influenced by the source cell types and the target diseases. In this article, we express our view based on our experience in manufacturing biological therapeutics for routine use or clinical testing, and focus on strategies for advancing mesenchymal stromal cell (MSC)-derived EV-based therapies. We also discuss the rationale for testing MSC-EVs in selected diseases with an unmet clinical need such as critical size bone defects, epidermolysis bullosa and spinal cord injury. While the scientific community, pharmaceutical companies and clinicians are at the point of entering into clinical trials for testing the therapeutic potential of various EV-based products, the identification of the mode of action underlying the suggested potency in each therapeutic approach remains a major challenge to the translational path. PMID:28587212

  10. Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use.

    PubMed

    Gimona, Mario; Pachler, Karin; Laner-Plamberger, Sandra; Schallmoser, Katharina; Rohde, Eva

    2017-06-03

    Extracellular vesicles (EVs) derived from stem and progenitor cells may have therapeutic effects comparable to their parental cells and are considered promising agents for the treatment of a variety of diseases. To this end, strategies must be designed to successfully translate EV research and to develop safe and efficacious therapies, whilst taking into account the applicable regulations. Here, we discuss the requirements for manufacturing, safety, and efficacy testing of EVs along their path from the laboratory to the patient. Development of EV-therapeutics is influenced by the source cell types and the target diseases. In this article, we express our view based on our experience in manufacturing biological therapeutics for routine use or clinical testing, and focus on strategies for advancing mesenchymal stromal cell (MSC)-derived EV-based therapies. We also discuss the rationale for testing MSC-EVs in selected diseases with an unmet clinical need such as critical size bone defects, epidermolysis bullosa and spinal cord injury. While the scientific community, pharmaceutical companies and clinicians are at the point of entering into clinical trials for testing the therapeutic potential of various EV-based products, the identification of the mode of action underlying the suggested potency in each therapeutic approach remains a major challenge to the translational path.

  11. 3D bioprinting: A new insight into the therapeutic strategy of neural tissue regeneration.

    PubMed

    Hsieh, Fu-Yu; Hsu, Shan-hui

    2015-01-01

    Acute traumatic injuries and chronic degenerative diseases represent the world's largest unmet medical need. There are over 50 million people worldwide suffering from neurodegenerative diseases. However, there are only a few treatment options available for acute traumatic injuries and neurodegenerative diseases. Recently, 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. In this commentary, the newly developed 3D bioprinting technique involving neural stem cells (NSCs) embedded in the thermoresponsive biodegradable polyurethane (PU) bioink is reviewed. The thermoresponsive and biodegradable PU dispersion can form gel near 37 °C without any crosslinker. NSCs embedded within the water-based PU hydrogel with appropriate stiffness showed comparable viability and differentiation after printing. Moreover, in the zebrafish embryo neural deficit model, injection of the NSC-laden PU hydrogels promoted the repair of damaged CNS. In addition, the function of adult zebrafish with traumatic brain injury was rescued after implantation of the 3D-printed NSC-laden constructs. Therefore, the newly developed 3D bioprinting technique may offer new possibilities for future therapeutic strategy of neural tissue regeneration.

  12. 3D bioprinting: A new insight into the therapeutic strategy of neural tissue regeneration

    PubMed Central

    Hsieh, Fu-Yu; Hsu, Shan-hui

    2015-01-01

    ABSTRACT Acute traumatic injuries and chronic degenerative diseases represent the world’s largest unmet medical need. There are over 50 million people worldwide suffering from neurodegenerative diseases. However, there are only a few treatment options available for acute traumatic injuries and neurodegenerative diseases. Recently, 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. In this commentary, the newly developed 3D bioprinting technique involving neural stem cells (NSCs) embedded in the thermoresponsive biodegradable polyurethane (PU) bioink is reviewed. The thermoresponsive and biodegradable PU dispersion can form gel near 37°C without any crosslinker. NSCs embedded within the water-based PU hydrogel with appropriate stiffness showed comparable viability and differentiation after printing. Moreover, in the zebrafish embryo neural deficit model, injection of the NSC-laden PU hydrogels promoted the repair of damaged CNS. In addition, the function of adult zebrafish with traumatic brain injury was rescued after implantation of the 3D-printed NSC-laden constructs. Therefore, the newly developed 3D bioprinting technique may offer new possibilities for future therapeutic strategy of neural tissue regeneration. PMID:26709633

  13. Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics.

    PubMed

    Mo, Charlie Y; Manning, Sara A; Roggiani, Manuela; Culyba, Matthew J; Samuels, Amanda N; Sniegowski, Paul D; Goulian, Mark; Kohli, Rahul M

    2016-01-01

    The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in

  14. Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics

    PubMed Central

    Mo, Charlie Y.; Manning, Sara A.; Roggiani, Manuela; Culyba, Matthew J.; Samuels, Amanda N.; Sniegowski, Paul D.; Goulian, Mark

    2016-01-01

    ABSTRACT The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role

  15. Development and construct validity of the Classroom Strategies Scale-Observer Form.

    PubMed

    Reddy, Linda A; Fabiano, Gregory; Dudek, Christopher M; Hsu, Louis

    2013-12-01

    Research on progress monitoring has almost exclusively focused on student behavior and not on teacher practices. This article presents the development and validation of a new teacher observational assessment (Classroom Strategies Scale) of classroom instructional and behavioral management practices. The theoretical underpinnings and empirical basis for the instructional and behavioral management scales are presented. The Classroom Strategies Scale (CSS) evidenced overall good reliability estimates including internal consistency, interrater reliability, test-retest reliability, and freedom from item bias on important teacher demographics (age, educational degree, years of teaching experience). Confirmatory factor analyses (CFAs) of CSS data from 317 classrooms were carried out to assess the level of empirical support for (a) a 4 first-order factor theory concerning teachers' instructional practices, and (b) a 4 first-order factor theory concerning teachers' behavior management practice. Several fit indices indicated acceptable fit of the (a) and (b) CFA models to the data, as well as acceptable fit of less parsimonious alternative CFA models that included 1 or 2 second-order factors. Information-theory-based indices generally suggested that the (a) and (b) CFA models fit better than some more parsimonious alternative CFA models that included constraints on relations of first-order factors. Overall, CFA first-order and higher order factor results support the CSS-Observer Total, Composite, and subscales. Suggestions for future measurement development efforts are outlined. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. The Network Model of Depression as a Basis for New Therapeutic Strategies for Treating Major Depressive Disorder in Parkinson’s Disease

    PubMed Central

    D’Ostilio, Kevin; Garraux, Gaëtan

    2016-01-01

    The high prevalence of major depressive disorder in people with Parkinson’s disease (PD), its negative impact on health-related quality of life and the low response rate to conventional pharmacological therapies call to seek innovative treatments. Here, we review the new approaches for treating major depressive disorder in patients with PD within the framework of the network model of depression. According to this model, major depressive disorder reflects maladaptive neuronal plasticity. Non-invasive brain stimulation (NIBS) using high frequency repetitive transcranial magnetic stimulation (rTMS) over the prefrontal cortex has been proposed as a feasible and effective strategy with minimal risk. The neurobiological basis of its therapeutic effect may involve neuroplastic modifications in limbic and cognitive networks. However, the way this networks reorganize might be strongly influenced by the environment. To address this issue, we propose a combined strategy that includes NIBS together with cognitive and behavioral interventions. PMID:27148016

  17. Developing anti-inflammatory therapeutics for patients with osteoarthritis.

    PubMed

    Philp, Ashleigh M; Davis, Edward T; Jones, Simon W

    2017-06-01

    OA is the most common joint disorder in the world, but there are no approved therapeutics to prevent disease progression. Historically, OA has been considered a wear-and-tear joint disease, and efforts to identify and develop disease-modifying therapeutics have predominantly focused on direct inhibition of cartilage degeneration. However, there is now increasing evidence that inflammation is a key mediator of OA joint pathology, and also that the link between obesity and OA is not solely due to excessive load-bearing, suggesting therefore that targeting inflammation in OA could be a rewarding therapeutic strategy. In this review we therefore re-evaluate historical clinical trial data on anti-inflammatory therapeutics in OA patients, highlight some of the more promising emerging therapeutic targets and discuss the implications for future clinical trial design. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Agile delivery of protein therapeutics to CNS.

    PubMed

    Yi, Xiang; Manickam, Devika S; Brynskikh, Anna; Kabanov, Alexander V

    2014-09-28

    A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Agile Delivery of Protein Therapeutics to CNS

    PubMed Central

    Yi, Xiang; Manickam, Devika S.; Brynskikh, Anna; Kabanov, Alexander V.

    2014-01-01

    A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics. PMID:24956489

  20. Therapeutic magnetic microcarriers characterization by measuring magnetophoretic attributes

    NASA Astrophysics Data System (ADS)

    Vidal Ibacache, Guillermo

    Micro/nano robots are considered a promising approach to conduct minimally invasive interventions. We have proposed to embed magnetic nanoparticles in therapeutic or diagnostic agents in order to magnetically control them. A modified clinical Magnetic Resonance Imaging (MRI) scanner is used to provide the driving force that allows these magnetically embedded microcarriers to navigate the vascular human network. By using specific Magnetic Resonance (MR) gradient sequences this method has been validated in previous research works. Magnetophoresis is the term used to describe the fact that a magnetic particle changes its trajectory under the influence of a magnetic force while being carried by a fluid flow. This movement depends on the particle's magnetic characteristics, the particle's geometric shape, the fluid flow's attributes and other factors. In our proposed method, magnetic microcarriers can be produced in several different ways, and so their response will differ to the same magnetic force and fluid flow conditions. The outcome of the therapeutic treatment using our method depends on the adequate selection of the therapeutic and/or diagnosis agents to be used. The selected therapeutic and/or diagnosis magnetic microcarrier also influences the selection of the MR gradient sequence that best fit for a given treatment. This master's thesis presents the design of a device intended to assess the magnetophoretic properties of magnetic therapeutic microcarriers and/or diagnostic agents. Such characterization is essential for determining the optimal sequences of magnetic gradients to deflect their trajectory through relatively complex vascular networks in order to reach a pre-defined target. A microfluidic device was fabricated to validate the design. Magnetophoretic velocities are measured and a simple tracking method is proposed. The preliminary experimental results indicate that, despite some limitations, the proposed technique has the potential to be appropriate

  1. Design, development, and clinical validation of therapeutic toys for autistic children

    PubMed Central

    Tseng, Kevin C.; Tseng, Sung-Hui; Cheng, Hsin-Yi Kathy

    2016-01-01

    [Purpose] One of the characteristics of autistic children is social interaction difficulties. Although therapeutic toys can promote social interaction, however its related research remains insufficient. The aim of the present study was to build a set of cooperative play toys that are suitable for autistic children. [Subjects and Methods] This study used an innovative product design and development approach as the basis for the creation of cooperative play toys. [Results] The present study has successfully developed cooperative play toys. Compared to the traditional game therapy for autism, cooperative play toy therapy can significantly improve the interactions between autistic children and their peers. [Conclusion] The most critical design theme of cooperative play toys focuses on captivating the interest of autistic children. Based on the needs of the individual cases, the design of the therapeutic toy set was specifically tailored, i.e., by reinforcing the sound and light effects to improve the attractiveness of the toys. In the future, different play modes can be combined with this toy set to further enhance the degree of interaction of autistic children and improve their quality of life and social skills. PMID:27512246

  2. Design, development, and clinical validation of therapeutic toys for autistic children.

    PubMed

    Tseng, Kevin C; Tseng, Sung-Hui; Cheng, Hsin-Yi Kathy

    2016-07-01

    [Purpose] One of the characteristics of autistic children is social interaction difficulties. Although therapeutic toys can promote social interaction, however its related research remains insufficient. The aim of the present study was to build a set of cooperative play toys that are suitable for autistic children. [Subjects and Methods] This study used an innovative product design and development approach as the basis for the creation of cooperative play toys. [Results] The present study has successfully developed cooperative play toys. Compared to the traditional game therapy for autism, cooperative play toy therapy can significantly improve the interactions between autistic children and their peers. [Conclusion] The most critical design theme of cooperative play toys focuses on captivating the interest of autistic children. Based on the needs of the individual cases, the design of the therapeutic toy set was specifically tailored, i.e., by reinforcing the sound and light effects to improve the attractiveness of the toys. In the future, different play modes can be combined with this toy set to further enhance the degree of interaction of autistic children and improve their quality of life and social skills.

  3. Selective testing strategies for diagnosing group A streptococcal infection in children with pharyngitis: a systematic review and prospective multicentre external validation study

    PubMed Central

    Cohen, Jérémie F.; Cohen, Robert; Levy, Corinne; Thollot, Franck; Benani, Mohamed; Bidet, Philippe; Chalumeau, Martin

    2015-01-01

    Background: Several clinical prediction rules for diagnosing group A streptococcal infection in children with pharyngitis are available. We aimed to compare the diagnostic accuracy of rules-based selective testing strategies in a prospective cohort of children with pharyngitis. Methods: We identified clinical prediction rules through a systematic search of MEDLINE and Embase (1975–2014), which we then validated in a prospective cohort involving French children who presented with pharyngitis during a 1-year period (2010–2011). We diagnosed infection with group A streptococcus using two throat swabs: one obtained for a rapid antigen detection test (StreptAtest, Dectrapharm) and one obtained for culture (reference standard). We validated rules-based selective testing strategies as follows: low risk of group A streptococcal infection, no further testing or antibiotic therapy needed; intermediate risk of infection, rapid antigen detection for all patients and antibiotic therapy for those with a positive test result; and high risk of infection, empiric antibiotic treatment. Results: We identified 8 clinical prediction rules, 6 of which could be prospectively validated. Sensitivity and specificity of rules-based selective testing strategies ranged from 66% (95% confidence interval [CI] 61–72) to 94% (95% CI 92–97) and from 40% (95% CI 35–45) to 88% (95% CI 85–91), respectively. Use of rapid antigen detection testing following the clinical prediction rule ranged from 24% (95% CI 21–27) to 86% (95% CI 84–89). None of the rules-based selective testing strategies achieved our diagnostic accuracy target (sensitivity and specificity > 85%). Interpretation: Rules-based selective testing strategies did not show sufficient diagnostic accuracy in this study population. The relevance of clinical prediction rules for determining which children with pharyngitis should undergo a rapid antigen detection test remains questionable. PMID:25487666

  4. A systematic review of model-based economic evaluations of diagnostic and therapeutic strategies for lower extremity artery disease.

    PubMed

    Vaidya, Anil; Joore, Manuela A; ten Cate-Hoek, Arina J; Kleinegris, Marie-Claire; ten Cate, Hugo; Severens, Johan L

    2014-01-01

    Lower extremity artery disease (LEAD) is a sign of wide spread atherosclerosis also affecting coronary, cerebral and renal arteries and is associated with increased risk of cardiovascular events. Many economic evaluations have been published for LEAD due to its clinical, social and economic importance. The aim of this systematic review was to assess modelling methods used in published economic evaluations in the field of LEAD. Our review appraised and compared the general characteristics, model structure and methodological quality of published models. Electronic databases MEDLINE and EMBASE were searched until February 2013 via OVID interface. Cochrane database of systematic reviews, Health Technology Assessment database hosted by National Institute for Health research and National Health Services Economic Evaluation Database (NHSEED) were also searched. The methodological quality of the included studies was assessed by using the Philips' checklist. Sixteen model-based economic evaluations were identified and included. Eleven models compared therapeutic health technologies; three models compared diagnostic tests and two models compared a combination of diagnostic and therapeutic options for LEAD. Results of this systematic review revealed an acceptable to low methodological quality of the included studies. Methodological diversity and insufficient information posed a challenge for valid comparison of the included studies. In conclusion, there is a need for transparent, methodologically comparable and scientifically credible model-based economic evaluations in the field of LEAD. Future modelling studies should include clinically and economically important cardiovascular outcomes to reflect the wider impact of LEAD on individual patients and on the society.

  5. Strategies to target non-T-cell HIV reservoirs.

    PubMed

    Sacha, Jonah B; Ndhlovu, Lishomwa C

    2016-07-01

    A central question for the HIV cure field is to determine new ways to target clinically relevant, latently and actively replicating HIV-infected cells beyond resting memory CD4 T cells, particularly in anatomical areas of low drug penetrability. HIV eradication strategies being positioned for targeting HIV for extinction in the CD4 T-cell compartment may also show promise in non-CD4 T-cells reservoirs. Furthermore, several exciting novel therapeutic approaches specifically focused on HIV clearance from non-CD4 T-cell populations are being developed. Although reservoir validity in these non-CD4 T cells continues to remain debated, this review will highlight recent advances and make an argument as to their clinical relevancy as we progress towards an HIV cure.

  6. Exploiting differential RNA splicing patterns: a potential new group of therapeutic targets in cancer.

    PubMed

    Jyotsana, Nidhi; Heuser, Michael

    2018-02-01

    Mutations in genes associated with splicing have been found in hematologic malignancies, but also in solid cancers. Aberrant cancer specific RNA splicing either results from mutations or misexpression of the spliceosome genes directly, or from mutations in splice sites of oncogenes or tumor suppressors. Areas covered: In this review, we present molecular targets of aberrant splicing in various malignancies, information on existing and emerging therapeutics against such targets, and strategies for future drug development. Expert opinion: Alternative splicing is an important mechanism that controls gene expression, and hence pharmacologic and genetic control of aberrant alternative RNA splicing has been proposed as a potential therapy in cancer. To identify and validate aberrant RNA splicing patterns as therapeutic targets we need to (1) characterize the most common genetic aberrations of the spliceosome and of splice sites, (2) understand the dysregulated downstream pathways and (3) exploit in-vivo disease models of aberrant splicing. Antisense oligonucleotides show promising activity, but will benefit from improved delivery tools. Inhibitors of mutated splicing factors require improved specificity, as alternative and aberrant splicing are often intertwined like two sides of the same coin. In summary, targeting aberrant splicing is an early but emerging field in cancer treatment.

  7. Expression of PFKFB3 and Ki67 in lung adenocarcinomas and targeting PFKFB3 as a therapeutic strategy.

    PubMed

    Li, Xiaoli; Liu, Jian; Qian, Li; Ke, Honggang; Yao, Chan; Tian, Wei; Liu, Yifei; Zhang, Jianguo

    2018-01-11

    Phosphofructokinase-2/fructose-2, 6-bisphosphatase 3 (PFKFB3) catalyzes the synthesis of F2,6BP, which is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1): the rate-limiting enzyme of glycolysis. During tumorigenesis, PFKFB3 increases glycolysis, angiogenesis, and tumor progression. In this study, our aim was to investigate the significance of PFKFB3 and Ki67 in human lung adenocarcinomas and to target PFKFB3 as a therapeutic strategy. In this study, we determined the expression levels of PFKFB3 mRNA and proteins in cancerous and normal lung adenocarcinomas by quantitative reverse transcription PCR (qRT-PCR), Western blot analysis, and tissue microarray immunohistochemistry analysis, respectively. In human adenocarcinoma tissues, PFKFB3 and Ki67 protein levels were related to the clinical characteristics and overall survival. Both PFKFB3 mRNA and protein were significantly higher in lung adenocarcinoma cells (all P < 0.05). A high expression of PFKFB3 and Ki67 were associated with the degree of differentiation, TNM staging, lymph node metastasis, and survival. A high expression of PFKFB3 protein was an independent prognostic marker in lung adenocarcinoma. Subsequently, 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15) was used as a selective antagonist of PFKFB3. Glycolytic flux was determined by measuring glucose uptake, F2,6BP, and lactate production. Cell viability, cell cycle, cell apoptosis, cell migration, and invasion were analyzed by MTT, flow cytometry, Western blot analysis, wound healing assay, and transwell chamber assay. By targeting PFKFB3, it inhibited cell viability and glycolytic activity. It also caused apoptosis and induced cell cycle arrest. Furthermore, the migration and invasion of A549 cells was inhibited. We conclude that PFKFB3 bears an oncogene-like regulatory element in lung adenocarcinoma progression. In the treatment of lung adenocarcinoma, targeting PFKFB3 would be a promising therapeutic strategy.

  8. Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches.

    PubMed

    Reid, Andrew T; Veerati, Punnam Chander; Gosens, Reinoud; Bartlett, Nathan W; Wark, Peter A; Grainge, Chris L; Stick, Stephen M; Kicic, Anthony; Moheimani, Fatemeh; Hansbro, Philip M; Knight, Darryl A

    2018-05-01

    Dysregulated induction of goblet cell differentiation results in excessive production and retention of mucus and is a common feature of several chronic airways diseases. To date, therapeutic strategies to reduce mucus accumulation have focused primarily on altering the properties of the mucus itself, or have aimed to limit the production of mucus-stimulating cytokines. Here we review the current knowledge of key molecular pathways that are dysregulated during persistent goblet cell differentiation and highlights both pre-existing and novel therapeutic strategies to combat this pathology. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  9. RNA therapeutics targeting osteoclast-mediated excessive bone resorption

    PubMed Central

    Wang, Yuwei; Grainger, David W

    2011-01-01

    RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing technique developed with dramatically increasing utility for both scientific and therapeutic purposes. Short interfering RNA (siRNA) is currently exploited to regulate protein expression relevant to many therapeutic applications, and commonly used as a tool for elucidating disease-associated genes. Osteoporosis and their associated osteoporotic fragility fractures in both men and women are rapidly becoming a global healthcare crisis as average life expectancy increases worldwide. New therapeutics are needed for this increasing patient population. This review describes the diversity of molecular targets suitable for RNAi-based gene knock-down in osteoclasts to control osteoclast-mediated excessive bone resorption. We identify strategies for developing targeted siRNA delivery and efficient gene silencing, and describe opportunities and challenges of introducing siRNA as a therapeutic approach to hard and connective tissue disorders. PMID:21945356

  10. Inhibitor-Based Therapeutics for Treatment of Viral Hepatitis.

    PubMed

    Dey, Debajit; Banerjee, Manidipa

    2016-09-28

    Viral hepatitis remains a significant worldwide threat, in spite of the availability of several successful therapeutic and vaccination strategies. Complications associated with acute and chronic infections, such as liver failure, cirrhosis and hepatocellular carcinoma, are the cause of considerable morbidity and mortality. Given the significant burden on the healthcare system caused by viral hepatitis, it is essential that novel, more effective therapeutics be developed. The present review attempts to summarize the current treatments against viral hepatitis, and provides an outline for upcoming, promising new therapeutics. Development of novel therapeutics requires an understanding of the viral life cycles and viral effectors in molecular detail. As such, this review also discusses virally-encoded effectors, found to be essential for virus survival and replication in the host milieu, which may be utilized as potential candidates for development of alternative therapies in the future.

  11. Imbalanced pattern completion vs. separation in cognitive disease: network simulations of synaptic pathologies predict a personalized therapeutics strategy.

    PubMed

    Hanson, Jesse E; Madison, Daniel V

    2010-08-13

    Diverse Mouse genetic models of neurodevelopmental, neuropsychiatric, and neurodegenerative causes of impaired cognition exhibit at least four convergent points of synaptic malfunction: 1) Strength of long-term potentiation (LTP), 2) Strength of long-term depression (LTD), 3) Relative inhibition levels (Inhibition), and 4) Excitatory connectivity levels (Connectivity). To test the hypothesis that pathological increases or decreases in these synaptic properties could underlie imbalances at the level of basic neural network function, we explored each type of malfunction in a simulation of autoassociative memory. These network simulations revealed that one impact of impairments or excesses in each of these synaptic properties is to shift the trade-off between pattern separation and pattern completion performance during memory storage and recall. Each type of synaptic pathology either pushed the network balance towards intolerable error in pattern separation or intolerable error in pattern completion. Imbalances caused by pathological impairments or excesses in LTP, LTD, inhibition, or connectivity, could all be exacerbated, or rescued, by the simultaneous modulation of any of the other three synaptic properties. Because appropriate modulation of any of the synaptic properties could help re-balance network function, regardless of the origins of the imbalance, we propose a new strategy of personalized cognitive therapeutics guided by assay of pattern completion vs. pattern separation function. Simulated examples and testable predictions of this theorized approach to cognitive therapeutics are presented.

