Turbine Engine Mathematical Model Validation
1976-12-01
AEDC-TR-76-90 ~Ec i ? Z985 TURBINE ENGINE MATHEMATICAL MODEL VALIDATION ENGINE TEST FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE...i f n e c e s e a ~ ~ d i den t i f y by b l ock number) YJI01-GE-100 engine turbine engines mathematical models computations mathematical...report presents and discusses the results of an investigation to develop a rationale and technique for the validation of turbine engine steady-state
2014-04-15
SINGLE CYLINDER DIESEL ENGINE Amit Shrestha, Umashankar Joshi, Ziliang Zheng, Tamer Badawy, Naeim A. Henein, Wayne State University, Detroit, MI, USA...13-03-2014 4. TITLE AND SUBTITLE EXPERIMENTAL VALIDATION AND COMBUSTION MODELING OF A JP-8 SURROGATE IN A SINGLE CYLINDER DIESEL ENGINE 5a...INTERNATIONAL UNCLASSIFIED • Validate a two-component JP-8 surrogate in a single cylinder diesel engine. Validation parameters include – Ignition delay
An RL10A-3-3A rocket engine model using the rocket engine transient simulator (ROCETS) software
NASA Technical Reports Server (NTRS)
Binder, Michael
1993-01-01
Steady-state and transient computer models of the RL10A-3-3A rocket engine have been created using the Rocket Engine Transient Simulation (ROCETS) code. These models were created for several purposes. The RL10 engine is a critical component of past, present, and future space missions; the model will give NASA an in-house capability to simulate the performance of the engine under various operating conditions and mission profiles. The RL10 simulation activity is also an opportunity to further validate the ROCETS program. The ROCETS code is an important tool for modeling rocket engine systems at NASA Lewis. ROCETS provides a modular and general framework for simulating the steady-state and transient behavior of any desired propulsion system. Although the ROCETS code is being used in a number of different analysis and design projects within NASA, it has not been extensively validated for any system using actual test data. The RL10A-3-3A has a ten year history of test and flight applications; it should provide sufficient data to validate the ROCETS program capability. The ROCETS models of the RL10 system were created using design information provided by Pratt & Whitney, the engine manufacturer. These models are in the process of being validated using test-stand and flight data. This paper includes a brief description of the models and comparison of preliminary simulation output against flight and test-stand data.
Nemoto, Hitoshi; Watson, Deborah; Masuda, Koichi
2015-01-01
Tissue engineering holds great promise for cartilage repair with minimal donor-site morbidity. The in vivo maturation of a tissue-engineered construct can be tested in the subcutaneous tissues of the same species for autografts or of immunocompromised animals for allografts or xenografts. This section describes detailed protocols for the surgical transplantation of a tissue-engineered construct into an animal model to assess construct validity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Prithwish; Scarcelli, Riccardo; Som, Sibendu
Heat loss through wall boundaries play a dominant role in the overall performance and efficiency of internal combustion engines. Typical engine simulations use constant temperature wall boundary conditions. These boundary conditions cannot be estimated accurately from experiments due to the complexities involved with engine combustion. As a result they introduce a large uncertainty in engine simulations and serve as a tuning parameter. Modeling the process of heat transfer through the solid walls in an unsteady engine computational fluid dynamics (CFD) simulation can lead to the development of higher fidelity engine calculations. These models can be used to study the impactmore » of heat loss on engine efficiency and explore new design methodologies that can reduce heat losses. In this work, a single cylinder diesel engine is modeled along with the solid piston coupled to the fluid domain. Conjugate heat transfer (CHT) modeling techniques were implemented to model heat losses for a full cycle of a Navistar diesel engine. This CFD model is then validated against experimental data available from thermocouples embedded inside the piston surface. The overall predictions from the model match closely with the experimental observations. The validated model is further used to explore the benefits of thermal barrier coatings (TBC) on piston bowls. The effect of TBC coatings were modeled as a thermal resistance in the heat transfer models. Full cycle 3D engine simulations provide quantitative insights into heat loss and thus calculate the efficiency gain by the use of TBC coatings. The work establishes a validated modeling framework for CHT modeling in reciprocating engine simulations.« less
Development and Validation of EPH Material Model for Engineered Roadway Soil
2014-08-01
MODEL FOR ENGINEERED ROADWAY SOIL Ching Hsieh, PhD Altair Engineering Troy, MI Jianping Sheng, Ph.D. Jai Ramalingam System Engineering...0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing...of information if it does not display a currently valid OMB control number. 1 . REPORT DATE 11 AUG 2014 2. REPORT TYPE Journal Article 3. DATES
Comparison of free-piston Stirling engine model predictions with RE1000 engine test data
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.
1984-01-01
Predictions of a free-piston Stirling engine model are compared with RE1000 engine test data taken at NASA-Lewis Research Center. The model validation and the engine testing are being done under a joint interagency agreement between the Department of Energy's Oak Ridge National Laboratory and NASA-Lewis. A kinematic code developed at Lewis was upgraded to permit simulation of free-piston engine performance; it was further upgraded and modified at Lewis and is currently being validated. The model predicts engine performance by numerical integration of equations for each control volume in the working space. Piston motions are determined by numerical integration of the force balance on each piston or can be specified as Fourier series. In addition, the model Fourier analyzes the various piston forces to permit the construction of phasor force diagrams. The paper compares predicted and experimental values of power and efficiency and shows phasor force diagrams for the RE1000 engine displacer and piston. Further development plans for the model are also discussed.
Models, validation, and applied geochemistry: Issues in science, communication, and philosophy
Nordstrom, D. Kirk
2012-01-01
Models have become so fashionable that many scientists and engineers cannot imagine working without them. The predominant use of computer codes to execute model calculations has blurred the distinction between code and model. The recent controversy regarding model validation has brought into question what we mean by a ‘model’ and by ‘validation.’ It has become apparent that the usual meaning of validation may be common in engineering practice and seems useful in legal practice but it is contrary to scientific practice and brings into question our understanding of science and how it can best be applied to such problems as hazardous waste characterization, remediation, and aqueous geochemistry in general. This review summarizes arguments against using the phrase model validation and examines efforts to validate models for high-level radioactive waste management and for permitting and monitoring open-pit mines. Part of the controversy comes from a misunderstanding of ‘prediction’ and the need to distinguish logical from temporal prediction. Another problem stems from the difference in the engineering approach contrasted with the scientific approach. The reductionist influence on the way we approach environmental investigations also limits our ability to model the interconnected nature of reality. Guidelines are proposed to improve our perceptions and proper utilization of models. Use of the word ‘validation’ is strongly discouraged when discussing model reliability.
Rotary Engine Friction Test Rig Development Report
2011-12-01
fundamental research is needed to understand the friction characteristics of the rotary engine that lead to accelerated wear and tear on the seals...that includes a turbocharger . Once the original GT-Suite model is validated, the turbocharger model will be more accurate. This validation will...prepare for turbocharger and fuel-injector testing, which will lead to further development and calibration of the model. Further details are beyond the
USDA-ARS?s Scientific Manuscript database
Information to support application of hydrologic and water quality (H/WQ) models abounds, yet modelers commonly use arbitrary, ad hoc methods to conduct, document, and report model calibration, validation, and evaluation. Consistent methods are needed to improve model calibration, validation, and e...
Pre-engineering Spaceflight Validation of Environmental Models and the 2005 HZETRN Simulation Code
NASA Technical Reports Server (NTRS)
Nealy, John E.; Cucinotta, Francis A.; Wilson, John W.; Badavi, Francis F.; Dachev, Ts. P.; Tomov, B. T.; Walker, Steven A.; DeAngelis, Giovanni; Blattnig, Steve R.; Atwell, William
2006-01-01
The HZETRN code has been identified by NASA for engineering design in the next phase of space exploration highlighting a return to the Moon in preparation for a Mars mission. In response, a new series of algorithms beginning with 2005 HZETRN, will be issued by correcting some prior limitations and improving control of propagated errors along with established code verification processes. Code validation processes will use new/improved low Earth orbit (LEO) environmental models with a recently improved International Space Station (ISS) shield model to validate computational models and procedures using measured data aboard ISS. These validated models will provide a basis for flight-testing the designs of future space vehicles and systems of the Constellation program in the LEO environment.
A global model for steady state and transient S.I. engine heat transfer studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohac, S.V.; Assanis, D.N.; Baker, D.M.
1996-09-01
A global, systems-level model which characterizes the thermal behavior of internal combustion engines is described in this paper. Based on resistor-capacitor thermal networks, either steady-state or transient thermal simulations can be performed. A two-zone, quasi-dimensional spark-ignition engine simulation is used to determine in-cylinder gas temperature and convection coefficients. Engine heat fluxes and component temperatures can subsequently be predicted from specification of general engine dimensions, materials, and operating conditions. Emphasis has been placed on minimizing the number of model inputs and keeping them as simple as possible to make the model practical and useful as an early design tool. The successmore » of the global model depends on properly scaling the general engine inputs to accurately model engine heat flow paths across families of engine designs. The development and validation of suitable, scalable submodels is described in detail in this paper. Simulation sub-models and overall system predictions are validated with data from two spark ignition engines. Several sensitivity studies are performed to determine the most significant heat transfer paths within the engine and exhaust system. Overall, it has been shown that the model is a powerful tool in predicting steady-state heat rejection and component temperatures, as well as transient component temperatures.« less
Overview of heat transfer and fluid flow problem areas encountered in Stirling engine modeling
NASA Technical Reports Server (NTRS)
Tew, Roy C., Jr.
1988-01-01
NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.
Developing and Validating the Socio-Technical Model in Ontology Engineering
NASA Astrophysics Data System (ADS)
Silalahi, Mesnan; Indra Sensuse, Dana; Giri Sucahyo, Yudho; Fadhilah Akmaliah, Izzah; Rahayu, Puji; Cahyaningsih, Elin
2018-03-01
This paper describes results from an attempt to develop a model in ontology engineering methodology and a way to validate the model. The approach to methodology in ontology engineering is from the point view of socio-technical system theory. Qualitative research synthesis is used to build the model using meta-ethnography. In order to ensure the objectivity of the measurement, inter-rater reliability method was applied using a multi-rater Fleiss Kappa. The results show the accordance of the research output with the diamond model in the socio-technical system theory by evidence of the interdependency of the four socio-technical variables namely people, technology, structure and task.
Hybrid and conventional hydrogen engine vehicles that meet EZEV emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aceves, S.M.; Smith, J.R.
In this paper, a time-dependent engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many experimental points obtained in a recent evaluation of a hydrogen research engine. A The validated engine model is then used to calculate fuel economy and emissions for three hydrogen-fueled vehicles: a conventional, a parallel hybrid, and a seriesmore » hybrid. All vehicles use liquid hydrogen as a fuel. The hybrid vehicles use a flywheel for energy storage. Comparable ultra capacitor or battery energy storage performance would give similar results. This paper analyzes the engine and flywheel sizing requirements for obtaining a desired level of performance. The results indicate that hydrogen lean-burn spark-ignited engines can provide a high fuel economy and Equivalent Zero Emission Vehicle (EZEV) levels in the three vehicle configurations being analyzed.« less
Real-time simulation of an F110/STOVL turbofan engine
NASA Technical Reports Server (NTRS)
Drummond, Colin K.; Ouzts, Peter J.
1989-01-01
A traditional F110-type turbofan engine model was extended to include a ventral nozzle and two thrust-augmenting ejectors for Short Take-Off Vertical Landing (STOVL) aircraft applications. Development of the real-time F110/STOVL simulation required special attention to the modeling approach to component performance maps, the low pressure turbine exit mixing region, and the tailpipe dynamic approximation. Simulation validation derives by comparing output from the ADSIM simulation with the output for a validated F110/STOVL General Electric Aircraft Engines FORTRAN deck. General Electric substantiated basic engine component characteristics through factory testing and full scale ejector data.
NASA Technical Reports Server (NTRS)
Zinnecker, Alicia M.; Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Johathan S.
2014-01-01
The Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS) is a tool that has been developed to allow a user to build custom models of systems governed by thermodynamic principles using a template to model each basic process. Validation of this tool in an engine model application was performed through reconstruction of the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) (v2) using the building blocks from the T-MATS (v1) library. In order to match the two engine models, it was necessary to address differences in several assumptions made in the two modeling approaches. After these modifications were made, validation of the engine model continued by integrating both a steady-state and dynamic iterative solver with the engine plant and comparing results from steady-state and transient simulation of the T-MATS and C-MAPSS models. The results show that the T-MATS engine model was accurate within 3 of the C-MAPSS model, with inaccuracy attributed to the increased dimension of the iterative solver solution space required by the engine model constructed using the T-MATS library. This demonstrates that, given an understanding of the modeling assumptions made in T-MATS and a baseline model, the T-MATS tool provides a viable option for constructing a computational model of a twin-spool turbofan engine that may be used in simulation studies.
A simplified dynamic model of the T700 turboshaft engine
NASA Technical Reports Server (NTRS)
Duyar, Ahmet; Gu, Zhen; Litt, Jonathan S.
1992-01-01
A simplified open-loop dynamic model of the T700 turboshaft engine, valid within the normal operating range of the engine, is developed. This model is obtained by linking linear state space models obtained at different engine operating points. Each linear model is developed from a detailed nonlinear engine simulation using a multivariable system identification and realization method. The simplified model may be used with a model-based real time diagnostic scheme for fault detection and diagnostics, as well as for open loop engine dynamics studies and closed loop control analysis utilizing a user generated control law.
Development and Validation of an NPSS Model of a Small Turbojet Engine
NASA Astrophysics Data System (ADS)
Vannoy, Stephen Michael
Recent studies have shown that integrated gas turbine engine (GT)/solid oxide fuel cell (SOFC) systems for combined propulsion and power on aircraft offer a promising method for more efficient onboard electrical power generation. However, it appears that nobody has actually attempted to construct a hybrid GT/SOFC prototype for combined propulsion and electrical power generation. This thesis contributes to this ambition by developing an experimentally validated thermodynamic model of a small gas turbine (˜230 N thrust) platform for a bench-scale GT/SOFC system. The thermodynamic model is implemented in a NASA-developed software environment called Numerical Propulsion System Simulation (NPSS). An indoor test facility was constructed to measure the engine's performance parameters: thrust, air flow rate, fuel flow rate, engine speed (RPM), and all axial stage stagnation temperatures and pressures. The NPSS model predictions are compared to the measured performance parameters for steady state engine operation.
Injector Design Tool Improvements: User's manual for FDNS V.4.5
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Shang, Huan-Min; Wei, Hong; Liu, Jiwen
1998-01-01
The major emphasis of the current effort is in the development and validation of an efficient parallel machine computational model, based on the FDNS code, to analyze the fluid dynamics of a wide variety of liquid jet configurations for general liquid rocket engine injection system applications. This model includes physical models for droplet atomization, breakup/coalescence, evaporation, turbulence mixing and gas-phase combustion. Benchmark validation cases for liquid rocket engine chamber combustion conditions will be performed for model validation purpose. Test cases may include shear coaxial, swirl coaxial and impinging injection systems with combinations LOXIH2 or LOXISP-1 propellant injector elements used in rocket engine designs. As a final goal of this project, a well tested parallel CFD performance methodology together with a user's operation description in a final technical report will be reported at the end of the proposed research effort.
Validation of FAST Model Sleep Estimates with Actigraph Measured Sleep in Locomotive Engineers
DOT National Transportation Integrated Search
2012-04-01
This report presents the results of a study to validate the AutoSleep sleep prediction algorithm, which is a component of the Fatigue Avoidance Scheduling Tool (FAST). Researchers collected work and sleep data from 41 locomotive engineers by using ac...
NASA Technical Reports Server (NTRS)
Zinnecker, Alicia M.; Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.
2014-01-01
The Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) is a tool that has been developed to allow a user to build custom models of systems governed by thermodynamic principles using a template to model each basic process. Validation of this tool in an engine model application was performed through reconstruction of the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) (v2) using the building blocks from the T-MATS (v1) library. In order to match the two engine models, it was necessary to address differences in several assumptions made in the two modeling approaches. After these modifications were made, validation of the engine model continued by integrating both a steady-state and dynamic iterative solver with the engine plant and comparing results from steady-state and transient simulation of the T-MATS and C-MAPSS models. The results show that the T-MATS engine model was accurate within 3% of the C-MAPSS model, with inaccuracy attributed to the increased dimension of the iterative solver solution space required by the engine model constructed using the T-MATS library. This demonstrates that, given an understanding of the modeling assumptions made in T-MATS and a baseline model, the T-MATS tool provides a viable option for constructing a computational model of a twin-spool turbofan engine that may be used in simulation studies.
NASA Technical Reports Server (NTRS)
Sinha, Neeraj
2014-01-01
This Phase II project validated a state-of-the-art LES model, coupled with a Ffowcs Williams-Hawkings (FW-H) far-field acoustic solver, to support the development of advanced engine concepts. These concepts include innovative flow control strategies to attenuate jet noise emissions. The end-to-end LES/ FW-H noise prediction model was demonstrated and validated by applying it to rectangular nozzle designs with a high aspect ratio. The model also was validated against acoustic and flow-field data from a realistic jet-pylon experiment, thereby significantly advancing the state of the art for LES.
2007-02-01
and Astronautics 11 PS3C W3 P3 T3 FAR3 Ps3 W41 P41 T41 FAR41 Ps41 W4 P4 T4 FAR4 Ps4 7 NozFlow 6 Flow45 5 Flow44 4 Flow41 3 Flow4 2 Flow3 1 N2Bal... Motivation for Modeling and Simulation Work The Augmented Generic Engine Model (AGEM) Model Verification and Validation (V&V) Assessment of AGEM V&V
NASA Astrophysics Data System (ADS)
Mansor, Zakwan; Zakaria, Mohd Zakimi; Nor, Azuwir Mohd; Saad, Mohd Sazli; Ahmad, Robiah; Jamaluddin, Hishamuddin
2017-09-01
This paper presents the black-box modelling of palm oil biodiesel engine (POB) using multi-objective optimization differential evolution (MOODE) algorithm. Two objective functions are considered in the algorithm for optimization; minimizing the number of term of a model structure and minimizing the mean square error between actual and predicted outputs. The mathematical model used in this study to represent the POB system is nonlinear auto-regressive moving average with exogenous input (NARMAX) model. Finally, model validity tests are applied in order to validate the possible models that was obtained from MOODE algorithm and lead to select an optimal model.
Study on the variable cycle engine modeling techniques based on the component method
NASA Astrophysics Data System (ADS)
Zhang, Lihua; Xue, Hui; Bao, Yuhai; Li, Jijun; Yan, Lan
2016-01-01
Based on the structure platform of the gas turbine engine, the components of variable cycle engine were simulated by using the component method. The mathematical model of nonlinear equations correspondeing to each component of the gas turbine engine was established. Based on Matlab programming, the nonlinear equations were solved by using Newton-Raphson steady-state algorithm, and the performance of the components for engine was calculated. The numerical simulation results showed that the model bulit can describe the basic performance of the gas turbine engine, which verified the validity of the model.
Development of a Turbofan Engine Simulation in a Graphical Simulation Environment
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Guo, Ten-Heui
2003-01-01
This paper presents the development of a generic component level model of a turbofan engine simulation with a digital controller, in an advanced graphical simulation environment. The goal of this effort is to develop and demonstrate a flexible simulation platform for future research in propulsion system control and diagnostic technology. A previously validated FORTRAN-based model of a modern, high-performance, military-type turbofan engine is being used to validate the platform development. The implementation process required the development of various innovative procedures, which are discussed in the paper. Open-loop and closed-loop comparisons are made between the two simulations. Future enhancements that are to be made to the modular engine simulation are summarized.
Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle
NASA Technical Reports Server (NTRS)
Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.
2004-01-01
This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.
Performing Verification and Validation in Reuse-Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward A.
1999-01-01
The implementation of reuse-based software engineering not only introduces new activities to the software development process, such as domain analysis and domain modeling, it also impacts other aspects of software engineering. Other areas of software engineering that are affected include Configuration Management, Testing, Quality Control, and Verification and Validation (V&V). Activities in each of these areas must be adapted to address the entire domain or product line rather than a specific application system. This paper discusses changes and enhancements to the V&V process, in order to adapt V&V to reuse-based software engineering.
Surrogates for numerical simulations; optimization of eddy-promoter heat exchangers
NASA Technical Reports Server (NTRS)
Patera, Anthony T.; Patera, Anthony
1993-01-01
Although the advent of fast and inexpensive parallel computers has rendered numerous previously intractable calculations feasible, many numerical simulations remain too resource-intensive to be directly inserted in engineering optimization efforts. An attractive alternative to direct insertion considers models for computational systems: the expensive simulation is evoked only to construct and validate a simplified, input-output model; this simplified input-output model then serves as a simulation surrogate in subsequent engineering optimization studies. A simple 'Bayesian-validated' statistical framework for the construction, validation, and purposive application of static computer simulation surrogates is presented. As an example, dissipation-transport optimization of laminar-flow eddy-promoter heat exchangers are considered: parallel spectral element Navier-Stokes calculations serve to construct and validate surrogates for the flowrate and Nusselt number; these surrogates then represent the originating Navier-Stokes equations in the ensuing design process.
WFIRST: Coronagraph Systems Engineering and Performance Budgets
NASA Astrophysics Data System (ADS)
Poberezhskiy, Ilya; cady, eric; Frerking, Margaret A.; Kern, Brian; Nemati, Bijan; Noecker, Martin; Seo, Byoung-Joon; Zhao, Feng; Zhou, Hanying
2018-01-01
The WFIRST coronagraph instrument (CGI) will be the first in-space coronagraph using active wavefront control to directly image and characterize mature exoplanets and zodiacal disks in reflected starlight. For CGI systems engineering, including requirements development, CGI performance is predicted using a hierarchy of performance budgets to estimate various noise components — spatial and temporal flux variations — that obscure exoplanet signals in direct imaging and spectroscopy configurations. These performance budgets are validated through a robust integrated modeling and testbed model validation efforts.We present the performance budgeting framework used by WFIRST for the flow-down of coronagraph science requirements, mission constraints, and observatory interfaces to measurable instrument engineering parameters.
Modelling of diesel engine fuelled with biodiesel using engine simulation software
NASA Astrophysics Data System (ADS)
Said, Mohd Farid Muhamad; Said, Mazlan; Aziz, Azhar Abdul
2012-06-01
This paper is about modelling of a diesel engine that operates using biodiesel fuels. The model is used to simulate or predict the performance and combustion of the engine by simplified the geometry of engine component in the software. The model is produced using one-dimensional (1D) engine simulation software called GT-Power. The fuel properties library in the software is expanded to include palm oil based biodiesel fuels. Experimental works are performed to investigate the effect of biodiesel fuels on the heat release profiles and the engine performance curves. The model is validated with experimental data and good agreement is observed. The simulation results show that combustion characteristics and engine performances differ when biodiesel fuels are used instead of no. 2 diesel fuel.
Lobo, Daniel; Morokuma, Junji; Levin, Michael
2016-09-01
Automated computational methods can infer dynamic regulatory network models directly from temporal and spatial experimental data, such as genetic perturbations and their resultant morphologies. Recently, a computational method was able to reverse-engineer the first mechanistic model of planarian regeneration that can recapitulate the main anterior-posterior patterning experiments published in the literature. Validating this comprehensive regulatory model via novel experiments that had not yet been performed would add in our understanding of the remarkable regeneration capacity of planarian worms and demonstrate the power of this automated methodology. Using the Michigan Molecular Interactions and STRING databases and the MoCha software tool, we characterized as hnf4 an unknown regulatory gene predicted to exist by the reverse-engineered dynamic model of planarian regeneration. Then, we used the dynamic model to predict the morphological outcomes under different single and multiple knock-downs (RNA interference) of hnf4 and its predicted gene pathway interactors β-catenin and hh Interestingly, the model predicted that RNAi of hnf4 would rescue the abnormal regenerated phenotype (tailless) of RNAi of hh in amputated trunk fragments. Finally, we validated these predictions in vivo by performing the same surgical and genetic experiments with planarian worms, obtaining the same phenotypic outcomes predicted by the reverse-engineered model. These results suggest that hnf4 is a regulatory gene in planarian regeneration, validate the computational predictions of the reverse-engineered dynamic model, and demonstrate the automated methodology for the discovery of novel genes, pathways and experimental phenotypes. michael.levin@tufts.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Design and Testing of a Liquid Nitrous Oxide and Ethanol Fueled Rocket Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youngblood, Stewart
A small-scale, bi-propellant, liquid fueled rocket engine and supporting test infrastructure were designed and constructed at the Energetic Materials Research and Testing Center (EMRTC). This facility was used to evaluate liquid nitrous oxide and ethanol as potential rocket propellants. Thrust and pressure measurements along with high-speed digital imaging of the rocket exhaust plume were made. This experimental data was used for validation of a computational model developed of the rocket engine tested. The developed computational model was utilized to analyze rocket engine performance across a range of operating pressures, fuel-oxidizer mixture ratios, and outlet nozzle configurations. A comparative study ofmore » the modeling of a liquid rocket engine was performed using NASA CEA and Cantera, an opensource equilibrium code capable of being interfaced with MATLAB. One goal of this modeling was to demonstrate the ability of Cantera to accurately model the basic chemical equilibrium, thermodynamics, and transport properties for varied fuel and oxidizer operating conditions. Once validated for basic equilibrium, an expanded MATLAB code, referencing Cantera, was advanced beyond CEAs capabilities to predict rocket engine performance as a function of supplied propellant flow rate and rocket engine nozzle dimensions. Cantera was found to comparable favorably to CEA for making equilibrium calculations, supporting its use as an alternative to CEA. The developed rocket engine performs as predicted, demonstrating the developedMATLAB rocket engine model was successful in predicting real world rocket engine performance. Finally, nitrous oxide and ethanol were shown to perform well as rocket propellants, with specific impulses experimentally recorded in the range of 250 to 260 seconds.« less
Three-dimensional modeling of diesel engine intake flow, combustion and emissions-2
NASA Technical Reports Server (NTRS)
Reitz, R. D.; Rutland, C. J.
1993-01-01
A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NO(x), and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model, and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme was developed for modeling realistic (complex) engine geometries, and computations were made of intake flow in the ports and combustion chamber of a two-intake-value engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons were made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results were obtained showing the effect of injection rate and split injections on engine performance and emissions.
Performance Evaluation and Modeling of Erosion Resistant Turbine Engine Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Miller, Robert A.; Zhu, Dongming; Kuczmarski, Maria
2008-01-01
The erosion resistant turbine thermal barrier coating system is critical to the rotorcraft engine performance and durability. The objective of this work was to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and thermal gradient environments, thus validating a new thermal barrier coating turbine blade technology for future rotorcraft applications. A high velocity burner rig based erosion test approach was established and a new series of rare earth oxide- and TiO2/Ta2O5- alloyed, ZrO2-based low conductivity thermal barrier coatings were designed and processed. The low conductivity thermal barrier coating systems demonstrated significant improvements in the erosion resistance. A comprehensive model based on accumulated strain damage low cycle fatigue is formulated for blade erosion life prediction. The work is currently aiming at the simulated engine erosion testing of advanced thermal barrier coated turbine blades to establish and validate the coating life prediction models.
The single-zone numerical model of homogeneous charge compression ignition engine performance
NASA Astrophysics Data System (ADS)
Fedyanov, E. A.; Itkis, E. M.; Kuzmin, V. N.; Shumskiy, S. N.
2017-02-01
The single-zone model of methane-air mixture combustion in the Homogeneous Charge Compression Ignition engine was developed. First modeling efforts resulted in the selection of the detailed kinetic reaction mechanism, most appropriate for the conditions of the HCCI process. Then, the model was completed so as to simulate the performance of the four-stroke engine and was coupled by physically reasonable adjusting functions. Validation of calculations against experimental data showed acceptable agreement.
Comparison of liquid rocket engine base region heat flux computations using three turbulence models
NASA Technical Reports Server (NTRS)
Kumar, Ganesh N.; Griffith, Dwaine O., II; Prendergast, Maurice J.; Seaford, C. M.
1993-01-01
The flow in the base region of launch vehicles is characterized by flow separation, flow reversals, and reattachment. Computation of the convective heat flux in the base region and on the nozzle external surface of Space Shuttle Main Engine and Space Transportation Main Engine (STME) is an important part of defining base region thermal environments. Several turbulence models were incorporated in a CFD code and validated for flow and heat transfer computations in the separated and reattaching regions associated with subsonic and supersonic flows over backward facing steps. Heat flux computations in the base region of a single STME engine and a single S1C engine were performed using three different wall functions as well as a renormalization-group based k-epsilon model. With the very limited data available, the computed values are seen to be of the right order of magnitude. Based on the validation comparisons, it is concluded that all the turbulence models studied have predicted the reattachment location and the velocity profiles at various axial stations downstream of the step very well.
NASA Technical Reports Server (NTRS)
Brinson, Thomas E.; Kopasakis, George
2004-01-01
The Controls and Dynamics Technology Branch at NASA Glenn Research Center are interested in combining a solid oxide fuel cell (SOFC) to operate in conjunction with a gas turbine engine. A detailed engine model currently exists in the Matlab/Simulink environment. The idea is to incorporate a SOFC model within the turbine engine simulation and observe the hybrid system's performance. The fuel cell will be heated to its appropriate operating condition by the engine s combustor. Once the fuel cell is operating at its steady-state temperature, the gas burner will back down slowly until the engine is fully operating on the hot gases exhausted from the SOFC. The SOFC code is based on a steady-state model developed by The U.S. Department of Energy (DOE). In its current form, the DOE SOFC model exists in Microsoft Excel and uses Visual Basics to create an I-V (current-voltage) profile. For the project's application, the main issue with this model is that the gas path flow and fuel flow temperatures are used as input parameters instead of outputs. The objective is to create a SOFC model based on the DOE model that inputs the fuel cells flow rates and outputs temperature of the flow streams; therefore, creating a temperature profile as a function of fuel flow rate. This will be done by applying the First Law of Thermodynamics for a flow system to the fuel cell. Validation of this model will be done in two procedures. First, for a given flow rate the exit stream temperature will be calculated and compared to DOE SOFC temperature as a point comparison. Next, an I-V curve and temperature curve will be generated where the I-V curve will be compared with the DOE SOFC I-V curve. Matching I-V curves will suggest validation of the temperature curve because voltage is a function of temperature. Once the temperature profile is created and validated, the model will then be placed into the turbine engine simulation for system analysis.
Engineering uses of physics-based ground motion simulations
Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.
2014-01-01
This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.
NASA Astrophysics Data System (ADS)
Yu, Bing; Shu, Wenjun; Cao, Can
2018-05-01
A novel modeling method for aircraft engine using nonlinear autoregressive exogenous (NARX) models based on wavelet neural networks is proposed. The identification principle and process based on wavelet neural networks are studied, and the modeling scheme based on NARX is proposed. Then, the time series data sets from three types of aircraft engines are utilized to build the corresponding NARX models, and these NARX models are validated by the simulation. The results show that all the best NARX models can capture the original aircraft engine's dynamic characteristic well with the high accuracy. For every type of engine, the relative identification errors of its best NARX model and the component level model are no more than 3.5 % and most of them are within 1 %.
USDA-ARS?s Scientific Manuscript database
A predictive mathematical model was developed to simulate heat transfer in a tomato undergoing double sided infrared (IR) heating in a dry-peeling process. The aims of this study were to validate the developed model using experimental data and to investigate different engineering parameters that mos...
A computational continuum model of poroelastic beds
Zampogna, G. A.
2017-01-01
Despite the ubiquity of fluid flows interacting with porous and elastic materials, we lack a validated non-empirical macroscale method for characterizing the flow over and through a poroelastic medium. We propose a computational tool to describe such configurations by deriving and validating a continuum model for the poroelastic bed and its interface with the above free fluid. We show that, using stress continuity condition and slip velocity condition at the interface, the effective model captures the effects of small changes in the microstructure anisotropy correctly and predicts the overall behaviour in a physically consistent and controllable manner. Moreover, we show that the performance of the effective model is accurate by validating with fully microscopic resolved simulations. The proposed computational tool can be used in investigations in a wide range of fields, including mechanical engineering, bio-engineering and geophysics. PMID:28413355
Supercomputer modeling of hydrogen combustion in rocket engines
NASA Astrophysics Data System (ADS)
Betelin, V. B.; Nikitin, V. F.; Altukhov, D. I.; Dushin, V. R.; Koo, Jaye
2013-08-01
Hydrogen being an ecological fuel is very attractive now for rocket engines designers. However, peculiarities of hydrogen combustion kinetics, the presence of zones of inverse dependence of reaction rate on pressure, etc. prevents from using hydrogen engines in all stages not being supported by other types of engines, which often brings the ecological gains back to zero from using hydrogen. Computer aided design of new effective and clean hydrogen engines needs mathematical tools for supercomputer modeling of hydrogen-oxygen components mixing and combustion in rocket engines. The paper presents the results of developing verification and validation of mathematical model making it possible to simulate unsteady processes of ignition and combustion in rocket engines.
Rational Design of Mouse Models for Cancer Research.
Landgraf, Marietta; McGovern, Jacqui A; Friedl, Peter; Hutmacher, Dietmar W
2018-03-01
The laboratory mouse is widely considered as a valid and affordable model organism to study human disease. Attempts to improve the relevance of murine models for the investigation of human pathologies led to the development of various genetically engineered, xenograft and humanized mouse models. Nevertheless, most preclinical studies in mice suffer from insufficient predictive value when compared with cancer biology and therapy response of human patients. We propose an innovative strategy to improve the predictive power of preclinical cancer models. Combining (i) genomic, tissue engineering and regenerative medicine approaches for rational design of mouse models with (ii) rapid prototyping and computational benchmarking against human clinical data will enable fast and nonbiased validation of newly generated models. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Mcknight, R. L.
1985-01-01
Accomplishments are described for the second year effort of a 3-year program to develop methodology for component specific modeling of aircraft engine hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models; (2) geometry model generators; (3) remeshing; (4) specialty 3-D inelastic stuctural analysis; (5) computationally efficient solvers, (6) adaptive solution strategies; (7) engine performance parameters/component response variables decomposition and synthesis; (8) integrated software architecture and development, and (9) validation cases for software developed.
Component-specific modeling. [jet engine hot section components
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.
1992-01-01
Accomplishments are described for a 3 year program to develop methodology for component-specific modeling of aircraft hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models, (2) geometry model generators, (3) remeshing, (4) specialty three-dimensional inelastic structural analysis, (5) computationally efficient solvers, (6) adaptive solution strategies, (7) engine performance parameters/component response variables decomposition and synthesis, (8) integrated software architecture and development, and (9) validation cases for software developed.
Flex Fuel Optimized SI and HCCI Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guoming; Schock, Harold; Yang, Xiaojian
The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight enginemore » cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combustion mode transition strategy using the hybrid combustion mode that starts with the SI combustion and ends with the HCCI combustion was experimentally validated on a metal engine. The proposed model-based control approach made it possible to complete the SI-HCCI combustion mode transition within eight engine cycles utilizing the well controlled hybrid combustion mode. Without intensive control-oriented engine modeling and HIL simulation study of using the hybrid combustion mode during the mode transition, it would be impossible to validate the proposed combustion mode transition strategy in a very short period.« less
The Modular Aero-Propulsion System Simulation (MAPSS) Users' Guide
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Melcher, Kevin J.