  12. Using therapeutic cloning to fight human disease: a conundrum or reality?

    PubMed

    Hall, Vanessa J; Stojkovic, Petra; Stojkovic, Miodrag

    2006-07-01

    The development and transplantation of autologous cells derived from nuclear transfer embryonic stem cell (NT-ESC) lines to treat patients suffering from disease has been termed therapeutic cloning. Human NT is still a developing field, with further research required to improve somatic cell NT and human embryonic stem cell differentiation to deliver safe and effective cell replacement therapies. Furthermore, the implications of transferring mitochondrial heteroplasmic cells, which may harbor aberrant epigenetic gene expression profiles, are of concern. The production of human NT-ESC lines also remains plagued by ethical dilemmas, societal concerns, and controversies. Recently, a number of alternate therapeutic strategies have been proposed to circumvent the moral implications surrounding human nuclear transfer. It will be critical to overcome these biological, legislative, and moral restraints to maximize the potential of this therapeutic strategy and to alleviate human disease.

  13. Therapeutic potential of MEK inhibition in acute myelogenous leukemia: rationale for "vertical" and "lateral" combination strategies.

    PubMed

    Ricciardi, Maria Rosaria; Scerpa, Maria Cristina; Bergamo, Paola; Ciuffreda, Ludovica; Petrucci, Maria Teresa; Chiaretti, Sabina; Tavolaro, Simona; Mascolo, Maria Grazia; Abrams, Stephen L; Steelman, Linda S; Tsao, Twee; Marchetti, Antonio; Konopleva, Marina; Del Bufalo, Donatella; Cognetti, Francesco; Foà, Robin; Andreeff, Michael; McCubrey, James A; Tafuri, Agostino; Milella, Michele

    2012-10-01

    In hematological malignancies, constitutive activation of the RAF/MEK/ERK pathway is frequently observed, conveys a poor prognosis, and constitutes a promising target for therapeutic intervention. Here, we investigated the molecular and functional effects of pharmacological MEK inhibition in cell line models of acute myeloid leukemia (AML) and freshly isolated primary AML samples. The small-molecule, ATP-non-competitive, MEK inhibitor PD0325901 markedly inhibited ERK phosphorylation and growth of several AML cell lines and approximately 70 % of primary AML samples. Growth inhibition was due to G(1)-phase arrest and induction of apoptosis. Transformation by constitutively active upstream pathway elements (HRAS, RAF-1, and MEK) rendered FDC-P1 cells exquisitely prone to PD0325901-induced apoptosis. Gene and protein expression profiling revealed a selective effect of PD0325901 on ERK phosphorylation and compensatory upregulation of the RAF/MEK and AKT/p70( S6K ) kinase modules, potentially mediating resistance to drug-induced growth inhibition. Consequently, in appropriate cellular contexts, both "vertical" (i.e., inhibition of RAF and MEK along the MAPK pathway) and "lateral" (i.e., simultaneous inhibition of the MEK/ERK and mTOR pathways) combination strategies may result in synergistic anti-leukemic effects. Overall, MEK inhibition exerts potent growth inhibitory and proapoptotic activity in preclinical models of AML, particularly in combination with other pathway inhibitors. Deeper understanding of the molecular mechanisms of action of MEK inhibitors will likely translate into more effective targeted strategies for the treatment of AML.

  14. The role of endemic plants in Mauritian traditional medicine - Potential therapeutic benefits or placebo effect?

    PubMed

    Rummun, Nawraj; Neergheen-Bhujun, Vidushi S; Pynee, Kersley B; Baider, Cláudia; Bahorun, Theeshan

    2018-03-01

    The Mauritian endemic flora has been recorded to be used as medicines for nearly 300 years. Despite acceptance of these endemic plants among the local population, proper documentation of their therapeutic uses is scarce. This review aims at summarising documented traditional uses of Mauritian endemic species with existing scientific data of their alleged bioactivities, in a view to appeal for more stringent validations for their ethnomedicinal uses. A comprehensive bibliographic investigation was carried out by analysing published books on ethnopharmacology and international peer-reviewed papers via scientific databases namely ScienceDirect and PubMed. The keywords "Mauritius endemic plants" and "Mauritius endemic medicinal plants" were used and articles published from 1980 to 2016 were considered. 675 works of which 12 articles were filtered which documented the ethnomedicinal uses and 22 articles reported the biological activities of Mauritian endemic plants. Only materials published in English or French language were included in the review. Available data on the usage of Mauritian endemic plants in traditional medicine and scientific investigation were related. We documented 87 taxa of Mauritian endemic plants for their medicinal value. Endemic plants are either used as part of complex herbal formulations or singly, and are prescribed by herbalists to mitigate a myriad of diseases from metabolic disorders, dermatological pathologies, arthritis to sexually transmissible diseases. However, these species have undergone a limited consistent evaluation to validate their purported ethnomedicinal claims. As the World Health Organization Traditional Medicine Strategy 2014-2023 emphasises on moving traditional medicine into mainstream medicine on an equally trusted footage, the re-evaluation and modernization of Mauritius cultural heritage become necessary. With a consumer-driven 'return to nature', scientific validation and valorization of the herbal remedies, including

  15. Targeting IFN-λ: therapeutic implications.

    PubMed

    Eslam, Mohammed; George, Jacob

    2016-12-01

    Type-III interferons (IFN-λ), the most recently discovered family of IFNs, shares common features with other family members, but also has many distinctive activities. IFN-λ uniquely has a different receptor complex, and a more focused pattern of tissue expression and signaling effects, from other classes of IFNs. Multiple genome-wide association studies (GWAS) and subsequent validation reports suggest a pivotal role for polymorphisms near the IFNL3 gene in hepatitis C clearance and control, as also for several other epithelial cell tropic viruses. Apart from its antiviral activity, IFN-λ possesses anti-tumor, immune-inflammatory and homeostatic functions. The overlapping effects of IFN-λ with type I IFN, with a restricted tissue expression pattern renders IFN-λ an attractive therapeutic target for viral infection, cancer and autoimmune diseases, with limited side effects. Areas covered: This review will summarize the current and future therapeutic opportunities offered by this most recently discovered family of interferons. Expert opinion: Our knowledge on IFN-λ is rapidly expanding. Though there are many remaining questions and challenges that require elucidation, the unique characteristics of IFN-λ increases enthusiasm that multiple therapeutic options will emerge.

  16. HIV therapeutic vaccines: moving towards a functional cure.

    PubMed

    Mylvaganam, Geetha H; Silvestri, Guido; Amara, Rama Rao

    2015-08-01

    Anti-viral T-cell and B-cell responses play a crucial role in suppressing HIV and SIV replication during chronic infection. However, these infections are rarely controlled by the host immune response, and most infected individuals need lifelong antiretroviral therapy (ART). Recent advances in our understanding of how anti-HIV immune responses are elicited and regulated prompted a surge of interest in harnessing these responses to reduce the HIV 'residual disease' that is present in ART-treated HIV-infected individuals. Novel approaches that are currently explored include both conventional therapeutic vaccines (i.e., active immunization strategies using HIV-derived immunogens) as well as the use of checkpoint blockers such as anti-PD-1 antibodies. These approaches appear promising as key components of complex therapeutic strategies aimed at curing HIV infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Emerging therapeutic targets in human acute myeloid leukemia (part 2) - bromodomain inhibition should be considered as a possible strategy for various patient subsets.

    PubMed

    Reikvam, Håkon; Hoang, Tuyen Thi van; Bruserud, Øystein

    2015-06-01

    The recent advances in our understanding of leukemogenesis have clearly demonstrated that human acute myeloid leukemia is a heterogeneous malignancy, and several disease mechanisms should probably be regarded as possible therapeutic targets only for specific subsets of patients and not for acute myeloid leukemia in general. One promising strategy for epigenetic targeting is inhibition of the binding between bromodomain-containing transcription regulators and acetylated lysine residues on histones. This possible approach has been investigated especially for patients with 11q23 and chromosome 8 abnormalities. An alternative target is the histone methyltransferase COT1L. Major challenges for both approaches will be to clarify how these strategies should be combined with each other or with conventional chemotherapy, and whether their use should be limited to certain subsets of patients.

  18. New Prophylactic and Therapeutic Strategies for Spinal Cord Injury.

    PubMed

    Park, Sookyoung; Park, Kanghui; Lee, Youngjeon; Chang, Kyu-Tae; Hong, Yonggeun

    2013-03-01

    Melatonin production by the pineal gland in the vertebrate brain has attracted much scientific attention. Pineal melatonin is regulated by photoperiodicity, whereas circadian secretion of melatonin produced in the gastrointestinal tract is regulated by food intake. Thus, the circadian rhythm of pineal melatonin depends upon whether a species is diurnal or nocturnal. Spinal cord injury (SCI) involves damage to the spinal cord caused by trauma or disease that results in compromise or loss of body function. Melatonin is the most efficient and commonly used pharmacological antioxidant treatment for SCI. Melatonin is an indolamine secreted by the pineal gland during the dark phase of the circadian cycle. Neurorehabilitation is a complex medical process that focuses on improving function and repairing damaged connections in the brain and nervous system following injury. Physical activity associated with an active lifestyle reduces the risk of obesity, cardiovascular disease, type 2 diabetes, osteoporosis, and depression and protects against neurological conditions, including Parkinson's disease, Alzheimer's disease, and ischemic stroke. Physical activity has been shown to increase the gene expression of several brain neurotrophins (brain-derived neurotrophic factor [BDNF], nerve growth factor, and galanin) and the production of mitochondrial uncoupling protein 2, which promotes neuronal survival, differentiation, and growth. In summary, melatonin is a neural protectant, and when combined with therapeutic exercise, the hormone prevents the progression of secondary neuronal degeneration in SCI. The present review briefly describes the pathophysiological mechanisms underlying SCI, focusing on therapeutic targets and combined melatonin and exercise therapy, which can attenuate secondary injury mechanisms with minimal side effects.

  19. Therapeutic options to treat sulfur mustard poisoning--the road ahead.

    PubMed

    Smith, William J

    2009-09-01

    For the past 15 years the international research community has conducted a basic and applied research program aimed at identifying a medical countermeasure against chemical threat vesicant, or blistering, agents. The primary emphasis of this program has been the development of therapeutic protection against sulfur mustard and its cutaneous pathology-blister formation. In addition to the work on a medical countermeasures, significant research has been conducted on the development of topical skin protectants and medical strategies for wound healing. This review will focus on the pharmacological strategies investigated, novel therapeutic targets currently under investigation and therapeutic approaches being considered for transition to advanced development. Additionally, we will review the expansion of our understanding of the pathophysiological mechanisms of mustard injury that has come from this research. While great strides have been made through these investigations, the complexity of the mustard insult demands that further studies extend the inroads made and point the way toward better understanding of cellular and tissue disruptions caused by sulfur mustard.

  20. Therapeutic Drug Monitoring and Clinical Outcomes in Immune Mediated Diseases: The Missing Link.

    PubMed

    Sorrentino, Dario; Nguyen, Vu; Henderson, Carl; Bankole, Adegabenga

    2016-10-01

    As the incidence of inflammatory bowel diseases and the number of patients treated with anti-TNF agents keep on increasing so are the phenomena of primary non response (PNR) and secondary loss of response (SLR) to these medications. Traditionally PNR and SLR have been managed empirically-that is, switching medications for PNR and increasing the anti-TNF dose for SNR. More recently an approach based on testing drug levels and antibodies to the drug (therapeutic drug monitoring) has gained increasing popularity in the management of inflammatory bowel diseases. However, while this strategy might offer an insight into the mechanisms leading to PNR/SLR it often falls short of providing a simple, reproducible method to manage these issues in clinical practice. Here, we will review the currently recommended therapeutic strategies when using therapeutic drug monitoring; the evidence for and against such approach and the current standard strategies in Rheumatology (the specialty with the largest and longest experience with anti-TNF agents). We will then discuss the possible reasons of the shortcomings of therapeutic drug monitoring and the rationale and need to move the therapeutic target to the disease burden in inflammatory bowel diseases-along with the supporting preliminary evidence. Finally, we will focus on future crucial studies that need to be done to make approaches to PNR/SLR more rigorous and at the same time user-friendly for the practicing gastroenterologist.

  1. Microbiome therapeutics - Advances and challenges.

    PubMed

    Mimee, Mark; Citorik, Robert J; Lu, Timothy K

    2016-10-01

    The microbial community that lives on and in the human body exerts a major impact on human health, from metabolism to immunity. In order to leverage the close associations between microbes and their host, development of therapeutics targeting the microbiota has surged in recent years. Here, we discuss current additive and subtractive strategies to manipulate the microbiota, focusing on bacteria engineered to produce therapeutic payloads, consortia of natural organisms and selective antimicrobials. Further, we present challenges faced by the community in the development of microbiome therapeutics, including designing microbial therapies that are adapted for specific geographies in the body, stable colonization with microbial therapies, discovery of clinically relevant biosensors, robustness of engineered synthetic gene circuits and addressing safety and biocontainment concerns. Moving forward, collaboration between basic and applied researchers and clinicians to address these challenges will poise the field to herald an age of next-generation, cellular therapies that draw on novel findings in basic research to inform directed augmentation of the human microbiota. Copyright © 2016. Published by Elsevier B.V.

  2. Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications

    PubMed Central

    Guillem, María S.; Climent, Andreu M.; Rodrigo, Miguel; Fernández-Avilés, Francisco; Atienza, Felipe; Berenfeld, Omer

    2016-01-01

    Rotor-guided ablation has opened new perspectives into the therapy of atrial fibrillation (AF). Analysis of the spatio-temporal cardiac excitation patterns in the frequency and phase domains has demonstrated the importance of rotors in research models of AF, however, the dynamics and role of rotors in human AF are still controversial. In this review, the current knowledge gained through research models and patient data that support the notion that rotors are key players in AF maintenance is summarized. We report and discuss discrepancies regarding rotor prevalence and stability in various studies, which can be attributed in part to methodological differences among mapping systems. Future research for validation and improvement of current clinical electrophysiology mapping technologies will be crucial for developing mechanistic-based selection and application of the best therapeutic strategy for individual AF patient, being it, pharmaceutical, ablative, or other approach. PMID:26786157

  3. Towards the Adriatic meteotsunami early warning system: modelling strategy and validation

    NASA Astrophysics Data System (ADS)

    Denamiel, Clea; Šepić, Jadranka; Vilibić, Ivica

    2017-04-01

    Destructive meteotsunamis are known to occur along the eastern Adriatic coastal areas and islands (Vilibić and Šepić, 2009). The temporal lag between the offshore generation of meteotsunamis due to specific atmospheric conditions and the arrival of a dangerous nearshore propagating wave at known locations is of the order of tens of minutes to a couple of hours. In order to reduce the coastal risk for the coastal communities, an early warning system must rely on the ability to detect these extreme storms offshore with in-situ measurements and to predict the hydrodynamic response nearshore via numerical models within this short time lag. However, the numerical modelling of meteotsunamis requires both temporal and spatial high-resolution atmospheric and ocean models which are highly demanding concerning time and computer resources. Furthermore, both a multi-model approach and an ensemble modelling strategy should be used to better forecast the distribution of the nearshore impact of meteotsunamis. The modelling strategy used in this study thus rely on the development of an operational atmosphere-ocean model of the Adriatic Sea at 1km spatial resolution based on the state-of-the-art fully coupled COAWST model (Warner et al., 2010). The model allows for generation of meteotsunamis offshore, while various high-resolution (up to 5m) nearshore hydrodynamic models (such as ADCIRC - Luettich and Westerink, 1991; SELFE - Zhang et al., 2008 and GeoClaw - LeVeque, 2012) are setup to properly reproduce meteotsunami dynamics of the entire Croatian coastal areas, which are characterized by a great number of islands, channels and bays. The implementation and validation of each component of this modelling system is first undertaken for the well documented meteotsunami event (Šepić et al., 2016), which was recorded along the Croatian Adriatic coast on the 25th and the 26th of June 2014. The validation of the modelling strategy as well as the model results is presented and

  4. The oxytocin system in drug discovery for autism: Animal models and novel therapeutic strategies

    PubMed Central

    Modi, Meera E.; Young, Larry J.

    2012-01-01

    Animal models and behavioral paradigms are critical for elucidating the neural mechanism involved in complex behaviors, including social cognition. Both genotype and phenotype based models have implicated the neuropeptide oxytocin (OT) in the regulation of social behavior. Based on the findings in animal models, alteration of the OT system has been hypothesized to play a role in the social deficits associated with autism and other neuropsychiatric disorders. While the evidence linking the peptide to the etiology of the disorder is not yet conclusive, evidence from multiple animal models suggest modulation of the OT system may be a viable strategy for the pharmacological treatment of social deficits. In this review, we will discuss how animal models have been utilized to understand the role of OT in social cognition and how those findings can be applied to the conceptualization and treatment of the social impairments in ASD. Animal models with genetic alterations of the OT system, like the OT, OT receptor and CD38 knock-out mice, and those with phenotypic variation in social behavior, like BTBR inbred mice and prairie voles, coupled with behavioral paradigms with face and construct validity may prove to have predictive validity for identifying the most efficacious methods of stimulating the OT system to enhance social cognition in humans. The widespread use of strong animal models of social cognition has the potential yield pharmacological, interventions for the treatment social impairments psychiatric disorders. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. PMID:22206823

  5. Versican is a potential therapeutic target in docetaxel-resistant prostate cancer

    PubMed Central

    Arichi, Naoko; Mitsui, Yozo; Hiraki, Miho; Nakamura, Sigenobu; Hiraoka, Takeo; Sumura, Masahiro; Hirata, Hiroshi; Tanaka, Yuichiro; Dahiya, Rajvir; Yasumoto, Hiroaki; Shiina, Hiroaki

    2015-01-01

    In the current study, we investigated a combination of docetaxel and thalidomide (DT therapy) in castration-resistant prostate cancer (CRPC) patients. We identified marker genes that predict the effect of DT therapy. Using an androgen-insensitive PC3 cell line, we established a docetaxel-resistant PC-3 cell line (DR-PC3). In DR-PC3 cells, DT therapy stronger inhibited proliferation/viability than docetaxel alone. Based on gene ontology analysis, we found versican as a selective gene. This result with the findings of cDNA microarray and validated by quantitative RT-PCR. In addition, the effect of DT therapy on cell viability was the same as the effect of docetaxel plus versican siRNA. In other words, silencing of versican can substitute for thalidomide. In the clinical setting, versican expression in prostate biopsy samples (before DT therapy) correlated with PSA reduction after DT therapy (p<0.05). Thus targeting versican is a potential therapeutic strategy in docetaxel-resistant prostate cancer. PMID:25859560

  6. Validation of the Malaysian Coping Strategy Instrument to measure household food insecurity in Kelantan, Malaysia.

    PubMed

    Sulaiman, Norhasmah; Shariff, Zalilah Mohd; Jalil, Rohana Abdul; Taib, Mohd Nasir Mohd; Kandiah, Mirnalini; Samah, Asnarulkhadi Abu

    2011-12-01

    Food insecurity occurs whenever people are not able to access enough food at all times for an active and healthy life or when adequate and safe food acquired by socially acceptable ways is not available. To validate the Malaysian Coping Strategy Instrument (MCSI) to measure household food insecurity in Kelantan, Malaysia. A cross-sectional study was conducted on 301 nonpregnant, nonlactating Malay women, aged between 19 and 49 years, living in rural and urban areas. The respondents were interviewed with the use of a structured questionnaire to obtain information on their demographic and socioeconomic characteristics, household food security, and dietary intake. Demographic and socioeconomic characteristics (household size, number of children, number of children attending school, household income, and per capita income) were significantly associated with household food-security status in rural and urban areas. Energy intake, fat intake, percentage of energy from fat, and number of servings of meat,fish, or poultry and legumes were significantly associated with household food-security status in rural areas. The dietary diversity score was significantly associated with household food-security status in rural and urban areas. Validating the MCSI in other areas of Malaysia as well as in similar settings elsewhere in the world before it is used to measure household food insecurity in the population is strongly recommended. In this study, the MCSI was found to be a reliable and valid measure of household food insecurity based on criterion-related validity, particularly in terms of demographic and socioeconomic characteristics and dietary diversity.

  7. Functional kinomics identifies candidate therapeutic targets in head and neck cancer

    PubMed Central

    Moser, Russell; Xu, Chang; Kao, Michael; Annis, James; Lerma, Luisa Angelica; Schaupp, Christopher M.; Gurley, Kay E.; Jang, In Sock; Biktasova, Asel; Yarbrough, Wendell G.; Margolin, Adam A.; Grandori, Carla; Kemp, Christopher J.; Méndez, Eduardo

    2014-01-01

    Purpose To identify novel therapeutic drug targets for p53 mutant head and neck squamous cell carcinoma (HNSCC). Experimental Design RNAi kinome viability screens were performed on HNSCC cells including autologous pairs from primary tumor and recurrent/metastatic lesions, and in parallel on murine squamous cell carcinoma (MSCC) cells derived from tumors of inbred mice bearing germline mutations in Trp53, and p53 regulatory genes: Atm, Prkdc, and p19Arf. Cross-species analysis of cell lines stratified by p53 mutational status and metastatic phenotype was utilized to select 38 kinase targets. Both primary and secondary RNAi validation assays were performed on additional HNSCC cell lines to credential these kinase targets utilizing multiple phenotypic endpoints. Kinase targets were also examined via chemical inhibition utilizing a panel of kinase inhibitors. A preclinical study was conducted on the WEE1 kinase inhibitor, MK-1775. Results Our functional kinomics approach identified novel survival kinases in HNSCC involved in G2/M cell cycle checkpoint, SFK, PI3K and FAK pathways. RNAi mediated knockdown and chemical inhibition of the WEE1 kinase with a specific inhibitor, MK-1775, had a significant effect on both viability and apoptosis. Sensitivity to the MK-1775 kinase inhibitor is in part determined by p53 mutational status, and due to unscheduled mitotic entry. MK-1775 displays single-agent activity and potentiates the efficacy of cisplatin in a p53 mutant HNSCC xenograft model. Conclusions WEE1 kinase is a potential therapeutic drug target for HNSCC. This study supports the application of a functional kinomics strategy to identify novel therapeutic targets for cancer. PMID:25125259

  8. Functional kinomics identifies candidate therapeutic targets in head and neck cancer.

    PubMed

    Moser, Russell; Xu, Chang; Kao, Michael; Annis, James; Lerma, Luisa Angelica; Schaupp, Christopher M; Gurley, Kay E; Jang, In Sock; Biktasova, Asel; Yarbrough, Wendell G; Margolin, Adam A; Grandori, Carla; Kemp, Christopher J; Méndez, Eduardo

    2014-08-15

    To identify novel therapeutic drug targets for p53-mutant head and neck squamous cell carcinoma (HNSCC). RNAi kinome viability screens were performed on HNSCC cells, including autologous pairs from primary tumor and recurrent/metastatic lesions, and in parallel on murine squamous cell carcinoma (MSCC) cells derived from tumors of inbred mice bearing germline mutations in Trp53, and p53 regulatory genes: Atm, Prkdc, and p19(Arf). Cross-species analysis of cell lines stratified by p53 mutational status and metastatic phenotype was used to select 38 kinase targets. Both primary and secondary RNAi validation assays were performed on additional HNSCC cell lines to credential these kinase targets using multiple phenotypic endpoints. Kinase targets were also examined via chemical inhibition using a panel of kinase inhibitors. A preclinical study was conducted on the WEE1 kinase inhibitor, MK-1775. Our functional kinomics approach identified novel survival kinases in HNSCC involved in G2-M cell-cycle checkpoint, SFK, PI3K, and FAK pathways. RNAi-mediated knockdown and chemical inhibition of the WEE1 kinase with a specific inhibitor, MK-1775, had a significant effect on both viability and apoptosis. Sensitivity to the MK-1775 kinase inhibitor is in part determined by p53 mutational status, and due to unscheduled mitotic entry. MK-1775 displays single-agent activity and potentiates the efficacy of cisplatin in a p53-mutant HNSCC xenograft model. WEE1 kinase is a potential therapeutic drug target for HNSCC. This study supports the application of a functional kinomics strategy to identify novel therapeutic targets for cancer. ©2014 American Association for Cancer Research.

  9. Novel Platform for MRI-Guided Convection-Enhanced Delivery of Therapeutics: Preclinical Validation in Nonhuman Primate Brain

    PubMed Central

    Richardson, R. Mark; Kells, Adrian P.; Martin, Alastair J.; Larson, Paul S.; Starr, Philip A.; Piferi, Peter G.; Bates, Geoffrey; Tansey, Lisa; Rosenbluth, Kathryn H.; Bringas, John R.; Berger, Mitchel S.; Bankiewicz, Krystof S.

    2011-01-01

    Background/Aims A skull-mounted aiming device and integrated software platform has been developed for MRI-guided neurological interventions. In anticipation of upcoming gene therapy clinical trials, we adapted this device for real-time convection-enhanced delivery of therapeutics via a custom-designed infusion cannula. The targeting accuracy of this delivery system and the performance of the infusion cannula were validated in nonhuman primates. Methods Infusions of gadoteridol were delivered to multiple brain targets and the targeting error was determined for each cannula placement. Cannula performance was assessed by analyzing gadoteridol distributions and by histological analysis of tissue damage. Results The average targeting error for all targets (n = 11) was 0.8 mm (95% CI = 0.14). For clinically relevant volumes, the distribution volume of gadoteridol increased as a linear function (R2 = 0.97) of the infusion volume (average slope = 3.30, 95% CI = 0.2). No infusions in any target produced occlusion, cannula reflux or leakage from adjacent tracts, and no signs of unexpected tissue damage were observed. Conclusions This integrated delivery platform allows real-time convection-enhanced delivery to be performed with a high level of precision, predictability and safety. This approach may improve the success rate for clinical trials involving intracerebral drug delivery by direct infusion. PMID:21494065

  10. Current Therapeutic Strategies for Stem Cell-Based Cartilage Regeneration

    PubMed Central

    Nam, Yoojun; Lee, Jennifer

    2018-01-01

    The process of cartilage destruction in the diarthrodial joint is progressive and irreversible. This destruction is extremely difficult to manage and frustrates researchers, clinicians, and patients. Patients often take medication to control their pain. Surgery is usually performed when pain becomes uncontrollable or joint function completely fails. There is an unmet clinical need for a regenerative strategy to treat cartilage defect without surgery due to the lack of a suitable regenerative strategy. Clinicians and scientists have tried to address this using stem cells, which have a regenerative potential in various tissues. Cartilage may be an ideal target for stem cell treatment because it has a notoriously poor regenerative potential. In this review, we describe past, present, and future strategies to regenerate cartilage in patients. Specifically, this review compares a surgical regenerative technique (microfracture) and cell therapy, cell therapy with and without a scaffold, and therapy with nonaggregated and aggregated cells. We also review the chondrogenic potential of cells according to their origin, including autologous chondrocytes, mesenchymal stem cells, and induced pluripotent stem cells. PMID:29765426

  11. Peroxisome Proliferator-Activated Receptor Ligands and Their Role in Chronic Myeloid Leukemia: Therapeutic Strategies.

    PubMed

    Yousefi, Bahman; Samadi, Nasser; Baradaran, Behzad; Shafiei-Irannejad, Vahid; Zarghami, Nosratollah

    2016-07-01

    Imatinib therapy remains the gold standard for treatment of chronic myeloid leukemia; however, the acquired resistance to this therapeutic agent in patients has urged the scientists to devise modalities for overcoming this chemoresistance. For this purpose, initially therapeutic agents with higher tyrosine kinase activity were introduced, which had the potential for inhibiting even mutant forms of Bcr-Abl. Furthermore, coupling imatinib with peroxisome proliferator-activated receptor ligands also showed beneficial effects in chronic myeloid leukemia cell proliferation. These combination protocols inhibited cell growth and induced apoptosis as well as differentiation in chronic myeloid leukemia cell lines. In addition, peroxisome proliferator-activated receptors ligands increased imatinib uptake by upregulating the expression of human organic cation transporter 1. Taken together, peroxisome proliferator-activated receptors ligands are currently being considered as novel promising therapeutic candidates for chronic myeloid leukemia treatment, because they can synergistically enhance the efficacy of imatinib. In this article, we reviewed the potential of peroxisome proliferator-activated receptors ligands for use in chronic myeloid leukemia treatment. The mechanism of action of these therapeutics modalities are also presented in detail. © 2016 John Wiley & Sons A/S.

  12. EGFR conjunct FSCN1 as a Novel Therapeutic Strategy in Triple-Negative Breast Cancer.

    PubMed

    Wang, Chao-Qun; Li, Yang; Huang, Bi-Fei; Zhao, Yong-Ming; Yuan, Hui; Guo, Dongfang; Su, Chen-Ming; Hu, Gui-Nv; Wang, Qian; Long, Tengyun; Wang, Yan; Tang, Chih-Hsin; Li, Xiaoni

    2017-11-15

    Emerging evidence indicates that Fascin-1 (FSCN1) may possess a causal role in the development of several types of cancers and serves as a novel biomarker of aggressiveness in certain carcinomas. However, the regulatory mechanism of FSCN1 in triple-negative breast cancer (TNBC) cell invasion and migration is still largely unknown. In our study, we observed that the FSCN1 expression rates were significantly higher in invasive ductal carcinoma, compared with both usual ductal hyperplasia and ductal carcinoma in situ. FSCN1 expression was significantly higher in cases of TNBC compared with the non-TNBC subtype. Overexpression of FSCN1 promoted TNBC cell migration and invasion. Epidermal growth factor induced the expression of FSCN1 through activation of MAPK, which subsequently promoted cell migration and invasion. A significant decrease in FSCN1 expression following the co-treatment of FSCN1 siRNA and Gefitinib, compared with the separate treatment of FSCN1 siRNA or Gefitinib. Furthermore, we found that there was a significant association between FSCN1 expression and poor relapse-free survival and overall survival. Therefore, we suggest that co-targeting epidermal growth factor receptor and FSCN1 dual biomarker may be used as a novel therapeutic strategy for TNBC.

  13. Microbiome Therapeutics – Advances and Challenges

    PubMed Central

    Mimee, Mark; Citorik, Robert J.; Lu, Timothy K.

    2016-01-01

    The microbial community that lives on and in the human body exerts a major impact on human health, from metabolism to immunity. In order to leverage the close associations between microbes and their host, development of therapeutics targeting the microbiota has surged in recent years. Here, we discuss current additive and subtractive strategies to manipulate the microbiota, focusing on bacteria engineered to produce therapeutic payloads, consortia of natural organisms and selective antimicrobials. Further, we present challenges faced by the community in the development of microbiome therapeutics, including designing microbial therapies that are adapted for specific geographies in the body, stable colonization with microbial therapies, discovery of clinically relevant biosensors, robustness of engineered synthetic gene circuits and addressing safety and biocontainment concerns. Moving forward, collaboration between basic and applied researchers and clinicians to address these challenges will poise the field to herald an age of next-generation, cellular therapies that draw on novel findings in basic research to inform directed augmentation of the human microbiota. PMID:27158095

  14. Genome Engineering for Personalized Arthritis Therapeutics.

    PubMed

    Adkar, Shaunak S; Brunger, Jonathan M; Willard, Vincent P; Wu, Chia-Lung; Gersbach, Charles A; Guilak, Farshid

    2017-10-01

    Arthritis represents a family of complex joint pathologies responsible for the majority of musculoskeletal conditions. Nearly all diseases within this family, including osteoarthritis, rheumatoid arthritis, and juvenile idiopathic arthritis, are chronic conditions with few or no disease-modifying therapeutics available. Advances in genome engineering technology, most recently with CRISPR-Cas9, have revolutionized our ability to interrogate and validate genetic and epigenetic elements associated with chronic diseases such as arthritis. These technologies, together with cell reprogramming methods, including the use of induced pluripotent stem cells, provide a platform for human disease modeling. We summarize new evidence from genome-wide association studies and genomics that substantiates a genetic basis for arthritis pathogenesis. We also review the potential contributions of genome engineering in the development of new arthritis therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Protein lipoxidation: Detection strategies and challenges

    PubMed Central

    Aldini, Giancarlo; Domingues, M. Rosário; Spickett, Corinne M.; Domingues, Pedro; Altomare, Alessandra; Sánchez-Gómez, Francisco J.; Oeste, Clara L.; Pérez-Sala, Dolores

    2015-01-01

    Enzymatic and non-enzymatic lipid metabolism can give rise to reactive species that may covalently modify cellular or plasma proteins through a process known as lipoxidation. Under basal conditions, protein lipoxidation can contribute to normal cell homeostasis and participate in signaling or adaptive mechanisms, as exemplified by lipoxidation of Ras proteins or of the cytoskeletal protein vimentin, both of which behave as sensors of electrophilic species. Nevertheless, increased lipoxidation under pathological conditions may lead to deleterious effects on protein structure or aggregation. This can result in impaired degradation and accumulation of abnormally folded proteins contributing to pathophysiology, as may occur in neurodegenerative diseases. Identification of the protein targets of lipoxidation and its functional consequences under pathophysiological situations can unveil the modification patterns associated with the various outcomes, as well as preventive strategies or potential therapeutic targets. Given the wide structural variability of lipid moieties involved in lipoxidation, highly sensitive and specific methods for its detection are required. Derivatization of reactive carbonyl species is instrumental in the detection of adducts retaining carbonyl groups. In addition, use of tagged derivatives of electrophilic lipids enables enrichment of lipoxidized proteins or peptides. Ultimate confirmation of lipoxidation requires high resolution mass spectrometry approaches to unequivocally identify the adduct and the targeted residue. Moreover, rigorous validation of the targets identified and assessment of the functional consequences of these modifications are essential. Here we present an update on methods to approach the complex field of lipoxidation along with validation strategies and functional assays illustrated with well-studied lipoxidation targets. PMID:26072467

  16. Translational research in addiction: toward a framework for the development of novel therapeutics.

    PubMed

    Paterson, Neil E

    2011-06-15

    The development of novel substance use disorder (SUD) therapeutics is insufficient to meet the medical needs of a growing SUD patient population. The identification of translatable SUD models and tests is a crucial step in establishing a framework for SUD therapeutic development programs. The present review begins by identifying the clinical features of SUDs and highlights the narrow regulatory end-point required for approval of a novel SUD therapeutic. A conceptual overview of dependence is provided, followed by identification of potential intervention targets in the addiction cycle. The main components of the addiction cycle provide the framework for a discussion of preclinical models and their clinical analogs, all of which are focused on isolated behavioral end-points thought to be relevant to the persistence of compulsive drug use. Thus, the greatest obstacle to successful development is the gap between the multiplicity of preclinical and early clinical end-points and the regulatory end-point of sustained abstinence. This review proposes two pathways to bridging this gap: further development and validation of the preclinical extended access self-administration model; inclusion of secondary end-points comprising all of the measures highlighted in the present discussion in Phase 3 trials. Further, completion of the postdictive validation of analogous preclinical and clinical assays is of high priority. Ultimately, demonstration of the relevance and validity of a variety of end-points to the ultimate goal of abstinence will allow researchers to identify truly relevant therapeutic mechanisms and intervention targets, and establish a framework for SUD therapeutic development that allows optimal decision-making and resource allocation. 2011 Elsevier Inc. All rights reserved.

  17. Examining the validity of self-reports on scales measuring students' strategic processing.

    PubMed

    Samuelstuen, Marit S; Bråten, Ivar

    2007-06-01

    Self-report inventories trying to measure strategic processing at a global level have been much used in both basic and applied research. However, the validity of global strategy scores is open to question because such inventories assess strategy perceptions outside the context of specific task performance. The primary aim was to examine the criterion-related and construct validity of the global strategy data obtained with the Cross-Curricular Competencies (CCC) scale. Additionally, we wanted to compare the validity of these data with the validity of data obtained with a task-specific self-report inventory focusing on the same types of strategies. The sample included 269 10th-grade students from 12 different junior high schools. Global strategy use as assessed with the CCC was compared with task-specific strategy use reported in three different reading situations. Moreover, relationships between scores on the CCC and scores on measures of text comprehension were examined and compared with relationships between scores on the task-specific strategy measure and the same comprehension measures. The comparison between the CCC strategy scores and the task-specific strategy scores suggested only modest criterion-related validity for the data obtained with the global strategy inventory. The CCC strategy scores were also not related to the text comprehension measures, indicating poor construct validity. In contrast, the task-specific strategy scores were positively related to the comprehension measures, indicating good construct validity. Attempts to measure strategic processing at a global level seem to have limited validity and utility.

  18. A Synthetic-Biology-Inspired Therapeutic Strategy for Targeting and Treating Hepatogenous Diabetes.

    PubMed

    Xue, Shuai; Yin, Jianli; Shao, Jiawei; Yu, Yuanhuan; Yang, Linfeng; Wang, Yidan; Xie, Mingqi; Fussenegger, Martin; Ye, Haifeng

    2017-02-01

    Hepatogenous diabetes is a complex disease that is typified by the simultaneous presence of type 2 diabetes and many forms of liver disease. The chief pathogenic determinant in this pathophysiological network is insulin resistance (IR), an asymptomatic disease state in which impaired insulin signaling in target tissues initiates a variety of organ dysfunctions. However, pharmacotherapies targeting IR remain limited and are generally inapplicable for liver disease patients. Oleanolic acid (OA) is a plant-derived triterpenoid that is frequently used in Chinese medicine as a safe but slow-acting treatment in many liver disorders. Here, we utilized the congruent pharmacological activities of OA and glucagon-like-peptide 1 (GLP-1) in relieving IR and improving liver and pancreas functions and used a synthetic-biology-inspired design principle to engineer a therapeutic gene circuit that enables a concerted action of both drugs. In particular, OA-triggered short human GLP-1 (shGLP-1) expression in hepatogenous diabetic mice rapidly and simultaneously attenuated many disease-specific metabolic failures, whereas OA or shGLP-1 monotherapy failed to achieve corresponding therapeutic effects. Collectively, this work shows that rationally engineered synthetic gene circuits are capable of treating multifactorial diseases in a synergistic manner by multiplexing the targeting efficacies of single therapeutics. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  19. Therapeutic physical exercise in neural injury: friend or foe?

    PubMed

    Park, Kanghui; Lee, Seunghoon; Hong, Yunkyung; Park, Sookyoung; Choi, Jeonghyun; Chang, Kyu-Tae; Kim, Joo-Heon; Hong, Yonggeun

    2015-12-01

    [Purpose] The intensity of therapeutic physical exercise is complex and sometimes controversial in patients with neural injuries. This review assessed whether therapeutic physical exercise is beneficial according to the intensity of the physical exercise. [Methods] The authors identified clinically or scientifically relevant articles from PubMed that met the inclusion criteria. [Results] Exercise training can improve body strength and lead to the physiological adaptation of skeletal muscles and the nervous system after neural injuries. Furthermore, neurophysiological and neuropathological studies show differences in the beneficial effects of forced therapeutic exercise in patients with severe or mild neural injuries. Forced exercise alters the distribution of muscle fiber types in patients with neural injuries. Based on several animal studies, forced exercise may promote functional recovery following cerebral ischemia via signaling molecules in ischemic brain regions. [Conclusions] This review describes several types of therapeutic forced exercise and the controversy regarding the therapeutic effects in experimental animals versus humans with neural injuries. This review also provides a therapeutic strategy for physical therapists that grades the intensity of forced exercise according to the level of neural injury.

  20. A Thoroughly Validated Virtual Screening Strategy for Discovery of Novel HDAC3 Inhibitors.

    PubMed

    Hu, Huabin; Xia, Jie; Wang, Dongmei; Wang, Xiang Simon; Wu, Song

    2017-01-18

    Histone deacetylase 3 (HDAC3) has been recently identified as a potential target for the treatment of cancer and other diseases, such as chronic inflammation, neurodegenerative diseases, and diabetes. Virtual screening (VS) is currently a routine technique for hit identification, but its success depends on rational development of VS strategies. To facilitate this process, we applied our previously released benchmarking dataset, i.e., MUBD-HDAC3 to the evaluation of structure-based VS (SBVS) and ligand-based VS (LBVS) combinatorial approaches. We have identified FRED (Chemgauss4) docking against a structural model of HDAC3, i.e., SAHA-3 generated by a computationally inexpensive "flexible docking", as the best SBVS approach and a common feature pharmacophore model, i.e., Hypo1 generated by Catalyst/HipHop as the optimal model for LBVS. We then developed a pipeline that was composed of Hypo1, FRED (Chemgauss4), and SAHA-3 sequentially, and demonstrated that it was superior to other combinations in terms of ligand enrichment. In summary, we present the first highly-validated, rationally-designed VS strategy specific to HDAC3 inhibitor discovery. The constructed pipeline is publicly accessible for the scientific community to identify novel HDAC3 inhibitors in a time-efficient and cost-effective way.

  1. A Thoroughly Validated Virtual Screening Strategy for Discovery of Novel HDAC3 Inhibitors

    PubMed Central

    Hu, Huabin; Xia, Jie; Wang, Dongmei; Wang, Xiang Simon; Wu, Song

    2017-01-01

    Histone deacetylase 3 (HDAC3) has been recently identified as a potential target for the treatment of cancer and other diseases, such as chronic inflammation, neurodegenerative diseases, and diabetes. Virtual screening (VS) is currently a routine technique for hit identification, but its success depends on rational development of VS strategies. To facilitate this process, we applied our previously released benchmarking dataset, i.e., MUBD-HDAC3 to the evaluation of structure-based VS (SBVS) and ligand-based VS (LBVS) combinatorial approaches. We have identified FRED (Chemgauss4) docking against a structural model of HDAC3, i.e., SAHA-3 generated by a computationally inexpensive “flexible docking”, as the best SBVS approach and a common feature pharmacophore model, i.e., Hypo1 generated by Catalyst/HipHop as the optimal model for LBVS. We then developed a pipeline that was composed of Hypo1, FRED (Chemgauss4), and SAHA-3 sequentially, and demonstrated that it was superior to other combinations in terms of ligand enrichment. In summary, we present the first highly-validated, rationally-designed VS strategy specific to HDAC3 inhibitor discovery. The constructed pipeline is publicly accessible for the scientific community to identify novel HDAC3 inhibitors in a time-efficient and cost-effective way. PMID:28106794

  2. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance.

    PubMed

    Bar-Zeev, Maya; Livney, Yoav D; Assaraf, Yehuda G

    2017-03-01

    Intrinsic anticancer drug resistance appearing prior to chemotherapy as well as acquired resistance due to drug treatment, remain the dominant impediments towards curative cancer therapy. Hence, novel targeted strategies to overcome cancer drug resistance constitute a key aim of cancer research. In this respect, targeted nanomedicine offers innovative therapeutic strategies to overcome the various limitations of conventional chemotherapy, enabling enhanced selectivity, early and more precise cancer diagnosis, individualized treatment as well as overcoming of drug resistance, including multidrug resistance (MDR). Delivery systems based on nanoparticles (NPs) include diverse platforms enabling a plethora of rationally designed therapeutic nanomedicines. Here we review NPs designed to enhance antitumor drug uptake and selective intracellular accumulation using strategies including passive and active targeting, stimuli-responsive drug activation or target-activated release, triggered solely in the cancer cell or in specific organelles, cutting edge theranostic multifunctional NPs delivering drug combinations for synergistic therapy, while facilitating diagnostics, and personalization of therapeutic regimens. In the current paper we review the recent findings of the past four years and discuss the advantages and limitations of the various novel NPs-based drug delivery systems. Special emphasis is put on in vivo study-based evidences supporting significant therapeutic impact in chemoresistant cancers. A future perspective is proposed for further research and development of complex targeted, multi-stage responsive nanomedical drug delivery systems for personalized cancer diagnosis and efficacious therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. RNAi phenotype profiling of kinases identifies potential therapeutic targets in Ewing's sarcoma.

    PubMed

    Arora, Shilpi; Gonzales, Irma M; Hagelstrom, R Tanner; Beaudry, Christian; Choudhary, Ashish; Sima, Chao; Tibes, Raoul; Mousses, Spyro; Azorsa, David O

    2010-08-18

    Ewing's sarcomas are aggressive musculoskeletal tumors occurring most frequently in the long and flat bones as a solitary lesion mostly during the teen-age years of life. With current treatments, significant number of patients relapse and survival is poor for those with metastatic disease. As part of novel target discovery in Ewing's sarcoma, we applied RNAi mediated phenotypic profiling to identify kinase targets involved in growth and survival of Ewing's sarcoma cells. Four Ewing's sarcoma cell lines TC-32, TC-71, SK-ES-1 and RD-ES were tested in high throughput-RNAi screens using a siRNA library targeting 572 kinases. Knockdown of 25 siRNAs reduced the growth of all four Ewing's sarcoma cell lines in replicate screens. Of these, 16 siRNA were specific and reduced proliferation of Ewing's sarcoma cells as compared to normal fibroblasts. Secondary validation and preliminary mechanistic studies highlighted the kinases STK10 and TNK2 as having important roles in growth and survival of Ewing's sarcoma cells. Furthermore, knockdown of STK10 and TNK2 by siRNA showed increased apoptosis. In summary, RNAi-based phenotypic profiling proved to be a powerful gene target discovery strategy, leading to successful identification and validation of STK10 and TNK2 as two novel potential therapeutic targets for Ewing's sarcoma.

  4. Current State in the Development of Candidate Therapeutic HPV Vaccines

    PubMed Central

    Yang, Andrew; Jeang, Jessica; Cheng, Kevin; Cheng, Ting; Yang, Benjamin; Wu, T.-C.; Hung, Chien-Fu

    2016-01-01

    Summary The identification of human papillomavirus (HPV) as an etiological factor for HPV-associated malignancies creates the opportunity to control these cancers through vaccination. Currently, available preventive HPV vaccines have not yet demonstrated strong evidences for therapeutic effects against established HPV infections and lesions. Furthermore, HPV infections remain extremely common. Thus, there is urgent need for therapeutic vaccines to treat existing HPV infections and HPV-associated diseases. Therapeutic vaccines differ from preventive vaccines in that they are aimed at generating cell-mediated immunity rather than neutralizing antibodies. The HPV-encoded early proteins, especially oncoproteins E6 and E7, form ideal targets for therapeutic HPV vaccines since they are consistently expressed in HPV-associated malignancies and precancerous lesions, playing crucial roles in the generation and maintenance of HPV-associated disease. Our review will cover various therapeutic vaccines in development for the treatment of HPV-associated lesions and cancers. Furthermore, we review strategies to enhance vaccine efficacy and the latest clinical trials on therapeutic HPV vaccines. PMID:26901118

  5. Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms.