2004-01-01
The Modular Aero-Propulsion System Simulation is a flexible turbofan engine simulation environment that provides the user a platform to develop advanced control algorithms. It is capable of testing the performance of control designs on a validated and verified generic engine model. In addition, it is able to generate state-space linear models of the engine model to aid in controller design. The engine model used in MAPSS is a generic high-pressure ratio, dual-spool, lowbypass, military-type, variable cycle turbofan engine with a digital controller. MAPSS is controlled by a graphical user interface (GUI) and this guide explains how to use it to take advantage of the capabilities of MAPSS.
NASA Astrophysics Data System (ADS)
Yamanishi, Manabu
A combined experimental and computational investigation was performed in order to evaluate the effects of various design parameters of an in-line injection pump on the nozzle exit characteristics for DI diesel engines. Measurements of the pump chamber pressure and the delivery valve lift were included for validation by using specially designed transducers installed inside the pump. The results confirm that the simulation model is capable of predicting the pump operation for all the different designs investigated pump operating conditions. Following the successful validation of this model, parametric studies were performed which allow for improved fuel injection system design.
Validation (not just verification) of Deep Space Missions
NASA Technical Reports Server (NTRS)
Duren, Riley M.
2006-01-01
ion & Validation (V&V) is a widely recognized and critical systems engineering function. However, the often used definition 'Verification proves the design is right; validation proves it is the right design' is rather vague. And while Verification is a reasonably well standardized systems engineering process, Validation is a far more abstract concept and the rigor and scope applied to it varies widely between organizations and individuals. This is reflected in the findings in recent Mishap Reports for several NASA missions, in which shortfalls in Validation (not just Verification) were cited as root- or contributing-factors in catastrophic mission loss. Furthermore, although there is strong agreement in the community that Test is the preferred method for V&V, many people equate 'V&V' with 'Test', such that Analysis and Modeling aren't given comparable attention. Another strong motivator is a realization that the rapid growth in complexity of deep-space missions (particularly Planetary Landers and Space Observatories given their inherent unknowns) is placing greater demands on systems engineers to 'get it right' with Validation.
Reverse engineering biomolecular systems using -omic data: challenges, progress and opportunities.
Quo, Chang F; Kaddi, Chanchala; Phan, John H; Zollanvari, Amin; Xu, Mingqing; Wang, May D; Alterovitz, Gil
2012-07-01
Recent advances in high-throughput biotechnologies have led to the rapid growing research interest in reverse engineering of biomolecular systems (REBMS). 'Data-driven' approaches, i.e. data mining, can be used to extract patterns from large volumes of biochemical data at molecular-level resolution while 'design-driven' approaches, i.e. systems modeling, can be used to simulate emergent system properties. Consequently, both data- and design-driven approaches applied to -omic data may lead to novel insights in reverse engineering biological systems that could not be expected before using low-throughput platforms. However, there exist several challenges in this fast growing field of reverse engineering biomolecular systems: (i) to integrate heterogeneous biochemical data for data mining, (ii) to combine top-down and bottom-up approaches for systems modeling and (iii) to validate system models experimentally. In addition to reviewing progress made by the community and opportunities encountered in addressing these challenges, we explore the emerging field of synthetic biology, which is an exciting approach to validate and analyze theoretical system models directly through experimental synthesis, i.e. analysis-by-synthesis. The ultimate goal is to address the present and future challenges in reverse engineering biomolecular systems (REBMS) using integrated workflow of data mining, systems modeling and synthetic biology.
Empirical flow parameters - a tool for hydraulic model validity assessment : [summary].
DOT National Transportation Integrated Search
2013-10-01
Hydraulic modeling assembles models based on generalizations of parameter values from textbooks, professional literature, computer program documentation, and engineering experience. Actual measurements adjacent to the model location are seldom availa...
Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems
NASA Astrophysics Data System (ADS)
Chalet, David; Chesse, Pascal
2010-10-01
The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.
Validation of instruments to measure students' mathematical knowledge
NASA Astrophysics Data System (ADS)
Khatimin, Nuraini; Zaharim, Azami; Aziz, Azrilah Abd
2015-02-01
This paper describes instruments' validation process to identify the suitability and accuracy of the final examination questions for engineering mathematics. As a compulsory subject for second year students from 4 departments in Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia, the Differential Equations 1 course (KKKQ2124) was considered in this study. The data used in this study consists of the raw marks for final examination of semester 2, 2012/2013 session. The data then will be run and analyzed using the Rasch measurement model. Rasch model can also examine the ability of students and redundancy of instrument constructs.
Validation project. This report describes the procedure used to generate the noise models output dataset , and then it compares that dataset to the...benchmark, the Engineer Research and Development Centers Long-Range Sound Propagation dataset . It was found that the models consistently underpredict the
Rezaeian, Sanaz; Zhong, Peng; Hartzell, Stephen; Zareian, Farzin
2015-01-01
Simulated earthquake ground motions can be used in many recent engineering applications that require time series as input excitations. However, applicability and validation of simulations are subjects of debate in the seismological and engineering communities. We propose a validation methodology at the waveform level and directly based on characteristics that are expected to influence most structural and geotechnical response parameters. In particular, three time-dependent validation metrics are used to evaluate the evolving intensity, frequency, and bandwidth of a waveform. These validation metrics capture nonstationarities in intensity and frequency content of waveforms, making them ideal to address nonlinear response of structural systems. A two-component error vector is proposed to quantify the average and shape differences between these validation metrics for a simulated and recorded ground-motion pair. Because these metrics are directly related to the waveform characteristics, they provide easily interpretable feedback to seismologists for modifying their ground-motion simulation models. To further simplify the use and interpretation of these metrics for engineers, it is shown how six scalar key parameters, including duration, intensity, and predominant frequency, can be extracted from the validation metrics. The proposed validation methodology is a step forward in paving the road for utilization of simulated ground motions in engineering practice and is demonstrated using examples of recorded and simulated ground motions from the 1994 Northridge, California, earthquake.
NASA Technical Reports Server (NTRS)
Menrad, Robert J.; Larson, Wiley J.
2008-01-01
This paper shares the findings of NASA's Integrated Learning and Development Program (ILDP) in its effort to reinvigorate the HANDS-ON practice of space systems engineering and project/program management through focused coursework, training opportunities, on-the job learning and special assignments. Prior to March 2005, NASA responsibility for technical workforce development (the program/project manager, systems engineering, discipline engineering, discipline engineering and associated communities) was executed by two parallel organizations. In March 2005 these organizations merged. The resulting program-ILDP-was chartered to implement an integrated competency-based development model capable of enhancing NASA's technical workforce performance as they face the complex challenges of Earth science, space science, aeronautics and human spaceflight missions. Results developed in collaboration with NASA Field Centers are reported on. This work led to definition of the agency's first integrated technical workforce development model known as the Requisite Occupation Competence and Knowledge (the ROCK). Critical processes and products are presented including: 'validation' techniques to guide model development, the Design-A-CUrriculuM (DACUM) process, and creation of the agency's first systems engineering body-of-knowledge. Findings were validated via nine focus groups from industry and government, validated with over 17 space-related organizations, at an estimated cost exceeding $300,000 (US). Masters-level programs and training programs have evolved to address the needs of these practitioner communities based upon these results. The ROCK reintroduced rigor and depth to the practitioner's development in these critical disciplines enabling their ability to take mission concepts from imagination to reality.
Incremental checking of Master Data Management model based on contextual graphs
NASA Astrophysics Data System (ADS)
Lamolle, Myriam; Menet, Ludovic; Le Duc, Chan
2015-10-01
The validation of models is a crucial step in distributed heterogeneous systems. In this paper, an incremental validation method is proposed in the scope of a Model Driven Engineering (MDE) approach, which is used to develop a Master Data Management (MDM) field represented by XML Schema models. The MDE approach presented in this paper is based on the definition of an abstraction layer using UML class diagrams. The validation method aims to minimise the model errors and to optimisethe process of model checking. Therefore, the notion of validation contexts is introduced allowing the verification of data model views. Description logics specify constraints that the models have to check. An experimentation of the approach is presented through an application developed in ArgoUML IDE.
Detailed kinetic modeling study of n-pentanol oxidation
Heufer, K. Alexander; Sarathy, S. Mani; Curran, Henry J.; ...
2012-09-28
To help overcome the world’s dependence upon fossil fuels, suitable biofuels are promising alternatives that can be used in the transportation sector. Recent research on internal combustion engines shows that short alcoholic fuels (e.g., ethanol or n-butanol) have reduced pollutant emissions and increased knock resistance compared to fossil fuels. Although higher molecular weight alcohols (e.g., n-pentanol and n-hexanol) exhibit higher reactivity that lowers their knock resistance, they are suitable for diesel engines or advanced engine concepts, such as homogeneous charge compression ignition (HCCI), where higher reactivity at lower temperatures is necessary for engine operation. The present study presents a detailedmore » kinetic model for n-pentanol based on modeling rules previously presented for n-butanol. This approach was initially validated using quantum chemistry calculations to verify the most stable n-pentanol conformation and to obtain C–H and C–C bond dissociation energies. In addition, the proposed model has been validated against ignition delay time data, speciation data from a jet-stirred reactor, and laminar flame velocity measurements. Overall, the model shows good agreement with the experiments and permits a detailed discussion of the differences between alcohols and alkanes.« less
Nerurkar, Nandan L; Mauck, Robert L; Elliott, Dawn M
2008-12-01
Integrating theoretical and experimental approaches for annulus fibrosus (AF) functional tissue engineering. Apply a hyperelastic constitutive model to characterize the evolution of engineered AF via scalar model parameters. Validate the model and predict the response of engineered constructs to physiologic loading scenarios. There is need for a tissue engineered replacement for degenerate AF. When evaluating engineered replacements for load-bearing tissues, it is necessary to evaluate mechanical function with respect to the native tissue, including nonlinearity and anisotropy. Aligned nanofibrous poly-epsilon-caprolactone scaffolds with prescribed fiber angles were seeded with bovine AF cells and analyzed over 8 weeks, using experimental (mechanical testing, biochemistry, histology) and theoretical methods (a hyperelastic fiber-reinforced constitutive model). The linear region modulus for phi = 0 degrees constructs increased by approximately 25 MPa, and for phi = 90 degrees by approximately 2 MPa from 1 day to 8 weeks in culture. Infiltration and proliferation of AF cells into the scaffold and abundant deposition of s-GAG and aligned collagen was observed. The constitutive model had excellent fits to experimental data to yield matrix and fiber parameters that increased with time in culture. Correlations were observed between biochemical measures and model parameters. The model was successfully validated and used to simulate time-varying responses of engineered AF under shear and biaxial loading. AF cells seeded on nanofibrous scaffolds elaborated an organized, anisotropic AF-like extracellular matrix, resulting in improved mechanical properties. A hyperelastic fiber-reinforced constitutive model characterized the functional evolution of engineered AF constructs, and was used to simulate physiologically relevant loading configurations. Model predictions demonstrated that fibers resist shear even when the shearing direction does not coincide with the fiber direction. Further, the model suggested that the native AF fiber architecture is uniquely designed to support shear stresses encountered under multiple loading configurations.
The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering
NASA Technical Reports Server (NTRS)
Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen
2006-01-01
This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.
A Nonparametric Statistical Approach to the Validation of Computer Simulation Models
1985-11-01
Ballistic Research Laboratory, the Experimental Design and Analysis Branch of the Systems Engineering and Concepts Analysis Division was funded to...2 Winter. E M. Wisemiler. D P. azd UjiharmJ K. Venrgcation ad Validatiot of Engineering Simulatiots with Minimal D2ta." Pmeedinr’ of the 1976 Summer...used by numerous authors. Law%6 has augmented their approach with specific suggestions for each of the three stage’s: 1. develop high face-validity
Shao, Hui; Fonseca, Vivian; Stoecker, Charles; Liu, Shuqian; Shi, Lizheng
2018-05-03
There is an urgent need to update diabetes prediction, which has relied on the United Kingdom Prospective Diabetes Study (UKPDS) that dates back to 1970 s' European populations. The objective of this study was to develop a risk engine with multiple risk equations using a recent patient cohort with type 2 diabetes mellitus reflective of the US population. A total of 17 risk equations for predicting diabetes-related microvascular and macrovascular events, hypoglycemia, mortality, and progression of diabetes risk factors were estimated using the data from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial (n = 10,251). Internal and external validation processes were used to assess performance of the Building, Relating, Assessing, and Validating Outcomes (BRAVO) risk engine. One-way sensitivity analysis was conducted to examine the impact of risk factors on mortality at the population level. The BRAVO risk engine added several risk factors including severe hypoglycemia and common US racial/ethnicity categories compared with the UKPDS risk engine. The BRAVO risk engine also modeled mortality escalation associated with intensive glycemic control (i.e., glycosylated hemoglobin < 6.5%). External validation showed a good prediction power on 28 endpoints observed from other clinical trials (slope = 1.071, R 2 = 0.86). The BRAVO risk engine for the US diabetes cohort provides an alternative to the UKPDS risk engine. It can be applied to assist clinical and policy decision making such as cost-effective resource allocation in USA.
Capelli, Claudio; Biglino, Giovanni; Petrini, Lorenza; Migliavacca, Francesco; Cosentino, Daria; Bonhoeffer, Philipp; Taylor, Andrew M; Schievano, Silvia
2012-12-01
Finite element (FE) modelling can be a very resourceful tool in the field of cardiovascular devices. To ensure result reliability, FE models must be validated experimentally against physical data. Their clinical application (e.g., patients' suitability, morphological evaluation) also requires fast simulation process and access to results, while engineering applications need highly accurate results. This study shows how FE models with different mesh discretisations can suit clinical and engineering requirements for studying a novel device designed for percutaneous valve implantation. Following sensitivity analysis and experimental characterisation of the materials, the stent-graft was first studied in a simplified geometry (i.e., compliant cylinder) and validated against in vitro data, and then in a patient-specific implantation site (i.e., distensible right ventricular outflow tract). Different meshing strategies using solid, beam and shell elements were tested. Results showed excellent agreement between computational and experimental data in the simplified implantation site. Beam elements were found to be convenient for clinical applications, providing reliable results in less than one hour in a patient-specific anatomical model. Solid elements remain the FE choice for engineering applications, albeit more computationally expensive (>100 times). This work also showed how information on device mechanical behaviour differs when acquired in a simplified model as opposed to a patient-specific model.
THRSTER: A THRee-STream Ejector Ramjet Analysis and Design Tool
NASA Technical Reports Server (NTRS)
Chue, R. S.; Sabean, J.; Tyll, J.; Bakos, R. J.
2000-01-01
An engineering tool for analyzing ejectors in rocket based combined cycle (RBCC) engines has been developed. A key technology for multi-cycle RBCC propulsion systems is the ejector which functions as the compression stage of the ejector ramjet cycle. The THRee STream Ejector Ramjet analysis tool was developed to analyze the complex aerothermodynamic and combustion processes that occur in this device. The formulated model consists of three quasi-one-dimensional streams, one each for the ejector primary flow, the secondary flow, and the mixed region. The model space marches through the mixer, combustor, and nozzle to evaluate the solution along the engine. In its present form, the model is intended for an analysis mode in which the diffusion rates of the primary and secondary into the mixed stream are stipulated. The model offers the ability to analyze the highly two-dimensional ejector flowfield while still benefits from the simplicity and speed of an engineering tool. To validate the developed code, wall static pressure measurements from the Penn-State and NASA-ART RBCC experiments were used to compare with the results generated by the code. The calculated solutions were generally found to have satisfactory agreement with the pressure measurements along the engines, although further modeling effort may be required when a strong shock train is formed at the rocket exhaust. The range of parameters in which the code would generate valid results are presented and discussed.
THRSTER: A Three-Stream Ejector Ramjet Analysis and Design Tool
NASA Technical Reports Server (NTRS)
Chue, R. S.; Sabean, J.; Tyll, J.; Bakos, R. J.; Komar, D. R. (Technical Monitor)
2000-01-01
An engineering tool for analyzing ejectors in rocket based combined cycle (RBCC) engines has been developed. A key technology for multi-cycle RBCC propulsion systems is the ejector which functions as the compression stage of the ejector ramjet cycle. The THRee STream Ejector Ramjet analysis tool was developed to analyze the complex aerothermodynamic and combustion processes that occur in this device. The formulated model consists of three quasi-one-dimensional streams, one each for the ejector primary flow, the secondary flow, and the mixed region. The model space marches through the mixer, combustor, and nozzle to evaluate the solution along the engine. In its present form, the model is intended for an analysis mode in which the diffusion rates of the primary and secondary into the mixed stream are stipulated. The model offers the ability to analyze the highly two-dimensional ejector flowfield while still benefits from the simplicity and speed of an engineering tool. To validate the developed code, wall static pressure measurements from the Penn-State and NASA-ART RBCC experiments were used to compare with the results generated by the code. The calculated solutions were generally found to have satisfactory agreement with the pressure measurements along the engines, although further modeling effort may be required when a strong shock train is formed at the rocket exhaust. The range of parameters in which the code would generate valid results are presented and discussed.
NASA Technical Reports Server (NTRS)
Armstrong, Jeffrey B.; Simon, Donald L.
2012-01-01
Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulations.Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulatns.
The Model Analyst’s Toolkit: Scientific Model Development, Analysis, and Validation
2013-11-20
Granger causality F-test validation 3.1.2. Dynamic time warping for uneven temporal relationships Many causal relationships are imperfectly...mapping for dynamic feedback models Granger causality and DTW can identify causal relationships and consider complex temporal factors. However, many ...variant of the tf-idf algorithm (Manning, Raghavan, Schutze et al., 2008), typically used in search engines, to “score” features. The (-log tf) in
Fatigue Failure of Space Shuttle Main Engine Turbine Blades
NASA Technical Reports Server (NTRS)
Swanson, Gregrory R.; Arakere, Nagaraj K.
2000-01-01
Experimental validation of finite element modeling of single crystal turbine blades is presented. Experimental results from uniaxial high cycle fatigue (HCF) test specimens and full scale Space Shuttle Main Engine test firings with the High Pressure Fuel Turbopump Alternate Turbopump (HPFTP/AT) provide the data used for the validation. The conclusions show the significant contribution of the crystal orientation within the blade on the resulting life of the component, that the analysis can predict this variation, and that experimental testing demonstrates it.
Underwater striling engine design with modified one-dimensional model
NASA Astrophysics Data System (ADS)
Li, Daijin; Qin, Kan; Luo, Kai
2015-09-01
Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.
Some guidance on preparing validation plans for the DART Full System Models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, Genetha Anne; Hough, Patricia Diane; Hills, Richard Guy
2009-03-01
Planning is an important part of computational model verification and validation (V&V) and the requisite planning document is vital for effectively executing the plan. The document provides a means of communicating intent to the typically large group of people, from program management to analysts to test engineers, who must work together to complete the validation activities. This report provides guidelines for writing a validation plan. It describes the components of such a plan and includes important references and resources. While the initial target audience is the DART Full System Model teams in the nuclear weapons program, the guidelines are generallymore » applicable to other modeling efforts. Our goal in writing this document is to provide a framework for consistency in validation plans across weapon systems, different types of models, and different scenarios. Specific details contained in any given validation plan will vary according to application requirements and available resources.« less
Fuel Combustion and Engine Performance | Transportation Research | NREL
. Through modeling, simulation, and experimental validation, researchers examine what happens to fuel inside combustion and engine research activities include: Developing experimental and simulation research platforms develop and refine accurate, efficient kinetic mechanisms for fuel ignition Investigating low-speed pre
Systems Engineering Model for ART Energy Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Wilson, Mollye C.
The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation ofmore » lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.« less
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sowers, T Shane; Liu, Yuan; Owen, A. Karl; Guo, Ten-Huei
2015-01-01
The National Aeronautics and Space Administration (NASA) has developed independent airframe and engine models that have been integrated into a single real-time aircraft simulation for piloted evaluation of propulsion control algorithms. In order to have confidence in the results of these evaluations, the integrated simulation must be validated to demonstrate that its behavior is realistic and that it meets the appropriate Federal Aviation Administration (FAA) certification requirements for aircraft. The paper describes the test procedures and results, demonstrating that the integrated simulation generally meets the FAA requirements and is thus a valid testbed for evaluation of propulsion control modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kandler A; Santhanagopalan, Shriram; Yang, Chuanbo
Computer models are helping to accelerate the design and validation of next generation batteries and provide valuable insights not possible through experimental testing alone. Validated 3-D physics-based models exist for predicting electrochemical performance, thermal and mechanical response of cells and packs under normal and abuse scenarios. The talk describes present efforts to make the models better suited for engineering design, including improving their computation speed, developing faster processes for model parameter identification including under aging, and predicting the performance of a proposed electrode material recipe a priori using microstructure models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Yuanshun; Baek, Seung H.; Garcia-Diza, Alberto
2012-01-01
This paper designs a comprehensive approach based on the engineering machine/system concept, to model, analyze, and assess the level of CO2 exchange between the atmosphere and terrestrial ecosystems, which is an important factor in understanding changes in global climate. The focus of this article is on spatial patterns and on the correlation between levels of CO2 fluxes and a variety of influencing factors in eco-environments. The engineering/machine concept used is a system protocol that includes the sequential activities of design, test, observe, and model. This concept is applied to explicitly include various influencing factors and interactions associated with CO2 fluxes.more » To formulate effective models of a large and complex climate system, this article introduces a modeling technique that will be referred to as Stochastic Filtering Analysis of Variance (SFANOVA). The CO2 flux data observed from some sites of AmeriFlux are used to illustrate and validate the analysis, prediction and globalization capabilities of the proposed engineering approach and the SF-ANOVA technology. The SF-ANOVA modeling approach was compared to stepwise regression, ridge regression, and neural networks. The comparison indicated that the proposed approach is a valid and effective tool with similar accuracy and less complexity than the other procedures.« less
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Goldberg, Robert K.; Lerch, Bradley A.; Saleeb, Atef F.
2009-01-01
Herein a general, multimechanism, physics-based viscoelastoplastic model is presented in the context of an integrated diagnosis and prognosis methodology which is proposed for structural health monitoring, with particular applicability to gas turbine engine structures. In this methodology, diagnostics and prognostics will be linked through state awareness variable(s). Key technologies which comprise the proposed integrated approach include (1) diagnostic/detection methodology, (2) prognosis/lifing methodology, (3) diagnostic/prognosis linkage, (4) experimental validation, and (5) material data information management system. A specific prognosis lifing methodology, experimental characterization and validation and data information management are the focal point of current activities being pursued within this integrated approach. The prognostic lifing methodology is based on an advanced multimechanism viscoelastoplastic model which accounts for both stiffness and/or strength reduction damage variables. Methods to characterize both the reversible and irreversible portions of the model are discussed. Once the multiscale model is validated the intent is to link it to appropriate diagnostic methods to provide a full-featured structural health monitoring system.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Goldberg, Robert K.; Lerch, Bradley A.; Saleeb, Atef F.
2009-01-01
Herein a general, multimechanism, physics-based viscoelastoplastic model is presented in the context of an integrated diagnosis and prognosis methodology which is proposed for structural health monitoring, with particular applicability to gas turbine engine structures. In this methodology, diagnostics and prognostics will be linked through state awareness variable(s). Key technologies which comprise the proposed integrated approach include 1) diagnostic/detection methodology, 2) prognosis/lifing methodology, 3) diagnostic/prognosis linkage, 4) experimental validation and 5) material data information management system. A specific prognosis lifing methodology, experimental characterization and validation and data information management are the focal point of current activities being pursued within this integrated approach. The prognostic lifing methodology is based on an advanced multi-mechanism viscoelastoplastic model which accounts for both stiffness and/or strength reduction damage variables. Methods to characterize both the reversible and irreversible portions of the model are discussed. Once the multiscale model is validated the intent is to link it to appropriate diagnostic methods to provide a full-featured structural health monitoring system.
Economic analysis of model validation for a challenge problem
Paez, Paul J.; Paez, Thomas L.; Hasselman, Timothy K.
2016-02-19
It is now commonplace for engineers to build mathematical models of the systems they are designing, building, or testing. And, it is nearly universally accepted that phenomenological models of physical systems must be validated prior to use for prediction in consequential scenarios. Yet, there are certain situations in which testing only or no testing and no modeling may be economically viable alternatives to modeling and its associated testing. This paper develops an economic framework within which benefit–cost can be evaluated for modeling and model validation relative to other options. The development is presented in terms of a challenge problem. Asmore » a result, we provide a numerical example that quantifies when modeling, calibration, and validation yield higher benefit–cost than a testing only or no modeling and no testing option.« less
A High Throughput Model of Post-Traumatic Osteoarthritis using Engineered Cartilage Tissue Analogs
Mohanraj, Bhavana; Meloni, Gregory R.; Mauck, Robert L.; Dodge, George R.
2014-01-01
(1) Objective A number of in vitro models of post-traumatic osteoarthritis (PTOA) have been developed to study the effect of mechanical overload on the processes that regulate cartilage degeneration. While such frameworks are critical for the identification therapeutic targets, existing technologies are limited in their throughput capacity. Here, we validate a test platform for high-throughput mechanical injury incorporating engineered cartilage. (2) Method We utilized a high throughput mechanical testing platform to apply injurious compression to engineered cartilage and determined their strain and strain rate dependent responses to injury. Next, we validated this response by applying the same injury conditions to cartilage explants. Finally, we conducted a pilot screen of putative PTOA therapeutic compounds. (3) Results Engineered cartilage response to injury was strain dependent, with a 2-fold increase in GAG loss at 75% compared to 50% strain. Extensive cell death was observed adjacent to fissures, with membrane rupture corroborated by marked increases in LDH release. Testing of established PTOA therapeutics showed that pan-caspase inhibitor (ZVF) was effective at reducing cell death, while the amphiphilic polymer (P188) and the free-radical scavenger (NAC) reduced GAG loss as compared to injury alone. (4) Conclusions The injury response in this engineered cartilage model replicated key features of the response from cartilage explants, validating this system for application of physiologically relevant injurious compression. This study establishes a novel tool for the discovery of mechanisms governing cartilage injury, as well as a screening platform for the identification of new molecules for the treatment of PTOA. PMID:24999113
Large eddy simulation modelling of combustion for propulsion applications.
Fureby, C
2009-07-28
Predictive modelling of turbulent combustion is important for the development of air-breathing engines, internal combustion engines, furnaces and for power generation. Significant advances in modelling non-reactive turbulent flows are now possible with the development of large eddy simulation (LES), in which the large energetic scales of the flow are resolved on the grid while modelling the effects of the small scales. Here, we discuss the use of combustion LES in predictive modelling of propulsion applications such as gas turbine, ramjet and scramjet engines. The LES models used are described in some detail and are validated against laboratory data-of which results from two cases are presented. These validated LES models are then applied to an annular multi-burner gas turbine combustor and a simplified scramjet combustor, for which some additional experimental data are available. For these cases, good agreement with the available reference data is obtained, and the LES predictions are used to elucidate the flow physics in such devices to further enhance our knowledge of these propulsion systems. Particular attention is focused on the influence of the combustion chemistry, turbulence-chemistry interaction, self-ignition, flame holding burner-to-burner interactions and combustion oscillations.
Integrating Model-Based Transmission Reduction into a multi-tier architecture
NASA Astrophysics Data System (ADS)
Straub, J.
A multi-tier architecture consists of numerous craft as part of the system, orbital, aerial, and surface tiers. Each tier is able to collect progressively greater levels of information. Generally, craft from lower-level tiers are deployed to a target of interest based on its identification by a higher-level craft. While the architecture promotes significant amounts of science being performed in parallel, this may overwhelm the computational and transmission capabilities of higher-tier craft and links (particularly the deep space link back to Earth). Because of this, a new paradigm in in-situ data processing is required. Model-based transmission reduction (MBTR) is such a paradigm. Under MBTR, each node (whether a single spacecraft in orbit of the Earth or another planet or a member of a multi-tier network) is given an a priori model of the phenomenon that it is assigned to study. It performs activities to validate this model. If the model is found to be erroneous, corrective changes are identified, assessed to ensure their significance for being passed on, and prioritized for transmission. A limited amount of verification data is sent with each MBTR assertion message to allow those that might rely on the data to validate the correct operation of the spacecraft and MBTR engine onboard. Integrating MBTR with a multi-tier framework creates an MBTR hierarchy. Higher levels of the MBTR hierarchy task lower levels with data collection and assessment tasks that are required to validate or correct elements of its model. A model of the expected conditions is sent to the lower level craft; which then engages its own MBTR engine to validate or correct the model. This may include tasking a yet lower level of craft to perform activities. When the MBTR engine at a given level receives all of its component data (whether directly collected or from delegation), it randomly chooses some to validate (by reprocessing the validation data), performs analysis and sends its own results (v- lidation and/or changes of model elements and supporting validation data) to its upstream node. This constrains data transmission to only significant (either because it includes a change or is validation data critical for assessing overall performance) information and reduces the processing requirements (by not having to process insignificant data) at higher-level nodes. This paper presents a framework for multi-tier MBTR and two demonstration mission concepts: an Earth sensornet and a mission to Mars. These multi-tier MBTR concepts are compared to a traditional mission approach.
NASA Astrophysics Data System (ADS)
Battistini, Alessandro; Rosi, Ascanio; Segoni, Samuele; Catani, Filippo; Casagli, Nicola
2017-04-01
Landslide inventories are basic data for large scale landslide modelling, e.g. they are needed to calibrate and validate rainfall thresholds, physically based models and early warning systems. The setting up of landslide inventories with traditional methods (e.g. remote sensing, field surveys and manual retrieval of data from technical reports and local newspapers) is time consuming. The objective of this work is to automatically set up a landslide inventory using a state-of-the art semantic engine based on data mining on online news (Battistini et al., 2013) and to evaluate if the automatically generated inventory can be used to validate a regional scale landslide warning system based on rainfall-thresholds. The semantic engine scanned internet news in real time in a 50 months test period. At the end of the process, an inventory of approximately 900 landslides was set up for the Tuscany region (23,000 km2, Italy). The inventory was compared with the outputs of the regional landslide early warning system based on rainfall thresholds, and a good correspondence was found: e.g. 84% of the events reported in the news is correctly identified by the model. In addition, the cases of not correspondence were forwarded to the rainfall threshold developers, which used these inputs to update some of the thresholds. On the basis of the results obtained, we conclude that automatic validation of landslide models using geolocalized landslide events feedback is possible. The source of data for validation can be obtained directly from the internet channel using an appropriate semantic engine. We also automated the validation procedure, which is based on a comparison between forecasts and reported events. We verified that our approach can be automatically used for a near real time validation of the warning system and for a semi-automatic update of the rainfall thresholds, which could lead to an improvement of the forecasting effectiveness of the warning system. In the near future, the proposed procedure could operate in continuous time and could allow for a periodic update of landslide hazard models and landslide early warning systems with minimum human intervention. References: Battistini, A., Segoni, S., Manzo, G., Catani, F., Casagli, N. (2013). Web data mining for automatic inventory of geohazards at national scale. Applied Geography, 43, 147-158.
NASA Technical Reports Server (NTRS)
Richardson, David
2018-01-01
Model-Based Systems Engineering (MBSE) is the formalized application of modeling to support system requirements, design, analysis, verification and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases . This presentation will discuss the value proposition that MBSE has for Systems Engineering, and the associated culture change needed to adopt it.
Analysis of Aurora's Performance Simulation Engine for Three Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, Janine; Simon, Joseph
2015-07-07
Aurora Solar Inc. is building a cloud-based optimization platform to automate the design, engineering, and permit generation process of solar photovoltaic (PV) installations. They requested that the National Renewable Energy Laboratory (NREL) validate the performance of the PV system performance simulation engine of Aurora Solar’s solar design platform, Aurora. In previous work, NREL performed a validation of multiple other PV modeling tools 1, so this study builds upon that work by examining all of the same fixed-tilt systems with available module datasheets that NREL selected and used in the aforementioned study. Aurora Solar set up these three operating PV systemsmore » in their modeling platform using NREL-provided system specifications and concurrent weather data. NREL then verified the setup of these systems, ran the simulations, and compared the Aurora-predicted performance data to measured performance data for those three systems, as well as to performance data predicted by other PV modeling tools.« less
Microscopic simulation model calibration and validation handbook.
DOT National Transportation Integrated Search
2006-01-01
Microscopic traffic simulation models are widely used in the transportation engineering field. Because of their cost-effectiveness, risk-free nature, and high-speed benefits, areas of use include transportation system design, traffic operations, and ...
Model-based Systems Engineering: Creation and Implementation of Model Validation Rules for MOS 2.0
NASA Technical Reports Server (NTRS)
Schmidt, Conrad K.
2013-01-01
Model-based Systems Engineering (MBSE) is an emerging modeling application that is used to enhance the system development process. MBSE allows for the centralization of project and system information that would otherwise be stored in extraneous locations, yielding better communication, expedited document generation and increased knowledge capture. Based on MBSE concepts and the employment of the Systems Modeling Language (SysML), extremely large and complex systems can be modeled from conceptual design through all system lifecycles. The Operations Revitalization Initiative (OpsRev) seeks to leverage MBSE to modernize the aging Advanced Multi-Mission Operations Systems (AMMOS) into the Mission Operations System 2.0 (MOS 2.0). The MOS 2.0 will be delivered in a series of conceptual and design models and documents built using the modeling tool MagicDraw. To ensure model completeness and cohesiveness, it is imperative that the MOS 2.0 models adhere to the specifications, patterns and profiles of the Mission Service Architecture Framework, thus leading to the use of validation rules. This paper outlines the process by which validation rules are identified, designed, implemented and tested. Ultimately, these rules provide the ability to maintain model correctness and synchronization in a simple, quick and effective manner, thus allowing the continuation of project and system progress.
Comprehensive analysis of transport aircraft flight performance
NASA Astrophysics Data System (ADS)
Filippone, Antonio
2008-04-01
This paper reviews the state-of-the art in comprehensive performance codes for fixed-wing aircraft. The importance of system analysis in flight performance is discussed. The paper highlights the role of aerodynamics, propulsion, flight mechanics, aeroacoustics, flight operation, numerical optimisation, stochastic methods and numerical analysis. The latter discipline is used to investigate the sensitivities of the sub-systems to uncertainties in critical state parameters or functional parameters. The paper discusses critically the data used for performance analysis, and the areas where progress is required. Comprehensive analysis codes can be used for mission fuel planning, envelope exploration, competition analysis, a wide variety of environmental studies, marketing analysis, aircraft certification and conceptual aircraft design. A comprehensive program that uses the multi-disciplinary approach for transport aircraft is presented. The model includes a geometry deck, a separate engine input deck with the main parameters, a database of engine performance from an independent simulation, and an operational deck. The comprehensive code has modules for deriving the geometry from bitmap files, an aerodynamics model for all flight conditions, a flight mechanics model for flight envelopes and mission analysis, an aircraft noise model and engine emissions. The model is validated at different levels. Validation of the aerodynamic model is done against the scale models DLR-F4 and F6. A general model analysis and flight envelope exploration are shown for the Boeing B-777-300 with GE-90 turbofan engines with intermediate passenger capacity (394 passengers in 2 classes). Validation of the flight model is done by sensitivity analysis on the wetted area (or profile drag), on the specific air range, the brake-release gross weight and the aircraft noise. A variety of results is shown, including specific air range charts, take-off weight-altitude charts, payload-range performance, atmospheric effects, economic Mach number and noise trajectories at F.A.R. landing points.