    PubMed

    Iacono, Anna; Raso, Giuseppina Mattace; Canani, Roberto Berni; Calignano, Antonio; Meli, Rosaria

    2011-08-01

    Nonalcoholic fatty liver disease (NAFLD) is currently the most common liver disease worldwide, both in adults and in children. NAFLD is characterized by aberrant lipid storage in hepatocytes (hepatic steatosis) and inflammatory progression to nonalcoholic steatohepatitis. Evidences so far suggest that intrahepatic lipid accumulation does not always derive from obesity. Gut microbiota has been considered as a regulator of energy homeostasis and ectopic fat deposition, suggesting its implications in metabolic diseases. Probiotics are live microbial that alter the enteric microflora and have beneficial effects on human health. Although the molecular mechanisms of probiotics have not been completely elucidated yet, many of their effects have proved to be beneficial in NAFLD, including the modulation of the intestinal microbiota, an antibacterial substance production, an improved epithelial barrier function and a reduced intestinal inflammation. Given the close anatomical and functional correlation between the bowel and the liver, and the immunoregulatory effects elicited by probiotics, the aim of this review is to summarize today's knowledge about probiotics in NAFLD, focusing in particular on their molecular and biochemical mechanisms, as well as highlighting their efficacy as an emerging therapeutic strategy to treat this condition. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Targeting histone deacetylases in endometrial cancer: a paradigm-shifting therapeutic strategy?

    PubMed

    Garmpis, N; Damaskos, C; Garmpi, A; Spartalis, E; Kalampokas, E; Kalampokas, T; Margonis, G-A; Schizas, D; Andreatos, N; Angelou, A; Lavaris, A; Athanasiou, A; Apostolou, K G; Spartalis, M; Damaskou, Z; Daskalopoulou, A; Diamantis, E; Tsivelekas, K; Alavanos, A; Valsami, S; Moschos, M M; Sampani, A; Nonni, A; Antoniou, E A; Mantas, D; Tsourouflis, G; Markatos, K; Kontzoglou, K; Perrea, D; Nikiteas, N; Kostakis, A; Dimitroulis, D

    2018-02-01

    Endometrial cancer is increasingly prevalent in western societies and affects mainly postmenopausal women; notably incidence rates have been rising by 1.9% per year on average since 2005. Although the early-stage endometrial cancer can be effectively managed with surgery, more advanced stages of the disease require multimodality treatment with varying results. In recent years, endometrial cancer has been extensively studied at the molecular level in an attempt to develop effective therapies. Recently, a family of compounds that alter epigenetic expression, namely histone deacetylase inhibitors, have shown promise as possible therapeutic agents in endometrial cancer. The present review aims to discuss the therapeutic potential of these agents. This literature review was performed using the MEDLINE database; the search terms histone, deacetylase, inhibitors, endometrial, targeted therapies for endometrial cancer were employed to identify relevant studies. We only reviewed English language publications and also considered studies that were not entirely focused on endometrial cancer. Ultimately, sixty-four articles published until January 2018 were incorporated into our review. Studies in cell cultures have demonstrated that histone deacetylase inhibitors exert their antineoplastic activity by promoting expression of p21WAF1 and p27KIP1, cyclin-dependent kinase inhibitors, that have important roles in cell cycle regulation; importantly, the transcription of specific genes (e.g., E-cadherin, PTEN) that are commonly silenced in endometrial cancer is also enhanced. In addition to these abstracts effects, novel compounds with histone deacetylase inhibitor activity (e.g., scriptaid, trichostatin, entinostat) have also demonstrated significant antineoplastic activity both in vitro and in vivo, by liming tumor growth, inducing apoptosis, inhibiting angiogenesis and potentiating the effects of chemotherapy. The applications of histone deacetylase inhibitors in endometrial

  7. End-stage renal disease adherence questionnaire: translation and validation to the portuguese language.

    PubMed

    Poveda, Verónica; Amado, Leonilde; Filgueiras, Madalena; Teixeira, Laetitia; Miranda, Vasco; Santos-Silva, Alice; Paúl, Constança; Costa, Elísio

    2016-11-01

    Non-adherence to medical plans is recognized as an important problem in dialysis patients, since it has been associated with increased morbidity and mortality, resulting in disproportionately high costs of care. The success of renal replacement therapy depends on the adherence of patients to the different aspects of the therapeutic strategy, which includes a complex drug regimen involving a wide variety of drugs and doses, several prescribed dialysis sessions with different durations, dietetic recommendations and restriction of fluid intake. In this work, we aimed to translate and validate a previously described self-reported end-stage renal disease questionnaire (ESRD-AQ) to the Portuguese language (PESRD-AQ). After ESRD-AQ translation, a validation was performed by experts and by using a cohort of 185 Portuguese dialysis patients. PESRD-AQ reliability analysis showed strong test-retest stability across all items, with an intra-class correlation of 0.931. The average of the item-level content validity index by experts for the 46 items was 0.98, ranging from 0.94 to 1. Moreover, we found that PESRD-AQ scores indicative of non-adherence were associated with alterations in some biological and biochemical markers of non-adherence, including interdialytic weight gain. In conclusion, our results showed that PESRD-AQ, which presented an acceptable reliability and validity, is a valid tool to be used for adherence evaluation by Portuguese-speaking dialysis patients.

  8. Recommendations on risk-based strategies for detection and characterization of antibodies against biotechnology products.

    PubMed

    Koren, Eugen; Smith, Holly W; Shores, Elizabeth; Shankar, Gopi; Finco-Kent, Deborah; Rup, Bonita; Barrett, Yu-Chen; Devanarayan, Viswanath; Gorovits, Boris; Gupta, Shalini; Parish, Thomas; Quarmby, Valerie; Moxness, Michael; Swanson, Steven J; Taniguchi, Gary; Zuckerman, Linda A; Stebbins, Christopher C; Mire-Sluis, Anthony

    2008-04-20

    The appropriate evaluation of the immunogenicity of biopharmaceuticals is of major importance for their successful development and licensure. Antibodies elicited by these products in many cases cause no detectable clinical effects in humans. However, antibodies to some therapeutic proteins have been shown to cause a variety of clinical consequences ranging from relatively mild to serious adverse events. In addition, antibodies can affect drug efficacy. In non-clinical studies, anti-drug antibodies (ADA) can complicate interpretation of the toxicity, pharmacokinetic (PK) and pharmacodynamic (PD) data. Therefore, it is important to develop testing strategies that provide valid assessments of antibody responses in both non-clinical and clinical studies. This document provides recommendations for antibody testing strategies stemming from the experience of contributing authors. The recommendations are intended to foster a more unified approach to antibody testing across the biopharmaceutical industry. The strategies proposed are also expected to contribute to better understanding of antibody responses and to further advance immunogenicity evaluation.

  9. Stem Cell Therapy: A Promising Therapeutic Method for Intracerebral Hemorrhage.

    PubMed

    Gao, Liansheng; Xu, Weilin; Li, Tao; Chen, Jingyin; Shao, Anwen; Yan, Feng; Chen, Gao

    2018-01-01

    Spontaneous intracerebral hemorrhage (ICH) is one type of the most devastating cerebrovascular diseases worldwide, which causes high morbidity and mortality. However, efficient treatment is still lacking. Stem cell therapy has shown good neuroprotective and neurorestorative effect in ICH and is a promising treatment. In this study, our aim was to review the therapeutic effects, strategies, related mechanisms and safety issues of various types of stem cell for ICH treatment. Numerous studies had demonstrated the therapeutic effects of diverse stem cell types in ICH. The potential mechanisms include tissue repair and replacement, neurotrophy, promotion of neurogenesis and angiogenesis, anti-apoptosis, immunoregulation and anti-inflammation and so forth. The microenvironment of the central nervous system (CNS) can also influence the effects of stem cell therapy. The detailed therapeutic strategies for ICH treatment such as cell type, the number of cells, time window, and the routes of medication delivery, varied greatly among different studies and had not been determined. Moreover, the safety issues of stem cell therapy for ICH should not be ignored. Stem cell therapy showed good therapeutic effect in ICH, making it a promising treatment. However, safety should be carefully evaluated, and more clinical trials are required before stem cell therapy can be extensively applied to clinical use.

  10. The Entangled ER-Mitochondrial axis as a potential therapeutic strategy in Neurodegeneration: A Tangled Duo Unchained

    PubMed Central

    Joshi, Amit U.; Kornfeld, Opher S.; Mochly-Rosen, Daria

    2016-01-01

    Endoplasmic reticulum (ER) and mitochondrial function have both been shown to be critical events in neurodegenerative diseases. The ER mediates protein folding, maturation, sorting as well acts as calcium storage. The unfolded protein response (UPR) is a stress response of the ER that is activated by the accumulation of misfolded proteins within the ER lumen. Although the molecular mechanisms underlying ER stress-induced apoptosis are not completely understood, increasing evidence suggests that ER and mitochondria cooperate to signal cell death. Similarly, calcium-mediated mitochondrial function and dynamics not only contribute to ATP generation and calcium buffering but are also a linchpin in mediating cell fate. Mitochondria and ER form structural and functional networks (mitochondria-associated ER membranes [MAMs]) essential to maintaining cellular homeostasis and determining cell fate under various pathophysiological conditions. Regulated Ca2+ transfer from the ER to the mitochondria is important in maintaining control of pro-survival/pro-death pathways. In this review, we summarize the latest therapeutic strategies that target these essential organelles in the context of neurodegenerative diseases. PMID:27212603

  11. Vocational Education and Training and the Therapeutic Turn

    ERIC Educational Resources Information Center

    Hyland, Terry

    2006-01-01

    The concept of "therapeutic education" is being increasingly used in contemporary education policy studies to identify learning initiatives which are dominated by objectives linked to personal and social skills, emotional intelligence and building self-esteem. Contemporary educational goals connected with such strategies have been…

  12. Host-Directed Therapeutics as a Novel Approach for Tuberculosis Treatment.

    PubMed

    Kim, Ye-Ram; Yang, Chul-Su

    2017-09-28

    Despite significant efforts to improve the treatment of tuberculosis (TB), it remains a prevalent infectious disease worldwide owing to the limitations of current TB therapeutic regimens. Recent work on novel TB treatment strategies has suggested that directly targeting host factors may be beneficial for TB treatment. Such strategies, termed host-directed therapeutics (HDTs), focus on host-pathogen interactions. HDTs may be more effective than the currently approved TB drugs, which are limited by the long durations of treatment needed and the emergence of drug-resistant strains. Targets of HDTs include host factors such as cytokines, immune checkpoints, immune cell functions, and essential enzyme activities. This review article discusses examples of potentially promising HDTs and introduces novel approaches for their development.

  13. [Therapeutic strategy for familial amyloid polyneuropathy (FAP)].

    PubMed

    Ikeda, Shu-ichi

    2009-11-01

    Familial amyloid polyneuropathy (FAP) was long considered to be an incurable disease, but a new therapeutic approach was developed 15 years ago. As the liver produces most of the transthyretin (TTR) in serum, it was assumed that the replacement of a liver expressing an abnormal TTR gene should stop the production of the variant TTR, the serum amyloid precursor in FAP. Until now about 1,500 FAP patients underwent liver transplantation, and the 10-year-survival rate is about 77%. After operation the progression of FAP symptoms certainly stopped, and patients who were in an early stage of the disease and underwent successful operations showed considerable improvement in their quality of life. Electrophysiological study of peripheral nerve function has demonstrated that liver transplantation can halt the progression of peripheral neuropathy in FAP patients, and histopathological regression of amyloid deposits was seen on the patients with long post-transplatation courses. Pharmacological therapies have been considered for FAP patients and among them, diflunisal, one of non-steroidal antiinflammatory drugs, is very promising. TTR tetramer dissociation is an initial step for the process of TTR-derived amyloid fibril formation associated with FAP and diflinisal can inhibit this process by stabilization of the TTR tetramer. Clinical trial of this drug for FAP patients is now going worldwide.

  14. Cordycepin: a bioactive metabolite with therapeutic potential.

    PubMed

    Tuli, Hardeep S; Sharma, Anil K; Sandhu, Sardul S; Kashyap, Dharambir

    2013-11-26

    Cytotoxic nucleoside analogues were the first chemotherapeutic agents for cancer treatment. Cordycepin, an active ingredient of the insect fungus Cordyceps militaris, is a category of compounds that exhibit significant therapeutic potential. Cordycepin has many intracellular targets, including nucleic acid (DNA/RNA), apoptosis and cell cycle, etc. Investigations of the mechanism of anti-cancer drugs have yielded important information for the design of novel drug targets in order to enhance anti-tumor activity with less toxicity to patients. This extensive review covers various molecular aspects of cordycepin interactions with its recognized cellular targets and proposes the development of novel therapeutic strategies for cancer treatment. © 2013 Elsevier Inc. All rights reserved.

  15. Therapeutic touch is not therapeutic for procedural pain in very preterm neonates: a randomized trial.

    PubMed

    Johnston, Celeste; Campbell-Yeo, Marsha; Rich, Bonnie; Whitley, Julie; Filion, Francoise; Cogan, Jennifer; Walker, Claire-Dominique

    2013-09-01

    Preterm neonates below 30 weeks' gestational age undergo numerous painful procedures. Many management approaches are not appropriate for this population. Therapeutic Touch, an alternative approach based on the theory of energy medicine, has been shown to promote physiological stability in preterm neonates and reduce pain in some adult studies. The objective was to determine whether Therapeutic Touch is efficacious in decreasing pain in preterm neonates. Infants < 30 weeks' gestational age participated in a randomized control trial in 2 level III neonatal intensive care units. All evaluations, analyses, and heel lance procedure were conducted with only the therapist knowing the group assignment. Immediately before and after the heel lance procedure, the therapist performed nontactile Therapeutic Touch (n = 27) with infant behind curtains, leaving the curtained area for the heel lance, performed by another. In the sham condition (n = 28), the therapist stood by the incubator with hands by her side. The Premature Infant Pain Profile was used for pain response and time for heart rate to return to baseline for recovery. Heart rate variability and stress response were secondary outcomes. There were no group differences in any of the outcomes. Mean Premature Infant Pain Profile scores across 2 minutes of heel lance procedure in 30-second blocks ranged from 7.92 to 8.98 in the Therapeutic Touch group and 7.64 to 8.46 in the sham group. Therapeutic Touch given immediately before and after heel lance has no comforting effect in preterm neonates. Other effective strategies involving actual touch should be considered.

  16. Design and experimental validation of linear and nonlinear vehicle steering control strategies

    NASA Astrophysics Data System (ADS)

    Menhour, Lghani; Lechner, Daniel; Charara, Ali

    2012-06-01

    This paper proposes the design of three control laws dedicated to vehicle steering control, two based on robust linear control strategies and one based on nonlinear control strategies, and presents a comparison between them. The two robust linear control laws (indirect and direct methods) are built around M linear bicycle models, each of these control laws is composed of two M proportional integral derivative (PID) controllers: one M PID controller to control the lateral deviation and the other M PID controller to control the vehicle yaw angle. The indirect control law method is designed using an oscillation method and a nonlinear optimisation subject to H ∞ constraint. The direct control law method is designed using a linear matrix inequality optimisation in order to achieve H ∞ performances. The nonlinear control method used for the correction of the lateral deviation is based on a continuous first-order sliding-mode controller. The different methods are designed using a linear bicycle vehicle model with variant parameters, but the aim is to simulate the nonlinear vehicle behaviour under high dynamic demands with a four-wheel vehicle model. These steering vehicle controls are validated experimentally using the data acquired using a laboratory vehicle, Peugeot 307, developed by National Institute for Transport and Safety Research - Department of Accident Mechanism Analysis Laboratory's (INRETS-MA) and their performance results are compared. Moreover, an unknown input sliding-mode observer is introduced to estimate the road bank angle.

  17. Validation of the Risk Prediction Models STATE-Score and START-Strategy to Guide TACE Treatment in Patients with Hepatocellular Carcinoma.

    PubMed

    Mähringer-Kunz, Aline; Kloeckner, Roman; Pitton, Michael B; Düber, Christoph; Schmidtmann, Irene; Galle, Peter R; Koch, Sandra; Weinmann, Arndt

    2017-07-01

    Several scoring systems that guide patients' treatment regimen for transarterial chemoembolization (TACE) of hepatocellular carcinoma (HCC) have been introduced, but none have gained widespread acceptance in clinical practice. The purpose of this study is to externally validate the Selection for TrAnsarterial chemoembolization TrEatment (STATE)-score and START-strategy [i.e., sequential use of the STATE-score and Assessment for Retreatment with TACE (ART)-score]. From January 2000 to September 2015, 933 patients with HCC underwent TACE at our institution. All variables needed to calculate the STATE-score and implement the START-strategy were determined. STATE comprised serum albumin, up-to-seven criteria, and C-reactive protein (CRP). ART comprised an increase in aspartate aminotransferase, the Child-Pugh score, and a radiological tumor response. Overall survival was calculated, and multivariate analysis performed. In addition, the STATE-score and START-strategy were validated using the Harrell's C-index and integrated Brier score (IBS). The STATE-score was calculated in 228 patients. Low and high STATE-scores corresponded to median survival of 14.3 and 20.2 months, respectively. Harrell's C was 0.558 and IBS 0.133. For the STATE-score, significant predictors of survival were up-to-seven criteria (p = 0.006) and albumin (p = 0.022). CRP values were not predictive (p = 0.367). The ART-score was calculated in 207 patients. Combining the STATE-score and ART-score led to a Harrell's C of 0.580 and IBS of 0.132. The STATE-score was unable to reliably determine the suitability for initial TACE. The START-strategy only slightly improved the predictive ability compared to the ART-score alone. Therefore, neither the STATE-score nor START-strategy alone provides sufficient certainty for clear-cut clinical decisions.

  18. Implementation of real-time energy management strategy based on reinforcement learning for hybrid electric vehicles and simulation validation

    PubMed Central

    Kong, Zehui; Liu, Teng

    2017-01-01

    To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control. PMID:28671967

  19. Implementation of real-time energy management strategy based on reinforcement learning for hybrid electric vehicles and simulation validation.

    PubMed

    Kong, Zehui; Zou, Yuan; Liu, Teng

    2017-01-01

    To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control.

  20. Artificial Cell Therapy: New Strategies for the Therapeutic Delivery of Live Bacteria

    PubMed Central

    2005-01-01

    There has been rapid growth in research regarding the use of live bacterial cells for therapeutic purposes. The recognition that these cells can be genetically engineered to synthesize products that have therapeutic potential has generated considerable interest and excitement among clinicians and health professionals. It is expected that a wide range of disease modifying substrates such as enzymes, hormones, antibodies, vaccines, and other genetic products will be used successfully and will impact upon health care substantially. However, a major limitation in the use of these bacterial cells is the complexity of delivering them to the correct target tissues. Oral delivery of live cells, lyophilized cells, and immobilized cells has been attempted but with limited success. Primarily, this is because bacterial cells are incapable of surviving passage through the gastrointestinal tract. In many occasions, when given orally, these cells have been found to provoke immunogenic responses that are undesirable. Recent studies show that these problems can be overcome by delivering live bacterial cells, such as genetically engineered cells, using artificial cell microcapsules. This review summarizes recent advances in the therapeutic use of live bacterial cells for therapy, discusses the principles of using artificial cells for the oral delivery of bacterial cells, outlines methods for preparing suitable artificial cells for this purpose, addresses potentials and limitations for their application in therapy, and provides insight for the future direction of this emergent and highly prospective technology. PMID:15689638

  1. Therapeutic Vaccination for HPV Induced Cervical Cancers

    PubMed Central

    Brinkman, Joeli A.; Hughes, Sarah H.; Stone, Pamela; Caffrey, Angela S.; Muderspach, Laila I.; Roman, Lynda D.; Weber, Jeffrey S.; Kast, W. Martin

    2007-01-01

    Cervical Cancer is the second leading cause of cancer–related deaths in women worldwide and is associated with Human Papillomavirus (HPV) infection, creating a unique opportunity to treat cervical cancer through anti-viral vaccination. Although a prophylactic vaccine may be available within a year, millions of women, already infected, will continue to suffer from HPV-related disease, emphasizing the need to develop therapeutic vaccination strategies. A majority of clinical trials examining therapeutic vaccination have shown limited efficacy due to examining patients with more advanced-stage cancer who tend to have decreased immune function. Current trends in clinical trials with therapeutic agents examine patients with pre-invasive lesions in order to prevent invasive cervical cancer. However, longer follow-up is necessary to correlate immune responses to lesion regression. Meanwhile, preclinical studies in this field include further exploration of peptide or protein vaccination, and the delivery of HPV antigens in DNA-based vaccines or in viral vectors. As long as pre-clinical studies continue to advance, the prospect of therapeutic vaccination to treat existing lesions seem good in the near future. Positive consequences of therapeutic vaccination would include less disfiguring treatment options and fewer instances of recurrent or progressive lesions leading to a reduction in cervical cancer incidence. PMID:17627067

  2. In vitro screening and in silico validation revealed key microbes for higher production of significant therapeutic enzyme l-asparaginase.

    PubMed

    Vimal, Archana; Kumar, Awanish

    2017-03-01

    l-asparaginase is an enzyme of medical prominence and reputable as a chemotherapeutic agent. It also has immense potential to cure autoimmune and infectious diseases. The vast application of this enzyme in healthcare sector increases its market demand. However, presently the huge market demand is not achieved completely. This serves the basis to explore better producer microbial strains to bridge the gap between huge demand and supply of this therapeutic enzyme. The present study deals with the successful screening of potent microorganisms producing l-asparaginase. 47 microorganisms were screened including bacteria, fungi, and yeasts. Among all, Penicillium lilacinum showed the highest enzyme activity i.e., 39.67 IU/ml. Shigella flexneri has 23.21 IU/ml of enzyme activity (highest among all the bacterial strain tested). Further, the 3-D structure of l-asparaginase from higher producer strains was developed and validated in silico for its activity. l-asparagine (substrate for l-asparaginase) was docked inside the binding pocket of P. lilacinum and S. flexneri. Docking score for the most common substrate l-asparagine is -6.188 (P. lilacinum), -5.576 (S. flexneri) which is quite good. Moreover, the chemical property of the binding pocket revealed that amino acid residues Phe 243, Gln 260, Gly 365, Asp 386 in P. lilacinum and residues Asp 181, Thr 318, Asn 320 in S. flexneri have an important role in H-bonding. The in silico results supports and strengthen the wet lab results. The outcome obtained motivates to take the present study result from lab to industry for the economic/massive production of this enzyme for the diverse therapeutic application. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Discovery and design of carbohydrate-based therapeutics.