Finite Element Vibration Modeling and Experimental Validation for an Aircraft Engine Casing
NASA Astrophysics Data System (ADS)
Rabbitt, Christopher
This thesis presents a procedure for the development and validation of a theoretical vibration model, applies this procedure to a pair of aircraft engine casings, and compares select parameters from experimental testing of those casings to those from a theoretical model using the Modal Assurance Criterion (MAC) and linear regression coefficients. A novel method of determining the optimal MAC between axisymmetric results is developed and employed. It is concluded that the dynamic finite element models developed as part of this research are fully capable of modelling the modal parameters within the frequency range of interest. Confidence intervals calculated in this research for correlation coefficients provide important information regarding the reliability of predictions, and it is recommended that these intervals be calculated for all comparable coefficients. The procedure outlined for aligning mode shapes around an axis of symmetry proved useful, and the results are promising for the development of further optimization techniques.
Design and development of a cross-cultural disposition inventory
NASA Astrophysics Data System (ADS)
Davies, Randall; Zaugg, Holt; Tateishi, Isaku
2015-01-01
Advances in technology have increased the likelihood that engineers will have to work in a global, culturally diverse setting. Many schools of engineering are currently revising their curricula to help students to develop cultural competence. However, our ability to measure cultural dispositions can be a challenge. The purpose of this project was to develop and test an instrument that measures the various aspects of cultural disposition. The results of the validation process verified that the hypothesised model adequately represented the data. The refined instrument produced a four-factor model for the overall construct. The validation process for the instrument verified the existence of specific subcomponents that form the overall cultural disposition construct. There also seems to be a hierarchical relationship within the subcomponents of cultural disposition. Additional research is needed to explore which aspects of cultural disposition affect an individual's ability to work effectively in a culturally diverse engineering team.
Thieler, E.R.; Pilkey, O.H.; Young, R.S.; Bush, D.M.; Chai, F.
2000-01-01
A number of assumed empirical relationships (e.g., the Bruun Rule, the equilibrium shoreface profile, longshore transport rate equation, beach length: durability relationship, and the renourishment factor) and deterministic numerical models (e.g., GENESIS, SBEACH) have become important tools for investigating coastal processes and for coastal engineering design in the U.S. They are also used as the basis for making public policy decisions, such as the feasibility of nourishing recreational beaches. A review of the foundations of these relationships and models, however, suggests that they are inadequate for the tasks for which they are used. Many of the assumptions used in analytical and numerical models are not valid in the context of modern oceanographic and geologic principles. We believe the models are oversimplifications of complex systems that are poorly understood. There are several reasons for this, including: (1) poor assumptions and important omissions in model formulation; (2) the use of relationships of questionable validity to predict the morphologic response to physical forcing; (3) the lack of hindsighting and objective evaluation of beach behavior predictions for engineering projects; (4) the incorrect use of model calibration and verification as assertions of model veracity; and (5) the fundamental inability to predict coastal evolution quantitatively at the engineering and planning time and space scales our society assumes and demands. It is essential that coastal geologists, beach designers and coastal modelers understand these model limitations. Each important model assumption must be examined in isolation; incorporating them into a model does not improve their validity. It is our belief that the models reviewed here should not be relied on as a design tool until they have been substantially modified and proven in real-world situations. The 'solution,' however, is not to increase the complexity of a model by increasing the number of variables. What is needed is a thoughtful review of what beach behavior questions should or could be answered by modeling. Viable alternatives to the use of models do exist to predict the behavior of beaches. Three such alternatives to models are discussed for nourished beach design.
Multi-Scale Validation of a Nanodiamond Drug Delivery System and Multi-Scale Engineering Education
ERIC Educational Resources Information Center
Schwalbe, Michelle Kristin
2010-01-01
This dissertation has two primary concerns: (i) evaluating the uncertainty and prediction capabilities of a nanodiamond drug delivery model using Bayesian calibration and bias correction, and (ii) determining conceptual difficulties of multi-scale analysis from an engineering education perspective. A Bayesian uncertainty quantification scheme…
Southwell's Relaxation Search in Computer Aided Advising: An Intelligent Information System.
ERIC Educational Resources Information Center
Song, Xueshu
1992-01-01
Describes the development and validation of a microcomputer software system that enhances undergraduate students' interests in becoming engineering graduate students. The development of a database with information on engineering graduate programs is discussed, and a model that matches individual and institutional needs using Southwell's Relaxation…
Flight-determined engine exhaust characteristics of an F404 engine in an F-18 airplane
NASA Technical Reports Server (NTRS)
Ennix, Kimberly A.; Burcham, Frank W., Jr.; Webb, Lannie D.
1993-01-01
The exhaust characteristics of the F-18 aircraft with an F404 engine are examined with reference to the results of an acoustic flight testing program. The discussion covers an overview of the flight test planning, instrumentation, test procedures, data analysis, engine modeling codes, and results. In addition, the paper presents the exhaust velocity and Mach number data for the climb-to-cruise, Aircraft Noise Prediction Program validation, and ground tests.
Model-based Acceleration Control of Turbofan Engines with a Hammerstein-Wiener Representation
NASA Astrophysics Data System (ADS)
Wang, Jiqiang; Ye, Zhifeng; Hu, Zhongzhi; Wu, Xin; Dimirovsky, Georgi; Yue, Hong
2017-05-01
Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.
Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests
NASA Astrophysics Data System (ADS)
Izzuddin, Nur; Sunarsih, Priyanto, Agoes
2015-05-01
As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.
Evaluating a technical university's placement test using the Rasch measurement model
NASA Astrophysics Data System (ADS)
Salleh, Tuan Salwani; Bakri, Norhayati; Zin, Zalhan Mohd
2016-10-01
This study discusses the process of validating a mathematics placement test at a technical university. The main objective is to produce a valid and reliable test to measure students' prerequisite knowledge to learn engineering technology mathematics. It is crucial to have a valid and reliable test as the results will be used in a critical decision making to assign students into different groups of Technical Mathematics 1. The placement test which consists of 50 mathematics questions were tested on 82 new diplomas in engineering technology students at a technical university. This study employed rasch measurement model to analyze the data through the Winsteps software. The results revealed that there are ten test questions lower than less able students' ability. Nevertheless, all the ten questions satisfied infit and outfit standard values. Thus, all the questions can be reused in the future placement test at the technical university.
A Software Tool for Integrated Optical Design Analysis
NASA Technical Reports Server (NTRS)
Moore, Jim; Troy, Ed; DePlachett, Charles; Montgomery, Edward (Technical Monitor)
2001-01-01
Design of large precision optical systems requires multi-disciplinary analysis, modeling, and design. Thermal, structural and optical characteristics of the hardware must be accurately understood in order to design a system capable of accomplishing the performance requirements. The interactions between each of the disciplines become stronger as systems are designed lighter weight for space applications. This coupling dictates a concurrent engineering design approach. In the past, integrated modeling tools have been developed that attempt to integrate all of the complex analysis within the framework of a single model. This often results in modeling simplifications and it requires engineering specialist to learn new applications. The software described in this presentation addresses the concurrent engineering task using a different approach. The software tool, Integrated Optical Design Analysis (IODA), uses data fusion technology to enable a cross discipline team of engineering experts to concurrently design an optical system using their standard validated engineering design tools.
Model-Based Verification and Validation of Spacecraft Avionics
NASA Technical Reports Server (NTRS)
Khan, Mohammed Omair
2012-01-01
Our simulation was able to mimic the results of 30 tests on the actual hardware. This shows that simulations have the potential to enable early design validation - well before actual hardware exists. Although simulations focused around data processing procedures at subsystem and device level, they can also be applied to system level analysis to simulate mission scenarios and consumable tracking (e.g. power, propellant, etc.). Simulation engine plug-in developments are continually improving the product, but handling time for time-sensitive operations (like those of the remote engineering unit and bus controller) can be cumbersome.
A high fidelity real-time simulation of a small turboshaft engine
NASA Technical Reports Server (NTRS)
Ballin, Mark G.
1988-01-01
A high-fidelity component-type model and real-time digital simulation of the General Electric T700-GE-700 turboshaft engine were developed for use with current generation real-time blade-element rotor helicopter simulations. A control system model based on the specification fuel control system used in the UH-60A Black Hawk helicopter is also presented. The modeling assumptions and real-time digital implementation methods particular to the simulation of small turboshaft engines are described. The validity of the simulation is demonstrated by comparison with analysis-oriented simulations developed by the manufacturer, available test data, and flight-test time histories.
Receding horizon online optimization for torque control of gasoline engines.
Kang, Mingxin; Shen, Tielong
2016-11-01
This paper proposes a model-based nonlinear receding horizon optimal control scheme for the engine torque tracking problem. The controller design directly employs the nonlinear model exploited based on mean-value modeling principle of engine systems without any linearizing reformation, and the online optimization is achieved by applying the Continuation/GMRES (generalized minimum residual) approach. Several receding horizon control schemes are designed to investigate the effects of the integral action and integral gain selection. Simulation analyses and experimental validations are implemented to demonstrate the real-time optimization performance and control effects of the proposed torque tracking controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
STOVL Control Integration Program
NASA Technical Reports Server (NTRS)
Weiss, C.; Mcdowell, P.; Watts, S.
1994-01-01
An integrated flight/propulsion control for an advanced vector thrust supersonic STOVL aircraft, was developed by Pratt & Whitney and McDonnell Douglas Aerospace East. The IFPC design was based upon the partitioning of the global requirements into flight control and propulsion control requirements. To validate the design, aircraft and engine models were also developed for use on a NASA Ames piloted simulator. Different flight control implementations, evaluated for their handling qualities, are documented in the report along with the propulsion control, engine model, and aircraft model.
NASA Astrophysics Data System (ADS)
Brunet, V.; Molton, P.; Bézard, H.; Deck, S.; Jacquin, L.
2012-01-01
This paper describes the results obtained during the European Union JEDI (JEt Development Investigations) project carried out in cooperation between ONERA and Airbus. The aim of these studies was first to acquire a complete database of a modern-type engine jet installation set under a wall-to-wall swept wing in various transonic flow conditions. Interactions between the engine jet, the pylon, and the wing were studied thanks to ¤advanced¥ measurement techniques. In parallel, accurate Reynolds-averaged Navier Stokes (RANS) simulations were carried out from simple ones with the Spalart Allmaras model to more complex ones like the DRSM-SSG (Differential Reynolds Stress Modef of Speziale Sarkar Gatski) turbulence model. In the end, Zonal-Detached Eddy Simulations (Z-DES) were also performed to compare different simulation techniques. All numerical results are accurately validated thanks to the experimental database acquired in parallel. This complete and complex study of modern civil aircraft engine installation allowed many upgrades in understanding and simulation methods to be obtained. Furthermore, a setup for engine jet installation studies has been validated for possible future works in the S3Ch transonic research wind-tunnel. The main conclusions are summed up in this paper.
NASA Technical Reports Server (NTRS)
Dalee, Robert C.; Bacskay, Allen S.; Knox, James C.
1990-01-01
An overview of the CASE/A-ECLSS series modeling package is presented. CASE/A is an analytical tool that has supplied engineering productivity accomplishments during ECLSS design activities. A components verification program was performed to assure component modeling validity based on test data from the Phase II comparative test program completed at the Marshall Space Flight Center. An integrated plotting feature has been added to the program which allows the operator to analyze on-screen data trends or get hard copy plots from within the CASE/A operating environment. New command features in the areas of schematic, output, and model management, and component data editing have been incorporated to enhance the engineer's productivity during a modeling program.
Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction
NASA Astrophysics Data System (ADS)
Mach, J. C.; Budrow, C. J.; Pagan, D. C.; Ruff, J. P. C.; Park, J.-S.; Okasinski, J.; Beaudoin, A. J.; Miller, M. P.
2017-05-01
Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present work, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to develop significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. The experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.
Generation, Analysis and Characterization of Anisotropic Engineered Meta Materials
NASA Astrophysics Data System (ADS)
Trifale, Ninad T.
A methodology for a systematic generation of highly anisotropic micro-lattice structures was investigated. Multiple algorithms for generation and validation of engineered structures are developed and evaluated. Set of all possible permutations of structures for an 8-node cubic unit cell were considered and the degree of anisotropy of meta-properties in heat transport and mechanical elasticity were evaluated. Feasibility checks were performed to ensure that the generated unit cell network was repeatable and a continuous lattice structure. Four different strategies for generating permutations of the structures are discussed. Analytical models were developed to predict effective thermal, mechanical and permeability characteristics of these cellular structures.Experimentation and numerical modeling techniques were used to validate the models that are developed. A self-consistent mechanical elasticity model was developed which connects the meso-scale properties to stiffness of individual struts. A three dimensional thermal resistance network analogy was used to evaluate the effective thermal conductivity of the structures. The struts were modeled as a network of one dimensional thermal resistive elements and effective conductivity evaluated. Models were validated against numerical simulations and experimental measurements on 3D printed samples. Model was developed to predict effective permeability of these engineered structures based on Darcy's law. Drag coefficients were evaluated for individual connections in transverse and longitudinal directions and an interaction term was calibrated from the experimental data in literature in order to predict permeability. Generic optimization framework coupled to finite element solver is developed for analyzing any application involving use of porous structures. An objective functions were generated structure to address frequently observed trade-off between the stiffness, thermal conductivity, permeability and porosity. Three application were analyzed for potential use of engineered materials. Heat spreader application involving thermal and mechanical constraints, artificial bone grafts application involving mechanical and permeability constraints and structural materials applications involving mechanical, thermal and porosity constraints is analyzed. Recommendations for optimum topologies for specific operating conditions are provided.
A Predictive Approach to Network Reverse-Engineering
NASA Astrophysics Data System (ADS)
Wiggins, Chris
2005-03-01
A central challenge of systems biology is the ``reverse engineering" of transcriptional networks: inferring which genes exert regulatory control over which other genes. Attempting such inference at the genomic scale has only recently become feasible, via data-intensive biological innovations such as DNA microrrays (``DNA chips") and the sequencing of whole genomes. In this talk we present a predictive approach to network reverse-engineering, in which we integrate DNA chip data and sequence data to build a model of the transcriptional network of the yeast S. cerevisiae capable of predicting the response of genes in unseen experiments. The technique can also be used to extract ``motifs,'' sequence elements which act as binding sites for regulatory proteins. We validate by a number of approaches and present comparison of theoretical prediction vs. experimental data, along with biological interpretations of the resulting model. En route, we will illustrate some basic notions in statistical learning theory (fitting vs. over-fitting; cross- validation; assessing statistical significance), highlighting ways in which physicists can make a unique contribution in data- driven approaches to reverse engineering.
Application of High Speed Digital Image Correlation in Rocket Engine Hot Fire Testing
NASA Technical Reports Server (NTRS)
Gradl, Paul R.; Schmidt, Tim
2016-01-01
Hot fire testing of rocket engine components and rocket engine systems is a critical aspect of the development process to understand performance, reliability and system interactions. Ground testing provides the opportunity for highly instrumented development testing to validate analytical model predictions and determine necessary design changes and process improvements. To properly obtain discrete measurements for model validation, instrumentation must survive in the highly dynamic and extreme temperature application of hot fire testing. Digital Image Correlation has been investigated and being evaluated as a technique to augment traditional instrumentation during component and engine testing providing further data for additional performance improvements and cost savings. The feasibility of digital image correlation techniques were demonstrated in subscale and full scale hotfire testing. This incorporated a pair of high speed cameras to measure three-dimensional, real-time displacements and strains installed and operated under the extreme environments present on the test stand. The development process, setup and calibrations, data collection, hotfire test data collection and post-test analysis and results are presented in this paper.
Integrated Turbine Tip Clearance and Gas Turbine Engine Simulation
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Kratz, Jonathan; Guo, Ten-Huei; Litt, Jonathan
2016-01-01
Gas turbine compressor and turbine blade tip clearance (i.e., the radial distance between the blade tip of an axial compressor or turbine and the containment structure) is a major contributing factor to gas path sealing, and can significantly affect engine efficiency and operational temperature. This paper details the creation of a generic but realistic high pressure turbine tip clearance model that may be used to facilitate active tip clearance control system research. This model uses a first principles approach to approximate thermal and mechanical deformations of the turbine system, taking into account the rotor, shroud, and blade tip components. Validation of the tip clearance model shows that the results are realistic and reflect values found in literature. In addition, this model has been integrated with a gas turbine engine simulation, creating a platform to explore engine performance as tip clearance is adjusted. Results from the integrated model explore the effects of tip clearance on engine operation and highlight advantages of tip clearance management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu; Du, Pengwei; Kosterev, Dmitry
2013-05-01
Disturbance data recorded by phasor measurement units (PMU) offers opportunities to improve the integrity of dynamic models. However, manually tuning parameters through play-back events demands significant efforts and engineering experiences. In this paper, a calibration method using the extended Kalman filter (EKF) technique is proposed. The formulation of EKF with parameter calibration is discussed. Case studies are presented to demonstrate its validity. The proposed calibration method is cost-effective, complementary to traditional equipment testing for improving dynamic model quality.
Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics
NASA Technical Reports Server (NTRS)
Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.
The application of neural networks to the SSME startup transient
NASA Technical Reports Server (NTRS)
Meyer, Claudia M.; Maul, William A.
1991-01-01
Feedforward neural networks were used to model three parameters during the Space Shuttle Main Engine startup transient. The three parameters were the main combustion chamber pressure, a controlled parameter, the high pressure oxidizer turbine discharge temperature, a redlined parameter, and the high pressure fuel pump discharge pressure, a failure-indicating performance parameter. Network inputs consisted of time windows of data from engine measurements that correlated highly to the modeled parameter. A standard backpropagation algorithm was used to train the feedforward networks on two nominal firings. Each trained network was validated with four additional nominal firings. For all three parameters, the neural networks were able to accurately predict the data in the validation sets as well as the training set.
NASA Astrophysics Data System (ADS)
Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi
2017-02-01
An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.
The New NASA Orbital Debris Engineering Model ORDEM2000
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi; Matney, Mark J.; Anz-Meador, Phillip D.; Kessler, Donald; Jansen, Mark; Theall, Jeffery R.
2002-01-01
The NASA Orbital Debris Program Office at Johnson Space Center has developed a new computer-based orbital debris engineering model, ORDEM2000, which describes the orbital debris environment in the low Earth orbit region between 200 and 2000 km altitude. The model is appropriate for those engineering solutions requiring knowledge and estimates of the orbital debris environment (debris spatial density, flux, etc.). ORDEM2000 can also be used as a benchmark for ground-based debris measurements and observations. We incorporated a large set of observational data, covering the object size range from 10 mm to 10 m, into the ORDEM2000 debris database, utilizing a maximum likelihood estimator to convert observations into debris population probability distribution functions. These functions then form the basis of debris populations. We developed a finite element model to process the debris populations to form the debris environment. A more capable input and output structure and a user-friendly graphical user interface are also implemented in the model. ORDEM2000 has been subjected to a significant verification and validation effort. This document describes ORDEM2000, which supersedes the previous model, ORDEM96. The availability of new sensor and in situ data, as well as new analytical techniques, has enabled the construction of this new model. Section 1 describes the general requirements and scope of an engineering model. Data analyses and the theoretical formulation of the model are described in Sections 2 and 3. Section 4 describes the verification and validation effort and the sensitivity and uncertainty analyses. Finally, Section 5 describes the graphical user interface, software installation, and test cases for the user.
Development and validation of spray models for investigating diesel engine combustion and emissions
NASA Astrophysics Data System (ADS)
Som, Sibendu
Diesel engines intrinsically generate NOx and particulate matter which need to be reduced significantly in order to comply with the increasingly stringent regulations worldwide. This motivates the diesel engine manufacturers to gain fundamental understanding of the spray and combustion processes so as to optimize these processes and reduce engine emissions. Strategies being investigated to reduce engine's raw emissions include advancements in fuel injection systems, efficient nozzle orifice design, injection and combustion control strategies, exhaust gas recirculation, use of alternative fuels such as biodiesel etc. This thesis explores several of these approaches (such as nozzle orifice design, injection control strategy, and biodiesel use) by performing computer modeling of diesel engine processes. Fuel atomization characteristics are known to have a significant effect on the combustion and emission processes in diesel engines. Primary fuel atomization is induced by aerodynamics in the near nozzle region as well as cavitation and turbulence from the injector nozzle. The breakup models that are currently used in diesel engine simulations generally consider aerodynamically induced breakup using the Kelvin-Helmholtz (KH) instability model, but do not account for inner nozzle flow effects. An improved primary breakup (KH-ACT) model incorporating cavitation and turbulence effects along with aerodynamically induced breakup is developed and incorporated in the computational fluid dynamics code CONVERGE. The spray simulations using KH-ACT model are "quasi-dynamically" coupled with inner nozzle flow (using FLUENT) computations. This presents a novel tool to capture the influence of inner nozzle flow effects such as cavitation and turbulence on spray, combustion, and emission processes. Extensive validation is performed against the non-evaporating spray data from Argonne National Laboratory. Performance of the KH and KH-ACT models is compared against the evaporating and combusting data from Sandia National Laboratory. The KH-ACT model is observed to provide better predictions for spray dispersion, axial velocity decay, sauter mean diameter, and liquid and lift-off length interplay which is attributed to the enhanced primary breakup predicted by this model. In addition, experimentally observed trends with changing nozzle conicity could only be captured by the KH-ACT model. Results further indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone near the flame stabilization region and a non-premixed reaction zone further downstream. Finally, the differences in inner nozzle flow and spray characteristics of petrodiesel and biodiesel are quantified. The improved modeling capability developed in this work can be used for extensive diesel engine simulations to further optimize injection, spray, combustion, and emission processes.
Analysis of Flowfields over Four-Engine DC-X Rockets
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Cornelison, Joni
1996-01-01
The objective of this study is to validate a computational methodology for the aerodynamic performance of an advanced conical launch vehicle configuration. The computational methodology is based on a three-dimensional, viscous flow, pressure-based computational fluid dynamics formulation. Both wind-tunnel and ascent flight-test data are used for validation. Emphasis is placed on multiple-engine power-on effects. Computational characterization of the base drag in the critical subsonic regime is the focus of the validation effort; until recently, almost no multiple-engine data existed for a conical launch vehicle configuration. Parametric studies using high-order difference schemes are performed for the cold-flow tests, whereas grid studies are conducted for the flight tests. The computed vehicle axial force coefficients, forebody, aftbody, and base surface pressures compare favorably with those of tests. The results demonstrate that with adequate grid density and proper distribution, a high-order difference scheme, finite rate afterburning kinetics to model the plume chemistry, and a suitable turbulence model to describe separated flows, plume/air mixing, and boundary layers, computational fluid dynamics is a tool that can be used to predict the low-speed aerodynamic performance for rocket design and operations.
Stirling Engine Dynamic System Modeling
NASA Technical Reports Server (NTRS)
Nakis, Christopher G.
2004-01-01
The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.
Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izzuddin, Nur; Sunarsih,; Priyanto, Agoes
As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the targetmore » vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.« less
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Riha, David S.
2013-01-01
Physics-based models are routinely used to predict the performance of engineered systems to make decisions such as when to retire system components, how to extend the life of an aging system, or if a new design will be safe or available. Model verification and validation (V&V) is a process to establish credibility in model predictions. Ideally, carefully controlled validation experiments will be designed and performed to validate models or submodels. In reality, time and cost constraints limit experiments and even model development. This paper describes elements of model V&V during the development and application of a probabilistic fracture assessment model to predict cracking in space shuttle main engine high-pressure oxidizer turbopump knife-edge seals. The objective of this effort was to assess the probability of initiating and growing a crack to a specified failure length in specific flight units for different usage and inspection scenarios. The probabilistic fracture assessment model developed in this investigation combined a series of submodels describing the usage, temperature history, flutter tendencies, tooth stresses and numbers of cycles, fatigue cracking, nondestructive inspection, and finally the probability of failure. The analysis accounted for unit-to-unit variations in temperature, flutter limit state, flutter stress magnitude, and fatigue life properties. The investigation focused on the calculation of relative risk rather than absolute risk between the usage scenarios. Verification predictions were first performed for three units with known usage and cracking histories to establish credibility in the model predictions. Then, numerous predictions were performed for an assortment of operating units that had flown recently or that were projected for future flights. Calculations were performed using two NASA-developed software tools: NESSUS(Registered Trademark) for the probabilistic analysis, and NASGRO(Registered Trademark) for the fracture mechanics analysis. The goal of these predictions was to provide additional information to guide decisions on the potential of reusing existing and installed units prior to the new design certification.
NASA Astrophysics Data System (ADS)
Yan, Xinping; Xu, Xiaojian; Sheng, Chenxing; Yuan, Chengqing; Li, Zhixiong
2018-01-01
Wear faults are among the chief causes of main-engine damage, significantly influencing the secure and economical operation of ships. It is difficult for engineers to utilize multi-source information to identify wear modes, so an intelligent wear mode identification model needs to be developed to assist engineers in diagnosing wear faults in diesel engines. For this purpose, a multi-level belief rule base (BBRB) system is proposed in this paper. The BBRB system consists of two-level belief rule bases, and the 2D and 3D characteristics of wear particles are used as antecedent attributes on each level. Quantitative and qualitative wear information with uncertainties can be processed simultaneously by the BBRB system. In order to enhance the efficiency of the BBRB, the silhouette value is adopted to determine referential points and the fuzzy c-means clustering algorithm is used to transform input wear information into belief degrees. In addition, the initial parameters of the BBRB system are constructed on the basis of expert-domain knowledge and then optimized by the genetic algorithm to ensure the robustness of the system. To verify the validity of the BBRB system, experimental data acquired from real-world diesel engines are analyzed. Five-fold cross-validation is conducted on the experimental data and the BBRB is compared with the other four models in the cross-validation. In addition, a verification dataset containing different wear particles is used to highlight the effectiveness of the BBRB system in wear mode identification. The verification results demonstrate that the proposed BBRB is effective and efficient for wear mode identification with better performance and stability than competing systems.
Commissioning and Performance Analysis of WhisperGen Stirling Engine
NASA Astrophysics Data System (ADS)
Pradip, Prashant Kaliram
Stirling engine based cogeneration systems have potential to reduce energy consumption and greenhouse gas emission, due to their high cogeneration efficiency and emission control due to steady external combustion. To date, most studies on this unit have focused on performance based on both experimentation and computer models, and lack experimental data for diversified operating ranges. This thesis starts with the commissioning of a WhisperGen Stirling engine with components and instrumentation to evaluate power and thermal performance of the system. Next, a parametric study on primary engine variables, including air, diesel, and coolant flowrate and temperature were carried out to further understand their effect on engine power and efficiency. Then, this trend was validated with the thermodynamic model developed for the energy analysis of a Stirling cycle. Finally, the energy balance of the Stirling engine was compared without and with heat recovery from the engine block and the combustion chamber exhaust.
NASA Astrophysics Data System (ADS)
Uysal, Selcuk Can
In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).
NASA Technical Reports Server (NTRS)
Trauger, John
2008-01-01
Topics include and overview, science objectives, study objectives, coronagraph types, metrics, ACCESS observatory, laboratory validations, and summary. Individual slides examine ACCESS engineering approach, ACCESS gamut of coronagraph types, coronagraph metrics, ACCESS Discovery Space, coronagraph optical layout, wavefront control on the "level playing field", deformable mirror development for HCIT, laboratory testbed demonstrations, high contract imaging with the HCIT, laboratory coronagraph contrast and stability, model validation and performance predictions, HCIT coronagraph optical layout, Lyot coronagraph on the HCIT, pupil mapping (PIAA), shaped pupils, and vortex phase mask experiments on the HCIT.
DOT National Transportation Integrated Search
2004-01-01
Microscopic traffic simulation models have been widely accepted and applied in transportation engineering and planning practice for the past decades because simulation is cost-effective, safe, and fast. To achieve high fidelity and credibility for a ...
Calculating Mass Diffusion in High-Pressure Binary Fluids
NASA Technical Reports Server (NTRS)
Bellan, Josette; Harstad, Kenneth
2004-01-01
A comprehensive mathematical model of mass diffusion has been developed for binary fluids at high pressures, including critical and supercritical pressures. Heretofore, diverse expressions, valid for limited parameter ranges, have been used to correlate high-pressure binary mass-diffusion-coefficient data. This model will likely be especially useful in the computational simulation and analysis of combustion phenomena in diesel engines, gas turbines, and liquid rocket engines, wherein mass diffusion at high pressure plays a major role.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slepoy, Alexander; Mitchell, Scott A.; Backus, George A.
2008-09-01
Sandia National Laboratories is investing in projects that aim to develop computational modeling and simulation applications that explore human cognitive and social phenomena. While some of these modeling and simulation projects are explicitly research oriented, others are intended to support or provide insight for people involved in high consequence decision-making. This raises the issue of how to evaluate computational modeling and simulation applications in both research and applied settings where human behavior is the focus of the model: when is a simulation 'good enough' for the goals its designers want to achieve? In this report, we discuss two years' worthmore » of review and assessment of the ASC program's approach to computational model verification and validation, uncertainty quantification, and decision making. We present a framework that extends the principles of the ASC approach into the area of computational social and cognitive modeling and simulation. In doing so, we argue that the potential for evaluation is a function of how the modeling and simulation software will be used in a particular setting. In making this argument, we move from strict, engineering and physics oriented approaches to V&V to a broader project of model evaluation, which asserts that the systematic, rigorous, and transparent accumulation of evidence about a model's performance under conditions of uncertainty is a reasonable and necessary goal for model evaluation, regardless of discipline. How to achieve the accumulation of evidence in areas outside physics and engineering is a significant research challenge, but one that requires addressing as modeling and simulation tools move out of research laboratories and into the hands of decision makers. This report provides an assessment of our thinking on ASC Verification and Validation, and argues for further extending V&V research in the physical and engineering sciences toward a broader program of model evaluation in situations of high consequence decision-making.« less
40 CFR 1054.501 - How do I run a valid emission test?
Code of Federal Regulations, 2011 CFR
2011-07-01
... general testing. For service accumulation, use the test fuel or any commercially available fuel that is... blended fuel or the specified gasoline test fuel with that engine family. (ii) For nonhandheld engines... model year is based on test data collected using the blended fuel, we may use the blended fuel or the...
40 CFR 1054.501 - How do I run a valid emission test?
Code of Federal Regulations, 2012 CFR
2012-07-01
... general testing. For service accumulation, use the test fuel or any commercially available fuel that is... blended fuel or the specified gasoline test fuel with that engine family. (ii) For nonhandheld engines... model year is based on test data collected using the blended fuel, we may use the blended fuel or the...
40 CFR 1054.501 - How do I run a valid emission test?
Code of Federal Regulations, 2010 CFR
2010-07-01
... general testing. For service accumulation, use the test fuel or any commercially available fuel that is... blended fuel or the specified gasoline test fuel with that engine family. (ii) For nonhandheld engines... model year is based on test data collected using the blended fuel, we may use the blended fuel or the...
40 CFR 1054.501 - How do I run a valid emission test?
Code of Federal Regulations, 2013 CFR
2013-07-01
... general testing. For service accumulation, use the test fuel or any commercially available fuel that is... blended fuel or the specified gasoline test fuel with that engine family. (ii) For nonhandheld engines... model year is based on test data collected using the blended fuel, we may use the blended fuel or the...
Prediction of in-use emissions of heavy-duty diesel vehicles from engine testing.
Yanowitz, Janet; Graboski, Michael S; McCormick, Robert L
2002-01-15
A model of a heavy-duty vehicle driveline with automatic transmission has been developed for estimating engine speed and load from vehicle speed. The model has been validated using emissions tests conducted on three diesel vehicles on a chassis dynamometer and then on the engines removed from the vehicles tested on an engine dynamometer. Nitrogen oxide (NOx) emissions were proportional to work done by the engine. For two of the engines, the NOx/horsepower(HP) ratio was the same on the engine and on the chassis dynamometer tests. For the third engine NOx/HP was significantly higher from the chassis test, possibly due to the use of dual engine maps. The engine certification test generated consistently less particulate matter emissions on a gram per brake horsepower-hour basis than the Heavy Duty Transient and Central Business District chassis cycles. A good linear correlation (r2 = 0.97 and 0.91) was found between rates of HP increase integrated over the test cycle and PM emissions for both the chassis and the engine tests for two of the vehicles. The model also shows how small changes in vehicle speeds can lead to a doubling of load on the engine. Additionally, the model showed that it is impossible to drive a vehicle cycle equivalent to the heavy-duty engine federal test procedure on these vehicles.
Austin, Caitlin M.; Stoy, William; Su, Peter; Harber, Marie C.; Bardill, J. Patrick; Hammer, Brian K.; Forest, Craig R.
2014-01-01
Biosensors exploiting communication within genetically engineered bacteria are becoming increasingly important for monitoring environmental changes. Currently, there are a variety of mathematical models for understanding and predicting how genetically engineered bacteria respond to molecular stimuli in these environments, but as sensors have miniaturized towards microfluidics and are subjected to complex time-varying inputs, the shortcomings of these models have become apparent. The effects of microfluidic environments such as low oxygen concentration, increased biofilm encapsulation, diffusion limited molecular distribution, and higher population densities strongly affect rate constants for gene expression not accounted for in previous models. We report a mathematical model that accurately predicts the biological response of the autoinducer N-acyl homoserine lactone-mediated green fluorescent protein expression in reporter bacteria in microfluidic environments by accommodating these rate constants. This generalized mass action model considers a chain of biomolecular events from input autoinducer chemical to fluorescent protein expression through a series of six chemical species. We have validated this model against experimental data from our own apparatus as well as prior published experimental results. Results indicate accurate prediction of dynamics (e.g., 14% peak time error from a pulse input) and with reduced mean-squared error with pulse or step inputs for a range of concentrations (10 μM–30 μM). This model can help advance the design of genetically engineered bacteria sensors and molecular communication devices. PMID:25379076
A comprehensive combustion model for biodiesel-fueled engine simulations
NASA Astrophysics Data System (ADS)
Brakora, Jessica L.
Engine models for alternative fuels are available, but few are comprehensive, well-validated models that include accurate physical property data as well as a detailed description of the fuel chemistry. In this work, a comprehensive biodiesel combustion model was created for use in multi-dimensional engine simulations, specifically the KIVA3v R2 code. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. A reduced mechanism was generated from the methyl decanoate (MD) and methyl-9-decenoate (MD9D) mechanism developed at Lawrence Livermore National Laboratory. It was combined with a multi-component mechanism to include n-heptane in the fuel chemistry. The biodiesel chemistry was represented using a combination of MD, MD9D and n-heptane, which varied for a given fuel source. The reduced mechanism, which contained 63 species, accurately predicted ignition delay times of the detailed mechanism over a range of engine-specific operating conditions. Physical property data for the five methyl ester components of biodiesel were added to the KIVA library. Spray simulations were performed to ensure that the models adequately reproduce liquid penetration observed in biodiesel spray experiments. Fuel composition impacted liquid length as expected, with saturated species vaporizing more and penetrating less. Distillation curves were created to ensure the fuel vaporization process was comparable to available data. Engine validation was performed against a low-speed, high-load, conventional combustion experiments and the model was able to predict the performance and NOx formation seen in the experiment. High-speed, low-load, low-temperature combustion conditions were also modeled, and the emissions (HC, CO, NOx) and fuel consumption were well-predicted for a sweep of injection timings. Finally, comparisons were made between the results of biodiesel composition (palm vs. soy) and fuel blends (neat vs. B20). The model effectively reproduced the trends observed in the experiments.
Verification, Validation and Sensitivity Studies in Computational Biomechanics
Anderson, Andrew E.; Ellis, Benjamin J.; Weiss, Jeffrey A.
2012-01-01
Computational techniques and software for the analysis of problems in mechanics have naturally moved from their origins in the traditional engineering disciplines to the study of cell, tissue and organ biomechanics. Increasingly complex models have been developed to describe and predict the mechanical behavior of such biological systems. While the availability of advanced computational tools has led to exciting research advances in the field, the utility of these models is often the subject of criticism due to inadequate model verification and validation. The objective of this review is to present the concepts of verification, validation and sensitivity studies with regard to the construction, analysis and interpretation of models in computational biomechanics. Specific examples from the field are discussed. It is hoped that this review will serve as a guide to the use of verification and validation principles in the field of computational biomechanics, thereby improving the peer acceptance of studies that use computational modeling techniques. PMID:17558646
NASA Astrophysics Data System (ADS)
Tellman, B.; Sullivan, J.; Kettner, A.; Brakenridge, G. R.; Slayback, D. A.; Kuhn, C.; Doyle, C.
2016-12-01
There is an increasing need to understand flood vulnerability as the societal and economic effects of flooding increases. Risk models from insurance companies and flood models from hydrologists must be calibrated based on flood observations in order to make future predictions that can improve planning and help societies reduce future disasters. Specifically, to improve these models both traditional methods of flood prediction from physically based models as well as data-driven techniques, such as machine learning, require spatial flood observation to validate model outputs and quantify uncertainty. A key dataset that is missing for flood model validation is a global historical geo-database of flood event extents. Currently, the most advanced database of historical flood extent is hosted and maintained at the Dartmouth Flood Observatory (DFO) that has catalogued 4320 floods (1985-2015) but has only mapped 5% of these floods. We are addressing this data gap by mapping the inventory of floods in the DFO database to create a first-of- its-kind, comprehensive, global and historical geospatial database of flood events. To do so, we combine water detection algorithms on MODIS and Landsat 5,7 and 8 imagery in Google Earth Engine to map discrete flood events. The created database will be available in the Earth Engine Catalogue for download by country, region, or time period. This dataset can be leveraged for new data-driven hydrologic modeling using machine learning algorithms in Earth Engine's highly parallelized computing environment, and we will show examples for New York and Senegal.
Reusable Rocket Engine Operability Modeling and Analysis
NASA Technical Reports Server (NTRS)
Christenson, R. L.; Komar, D. R.
1998-01-01
This paper describes the methodology, model, input data, and analysis results of a reusable launch vehicle engine operability study conducted with the goal of supporting design from an operations perspective. Paralleling performance analyses in schedule and method, this requires the use of metrics in a validated operations model useful for design, sensitivity, and trade studies. Operations analysis in this view is one of several design functions. An operations concept was developed given an engine concept and the predicted operations and maintenance processes incorporated into simulation models. Historical operations data at a level of detail suitable to model objectives were collected, analyzed, and formatted for use with the models, the simulations were run, and results collected and presented. The input data used included scheduled and unscheduled timeline and resource information collected into a Space Transportation System (STS) Space Shuttle Main Engine (SSME) historical launch operations database. Results reflect upon the importance not only of reliable hardware but upon operations and corrective maintenance process improvements.
Model based systems engineering for astronomical projects
NASA Astrophysics Data System (ADS)
Karban, R.; Andolfato, L.; Bristow, P.; Chiozzi, G.; Esselborn, M.; Schilling, M.; Schmid, C.; Sommer, H.; Zamparelli, M.
2014-08-01
Model Based Systems Engineering (MBSE) is an emerging field of systems engineering for which the System Modeling Language (SysML) is a key enabler for descriptive, prescriptive and predictive models. This paper surveys some of the capabilities, expectations and peculiarities of tools-assisted MBSE experienced in real-life astronomical projects. The examples range in depth and scope across a wide spectrum of applications (for example documentation, requirements, analysis, trade studies) and purposes (addressing a particular development need, or accompanying a project throughout many - if not all - its lifecycle phases, fostering reuse and minimizing ambiguity). From the beginnings of the Active Phasing Experiment, through VLT instrumentation, VLTI infrastructure, Telescope Control System for the E-ELT, until Wavefront Control for the E-ELT, we show how stepwise refinements of tools, processes and methods have provided tangible benefits to customary system engineering activities like requirement flow-down, design trade studies, interfaces definition, and validation, by means of a variety of approaches (like Model Checking, Simulation, Model Transformation) and methodologies (like OOSEM, State Analysis)
Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft
NASA Technical Reports Server (NTRS)
Hess, J. R.; Bear, R. L.
1982-01-01
A viable, single engine, supersonic V/STOL fighter/attack aircraft concept was defined. This vectored thrust, canard wing configuration utilizes an advanced technology separated flow engine with fan stream burning. The aerodynamic characteristics of this configuration were estimated and performance evaluated. Significant aerodynamic and aerodynamic propulsion interaction uncertainties requiring additional investigation were identified. A wind tunnel model concept and test program to resolve these uncertainties and validate the aerodynamic prediction methods were defined.
NASA Technical Reports Server (NTRS)
Olsson, W. J.; Martin, R. L.
1982-01-01
Flight loads on the 747 propulsion system and resulting JT9D blade to outer airseal running clearances during representative acceptance flight and revenue flight sequences were measured. The resulting rub induced clearance changes, and engine performance changes were then analyzed to validate and refine the JT9D-7A short term performance deterioration model.
49 CFR 535.9 - Enforcement approach.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... testing throughout a given model year in order to validate data received from manufacturers and will... model year. The average set balance is based upon the engines or vehicles performance above or below the...
A Preliminary Assessment of the SURF Reactive Burn Model Implementation in FLAG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Carl Edward; McCombe, Ryan Patrick; Carver, Kyle
Properly validated and calibrated reactive burn models (RBM) can be useful engineering tools for assessing high explosive performance and safety. Experiments with high explosives are expensive. Inexpensive RBM calculations are increasingly relied on for predictive analysis for performance and safety. This report discusses the validation of Menikoff and Shaw’s SURF reactive burn model, which has recently been implemented in the FLAG code. The LANL Gapstick experiment is discussed as is its’ utility in reactive burn model validation. Data obtained from pRad for the LT-63 series is also presented along with FLAG simulations using SURF for both PBX 9501 and PBXmore » 9502. Calibration parameters for both explosives are presented.« less
Validation of a program for supercritical power plant calculations
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Łukowicz, Henryk; Bartela, Łukasz; Michalski, Sebastian
2011-12-01
This article describes the validation of a supercritical steam cycle. The cycle model was created with the commercial program GateCycle and validated using in-house code of the Institute of Power Engineering and Turbomachinery. The Institute's in-house code has been used extensively for industrial power plants calculations with good results. In the first step of the validation process, assumptions were made about the live steam temperature and pressure, net power, characteristic quantities for high- and low-pressure regenerative heat exchangers and pressure losses in heat exchangers. These assumptions were then used to develop a steam cycle model in Gate-Cycle and a model based on the code developed in-house at the Institute of Power Engineering and Turbomachinery. Properties, such as thermodynamic parameters at characteristic points of the steam cycle, net power values and efficiencies, heat provided to the steam cycle and heat taken from the steam cycle, were compared. The last step of the analysis was calculation of relative errors of compared values. The method used for relative error calculations is presented in the paper. The assigned relative errors are very slight, generally not exceeding 0.1%. Based on our analysis, it can be concluded that using the GateCycle software for calculations of supercritical power plants is possible.
NASA Technical Reports Server (NTRS)
Pieper, Jerry L.; Walker, Richard E.
1993-01-01
During the past three decades, an enormous amount of resources were expended in the design and development of Liquid Oxygen/Hydrocarbon and Hydrogen (LOX/HC and LOX/H2) rocket engines. A significant portion of these resources were used to develop and demonstrate the performance and combustion stability for each new engine. During these efforts, many analytical and empirical models were developed that characterize design parameters and combustion processes that influence performance and stability. Many of these models are suitable as design tools, but they have not been assembled into an industry-wide usable analytical design methodology. The objective of this program was to assemble existing performance and combustion stability models into a usable methodology capable of producing high performing and stable LOX/hydrocarbon and LOX/hydrogen propellant booster engines.
Computational experience with a three-dimensional rotary engine combustion model
NASA Astrophysics Data System (ADS)
Raju, M. S.; Willis, E. A.
1990-04-01
A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.
Computational experience with a three-dimensional rotary engine combustion model
NASA Technical Reports Server (NTRS)
Raju, M. S.; Willis, E. A.
1990-01-01
A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.
Software risk management through independent verification and validation
NASA Technical Reports Server (NTRS)
Callahan, John R.; Zhou, Tong C.; Wood, Ralph
1995-01-01
Software project managers need tools to estimate and track project goals in a continuous fashion before, during, and after development of a system. In addition, they need an ability to compare the current project status with past project profiles to validate management intuition, identify problems, and then direct appropriate resources to the sources of problems. This paper describes a measurement-based approach to calculating the risk inherent in meeting project goals that leverages past project metrics and existing estimation and tracking models. We introduce the IV&V Goal/Questions/Metrics model, explain its use in the software development life cycle, and describe our attempts to validate the model through the reverse engineering of existing projects.
1987-12-01
0 00 I DTIC"ELECTE. ~FEB 0 911988< " H VALIDATION OF GEMACS FOR MODELING ’LIGHTNING-INDUCED ELECTROMAGNETIC FIELDS THESIS David S. Mabee Captain...THESIS David S. Mabee . Captain, USAFD T C ’::, AFIT/GE/ENG/87D-39 ELECTFE r C:’., ~FEB 0 91988 J Approved for public release; distribution unlimited...Electrical Engineering David S. Mabee , B.S. ’- ,. . Captain, USAF December 1987 A o fr p.. ’ Approved for public release; distribution unlimited ,12
Load Model Verification, Validation and Calibration Framework by Statistical Analysis on Field Data
NASA Astrophysics Data System (ADS)
Jiao, Xiangqing; Liao, Yuan; Nguyen, Thai
2017-11-01
Accurate load models are critical for power system analysis and operation. A large amount of research work has been done on load modeling. Most of the existing research focuses on developing load models, while little has been done on developing formal load model verification and validation (V&V) methodologies or procedures. Most of the existing load model validation is based on qualitative rather than quantitative analysis. In addition, not all aspects of model V&V problem have been addressed by the existing approaches. To complement the existing methods, this paper proposes a novel load model verification and validation framework that can systematically and more comprehensively examine load model's effectiveness and accuracy. Statistical analysis, instead of visual check, quantifies the load model's accuracy, and provides a confidence level of the developed load model for model users. The analysis results can also be used to calibrate load models. The proposed framework can be used as a guidance to systematically examine load models for utility engineers and researchers. The proposed method is demonstrated through analysis of field measurements collected from a utility system.
Animal models for bone tissue engineering and modelling disease
Griffin, Michelle
2018-01-01
ABSTRACT Tissue engineering and its clinical application, regenerative medicine, are instructing multiple approaches to aid in replacing bone loss after defects caused by trauma or cancer. In such cases, bone formation can be guided by engineered biodegradable and nonbiodegradable scaffolds with clearly defined architectural and mechanical properties informed by evidence-based research. With the ever-increasing expansion of bone tissue engineering and the pioneering research conducted to date, preclinical models are becoming a necessity to allow the engineered products to be translated to the clinic. In addition to creating smart bone scaffolds to mitigate bone loss, the field of tissue engineering and regenerative medicine is exploring methods to treat primary and secondary bone malignancies by creating models that mimic the clinical disease manifestation. This Review gives an overview of the preclinical testing in animal models used to evaluate bone regeneration concepts. Immunosuppressed rodent models have shown to be successful in mimicking bone malignancy via the implantation of human-derived cancer cells, whereas large animal models, including pigs, sheep and goats, are being used to provide an insight into bone formation and the effectiveness of scaffolds in induced tibial or femoral defects, providing clinically relevant similarity to human cases. Despite the recent progress, the successful translation of bone regeneration concepts from the bench to the bedside is rooted in the efforts of different research groups to standardise and validate the preclinical models for bone tissue engineering approaches. PMID:29685995
Analysis of oil consumption in cylinder of diesel engine for optimization of piston rings
NASA Astrophysics Data System (ADS)
Zhang, Junhong; Zhang, Guichang; He, Zhenpeng; Lin, Jiewei; Liu, Hai
2013-01-01
The performance and particulate emission of a diesel engine are affected by the consumption of lubricating oil. Most studies on oil consumption mechanism of the cylinder have been done by using the experimental method, however they are very costly. Therefore, it is very necessary to study oil consumption mechanism of the cylinder and obtain the accurate results by the calculation method. Firstly, four main modes of lubricating oil consumption in cylinder are analyzed and then the oil consumption rate under common working conditions are calculated for the four modes based on an engine. Then, the factors that affect the lubricating oil consumption such as working conditions, the second ring closed gap, the elastic force of the piston rings are also investigated for the four modes. The calculation results show that most of the lubricating oil is consumed by evaporation on the liner surface. Besides, there are three other findings: (1) The oil evaporation from the liner is determined by the working condition of an engine; (2) The increase of the ring closed gap reduces the oil blow through the top ring end gap but increases blow-by; (3) With the increase of the elastic force of the ring, both the left oil film thickness and the oil throw-off at the top ring decrease. The oil scraping of the piston top edge is consequently reduced while the friction loss between the rings and the liner increases. A neural network prediction model of the lubricating oil consumption in cylinder is established based on the BP neural network theory, and then the model is trained and validated. The main piston rings parameters which affect the oil consumption are optimized by using the BP neural network prediction model and the prediction accuracy of this BP neural network is within 8%, which is acceptable for normal engineering applications. The oil consumption is also measured experimentally. The relative errors of the calculated and experimental values are less than 10%, verifying the validity of the simulation results. Applying the established simulation model and the validated BP network model is able to generate numerical results with sufficient accuracy, which significantly reduces experimental work and provides guidance for the optimal design of the piston rings diesel engines.
Ethical issues in engineering models: an operations researcher's reflections.
Kleijnen, J
2011-09-01
This article starts with an overview of the author's personal involvement--as an Operations Research consultant--in several engineering case-studies that may raise ethical questions; e.g., case-studies on nuclear waste, water management, sustainable ecology, military tactics, and animal welfare. All these case studies employ computer simulation models. In general, models are meant to solve practical problems, which may have ethical implications for the various stakeholders; namely, the modelers, the clients, and the public at large. The article further presents an overview of codes of ethics in a variety of disciples. It discusses the role of mathematical models, focusing on the validation of these models' assumptions. Documentation of these model assumptions needs special attention. Some ethical norms and values may be quantified through the model's multiple performance measures, which might be optimized. The uncertainty about the validity of the model leads to risk or uncertainty analysis and to a search for robust models. Ethical questions may be pressing in military models, including war games. However, computer games and the related experimental economics may also provide a special tool to study ethical issues. Finally, the article briefly discusses whistleblowing. Its many references to publications and websites enable further study of ethical issues in modeling.
40 CFR 86.1912 - How do I determine whether an engine meets the vehicle-pass criteria?
Code of Federal Regulations, 2010 CFR
2010-07-01
... deficiency area or limited testing region, will not be added together to make a 30 second or longer event... section for at least 90 percent of the valid NTE sampling events, as defined in paragraph (b) of this section. For 2007 through 2009 model year engines, the average emissions from every NTE sampling event...
40 CFR 86.1912 - How do I determine whether an engine meets the vehicle-pass criteria?
Code of Federal Regulations, 2011 CFR
2011-07-01
... region, will not be added together to make a 30 second or longer event. Exclude any portion of a sampling... section for at least 90 percent of the valid NTE sampling events, as defined in paragraph (b) of this section. For 2007 through 2009 model year engines, the average emissions from every NTE sampling event...
Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction
Mach, J. C.; Budrow, C. J.; Pagan, D. C.; ...
2017-03-15
Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present paper, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to developmore » significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. Finally, the experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.« less
Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mach, J. C.; Budrow, C. J.; Pagan, D. C.
Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present paper, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to developmore » significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. Finally, the experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.« less
Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites
NASA Technical Reports Server (NTRS)
Turner, Travis L.
2001-01-01
This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kandler A; Usseglio Viretta, Francois L; Graf, Peter A
This presentation describes research work led by NREL with team members from Argonne National Laboratory and Texas A&M University in microstructure analysis, modeling and validation under DOE's Computer-Aided Engineering of Batteries (CAEBAT) program. The goal of the project is to close the gaps between CAEBAT models and materials research by creating predictive models that can be used for electrode design.
Model-based verification and validation of the SMAP uplink processes
NASA Astrophysics Data System (ADS)
Khan, M. O.; Dubos, G. F.; Tirona, J.; Standley, S.
Model-Based Systems Engineering (MBSE) is being used increasingly within the spacecraft design community because of its benefits when compared to document-based approaches. As the complexity of projects expands dramatically with continually increasing computational power and technology infusion, the time and effort needed for verification and validation (V& V) increases geometrically. Using simulation to perform design validation with system-level models earlier in the life cycle stands to bridge the gap between design of the system (based on system-level requirements) and verifying those requirements/validating the system as a whole. This case study stands as an example of how a project can validate a system-level design earlier in the project life cycle than traditional V& V processes by using simulation on a system model. Specifically, this paper describes how simulation was added to a system model of the Soil Moisture Active-Passive (SMAP) mission's uplink process. Also discussed are the advantages and disadvantages of the methods employed and the lessons learned; which are intended to benefit future model-based and simulation-based development efforts.
NASA Technical Reports Server (NTRS)
Glass, David E.; Robinson, James C.
1990-01-01
A procedure is presented to allow the use of temperature dependent mechanical properties in the Engineering Analysis Language (EAL) System for solid structural elements. This is accomplished by including a modular runstream in the main EAL runstream. The procedure is applicable for models with multiple materials and with anisotropic properties, and can easily be incorporated into an existing EAL runstream. The procedure (which is applicable for EAL elastic solid elements) is described in detail, followed by a description of the validation of the routine. A listing of the EAL runstream used to validate the procedure is included in the Appendix.
ERIC Educational Resources Information Center
Woollacott, L. C.
2009-01-01
The CDIO (Conceive-Design-Implement-Operate) syllabus is the most detailed statement on the goals of engineering education currently found in the literature. This paper presents an in-depth validation exercise of the CDIO syllabus using the taxonomy of engineering competencies as a validating instrument. The study explains the attributes that make…
O'Clock, George D
2016-08-01
Cellular engineering involves modification and control of cell properties, and requires an understanding of fundamentals and mechanisms of action for cellular derived product development. One of the keys to success in cellular engineering involves the quality and validity of results obtained from cell chemical signaling pathway assays. The accuracy of the assay data cannot be verified or assured if the effect of positive feedback, nonlinearities, and interrelationships between cell chemical signaling pathway elements are not understood, modeled, and simulated. Nonlinearities and positive feedback in the cell chemical signaling pathway can produce significant aberrations in assay data collection. Simulating the pathway can reveal potential instability problems that will affect assay results. A simulation, using an electrical analog for the coupled differential equations representing each segment of the pathway, provides an excellent tool for assay validation purposes. With this approach, voltages represent pathway enzyme concentrations and operational amplifier feedback resistance and input resistance values determine pathway gain and rate constants. The understanding provided by pathway modeling and simulation is strategically important in order to establish experimental controls for assay protocol structure, time frames specified between assays, and assay concentration variation limits; to ensure accuracy and reproducibility of results.
NASA Technical Reports Server (NTRS)
Lee, Hyung B.; Ghia, Urmila; Bayyuk, Sami; Oberkampf, William L.; Roy, Christopher J.; Benek, John A.; Rumsey, Christopher L.; Powers, Joseph M.; Bush, Robert H.; Mani, Mortaza
2016-01-01
Computational fluid dynamics (CFD) and other advanced modeling and simulation (M&S) methods are increasingly relied on for predictive performance, reliability and safety of engineering systems. Analysts, designers, decision makers, and project managers, who must depend on simulation, need practical techniques and methods for assessing simulation credibility. The AIAA Guide for Verification and Validation of Computational Fluid Dynamics Simulations (AIAA G-077-1998 (2002)), originally published in 1998, was the first engineering standards document available to the engineering community for verification and validation (V&V) of simulations. Much progress has been made in these areas since 1998. The AIAA Committee on Standards for CFD is currently updating this Guide to incorporate in it the important developments that have taken place in V&V concepts, methods, and practices, particularly with regard to the broader context of predictive capability and uncertainty quantification (UQ) methods and approaches. This paper will provide an overview of the changes and extensions currently underway to update the AIAA Guide. Specifically, a framework for predictive capability will be described for incorporating a wide range of error and uncertainty sources identified during the modeling, verification, and validation processes, with the goal of estimating the total prediction uncertainty of the simulation. The Guide's goal is to provide a foundation for understanding and addressing major issues and concepts in predictive CFD. However, this Guide will not recommend specific approaches in these areas as the field is rapidly evolving. It is hoped that the guidelines provided in this paper, and explained in more detail in the Guide, will aid in the research, development, and use of CFD in engineering decision-making.
Stability analysis of free piston Stirling engines
NASA Astrophysics Data System (ADS)
Bégot, Sylvie; Layes, Guillaume; Lanzetta, François; Nika, Philippe
2013-03-01
This paper presents a stability analysis of a free piston Stirling engine. The model and the detailed calculation of pressures losses are exposed. Stability of the machine is studied by the observation of the eigenvalues of the model matrix. Model validation based on the comparison with NASA experimental results is described. The influence of operational and construction parameters on performance and stability issues is exposed. The results show that most parameters that are beneficial for machine power seem to induce irregular mechanical characteristics with load, suggesting that self-sustained oscillations could be difficult to maintain and control.
A weak-scattering model for turbine-tone haystacking
NASA Astrophysics Data System (ADS)
McAlpine, A.; Powles, C. J.; Tester, B. J.
2013-08-01
Noise and emissions are critical technical issues in the development of aircraft engines. This necessitates the development of accurate models to predict the noise radiated from aero-engines. Turbine tones radiated from the exhaust nozzle of a turbofan engine propagate through turbulent jet shear layers which causes scattering of sound. In the far-field, measurements of the tones may exhibit spectral broadening, where owing to scattering, the tones are no longer narrow band peaks in the spectrum. This effect is known colloquially as 'haystacking'. In this article a comprehensive analytical model to predict spectral broadening for a tone radiated through a circular jet, for an observer in the far field, is presented. This model extends previous work by the authors which considered the prediction of spectral broadening at far-field observer locations outside the cone of silence. The modelling uses high-frequency asymptotic methods and a weak-scattering assumption. A realistic shear layer velocity profile and turbulence characteristics are included in the model. The mathematical formulation which details the spectral broadening, or haystacking, of a single-frequency, single azimuthal order turbine tone is outlined. In order to validate the model, predictions are compared with experimental results, albeit only at polar angle equal to 90°. A range of source frequencies from 4 to 20kHz, and jet velocities from 20 to 60ms-1, are examined for validation purposes. The model correctly predicts how the spectral broadening is affected when the source frequency and jet velocity are varied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Parsons, T.; King, R.
This report summarizes the theory, verification, and validation of a new sizing tool for wind turbine drivetrain components, the Drivetrain Systems Engineering (DriveSE) tool. DriveSE calculates the dimensions and mass properties of the hub, main shaft, main bearing(s), gearbox, bedplate, transformer if up-tower, and yaw system. The level of fi¬ delity for each component varies depending on whether semiempirical parametric or physics-based models are used. The physics-based models have internal iteration schemes based on system constraints and design criteria. Every model is validated against available industry data or finite-element analysis. The verification and validation results show that the models reasonablymore » capture primary drivers for the sizing and design of major drivetrain components.« less
Tendon Tissue Engineering: Progress, Challenges, and Translation to the Clinic
Shearn, Jason T.; Kinneberg, Kirsten R.C.; Dyment, Nathaniel A.; Galloway, Marc T.; Kenter, Keith; Wylie, Christopher; Butler, David L.
2013-01-01
The tissue engineering field has made great strides in understanding how different aspects of tissue engineered constructs (TECs) and the culture process affect final tendon repair. However, there remain significant challenges in developing strategies that will lead to a clinically effective and commercially successful product. In an effort to increase repair quality, a better understanding of normal development, and how it differs from adult tendon healing, may provide strategies to improve tissue engineering. As tendon tissue engineering continues to improve, the field needs to employ more clinically relevant models of tendon injury such as degenerative tendons. We need to translate successes to larger animal models to begin exploring the clinical implications of our treatments. By advancing the models used to validate our TECs, we can help convince our toughest customer, the surgeon, that our products will be clinically efficacious. As we address these challenges in musculoskeletal tissue engineering, the field still needs to address the commercialization of products developed in the laboratory. TEC commercialization faces numerous challenges because each injury and patient is unique. This review aims to provide tissue engineers with a summary of important issues related to engineering tendon repairs and potential strategies for producing clinically successful products. PMID:21625053
Adaptation Method for Overall and Local Performances of Gas Turbine Engine Model
NASA Astrophysics Data System (ADS)
Kim, Sangjo; Kim, Kuisoon; Son, Changmin
2018-04-01
An adaptation method was proposed to improve the modeling accuracy of overall and local performances of gas turbine engine. The adaptation method was divided into two steps. First, the overall performance parameters such as engine thrust, thermal efficiency, and pressure ratio were adapted by calibrating compressor maps, and second, the local performance parameters such as temperature of component intersection and shaft speed were adjusted by additional adaptation factors. An optimization technique was used to find the correlation equation of adaptation factors for compressor performance maps. The multi-island genetic algorithm (MIGA) was employed in the present optimization. The correlations of local adaptation factors were generated based on the difference between the first adapted engine model and performance test data. The proposed adaptation method applied to a low-bypass ratio turbofan engine of 12,000 lb thrust. The gas turbine engine model was generated and validated based on the performance test data in the sea-level static condition. In flight condition at 20,000 ft and 0.9 Mach number, the result of adapted engine model showed improved prediction in engine thrust (overall performance parameter) by reducing the difference from 14.5 to 3.3%. Moreover, there was further improvement in the comparison of low-pressure turbine exit temperature (local performance parameter) as the difference is reduced from 3.2 to 0.4%.
ERIC Educational Resources Information Center
Lévano, Marcos; Albornoz, Andrea
2016-01-01
This paper aims to propose a framework to improve the quality in teaching and learning in order to develop good practices to train professionals in the career of computer engineering science. To demonstrate the progress and achievements, our work is based on two principles for the formation of professionals, one based on the model of learning…
Quantitative Analysis of a Hybrid Electric HMMWV for Fuel Economy Improvement
2012-05-01
HMMWV of equivalent size. Hybrid vehicle powertrains show improved fuel economy gains due to optimized engine operation and regenerative braking . In... regenerative braking . Validated vehicle models as well as data collected on test tracks are used in the quantitative analysis. The regenerative braking ...hybrid electric vehicle, drive cycle, fuel economy, engine efficiency, regenerative braking . 1 Introduction The US Army (Tank Automotive
Acoustic-Structure Interaction in Rocket Engines: Validation Testing
NASA Technical Reports Server (NTRS)
Davis, R. Benjamin; Joji, Scott S.; Parks, Russel A.; Brown, Andrew M.
2009-01-01
While analyzing a rocket engine component, it is often necessary to account for any effects that adjacent fluids (e.g., liquid fuels or oxidizers) might have on the structural dynamics of the component. To better characterize the fully coupled fluid-structure system responses, an analytical approach that models the system as a coupled expansion of rigid wall acoustic modes and in vacuo structural modes has been proposed. The present work seeks to experimentally validate this approach. To experimentally observe well-coupled system modes, the test article and fluid cavities are designed such that the uncoupled structural frequencies are comparable to the uncoupled acoustic frequencies. The test measures the natural frequencies, mode shapes, and forced response of cylindrical test articles in contact with fluid-filled cylindrical and/or annular cavities. The test article is excited with a stinger and the fluid-loaded response is acquired using a laser-doppler vibrometer. The experimentally determined fluid-loaded natural frequencies are compared directly to the results of the analytical model. Due to the geometric configuration of the test article, the analytical model is found to be valid for natural modes with circumferential wave numbers greater than four. In the case of these modes, the natural frequencies predicted by the analytical model demonstrate excellent agreement with the experimentally determined natural frequencies.
Steppan, Martin; Kraus, Ludwig; Piontek, Daniela; Siciliano, Valeria
2013-01-01
Prevalence estimation of cannabis use is usually based on self-report data. Although there is evidence on the reliability of this data source, its cross-cultural validity is still a major concern. External objective criteria are needed for this purpose. In this study, cannabis-related search engine query data are used as an external criterion. Data on cannabis use were taken from the 2007 European School Survey Project on Alcohol and Other Drugs (ESPAD). Provincial data came from three Italian nation-wide studies using the same methodology (2006-2008; ESPAD-Italia). Information on cannabis-related search engine query data was based on Google search volume indices (GSI). (1) Reliability analysis was conducted for GSI. (2) Latent measurement models of "true" cannabis prevalence were tested using perceived availability, web-based cannabis searches and self-reported prevalence as indicators. (3) Structure models were set up to test the influences of response tendencies and geographical position (latitude, longitude). In order to test the stability of the models, analyses were conducted on country level (Europe, US) and on provincial level in Italy. Cannabis-related GSI were found to be highly reliable and constant over time. The overall measurement model was highly significant in both data sets. On country level, no significant effects of response bias indicators and geographical position on perceived availability, web-based cannabis searches and self-reported prevalence were found. On provincial level, latitude had a significant positive effect on availability indicating that perceived availability of cannabis in northern Italy was higher than expected from the other indicators. Although GSI showed weaker associations with cannabis use than perceived availability, the findings underline the external validity and usefulness of search engine query data as external criteria. The findings suggest an acceptable relative comparability of national (provincial) prevalence estimates of cannabis use that are based on a common survey methodology. Search engine query data are a too weak indicator to base prevalence estimations on this source only, but in combination with other sources (waste water analysis, sales of cigarette paper) they may provide satisfactory estimates. Copyright © 2012. Published by Elsevier B.V.
Risk evaluation of highway engineering project based on the fuzzy-AHP
NASA Astrophysics Data System (ADS)
Yang, Qian; Wei, Yajun
2011-10-01
Engineering projects are social activities, which integrate with technology, economy, management and organization. There are uncertainties in each respect of engineering projects, and it needs to strengthen risk management urgently. Based on the analysis of the characteristics of highway engineering, and the study of the basic theory on risk evaluation, the paper built an index system of highway project risk evaluation. Besides based on fuzzy mathematics principle, analytical hierarchy process was used and as a result, the model of the comprehensive appraisal method of fuzzy and AHP was set up for the risk evaluation of express way concessionary project. The validity and the practicability of the risk evaluation of expressway concessionary project were verified after the model was applied to the practice of a project.
An investigation of the performance of an electronic in-line pump system for diesel engines
NASA Astrophysics Data System (ADS)
Fan, Li-Yun; Zhu, Yuan-Xian; Long, Wu-Qiang; Ma, Xiu-Zhen; Xue, Ying-Ying
2008-12-01
WIT Electronic Fuel System Co., Ltd. has developed a new fuel injector, the Electronic In-line Pump (EIP) system, designed to meet China’s diesel engine emission and fuel economy regulations. It can be used on marine diesel engines and commercial vehicle engines through different EIP systems. A numerical model of the EIP system was built in the AMESim environment for the purpose of creating a design tool for engine application and system optimization. The model was used to predict key injection characteristics under different operating conditions, such as injection pressure, injection rate, and injection duration. To validate these predictions, experimental tests were conducted under the conditions that were modeled. The results were quite encouraging and in agreement with model predictions. Additional experiments were conducted to study the injection characteristics of the EIP system. These results show that injection pressure and injection quantity are insensitive to injection timing variations, this is due to the design of the constant velocity cam profile. Finally, injection quantity and pressure vs. pulse width at different cam speeds are presented, an important injection characteristic for EIP system calibration.
Engineering Property Prediction Tools for Tailored Polymer Composite Structures (49465)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Kunc, Vlastimil
2009-12-29
Process and constitutive models as well as characterization tools and testing methods were developed to determine stress-strain responses, damage development, strengths and creep of long-fiber thermoplastics (LFTs). The developed models were implemented in Moldflow and ABAQUS and have been validated against LFT data obtained experimentally.
Implementation and Analysis of Hemodialysis in the Unit Operations Laboratory
ERIC Educational Resources Information Center
Madihally, Sundararajan V.; Lewis, Randy S.
2007-01-01
To enhance bioengineering in the chemical engineering curriculum, a Unit Operations experiment simulating the hemodialysis of creatinine was implemented. The blood toxin creatinine was used for developing a more realistic dialysis experiment. A dialysis model is presented that allows students to assess the validity of model assumptions. This work…
Adaptive Optimization of Aircraft Engine Performance Using Neural Networks
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Long, Theresa W.
1995-01-01
Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.
FPGA implementation of predictive degradation model for engine oil lifetime
NASA Astrophysics Data System (ADS)
Idros, M. F. M.; Razak, A. H. A.; Junid, S. A. M. Al; Suliman, S. I.; Halim, A. K.
2018-03-01
This paper presents the implementation of linear regression model for degradation prediction on Register Transfer Logic (RTL) using QuartusII. A stationary model had been identified in the degradation trend for the engine oil in a vehicle in time series method. As for RTL implementation, the degradation model is written in Verilog HDL and the data input are taken at a certain time. Clock divider had been designed to support the timing sequence of input data. At every five data, a regression analysis is adapted for slope variation determination and prediction calculation. Here, only the negative value are taken as the consideration for the prediction purposes for less number of logic gate. Least Square Method is adapted to get the best linear model based on the mean values of time series data. The coded algorithm has been implemented on FPGA for validation purposes. The result shows the prediction time to change the engine oil.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey; Stueber, Thomas
2012-01-01
An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10-foot by 10-foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Stueber, Thomas J.