    PubMed

    Cipolla, Laura; Araújo, Ana C; Bini, Davide; Gabrielli, Luca; Russo, Laura; Shaikh, Nasrin

    2010-08-01

    Till now, the importance of carbohydrates has been underscored, if compared with the two other major classes of biopolymers such as oligonucleotides and proteins. Recent advances in glycobiology and glycochemistry have imparted a strong interest in the study of this enormous family of biomolecules. Carbohydrates have been shown to be implicated in recognition processes, such as cell-cell adhesion, cell-extracellular matrix adhesion and cell-intruder recognition phenomena. In addition, carbohydrates are recognized as differentiation markers and as antigenic determinants. Due to their relevant biological role, carbohydrates are promising candidates for drug design and disease treatment. However, the growing number of human disorders known as congenital disorders of glycosylation that are being identified as resulting from abnormalities in glycan structures and protein glycosylation strongly indicates that a fast development of glycobiology, glycochemistry and glycomedicine is highly desirable. The topics give an overview of different approaches that have been used to date for the design of carbohydrate-based therapeutics; this includes the use of native synthetic carbohydrates, the use of carbohydrate mimics designed on the basis of their native counterpart, the use of carbohydrates as scaffolds and finally the design of glyco-fused therapeutics, one of the most recent approaches. The review covers mainly literature that has appeared since 2000, except for a few papers cited for historical reasons. The reader will gain an overview of the current strategies applied to the design of carbohydrate-based therapeutics; in particular, the advantages/disadvantages of different approaches are highlighted. The topic is presented in a general, basic manner and will hopefully be a useful resource for all readers who are not familiar with it. In addition, in order to stress the potentialities of carbohydrates, several examples of carbohydrate-based marketed therapeutics are given

  4. Personalized gene silencing therapeutics for Huntington disease.

    PubMed

    Kay, C; Skotte, N H; Southwell, A L; Hayden, M R

    2014-07-01

    Gene silencing offers a novel therapeutic strategy for dominant genetic disorders. In specific diseases, selective silencing of only one copy of a gene may be advantageous over non-selective silencing of both copies. Huntington disease (HD) is an autosomal dominant disorder caused by an expanded CAG trinucleotide repeat in the Huntingtin gene (HTT). Silencing both expanded and normal copies of HTT may be therapeutically beneficial, but preservation of normal HTT expression is preferred. Allele-specific methods can selectively silence the mutant HTT transcript by targeting either the expanded CAG repeat or single nucleotide polymorphisms (SNPs) in linkage disequilibrium with the expansion. Both approaches require personalized treatment strategies based on patient genotypes. We compare the prospect of safe treatment of HD by CAG- and SNP-specific silencing approaches and review HD population genetics used to guide target identification in the patient population. Clinical implementation of allele-specific HTT silencing faces challenges common to personalized genetic medicine, requiring novel solutions from clinical scientists and regulatory authorities. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. High-throughput screening for modulators of ACVR1 transcription: discovery of potential therapeutics for fibrodysplasia ossificans progressiva

    PubMed Central

    Cappato, Serena; Tonachini, Laura; Giacopelli, Francesca; Tirone, Mario; Galietta, Luis J. V.; Sormani, Martina; Giovenzana, Anna; Spinelli, Antonello E.; Canciani, Barbara; Brunelli, Silvia; Ravazzolo, Roberto

    2016-01-01

    ABSTRACT The ACVR1 gene encodes a type I receptor of bone morphogenetic proteins (BMPs). Activating mutations in ACVR1 are responsible for fibrodysplasia ossificans progressiva (FOP), a rare disease characterized by congenital toe malformation and progressive heterotopic endochondral ossification leading to severe and cumulative disability. Until now, no therapy has been available to prevent soft-tissue swelling (flare-ups) that trigger the ossification process. With the aim of finding a new therapeutic strategy for FOP, we developed a high-throughput screening (HTS) assay to identify inhibitors of ACVR1 gene expression among drugs already approved for the therapy of other diseases. The screening, based on an ACVR1 promoter assay, was followed by an in vitro and in vivo test to validate and characterize candidate molecules. Among compounds that modulate the ACVR1 promoter activity, we selected the one showing the highest inhibitory effect, dipyridamole, a drug that is currently used as a platelet anti-aggregant. The inhibitory effect was detectable on ACVR1 gene expression, on the whole Smad-dependent BMP signaling pathway, and on chondrogenic and osteogenic differentiation processes by in vitro cellular assays. Moreover, dipyridamole reduced the process of heterotopic bone formation in vivo. Our drug repositioning strategy has led to the identification of dipyridamole as a possible therapeutic tool for the treatment of FOP. Furthermore, our study has also defined a pipeline of assays that will be useful for the evaluation of other pharmacological inhibitors of heterotopic ossification. PMID:27125279

  6. A Novel Health Evaluation Strategy for Multifunctional Self-Validating Sensors

    PubMed Central

    Shen, Zhengguang; Wang, Qi

    2013-01-01

    The performance evaluation of sensors is very important in actual application. In this paper, a theory based on multi-variable information fusion is studied to evaluate the health level of multifunctional sensors. A novel conception of health reliability degree (HRD) is defined to indicate a quantitative health level, which is different from traditional so-called qualitative fault diagnosis. To evaluate the health condition from both local and global perspectives, the HRD of a single sensitive component at multiple time points and the overall multifunctional sensor at a single time point are defined, respectively. The HRD methodology is emphasized by using multi-variable data fusion technology coupled with a grey comprehensive evaluation method. In this method, to acquire the distinct importance of each sensitive unit and the sensitivity of different time points, the information entropy and analytic hierarchy process method are used, respectively. In order to verify the feasibility of the proposed strategy, a health evaluating experimental system for multifunctional self-validating sensors was designed. The five different health level situations have been discussed. Successful results show that the proposed method is feasible, the HRD could be used to quantitatively indicate the health level and it does have a fast response to the performance changes of multifunctional sensors. PMID:23291576

  7. Using Therapeutic Toys to Facilitate Venipuncture Procedure in Preschool Children.

    PubMed

    da Silva, José Ronaldo Soares; Pizzoli, Lourdes Margareth Leite; Amorim, Amanda Regina do Prado; Pinheiros, Fernanda Tais; Romanini, Giovanna Chippari; da Silva, Jack Gomes; Joanete, Shirley; Alves, Silvana S M

    2016-01-01

    Intravenous access procedures in children are considered to be one of the most stressful because it is invasive, and the use of needles generates anxiety, insecurity, and fear. Playful strategies using dolls and even the materials used for venipuncture can assist children in understanding, accepting, and coping with the procedure. Field research was developed on the applicability of the therapeutic toy in the preparation of preschool children for venipuncture procedure based on the protocol developed by Martins, Ribeiro, Borba, and Silva (2001) and Kiche and Almeida (2009). The study was done in a private hospital in Greater São Paulo, Brazil, with 10 children ages 3 to 6 years. Data were gathered through observation and questionnaires completed by the children's adult guardians. Before the activity, the children showed fearful facial expressions, used monosyllabic responses, and avoided looking at the health care professional. After the strategy of using therapeutic toy dolls and puppets, 40% of the children calmly accepted the venipuncture procedure, and 100% showed a change to their initial negative reaction, became more communicative and cooperative, and participated and interacted with researchers, even after the end of the activity and procedure. The strategy of therapeutic toys helps make an unfamiliar environment, strangers, and a procedure characterized as painful and difficult less stressful. Pediatric nurses are in a good position to use this resource to offer more humanized care to children.

  8. Dentinogenic Specificity in the Preclinical Evaluation of Vital Pulp Treatment Strategies: A Critical Review.

    PubMed

    Tziafas, Dimitrios; Kodonas, Konstantinos

    2015-11-27

    Reviews on the clinical performance of vital pulp treatment strategies and capping materials repeatedly showed an insufficient grade of evidence concerning their therapeutic validity. The biological mechanisms underlying the regenerative potential of pulp-dentin complex have attracted much attention during the last two decades, since new pulp treatment modalities have been designed and tested at the preclinical level. It has been recognized that evaluation should be based on the specific ability of therapeutic interventions to signal recruitment and differentiation of odontoblast-like cells forming a matrix in a predentin-like pattern, rather than uncontrolled hard tissue deposition in a scar-like form. The aim of the present article was to critically review data from histological experimental studies on pulp capping, published during the last 7 decades. A comprehensive literature search covering the period from 1949 to 2015 was done using the Medline/Pubmed database. Inclusion of a study was dependent on having sufficient data regarding the type of capping material used and the unit of observation (human permanent tooth in vivo or animal permanent dentition; primary teeth were excluded). The post-operatively deposited matrix was categorized into three types: unspecified, osteotypic, or dentin-like matrix. One hundred fifty-two studies were included in the final evaluation. Data from the present systematic review have shown that only 30.2% of the 152 experimental histological pulp capping studies described the heterogenic nature of the hard tissue bridge formation, including osteotypic and tubular mineralized tissue. Structural characteristics of the new matrix and the associated formative cells were not provided by the remaining 106 studies. Analysis showed that more careful preclinical evaluation with emphasis on the evidence regarding the dentinogenic specificity of pulp therapies is required. It seems that selection of appropriate vital pulp treatment

  9. Limited sampling strategies to predict the area under the concentration-time curve for rifampicin.

    PubMed

    Medellín-Garibay, Susanna E; Correa-López, Tania; Romero-Méndez, Carmen; Milán-Segovia, Rosa C; Romano-Moreno, Silvia

    2014-12-01

    Rifampicin (RMP) is the most effective first-line antituberculosis drug. One of the most critical aspects of using it in fixed-drug combination formulations is to ensure it reaches therapeutic levels in blood. The determination of the area under the concentration-time curve (AUC) and appropriate dose adjustment of this drug may contribute to optimization of therapy. Even when the maximal concentration (Cmax) of RMP also predicts its sterilizing effect, the time to reach it (Tmax) takes 40 minutes to 6 hours. The aim of this study was to develop a limited sampling strategy (LSS) for therapeutic drug monitoring assistance for RMP. Full concentration-time curves were obtained from 58 patients with tuberculosis (TB) after the oral administration of RMP in fixed-drug combination formulation. A validated high-performance liquid chromatographic method was used. Pharmacokinetic parameters were estimated with a noncompartmental model. Generalized linear models were obtained by forward steps, and bootstrapping was performed to develop LSS to predict AUC curve from time 0 to the last measured at 24 hours postdose (AUC0-24). The predictive performance of the proposed models was assessed using RMP profiles from 25 other TB patients by comparing predicted and observed AUC0-24. The mean AUC0-24 in the current study was 91.46 ± 36.7 mg·h·L, and the most convenient sampling time points to predict it were 2, 4 and 12 hours postdose (slope [m] = 0.955 ± 0.06; r = 0.92). The mean prediction error was -0.355%, and the root mean square error was 5.6% in the validation group. Alternate LSSs are proposed with 2 of these sampling time points, which also provide good predictions when the 3 most convenient are not feasible. The AUC0-24 for RMP in TB patients can be predicted with acceptable precision through a 2- or 3-point sampling strategy, despite wide interindividual variability. These LSSs could be applied in clinical practice to optimize anti-TB therapy based on therapeutic drug

  10. Dentinogenic Specificity in the Preclinical Evaluation of Vital Pulp Treatment Strategies: A Critical Review

    PubMed Central

    Tziafas, Dimitrios; Kodonas, Konstantinos

    2015-01-01

    Reviews on the clinical performance of vital pulp treatment strategies and capping materials repeatedly showed an insufficient grade of evidence concerning their therapeutic validity. The biological mechanisms underlying the regenerative potential of pulp-dentin complex have attracted much attention during the last two decades, since new pulp treatment modalities have been designed and tested at the preclinical level. It has been recognized that evaluation should be based on the specific ability of therapeutic interventions to signal recruitment and differentiation of odontoblast-like cells forming a matrix in a predentin-like pattern, rather than uncontrolled hard tissue deposition in a scar-like form. The aim of the present article was to critically review data from histological experimental studies on pulp capping, published during the last 7 decades. A comprehensive literature search covering the period from 1949 to 2015 was done using the Medline/Pubmed database. Inclusion of a study was dependent on having sufficient data regarding the type of capping material used and the unit of observation (human permanent tooth in vivo or animal permanent dentition; primary teeth were excluded). The post-operatively deposited matrix was categorized into three types: unspecified, osteotypic, or dentin-like matrix. One hundred fifty-two studies were included in the final evaluation. Data from the present systematic review have shown that only 30.2% of the 152 experimental histological pulp capping studies described the heterogenic nature of the hard tissue bridge formation, including osteotypic and tubular mineralized tissue. Structural characteristics of the new matrix and the associated formative cells were not provided by the remaining 106 studies. Analysis showed that more careful preclinical evaluation with emphasis on the evidence regarding the dentinogenic specificity of pulp therapies is required. It seems that selection of appropriate vital pulp treatment

  11. Novel investigational therapeutics for panic disorder.

    PubMed

    Perna, Giampaolo; Schruers, Koen; Alciati, Alessandra; Caldirola, Daniela

    2015-04-01

    Panic disorder (PD) is a common disabling anxiety disorder associated with relevant social costs. Effective anti-panic medications exist but have several drawbacks. From a clinical perspective, there is still a strong unmet need for more effective, faster acting and more tolerable therapeutic treatments. The authors review the available results on novel mechanism-based anti-panic drugs that are under investigation in animal studies up to Phase II studies. The preclinical studies investigated include: the modulators of the glutamate/orexin/cannabinoid systems, corticotrophin-releasing factor 1 (CRF1)/arginine vasopressine V₁B/angiotensin II receptor antagonists and neuropeptide S. The Phase I/II studies investigated include: the modulators of the glutamate system, isoxazoline derivative, translocator protein (18 kDa) ligands and CRF1/neurokinin receptor antagonists. There has been little progress in recent times. However, glutamate- and orexin-related molecular targets may represent very promising opportunities for treating panic attacks. Very preliminary findings suggest that the antagonists of CRF1 and A-II receptors may have anti-panic properties. However, new medications for PD are far from being implemented in clinical use. The reasons are multiple, including: the heterogeneity of the disorder, the translational validity of animal models and the insufficient use of biomarkers in preclinical/clinical studies. Nevertheless, biomarker-based strategies, pharmacogenomics, 'personalized psychiatry' and the NIH's Research Domain Criteria approach could help to remove those obstacles limiting drug development.

  12. Emerging nanotechnology based strategies for diagnosis and therapeutics of urinary tract infections: A review.

    PubMed

    Kumar, M S; Das, A P

    2017-11-01

    At present, various diagnostic and therapeutic approaches are available for urinary tract infections. But, still the quest for development of more rapid, accurate and reliable approach is an unending process. The pathogens, especially uropathogens are adapting to new environments and antibiotics day by day rapidly. Therefore, urinary tract infections are evolving as hectic and difficult to eradicate, increasing the economic burden to the society. The technological advances should be able to compete the adaptability characteristics of microorganisms to combat their growth in new environments and thereby preventing their infections. Nanotechnology is at present an extensively developing area of immense scientific interest since it has diverse potential applications in biomedical field. Nanotechnology may be combined with cellular therapy approaches to overcome the limitations caused by conventional therapeutics. Nanoantibiotics and drug delivery using nanotechnology are currently growing areas of research in biomedical field. Recently, various categories of antibacterial nanoparticles and nanocarriers for drug delivery have shown their potential in the treatment of infectious diseases. Nanoparticles, compared to conventional antibiotics, are more beneficial in terms of decreasing toxicity, prevailing over resistance and lessening costs. Nanoparticles present long term therapeutic effects since they are retained in body for relatively longer periods. This review focuses on recent advances in the field of nanotechnology, principally emphasizing diagnostics and therapeutics of urinary tract infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Role of mGlu Receptors in Hippocampal Plasticity Deficits in Neurological and Psychiatric Disorders: Implications for Allosteric Modulators as Novel Therapeutic Strategies

    PubMed Central

    Senter, Rebecca K.; Ghoshal, Ayan; Walker, Adam G.; Xiang, Zixiu; Niswender, Colleen M.; Conn, P. Jeffrey

    2016-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are two distinct forms of synaptic plasticity that have been extensively characterized at the Schaffer collateral-CA1 (SC-CA1) synapse and the mossy fiber (MF)-CA3 synapse within the hippocampus, and are postulated to be the molecular underpinning for several cognitive functions. Deficits in LTP and LTD have been implicated in the pathophysiology of several neurological and psychiatric disorders. Therefore, there has been a large effort focused on developing an understanding of the mechanisms underlying these forms of plasticity and novel therapeutic strategies that improve or rescue these plasticity deficits. Among many other targets, the metabotropic glutamate (mGlu) receptors show promise as novel therapeutic candidates for the treatment of these disorders. Among the eight distinct mGlu receptor subtypes (mGlu1-8), the mGlu1,2,3,5,7 subtypes are expressed throughout the hippocampus and have been shown to play important roles in the regulation of synaptic plasticity in this brain area. However, development of therapeutic agents that target these mGlu receptors has been hampered by a lack of subtype-selective compounds. Recently, discovery of allosteric modulators of mGlu receptors has provided novel ligands that are highly selective for individual mGlu receptor subtypes. The mGlu receptors modulate the multiple forms of synaptic plasticity at both SC-CA1 and MF synapses and allosteric modulators of mGlu receptors have emerged as potential therapeutic agents that may rescue plasticity deficits and improve cognitive function in patients suffering from multiple neurological and psychiatric disorders. PMID:27296640

  14. Targeting PIM kinase as a therapeutic strategy in human hepatoblastoma

    PubMed Central

    Stafman, Laura L.; Mruthyunjayappa, Smitha; Waters, Alicia M.; Garner, Evan F.; Aye, Jamie M.; Stewart, Jerry E.; Yoon, Karina J.; Whelan, Kimberly; Mroczek-Musulman, Elizabeth; Beierle, Elizabeth A.

    2018-01-01

    Increasing incidence coupled with poor prognosis and treatments that are virtually unchanged over the past 20 years have made the need for the development of novel therapeutics for hepatoblastoma imperative. PIM kinases have been implicated as drivers of tumorigenesis in multiple cancers, including hepatocellular carcinoma. We hypothesized that PIM kinases, specifically PIM3, would play a role in hepatoblastoma tumorigenesis and that PIM kinase inhibition would affect hepatoblastoma in vitro and in vivo. Parameters including cell survival, proliferation, motility, and apoptosis were assessed in human hepatoblastoma cells following PIM3 knockdown with siRNA or treatment with the PIM inhibitor AZD1208. An in vivo model of human hepatoblastoma was utilized to study the effects of PIM inhibition alone and in combination with cisplatin. PIM kinases were found to be present in the human hepatoblastoma cell line, HuH6, and in a human hepatoblastoma patient-derived xenograft, COA67. PIM3 knockdown or inhibition with AZD1208 decreased cell survival, attachment independent growth, and motility. Additionally, inhibition of tumor growth was observed in a hepatoblastoma xenograft model in mice treated with AZD1208. Combination therapy with AZD1208 and cisplatin resulted in a significant increase in animal survival when compared to either treatment alone. The current studies showed that PIM kinase inhibition decreased human hepatoblastoma tumorigenicity both in vitro and in vivo, implying that PIM inhibitors may be useful as a novel therapeutic for children with hepatoblastoma.

  15. Potential Therapeutic Effects of Psilocybin.

    PubMed

    Johnson, Matthew W; Griffiths, Roland R

    2017-07-01

    Psilocybin and other 5-hydroxytryptamine 2A agonist classic psychedelics have been used for centuries as sacraments within indigenous cultures. In the mid-twentieth century they were a focus within psychiatry as both probes of brain function and experimental therapeutics. By the late 1960s and early 1970s these scientific inquires fell out of favor because classic psychedelics were being used outside of medical research and in association with the emerging counter culture. However, in the twenty-first century, scientific interest in classic psychedelics has returned and grown as a result of several promising studies, validating earlier research. Here, we review therapeutic research on psilocybin, the classic psychedelic that has been the focus of most recent research. For mood and anxiety disorders, three controlled trials have suggested that psilocybin may decrease symptoms of depression and anxiety in the context of cancer-related psychiatric distress for at least 6 months following a single acute administration. A small, open-label study in patients with treatment-resistant depression showed reductions in depression and anxiety symptoms 3 months after two acute doses. For addiction, small, open-label pilot studies have shown promising success rates for both tobacco and alcohol addiction. Safety data from these various trials, which involve careful screening, preparation, monitoring, and follow-up, indicate the absence of severe drug-related adverse reactions. Modest drug-related adverse effects at the time of medication administration are readily managed. US federal funding has yet to support therapeutic psilocybin research, although such support will be important to thoroughly investigate efficacy, safety, and therapeutic mechanisms.

  16. Modulating Cell Fate as a Therapeutic Strategy.

    PubMed

    Lin, Brian; Srikanth, Priya; Castle, Alison C; Nigwekar, Sagar; Malhotra, Rajeev; Galloway, Jenna L; Sykes, David B; Rajagopal, Jayaraj

    2018-05-23

    In injured tissues, regeneration is often associated with cell fate plasticity, in that cells deviate from their normal lineage paths. It is becoming increasingly clear that this plasticity often creates alternative strategies to restore damaged or lost cells. Alternatively, cell fate plasticity is also part and parcel of pathologic tissue transformations that accompany disease. In this Perspective, we summarize a few illustrative examples of physiologic and aberrant cellular plasticity. Then, we speculate on how one could enhance endogenous plasticity to promote regeneration and reverse pathologic plasticity, perhaps inspiring interest in a new class of therapies targeting cell fate modulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Words matter: distinguishing "personalized medicine" and "biologically personalized therapeutics".

    PubMed

    Cherny, Nathan I; de Vries, Elisabeth G E; Emanuel, Linda; Fallowfield, Lesley; Francis, Prudence A; Gabizon, Alberto; Piccart, Martine J; Sidransky, David; Soussan-Gutman, Lior; Tziraki, Chariklia

    2014-12-01

    "Personalized medicine" has become a generic term referring to techniques that evaluate either the host or the disease to enhance the likelihood of beneficial patient outcomes from treatment interventions. There is, however, much more to personalization of care than just identifying the biotherapeutic strategy with the highest likelihood of benefit. In its new meaning, "personalized medicine" could overshadow the individually tailored, whole-person care that is at the bedrock of what people need and want when they are ill. Since names and definitional terms set the scope of the discourse, they have the power to define what personalized medicine includes or does not include, thus influencing the scope of the professional purview regarding the delivery of personalized care. Taxonomic accuracy is important in understanding the differences between therapeutic interventions that are distinguishable in their aims, indications, scope, benefits, and risks. In order to restore the due emphasis to the patient and his or her needs, we assert that it is necessary, albeit belated, to deconflate the contemporary term "personalized medicine" by taxonomizing this therapeutic strategy more accurately as "biologically personalized therapeutics" (BPT). The scope of truly personalized medicine and its relationship to biologically personalized therapeutics is described, emphasizing that the best of care must give due recognition and emphasis to both BPT and truly personalized medicine. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. An update on the strategies in multicomponent activity monitoring within the phytopharmaceutical field

    PubMed Central

    2012-01-01

    Background To-date modern drug research has focused on the discovery and synthesis of single active substances. However, multicomponent preparations are gaining increasing importance in the phytopharmaceutical field by demonstrating beneficial properties with respect to efficacy and toxicity. Discussion In contrast to single drug combinations, a botanical multicomponent therapeutic possesses a complex repertoire of chemicals that belong to a variety of substance classes. This may explain the frequently observed pleiotropic bioactivity spectra of these compounds, which may also suggest that they possess novel therapeutic opportunities. Interestingly, considerable bioactivity properties are exhibited not only by remedies that contain high doses of phytochemicals with prominent pharmaceutical efficacy, but also preparations that lack a sole active principle component. Despite that each individual substance within these multicomponents has a low molar fraction, the therapeutic activity of these substances is established via a potentialization of their effects through combined and simultaneous attacks on multiple molecular targets. Although beneficial properties may emerge from such a broad range of perturbations on cellular machinery, validation and/or prediction of their activity profiles is accompanied with a variety of difficulties in generic risk-benefit assessments. Thus, it is recommended that a comprehensive strategy is implemented to cover the entirety of multicomponent-multitarget effects, so as to address the limitations of conventional approaches. Summary An integration of standard toxicological methods with selected pathway-focused bioassays and unbiased data acquisition strategies (such as gene expression analysis) would be advantageous in building an interaction network model to consider all of the effects, whether they were intended or adverse reactions. PMID:22417247

  19. Organizational strategy use in children aged 5-7: standardization and validity of the Rey Complex Figure Organizational Strategy Score (RCF-OSS).

    PubMed

    Martens, R; Hurks, P P M; Jolles, J

    2014-01-01

    This study investigated psychometric properties (standardization and validity) of the Rey Complex Figure Organizational Strategy Score (RCF-OSS) in a sample of 217 healthy children aged 5-7 years. Our results showed that RCF-OSS performance changes significantly between 5 and 7 years of age. While most 5-year-olds used a local approach when copying the Rey-Osterrieth Complex Figure (ROCF), 7-year-olds increasingly adopted a global approach. RCF-OSS performance correlated significantly, but moderately with measures of ROCF accuracy, executive functioning (fluency, working memory, reasoning), and non-executive functioning (visual-motor integration, visual attention, processing speed, numeracy). These findings seem to indicate that RCF-OSS performance reflects a range of cognitive skills at 5 to 7 years of age, including aspects of executive and non-executive functioning.

  20. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.

    PubMed

    Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G

    2018-06-01

    The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. [Immunotherapy: a therapeutic revolution against prostate cancer?].

    PubMed

    Pracht, Marc; Herrera, Fernanda; Tawadros, Thomas; Berthold, Dominik

    2013-05-22

    The interaction between the immune system and cancer was an area of research interest for several decades. The recent U.S. Food and Drug Administration approval of sipuleucel-T and ipilimumab stimulated broader interest in manipulating immunity to fight cancer. In the context of prostate cancer, the immunotherapy strategies under development are therapeutic vaccination strategies, such as sipuleucel-T and PROSTVAC-VF, or immune checkpoint blockade of CTLA-4. Improved understanding of the immune responses generated by the development of predictive biomarkers for patient selection will guide rational combinations of these treatments and provide new treatment options in prostate cancer.

  2. Current Therapeutic Approach to Hypertrophic Scars

    PubMed Central

    Mokos, Zrinka Bukvić; Jović, Anamaria; Grgurević, Lovorka; Dumić-Čule, Ivo; Kostović, Krešimir; Čeović, Romana; Marinović, Branka

    2017-01-01

    Abnormal scarring and its accompanying esthetic, functional, and psychological sequelae still pose significant challe nges. To date, there is no satisfactory prevention or treatment option for hypertrophic scars (HSs), which is mostly due to not completely comprehending the mechanisms underlying their formation. That is why the apprehension of regular and controlled physiological processes of scar formation is of utmost importance when facing hypertrophic scarring, its pathophysiology, prevention, and therapeutic approach. When treating HSs and choosing the best treatment and prevention modality, physicians can choose from a plethora of therapeutic options and many commercially available products, among which currently there is no efficient option that can successfully overcome impaired skin healing. This article reviews current therapeutic approach and emerging therapeutic strategies for the management of HSs, which should be individualized, based on an evaluation of the scar itself, patients’ expectations, and practical, evidence-based guidelines. Clinicians are encouraged to combine various prevention and treatment modalities where combination therapy that includes steroid injections, 5-fluorouracil, and pulsed-dye laser seems to be the most effective. On the other hand, the current therapeutic options are usually empirical and their results are unreliable and unpredictable. Therefore, there is an unmet need for an effective, targeted therapy and prevention, which would be based on an action or a modulation of a particular factor with clarified mechanism of action that has a beneficial effect on wound healing. As the extracellular matrix has a crucial role in cellular and extracellular events that lead to pathological scarring, targeting its components mostly by regulating bone morphogenetic proteins may throw up new therapeutic approach for reduction or prevention of HSs with functionally and cosmetically acceptable outcome. PMID:28676850

  3. DBS-LC-MS/MS assay for caffeine: validation and neonatal application.

    PubMed

    Bruschettini, Matteo; Barco, Sebastiano; Romantsik, Olga; Risso, Francesco; Gennai, Iulian; Chinea, Benito; Ramenghi, Luca A; Tripodi, Gino; Cangemi, Giuliana

    2016-09-01

    DBS might be an appropriate microsampling technique for therapeutic drug monitoring of caffeine in infants. Nevertheless, its application presents several issues that still limit its use. This paper describes a validated DBS-LC-MS/MS method for caffeine. The results of the method validation showed an hematocrit dependence. In the analysis of 96 paired plasma and DBS clinical samples, caffeine levels measured in DBS were statistically significantly lower than in plasma but the observed differences were independent from hematocrit. These results clearly showed the need for extensive validation with real-life samples for DBS-based methods. DBS-LC-MS/MS can be considered to be a good alternative to traditional methods for therapeutic drug monitoring or PK studies in preterm infants.

  4. Angiotensins as therapeutic targets beyond heart disease.

    PubMed

    Passos-Silva, Danielle Gomes; Brandan, Enrique; Santos, Robson Augusto Souza

    2015-05-01

    The renin-angiotensin system (RAS) plays a pivotal role in cardiovascular and hydro-electrolyte homeostasis. Blockade of the RAS as a therapeutic strategy for treating hypertension and related cardiovascular diseases is well established. However, actions of the RAS go far beyond the targets initially described. In this regard, the recent identification of novel components of the RAS, including angiotensin-(1-7) [Ang-(1-7)], Ang-(1-9), and alamandine, have opened new possibilities for interfering with the development and manifestations of cardiovascular and non-cardiovascular diseases. In this article, we briefly review novel targets for angiotensins and its therapeutic implications in diverse areas, including cancer, inflammation, and glaucoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Stimuli-responsive nanomaterials for therapeutic protein delivery.

    PubMed

    Lu, Yue; Sun, Wujin; Gu, Zhen

    2014-11-28

    Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Stimuli-Responsive Nanomaterials for Therapeutic Protein Delivery

    PubMed Central

    Lu, Yue; Sun, Wujin; Gu, Zhen

    2014-01-01

    Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. PMID:25151983

  7. Therapeutic vaccination to treat chronic infectious diseases

    PubMed Central

    Boukhebza, Houda; Bellon, Nadine; Limacher, Jean Marc; Inchauspé, Geneviève

    2012-01-01

    A famous milestone in the vaccine field has been the first successful vaccination against smallpox, in 1798, by Edward Jenner. Using the vaccinia cowpox virus, Jenner was able to protect vaccinees from variola or smallpox. The Modified Virus Ankara (MVA) poxvirus strain has been one of the vaccines subsequently developed to prevent smallpox infection and was selected by the US government in their Biodefense strategy. Progress in molecular biology and immunology associated with MVA infection has led to the development of MVA as vaccine platform, both in the field of preventive and therapeutic vaccines. This later class of therapeutics has witnessed growing interest that has translated into an increasing number of vaccine candidates reaching the clinics. Among those, MVA-based therapeutic vaccines have addressed four major chronic infections including viral hepatitis, AIDS, human papillomavirus-linked pathologies and tuberculosis. Clinical trials encompass phase 1 and 2 and have started to show significant results and promises. PMID:22894957

  8. Tobacco Use Prevention for the Young (TUPY-S): Development, Validity and Reliability of an Interactive Multimedia Strategy from the Adolescents’ Perspective in Malaysia

    PubMed Central

    Zin, Faridah Mohd; Hillaluddin, Azlin Hilma; Mustaffa, Jamaludin

    2017-01-01

    Objective: This study aims to develop, validate and determine the reliability of an interactive multimedia strategy to prevent tobacco use among the young (TUPY-S) from an adolescents’ perspective. Methods: A descriptive study design was utilized. A modular instruction guideline by Russel (1974) was followed in the entire process, comprising a feasibility study, a review of existing modules, specification of the objectives, identification of the construct criterion items, learner analysis and entry behavior specification, establishment of the sequence instruction and media selection, a tryout with students and a field test. Result: Feasibility was agreed among the researchers and the school authorities. Culturally suitable rigorously developed tobacco use preventive strategies delivered using information technology (IT) are lacking in the literature. The objective of TUPY-S is to prevent tobacco use among adolescents living in Malaysia. Identified construct criterion items include knowledge, attitude, intention to use, self-efficacy, and refusal skill. The target population was early adolescents belonging to generation-Z. Content was developed from the adolescents’ perspective and delivered using IT in Malay language. Content validity, assessed by six experts in the field and module development, was good at 86%. The students’ tryout showed satisfactory face validity subjectively and objectively (85.5%) and high alpha Cronbach reliability (0.91). Conclusion: TUPY-S was confirmed to suit early adolescents of the current generation living in Malaysia. It demonstrated good content validity among the experts, satisfactory face validity and reliability among the target population. TUPY-S is ready to be evaluated for its effectiveness among early adolescents. PMID:28612599

  9. Therapeutic approaches for celiac disease

    PubMed Central

    Plugis, Nicholas M.; Khosla, Chaitan

    2015-01-01

    Celiac disease is a common, lifelong autoimmune disorder for which dietary control is the only accepted form of therapy. A strict gluten-free diet is burdensome to patients and can be limited in efficacy, indicating there is an unmet need for novel therapeutic approaches to supplement or supplant dietary therapy. Many molecular events required for disease pathogenesis have been recently characterized and inspire most current and emerging drug-discovery efforts. Genome-wide association studies (GWAS) confirm the importance of human leukocyte antigen genes in our pathogenic model and identify a number of new risk loci in this complex disease. Here, we review the status of both emerging and potential therapeutic strategies in the context of disease pathophysiology. We conclude with a discussion of how genes identified during GWAS and follow-up studies that enhance susceptibility may offer insight into developing novel therapies. PMID:26060114

  10. Preclinical models used for immunogenicity prediction of therapeutic proteins.

    PubMed

    Brinks, Vera; Weinbuch, Daniel; Baker, Matthew; Dean, Yann; Stas, Philippe; Kostense, Stefan; Rup, Bonita; Jiskoot, Wim

    2013-07-01

    All therapeutic proteins are potentially immunogenic. Antibodies formed against these drugs can decrease efficacy, leading to drastically increased therapeutic costs and in rare cases to serious and sometimes life threatening side-effects. Many efforts are therefore undertaken to develop therapeutic proteins with minimal immunogenicity. For this, immunogenicity prediction of candidate drugs during early drug development is essential. Several in silico, in vitro and in vivo models are used to predict immunogenicity of drug leads, to modify potentially immunogenic properties and to continue development of drug candidates with expected low immunogenicity. Despite the extensive use of these predictive models, their actual predictive value varies. Important reasons for this uncertainty are the limited/insufficient knowledge on the immune mechanisms underlying immunogenicity of therapeutic proteins, the fact that different predictive models explore different components of the immune system and the lack of an integrated clinical validation. In this review, we discuss the predictive models in use, summarize aspects of immunogenicity that these models predict and explore the merits and the limitations of each of the models.

  11. Using Gold Nanoparticles To Disrupt the Tumor Microenvironment: An Emerging Therapeutic Strategy.

    PubMed

    Melamed, Jilian R; Riley, Rachel S; Valcourt, Danielle M; Day, Emily S

    2016-12-27

    Gold nanoparticles have received much attention recently as carriers for anticancer drugs and therapeutic oligonucleotides, but little research has investigated their potential to act as stand-alone therapeutics. Previous studies interrogating their short- and long-term systemic toxicity have found that although gold nanoparticles accumulate within and clear slowly from the liver and spleen, they do not appear to exert toxic effects in these organs. Interestingly, gold nanoparticles innately exhibit the ability to modulate the tumor microenvironment specifically by interfering with crosstalk between tumor cells and stromal cells. In this issue of ACS Nano, Mukherjee and colleagues demonstrate that bare gold nanoparticles can disturb crosstalk between pancreatic stellate cells and pancreatic cancer cells by modulating the cellular secretome to reduce the growth of desmoplastic tissue and inhibit tumor growth. In this Perspective, we highlight opportunities for anticancer targeting within the tumor microenvironment and discuss gold nanoparticles as potential mediators of microenvironment-targeted therapy.

  12. [Grave's ophthalmopathy: therapeutic strategy. Review of 30 patients].

    PubMed

    Boulétreau, P; Ordonnez, I; Orgiazzi, J; Breton, P; Freidel, M

    2005-04-01

    Graves' ophthalmopathy is the primary etiology for exophthalmos in adults. It is a complex orbital disease whose pathophysiology remains controversial. Since its initial description more than 150 years ago, its heterogeneous clinical manifestations and poorly understood links with thyroid pathology remain unresolved issues. Disease activity is the main determinant for the management of Graves' ophthalmopathy, but treatments are often symptomatic, aiming at decreasing orbital inflammation. We report a retrospective analysis of 30 patients diagnosed with Graves' ophthalmopathy followed in our department between 1991 and 2002. Following a phase of medical management of their disease, all patients underwent surgical orbital decompression. Medical and surgical care provided as well as results are presented with a mean follow-up of 23 months. Based on our clinical experience, new concepts in the field of Graves' ophthalmopathy are discussed. Disease activity, evaluated through various means, appears to be the primary guide for therapeutic management. Moreover, the importance of a multidisciplinary approach is highlighted, in order to improve the management of this difficult disorder.

  13. [Diagnostic approach and therapeutic strategy in 133 infertile patients with astheno-necrozoospermia].

    PubMed

    Vicari, E

    1999-02-01

    , in terms of viable forms sperm improvement is possible after evidence-based therapeutic strategy.

  14. Genetic Variation as a Modifier of Association between Therapeutic Exposure and Subsequent Malignant Neoplasms in Cancer Survivors

    PubMed Central

    Bhatia, Smita

    2014-01-01

    Subsequent malignant neoplasms (SMNs) are associated with significant morbidity and are a major cause of premature mortality among cancer survivors. Several large studies have demonstrated a strong association between the radiation and/or chemotherapy used to treat the primary cancer and the risk of developing SMNs. However, for any given therapeutic exposure, the risk of developing an SMN varies between individuals. Genomic variation can potentially modify the association between therapeutic exposures and SMN risk, and can possibly explain the observed inter-individual variability. This article provides a brief overview of the current knowledge regarding the role of genomic variation in the development of therapy-related SMNs. This article also discusses the methodological challenges in undertaking an endeavor to develop a deeper understanding of the molecular underpinnings of therapy-related SMNs, such as, an appropriate study design, identification of an adequately sized study population together with a reliable plan for collecting and maintaining high quality DNA, clinical validation of the phenotype, and selection of an appropriate approach or platform for genotyping. Understanding the modifiers of risk of treatment-related SMNs is critical to developing targeted intervention strategies and optimizing risk-based health care of cancer survivors. PMID:25355167

  15. Basic science breaks through: New therapeutic advances in Parkinson's disease.

    PubMed

    Brundin, Patrik; Atkin, Graham; Lamberts, Jennifer T

    2015-09-15

    Parkinson's disease (PD) is the second most common neurodegenerative disease and is typically associated with progressive motor dysfunction, although PD patients also exhibit a variety of non-motor symptoms. The neuropathological hallmark of PD is intraneuronal inclusions containing primarily α-Synuclein (α-Syn), and several lines of evidence point to α-Syn as a key contributor to disease progression. Thus, basic research in the field of PD is largely focused on understanding the pathogenic properties of α-Syn. Over the past 2 y, these studies helped to identify several novel therapeutic strategies that have the potential to slow PD progression; such strategies include sequestration of extracellular α-Syn through immunotherapy, reduction of α-Syn multimerization or intracellular toxicity, and attenuation of the neuroinflammatory response. This review describes these and other putative therapeutic strategies, together with the basic science research that led to their identification. The current breadth of novel targets for the treatment of PD warrants cautious optimism in the fight against this devastating disease. © 2015 International Parkinson and Movement Disorder Society.

  16. [Integrated therapeutic strategy in large bowel neoplastic occlusion. An innovative therapeutic protocol].

    PubMed

    Gattai, Riccardo; Mascitelli, Erminia Macera; Bechi, Paolo; Pace, Marcello

    2007-01-01

    Occlusive complication is a common event in the colo-rectal cancer (20-30% of cases). Operative mortality and 5 yrs survival of not occlusive cancer vs occlusive cancer is 11% vs 23% and 45% vs 25% rispectively. In occlusive cancer the level of parietal infiltration affects considerably the local and peritoneal recurrence. 50% of all patients underwent a surgical re-operation for colo-rectal cancer have peritoneal neoplastic implant. The resolution of occlusive complication in immediate or delayed urgency with decompressive derivation, it allows to perform an integrated treatment of choice that it could guarantee the oncological radical procedure. RATIONALE-METHODS: The intraperitoneal hyperthermic chemotherapy (IPHC) combined with radical or cytoriductive surgery performs its action through sinergistic effects of high dosage and concentration of drugs and hyperthermia. These agents perform a cell killing with a direct contact against micro and/or macroscopic neoplastic residue. In radical surgery with curative intent, the association with IPHC ("preventive" adjuvant) has got as objective the distruction of microscopic local or peritoneal metastasis. In occlusive cancer with synchronous or metachronous peritoneal carcinomatosis, the performance of the cytoreductive surgery with IPHC ("therapeutic" adjuvant) is the only treatment that improves the survival and the quality of remainig life. The clinical results reported by many Istitutions indicates that the 2-5 yrs survivals are 45-60% and 20-30% rispectively. These data lead us to believe that an optimal eradication of micro and/or macroscopic peritoneal spreading could be optained also in occlusive colo-rectal cancer.

  17. The weight management strategies inventory (WMSI). Development of a new measurement instrument, construct validation, and association with dieting success.

    PubMed

    Keller, Carmen; Siegrist, Michael

    2015-09-01

    In an obesogenic environment, people have to adopt effective weight management strategies to successfully gain or maintain normal body weight. Little is known about the strategies used by the general population in daily life. Due to the lack of a comprehensive measurement instrument to assess conceptually different strategies with various scales, we developed the weight management strategies inventory (WMSI). In study 1, we collected 19 weight management strategies from research on self-regulation of food intake and successful weight loss and maintenance, as well as from expert interviews. We classified them under the five main categories of health self-regulation strategies - goal setting and monitoring, prospection and planning, automating behavior, construal, and inhibition. We formulated 93 items. In study 2, we developed the WMSI in a random sample from the general population (N = 658), using reliability and exploratory factor analysis. This resulted in 19 factors with 63 items, representing the 19 strategies. In study 3, we tested the 19-factor structure in a quota (age, gender) sample from the general population (N = 616), using confirmatory factor analysis. A good model fit (CFI = .918; RMSEA = .043) was revealed. Reliabilities and construct validity were high. Positive correlations of most strategies with dieting success and negative correlations of some strategies with body mass index were found among dieters (N = 292). Study 4 (N = 162) revealed a good test-retest reliability. The WMSI assesses theoretically derived, evidence-based, and conceptually different weight management strategies with different scales that have good psychometric characteristics. The scales can also be used for pre- and post measures in intervention studies. The scales provide insights into the general population's weight management strategies and facilitate tailoring and evaluating health communication. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Protein and peptide-based therapeutics in periodontal regeneration.

    PubMed

    Reynolds, Mark A; Aichelmann-Reidy, Mary E

    2012-09-01

    Protein and peptide-based therapeutics provide a unique strategy for controlling highly specific and complex biologic actions that cannot be accomplished by simple devices or chemical compounds. This article reviews some of the key characteristics and summarizes the clinical effectiveness of protein and peptide-based therapeutics targeting periodontal regeneration. A literature search was conducted of randomized clinical trials and systematic reviews evaluating protein and peptide-based therapeutics for the regeneration of periodontal tissues of at least 6 months duration. Data sources included PubMed and Embase electronic databases, hand-searched journals, and the ClinicalTrials.gov registry. Commercially marketed protein and peptide-based therapeutics for periodontal regeneration provide gains in clinical attachment level and bone formation that are comparable or superior to other regenerative approaches. Results from several clinical trials indicate that protein and peptide-based therapies can accelerate repair and regeneration when compared with other treatments and that improvements in clinical parameters continue beyond 12 months. Protein and peptide-based therapies also exhibit the capacity to increase the predictability of treatment outcomes. Clinical and histologic studies support the effectiveness of protein- and peptide-based therapeutics for periodontal regeneration. Emerging evidence suggests that the delivery devices/scaffolds play a critical role in determining the effectiveness of this class of therapeutics. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Therapeutic strategies after coronary stenting in chronically anticoagulated patients: the MUSICA study.

    PubMed

    Sambola, A; Ferreira-González, I; Angel, J; Alfonso, F; Maristany, J; Rodríguez, O; Bueno, H; López-Minguez, J R; Zueco, J; Fernández-Avilés, F; San Román, A; Prendergast, B; Mainar, V; García-Dorado, D; Tornos, P

    2009-09-01

    To identify the therapeutic regimens used at discharge in patients receiving oral anticoagulant therapy (OAT) who undergo stenting percutaneous coronary intervention and stent implantation (PCI-S), and to assess the safety and efficacy associated with different therapeutic regimens according to thromboembolic risk. A prospective multicentre registry. In hospital, after discharge and follow-up by telephone call. 405 patients (328 male/77 female; mean (SD) age 71 (9) years) receiving OAT who underwent PCI-S between November 2003 and June 2006 from nine catheterisation laboratories of tertiary care teaching hospitals in Spain and one in the United Kingdom were included. Three therapeutic regimens were identified at discharge: triple therapy (TT) -- that is, any anticoagulant (AC) plus double antiplatelet therapy (DAT; 278 patients (68.6%); AC and a single antiplatelet (AC+AT; 46 (11.4%)) and DAT only (81 (20%)). At 6 months, patients receiving TT showed the greatest rate of bleeding events. No patients receiving DAT at low thromboembolic risk presented a bleeding event (14.8% receiving TT, 11.8% receiving AC+AT and 0% receiving DAT, p = 0.033) or cardiovascular event (6.7% receiving TT, 0% receiving AC+AT and 0% receiving DAT, p = 0.126). The combination of AC+AT showed the worst rate of adverse events in the whole cohort, especially in patients at moderate-high thromboembolic risk. In patients receiving OAT, TT was the most commonly used regimen after PCI-S. DAT was associated with the lowest rate of bleeding events and a similar efficacy to TT in patients at low thromboembolic risk. TT should probably be restricted to patients at moderate-high thromboembolic risk.

  20. Validation of a Fast-Response Urban Micrometeorological Model to Assess the Performance of Urban Heat Island Mitigation Strategies

    NASA Astrophysics Data System (ADS)

    Nadeau, D.; Girard, P.; Overby, M.; Pardyjak, E.; Stoll, R., II; Willemsen, P.; Bailey, B.; Parlange, M. B.

    2015-12-01

    Urban heat islands (UHI) are a real threat in many cities worldwide and mitigation measures have become a central component of urban planning strategies. Even within a city, causes of UHI vary from one neighborhood to another, mostly due the spatial variability in surface thermal properties, building geometry, anthropogenic heat flux releases and vegetation cover. As a result, the performance of UHI mitigation measures also varies in space. Hence, there is a need to develop a tool to quantify the efficiency of UHI mitigation measures at the neighborhood scale. The objective of this ongoing study is to validate the fast-response micrometeorological model QUIC EnvSim (QES). This model can provide all information required for UHI studies with a fine spatial resolution (up to 0.5m) and short computation time. QES combines QUIC, a CFD-based wind solver and dispersion model, and EnvSim, composed of a radiation model, a land-surface model and a turbulent transport model. Here, high-resolution (1 m) simulations are run over a subset of the École Polytechnique Fédérale de Lausanne (EPFL) campus including complex buildings, various surfaces properties and vegetation. For nearly five months in 2006-07, a dense network of meteorological observations (92 weather stations over 0.1 km2) was deployed over the campus and these unique data are used here as a validation dataset. We present validation results for different test cases (e.g., sunny vs cloudy days, different incoming wind speeds and directions) and explore the effect of a few UHI mitigation strategies on the spatial distribution of near-surface air temperatures. Preliminary results suggest that QES may be a valuable tool in decision-making regarding adaptation of urban planning to UHI.