2012-01-01
An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10- by 10-Foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.
Update: Advancement of Contact Dynamics Modeling for Human Spaceflight Simulation Applications
NASA Technical Reports Server (NTRS)
Brain, Thomas A.; Kovel, Erik B.; MacLean, John R.; Quiocho, Leslie J.
2017-01-01
Pong is a new software tool developed at the NASA Johnson Space Center that advances interference-based geometric contact dynamics based on 3D graphics models. The Pong software consists of three parts: a set of scripts to extract geometric data from 3D graphics models, a contact dynamics engine that provides collision detection and force calculations based on the extracted geometric data, and a set of scripts for visualizing the dynamics response with the 3D graphics models. The contact dynamics engine can be linked with an external multibody dynamics engine to provide an integrated multibody contact dynamics simulation. This paper provides a detailed overview of Pong including the overall approach and modeling capabilities, which encompasses force generation from contact primitives and friction to computational performance. Two specific Pong-based examples of International Space Station applications are discussed, and the related verification and validation using this new tool are also addressed.
Genetically engineered mouse models in oncology research and cancer medicine.
Kersten, Kelly; de Visser, Karin E; van Miltenburg, Martine H; Jonkers, Jos
2017-02-01
Genetically engineered mouse models (GEMMs) have contributed significantly to the field of cancer research. In contrast to cancer cell inoculation models, GEMMs develop de novo tumors in a natural immune-proficient microenvironment. Tumors arising in advanced GEMMs closely mimic the histopathological and molecular features of their human counterparts, display genetic heterogeneity, and are able to spontaneously progress toward metastatic disease. As such, GEMMs are generally superior to cancer cell inoculation models, which show no or limited heterogeneity and are often metastatic from the start. Given that GEMMs capture both tumor cell-intrinsic and cell-extrinsic factors that drive de novo tumor initiation and progression toward metastatic disease, these models are indispensable for preclinical research. GEMMs have successfully been used to validate candidate cancer genes and drug targets, assess therapy efficacy, dissect the impact of the tumor microenvironment, and evaluate mechanisms of drug resistance. In vivo validation of candidate cancer genes and therapeutic targets is further accelerated by recent advances in genetic engineering that enable fast-track generation and fine-tuning of GEMMs to more closely resemble human patients. In addition, aligning preclinical tumor intervention studies in advanced GEMMs with clinical studies in patients is expected to accelerate the development of novel therapeutic strategies and their translation into the clinic. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation
Liu, Jinlong; Szybist, James; Dumitrescu, Cosmin
2018-04-03
3D CFD spark-ignition IC engine simulations are extremely complex for the regular user. Truly-predictive CFD simulations for the turbulent flame combustion that solve fully coupled transport/chemistry equations may require large computational capabilities unavailable to regular CFD users. A solution is to use a simpler phenomenological model such as the G-equation that decouples transport/chemistry result. Such simulation can still provide acceptable and faster results at the expense of predictive capabilities. While the G-equation is well understood within the experienced modeling community, the goal of this paper is to document some of them for a novice or less experienced CFD user whomore » may not be aware that phenomenological models of turbulent flame combustion usually require heavy tuning and calibration from the user to mimic experimental observations. This study used ANSYS® Forte, Version 17.2, and the built-in G-equation model, to investigate two tuning constants that influence flame propagation in 3D CFD SI engine simulations: the stretch factor coefficient, Cms and the flame development coefficient, Cm2. After identifying several Cm2-Cms pairs that matched experimental data at one operating conditions, simulation results showed that engine models that used different Cm2-Cms sets predicted similar combustion performance, when the spark timing, engine load, and engine speed were changed from the operating condition used to validate the CFD simulation. A dramatic shift was observed when engine speed was doubled, which suggested that the flame stretch coefficient, Cms, had a much larger influence at higher engine speeds compared to the flame development coefficient, Cm2. Therefore, the Cm2-Cms sets that predicted a higher turbulent flame under higher in-cylinder pressure and temperature increased the peak pressure and efficiency. This suggest that the choice of the Cm2-Cms will affect the G-equation-based simulation accuracy when engine speed increases from the one used to validate the model. As a result, for the less-experienced CFD user and in the absence of enough experimental data that would help retune the tuning parameters at various operating conditions, the purpose of a good G-equation-based 3D engine simulation is to guide and/or complement experimental investigations, not the other way around. Only a truly-predictive simulation that fully couples the turbulence/chemistry equations can help reduce the amount of experimental work.« less
Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jinlong; Szybist, James; Dumitrescu, Cosmin
3D CFD spark-ignition IC engine simulations are extremely complex for the regular user. Truly-predictive CFD simulations for the turbulent flame combustion that solve fully coupled transport/chemistry equations may require large computational capabilities unavailable to regular CFD users. A solution is to use a simpler phenomenological model such as the G-equation that decouples transport/chemistry result. Such simulation can still provide acceptable and faster results at the expense of predictive capabilities. While the G-equation is well understood within the experienced modeling community, the goal of this paper is to document some of them for a novice or less experienced CFD user whomore » may not be aware that phenomenological models of turbulent flame combustion usually require heavy tuning and calibration from the user to mimic experimental observations. This study used ANSYS® Forte, Version 17.2, and the built-in G-equation model, to investigate two tuning constants that influence flame propagation in 3D CFD SI engine simulations: the stretch factor coefficient, Cms and the flame development coefficient, Cm2. After identifying several Cm2-Cms pairs that matched experimental data at one operating conditions, simulation results showed that engine models that used different Cm2-Cms sets predicted similar combustion performance, when the spark timing, engine load, and engine speed were changed from the operating condition used to validate the CFD simulation. A dramatic shift was observed when engine speed was doubled, which suggested that the flame stretch coefficient, Cms, had a much larger influence at higher engine speeds compared to the flame development coefficient, Cm2. Therefore, the Cm2-Cms sets that predicted a higher turbulent flame under higher in-cylinder pressure and temperature increased the peak pressure and efficiency. This suggest that the choice of the Cm2-Cms will affect the G-equation-based simulation accuracy when engine speed increases from the one used to validate the model. As a result, for the less-experienced CFD user and in the absence of enough experimental data that would help retune the tuning parameters at various operating conditions, the purpose of a good G-equation-based 3D engine simulation is to guide and/or complement experimental investigations, not the other way around. Only a truly-predictive simulation that fully couples the turbulence/chemistry equations can help reduce the amount of experimental work.« less
Fast Whole-Engine Stirling Analysis
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako
2005-01-01
An experimentally validated approach is described for fast axisymmetric Stirling engine simulations. These simulations include the entire displacer interior and demonstrate it is possible to model a complete engine cycle in less than an hour. The focus of this effort was to demonstrate it is possible to produce useful Stirling engine performance results in a time-frame short enough to impact design decisions. The combination of utilizing the latest 64-bit Opteron computer processors, fiber-optical Myrinet communications, dynamic meshing, and across zone partitioning has enabled solution times at least 240 times faster than previous attempts at simulating the axisymmetric Stirling engine. A comparison of the multidimensional results, calibrated one-dimensional results, and known experimental results is shown. This preliminary comparison demonstrates that axisymmetric simulations can be very accurate, but more work remains to improve the simulations through such means as modifying the thermal equilibrium regenerator models, adding fluid-structure interactions, including radiation effects, and incorporating mechanodynamics.
Fast Whole-Engine Stirling Analysis
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako
2007-01-01
An experimentally validated approach is described for fast axisymmetric Stirling engine simulations. These simulations include the entire displacer interior and demonstrate it is possible to model a complete engine cycle in less than an hour. The focus of this effort was to demonstrate it is possible to produce useful Stirling engine performance results in a time-frame short enough to impact design decisions. The combination of utilizing the latest 64-bit Opteron computer processors, fiber-optical Myrinet communications, dynamic meshing, and across zone partitioning has enabled solution times at least 240 times faster than previous attempts at simulating the axisymmetric Stirling engine. A comparison of the multidimensional results, calibrated one-dimensional results, and known experimental results is shown. This preliminary comparison demonstrates that axisymmetric simulations can be very accurate, but more work remains to improve the simulations through such means as modifying the thermal equilibrium regenerator models, adding fluid-structure interactions, including radiation effects, and incorporating mechanodynamics.
NASA Technical Reports Server (NTRS)
Dehoff, R. L.; Reed, W. B.; Trankle, T. L.
1977-01-01
The development and validation of a spey engine model is described. An analysis of the dynamical interactions involved in the propulsion unit is presented. The model was reduced to contain only significant effects, and was used, in conjunction with flight data obtained from an augmentor wing jet STOL research aircraft, to develop initial estimates of parameters in the system. The theoretical background employed in estimating the parameters is outlined. The software package developed for processing the flight data is described. Results are summarized.
CFD modelling wall heat transfer inside a combustion chamber using ANSYS forte
NASA Astrophysics Data System (ADS)
Plengsa-ard, C.; Kaewbumrung, M.
2018-01-01
A computational model has been performed to analyze a wall heat transfer in a single cylinder, direct injection and four-stroke diesel engine. A direct integration using detailed chemistry CHEMKIN is employed in a combustion model and the Reynolds Averaged Navier Stokes (RANS) turbulence model is used to simulate the flow in the cylinder. To obtain heat flux results, a modified classical variable-density wall heat transfer model is also performed. The model is validated using experimental data from a CUMMINs engine operated with a conventional diesel combustion. One operating engine condition is simulated. Comparisons of simulated in-cylinder pressure and heat release rates with experimental data shows that the model predicts the cylinder pressure and heat release rates reasonably well. The contour plot of instantaneous temperature are presented. Also, the contours of predicted heat flux results are shown. The magnitude of peak heat fluxes as predicted by the wall heat transfer model is in the range of the typical measure values in diesel combustion.
Model-based diagnostics of gas turbine engine lubrication systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byington, C.S.
1998-09-01
The objective of the current research was to develop improved methodology for diagnosing anomalies and maintaining oil lubrication systems for gas turbine engines. The effort focused on the development of reasoning modules that utilize the existing, inexpensive sensors and are applicable to on-line monitoring within the full-authority digital engine controller (FADEC) of the engine. The target application is the Enhanced TF-40B gas turbine engine that powers the Landing Craft Air Cushion (LCAC) platform. To accomplish the development of the requisite data fusion algorithms and automated reasoning for the diagnostic modules, Penn State ARL produced a generic Turbine Engine Lubrication Systemmore » Simulator (TELSS) and Data Fusion Workbench (DFW). TELSS is a portable simulator code that calculates lubrication system parameters based upon one-dimensional fluid flow resistance network equations. Validation of the TF- 40B modules was performed using engineering and limited test data. The simulation model was used to analyze operational data from the LCAC fleet. The TELSS, as an integral portion of the DFW, provides the capability to experiment with combinations of variables and feature vectors that characterize normal and abnormal operation of the engine lubrication system. The model-based diagnostics approach is applicable to all gas turbine engines and mechanical transmissions with similar pressure-fed lubrication systems.« less
In-Flight Thermal Performance of the Lidar In-Space Technology Experiment
NASA Technical Reports Server (NTRS)
Roettker, William
1995-01-01
The Lidar In-Space Technology Experiment (LITE) was developed at NASA s Langley Research Center to explore the applications of lidar operated from an orbital platform. As a technology demonstration experiment, LITE was developed to gain experience designing and building future operational orbiting lidar systems. Since LITE was the first lidar system to be flown in space, an important objective was to validate instrument design principles in such areas as thermal control, laser performance, instrument alignment and control, and autonomous operations. Thermal and structural analysis models of the instrument were developed during the design process to predict the behavior of the instrument during its mission. In order to validate those mathematical models, extensive engineering data was recorded during all phases of LITE's mission. This inflight engineering data was compared with preflight predictions and, when required, adjustments to the thermal and structural models were made to more accurately match the instrument s actual behavior. The results of this process for the thermal analysis and design of LITE are presented in this paper.
Steady-State Cycle Deck Launcher Developed for Numerical Propulsion System Simulation
NASA Technical Reports Server (NTRS)
VanDrei, Donald E.
1997-01-01
One of the objectives of NASA's High Performance Computing and Communications Program's (HPCCP) Numerical Propulsion System Simulation (NPSS) is to reduce the time and cost of generating aerothermal numerical representations of engines, called customer decks. These customer decks, which are delivered to airframe companies by various U.S. engine companies, numerically characterize an engine's performance as defined by the particular U.S. airframe manufacturer. Until recently, all numerical models were provided with a Fortran-compatible interface in compliance with the Society of Automotive Engineers (SAE) document AS681F, and data communication was performed via a standard, labeled common structure in compliance with AS681F. Recently, the SAE committee began to develop a new standard: AS681G. AS681G addresses multiple language requirements for customer decks along with alternative data communication techniques. Along with the SAE committee, the NPSS Steady-State Cycle Deck project team developed a standard Application Program Interface (API) supported by a graphical user interface. This work will result in Aerospace Recommended Practice 4868 (ARP4868). The Steady-State Cycle Deck work was validated against the Energy Efficient Engine customer deck, which is publicly available. The Energy Efficient Engine wrapper was used not only to validate ARP4868 but also to demonstrate how to wrap an existing customer deck. The graphical user interface for the Steady-State Cycle Deck facilitates the use of the new standard and makes it easier to design and analyze a customer deck. This software was developed following I. Jacobson's Object-Oriented Design methodology and is implemented in C++. The AS681G standard will establish a common generic interface for U.S. engine companies and airframe manufacturers. This will lead to more accurate cycle models, quicker model generation, and faster validation leading to specifications. The standard will facilitate cooperative work between industry and NASA. The NPSS Steady-State Cycle Deck team released a batch version of the Steady-State Cycle Deck in March 1996. Version 1.1 was released in June 1996. During fiscal 1997, NPSS accepted enhancements and modifications to the Steady-State Cycle Deck launcher. Consistent with NPSS' commercialization plan, these modifications will be done by a third party that can provide long-term software support.
Engine Load Path Calculations - Project Neo
NASA Technical Reports Server (NTRS)
Fisher, Joseph
2014-01-01
A mathematical model of the engine and actuator geometry was developed and used to perform a static force analysis of the system with the engine at different pitch and yaw angles. This analysis yielded the direction and magnitude of the reaction forces at the mounting points of the engine and actuators. These data were used to validate the selection of the actuators installed in the system and to design a new spherical joint to mount the engine on the test fixture. To illustrate the motion of the system and to further interest in the project, a functional 3D printed version of the system was made, featuring the full mobility of the real system.
Identifying model error in metabolic flux analysis - a generalized least squares approach.
Sokolenko, Stanislav; Quattrociocchi, Marco; Aucoin, Marc G
2016-09-13
The estimation of intracellular flux through traditional metabolic flux analysis (MFA) using an overdetermined system of equations is a well established practice in metabolic engineering. Despite the continued evolution of the methodology since its introduction, there has been little focus on validation and identification of poor model fit outside of identifying "gross measurement error". The growing complexity of metabolic models, which are increasingly generated from genome-level data, has necessitated robust validation that can directly assess model fit. In this work, MFA calculation is framed as a generalized least squares (GLS) problem, highlighting the applicability of the common t-test for model validation. To differentiate between measurement and model error, we simulate ideal flux profiles directly from the model, perturb them with estimated measurement error, and compare their validation to real data. Application of this strategy to an established Chinese Hamster Ovary (CHO) cell model shows how fluxes validated by traditional means may be largely non-significant due to a lack of model fit. With further simulation, we explore how t-test significance relates to calculation error and show that fluxes found to be non-significant have 2-4 fold larger error (if measurement uncertainty is in the 5-10 % range). The proposed validation method goes beyond traditional detection of "gross measurement error" to identify lack of fit between model and data. Although the focus of this work is on t-test validation and traditional MFA, the presented framework is readily applicable to other regression analysis methods and MFA formulations.
NASA Technical Reports Server (NTRS)
Claus, Russell W.; Beach, Tim; Turner, Mark; Hendricks, Eric S.
2015-01-01
This paper describes the geometry and simulation results of a gas-turbine engine based on the original EEE engine developed in the 1980s. While the EEE engine was never in production, the technology developed during the program underpins many of the current generation of gas turbine engines. This geometry is being explored as a potential multi-stage turbomachinery test case that may be used to develop technology for virtual full-engine simulation. Simulation results were used to test the validity of each component geometry representation. Results are compared to a zero-dimensional engine model developed from experimental data. The geometry is captured in a series of Initial Graphical Exchange Specification (IGES) files and is available on a supplemental DVD to this report.
NASA Radiation Protection Research for Exploration Missions
NASA Technical Reports Server (NTRS)
Wilson, John W.; Cucinotta, Francis A.; Tripathi, Ram K.; Heinbockel, John H.; Tweed, John; Mertens, Christopher J.; Walker, Steve A.; Blattnig, Steven R.; Zeitlin, Cary J.
2006-01-01
The HZETRN code was used in recent trade studies for renewed lunar exploration and currently used in engineering development of the next generation of space vehicles, habitats, and EVA equipment. A new version of the HZETRN code capable of simulating high charge and energy (HZE) ions, light-ions and neutrons with either laboratory or space boundary conditions with enhanced neutron and light-ion propagation is under development. Atomic and nuclear model requirements to support that development will be discussed. Such engineering design codes require establishing validation processes using laboratory ion beams and space flight measurements in realistic geometries. We discuss limitations of code validation due to the currently available data and recommend priorities for new data sets.
NASA Astrophysics Data System (ADS)
Apostol, Barbara L.; Kazantsev, Alexsey; Raffioni, Simona; Illes, Katalin; Pallos, Judit; Bodai, Laszlo; Slepko, Natalia; Bear, James E.; Gertler, Frank B.; Hersch, Steven; Housman, David E.; Marsh, J. Lawrence; Michels Thompson, Leslie
2003-05-01
The formation of polyglutamine-containing aggregates and inclusions are hallmarks of pathogenesis in Huntington's disease that can be recapitulated in model systems. Although the contribution of inclusions to pathogenesis is unclear, cell-based assays can be used to screen for chemical compounds that affect aggregation and may provide therapeutic benefit. We have developed inducible PC12 cell-culture models to screen for loss of visible aggregates. To test the validity of this approach, compounds that inhibit aggregation in the PC12 cell-based screen were tested in a Drosophila model of polyglutamine-repeat disease. The disruption of aggregation in PC12 cells strongly correlates with suppression of neuronal degeneration in Drosophila. Thus, the engineered PC12 cells coupled with the Drosophila model provide a rapid and effective method to screen and validate compounds.
Analysis of SSME HPOTP rotordynamics subsynchronous whirl
NASA Technical Reports Server (NTRS)
1984-01-01
The causes and remedies of vibration and subsynchronous whirl problems encountered in the Shuttle Main Engine SSME turbomachinery are analyzed. Because the nonlinear and linearized models of the turbopumps play such an important role in the analysis process, the main emphasis is concentrated on the verification and improvement of these tools. It has been the goal of our work to validate the equations of motion used in the models are validated, including the assumptions upon which they are based. Verification of th SSME rotordynamics simulation and the developed enhancements, are emphasized.
Executable Architecture Research at Old Dominion University
NASA Technical Reports Server (NTRS)
Tolk, Andreas; Shuman, Edwin A.; Garcia, Johnny J.
2011-01-01
Executable Architectures allow the evaluation of system architectures not only regarding their static, but also their dynamic behavior. However, the systems engineering community do not agree on a common formal specification of executable architectures. To close this gap and identify necessary elements of an executable architecture, a modeling language, and a modeling formalism is topic of ongoing PhD research. In addition, systems are generally defined and applied in an operational context to provide capabilities and enable missions. To maximize the benefits of executable architectures, a second PhD effort introduces the idea of creating an executable context in addition to the executable architecture. The results move the validation of architectures from the current information domain into the knowledge domain and improve the reliability of such validation efforts. The paper presents research and results of both doctoral research efforts and puts them into a common context of state-of-the-art of systems engineering methods supporting more agility.
Applicability Analysis of Validation Evidence for Biomedical Computational Models
Pathmanathan, Pras; Gray, Richard A.; Romero, Vicente J.; ...
2017-09-07
Computational modeling has the potential to revolutionize medicine the way it transformed engineering. However, despite decades of work, there has only been limited progress to successfully translate modeling research to patient care. One major difficulty which often occurs with biomedical computational models is an inability to perform validation in a setting that closely resembles how the model will be used. For example, for a biomedical model that makes in vivo clinically relevant predictions, direct validation of predictions may be impossible for ethical, technological, or financial reasons. Unavoidable limitations inherent to the validation process lead to challenges in evaluating the credibilitymore » of biomedical model predictions. Therefore, when evaluating biomedical models, it is critical to rigorously assess applicability, that is, the relevance of the computational model, and its validation evidence to the proposed context of use (COU). However, there are no well-established methods for assessing applicability. In this paper, we present a novel framework for performing applicability analysis and demonstrate its use with a medical device computational model. The framework provides a systematic, step-by-step method for breaking down the broad question of applicability into a series of focused questions, which may be addressed using supporting evidence and subject matter expertise. The framework can be used for model justification, model assessment, and validation planning. While motivated by biomedical models, it is relevant to a broad range of disciplines and underlying physics. Finally, the proposed applicability framework could help overcome some of the barriers inherent to validation of, and aid clinical implementation of, biomedical models.« less
Applicability Analysis of Validation Evidence for Biomedical Computational Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathmanathan, Pras; Gray, Richard A.; Romero, Vicente J.
Computational modeling has the potential to revolutionize medicine the way it transformed engineering. However, despite decades of work, there has only been limited progress to successfully translate modeling research to patient care. One major difficulty which often occurs with biomedical computational models is an inability to perform validation in a setting that closely resembles how the model will be used. For example, for a biomedical model that makes in vivo clinically relevant predictions, direct validation of predictions may be impossible for ethical, technological, or financial reasons. Unavoidable limitations inherent to the validation process lead to challenges in evaluating the credibilitymore » of biomedical model predictions. Therefore, when evaluating biomedical models, it is critical to rigorously assess applicability, that is, the relevance of the computational model, and its validation evidence to the proposed context of use (COU). However, there are no well-established methods for assessing applicability. In this paper, we present a novel framework for performing applicability analysis and demonstrate its use with a medical device computational model. The framework provides a systematic, step-by-step method for breaking down the broad question of applicability into a series of focused questions, which may be addressed using supporting evidence and subject matter expertise. The framework can be used for model justification, model assessment, and validation planning. While motivated by biomedical models, it is relevant to a broad range of disciplines and underlying physics. Finally, the proposed applicability framework could help overcome some of the barriers inherent to validation of, and aid clinical implementation of, biomedical models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuhe; Mazur, Thomas R.; Green, Olga
Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on PENELOPE and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: PENELOPE was first translated from FORTRAN to C++ and the result was confirmed to produce equivalent results to the original code. The C++ code was then adapted to CUDA in a workflow optimized for GPU architecture. The original code was expandedmore » to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gPENELOPE highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gPENELOPE as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gPENELOPE. Ultimately, gPENELOPE was applied toward independent validation of patient doses calculated by MRIdian’s KMC. Results: An acceleration factor of 152 was achieved in comparison to the original single-thread FORTRAN implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gPENELOPE with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: A Monte Carlo simulation platform was developed based on a GPU- accelerated version of PENELOPE. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and accumulation, IMRT optimization, and dosimetry system modeling for next generation MR-IGRT systems.« less
Wang, Yuhe; Mazur, Thomas R.; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H. Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H. Harold
2016-01-01
Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on penelope and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: penelope was first translated from fortran to c++ and the result was confirmed to produce equivalent results to the original code. The c++ code was then adapted to cuda in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gpenelope highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gpenelope as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gpenelope. Ultimately, gpenelope was applied toward independent validation of patient doses calculated by MRIdian’s kmc. Results: An acceleration factor of 152 was achieved in comparison to the original single-thread fortran implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gpenelope with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: A Monte Carlo simulation platform was developed based on a GPU- accelerated version of penelope. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and accumulation, IMRT optimization, and dosimetry system modeling for next generation MR-IGRT systems. PMID:27370123
Wang, Yuhe; Mazur, Thomas R; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H Harold
2016-07-01
The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on penelope and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. penelope was first translated from fortran to c++ and the result was confirmed to produce equivalent results to the original code. The c++ code was then adapted to cuda in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gpenelope highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gpenelope as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gpenelope. Ultimately, gpenelope was applied toward independent validation of patient doses calculated by MRIdian's kmc. An acceleration factor of 152 was achieved in comparison to the original single-thread fortran implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gpenelope with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). A Monte Carlo simulation platform was developed based on a GPU- accelerated version of penelope. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and accumulation, IMRT optimization, and dosimetry system modeling for next generation MR-IGRT systems.
AIAA Aerospace America Magazine - Year in Review Article, 2010
NASA Technical Reports Server (NTRS)
Figueroa, Fernando
2010-01-01
NASA Stennis Space Center has implemented a pilot operational Integrated System Health Management (ISHM) capability. The implementation was done for the E-2 Rocket Engine Test Stand and a Chemical Steam Generator (CSG) test article; and validated during operational testing. The CSG test program is a risk mitigation activity to support building of the new A-3 Test Stand, which will be a highly complex facility for testing of engines in high altitude conditions. The foundation of the ISHM capability are knowledge-based integrated domain models for the test stand and CSG, with physical and model-based elements represented by objects the domain models enable modular and evolutionary ISHM functionality.
NASA Astrophysics Data System (ADS)
Cao, Huijun; Cao, Yong; Chu, Yuchuan; He, Xiaoming; Lin, Tao
2018-06-01
Surface evolution is an unavoidable issue in engineering plasma applications. In this article an iterative method for modeling plasma-surface interactions with moving interface is proposed and validated. In this method, the plasma dynamics is simulated by an immersed finite element particle-in-cell (IFE-PIC) method, and the surface evolution is modeled by the Huygens wavelet method which is coupled with the iteration of the IFE-PIC method. Numerical experiments, including prototypical engineering applications, such as the erosion of Hall thruster channel wall, are presented to demonstrate features of this Huygens IFE-PIC method for simulating the dynamic plasma-surface interactions.
Bringing Back the Social Affordances of the Paper Memo to Aerospace Systems Engineering Work
NASA Technical Reports Server (NTRS)
Davidoff, Scott; Holloway, Alexandra
2014-01-01
Model-based systems engineering (MBSE) is a relatively new field that brings together the interdisciplinary study of technological components of a project (systems engineering) with a model-based ontology to express the hierarchical and behavioral relationships between the components (computational modeling). Despite the compelling promises of the benefits of MBSE, such as improved communication and productivity due to an underlying language and data model, we observed hesitation to its adoption at the NASA Jet Propulsion Laboratory. To investigate, we conducted a six-month ethnographic field investigation and needs validation with 19 systems engineers. This paper contributes our observations of a generational shift in one of JPL's core technologies. We report on a cultural misunderstanding between communities of practice that bolsters the existing technology drag. Given the high cost of failure, we springboard our observations into a design hypothesis - an intervention that blends the social affordances of the narrative-based work flow with the rich technological advantages of explicit data references and relationships of the model-based approach. We provide a design rationale, and the results of our evaluation.
Are Earth System model software engineering practices fit for purpose? A case study.
NASA Astrophysics Data System (ADS)
Easterbrook, S. M.; Johns, T. C.
2009-04-01
We present some analysis and conclusions from a case study of the culture and practices of scientists at the Met Office and Hadley Centre working on the development of software for climate and Earth System models using the MetUM infrastructure. The study examined how scientists think about software correctness, prioritize their requirements in making changes, and develop a shared understanding of the resulting models. We conclude that highly customized techniques driven strongly by scientific research goals have evolved for verification and validation of such models. In a formal software engineering context these represents costly, but invaluable, software integration tests with considerable benefits. The software engineering practices seen also exhibit recognisable features of both agile and open source software development projects - self-organisation of teams consistent with a meritocracy rather than top-down organisation, extensive use of informal communication channels, and software developers who are generally also users and science domain experts. We draw some general conclusions on whether these practices work well, and what new software engineering challenges may lie ahead as Earth System models become ever more complex and petascale computing becomes the norm.
A Design Tool for Liquid Rocket Engine Injectors
NASA Technical Reports Server (NTRS)
Farmer, R.; Cheng, G.; Trinh, H.; Tucker, K.
2000-01-01
A practical design tool which emphasizes the analysis of flowfields near the injector face of liquid rocket engines has been developed and used to simulate preliminary configurations of NASA's Fastrac and vortex engines. This computational design tool is sufficiently detailed to predict the interactive effects of injector element impingement angles and points and the momenta of the individual orifice flows and the combusting flow which results. In order to simulate a significant number of individual orifices, a homogeneous computational fluid dynamics model was developed. To describe sub- and supercritical liquid and vapor flows, the model utilized thermal and caloric equations of state which were valid over a wide range of pressures and temperatures. The model was constructed such that the local quality of the flow was determined directly. Since both the Fastrac and vortex engines utilize RP-1/LOX propellants, a simplified hydrocarbon combustion model was devised in order to accomplish three-dimensional, multiphase flow simulations. Such a model does not identify drops or their distribution, but it does allow the recirculating flow along the injector face and into the acoustic cavity and the film coolant flow to be accurately predicted.
Test results of a 40-kW Stirling engine and comparison with the NASA Lewis computer code predictions
NASA Technical Reports Server (NTRS)
Allen, David J.; Cairelli, James E.
1988-01-01
A Stirling engine was tested without auxiliaries at Nasa-Lewis. Three different regenerator configurations were tested with hydrogen. The test objectives were: (1) to obtain steady-state and dynamic engine data, including indicated power, for validation of an existing computer model for this engine; and (2) to evaluate structurally the use of silicon carbide regenerators. This paper presents comparisons of the measured brake performance, indicated mean effective pressure, and cyclic pressure variations from those predicted by the code. The silicon carbide foam generators appear to be structurally suitable, but the foam matrix showed severely reduced performance.
Model Transformation for a System of Systems Dependability Safety Case
NASA Technical Reports Server (NTRS)
Murphy, Judy; Driskell, Steve
2011-01-01
The presentation reviews the dependability and safety effort of NASA's Independent Verification and Validation Facility. Topics include: safety engineering process, applications to non-space environment, Phase I overview, process creation, sample SRM artifact, Phase I end result, Phase II model transformation, fault management, and applying Phase II to individual projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.
Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogatemore » fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends.« less
Programmable stream prefetch with resource optimization
Boyle, Peter; Christ, Norman; Gara, Alan; Mawhinney, Robert; Ohmacht, Martin; Sugavanam, Krishnan
2013-01-08
A stream prefetch engine performs data retrieval in a parallel computing system. The engine receives a load request from at least one processor. The engine evaluates whether a first memory address requested in the load request is present and valid in a table. The engine checks whether there exists valid data corresponding to the first memory address in an array if the first memory address is present and valid in the table. The engine increments a prefetching depth of a first stream that the first memory address belongs to and fetching a cache line associated with the first memory address from the at least one cache memory device if there is not yet valid data corresponding to the first memory address in the array. The engine determines whether prefetching of additional data is needed for the first stream within its prefetching depth. The engine prefetches the additional data if the prefetching is needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y; Mazur, T; Green, O
Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on PENELOPE and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: We first translated PENELOPE from FORTRAN to C++ and validated that the translation produced equivalent results. Then we adapted the C++ code to CUDA in a workflow optimized for GPU architecture. We expanded upon the original code to include voxelized transportmore » boosted by Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gPENELOPE highly user-friendly. Moreover, we incorporated the vendor-provided MRIdian head model into the code. We performed a set of experimental measurements on MRIdian to examine the accuracy of both the head model and gPENELOPE, and then applied gPENELOPE toward independent validation of patient doses calculated by MRIdian’s KMC. Results: We achieve an average acceleration factor of 152 compared to the original single-thread FORTRAN implementation with the original accuracy preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen (1), mediastinum (1) and breast (1), the MRIdian dose calculation engine agrees with gPENELOPE with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: We developed a Monte Carlo simulation platform based on a GPU-accelerated version of PENELOPE. We validated that both the vendor provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and accumulation, IMRT optimization, and dosimetry system modeling for next generation MR-IGRT systems.« less
Models with Men and Women: Representing Gender in Dynamic Modeling of Social Systems.
Palmer, Erika; Wilson, Benedicte
2018-04-01
Dynamic engineering models have yet to be evaluated in the context of feminist engineering ethics. Decision-making concerning gender in dynamic modeling design is a gender and ethical issue that is important to address regardless of the system in which the dynamic modeling is applied. There are many dynamic modeling tools that operationally include the female population, however, there is an important distinction between females and women; it is the difference between biological sex and the social construct of gender, which is fluid and changes over time and geography. The ethical oversight in failing to represent or misrepresenting gender in model design when it is relevant to the model purpose can have implications for model validity and policy model development. This paper highlights this gender issue in the context of feminist engineering ethics using a dynamic population model. Women are often represented in this type of model only in their biological capacity, while lacking their gender identity. This illustrative example also highlights how language, including the naming of variables and communication with decision-makers, plays a role in this gender issue.
Validation metrics for turbulent plasma transport
Holland, C.
2016-06-22
Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnosticsmore » to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. Furthermore, the utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak, as part of a multi-year transport model validation activity.« less
Validation metrics for turbulent plasma transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, C.
Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnosticsmore » to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. Furthermore, the utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak, as part of a multi-year transport model validation activity.« less
NASA Technical Reports Server (NTRS)
Niiya, Karen E.; Walker, Richard E.; Pieper, Jerry L.; Nguyen, Thong V.
1993-01-01
This final report includes a discussion of the work accomplished during the period from Dec. 1988 through Nov. 1991. The objective of the program was to assemble existing performance and combustion stability models into a usable design methodology capable of designing and analyzing high-performance and stable LOX/hydrocarbon booster engines. The methodology was then used to design a validation engine. The capabilities and validity of the methodology were demonstrated using this engine in an extensive hot fire test program. The engine used LOX/RP-1 propellants and was tested over a range of mixture ratios, chamber pressures, and acoustic damping device configurations. This volume contains time domain and frequency domain stability plots which indicate the pressure perturbation amplitudes and frequencies from approximately 30 tests of a 50K thrust rocket engine using LOX/RP-1 propellants over a range of chamber pressures from 240 to 1750 psia with mixture ratios of from 1.2 to 7.5. The data is from test configurations which used both bitune and monotune acoustic cavities and from tests with no acoustic cavities. The engine had a length of 14 inches and a contraction ratio of 2.0 using a 7.68 inch diameter injector. The data was taken from both stable and unstable tests. All combustion instabilities were spontaneous in the first tangential mode. Although stability bombs were used and generated overpressures of approximately 20 percent, no tests were driven unstable by the bombs. The stability instrumentation included six high-frequency Kistler transducers in the combustion chamber, a high-frequency Kistler transducer in each propellant manifold, and tri-axial accelerometers. Performance data is presented, both characteristic velocity efficiencies and energy release efficiencies, for those tests of sufficient duration to record steady state values.
Composite load spectra for select space propulsion structural components
NASA Technical Reports Server (NTRS)
Newell, J. F.; Ho, H. W.; Kurth, R. E.
1991-01-01
The work performed to develop composite load spectra (CLS) for the Space Shuttle Main Engine (SSME) using probabilistic methods. The three methods were implemented to be the engine system influence model. RASCAL was chosen to be the principal method as most component load models were implemented with the method. Validation of RASCAL was performed. High accuracy comparable to the Monte Carlo method can be obtained if a large enough bin size is used. Generic probabilistic models were developed and implemented for load calculations using the probabilistic methods discussed above. Each engine mission, either a real fighter or a test, has three mission phases: the engine start transient phase, the steady state phase, and the engine cut off transient phase. Power level and engine operating inlet conditions change during a mission. The load calculation module provides the steady-state and quasi-steady state calculation procedures with duty-cycle-data option. The quasi-steady state procedure is for engine transient phase calculations. In addition, a few generic probabilistic load models were also developed for specific conditions. These include the fixed transient spike model, the poison arrival transient spike model, and the rare event model. These generic probabilistic load models provide sufficient latitude for simulating loads with specific conditions. For SSME components, turbine blades, transfer ducts, LOX post, and the high pressure oxidizer turbopump (HPOTP) discharge duct were selected for application of the CLS program. They include static pressure loads and dynamic pressure loads for all four components, centrifugal force for the turbine blade, temperatures of thermal loads for all four components, and structural vibration loads for the ducts and LOX posts.
Experimental and analytical investigation of a modified ring cusp NSTAR engine
NASA Technical Reports Server (NTRS)
Sengupta, Anita
2005-01-01
A series of experimental measurements on a modified laboratory NSTAR engine were used to validate a zero dimensional analytical discharge performance model of a ring cusp ion thruster. The model predicts the discharge performance of a ring cusp NSTAR thruster as a function the magnetic field configuration, thruster geometry, and throttle level. Analytical formalisms for electron and ion confinement are used to predict the ionization efficiency for a given thruster design. Explicit determination of discharge loss and volume averaged plasma parameters are also obtained. The model was used to predict the performance of the nominal and modified three and four ring cusp 30-cm ion thruster configurations operating at the full power (2.3 kW) NSTAR throttle level. Experimental measurements of the modified engine configuration discharge loss compare well with the predicted value for propellant utilizations from 80 to 95%. The theory, as validated by experiment, indicates that increasing the magnetic strength of the minimum closed reduces maxwellian electron diffusion and electrostatically confines the ion population and subsequent loss to the anode wall. The theory also indicates that increasing the cusp strength and minimizing the cusp area improves primary electron confinement increasing the probability of an ionization collision prior to loss at the cusp.
Status of Duct Liner Technology for Application to Aircraft Engine Nacelles
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Jones, Michael G.; Watson, Willie R.
2005-01-01
Grazing flows and high acoustic intensities impose unusual design requirements on acoustic liner treatments used in aircraft engine nacelles. Increased sound absorption efficiency (requiring increased accuracy of liner impedance specification) is particularly critical in the face of ever decreasing nacelle wall area available for liner treatments in modern, high-bypass ratio engines. This paper reviews the strategy developed at Langley Research Center for achieving a robust measurement technology that is crucial for validating impedance models for aircraft liners. Specifically, the paper describes the current status of computational and data acquisition technologies for reducing impedance in a flow duct. Comparisons of reduced impedances for a "validation liner" using 1980's and 2000's measurement technology are consistent, but show significant deviations (up to 0.5 c exclusive of liner anti-resonance region) from a first principles impedance prediction model as grazing flow centerline Mach numbers increase up to 0.5. The deviations, in part, are believed related to uncertainty in the choice of grazing flow parameters (e.g. cross-section averaged, core-flow averaged, or centerline Mach number?). Also, there may be an issue with incorporating the impedance discontinuities corresponding to the hard wall to liner interface (i.e. leading and trailing edge of test liner) within the discretized finite element model.
A Simulation Study on a Thermoelectric Generator for Waste Heat Recovery from a Marine Engine
NASA Astrophysics Data System (ADS)
Ji, Dongxu; Tseng, King Jet; Wei, Zhongbao; Zheng, Yun; Romagnoli, Alessandro
2017-05-01
In this study, a marine engine has been evaluated for waste heat recovery (WHR) using thermoelectric generators (TEG). The feasibility of Mg2Sn0.75Ge0.25, Cu2Se, and Cu1.98Se as potential thermoelectric (TE) material were investigated. A straight fin heat exchanger is used to enhance the heat transfer between the hot exhaust gas and TE modules. To facility the analysis, a system level thermal resistance model is built and validated with experiments. After the model is validated, a small marine engine with rated power of 1.7-3 MW is taken as baseline model and it is found that around 2-4 KW electrical power can be extracted from exhaust gas by the TEG at varying design and operating parameters. The back pressure effect induced by the heat exchanger is also considered in this study. Finally, a parameter study is conducted regarding the impact of the TE module height on the output power. It is shown that the height of the TE leg could play a significant role in the module geometry design, and that the optimal height varies between 1 mm and 2 mm under different heat exchangers and exhaust gas flow rates.
System verification and validation: a fundamental systems engineering task
NASA Astrophysics Data System (ADS)
Ansorge, Wolfgang R.
2004-09-01
Systems Engineering (SE) is the discipline in a project management team, which transfers the user's operational needs and justifications for an Extremely Large Telescope (ELT) -or any other telescope-- into a set of validated required system performance characteristics. Subsequently transferring these validated required system performance characteris-tics into a validated system configuration, and eventually into the assembled, integrated telescope system with verified performance characteristics and provided it with "objective evidence that the particular requirements for the specified intended use are fulfilled". The latter is the ISO Standard 8402 definition for "Validation". This presentation describes the verification and validation processes of an ELT Project and outlines the key role System Engineering plays in these processes throughout all project phases. If these processes are implemented correctly into the project execution and are started at the proper time, namely at the very beginning of the project, and if all capabilities of experienced system engineers are used, the project costs and the life-cycle costs of the telescope system can be reduced between 25 and 50 %. The intention of this article is, to motivate and encourage project managers of astronomical telescopes and scientific instruments to involve the entire spectrum of Systems Engineering capabilities performed by trained and experienced SYSTEM engineers for the benefit of the project by explaining them the importance of Systems Engineering in the AIV and validation processes.
Computer Aided Battery Engineering Consortium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, Ahmad
A multi-national lab collaborative team was assembled that includes experts from academia and industry to enhance recently developed Computer-Aided Battery Engineering for Electric Drive Vehicles (CAEBAT)-II battery crush modeling tools and to develop microstructure models for electrode design - both computationally efficient. Task 1. The new Multi-Scale Multi-Domain model framework (GH-MSMD) provides 100x to 1,000x computation speed-up in battery electrochemical/thermal simulation while retaining modularity of particles and electrode-, cell-, and pack-level domains. The increased speed enables direct use of the full model in parameter identification. Task 2. Mechanical-electrochemical-thermal (MECT) models for mechanical abuse simulation were simultaneously coupled, enabling simultaneous modelingmore » of electrochemical reactions during the short circuit, when necessary. The interactions between mechanical failure and battery cell performance were studied, and the flexibility of the model for various batteries structures and loading conditions was improved. Model validation is ongoing to compare with test data from Sandia National Laboratories. The ABDT tool was established in ANSYS. Task 3. Microstructural modeling was conducted to enhance next-generation electrode designs. This 3- year project will validate models for a variety of electrodes, complementing Advanced Battery Research programs. Prototype tools have been developed for electrochemical simulation and geometric reconstruction.« less
Validation of Bioreactor and Human-on-a-Chip Devices for Chemical Safety Assessment.
Rebelo, Sofia P; Dehne, Eva-Maria; Brito, Catarina; Horland, Reyk; Alves, Paula M; Marx, Uwe
2016-01-01
Equipment and device qualification and test assay validation in the field of tissue engineered human organs for substance assessment remain formidable tasks with only a few successful examples so far. The hurdles seem to increase with the growing complexity of the biological systems, emulated by the respective models. Controlled single tissue or organ culture in bioreactors improves the organ-specific functions and maintains their phenotypic stability for longer periods of time. The reproducibility attained with bioreactor operations is, per se, an advantage for the validation of safety assessment. Regulatory agencies have gradually altered the validation concept from exhaustive "product" to rigorous and detailed process characterization, valuing reproducibility as a standard for validation. "Human-on-a-chip" technologies applying micro-physiological systems to the in vitro combination of miniaturized human organ equivalents into functional human micro-organisms are nowadays thought to be the most elaborate solution created to date. They target the replacement of the current most complex models-laboratory animals. Therefore, we provide here a road map towards the validation of such "human-on-a-chip" models and qualification of their respective bioreactor and microchip equipment along a path currently used for the respective animal models.
Silitonga, Arridina Susan; Hassan, Masjuki Haji; Ong, Hwai Chyuan; Kusumo, Fitranto
2017-11-01
The purpose of this study is to investigate the performance, emission and combustion characteristics of a four-cylinder common-rail turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends. A kernel-based extreme learning machine (KELM) model is developed in this study using MATLAB software in order to predict the performance, combustion and emission characteristics of the engine. To acquire the data for training and testing the KELM model, the engine speed was selected as the input parameter, whereas the performance, exhaust emissions and combustion characteristics were chosen as the output parameters of the KELM model. The performance, emissions and combustion characteristics predicted by the KELM model were validated by comparing the predicted data with the experimental data. The results show that the coefficient of determination of the parameters is within a range of 0.9805-0.9991 for both the KELM model and the experimental data. The mean absolute percentage error is within a range of 0.1259-2.3838. This study shows that KELM modelling is a useful technique in biodiesel production since it facilitates scientists and researchers to predict the performance, exhaust emissions and combustion characteristics of internal combustion engines with high accuracy.
A constitutive law for finite element contact problems with unclassical friction
NASA Technical Reports Server (NTRS)
Plesha, M. E.; Steinetz, B. M.
1986-01-01
Techniques for modeling complex, unclassical contact-friction problems arising in solid and structural mechanics are discussed. A constitutive modeling concept is employed whereby analytic relations between increments of contact surface stress (i.e., traction) and contact surface deformation (i.e., relative displacement) are developed. Because of the incremental form of these relations, they are valid for arbitrary load-deformation histories. The motivation for the development of such a constitutive law is that more realistic friction idealizations can be implemented in finite element analysis software in a consistent, straightforward manner. Of particular interest is modeling of two-body (i.e., unlubricated) metal-metal, ceramic-ceramic, and metal-ceramic contact. Interfaces involving ceramics are of engineering importance and are being considered for advanced turbine engines in which higher temperature materials offer potential for higher engine fuel efficiency.
Comparison of FDNS liquid rocket engine plume computations with SPF/2
NASA Technical Reports Server (NTRS)
Kumar, G. N.; Griffith, D. O., II; Warsi, S. A.; Seaford, C. M.
1993-01-01
Prediction of a plume's shape and structure is essential to the evaluation of base region environments. The JANNAF standard plume flowfield analysis code SPF/2 predicts plumes well, but cannot analyze base regions. Full Navier-Stokes CFD codes can calculate both zones; however, before they can be used, they must be validated. The CFD code FDNS3D (Finite Difference Navier-Stokes Solver) was used to analyze the single plume of a Space Transportation Main Engine (STME) and comparisons were made with SPF/2 computations. Both frozen and finite rate chemistry models were employed as well as two turbulence models in SPF/2. The results indicate that FDNS3D plume computations agree well with SPF/2 predictions for liquid rocket engine plumes.
Evaluation of the flame propagation within an SI engine using flame imaging and LES
NASA Astrophysics Data System (ADS)
He, Chao; Kuenne, Guido; Yildar, Esra; van Oijen, Jeroen; di Mare, Francesca; Sadiki, Amsini; Ding, Carl-Philipp; Baum, Elias; Peterson, Brian; Böhm, Benjamin; Janicka, Johannes
2017-11-01
This work shows experiments and simulations of the fired operation of a spark ignition engine with port-fuelled injection. The test rig considered is an optically accessible single cylinder engine specifically designed at TU Darmstadt for the detailed investigation of in-cylinder processes and model validation. The engine was operated under lean conditions using iso-octane as a substitute for gasoline. Experiments have been conducted to provide a sound database of the combustion process. A planar flame imaging technique has been applied within the swirl- and tumble-planes to provide statistical information on the combustion process to complement a pressure-based comparison between simulation and experiments. This data is then analysed and used to assess the large eddy simulation performed within this work. For the simulation, the engine code KIVA has been extended by the dynamically thickened flame model combined with chemistry reduction by means of pressure dependent tabulation. Sixty cycles have been simulated to perform a statistical evaluation. Based on a detailed comparison with the experimental data, a systematic study has been conducted to obtain insight into the most crucial modelling uncertainties.
Space-Based Telescopes for the Actionable Refinement of Ephemeris Systems and Test Engineering
2011-12-01
Space Surveillance Network STARE Space-based Telescopes for the Actionable Refinement of Ephemeris STK Satellite Toolkit SV Space Vehicle TAMU...vacuum bake out and visual inspection. Additionally, it is prescribed that these tests be performed in accordance with GSFC-STD-7000, more commonly...environment that a FV will see in orbit. Tools such as Solid Works and NX-Ideas can be used to build CAD models to visually validate engineering
Technology Transfer Challenges for High-Assurance Software Engineering Tools
NASA Technical Reports Server (NTRS)
Koga, Dennis (Technical Monitor); Penix, John; Markosian, Lawrence Z.
2003-01-01
In this paper, we describe our experience with the challenges thar we are currently facing in our effort to develop advanced software verification and validation tools. We categorize these challenges into several areas: cost benefits modeling, tool usability, customer application domain, and organizational issues. We provide examples of challenges in each area and identrfj, open research issues in areas which limit our ability to transfer high-assurance software engineering tools into practice.
Boussinesq Modeling for Inlets, Harbors & Structures (Bouss-2D)
2014-10-27
subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 27...work applications. It may be used from deep to shallow water to simulate the nonlinear wave processes of interest in the open coast, nearshore zone...design, and operation of coastal navigation and flooding projects. It provides key engineering estimates for coastal and hydraulic engineering practice
Yang, Chuanlei; Wang, Yinyan; Wang, Hechun
2018-01-01
To achieve a much more extensive intake air flow range of the diesel engine, a variable-geometry compressor (VGC) is introduced into a turbocharged diesel engine. However, due to the variable diffuser vane angle (DVA), the prediction for the performance of the VGC becomes more difficult than for a normal compressor. In the present study, a prediction model comprising an elliptical equation and a PLS (partial least-squares) model was proposed to predict the performance of the VGC. The speed lines of the pressure ratio map and the efficiency map were fitted with the elliptical equation, and the coefficients of the elliptical equation were introduced into the PLS model to build the polynomial relationship between the coefficients and the relative speed, the DVA. Further, the maximal order of the polynomial was investigated in detail to reduce the number of sub-coefficients and achieve acceptable fit accuracy simultaneously. The prediction model was validated with sample data and in order to present the superiority of compressor performance prediction, the prediction results of this model were compared with those of the look-up table and back-propagation neural networks (BPNNs). The validation and comparison results show that the prediction accuracy of the new developed model is acceptable, and this model is much more suitable than the look-up table and the BPNN methods under the same condition in VGC performance prediction. Moreover, the new developed prediction model provides a novel and effective prediction solution for the VGC and can be used to improve the accuracy of the thermodynamic model for turbocharged diesel engines in the future. PMID:29410849
Li, Xu; Yang, Chuanlei; Wang, Yinyan; Wang, Hechun
2018-01-01
To achieve a much more extensive intake air flow range of the diesel engine, a variable-geometry compressor (VGC) is introduced into a turbocharged diesel engine. However, due to the variable diffuser vane angle (DVA), the prediction for the performance of the VGC becomes more difficult than for a normal compressor. In the present study, a prediction model comprising an elliptical equation and a PLS (partial least-squares) model was proposed to predict the performance of the VGC. The speed lines of the pressure ratio map and the efficiency map were fitted with the elliptical equation, and the coefficients of the elliptical equation were introduced into the PLS model to build the polynomial relationship between the coefficients and the relative speed, the DVA. Further, the maximal order of the polynomial was investigated in detail to reduce the number of sub-coefficients and achieve acceptable fit accuracy simultaneously. The prediction model was validated with sample data and in order to present the superiority of compressor performance prediction, the prediction results of this model were compared with those of the look-up table and back-propagation neural networks (BPNNs). The validation and comparison results show that the prediction accuracy of the new developed model is acceptable, and this model is much more suitable than the look-up table and the BPNN methods under the same condition in VGC performance prediction. Moreover, the new developed prediction model provides a novel and effective prediction solution for the VGC and can be used to improve the accuracy of the thermodynamic model for turbocharged diesel engines in the future.
Preliminary results from a four-working space, double-acting piston, Stirling engine controls model
NASA Technical Reports Server (NTRS)
Daniele, C. J.; Lorenzo, C. F.
1980-01-01
A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behaviour but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.
NASA Astrophysics Data System (ADS)
Gold, Zachary Samuel
Engineering play is a new perspective on preschool education that views constructive play as an engineering design process that parallels the way engineers think and work when they develop engineered solutions to human problems (Bairaktarova, Evangelou, Bagiati, & Brophy, 2011). Early research from this perspective supports its use in framing play as a key learning context. However, no research to date has examined associations between engineering play and other factors linked with early school success, such as executive function, mathematical ability, and spatial ability. Additionally, more research is needed to further validate a new engineering play observational measure. This study had two main goals: (1) to gather early validity data on the engineering play measure as a potentially useful instrument for documenting the occurrence of children's engineering play behaviors in educational contexts, such as block play. This was done by testing the factor structure of the engineering play behaviors in this sample and their association with preschoolers' planning, a key aspect of the engineering design process; (2) to explore associations between preschoolers' engineering play and executive function, mathematical ability, and spatial ability. Participants included 110 preschoolers (62 girls; 48 boys; M = 58.47 months) from 10 classrooms in the Midwest United States coded for their frequency of engagement in each of the nine engineering play behaviors. A confirmatory factor analysis resulted in one engineering play factor including six of the engineering play behaviors. A series of marginal regression models revealed that the engineering play factor was significantly and positively associated with the spatial horizontal rotation transformation. However, engineering play was not significantly related to planning ability, executive function, informal mathematical abilities, or other spatial transformation skills. Follow-up analyses revealed significant positive associations between engineering play and planning, executive function, and geometry for only a subgroup of children (n = 27) who had individualized education program (IEP) status. This was the first of a series of studies planned to evaluate the potential of the engineering play perspective as a tool for understanding young children's development and learning across multiple developmental domains. Although most hypotheses regarding engineering play and cognitive skills were not supported, the study provided partial evidence for the reliability and validity of the engineering play observation measure. Future research should include larger sample sizes with more statistical power, continued refinement of the engineering play observation measure, examination of potential associations with specific early learning domains, including spatial ability and language, and more comparisons of engineering play between typically developing children and children with disabilities.
Generalized simulation technique for turbojet engine system analysis
NASA Technical Reports Server (NTRS)
Seldner, K.; Mihaloew, J. R.; Blaha, R. J.
1972-01-01
A nonlinear analog simulation of a turbojet engine was developed. The purpose of the study was to establish simulation techniques applicable to propulsion system dynamics and controls research. A schematic model was derived from a physical description of a J85-13 turbojet engine. Basic conservation equations were applied to each component along with their individual performance characteristics to derive a mathematical representation. The simulation was mechanized on an analog computer. The simulation was verified in both steady-state and dynamic modes by comparing analytical results with experimental data obtained from tests performed at the Lewis Research Center with a J85-13 engine. In addition, comparison was also made with performance data obtained from the engine manufacturer. The comparisons established the validity of the simulation technique.
Tabulated Combustion Model Development For Non-Premixed Flames
NASA Astrophysics Data System (ADS)
Kundu, Prithwish
Turbulent non-premixed flames play a very important role in the field of engineering ranging from power generation to propulsion. The coupling of fluid mechanics and complicated combustion chemistry of fuels pose a challenge for the numerical modeling of these type of problems. Combustion modeling in Computational Fluid Dynamics (CFD) is one of the most important tools used for predictive modeling of complex systems and to understand the basic fundamentals of combustion. Traditional combustion models solve a transport equation of each species with a source term. In order to resolve the complex chemistry accurately it is important to include a large number of species. However, the computational cost is generally proportional to the cube of number of species. The presence of a large number of species in a flame makes the use of CFD computationally expensive and beyond reach for some applications or inaccurate when solved with simplified chemistry. For highly turbulent flows, it also becomes important to incorporate the effects of turbulence chemistry interaction (TCI). The aim of this work is to develop high fidelity combustion models based on the flamelet concept and to significantly advance the existing capabilities. A thorough investigation of existing models (Finite-rate chemistry and Representative Interactive Flamelet (RIF)) and comparative study of combustion models was done initially on a constant volume combustion chamber with diesel fuel injection. The CFD modeling was validated with experimental results and was also successfully applied to a single cylinder diesel engine. The effect of number of flamelets on the RIF model and flamelet initialization strategies were studied. The RIF model with multiple flamelets is computationally expensive and a model was proposed on the frame work of RIF. The new model was based on tabulated chemistry and incorporated TCI effects. A multidimensional tabulated chemistry database generation code was developed based on the 1D diffusion flame solver. The proposed model did not use progress variables like the traditional chemistry tabulation methods. The resulting model demonstrated an order of magnitude computational speed up over the RIF model. The results were validated across a wide range of operating conditions for diesel injections and the results were in close agreement to those of the experimental data. History of scalar dissipation rates plays a very important role in non premixed flames. However, tabulated methods have not been able to incorporate this physics in their models. A comparative approach is developed that can quantify these effects and find correlations with flow variables. A new model is proposed to include these effects in tabulated combustion models. The model is initially validated for 1D counterflow diffusion flame problems at engine conditions. The model is further implemented and validated in a 3D RANS code across a range of operating conditions for spray flames.
Semi-active engine mount design using auxiliary magneto-rheological fluid compliance chamber
NASA Astrophysics Data System (ADS)
Mansour, H.; Arzanpour, S.; Golnaraghi, M. F.; Parameswaran, A. M.
2011-03-01
Engine mounts are used in the automotive industry to isolate engine and chassis by reducing the noise and vibration imposed from one to the other. This paper describes modelling, simulation and design of a semi-active engine mount that is designed specifically to address the complicated vibration pattern of variable displacement engines (VDE). The ideal isolation for VDE requires the stiffness to be switchable upon cylinder activation/deactivation operating modes. In order to have a modular design, the same hydraulic engine mount components are maintained and a novel auxiliary magneto-rheological (MR) fluid chamber is developed and retrofitted inside the pumping chamber. The new compliance chamber is a controllable pressure regulator, which can effectively alter the dynamic performance of the mount. Switching between different modes happens by turning the electrical current to the MR chamber magnetic coil on and off. A model has been developed for the passive hydraulic mount and then it is extended to include the MR auxiliary chamber as well. A proof-of-concept prototype of the design has been fabricated which validates the mathematical model. The results demonstrate unique capability of the developed semi-active mount to be used for VDE application.
An LPV Adaptive Observer for Updating a Map Applied to an MAF Sensor in a Diesel Engine.
Liu, Zhiyuan; Wang, Changhui
2015-10-23
In this paper, a new method for mass air flow (MAF) sensor error compensation and an online updating error map (or lookup table) due to installation and aging in a diesel engine is developed. Since the MAF sensor error is dependent on the engine operating point, the error model is represented as a two-dimensional (2D) map with two inputs, fuel mass injection quantity and engine speed. Meanwhile, the 2D map representing the MAF sensor error is described as a piecewise bilinear interpolation model, which can be written as a dot product between the regression vector and parameter vector using a membership function. With the combination of the 2D map regression model and the diesel engine air path system, an LPV adaptive observer with low computational load is designed to estimate states and parameters jointly. The convergence of the proposed algorithm is proven under the conditions of persistent excitation and given inequalities. The observer is validated against the simulation data from engine software enDYNA provided by Tesis. The results demonstrate that the operating point-dependent error of the MAF sensor can be approximated acceptably by the 2D map from the proposed method.
Numerical model of spray combustion in a single cylinder diesel engine
NASA Astrophysics Data System (ADS)
Acampora, Luigi; Sequino, Luigi; Nigro, Giancarlo; Continillo, Gaetano; Vaglieco, Bianca Maria
2017-11-01
A numerical model is developed for predicting the pressure cycle from Intake Valve Closing (IVC) to the Exhaust Valve Opening (EVO) events. The model is based on a modified one-dimensional (1D) Musculus and Kattke spray model, coupled with a zero-dimensional (0D) non-adiabatic transient Fed-Batch reactor model. The 1D spray model provides an estimate of the fuel evaporation rate during the injection phenomenon, as a function of time. The 0D Fed-Batch reactor model describes combustion. The main goal of adopting a 0D (perfectly stirred) model is to use highly detailed reaction mechanisms for Diesel fuel combustion in air, while keeping the computational cost as low as possible. The proposed model is validated by comparing its predictions with experimental data of pressure obtained from an optical single cylinder Diesel engine.
Forward ultrasonic model validation using wavefield imaging methods
NASA Astrophysics Data System (ADS)
Blackshire, James L.
2018-04-01
The validation of forward ultrasonic wave propagation models in a complex titanium polycrystalline material system is accomplished using wavefield imaging methods. An innovative measurement approach is described that permits the visualization and quantitative evaluation of bulk elastic wave propagation and scattering behaviors in the titanium material for a typical focused immersion ultrasound measurement process. Results are provided for the determination and direct comparison of the ultrasonic beam's focal properties, mode-converted shear wave position and angle, and scattering and reflection from millimeter-sized microtexture regions (MTRs) within the titanium material. The approach and results are important with respect to understanding the root-cause backscatter signal responses generated in aerospace engine materials, where model-assisted methods are being used to understand the probabilistic nature of the backscatter signal content. Wavefield imaging methods are shown to be an effective means for corroborating and validating important forward model predictions in a direct manner using time- and spatially-resolved displacement field amplitude measurements.
Stirling Laboratory Research Engine: Preprototype configuration report
NASA Technical Reports Server (NTRS)
Hoehn, F. W.
1982-01-01
The concept of a simple Stirling research engine that could be used by industrial, university, and government laboratories was studied. The conceptual and final designs, hardware fabrication and the experimental validation of a preprototype stirling laboratory research engine (SLRE) were completed. Also completed was a task to identify the potential markets for research engines of this type. An analytical effort was conducted to provide a stirling cycle computer model. The versatile engine is a horizontally opposed, two piston, single acting stirling engine with a split crankshaft drive mechanism; special instrumentation is installed at all component interfaces. Results of a thermodynamic energy balance for the system are reported. Also included are the engine performance results obtained over a range of speeds, working pressures, phase angles and gas temperatures. The potential for a stirling research engine to support the laboratory requirements of educators and researchers was demonstrated.
PERCLOS: A Valid Psychophysiological Measure of Alertness As Assessed by Psychomotor Vigilance
DOT National Transportation Integrated Search
2002-04-01
The Logical Architecture is based on a Computer Aided Systems Engineering (CASE) model of the requirements for the flow of data and control through the various functions included in Intelligent Transportation Systems (ITS). Process Specifications pro...
ERIC Educational Resources Information Center
Institute of Electrical and Electronics Engineers, Inc., New York, NY.
The Institute of Electrical and Electronics Engineers (IEEE) validation program is designed to motivate persons practicing in electrical and electronics engineering to pursue quality technical continuing education courses offered by any responsible sponsor. The rapid acceptance of the validation program necessitated the additional development of a…
NASA Technical Reports Server (NTRS)
Bock, Larry A.; Hauser, Joseph E.; Mathews, Douglas C.; Topol, David A.; Bielak, Gerald W.; Lan, Justin H.; Premo, John W.
2014-01-01
This report presents results of the work completed in Phase 2 of the Engine Validation of Noise Reduction Concepts (EVNRC) contract. The purpose of the program is to validate, through engine testing, advanced noise reduction concepts aimed at reducing engine noise up to 6 EPNdB and improving nacelle suppression by 50 percent relative to 1992 technology. Phase 1 of the program is completed and is summarized in NASA/CR-2014-218088.
Modelisation 0D/1D des emissions de particules de suie dans les turbines a gaz aeronautiques
NASA Astrophysics Data System (ADS)
Bisson, Jeremie
Because of more stringent regulations of aircraft particle emissions as well as strong uncertainties about their formation and their effects on the atmosphere, a better understanding of particle microphysical mechanisms and their interactions with the engine components is required. This thesis focuses on the development of a 0D/1D combustion model with soot production in an aeronautical gas turbine. A major objective of this study is to assess the quality of soot particle emission predictions for different flight configurations. The model should eventually allow performing parametric studies on current or future engines with a minimal computation time. The model represents the combustor as well as turbines and nozzle with a chemical reactor network (CRN) that is coupled with a detailed combustion chemistry for kerosene (Jet A-1) and a soot particle dynamics model using the method of moments. The CRN was applied to the CFM56-2C1 engine during flight configurations of the LTO cycle (Landing-Take-Off) as in the APEX-1 study on aircraft particle emissions. The model was mainly validated on gas turbine thermodynamic data and pollutant concentrations (H2O, COX, NOx, SOX) which were measured in the same study. Once the first validation completed, the model was subsequently used for the computation of mass and number-based emissions indices of the soot particulate population and average diameter. Overall, the model is representative of the thermodynamic conditions and succeeds in predicting the emissions of major pollutants, particularly at high power. Concerning soot particulate emissions, the model's ability to predict simultaneously the emission indices as well as mean diameter has been partially validated. Indeed, the mass emission indices have remained higher than experimental results particularly at high power. These differences on particulate emission index may be the result of uncertainties on thermodynamic parameters of the CRN and mass air flow distribution in the combustion chamber. The analysis of the number-based emission index profile along the CRN also highlights the need to review the nucleation model that has been used and to consider in the future the implementation of a particle aggregation mechanism.
Complete modeling for systems of a marine diesel engine
NASA Astrophysics Data System (ADS)
Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha
2015-03-01
This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).
ERIC Educational Resources Information Center
Jacobs, James A.
In an effort to develop a course in materials and processes of industry at Norfolk State College using Barton Herrscher's model of systematic instruction, a group of 12 NASA-Langley Research Center's (NASA-LRC) research engineers and technicians were recruited. The group acted as consultants in validating the content of the course and aided in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sileghem, L.; Wallner, T.; Verhelst, S.
As knock is one of the main factors limiting the efficiency of spark-ignition engines, the introduction of alcohol blends could help to mitigate knock concerns due to the elevated knock resistance of these blends. A model that can accurately predict their autoignition behavior would be of great value to engine designers. The current work aims to develop such a model for alcohol–gasoline blends. First, a mixing rule for the autoignition delay time of alcohol–gasoline blends is proposed. Subsequently, this mixing rule is used together with an autoignition delay time correlation of gasoline and an autoignition delay time cor-relation of methanolmore » in a knock integral model that is implemented in a two-zone engine code. The pre-dictive performance of the resulting model is validated through comparison against experimental measurements on a CFR engine for a range of gasoline–methanol blends. The knock limited spark advance, the knock intensity, the knock onset crank angle and the value of the knock integral at the experimental knock onset have been simulated and compared to the experimental values derived from in-cylinder pressure measurements.« less
NASA Astrophysics Data System (ADS)
Chatenet, Q.; Tahan, A.; Gagnon, M.; Chamberland-Lauzon, J.
2016-11-01
Nowadays, engineers are able to solve complex equations thanks to the increase of computing capacity. Thus, finite elements software is widely used, especially in the field of mechanics to predict part behavior such as strain, stress and natural frequency. However, it can be difficult to determine how a model might be right or wrong, or whether a model is better than another one. Nevertheless, during the design phase, it is very important to estimate how the hydroelectric turbine blades will behave according to the stress to which it is subjected. Indeed, the static and dynamic stress levels will influence the blade's fatigue resistance and thus its lifetime, which is a significant feature. In the industry, engineers generally use either graphic representation, hypothesis tests such as the Student test, or linear regressions in order to compare experimental to estimated data from the numerical model. Due to the variability in personal interpretation (reproducibility), graphical validation is not considered objective. For an objective assessment, it is essential to use a robust validation metric to measure the conformity of predictions against data. We propose to use the area metric in the case of a turbine blade that meets the key points of the ASME Standards and produces a quantitative measure of agreement between simulations and empirical data. This validation metric excludes any belief and criterion of accepting a model which increases robustness. The present work is aimed at applying a validation method, according to ASME V&V 10 recommendations. Firstly, the area metric is applied on the case of a real Francis runner whose geometry and boundaries conditions are complex. Secondly, the area metric will be compared to classical regression methods to evaluate the performance of the method. Finally, we will discuss the use of the area metric as a tool to correct simulations.
Fine-Tuning Tomato Agronomic Properties by Computational Genome Redesign
Carrera, Javier; Fernández del Carmen, Asun; Fernández-Muñoz, Rafael; Rambla, Jose Luis; Pons, Clara; Jaramillo, Alfonso; Elena, Santiago F.; Granell, Antonio
2012-01-01
Considering cells as biofactories, we aimed to optimize its internal processes by using the same engineering principles that large industries are implementing nowadays: lean manufacturing. We have applied reverse engineering computational methods to transcriptomic, metabolomic and phenomic data obtained from a collection of tomato recombinant inbreed lines to formulate a kinetic and constraint-based model that efficiently describes the cellular metabolism from expression of a minimal core of genes. Based on predicted metabolic profiles, a close association with agronomic and organoleptic properties of the ripe fruit was revealed with high statistical confidence. Inspired in a synthetic biology approach, the model was used for exploring the landscape of all possible local transcriptional changes with the aim of engineering tomato fruits with fine-tuned biotechnological properties. The method was validated by the ability of the proposed genomes, engineered for modified desired agronomic traits, to recapitulate experimental correlations between associated metabolites. PMID:22685389
Factors Affecting the Longevity and Strength in an In Vitro Model of the Bone–Ligament Interface
Paxton, Jennifer Z.; Donnelly, Kenneth; Keatch, Robert P.; Grover, Liam M.
2010-01-01
The interfaces between musculoskeletal tissues with contrasting moduli are morphologically and biochemically adapted to allow the transmission of force with minimal injury. Current methods of tissue engineering ligaments and tendons do not include the interface and this may limit the future clinical success of engineered musculoskeletal tissues. This study aimed to use solid brushite cement anchors to engineer intact ligaments from bone-to-bone, creating a functional musculoskeletal interface in vitro. We show here that modifying anchor shape and cement composition can alter both the longevity and the strength of an in vitro model of the bone–ligament interface: with values reaching 23 days and 21.6 kPa, respectively. These results validate the use of brushite bone cement to engineer the bone–ligament interface in vitro and raise the potential for future use in ligament replacement surgery. PMID:20431953
Design and Test of Fan/Nacelle Models Quiet High-Speed Fan Design
NASA Technical Reports Server (NTRS)
Miller, Christopher J. (Technical Monitor); Repp, Russ; Gentile, David; Hanson, David; Chunduru, Srinivas
2003-01-01
The primary objective of the Quiet High-Speed Fan (QHSF) program was to develop an advanced high-speed fan design that will achieve a 6 dB reduction in overall fan noise over a baseline configuration while maintaining similar performance. The program applies and validates acoustic, aerodynamic, aeroelastic, and mechanical design tools developed by NASA, US industry, and academia. The successful fan design will be used in an AlliedSignal Engines (AE) advanced regional engine to be marketed in the year 2000 and beyond. This technology is needed to maintain US industry leadership in the regional turbofan engine market.