  1. Strategies for Validating and Directions for Employing SMOS Data, in the Cal-Val Project SWEX (3275)

    NASA Astrophysics Data System (ADS)

    Marczewski, Wojciech; Usowicz, Boguslaw; Usowicz, Jerzy; Romanov, Sergey; Maryskevych, Oksana; Nastula, Jolanta; Slominski, Jan; Zawadzki, Jaroslaw

    2009-11-01

    Earth land surface target of observations is naturally diversified in its physical and bio-physical properties. SMOS observation of SM (Soil Moisture) is highly dependent on proper physical and environmental data necessary, because SM is retrieved from the directly observable BT (Brightness Temperature) on the basis of these external data. That way, SMOS realizes a real data fusion performed NRT (Nearly Real Time) and thus needs validating. Global range of SMOS observations makes it generalizing the diversity on complex way engaging technical, modelling and organizational means. That is a new quality of EO (Earth Observations) in the matter of managing diversity of the target. The paper presents several proofs on employing external data by means of the SMOS software tools, for L1c and L2 data levels. Authors take validation in few selected sites in Poland, and describe their strategy for employing external data from ASAR, MERIS, and other auxiliary sources. Finally the conclusions come to understanding of a use of SMOS data, and seek ways of referencing SM in large scales to known results of the gravitational Mission GRACE.

  2. Therapeutic interventions in sepsis: current and anticipated pharmacological agents

    PubMed Central

    Shukla, Prashant; Rao, G Madhava; Pandey, Gitu; Sharma, Shweta; Mittapelly, Naresh; Shegokar, Ranjita; Mishra, Prabhat Ranjan

    2014-01-01

    Sepsis is a clinical syndrome characterized by a multisystem response to a pathogenic assault due to underlying infection that involves a combination of interconnected biochemical, cellular and organ–organ interactive networks. After the withdrawal of recombinant human-activated protein C (rAPC), researchers and physicians have continued to search for new therapeutic approaches and targets against sepsis, effective in both hypo- and hyperinflammatory states. Currently, statins are being evaluated as a viable option in clinical trials. Many agents that have shown favourable results in experimental sepsis are not clinically effective or have not been clinically evaluated. Apart from developing new therapeutic molecules, there is great scope for for developing a variety of drug delivery strategies, such as nanoparticulate carriers and phospholipid-based systems. These nanoparticulate carriers neutralize intracorporeal LPS as well as deliver therapeutic agents to targeted tissues and subcellular locations. Here, we review and critically discuss the present status and new experimental and clinical approaches for therapeutic intervention in sepsis. PMID:24977655

  3. Stacking up CRISPR against RNAi for therapeutic gene inhibition.

    PubMed

    Haussecker, Dirk

    2016-09-01

    Both RNA interference (RNAi) and clustered regularly-interspaced short palindromic repeats (CRISPR) technologies allow for the sequence-specific inhibition of gene function and therefore have the potential to be used as therapeutic modalities. By judging the current public and scientific journal interest, it would seem that CRISPR, by enabling clean, durable knockouts, will dominate therapeutic gene inhibition, also at the expense of RNAi. This review aims to look behind prevailing sentiments and to more clearly define the likely scope of the therapeutic applications of the more recently developed CRISPR technology and its relative strengths and weaknesses with regards to RNAi. It is found that largely because of their broadly overlapping delivery constraints, while CRISPR presents formidable competition for DNA-directed RNAi strategies, its impact on RNAi therapeutics triggered by synthetic oligonucleotides will likely be more moderate. Instead, RNAi and genome editing, and in particular CRISPR, are poised to jointly promote a further shift toward sequence-targeted precision medicines. © 2016 Federation of European Biochemical Societies.

  4. Helicopter simulation validation using flight data

    NASA Technical Reports Server (NTRS)

    Key, D. L.; Hansen, R. S.; Cleveland, W. B.; Abbott, W. Y.

    1982-01-01

    A joint NASA/Army effort to perform a systematic ground-based piloted simulation validation assessment is described. The best available mathematical model for the subject helicopter (UH-60A Black Hawk) was programmed for real-time operation. Flight data were obtained to validate the math model, and to develop models for the pilot control strategy while performing mission-type tasks. The validated math model is to be combined with motion and visual systems to perform ground based simulation. Comparisons of the control strategy obtained in flight with that obtained on the simulator are to be used as the basis for assessing the fidelity of the results obtained in the simulator.

  5. Nanoparticles for the delivery of therapeutic antibodies: Dogma or promising strategy?

    PubMed

    Sousa, Flávia; Castro, Pedro; Fonte, Pedro; Kennedy, Patrick J; Neves-Petersen, Maria Teresa; Sarmento, Bruno

    2017-10-01

    Over the past two decades, therapeutic antibodies have demonstrated promising results in the treatment of a wide array of diseases. However, the application of antibody-based therapy implies multiple administrations and a high cost of antibody production, resulting in costly therapy. Another disadvantage inherent to antibody-based therapy is the limited stability of antibodies and the low level of tissue penetration. The use of nanoparticles as delivery systems for antibodies allows for a reduction in antibody dosing and may represent a suitable alternative to increase antibody stability Areas covered: We discuss different nanocarriers intended for the delivery of antibodies as well as the corresponding encapsulation methods. Recent developments in antibody nanoencapsulation, particularly the possible toxicity issues that may arise from entrapment of antibodies into nanocarriers, are also assessed. In addition, this review will discuss the alterations in antibody structure and bioactivity that occur with nanoencapsulation. Expert opinion: Nanocarriers can protect antibodies from degradation, ensuring superior bioavailability. Encapsulation of therapeutic antibodies may offer some advantages, including potential targeting, reduced immunogenicity and controlled release. Furthermore, antibody nanoencapsulation may aid in the incorporation of the antibodies into the cells, if intracellular components (e.g. intracellular enzymes, oncogenic proteins, transcription factors) are to be targeted.

  6. Huntington Disease: Linking Pathogenesis to the Development of Experimental Therapeutics.

    PubMed

    Mestre, Tiago A; Sampaio, Cristina

    2017-02-01

    Huntington disease (HD) is an autosomal dominant neurodegenerative condition caused by a CAG trinucleotide expansion in the huntingtin gene. At present, the HD field is experiencing exciting times with the assessment for the first time in human subjects of interventions aimed at core disease mechanisms. Out of a portfolio of interventions that claim a potential disease-modifying effect in HD, the target huntingtin has more robust validation. In this review, we discuss the spectrum of huntingtin-lowering therapies that are currently being considered. We provide a critical appraisal of the validation of huntingtin as a drug target, describing the advantages, challenges, and limitations of the proposed therapeutic interventions. The development of these new therapies relies strongly on the knowledge of HD pathogenesis and the ability to translate this knowledge into validated pharmacodynamic biomarkers. Altogether, the goal is to support a rational drug development that is ethical and cost-effective. Among the pharmacodynamic biomarkers under development, the quantification of mutant huntingtin in the cerebral spinal fluid and PET imaging targeting huntingtin or phosphodiesterase 10A deserve special attention. Huntingtin-lowering therapeutics are eagerly awaited as the first interventions that may be able to change the course of HD in a meaningful way.

  7. Rational protein design: developing next-generation biological therapeutics and nanobiotechnological tools.

    PubMed

    Wilson, Corey J

    2015-01-01

    Proteins are the most functionally diverse macromolecules observed in nature, participating in a broad array of catalytic, biosensing, transport, scaffolding, and regulatory functions. Fittingly, proteins have become one of the most promising nanobiotechnological tools to date, and through the use of recombinant DNA and other laboratory methods we have produced a vast number of biological therapeutics derived from human genes. Our emerging ability to rationally design proteins (e.g., via computational methods) holds the promise of significantly expanding the number and diversity of protein therapies and has opened the gateway to realizing true and uncompromised personalized medicine. In the last decade computational protein design has been transformed from a set of fundamental strategies to stringently test our understanding of the protein structure-function relationship, to practical tools for developing useful biological processes, nano-devices, and novel therapeutics. As protein design strategies improve (i.e., in terms of accuracy and efficiency) clinicians will be able to leverage individual genetic data and biological metrics to develop and deliver personalized protein therapeutics with minimal delay. © 2014 Wiley Periodicals, Inc.

  8. Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges.

    PubMed

    Kwekkeboom, Rick F J; Lei, Zhiyong; Doevendans, Pieter A; Musters, René J P; Sluijter, Joost P G

    2014-09-01

    Dysregulation of miRNA expression has been associated with many cardiovascular diseases in animal models, as well as in patients. In the present review, we summarize recent findings on the role of miRNAs in cardiovascular diseases and discuss the opportunities, possibilities and challenges of using miRNAs as future therapeutic targets. Furthermore, we focus on the different approaches that can be used to deliver these newly developed miRNA therapeutics to their sites of action. Since siRNAs are structurally homologous with the miRNA therapeutics, important lessons learned from siRNA delivery strategies are discussed that might be applicable to targeted delivery of miRNA therapeutics, thereby reducing costs and potential side effects, and improving efficacy.

  9. Nanotechnology in Diagnostics and Therapeutics for Gastrointestinal Disorders

    PubMed Central

    Laroui, Hamed; Rakhya, Poonam; Xiao, Bo; Viennois, Emilie; Merlin, Didier

    2013-01-01

    This review describes the state of art in nanoparticle and nanodevice applications for medical diagnosis and disease treatment. Nanodevices, such as cantilevers, have been integrated into high-sensitivity disease marker diagnostic detectors and devices, are stable over long periods of time, and display reliable performance properties. Nanotechnology strategies have been applied to therapeutic purposes as well. For example, nanoparticle-based delivery systems have been developed to protect drugs from degradation, thereby reducing the required dose and dose frequency, improving patient comfort and convenience during treatment, and reducing treatment expenses. The main objectives for integrating nanotechnologies into diagnostic and therapeutic applications in the context of intestinal diseases are reviewed. PMID:23660079

  10. Menstrual Migraine: Therapeutic Approaches

    PubMed Central

    2009-01-01

    The development of diagnostic criteria has enabled greater recognition of menstrual migraine as a highly prevalent and disabling condition meriting specific treatment. Although few therapeutic trials have yet been undertaken in accordance with the criteria, the results of those published to date confirm the efficacy of acute migraine drugs for symptomatic treatment. If this approach is insufficient, the predictability of attacks provides the opportunity for perimenstrual prophylaxis. Continuous contraceptive strategies provide an additional option for management, although clinical trial data are limited. Future approaches to treatment could explore the genomic and nongenomic actions of sex steroids. PMID:21180623

  11. The design strategy of selective PTP1B inhibitors over TCPTP.

    PubMed

    Li, XiangQian; Wang, LiJun; Shi, DaYong

    2016-08-15

    Protein tyrosine phosphatase 1B (PTP1B) has already been well studied as a highly validated therapeutic target for diabetes and obesity. However, the lack of selectivity limited further studies and clinical applications of PTP1B inhibitors, especially over T-cell protein tyrosine phosphatase (TCPTP). In this review, we enumerate the published specific inhibitors of PTP1B, discuss the structure-activity relationships by analysis of their X-ray structures or docking results, and summarize the characteristic of selectivity related residues and groups. Furthermore, the design strategy of selective PTP1B inhibitors over TCPTP is also proposed. We hope our work could provide an effective way to gain specific PTP1B inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Active targeted delivery of immune therapeutics to lymph nodes.

    PubMed

    Bahmani, Baharak; Vohra, Ishaan; Kamaly, Nazila; Abdi, Reza

    2018-02-01

    Organ transplantation is a life-saving procedure and the only option for patients with end-organ failure. Immune therapeutics have been key to the success of organ transplantation. However, immune therapeutics are still unable to eliminate graft rejection and their toxicity has been implicated in poorer long-term transplant outcomes. Targeted nanodelivery has the potential to enhance not only the therapeutic index but also the bioavailability of the immune therapeutics. One of the key sites of immune therapeutics delivery is lymph node where the priming of immune cells occur. The focus of this review is on nanomedicine research to develop the targeted delivery of immune therapeutics to lymph nodes for controlling immune activation. As nanomedicine creates its niche in clinical care, it provides novel immunotherapy platforms for transplant recipients. Draining lymph nodes are the primary loci of immune activation and represent a formidable site for delivery of wide variety of immune therapeutics. There have been relentless efforts to improve the properties of nanomedicines, to have in-depth knowledge of antigen and drug loading, and, finally, to explore various routes of passive and active targeted delivery to lymph nodes. The application of nanotechnology principles in the delivery of immune therapeutics to the lymph node has created enormous excitement as a paradigm shifting approach that enables targeted delivery of a gamut of molecules to achieve a desired immune response. Therefore, innovative strategies that improve their efficacy while reducing their toxicity are among the highest unmet needs in transplantation.

  13. Physiological imaging of electrical trauma and therapeutic responses

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Tu; Matthews, K.; Aarsvold, John N.; Mintzer, Robert A.; Yasillo, Nicholas J.; Hannig, Jurgen; Capelli-Schellpfefer, M.; Cooper, Malcolm; Lee, Raphael C.

    2000-04-01

    In victims of electrical trauma, electroporation of cell membrane, in which lipid bilayer is permeabilized by thermal and electrical forces, is thought to be a substantial cause of tissue damage. It has been suggested that certain mild surfactant in low concentration could induce sealing of permeabilized lipid bilayers, thus repairing cell membranes that had not been extensively damaged. With an animal model of electrically injured hind limb of rats, we have demonstrated and validated the use of radiotracer imaging technique to assess the physiology of the damaged tissues after electrical shock and of their repairs after applying surfactant as a therapeutic strategy. For example, using Tc-99m labeled pyrophosphate (PYP), which follows calcium in cellular function and is known to accumulate in damaged tissues, we have established a physiological imaging approach for assessment of the extent of tissue injury for diagnosis and surgical planning, as well as for evaluation of responses to therapy. With the use of a small, hand-held, miniature gamma camera, this physiological imaging method can be employed at patient's bedside and even in the field, for example, at accident site or during transfer for emergency care, rapid diagnosis, and prompt treatment in order to maximize the chance for tissue survival.

  14. Validation and long-term evaluation of a modified on-line chiral analytical method for therapeutic drug monitoring of (R,S)-methadone in clinical samples.

    PubMed

    Ansermot, Nicolas; Rudaz, Serge; Brawand-Amey, Marlyse; Fleury-Souverain, Sandrine; Veuthey, Jean-Luc; Eap, Chin B

    2009-08-01

    Matrix effects, which represent an important issue in liquid chromatography coupled to mass spectrometry or tandem mass spectrometry detection, should be closely assessed during method development. In the case of quantitative analysis, the use of stable isotope-labelled internal standard with physico-chemical properties and ionization behaviour similar to the analyte is recommended. In this paper, an example of the choice of a co-eluting deuterated internal standard to compensate for short-term and long-term matrix effect in the case of chiral (R,S)-methadone plasma quantification is reported. The method was fully validated over a concentration range of 5-800 ng/mL for each methadone enantiomer with satisfactory relative bias (-1.0 to 1.0%), repeatability (0.9-4.9%) and intermediate precision (1.4-12.0%). From the results obtained during validation, a control chart process during 52 series of routine analysis was established using both intermediate precision standard deviation and FDA acceptance criteria. The results of routine quality control samples were generally included in the +/-15% variability around the target value and mainly in the two standard deviation interval illustrating the long-term stability of the method. The intermediate precision variability estimated in method validation was found to be coherent with the routine use of the method. During this period, 257 trough concentration and 54 peak concentration plasma samples of patients undergoing (R,S)-methadone treatment were successfully analysed for routine therapeutic drug monitoring.

  15. Initial therapeutic strategy of invasive candidiasis for intensive care unit patients: a retrospective analysis from the China-SCAN study.

    PubMed

    Cui, Na; Wang, Hao; Su, Longxiang; Qiu, Haibo; Li, Ruoyu; Liu, Dawei

    2017-01-23

    To investigate the impact of initial antifungal therapeutic strategies on the prognosis of invasive Candida infections (ICIs) in intensive care units (ICUs) in China. A total of 306 patients with proven ICIs in the China-SCAN study were analyzed retrospectively. Empiric, pre-emptive, and targeted therapy were adopted based on starting criteria including clinical, microbiological, and other conventional prediction rules. The primary outcome was hospital mortality and the secondary endpoints were duration days in ICU and duration days in hospital. The global responses (clinical and microbiological) at the end of the empirical therapy were also assessed. A total of 268/306 (87.6%) ICI patients received antifungal therapy, including 142/268 (53.0%) initial empirical therapy, 53/268 (19.8%) initial pre-emptive therapy, and 73/268 (27.2%) initial targeted therapy. Compared with the initial empirical antifungal therapy and targeted antifungal therapy, patients with initial pre-emptive antifungal therapy had significantly less clinical remission [11/53 (21.2%) vs. 61/142 (43.3%) vs. 22/73 (30.1%), P = 0.009], higher ICU [26/53 (57.8%) vs. 42/142 (32.2%) vs. 27/73 (43.5%), P = 0.008] and hospital mortality [27/53 (60.0%) vs. 43/142 (32.8%) vs. 29/73 (46.8%), P = 0.004] and more microbiological persistence [9/53 (17.0%) vs. 6/142 (4.2%) vs. 9/73 (12.3%), P = 0.011]. Kaplan-Meier survival analysis revealed that ICI patients with initial pre-emptive antifungal therapy and targeted antifungal therapy were associated with reduced hospital duration compared with patients with initial empirical antifungal therapy after confirmation of fungal infection (log-rank test: P = 0.021). Multivariate regression analysis provided evidence that initial empirical antifungal therapy was an independent predictor for DECREASING the hospital mortality in ICI patients on ICU admission and at ICI diagnosis (odds ratio 0.327, 95% confidence interval 0.160-0.667, P = 0

  16. Pathogenic mechanisms and therapeutic strategies in spinobulbar muscular atrophy

    PubMed Central

    Chua, Jason P.; Lieberman, Andrew P.

    2014-01-01

    We review the genetic and clinical features of spinobulbar muscular atrophy (SBMA), a progressive neuromuscular disorder caused by a CAG/glutamine tract expansion in the androgen receptor. SBMA was the first polyglutamine disease to be discovered, and we compare and contrast it with related degenerative disorders of the nervous system caused by expanded glutamine tracts. We review the cellular and animals models that have been most widely used to study this disorder, and highlight insights into disease pathogenesis derived from this work. These model systems have revealed critical aspects of the disease, including its hormone dependence, a feature that underlies disease occurrence only in men with the mutant allele. We discuss how this and other findings have been translated to clinical trials for SBMA patients, and examine emerging therapeutic targets that have been identified by recent work. PMID:24040817

  17. Systems approaches in osteoarthritis: Identifying routes to novel diagnostic and therapeutic strategies

    PubMed Central

    Mueller, Alan J.; Peffers, Mandy J.; Proctor, Carole J.

    2017-01-01

    ABSTRACT Systems orientated research offers the possibility of identifying novel therapeutic targets and relevant diagnostic markers for complex diseases such as osteoarthritis. This review demonstrates that the osteoarthritis research community has been slow to incorporate systems orientated approaches into research studies, although a number of key studies reveal novel insights into the regulatory mechanisms that contribute both to joint tissue homeostasis and its dysfunction. The review introduces both top‐down and bottom‐up approaches employed in the study of osteoarthritis. A holistic and multiscale approach, where clinical measurements may predict dysregulation and progression of joint degeneration, should be a key objective in future research. The review concludes with suggestions for further research and emerging trends not least of which is the coupled development of diagnostic tests and therapeutics as part of a concerted effort by the osteoarthritis research community to meet clinical needs. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1573–1588, 2017. PMID:28318047

  18. [Immune response in cervical cancer. Strategies for the development of therapeutic vaccines].

    PubMed

    Mora-García, María Lourdes; Monroy-García, Alberto

    2015-01-01

    High-risk human papillomaviruses (HR-HPV), as HPV-16, evade immune recognition through the inactivation of cells of the innate immune response. HPV-16 E6 and E7 genes down-regulate type I interferon response. They do not produce viremia or cell death; therefore, they do not cause inflammation or damage signal that alerts the immune system. Virus-like particles (VLPs), consisting of structural proteins (L1 and L2) of the main HR-HPV types that infect the genitourinary tract, are the most effective prophylactic vaccines against HR-HPV infection. While for the high grade neoplastic lesions, therapeutic vaccines based on viral vectors, peptides, DNA or complete HR-HPV E6 and E7 proteins as antigens, have had limited effectiveness. Chimeric virus-like particles (cVLPs) that carry immunogenic peptides derived from E6 and E7 viral proteins, capable to induce activation of specific cytotoxic T lymphocytes, emerge as an important alternative to provide prophylactic and therapeutic activity against HR-HPV infection and cervical cancer.

  19. Current Progress in Therapeutic Gene Editing for Monogenic Diseases

    PubMed Central

    Prakash, Versha; Moore, Marc; Yáñez-Muñoz, Rafael J

    2016-01-01

    Programmable nucleases allow defined alterations in the genome with ease-of-use, efficiency, and specificity. Their availability has led to accurate and widespread genome engineering, with multiple applications in basic research, biotechnology, and therapy. With regard to human gene therapy, nuclease-based gene editing has facilitated development of a broad range of therapeutic strategies based on both nonhomologous end joining and homology-dependent repair. This review discusses current progress in nuclease-based therapeutic applications for a subset of inherited monogenic diseases including cystic fibrosis, Duchenne muscular dystrophy, diseases of the bone marrow, and hemophilia and highlights associated challenges and future prospects. PMID:26765770

  20. PSA-selective activation of cytotoxic human serine proteases within the tumor microenvironment as a therapeutic strategy to target prostate cancer.

    PubMed

    Rogers, Oliver C; Anthony, Lizamma; Rosen, D Marc; Brennen, W Nathaniel; Denmeade, Samuel R

    2018-04-27

    Prostate cancer is the most diagnosed malignancy and the second leading cause of cancer-related death in American men. While localized therapy is highly curative, treatments for metastatic prostate cancer are largely palliative. Thus, new innovative therapies are needed to target metastatic tumors. Prostate-Specific Antigen (PSA) is a chymotrypsin-like protease with a unique substrate specificity that is secreted by both normal and malignant prostate epithelial cells. Previous studies demonstrated the presence of high levels (μM-mM) of enzymatically active PSA is present in the extracellular fluid of the prostate cancer microenvironment. Because of this, PSA is an attractive target for a protease activated pro-toxin therapeutic strategy. Because prostate cancers typically grow very slowly, a strategy employing a proliferation-independent cytotoxic payload is preferred. Recently, it was shown that the human protease Granzyme B (GZMB), at low micromolar concentrations in the extracellular space, can cleave an array of extracellular matrix (ECM) proteins thus perturbing cell growth, signaling, motility, and integrity. It is also well established that other human proteases such as trypsin can induce similar effects. Because both enzymes require N-terminal proteolytic activation, we propose to convert these proteins into PSA-activated cytotoxins. In this study, we examine the enzymatic and cell targeting parameters of these PSA-activated cytotoxic serine proteases. These pro-enzymes were activated robustly by PSA and induced ECM damage that led to the death of prostate cancer cells in vitro thus supporting the potential use of this strategy as means to target metastatic prostate cancers.

  1. PSA-selective activation of cytotoxic human serine proteases within the tumor microenvironment as a therapeutic strategy to target prostate cancer

    PubMed Central

    Rogers, Oliver C.; Anthony, Lizamma; Rosen, D. Marc; Brennen, W. Nathaniel; Denmeade, Samuel R.