Object-Oriented Modeling of an Energy Harvesting System Based on Thermoelectric Generators
NASA Astrophysics Data System (ADS)
Nesarajah, Marco; Frey, Georg
This paper deals with the modeling of an energy harvesting system based on thermoelectric generators (TEG), and the validation of the model by means of a test bench. TEGs are capable to improve the overall energy efficiency of energy systems, e.g. combustion engines or heating systems, by using the remaining waste heat to generate electrical power. Previously, a component-oriented model of the TEG itself was developed in Modelica® language. With this model any TEG can be described and simulated given the material properties and the physical dimension. Now, this model was extended by the surrounding components to a complete model of a thermoelectric energy harvesting system. In addition to the TEG, the model contains the cooling system, the heat source, and the power electronics. To validate the simulation model, a test bench was built and installed on an oil-fired household heating system. The paper reports results of the measurements and discusses the validity of the developed simulation models. Furthermore, the efficiency of the proposed energy harvesting system is derived and possible improvements based on design variations tested in the simulation model are proposed.
A non-isotropic multiple-scale turbulence model
NASA Technical Reports Server (NTRS)
Chen, C. P.
1990-01-01
A newly developed non-isotropic multiple scale turbulence model (MS/ASM) is described for complex flow calculations. This model focuses on the direct modeling of Reynolds stresses and utilizes split-spectrum concepts for modeling multiple scale effects in turbulence. Validation studies on free shear flows, rotating flows and recirculating flows show that the current model perform significantly better than the single scale k-epsilon model. The present model is relatively inexpensive in terms of CPU time which makes it suitable for broad engineering flow applications.
Verification and validation of a Work Domain Analysis with turing machine task analysis.
Rechard, J; Bignon, A; Berruet, P; Morineau, T
2015-03-01
While the use of Work Domain Analysis as a methodological framework in cognitive engineering is increasing rapidly, verification and validation of work domain models produced by this method are becoming a significant issue. In this article, we propose the use of a method based on Turing machine formalism named "Turing Machine Task Analysis" to verify and validate work domain models. The application of this method on two work domain analyses, one of car driving which is an "intentional" domain, and the other of a ship water system which is a "causal domain" showed the possibility of highlighting improvements needed by these models. More precisely, the step by step analysis of a degraded task scenario in each work domain model pointed out unsatisfactory aspects in the first modelling, like overspecification, underspecification, omission of work domain affordances, or unsuitable inclusion of objects in the work domain model. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Engine System Loads Analysis Compared to Hot-Fire Data
NASA Technical Reports Server (NTRS)
Frady, Gregory P.; Jennings, John M.; Mims, Katherine; Brunty, Joseph; Christensen, Eric R.; McConnaughey, Paul R. (Technical Monitor)
2002-01-01
Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the NASA MC-1 engine program, the focus was to reduce the cost-to-weight ratio. The techniques for structural dynamics analysis practices, were tailored in this program to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of MC-1 load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are important during the design and integration of a new engine system. During the final stages of development, it is important to verify the results of an engine system model to determine the validity of the results. During the final stages of the MC-1 program, hot-fire test results were obtained and compared to the structural design loads calculated by the engine system model. These comparisons are presented in this paper.
A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process
NASA Technical Reports Server (NTRS)
Wang, Yi; Tamai, Tetsuo
2009-01-01
Since the complexity of software systems continues to grow, most engineers face two serious problems: the state space explosion problem and the problem of how to debug systems. In this paper, we propose a game-theoretic approach to full branching time model checking on three-valued semantics. The three-valued models and logics provide successful abstraction that overcomes the state space explosion problem. The game style model checking that generates counter-examples can guide refinement or identify validated formulas, which solves the system debugging problem. Furthermore, output of our game style method will give significant information to engineers in detecting where errors have occurred and what the causes of the errors are.
Validation Assessment of a Glass-to-Metal Seal Finite-Element Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamison, Ryan Dale; Buchheit, Thomas E.; Emery, John M
Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element modelmore » of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.« less
Global reaction mechanism for the auto-ignition of full boiling range gasoline and kerosene fuels
NASA Astrophysics Data System (ADS)
Vandersickel, A.; Wright, Y. M.; Boulouchos, K.
2013-12-01
Compact reaction schemes capable of predicting auto-ignition are a prerequisite for the development of strategies to control and optimise homogeneous charge compression ignition (HCCI) engines. In particular for full boiling range fuels exhibiting two stage ignition a tremendous demand exists in the engine development community. The present paper therefore meticulously assesses a previous 7-step reaction scheme developed to predict auto-ignition for four hydrocarbon blends and proposes an important extension of the model constant optimisation procedure, allowing for the model to capture not only ignition delays, but also the evolutions of representative intermediates and heat release rates for a variety of full boiling range fuels. Additionally, an extensive validation of the later evolutions by means of various detailed n-heptane reaction mechanisms from literature has been presented; both for perfectly homogeneous, as well as non-premixed/stratified HCCI conditions. Finally, the models potential to simulate the auto-ignition of various full boiling range fuels is demonstrated by means of experimental shock tube data for six strongly differing fuels, containing e.g. up to 46.7% cyclo-alkanes, 20% napthalenes or complex branched aromatics such as methyl- or ethyl-napthalene. The good predictive capability observed for each of the validation cases as well as the successful parameterisation for each of the six fuels, indicate that the model could, in principle, be applied to any hydrocarbon fuel, providing suitable adjustments to the model parameters are carried out. Combined with the optimisation strategy presented, the model therefore constitutes a major step towards the inclusion of real fuel kinetics into full scale HCCI engine simulations.
Computational Simulation of Acoustic Modes in Rocket Combustors
NASA Technical Reports Server (NTRS)
Harper, Brent (Technical Monitor); Merkle, C. L.; Sankaran, V.; Ellis, M.
2004-01-01
A combination of computational fluid dynamic analysis and analytical solutions is being used to characterize the dominant modes in liquid rocket engines in conjunction with laboratory experiments. The analytical solutions are based on simplified geometries and flow conditions and are used for careful validation of the numerical formulation. The validated computational model is then extended to realistic geometries and flow conditions to test the effects of various parameters on chamber modes, to guide and interpret companion laboratory experiments in simplified combustors, and to scale the measurements to engine operating conditions. In turn, the experiments are used to validate and improve the model. The present paper gives an overview of the numerical and analytical techniques along with comparisons illustrating the accuracy of the computations as a function of grid resolution. A representative parametric study of the effect of combustor mean flow Mach number and combustor aspect ratio on the chamber modes is then presented for both transverse and longitudinal modes. The results show that higher mean flow Mach numbers drive the modes to lower frequencies. Estimates of transverse wave mechanics in a high aspect ratio combustor are then contrasted with longitudinal modes in a long and narrow combustor to provide understanding of potential experimental simulations.
NASA Astrophysics Data System (ADS)
Kristinayanti, W. S.; Mas Pertiwi, I. G. A. I.; Evin Yudhi, S.; Lokantara, W. D.
2018-01-01
Assessment is an important element in education that shall oversees students’ competence not only in terms of cognitive aspect, but alsothe students’ psychomotorin a comprehensive way. Civil Engineering Department at Bali State Polytechnic,as a vocational education institution, emphasizes on not only the theoretical foundation of the study, but also the application throughpracticum in workshop-based learning. We are aware of a need for performance-based assessment for these students, which would be essential for the student’s all-round performance in their studies.We try to develop a performance-based practicum assessment model that is needed to assess student’s ability in workshop-based learning. This research was conducted in three stages, 1) learning needs analysis, 2) instruments development, and 3) testing of instruments. The study uses rubrics set-up to test students’ competence in the workshop and test the validity. We obtained 34-point valid statement out of 35, and resulted in value of Cronbach’s alpha equal to 0.977. In expert test we obtained a value of CVI = 0.75 which means that the drafted assessment is empirically valid within thetrial group.
Integrated tokamak modeling: when physics informs engineering and research planning
NASA Astrophysics Data System (ADS)
Poli, Francesca
2017-10-01
Simulations that integrate virtually all the relevant engineering and physics aspects of a real tokamak experiment are a power tool for experimental interpretation, model validation and planning for both present and future devices. This tutorial will guide through the building blocks of an ``integrated'' tokamak simulation, such as magnetic flux diffusion, thermal, momentum and particle transport, external heating and current drive sources, wall particle sources and sinks. Emphasis is given to the connection and interplay between external actuators and plasma response, between the slow time scales of the current diffusion and the fast time scales of transport, and how reduced and high-fidelity models can contribute to simulate a whole device. To illustrate the potential and limitations of integrated tokamak modeling for discharge prediction, a helium plasma scenario for the ITER pre-nuclear phase is taken as an example. This scenario presents challenges because it requires core-edge integration and advanced models for interaction between waves and fast-ions, which are subject to a limited experimental database for validation and guidance. Starting from a scenario obtained by re-scaling parameters from the demonstration inductive ``ITER baseline'', it is shown how self-consistent simulations that encompass both core and edge plasma regions, as well as high-fidelity heating and current drive source models are needed to set constraints on the density, magnetic field and heating scheme. This tutorial aims at demonstrating how integrated modeling, when used with adequate level of criticism, can not only support design of operational scenarios, but also help to asses the limitations and gaps in the available models, thus indicating where improved modeling tools are required and how present experiments can help their validation and inform research planning. Work supported by DOE under DE-AC02-09CH1146.
CASL Dakota Capabilities Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Simmons, Chris; Williams, Brian J.
2017-10-10
The Dakota software project serves the mission of Sandia National Laboratories and supports a worldwide user community by delivering state-of-the-art research and robust, usable software for optimization and uncertainty quantification. These capabilities enable advanced exploration and riskinformed prediction with a wide range of computational science and engineering models. Dakota is the verification and validation (V&V) / uncertainty quantification (UQ) software delivery vehicle for CASL, allowing analysts across focus areas to apply these capabilities to myriad nuclear engineering analyses.
CMC Research at NASA Glenn in 2015: Recent Progress and Plans
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2015-01-01
As part of NASAs Aeronautical Sciences project, Glenn Research Center has developed advanced fiber and matrix constituents for a 2700F CMC for turbine engine applications. Fiber and matrix development and characterization will be reviewed. Resulting improvements in CMC mechanical properties and durability will be summarized. Plans for 2015 will be described, including development and validation of models predicting effects of the engine environment on durability of SiC/SiC composites with Environmental Barrier Coatings
A method for landing gear modeling and simulation with experimental validation
NASA Technical Reports Server (NTRS)
Daniels, James N.
1996-01-01
This document presents an approach for modeling and simulating landing gear systems. Specifically, a nonlinear model of an A-6 Intruder Main Gear is developed, simulated, and validated against static and dynamic test data. This model includes nonlinear effects such as a polytropic gas model, velocity squared damping, a geometry governed model for the discharge coefficients, stick-slip friction effects and a nonlinear tire spring and damping model. An Adams-Moulton predictor corrector was used to integrate the equations of motion until a discontinuity caused by a stick-slip friction model was reached, at which point, a Runga-Kutta routine integrated past the discontinuity and returned the problem solution back to the predictor corrector. Run times of this software are around 2 mins. per 1 sec. of simulation under dynamic circumstances. To validate the model, engineers at the Aircraft Landing Dynamics facilities at NASA Langley Research Center installed one A-6 main gear on a drop carriage and used a hydraulic shaker table to provide simulated runway inputs to the gear. Model parameters were tuned to produce excellent agreement for many cases.
A Computational Study to Investigate the Effect of Altitude on Deteriorated Engine Performance
NASA Astrophysics Data System (ADS)
Koh, W. C.; Mazlan, N. M.; Rajendran, P.; Ismail, M. A.
2018-05-01
This study presents an investigation on the effect of operational altitudes on the performance of the deteriorated engine. A two-spool high bypass ratio turbofan engine is used as the test subject for this study. The engine is modelled in Gas Turbine Simulation Program (GSP) based on an existing engine model from literature. Real flight data were used for the validation. Deterioration rate of 0.1% per day is applied for all turbofan components engine. The simulation is performed by varying the altitude from sea level until 9000m. Results obtained show reduction in air mass flow rate and engine thrust as altitude increases. The reduction in air mass flow rate is due to the lower air density at higher altitude hence reduces amount of engine thrust. At 1000m to 4000m, thrust specific fuel consumption (TSFC) of the engine is improved compared to sea level. However depleted in TSFC is shown when the aircraft flies at altitude higher than 4000m. At this altitude, the effect of air density is dominant. As a result, the engine is required to burn more fuel to provide a higher thrust to sustain the aircraft speed. More fuel is consumed hence depletion in TSFC is obtained.
Structural Test Laboratory | Water Power | NREL
Structural Test Laboratory Structural Test Laboratory NREL engineers design and configure structural components can validate models, demonstrate system reliability, inform design margins, and assess , including mass and center of gravity, to ensure compliance with design goals Dynamic Characterization Use
Model of dissolution in the framework of tissue engineering and drug delivery.
Sanz-Herrera, J A; Soria, L; Reina-Romo, E; Torres, Y; Boccaccini, A R
2018-05-22
Dissolution phenomena are ubiquitously present in biomaterials in many different fields. Despite the advantages of simulation-based design of biomaterials in medical applications, additional efforts are needed to derive reliable models which describe the process of dissolution. A phenomenologically based model, available for simulation of dissolution in biomaterials, is introduced in this paper. The model turns into a set of reaction-diffusion equations implemented in a finite element numerical framework. First, a parametric analysis is conducted in order to explore the role of model parameters on the overall dissolution process. Then, the model is calibrated and validated versus a straightforward but rigorous experimental setup. Results show that the mathematical model macroscopically reproduces the main physicochemical phenomena that take place in the tests, corroborating its usefulness for design of biomaterials in the tissue engineering and drug delivery research areas.
Statistical Methodologies to Integrate Experimental and Computational Research
NASA Technical Reports Server (NTRS)
Parker, P. A.; Johnson, R. T.; Montgomery, D. C.
2008-01-01
Development of advanced algorithms for simulating engine flow paths requires the integration of fundamental experiments with the validation of enhanced mathematical models. In this paper, we provide an overview of statistical methods to strategically and efficiently conduct experiments and computational model refinement. Moreover, the integration of experimental and computational research efforts is emphasized. With a statistical engineering perspective, scientific and engineering expertise is combined with statistical sciences to gain deeper insights into experimental phenomenon and code development performance; supporting the overall research objectives. The particular statistical methods discussed are design of experiments, response surface methodology, and uncertainty analysis and planning. Their application is illustrated with a coaxial free jet experiment and a turbulence model refinement investigation. Our goal is to provide an overview, focusing on concepts rather than practice, to demonstrate the benefits of using statistical methods in research and development, thereby encouraging their broader and more systematic application.
NASA Astrophysics Data System (ADS)
Wang, Ruichen; Lu, Jingyang; Xu, Yiran; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik
2018-05-01
Due to the progressive expansion of public mobile networks and the dramatic growth of the number of wireless users in recent years, researchers are motivated to study the radio propagation in urban environments and develop reliable and fast path loss prediction models. During last decades, different types of propagation models are developed for urban scenario path loss predictions such as the Hata model and the COST 231 model. In this paper, the path loss prediction model is thoroughly investigated using machine learning approaches. Different non-linear feature selection methods are deployed and investigated to reduce the computational complexity. The simulation results are provided to demonstratethe validity of the machine learning based path loss prediction engine, which can correctly determine the signal propagation in a wireless urban setting.
NASA Technical Reports Server (NTRS)
Revilock, D. M.; Pereira, J. M.
2009-01-01
This report summarizes the ballistic impact testing that was conducted to provide validation data for the development of numerical models of blade-out events in fabric containment systems. The ballistic impact response of two different fiber materials - Kevlar(TradeName) 49 and Zylon(TradeName) AS (as spun) was studied by firing metal projectiles into dry woven fabric specimens using a gas gun. The shape, mass, orientation, and velocity of the projectile were varied and recorded. In most cases, the tests were designed so the projectile would perforate the specimen, allowing measurement of the energy absorbed by the fabric. The results for both Zylon and Kevlar presented here represent a useful set of data for the purposes of establishing and validating numerical models to predict the response of fabrics under conditions that simulate those of a jet engine blade-release situation. In addition, some useful empirical observations were made regarding the effects of projectile orientation and the relative performance of the different fabric materials.
Investigation of a Verification and Validation Tool with a Turbofan Aircraft Engine Application
NASA Technical Reports Server (NTRS)
Uth, Peter; Narang-Siddarth, Anshu; Wong, Edmond
2018-01-01
The development of more advanced control architectures for turbofan aircraft engines can yield gains in performance and efficiency over the lifetime of an engine. However, the implementation of these increasingly complex controllers is contingent on their ability to provide safe, reliable engine operation. Therefore, having the means to verify the safety of new control algorithms is crucial. As a step towards this goal, CoCoSim, a publicly available verification tool for Simulink, is used to analyze C-MAPSS40k, a 40,000 lbf class turbo-fan engine model developed at NASA for testing new control algorithms. Due to current limitations of the verification software, several modifications are made to C-MAPSS40k to achieve compatibility with CoCoSim. Some of these modifications sacrifice fidelity to the original model. Several safety and performance requirements typical for turbofan engines are identified and constructed into a verification framework. Preliminary results using an industry standard baseline controller for these requirements are presented. While verification capabilities are demonstrated, a truly comprehensive analysis will require further development of the verification tool.
Flux analysis and metabolomics for systematic metabolic engineering of microorganisms.
Toya, Yoshihiro; Shimizu, Hiroshi
2013-11-01
Rational engineering of metabolism is important for bio-production using microorganisms. Metabolic design based on in silico simulations and experimental validation of the metabolic state in the engineered strain helps in accomplishing systematic metabolic engineering. Flux balance analysis (FBA) is a method for the prediction of metabolic phenotype, and many applications have been developed using FBA to design metabolic networks. Elementary mode analysis (EMA) and ensemble modeling techniques are also useful tools for in silico strain design. The metabolome and flux distribution of the metabolic pathways enable us to evaluate the metabolic state and provide useful clues to improve target productivity. Here, we reviewed several computational applications for metabolic engineering by using genome-scale metabolic models of microorganisms. We also discussed the recent progress made in the field of metabolomics and (13)C-metabolic flux analysis techniques, and reviewed these applications pertaining to bio-production development. Because these in silico or experimental approaches have their respective advantages and disadvantages, the combined usage of these methods is complementary and effective for metabolic engineering. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Somsel, James P.
1998-01-01
The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).
Experiences Using Formal Methods for Requirements Modeling
NASA Technical Reports Server (NTRS)
Easterbrook, Steve; Lutz, Robyn; Covington, Rick; Kelly, John; Ampo, Yoko; Hamilton, David
1996-01-01
This paper describes three cases studies in the lightweight application of formal methods to requirements modeling for spacecraft fault protection systems. The case studies differ from previously reported applications of formal methods in that formal methods were applied very early in the requirements engineering process, to validate the evolving requirements. The results were fed back into the projects, to improve the informal specifications. For each case study, we describe what methods were applied, how they were applied, how much effort was involved, and what the findings were. In all three cases, the formal modeling provided a cost effective enhancement of the existing verification and validation processes. We conclude that the benefits gained from early modeling of unstable requirements more than outweigh the effort needed to maintain multiple representations.
Supersonic Combustion Research at NASA
NASA Technical Reports Server (NTRS)
Drummond, J. P.; Danehy, Paul M.; Gaffney, Richard L., Jr.; Tedder, Sarah A.; Cutler, Andrew D.; Bivolaru, Daniel
2007-01-01
This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flowpaths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.
Engine Validation of Noise and Emission Reduction Technology Phase I
NASA Technical Reports Server (NTRS)
Weir, Don (Editor)
2008-01-01
This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.
Development of a Scale-up Tool for Pervaporation Processes
Thiess, Holger; Strube, Jochen
2018-01-01
In this study, an engineering tool for the design and optimization of pervaporation processes is developed based on physico-chemical modelling coupled with laboratory/mini-plant experiments. The model incorporates the solution-diffusion-mechanism, polarization effects (concentration and temperature), axial dispersion, pressure drop and the temperature drop in the feed channel due to vaporization of the permeating components. The permeance, being the key model parameter, was determined via dehydration experiments on a mini-plant scale for the binary mixtures ethanol/water and ethyl acetate/water. A second set of experimental data was utilized for the validation of the model for two chemical systems. The industrially relevant ternary mixture, ethanol/ethyl acetate/water, was investigated close to its azeotropic point and compared to a simulation conducted with the determined binary permeance data. Experimental and simulation data proved to agree very well for the investigated process conditions. In order to test the scalability of the developed engineering tool, large-scale data from an industrial pervaporation plant used for the dehydration of ethanol was compared to a process simulation conducted with the validated physico-chemical model. Since the membranes employed in both mini-plant and industrial scale were of the same type, the permeance data could be transferred. The comparison of the measured and simulated data proved the scalability of the derived model. PMID:29342956
Weiss, William A; Israel, Mark; Cobbs, Charles; Holland, Eric; James, C David; Louis, David N; Marks, Cheryl; McClatchey, Andrea I; Roberts, Tim; Van Dyke, Terry; Wetmore, Cynthia; Chiu, Ing-Ming; Giovannini, Marco; Guha, Abhijit; Higgins, Robert J; Marino, Silvia; Radovanovic, Ivan; Reilly, Karlyne; Aldape, Ken
2002-10-24
The Mouse Models of Cancer Consortium of the NCI sponsored a meeting of neuropathologists and veterinary pathologists in New York City in November of 2000. A rapidly growing number of genetically engineered mice (GEM) predisposed to tumors of the nervous system have led to a concomitant need for neuropathological evaluation and validation of these models. A panel of 13 pathologists reviewed material representing most of the available published and unpublished GEM models of medulloblastoma, primitive neuroectodermal tumor, astrocytoma, oligodendroglioma, mixed glioma, and tumors of the peripheral nerve. The GEM tumors were found to have many similarities and some distinct differences with respect to human disease. After review of the biology and pathology for all models presented, participants were split into groups reflective of clinical expertise in human pathology, tumor biology, neuroimaging, or treatment/intervention. Recommendations were made detailing an extensive and complete neuropathological characterization of animals. Importance was placed on including information on strains, tumor clonality, and examination for genetic mutation or altered gene expression characteristics of the corresponding human malignancy. Specific proposals were made to incorporate GEM models in emerging neuroradiological modalities. Recommendations were also made for preclinical validation of these models in cancer therapeutics, and for incorporation of surrogate markers of tumor burden to facilitate preclinical evaluation of new therapies.
Development and validation of instrument for ergonomic evaluation of tablet arm chairs
Tirloni, Adriana Seára; dos Reis, Diogo Cunha; Bornia, Antonio Cezar; de Andrade, Dalton Francisco; Borgatto, Adriano Ferreti; Moro, Antônio Renato Pereira
2016-01-01
The purpose of this study was to develop and validate an evaluation instrument for tablet arm chairs based on ergonomic requirements, focused on user perceptions and using Item Response Theory (IRT). This exploratory study involved 1,633 participants (university students and professors) in four steps: a pilot study (n=26), semantic validation (n=430), content validation (n=11) and construct validation (n=1,166). Samejima's graded response model was applied to validate the instrument. The results showed that all the steps (theoretical and practical) of the instrument's development and validation processes were successful and that the group of remaining items (n=45) had a high consistency (0.95). This instrument can be used in the furniture industry by engineers and product designers and in the purchasing process of tablet arm chairs for schools, universities and auditoriums. PMID:28337099
System capacity and economic modeling computer tool for satellite mobile communications systems
NASA Technical Reports Server (NTRS)
Wiedeman, Robert A.; Wen, Doong; Mccracken, Albert G.
1988-01-01
A unique computer modeling tool that combines an engineering tool with a financial analysis program is described. The resulting combination yields a flexible economic model that can predict the cost effectiveness of various mobile systems. Cost modeling is necessary in order to ascertain if a given system with a finite satellite resource is capable of supporting itself financially and to determine what services can be supported. Personal computer techniques using Lotus 123 are used for the model in order to provide as universal an application as possible such that the model can be used and modified to fit many situations and conditions. The output of the engineering portion of the model consists of a channel capacity analysis and link calculations for several qualities of service using up to 16 types of earth terminal configurations. The outputs of the financial model are a revenue analysis, an income statement, and a cost model validation section.
Validation metrics for turbulent plasma transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, C., E-mail: chholland@ucsd.edu
Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnosticsmore » to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. The utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)], as part of a multi-year transport model validation activity.« less
Elsaadany, Mostafa; Yan, Karen Chang; Yildirim-Ayan, Eda
2017-06-01
Successful tissue engineering and regenerative therapy necessitate having extensive knowledge about mechanical milieu in engineered tissues and the resident cells. In this study, we have merged two powerful analysis tools, namely finite element analysis and stochastic analysis, to understand the mechanical strain within the tissue scaffold and residing cells and to predict the cell viability upon applying mechanical strains. A continuum-based multi-length scale finite element model (FEM) was created to simulate the physiologically relevant equiaxial strain exposure on cell-embedded tissue scaffold and to calculate strain transferred to the tissue scaffold (macro-scale) and residing cells (micro-scale) upon various equiaxial strains. The data from FEM were used to predict cell viability under various equiaxial strain magnitudes using stochastic damage criterion analysis. The model validation was conducted through mechanically straining the cardiomyocyte-encapsulated collagen constructs using a custom-built mechanical loading platform (EQUicycler). FEM quantified the strain gradients over the radial and longitudinal direction of the scaffolds and the cells residing in different areas of interest. With the use of the experimental viability data, stochastic damage criterion, and the average cellular strains obtained from multi-length scale models, cellular viability was predicted and successfully validated. This methodology can provide a great tool to characterize the mechanical stimulation of bioreactors used in tissue engineering applications in providing quantification of mechanical strain and predicting cellular viability variations due to applied mechanical strain.
Liquid Oxygen/Liquid Methane Integrated Propulsion System Test Bed
NASA Technical Reports Server (NTRS)
Flynn, Howard; Lusby, Brian; Villemarette, Mark
2011-01-01
In support of NASA?s Propulsion and Cryogenic Advanced Development (PCAD) project, a liquid oxygen (LO2)/liquid methane (LCH4) Integrated Propulsion System Test Bed (IPSTB) was designed and advanced to the Critical Design Review (CDR) stage at the Johnson Space Center. The IPSTB?s primary objectives are to study LO2/LCH4 propulsion system steady state and transient performance, operational characteristics and to validate fluid and thermal models of a LO2/LCH4 propulsion system for use in future flight design work. Two phase thermal and dynamic fluid flow models of the IPSTB were built to predict the system performance characteristics under a variety of operating modes and to aid in the overall system design work. While at ambient temperature and simulated altitude conditions at the White Sands Test Facility, the IPSTB and its approximately 600 channels of system instrumentation would be operated to perform a variety of integrated main engine and reaction control engine hot fire tests. The pressure, temperature, and flow rate data collected during this testing would then be used to validate the analytical models of the IPSTB?s thermal and dynamic fluid flow performance. An overview of the IPSTB design and analytical model development will be presented.
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Revilock, Duane M.
2007-01-01
A ballistic impact test program was conducted to provide validation data for the development of numerical models of blade out events in fabric containment systems. The impact response of two different fiber materials - Kevlar 49 (E.I. DuPont Nemours and Company) and Zylon AS (Toyobo Co., Ltd.) was studied by firing metal projectiles into dry woven fabric specimens using a gas gun. The shape, mass, orientation and velocity of the projectile were varied and recorded. In most cases the tests were designed such that the projectile would perforate the specimen, allowing measurement of the energy absorbed by the fabric. The results for both Zylon and Kevlar presented here represent a useful set of data for the purposes of establishing and validating numerical models for predicting the response of fabrics under conditions simulating those of a jet engine blade release situation. In addition some useful empirical observations were made regarding the effects of projectile orientation and the relative performance of the different materials.
Model Validation Status Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.L. Hardin
The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified,more » and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and engineered barriers, plus the TSPA model itself Description of the model areas is provided in Section 3, and the documents reviewed are described in Section 4. The responsible manager for the Model Validation Status Review was the Chief Science Officer (CSO) for Bechtel-SAIC Co. (BSC). The team lead was assigned by the CSO. A total of 32 technical specialists were engaged to evaluate model validation status in the 21 model areas. The technical specialists were generally independent of the work reviewed, meeting technical qualifications as discussed in Section 5.« less
Modeling Combustion in Supersonic Flows
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Tedder, Sarah A.; Cutler, Andrew D.
2007-01-01
This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flow-paths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.
Validation of a 2.5D CFD model for cylindrical gas–solids fluidized beds
Li, Tingwen
2015-09-25
The 2.5D model recently proposed by Li et al. (Li, T., Benyahia, S., Dietiker, J., Musser, J., and Sun, X., 2015. A 2.5D computational method to simulate cylindrical fluidized beds. Chemical Engineering Science. 123, 236-246.) was validated for two cylindrical gas-solids bubbling fluidized bed systems. Different types of particles tested under various flow conditions were simulated using the traditional 2D model and the 2.5D model. Detailed comparison against the experimental measurements on solid concentration and velocity were conducted. Comparing to the traditional Cartesian 2D flow simulation, the 2.5D model yielded better agreement with the experimental data especially for the solidmore » velocity prediction in the column wall region.« less
XMI2USE: A Tool for Transforming XMI to USE Specifications
NASA Astrophysics Data System (ADS)
Sun, Wuliang; Song, Eunjee; Grabow, Paul C.; Simmonds, Devon M.
The UML-based Specification Environment (USE) tool supports syntactic analysis, type checking, consistency checking, and dynamic validation of invariants and pre-/post conditions specified in the Object Constraint Language (OCL). Due to its animation and analysis power, it is useful when checking critical non-functional properties such as security policies. However, the USE tool requires one to specify (i.e., "write") a model using its own textual language and does not allow one to import any model specification files created by other UML modeling tools. Hence, to make the best use of existing UML tools, we often create a model with OCL constraints using a modeling tool such as the IBM Rational Software Architect (RSA) and then use the USE tool for model validation. This approach, however, requires a manual transformation between the specifications of two different tool formats, which is error-prone and diminishes the benefit of automated model-level validations. In this paper, we describe our own implementation of a specification transformation engine that is based on the Model Driven Architecture (MDA) framework and currently supports automatic tool-level transformations from RSA to USE.
Ma, Yunzhi; Lacroix, Fréderic; Lavallée, Marie-Claude; Beaulieu, Luc
2015-01-01
To validate the Advanced Collapsed cone Engine (ACE) dose calculation engine of Oncentra Brachy (OcB) treatment planning system using an (192)Ir source. Two levels of validation were performed, conformant to the model-based dose calculation algorithm commissioning guidelines of American Association of Physicists in Medicine TG-186 report. Level 1 uses all-water phantoms, and the validation is against TG-43 methodology. Level 2 uses real-patient cases, and the validation is against Monte Carlo (MC) simulations. For each case, the ACE and TG-43 calculations were performed in the OcB treatment planning system. ALGEBRA MC system was used to perform MC simulations. In Level 1, the ray effect depends on both accuracy mode and the number of dwell positions. The volume fraction with dose error ≥2% quickly reduces from 23% (13%) for a single dwell to 3% (2%) for eight dwell positions in the standard (high) accuracy mode. In Level 2, the 10% and higher isodose lines were observed overlapping between ACE (both standard and high-resolution modes) and MC. Major clinical indices (V100, V150, V200, D90, D50, and D2cc) were investigated and validated by MC. For example, among the Level 2 cases, the maximum deviation in V100 of ACE from MC is 2.75% but up to ~10% for TG-43. Similarly, the maximum deviation in D90 is 0.14 Gy between ACE and MC but up to 0.24 Gy for TG-43. ACE demonstrated good agreement with MC in most clinically relevant regions in the cases tested. Departure from MC is significant for specific situations but limited to low-dose (<10% isodose) regions. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Mandl, Dan; Howard, Joseph
2000-01-01
The New Millennium Program's first Earth-observing mission (EO-1) is a technology validation mission. It is managed by the NASA Goddard Space Flight Center in Greenbelt, Maryland and is scheduled for launch in the summer of 2000. The purpose of this mission is to flight-validate revolutionary technologies that will contribute to the reduction of cost and increase of capabilities for future land imaging missions. In the EO-1 mission, there are five instrument, five spacecraft, and three supporting technologies to flight-validate during a year of operations. EO-1 operations and the accompanying ground system were intended to be simple in order to maintain low operational costs. For purposes of formulating operations, it was initially modeled as a small science mission. However, it quickly evolved into a more complex mission due to the difficulties in effectively integrating all of the validation plans of the individual technologies. As a consequence, more operational support was required to confidently complete the on-orbit validation of the new technologies. This paper will outline the issues and lessons learned applicable to future technology validation missions. Examples of some of these include the following: (1) operational complexity encountered in integrating all of the validation plans into a coherent operational plan, (2) initial desire to run single shift operations subsequently growing to 6 "around-the-clock" operations, (3) managing changes in the technologies that ultimately affected operations, (4) necessity for better team communications within the project to offset the effects of change on the Ground System Developers, Operations Engineers, Integration and Test Engineers, S/C Subsystem Engineers, and Scientists, and (5) the need for a more experienced Flight Operations Team to achieve the necessary operational flexibility. The discussion will conclude by providing several cost comparisons for developing operations from previous missions to EO-1 and discuss some details that might be done differently for future technology validation missions.
Conversion of low BMEP 4-cylinder to high BMEP 2-cylinder large bore natural gas engine
NASA Astrophysics Data System (ADS)
Ladd, John
There are more than 6,000 integral compressor engines in use on US natural gas pipelines, operating 24 hours a day, 365 days a year. Many of these engines have operated continuously for more than 50 years, with little to no modifications. Due to recent emission regulations at the local, state and federal levels much of the aging infrastructure requires retrofit technology to remain within compliance. The Engines and Energy Conversion Laboratory was founded to test these retrofit technologies on its large bore engine testbed (LBET). The LBET is a low brake mean effective pressure (BMEP) Cooper Bessemer GMVTF-4. Newer GMV models, constructed in 1980's, utilize turbocharging to increase the output power, achieving BMEP's nearly double that of the LBET. To expand the lab's testing capability and to reduce the LBET's running cost: material testing, in-depth modeling, and on engine testing was completed to evaluate the feasibility of uprating the LBET to a high BMEP two cylinder engine. Due to the LBET's age, the crankcase material properties were not known. Material samples were removed from engine to conduct an in-depth material analysis. It was found that the crankcase was cast out of a specific grade of gray iron, class 25 meehanite. A complete three dimensional model of the LBET's crankcase and power cylinders was created. Using historical engine data, the force inputs were created for a finite element analysis model of the LBET, to determine the regions of high stress. The areas of high stress were instrumented with strain gauges to iterate and validate the model's findings. Several test cases were run at the high and intermediate BMEP engine conditions. The model found, at high BMEP conditions the LBET would operate at the fatigue limit of the class 25 meehanite, operating with no factor of safety but the intermediate case were deemed acceptable.