    2018-01-01

    Prostate cancer is the most diagnosed malignancy and the second leading cause of cancer-related death in American men. While localized therapy is highly curative, treatments for metastatic prostate cancer are largely palliative. Thus, new innovative therapies are needed to target metastatic tumors. Prostate-Specific Antigen (PSA) is a chymotrypsin-like protease with a unique substrate specificity that is secreted by both normal and malignant prostate epithelial cells. Previous studies demonstrated the presence of high levels (μM-mM) of enzymatically active PSA is present in the extracellular fluid of the prostate cancer microenvironment. Because of this, PSA is an attractive target for a protease activated pro-toxin therapeutic strategy. Because prostate cancers typically grow very slowly, a strategy employing a proliferation-independent cytotoxic payload is preferred. Recently, it was shown that the human protease Granzyme B (GZMB), at low micromolar concentrations in the extracellular space, can cleave an array of extracellular matrix (ECM) proteins thus perturbing cell growth, signaling, motility, and integrity. It is also well established that other human proteases such as trypsin can induce similar effects. Because both enzymes require N-terminal proteolytic activation, we propose to convert these proteins into PSA-activated cytotoxins. In this study, we examine the enzymatic and cell targeting parameters of these PSA-activated cytotoxic serine proteases. These pro-enzymes were activated robustly by PSA and induced ECM damage that led to the death of prostate cancer cells in vitro thus supporting the potential use of this strategy as means to target metastatic prostate cancers. PMID:29854290

  2. In vivo imaging of protease activity by Probody therapeutic activation

    PubMed Central

    Wong, Kenneth R.; Menendez, Elizabeth; Craik, Charles S.; Kavanaugh, W. Michael; Vasiljeva, Olga

    2017-01-01

    Probody™ therapeutics are recombinant, proteolytically-activated antibody prodrugs, engineered to remain inert until activated locally by tumor-associated proteases. Probody therapeutics exploit the fundamental dysregulation of extracellular protease activity that exists in tumors relative to healthy tissue. Leveraging the ability of a Probody therapeutic to bind its target at the site of disease after proteolytic cleavage, we developed a novel method for profiling protease activity in living animals. Using NIR optical imaging, we demonstrated that a non-labeled anti-EGFR Probody therapeutic can become activated and compete for binding to tumor cells in vivo with a labeled anti-EGFR monoclonal antibody. Furthermore, by inhibiting matriptase activity in vivo with a blocking-matriptase antibody, we show that the ability of the Probody therapeutic to bind EGFR in vivo was dependent on protease activity. These results demonstrate that in vivo imaging of Probody therapeutic activation can be used for screening and characterization of protease activity in living animals, and provide a method that avoids some of the limitations of prior methods. This approach can improve our understanding of the activity of proteases in disease models and help to develop efficient strategies for cancer diagnosis and treatment. PMID:26546838

  3. Therapeutic Applications of Extracellular Vesicles: Clinical Promise and Open Questions

    PubMed Central

    Breakefield, Xandra O.; Leonard, Joshua N.

    2015-01-01

    This review provides an updated perspective on rapidly proliferating efforts to harness extracellular vesicles (EVs) for therapeutic applications. We summarize current knowledge, emerging strategies, and open questions pertaining to clinical potential and translation. Potentially useful EVs comprise diverse products of various cell types and species. EV components may also be combined with liposomes and nanoparticles to facilitate manufacturing as well as product safety and evaluation. Potential therapeutic cargoes include RNA, proteins, and drugs. Strategic issues considered herein include choice of therapeutic agent, means of loading cargoes into EVs, promotion of EV stability, tissue targeting, and functional delivery of cargo to recipient cells. Some applications may harness natural EV properties, such as immune modulation, regeneration promotion, and pathogen suppression. These properties can be enhanced or customized to enable a wide range of therapeutic applications, including vaccination, improvement of pregnancy outcome, and treatment of autoimmune disease, cancer, and tissue injury. PMID:25292428

  4. [Therapeutic strategies. Evolution and current status of the European Guidelines on Cardiovascular disease prevention].

    PubMed

    Guijarro, Carlos; García-Díaz, Juan de Dios

    2013-01-01

    The European Guidelines on Dyslipidaemias (2011) and Cardiovascular Prevention (2012) have incorporated important changes. Firstly, it highlights the identification of a group of "very high risk" patients: patients with atherosclerotic disease in any vascular area, diabetes with associated risk factors, advanced chronic renal failure, or a SCORE estimate >10%. Patients with diabetes and no other risk factors, moderate renal failure, severe hypertension, genetic dyslipidaemias, or a SCORE estimate 5-10%, are considered as "high risk". The HDL cholesterol and triglycerides levels are considered as modulators of risks, but not therapeutic objectives per se. The therapeutic objectives are set at LDL cholesterol levels < 70 mg/dl (or at least a reduction of at least 50%) for patients at very high risk, and an LDL < 100 mg/dl for high risk patients. As well as the changes in lifestyle, pharmacological treatment with statins is the focal point of lipid lowering treatments. Other pharmacological options may be considered if the treatment with the maximum tolerable doses of statins do not achieve the therapeutic objectives. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.

  5. Cellular and molecular mechanisms of chronic rhinosinusitis and potential therapeutic strategies: review on cytokines, nuclear factor kappa B and transforming growth factor beta.

    PubMed

    Phan, N T; Cabot, P J; Wallwork, B D; Cervin, A U; Panizza, B J

    2015-07-01

    Chronic rhinosinusitis is characterised by persistent inflammation of the sinonasal mucosa. Multiple pathophysiological mechanisms are likely to exist. Previous research has focused predominantly on T-helper type cytokines to highlight the inflammatory mechanisms. However, proteins such as nuclear factor kappa B and transforming growth factor beta are increasingly recognised to have important roles in sinonasal inflammation and tissue remodelling. This review article explores the roles of T-helper type cytokines, nuclear factor kappa B and transforming growth factor beta in the pathophysiological mechanisms of chronic rhinosinusitis. An understanding of these mechanisms will allow for better identification and classification of chronic rhinosinusitis endotypes, and, ultimately, improved therapeutic strategies.

  6. Modeling Kick-Kill Strategies toward HIV Cure.

    PubMed

    Hernandez-Vargas, Esteban A

    2017-01-01

    Although combinatorial antiretroviral therapy (cART) potently suppresses the virus, a sterile or functional cure still remains one of the greatest therapeutic challenges worldwide. Reservoirs are infected cells that can maintain HIV persistence for several years in patients with optimal cART, which is a leading obstacle to eradicate the virus. Despite the significant progress that has been made in our understanding of the diversity of cells that promote HIV persistence, many aspects that are critical to the development of effective therapeutic approaches able to purge the latent CD4+ T cell reservoir are poorly understood. Simultaneous purging strategies known as "kick-kill" have been pointed out as promising therapeutic approaches to eliminate the viral reservoir. However, long-term outcomes of purging strategies as well as the effect on the HIV reservoir are still largely fragmented. In this context, mathematical modeling can provide a rationale not only to evaluate the impact on the HIV reservoir but also to facilitate the formulation of hypotheses about potential therapeutic strategies. This review aims to discuss briefly the most recent mathematical modeling contributions, harnessing our knowledge toward the uncharted territory of HIV eradication. In addition, problems associated with current models are discussed, in particular, mathematical models consider only T cell responses but HIV control may also depend on other cell responses as well as chemokines and cytokines dynamics.

  7. Determinants of immunogenic response to protein therapeutics.

    PubMed

    Singh, Satish K; Cousens, Leslie P; Alvarez, David; Mahajan, Pramod B

    2012-09-01

    Protein therapeutics occupy a very significant position in the biopharmaceutical market. In addition to the preclinical, clinical and post marketing challenges common to other drugs, unwanted immunogenicity is known to affect efficacy and/or safety of most biotherapeutics. A standard set of immunogenicity risk factors are routinely used to inform monitoring strategies in clinical studies. A number of in-silico, in vivo and in vitro approaches have also been employed to predict immunogenicity of biotherapeutics, but with limited success. Emerging data also indicates the role of immune tolerance mechanisms and impact of several product-related factors on modulating host immune responses. Thus, a comprehensive discussion of the impact of innate and adaptive mechanisms and molecules involved in induction of host immune responses on immunogenicity of protein therapeutics is needed. A detailed understanding of these issues is essential in order to fully exploit the therapeutic potential of this class of drugs. This Roundtable Session was designed to provide a common platform for discussing basic immunobiological and pharmacological issues related to the role of biotherapeutic-associated risk factors, as well as host immune system in immunogenicity against protein therapeutics. The session included overview presentations from three speakers, followed by a panel discussion with audience participation. Copyright © 2012. Published by Elsevier Ltd.. All rights reserved.

  8. The Motivated Strategies for Learning Questionnaire: score validity among medicine residents.

    PubMed

    Cook, David A; Thompson, Warren G; Thomas, Kris G

    2011-12-01

    The Motivated Strategies for Learning Questionnaire (MSLQ) purports to measure motivation using the expectancy-value model. Although it is widely used in other fields, this instrument has received little study in health professions education. The purpose of this study was to evaluate the validity of MSLQ scores. We conducted a validity study evaluating the relationships of MSLQ scores to other variables and their internal structure (reliability and factor analysis). Participants included 210 internal medicine and family medicine residents participating in a web-based course on ambulatory medicine at an academic medical centre. Measurements included pre-course MSLQ scores, pre- and post-module motivation surveys, post-module knowledge test and post-module Instructional Materials Motivation Survey (IMMS) scores. Internal consistency was universally high for all MSLQ items together (Cronbach's α = 0.93) and for each domain (α ≥ 0.67). Total MSLQ scores showed statistically significant positive associations with post-test knowledge scores. For example, a 1-point rise in total MSLQ score was associated with a 4.4% increase in post-test scores (β = 4.4; p < 0.0001). Total MSLQ scores showed moderately strong, statistically significant associations with several other measures of effort, motivation and satisfaction. Scores on MSLQ domains demonstrated associations that generally aligned with our hypotheses. Self-efficacy and control of learning belief scores demonstrated the strongest domain-specific relationships with knowledge scores (β = 2.9 for both). Confirmatory factor analysis showed a borderline model fit. Follow-up exploratory factor analysis revealed the scores of five factors (self-efficacy, intrinsic interest, test anxiety, extrinsic goals, attribution) demonstrated psychometric and predictive properties similar to those of the original scales. Scores on the MSLQ are reliable and predict meaningful outcomes. However, the factor structure suggests a

  9. Structural and functional outcomes of a therapeutic strategy targeting low disease activity in patients with elderly-onset rheumatoid arthritis: a prospective cohort study (CRANE).

    PubMed

    Sugihara, Takahiko; Ishizaki, Tatsuro; Hosoya, Tadashi; Iga, Shoko; Yokoyama, Waka; Hirano, Fumio; Miyasaka, Nobuyuki; Harigai, Masayoshi

    2015-05-01

    The aim of this study was to evaluate structural damage and physical disability in patients with elderly-onset RA (EORA) who were treated in clinical practice with a therapeutic strategy targeting low disease activity (LDA). Data from 151 MTX-naive patients (mean age 74.9 years) with EORA from a prospective, monocentric registry were analysed. Treatment was adjusted every 3 months targeting LDA [28-joint DAS using ESR (DAS28-ESR) <3.2]. Treatment was initiated with non-biologic DMARDs (nbDMARDs), followed by TNF inhibitors (TNFis) or tocilizumab. The primary outcome was change from week 0 to week 52 in the modified total Sharp score (ΔmTSS). Secondary outcomes were derived from the HAQ Disability Index (HAQ-DI) and DAS28 at week 52. Predictors of clinically relevant radiographic progression [CRRP; ΔmTSS/year more than the smallest detectable change (2.1 points)] were examined using multivariate logistic regression models. Adherence to the treat-to-target strategy was observed in 83.4% of the 151 patients at week 24 and in 75.5% at week 52. At week 52, 67.6% of the patients were receiving a nbDMARD alone, 31.0% a TNFi with or without MTX and 1.4% tocilizumab. At week 52, structural remission (ΔmTSS/yr ≤0.5) was achieved in 49.7% of the patients, functional remission (HAQ-DI ≤0.5) in 63.4% and LDA in 51.0%. Clinical responses at weeks 12 and 24 were significant independent predictors of CRRP. Cumulative disease activity during the first 12 weeks predicted CRRP with a C-statistic of 0.888. Achieving structural remission, functional remission and LDA in clinical practice in EORA patients are realistic goals. Our results indicate significant benefits for a therapeutic strategy targeting LDA for EORA patients in clinical practice. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Immunogenicity assessment during the development of protein therapeutics.

    PubMed

    Rosenberg, Amy S; Sauna, Zuben E

    2018-05-01

    Here we provide a critical review of the state of the art with respect to non-clinical assessments of immunogenicity for therapeutic proteins. The number of studies on immunogenicity published annually has more than doubled in the last 5 years. The science and technology, which have reached a critical mass, provide multiple of non-clinical approaches (computational, in vitro, ex vivo and animal models) to first predict and then to modify or eliminate T-cell or B-cell epitopes via de-immunization strategies. We discuss how these may be used in the context of drug development in assigning the immunogenicity risk of new and marketed therapeutic proteins. Protein therapeutics represents a large share of the pharma market and provide medical interventions for some of the most complex and intractable diseases. Immunogenicity (the development of antibodies to therapeutic proteins) is an important concern for both the safety and efficacy of protein therapeutics as immune responses may neutralize the activity of life-saving and highly effective protein therapeutics and induce hypersensitivity responses including anaphylaxis. The non-clinical computational tools and experimental technologies that offer a comprehensive and increasingly accurate estimation of immunogenic potential are surveyed here. This critical review also discusses technologies which are promising but are not as yet ready for routine use. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  11. Therapeutic strategies and genetic profile comparisons in small cell carcinoma and large cell neuroendocrine carcinoma of the lung using next-generation sequencing.

    PubMed

    Ito, Masaoki; Miyata, Yoshihiro; Hirano, Shoko; Kimura, Shingo; Irisuna, Fumiko; Ikeda, Kyoko; Kushitani, Kei; Tsutani, Yasuhiro; Ueda, Daisuke; Tsubokawa, Norifumi; Takeshima, Yukio; Okada, Morihito

    2017-12-12

    Small cell lung cancer (SCLC) and large cell neuroendocrine carcinoma (LCNEC) of the lung are classified as variants of endocrine carcinoma and subdivided into pure or combined type. Clinical benefit of target therapy has not been established in these tumors. This study aimed to compare genetic and clinicopathological features between SCLC and LCNEC or pure and combined types, and explore the possibility of target therapy using next-generation sequencing. In 13 SCLC and 22 LCNEC cases, 72 point mutations, 19 deletions, and 3 insertions were detected. As therapeutically targetable variants, mutations in EGFR (L858R), KRAS (G12D, G12A, G12V), and PIK3CA (E545K) were detected in 5 cases. The case harboring EGFR mutation showed response to EGFR-tyrosine kinase inhibitor. However, there are no clinicopathological features associated with therapeutically targetable cases. And there was no significant genetic feature between SCLC and LCNEC or pure and combined types. In conclusion, although patients with SCLC and LCNEC may benefit from target therapy, they were not identifiable by clinicopathologic background. And there was not significant genetic difference between SCLC and LCNEC, including between pure and combined types. Classifying SCLC and LCNEC in same category is reasonable. However, distinguishing the pure type from combined type was not validated. Comprehensive genetic analysis should be performed to detect targetable variants in any type of SCLC and LCNEC.

  12. Therapeutic and diagnostic challenges for frontotemporal dementia

    PubMed Central

    D’Alton, Simon; Lewis, Jada

    2014-01-01

    In the search for therapeutic modifiers, frontotemporal dementia (FTD) has traditionally been overshadowed by other conditions such as Alzheimer’s disease (AD). A clinically and pathologically diverse condition, FTD has been galvanized by a number of recent discoveries such as novel genetic variants in familial and sporadic forms of disease and the identification of TAR DNA binding protein of 43 kDa (TDP-43) as the defining constituent of inclusions in more than half of cases. In combination with an ever-expanding knowledge of the function and dysfunction of tau—a protein which is pathologically aggregated in the majority of the remaining cases—there exists a greater understanding of FTD than ever before. These advances may indicate potential approaches for the development of hypothetical therapeutics, but FTD remains highly complex and the roles of tau and TDP-43 in neurodegeneration are still wholly unclear. Here the challenges facing potential therapeutic strategies are discussed, which include sufficiently accurate disease diagnosis and sophisticated technology to deliver effective therapies. PMID:25191265

  13. Elevation of Glutathione as a Therapeutic Strategy in Alzheimer Disease

    PubMed Central

    Pocernich, Chava B.; Butterfield, D. Allan

    2011-01-01

    Oxidative stress has been associated with the onset and progression of mild cognitive impairment (MCI) and Alzheimer disease (AD). AD and MCI brain and plasma display extensive oxidative stress as indexed by protein oxidation, lipid peroxidation, free radical formation, DNA oxidation, and decreased antioxidants. The most abundant endogenous antioxidant, glutathione, plays a significant role in combating oxidative stress. The ratio of oxidized to reduced glutathione is utilized as a measure of intensity of oxidative stress. Antioxidants have long been considered as an approach to slow down AD progression. In this review, we focus on the elevation on glutathione through N-acytl-cysteine (NAC) and γ-glutamylcysteine ethyl ester (GCEE) as a potential therapeutic approach for Alzheimer disease. PMID:22015471

  14. How genetic errors in GPCRs affect their function: Possible therapeutic strategies

    PubMed Central

    Stoy, Henriette; Gurevich, Vsevolod V.

    2015-01-01

    Activating and inactivating mutations in numerous human G protein-coupled receptors (GPCRs) are associated with a wide range of disease phenotypes. Here we use several class A GPCRs with a particularly large set of identified disease-associated mutations, many of which were biochemically characterized, along with known GPCR structures and current models of GPCR activation, to understand the molecular mechanisms yielding pathological phenotypes. Based on this mechanistic understanding we also propose different therapeutic approaches, both conventional, using small molecule ligands, and novel, involving gene therapy. PMID:26229975

  15. Therapeutic gold, silver, and platinum nanoparticles.

    PubMed

    Yamada, Miko; Foote, Matthew; Prow, Tarl W

    2015-01-01

    There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems. © 2014 The Authors. WIREs Nanomedicine and Nanobiotechnology published by Wiley Periodicals, Inc.

  16. MicroRNAs as Therapeutic Targets and Colorectal Cancer Therapeutics.

    PubMed

    Yamamoto, Hirofumi; Mori, Masaki

    The diagnosis and treatment of colorectal cancer (CRC) have improved greatly over recent years; however, CRC is still one of the most common cancers and a major cause of cancer death worldwide. Several recently developed drugs and treatment strategies are currently in clinical trials; however, there is still a compelling need for novel, highly efficacious therapies. MicroRNAs (miRNAs) are short non-coding RNAs consisting of 20-25 nucleotides that regulate post-transcriptional gene expression by binding to the 3'-untranslated region of mRNAs. miRNAs are known to regulate cancer pathways and to be expressed aberrantly in cancer. Since their initial discovery, a large number of miRNAs have been identified as oncogenes, whereas others function as tumor suppressors. Furthermore, signaling pathways that are important in CRC (e.g. the WNT, MAPK, TGF-β, TP53 and PI3K pathways) are regulated by miRNAs. A single miRNA can simultaneously regulate several target genes and pathways, indicating the therapeutic potential of miRNAs in CRC. However, significant obstacles remain to be overcome, such as an efficient miRNA delivery system, and the assessment of safety and side effects. Thus, miRNA therapy is still developing and possesses great potential for the treatment of CRC. In this chapter, we focus on miRNAs related to CRC and summarize previous studies that emphasize the therapeutic aspects of miRNAs in CRC.

  17. Systems approaches in osteoarthritis: Identifying routes to novel diagnostic and therapeutic strategies.

    PubMed

    Mueller, Alan J; Peffers, Mandy J; Proctor, Carole J; Clegg, Peter D

    2017-08-01

    Systems orientated research offers the possibility of identifying novel therapeutic targets and relevant diagnostic markers for complex diseases such as osteoarthritis. This review demonstrates that the osteoarthritis research community has been slow to incorporate systems orientated approaches into research studies, although a number of key studies reveal novel insights into the regulatory mechanisms that contribute both to joint tissue homeostasis and its dysfunction. The review introduces both top-down and bottom-up approaches employed in the study of osteoarthritis. A holistic and multiscale approach, where clinical measurements may predict dysregulation and progression of joint degeneration, should be a key objective in future research. The review concludes with suggestions for further research and emerging trends not least of which is the coupled development of diagnostic tests and therapeutics as part of a concerted effort by the osteoarthritis research community to meet clinical needs. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1573-1588, 2017. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.

  18. Glutamate-Modulating Drugs as a Potential Therapeutic Strategy in Obsessive-Compulsive Disorder

    PubMed Central

    Marinova, Zoya; Chuang, De-Maw; Fineberg, Naomi

    2017-01-01

    Objective: Abstract: Obsessive-compulsive disorder (OCD) is a mental disease commonly associated with severe distress and impairment of social functioning. Serotonin reuptake inhibitors and/or cognitive behavioural therapy are the therapy of choice, however up to 40% of patients do not respond to treatment. Glutamatergic signalling has also been implicated in OCD. The aim of the current study was to review the clinical evidence for therapeutic utility of glutamate-modulating drugs as an augmentation or monotherapy in OCD patients. Methods: We conducted a search of the MEDLINE database for clinical studies evaluating the effect of glutamate-modulating drugs in OCD. Results: Memantine is the compound most consistently showing a positive effect as an augmentation therapy in OCD. Anti-convulsant drugs (lamotrigine, topiramate) and riluzole may also provide therapeutic benefit to some OCD patients. Finally, ketamine may be of interest due to its potential for a rapid onset of action. Conclusion: Further randomized placebo-controlled trials in larger study populations are necessary in order to draw definitive conclusions on the utility of glutamate-modulating drugs in OCD. Furthermore, genetic and epigenetic factors, clinical symptoms and subtypes predicting treatment response to glutamate-modulating drugs need to be investigated systematically. PMID:28322166

  19. Stromal cells in breast cancer as a potential therapeutic target

    PubMed Central

    Dykes, Samantha S.; Hughes, Veronica S.; Wiggins, Jennifer M.; Fasanya, Henrietta O.; Tanaka, Mai; Siemann, Dietmar

    2018-01-01

    Breast cancer in the United States is the second most commonly diagnosed cancer in women. About 1 in 8 women will develop invasive breast cancer over the course of her lifetime and breast cancer remains the second leading cause of cancer-related death. In pursuit of novel therapeutic strategies, researchers have examined the tumor microenvironment as a potential anti-cancer target. In addition to neoplastic cells, the tumor microenvironment is composed of several critical normal cell types, including fibroblasts, vascular and lymph endothelial cells, osteoclasts, adipocytes, and immune cells. These cells have important roles in healthy tissue stasis, which frequently are altered in tumors. Indeed, tumor-associated stromal cells often contribute to tumorigenesis, tumor progression, and metastasis. Consequently, these host cells may serve as a possible target in anti-tumor and anti-metastatic therapeutic strategies. Targeting the tumor associated host cells offers the benefit that such cells do not mutate and develop resistance in response to treatment, a major cause of failure in cancer therapeutics targeting neoplastic cells. This review discusses the role of host cells in the tumor microenvironment during tumorigenesis, progression, and metastasis, and provides an overview of recent developments in targeting these cell populations to enhance cancer therapy efficacy.

  20. Skin anti-aging strategies

    PubMed Central

    Ganceviciene, Ruta; Liakou, Aikaterini I.; Theodoridis, Athanasios; Makrantonaki, Evgenia; Zouboulis, Christos C.

    2012-01-01

    Skin aging is a complex biological process influenced by a combination of endogenous or intrinsic and exogenous or extrinsic factors. Because of the fact that skin health and beauty is considered one of the principal factors representing overall “well-being” and the perception of “health” in humans, several anti-aging strategies have been developed during the last years. It is the intention of this article to review the most important anti-aging strategies that dermatologists have nowadays in hand, including including preventive measurements, cosmetological strategies, topical and systemic therapeutic agents and invasive procedures. PMID:23467476