Evaluation of advanced displays for engine monitoring and control
NASA Technical Reports Server (NTRS)
Summers, L. G.
1993-01-01
The relative effectiveness of two advanced display concepts for monitoring engine performance for commercial transport aircraft was studied. The concepts were the Engine Monitoring and Control System (EMACS) display developed by NASA Langley and a display by exception design. Both of these concepts were based on the philosophy of providing information that is directly related to the pilot's task. Both concepts used a normalized thrust display. In addition, EMACS used column deviation indicators; i.e., the difference between the actual parameter value and the value predicted by an engine model, for engine health monitoring; while the Display by Exception displayed the engine parameters if the automated system detected a difference between the actual and the predicted values. The results showed that the advanced display concepts had shorter detection and response times. There were no differences in any of the results between manual and auto throttles. There were no effects upon perceived workload or performance on the primary flight task. The majority of pilots preferred the advanced displays and thought they were operationally acceptable. Certification of these concepts depends on the validation of the engine model. Recommendations are made to improve both the EMACS and the display by exception display formats.
Design study to simulate the development of a commercial transportation system
NASA Technical Reports Server (NTRS)
1991-01-01
Seven teams of senior-level Aerospace Engineering undergraduates were given a Request for Proposals (RFP) for a design concept of a remotely piloted vehicle (RPV). The RPV designs were intended to simulate commercial transport aircraft within the model of 'Aeroworld.' The Aeroworld model was developed so that the RPV designs would be subject to many of the engineering problems and tradeoffs that dominate real-world commercial air transport designs, such as profitability, fuel efficiency, range vs. payload capabilities, and ease of production and maintenance. As part of the proposal, each team was required to construct a prototype and validate its design with a flight demonstration.
NASA Technical Reports Server (NTRS)
Kirsch, Paul J.; Hayes, Jane; Zelinski, Lillian
2000-01-01
This special case study report presents the Science and Engineering Technical Assessments (SETA) team's findings for exploring the correlation between the underlying models of Advanced Risk Reduction Tool (ARRT) relative to how it identifies, estimates, and integrates Independent Verification & Validation (IV&V) activities. The special case study was conducted under the provisions of SETA Contract Task Order (CTO) 15 and the approved technical approach documented in the CTO-15 Modification #1 Task Project Plan.
Jackson Bar Training Structure Study
2015-05-01
comparison of the one-dimensional bridge hydraulic routines from: HEC - RAS , HEC -2, and WSPRO. Davis, CA: U.S. Army Corps of Engineers, Hydrologic Engineering...ER D C/ CH L TR -1 5- 4 Jackson Bar Training Structure Study Co as ta l a nd H yd ra ul ic s La bo ra to ry Jeremy A. Sharp and...The hydrodynamic model was validated with gage data from the U.S. Geological Survey 02470050 Tombigbee River at Steamplant near Leroy, AL, gage
Modeling and Bayesian Parameter Estimation for Shape Memory Alloy Bending Actuators
2012-02-01
prosthetic hand,” Technology and Health Care 10, 91–106 (2002). 4. Hartl , D., Lagoudas, D., Calkins, F., and Mabe , J., “Use of a ni60ti shape memory...alloy for active jet engine chevron application: I. thermomechanical characterization,” Smart Materials and Structures 19, 1–14 (2010). 5. Hartl , D...Lagoudas, D., Calkins, F., and Mabe , J., “Use of a ni60ti shape memory alloy for active jet engine chevron application: II. experimentally validated
CMC Research at NASA Glenn in 2016: Recent Progress and Plans
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2016-01-01
As part of NASA's Aeronautical Sciences project, Glenn Research Center has developed advanced fiber and matrix constituents for a 2700 degrees Fahrenheit CMC (Ceramic Matrix Composite) for turbine engine applications. Fiber and matrix development and characterization will be reviewed. Resulting improvements in CMC mechanical properties and durability will be summarized. Plans for 2015 will be described, including development and validation of models predicting effects of the engine environment on durability of SiCSiC composites with Environmental Barrier Coatings (EBCs).
User Guidelines and Best Practices for CASL VUQ Analysis Using Dakota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Coleman, Kayla; Gilkey, Lindsay N.
Sandia’s Dakota software (available at http://dakota.sandia.gov) supports science and engineering transformation through advanced exploration of simulations. Specifically it manages and analyzes ensembles of simulations to provide broader and deeper perspective for analysts and decision makers. This enables them to enhance understanding of risk, improve products, and assess simulation credibility. In its simplest mode, Dakota can automate typical parameter variation studies through a generic interface to a physics-based computational model. This can lend efficiency and rigor to manual parameter perturbation studies already being conducted by analysts. However, Dakota also delivers advanced parametric analysis techniques enabling design exploration, optimization, model calibration, riskmore » analysis, and quantification of margins and uncertainty with such models. It directly supports verification and validation activities. Dakota algorithms enrich complex science and engineering models, enabling an analyst to answer crucial questions of - Sensitivity: Which are the most important input factors or parameters entering the simulation, and how do they influence key outputs?; Uncertainty: What is the uncertainty or variability in simulation output, given uncertainties in input parameters? How safe, reliable, robust, or variable is my system? (Quantification of margins and uncertainty, QMU); Optimization: What parameter values yield the best performing design or operating condition, given constraints? Calibration: What models and/or parameters best match experimental data? In general, Dakota is the Consortium for Advanced Simulation of Light Water Reactors (CASL) delivery vehicle for verification, validation, and uncertainty quantification (VUQ) algorithms. It permits ready application of the VUQ methods described above to simulation codes by CASL researchers, code developers, and application engineers.« less
A Model-Based Approach to Engineering Behavior of Complex Aerospace Systems
NASA Technical Reports Server (NTRS)
Ingham, Michel; Day, John; Donahue, Kenneth; Kadesch, Alex; Kennedy, Andrew; Khan, Mohammed Omair; Post, Ethan; Standley, Shaun
2012-01-01
One of the most challenging yet poorly defined aspects of engineering a complex aerospace system is behavior engineering, including definition, specification, design, implementation, and verification and validation of the system's behaviors. This is especially true for behaviors of highly autonomous and intelligent systems. Behavior engineering is more of an art than a science. As a process it is generally ad-hoc, poorly specified, and inconsistently applied from one project to the next. It uses largely informal representations, and results in system behavior being documented in a wide variety of disparate documents. To address this problem, JPL has undertaken a pilot project to apply its institutional capabilities in Model-Based Systems Engineering to the challenge of specifying complex spacecraft system behavior. This paper describes the results of the work in progress on this project. In particular, we discuss our approach to modeling spacecraft behavior including 1) requirements and design flowdown from system-level to subsystem-level, 2) patterns for behavior decomposition, 3) allocation of behaviors to physical elements in the system, and 4) patterns for capturing V&V activities associated with behavioral requirements. We provide examples of interesting behavior specification patterns, and discuss findings from the pilot project.
Engineering Software Suite Validates System Design
NASA Technical Reports Server (NTRS)
2007-01-01
EDAptive Computing Inc.'s (ECI) EDAstar engineering software tool suite, created to capture and validate system design requirements, was significantly funded by NASA's Ames Research Center through five Small Business Innovation Research (SBIR) contracts. These programs specifically developed Syscape, used to capture executable specifications of multi-disciplinary systems, and VectorGen, used to automatically generate tests to ensure system implementations meet specifications. According to the company, the VectorGen tests considerably reduce the time and effort required to validate implementation of components, thereby ensuring their safe and reliable operation. EDASHIELD, an additional product offering from ECI, can be used to diagnose, predict, and correct errors after a system has been deployed using EDASTAR -created models. Initial commercialization for EDASTAR included application by a large prime contractor in a military setting, and customers include various branches within the U.S. Department of Defense, industry giants like the Lockheed Martin Corporation, Science Applications International Corporation, and Ball Aerospace and Technologies Corporation, as well as NASA's Langley and Glenn Research Centers
Predicting performance in a first engineering calculus course: implications for interventions
NASA Astrophysics Data System (ADS)
Hieb, Jeffrey L.; Lyle, Keith B.; Ralston, Patricia A. S.; Chariker, Julia
2015-01-01
At the University of Louisville, a large, urban institution in the south-east United States, undergraduate engineering students take their mathematics courses from the school of engineering. In the fall of their freshman year, engineering students take Engineering Analysis I, a calculus-based engineering analysis course. After the first two weeks of the semester, many students end up leaving Engineering Analysis I and moving to a mathematics intervention course. In an effort to retain more students in Engineering Analysis I, the department collaborated with university academic support services to create a summer intervention programme. Students were targeted for the summer programme based on their score on an algebra readiness exam (ARE). In a previous study, the ARE scores were found to be a significant predictor of retention and performance in Engineering Analysis I. This study continues that work, analysing data from students who entered the engineering school in the fall of 2012. The predictive validity of the ARE was verified, and a hierarchical linear regression model was created using math American College Testing (ACT) scores, ARE scores, summer intervention participation, and several metacognitive and motivational factors as measured by subscales of the Motivated Strategies for Learning Questionnaire. In the regression model, ARE score explained an additional 5.1% of the variation in exam performance in Engineering Analysis I beyond math ACT score. Students took the ARE before and after the summer interventions and scores were significantly higher following the intervention. However, intervention participants nonetheless had lower exam scores in Engineering Analysis I. The following factors related to motivation and learning strategies were found to significantly predict exam scores in Engineering Analysis I: time and study environment management, internal goal orientation, and test anxiety. The adjusted R2 for the full model was 0.42, meaning that the model could explain 42% of the variation in Engineering Analysis I exam scores.
An LPV Adaptive Observer for Updating a Map Applied to an MAF Sensor in a Diesel Engine
Liu, Zhiyuan; Wang, Changhui
2015-01-01
In this paper, a new method for mass air flow (MAF) sensor error compensation and an online updating error map (or lookup table) due to installation and aging in a diesel engine is developed. Since the MAF sensor error is dependent on the engine operating point, the error model is represented as a two-dimensional (2D) map with two inputs, fuel mass injection quantity and engine speed. Meanwhile, the 2D map representing the MAF sensor error is described as a piecewise bilinear interpolation model, which can be written as a dot product between the regression vector and parameter vector using a membership function. With the combination of the 2D map regression model and the diesel engine air path system, an LPV adaptive observer with low computational load is designed to estimate states and parameters jointly. The convergence of the proposed algorithm is proven under the conditions of persistent excitation and given inequalities. The observer is validated against the simulation data from engine software enDYNA provided by Tesis. The results demonstrate that the operating point-dependent error of the MAF sensor can be approximated acceptably by the 2D map from the proposed method. PMID:26512675
Testing and numerical modeling of hypervelocity impact damaged Space Station multilayer insulation
NASA Technical Reports Server (NTRS)
Rule, William K.
1992-01-01
Results are presented of experiments measuring the degradation of the insulating capabilities of the multilayer insulation (MLI) of the Space Station Freedom, when subjected to hypervelocity impact damage. A simple numerical model was developed for use in an engineering design environment for quick assessment of thermal effect of the impact. The model was validated using results from thermal vacuum tests on MLI with simulated damage. The numerical model results agreed with experimental data.
Hydrological Modelling using HEC-HMS for Flood Risk Assessment of Segamat Town, Malaysia
NASA Astrophysics Data System (ADS)
Romali, N. S.; Yusop, Z.; Ismail, A. Z.
2018-03-01
This paper presents an assessment of the applicability of using Hydrologic Modelling System developed by the Hydrologic Engineering Center (HEC-HMS) for hydrological modelling of Segamat River. The objective of the model application is to assist in the assessment of flood risk by providing the peak flows of 2011 Segamat flood for the generation of flood mapping of Segamat town. The capability of the model was evaluated by comparing the historical observed data with the simulation results of the selected flood events. The model calibration and validation efficiency was verified using Nash-Sutcliffe model efficiency coefficient. The results demonstrate the interest to implement the hydrological model for assessing flood risk where the simulated peak flow result is in agreement with historical observed data. The model efficiency of the calibrated and validated exercises is 0.90 and 0.76 respectively, which is acceptable.
Multivariable optimization of liquid rocket engines using particle swarm algorithms
NASA Astrophysics Data System (ADS)
Jones, Daniel Ray
Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.
Xie, Hui; Song, Kang; He, Yu
2014-07-01
A novel solution for electro-hydraulic variable valve timing (VVT) system of gasoline engines is proposed, based on the concept of active disturbance rejection control (ADRC). Disturbances, such as oil pressure and engine speed variations, are all estimated and mitigated in real-time. A feed-forward controller was added to enhance the performance of the system based on a simple and static first principle model, forming a hybrid disturbance rejection control (HDRC) strategy. HDRC was validated by experimentation and compared with an existing manually tuned proportional-integral (PI) controller. The results show that HDRC provided a faster response and better tolerance of engine speed and oil pressure variations. © 2013 ISA Published by ISA All rights reserved.
Engineering applications of strong ground motion simulation
NASA Astrophysics Data System (ADS)
Somerville, Paul
1993-02-01
The formulation, validation and application of a procedure for simulating strong ground motions for use in engineering practice are described. The procedure uses empirical source functions (derived from near-source strong motion recordings of small earthquakes) to provide a realistic representation of effects such as source radiation that are difficult to model at high frequencies due to their partly stochastic behavior. Wave propagation effects are modeled using simplified Green's functions that are designed to transfer empirical source functions from their recording sites to those required for use in simulations at a specific site. The procedure has been validated against strong motion recordings of both crustal and subduction earthquakes. For the validation process we choose earthquakes whose source models (including a spatially heterogeneous distribution of the slip of the fault) are independently known and which have abundant strong motion recordings. A quantitative measurement of the fit between the simulated and recorded motion in this validation process is used to estimate the modeling and random uncertainty associated with the simulation procedure. This modeling and random uncertainty is one part of the overall uncertainty in estimates of ground motions of future earthquakes at a specific site derived using the simulation procedure. The other contribution to uncertainty is that due to uncertainty in the source parameters of future earthquakes that affect the site, which is estimated from a suite of simulations generated by varying the source parameters over their ranges of uncertainty. In this paper, we describe the validation of the simulation procedure for crustal earthquakes against strong motion recordings of the 1989 Loma Prieta, California, earthquake, and for subduction earthquakes against the 1985 Michoacán, Mexico, and Valparaiso, Chile, earthquakes. We then show examples of the application of the simulation procedure to the estimatation of the design response spectra for crustal earthquakes at a power plant site in California and for subduction earthquakes in the Seattle-Portland region. We also demonstrate the use of simulation methods for modeling the attenuation of strong ground motion, and show evidence of the effect of critical reflections from the lower crust in causing the observed flattening of the attenuation of strong ground motion from the 1988 Saguenay, Quebec, and 1989 Loma Prieta earthquakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, Davinia B.; Blackburn, Mark R.
As systems become more complex, systems engineers rely on experts to inform decisions. There are few experts and limited data in many complex new technologies. This challenges systems engineers as they strive to plan activities such as qualification in an environment where technical constraints are coupled with the traditional cost, risk, and schedule constraints. Bayesian network (BN) models provide a framework to aid systems engineers in planning qualification efforts with complex constraints by harnessing expert knowledge and incorporating technical factors. By quantifying causal factors, a BN model can provide data about the risk of implementing a decision supplemented with informationmore » on driving factors. This allows a systems engineer to make informed decisions and examine “what-if” scenarios. This paper discusses a novel process developed to define a BN model structure based primarily on expert knowledge supplemented with extremely limited data (25 data sets or less). The model was developed to aid qualification decisions—specifically to predict the suitability of six degrees of freedom (6DOF) vibration testing for qualification. The process defined the model structure with expert knowledge in an unbiased manner. Finally, validation during the process execution and of the model provided evidence the process may be an effective tool in harnessing expert knowledge for a BN model.« less
Rizzo, Davinia B.; Blackburn, Mark R.
2018-03-30
As systems become more complex, systems engineers rely on experts to inform decisions. There are few experts and limited data in many complex new technologies. This challenges systems engineers as they strive to plan activities such as qualification in an environment where technical constraints are coupled with the traditional cost, risk, and schedule constraints. Bayesian network (BN) models provide a framework to aid systems engineers in planning qualification efforts with complex constraints by harnessing expert knowledge and incorporating technical factors. By quantifying causal factors, a BN model can provide data about the risk of implementing a decision supplemented with informationmore » on driving factors. This allows a systems engineer to make informed decisions and examine “what-if” scenarios. This paper discusses a novel process developed to define a BN model structure based primarily on expert knowledge supplemented with extremely limited data (25 data sets or less). The model was developed to aid qualification decisions—specifically to predict the suitability of six degrees of freedom (6DOF) vibration testing for qualification. The process defined the model structure with expert knowledge in an unbiased manner. Finally, validation during the process execution and of the model provided evidence the process may be an effective tool in harnessing expert knowledge for a BN model.« less
Modelling Attempts to Predict Fretting-Fatigue Life on Turbine Components
2004-06-01
validation purposes life prediction is compared with experimental results . 1. THE PROBLEMATIC OF FRETTING/WEAR FATIGUE ON AEROENGINES 1.1. Damage...Furthermore, unlike real engine conditions, there are no additional vibrational loads exerted on the dummy due to the fact that the test is run
Novel application and serial evaluation of tissue-engineered portal vein grafts in a murine model.
Maxfield, Mark W; Stacy, Mitchel R; Kurobe, Hirotsugu; Tara, Shuhei; Yi, Tai; Cleary, Muriel A; Zhuang, Zhen W; Rodriguez-Davalos, Manuel I; Emre, Sukru H; Iwakiri, Yasuko; Shinoka, Toshiharu; Breuer, Christopher K
2017-12-01
Surgical management of pediatric extrahepatic portal vein obstruction requires meso-Rex bypass using autologous or synthetic grafts. Tissue-engineered vascular grafts (TEVGs) provide an alternative, but no validated animal models using portal TEVGs exist. Herein, we preclinically assess TEVGs as portal vein bypass grafts. TEVGs were implanted as portal vein interposition conduits in SCID-beige mice, monitored by ultrasound and micro-computed tomography, and histologically assessed postmortem at 12 months. TEVGs remained patent for 12 months. Histologic analysis demonstrated formation of neovessels that resembled native portal veins, with similar content of smooth muscle cells, collagen type III and elastin. TEVGs are feasible portal vein conduits in a murine model. Further preclinical evaluation of TEVGs may facilitate pediatric clinical translation.
Buzz-saw noise : propagation of shock waves in aero-engine inlet ducts
NASA Astrophysics Data System (ADS)
Fernando, Rasika; Marchiano, Régis; Coulouvrat, François; Druon, Yann
2008-06-01
For supersonic flows relative to turbo-engine fan blades, measured acoustic spectra near the inlet present tones at fan blade passing frequency (BPF), engine shaft rotation frequency, or Engine Order (EO), and their respective harmonics. The latter are responsible for the Buzz-saw noise and are thus referred to as "Buzz-saw" or "multiple pure" tones. This work first attempts to reformulate McAlpine and Fisher's frequency domain model (2001) for the propagation of a unidimensional sawtooth waveform spiralling inside a hard-walled cylindrical duct in the presence of a uniform flow. The non-dissipative Burgers equation is solved using a shock fitting method, and modal attenuation and dispersion are added using a split-step computational method. In practice, shocks do not only occur at blade tips but on a significant portion of the blade span. The plane wave hypothesis being no longer valid, a new three dimensional model is required. This model is based on the computation of the axially varying amplitudes of the modal solutions, in order to take into account the nonlinear modal interactions.
Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades
NASA Technical Reports Server (NTRS)
Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas
2012-01-01
Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.
2017-01-23
5e. TASK NUMBER N/A 5f. WORK UNIT NUMBER N/A 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) RDECOM-TARDEC-ACT Attn...occupant work space, central 90% of the Soldier population, encumbrance, posture and position, verification and validation, computer aided design...factors engineers could benefit by working with vehicle designers to perform virtual assessments in CAD when there is not enough time and/or funding to
COMPRESSORS, *AIR FLOW, TURBOFAN ENGINES , TRANSIENTS, SURGES, STABILITY, COMPUTERIZED SIMULATION, EXPERIMENTAL DATA, VALIDATION, DIGITAL SIMULATION, INLET GUIDE VANES , ROTATION, STALLING, RECOVERY, HYSTERESIS
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Van, Luong
1992-01-01
The objective of this paper are to develop a multidisciplinary computational methodology to predict the hot-gas-side and coolant-side heat transfer and to use it in parametric studies to recommend optimized design of the coolant channels for a regeneratively cooled liquid rocket engine combustor. An integrated numerical model which incorporates CFD for the hot-gas thermal environment, and thermal analysis for the liner and coolant channels, was developed. This integrated CFD/thermal model was validated by comparing predicted heat fluxes with those of hot-firing test and industrial design methods for a 40 k calorimeter thrust chamber and the Space Shuttle Main Engine Main Combustion Chamber. Parametric studies were performed for the Advanced Main Combustion Chamber to find a strategy for a proposed combustion chamber coolant channel design.
NASA Technical Reports Server (NTRS)
Zoby, E. V.
1981-01-01
An engineering method has been developed for computing the windward-symmetry plane convective heat-transfer rates on Shuttle-like vehicles at large angles of attack. The engineering code includes an approximate inviscid flowfield technique, laminar and turbulent heating-rate expressions, an approximation to account for the variable-entropy effects on the surface heating and the concept of an equivalent axisymmetric body to model the windward-ray flowfields of Shuttle-like vehicles at angles of attack from 25 to 45 degrees. The engineering method is validated by comparing computed heating results with corresponding experimental data measured on Shuttle and advanced transportation models over a wide range of flow conditions and angles of attack from 25 to 40 degrees and also with results of existing prediction techniques. The comparisons are in good agreement.
Measuring the style of innovative thinking among engineering students
NASA Astrophysics Data System (ADS)
Passig, David; Cohen, Lizi
2014-01-01
Background: Many tools have been developed to measure the ability of workers to innovate. However, all of them are based on self-reporting questionnaires, which raises questions about their validity Purpose: The aim was to develop and validate a tool, called Ideas Generation Implementation (IGI), to objectively measure the style and potential of engineering students in generating innovative technological ideas. The cognitive framework of IGI is based on the Architectural Innovation Model (AIM). Tool description: The IGI tool was designed to measure the level of innovation in generating technological ideas and their potential to be implemented. These variables rely on the definition of innovation as 'creativity, implemented in a high degree of success'. The levels of innovative thinking are based on the AIM and consist of four levels: incremental innovation, modular innovation, architectural innovation and radical innovation. Sample: Sixty experts in technological innovation developed the tool. We checked its face validity and calculated its reliability in a pilot study (kappa = 0.73). Then, 145 undergraduate students were sampled at random from the seven Israeli universities offering engineering programs and asked to complete the questionnaire. Design and methods: We examined the construct validity of the tool by conducting a variance analysis and measuring the correlations between the innovator's style of each student, as suggested by the AIM, and the three subscale factors of creative styles (efficient, conformist and original), as suggested by the Kirton Adaptors and Innovators (KAI) questionnaire. Results: Students with a radical innovator's style inclined more than those with an incremental innovator's style towards the three creative cognitive styles. Students with an architectural innovator's style inclined moderately, but not significantly, towards the three creative styles. Conclusions: The IGI tool objectively measures innovative thinking among students, thus allowing screening of potential employees at an early stage, during their undergraduate studies. The tool was found to be reliable and valid in measuring the style and potential of technological innovation among engineering students.
A continuous latitudinal energy balance model to explore non-uniform climate engineering strategies
NASA Astrophysics Data System (ADS)
Bonetti, F.; McInnes, C. R.
2016-12-01
Current concentrations of atmospheric CO2 exceed measured historical levels in modern times, largely attributed to anthropogenic forcing since the industrial revolution. The required decline in emissions rates has never been achieved leading to recent interest in climate engineering for future risk-mitigation strategies. Climate engineering aims to offset human-driven climate change. It involves techniques developed both to reduce the concentration of CO2 in the atmosphere (Carbon Dioxide Removal (CDR) methods) and to counteract the radiative forcing that it generates (Solar Radiation Management (SRM) methods). In order to investigate effects of SRM technologies for climate engineering, an analytical model describing the main dynamics of the Earth's climate has been developed. The model is a time-dependent Energy Balance Model (EBM) with latitudinal resolution and allows for the evaluation of non-uniform climate engineering strategies. A significant disadvantage of climate engineering techniques involving the management of solar radiation is regional disparities in cooling. This model offers an analytical approach to design multi-objective strategies that counteract climate change on a regional basis: for example, to cool the Artic and restrict undesired impacts at mid-latitudes, or to control the equator-to-pole temperature gradient. Using the Green's function approach the resulting partial differential equation allows for the computation of the surface temperature as a function of time and latitude when a 1% per year increase in the CO2 concentration is considered. After the validation of the model through comparisons with high fidelity numerical models, it will be used to explore strategies for the injection of the aerosol precursors in the stratosphere. In particular, the model involves detailed description of the optical properties of the particles, the wash-out dynamics and the estimation of the radiative cooling they can generate.
Toward Paradoxical Inconsistency in Electrostatics of Metallic Conductors
Naturally, when dealing with fundamental problems, the V and V effort should include careful exploration and, if necessary, revision of the fundamentals...Current developments show a clear trend toward more serious efforts in validation and verification (V and V) of physical and engineering models...underlying the physics. With this understanding in mind, we review some fundamentals of the models of crystalline electric conductors and find a
Performance Evaluation of a Data Validation System
NASA Technical Reports Server (NTRS)
Wong, Edmond (Technical Monitor); Sowers, T. Shane; Santi, L. Michael; Bickford, Randall L.
2005-01-01
Online data validation is a performance-enhancing component of modern control and health management systems. It is essential that performance of the data validation system be verified prior to its use in a control and health management system. A new Data Qualification and Validation (DQV) Test-bed application was developed to provide a systematic test environment for this performance verification. The DQV Test-bed was used to evaluate a model-based data validation package known as the Data Quality Validation Studio (DQVS). DQVS was employed as the primary data validation component of a rocket engine health management (EHM) system developed under NASA's NGLT (Next Generation Launch Technology) program. In this paper, the DQVS and DQV Test-bed software applications are described, and the DQV Test-bed verification procedure for this EHM system application is presented. Test-bed results are summarized and implications for EHM system performance improvements are discussed.
Shenker, Bennett S
2014-02-01
To validate a scoring system that evaluates the ability of Internet search engines to correctly predict diagnoses when symptoms are used as search terms. We developed a five point scoring system to evaluate the diagnostic accuracy of Internet search engines. We identified twenty diagnoses common to a primary care setting to validate the scoring system. One investigator entered the symptoms for each diagnosis into three Internet search engines (Google, Bing, and Ask) and saved the first five webpages from each search. Other investigators reviewed the webpages and assigned a diagnostic accuracy score. They rescored a random sample of webpages two weeks later. To validate the five point scoring system, we calculated convergent validity and test-retest reliability using Kendall's W and Spearman's rho, respectively. We used the Kruskal-Wallis test to look for differences in accuracy scores for the three Internet search engines. A total of 600 webpages were reviewed. Kendall's W for the raters was 0.71 (p<0.0001). Spearman's rho for test-retest reliability was 0.72 (p<0.0001). There was no difference in scores based on Internet search engine. We found a significant difference in scores based on the webpage's order on the Internet search engine webpage (p=0.007). Pairwise comparisons revealed higher scores in the first webpages vs. the fourth (corr p=0.009) and fifth (corr p=0.017). However, this significance was lost when creating composite scores. The five point scoring system to assess diagnostic accuracy of Internet search engines is a valid and reliable instrument. The scoring system may be used in future Internet research. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.
2016-01-01
The objective of the presented work was to develop validated computational fluid dynamics (CFD) based methodologies for predicting propellant detonations and their associated blast environments. Applications of interest were scenarios relevant to rocket propulsion test and launch facilities. All model development was conducted within the framework of the Loci/CHEM CFD tool due to its reliability and robustness in predicting high-speed combusting flow-fields associated with rocket engines and plumes. During the course of the project, verification and validation studies were completed for hydrogen-fueled detonation phenomena such as shock-induced combustion, confined detonation waves, vapor cloud explosions, and deflagration-to-detonation transition (DDT) processes. The DDT validation cases included predicting flame acceleration mechanisms associated with turbulent flame-jets and flow-obstacles. Excellent comparison between test data and model predictions were observed. The proposed CFD methodology was then successfully applied to model a detonation event that occurred during liquid oxygen/gaseous hydrogen rocket diffuser testing at NASA Stennis Space Center.
NASA Astrophysics Data System (ADS)
Torghabeh, A. A.; Tousi, A. M.
2007-08-01
This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.
ERIC Educational Resources Information Center
Michael, William B.; Colson, Kenneth R.
1979-01-01
The construction and validation of the Life Experience Inventory (LEI) for the identification of creative electrical engineers are described. Using the number of patents held or pending as a criterion measure, the LEI was found to have high concurrent validity. (JKS)
Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet
NASA Technical Reports Server (NTRS)
1997-01-01
Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.
Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
Young, John; Walker, Simon M; Bomphrey, Richard J; Taylor, Graham K; Thomas, Adrian L R
2009-09-18
Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight.
A Model-based Health Monitoring and Diagnostic System for the UH-60 Helicopter. Appendix D
NASA Technical Reports Server (NTRS)
Patterson-Hine, Ann; Hindson, William; Sanderfer, Dwight; Deb, Somnath; Domagala, Chuck
2001-01-01
Model-based reasoning techniques hold much promise in providing comprehensive monitoring and diagnostics capabilities for complex systems. We are exploring the use of one of these techniques, which utilizes multi-signal modeling and the TEAMS-RT real-time diagnostic engine, on the UH-60 Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) flight research aircraft. We focus on the engine and transmission systems, and acquire sensor data across the 1553 bus as well as by direct analog-to-digital conversion from sensors to the QHuMS (Qualtech health and usage monitoring system) computer. The QHuMS computer uses commercially available components and is rack-mounted in the RASCAL facility. A multi-signal model of the transmission and engine subsystems enables studies of system testability and analysis of the degree of fault isolation available with various instrumentation suites. The model and examples of these analyses will be described and the data architectures enumerated. Flight tests of this system will validate the data architecture and provide real-time flight profiles to be further analyzed in the laboratory.
DOT National Transportation Integrated Search
1993-09-01
The report is the third of a series on the results of an engineering study of the effects of service loads on railroad vehicle wheels. The study was initiated in September 1991, in response to a request for assessment of contributing factors and corr...
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.
1994-01-01
The design of coolant passages in regeneratively cooled thrust chambers is critical to the operation and safety of a rocket engine system. Designing a coolant passage is a complex thermal and hydraulic problem requiring an accurate understanding of the heat transfer between the combustion gas and the coolant. Every major rocket engine company has invested in the development of thrust chamber computer design and analysis tools; two examples are Rocketdyne's REGEN code and Aerojet's ELES program. In an effort to augment current design capabilities for government and industry, the NASA Lewis Research Center is developing a computer model to design coolant passages for advanced regeneratively cooled thrust chambers. The RECOP code incorporates state-of-the-art correlations, numerical techniques and design methods, certainly minimum requirements for generating optimum designs of future space chemical engines. A preliminary version of the RECOP model was recently completed and code validation work is in progress. This paper introduces major features of RECOP and compares the analysis to design points for the first test case engine; the Pratt & Whitney RL10A-3-3A thrust chamber.
Sevenster, M; Buurman, J; Liu, P; Peters, J F; Chang, P J
2015-01-01
Accumulating quantitative outcome parameters may contribute to constructing a healthcare organization in which outcomes of clinical procedures are reproducible and predictable. In imaging studies, measurements are the principal category of quantitative para meters. The purpose of this work is to develop and evaluate two natural language processing engines that extract finding and organ measurements from narrative radiology reports and to categorize extracted measurements by their "temporality". The measurement extraction engine is developed as a set of regular expressions. The engine was evaluated against a manually created ground truth. Automated categorization of measurement temporality is defined as a machine learning problem. A ground truth was manually developed based on a corpus of radiology reports. A maximum entropy model was created using features that characterize the measurement itself and its narrative context. The model was evaluated in a ten-fold cross validation protocol. The measurement extraction engine has precision 0.994 and recall 0.991. Accuracy of the measurement classification engine is 0.960. The work contributes to machine understanding of radiology reports and may find application in software applications that process medical data.
NASA Astrophysics Data System (ADS)
Zhou, Jun; Shen, Li; Zhang, Tianhong
2016-12-01
Simulated altitude test is an essential exploring, debugging, verification and validation means during the development of aero-engine. Free-jet engine test can simulate actual working conditions of aero-engine more realistically than direct-connect engine test but with relatively lower cost compared to propulsion wind tunnel test, thus becoming an important developing area of simulated altitude test technology. The Flight Conditions Simulating Control System (FCSCS) is of great importance to the Altitude Test Facility (ATF) but the development of that is a huge challenge. Aiming at improving the design efficiency and reducing risks during the development of FCSCS for ATFs, a Hardware- in-the-Loop (HIL) simulation system was designed and the mathematical models of key components such as the pressure stabilizing chamber, free-jet nozzle, control valve and aero-engine were built in this paper. Moreover, some HIL simulation experiments were carried out. The results show that the HIL simulation system designed and established in this paper is reasonable and effective, which can be used to adjust control parameters conveniently and assess the software and hardware in the control system immediately.
Modeling reacting gases and aftertreatment devices for internal combustion engines
NASA Astrophysics Data System (ADS)
Depcik, Christopher David
As more emphasis is placed worldwide on reducing greenhouse gas emissions, automobile manufacturers have to create more efficient engines. Simultaneously, legislative agencies want these engines to produce fewer problematic emissions such as nitrogen oxides and particulate matter. In response, newer combustion methods, like homogeneous charge compression ignition and fuel cells, are being researched alongside the old standard of efficiency, the compression ignition or diesel engine. These newer technologies present a number of benefits but still have significant challenges to overcome. As a result, renewed interest has risen in making diesel engines cleaner. The key to cleaning up the diesel engine is the placement of aftertreatment devices in the exhaust. These devices have shown great potential in reducing emission levels below regulatory levels while still allowing for increased fuel economy versus a gasoline engine. However, these devices are subject to many flow control issues. While experimental evaluation of these devices helps to understand these issues better, it is impossible to solve the problem through experimentation alone because of time and cost constraints. Because of this, accurate models are needed in conjunction with the experimental work. In this dissertation, the author examines the entire exhaust system including reacting gas dynamics and aftertreatment devices, and develops a complete numerical model for it. The author begins by analyzing the current one-dimensional gas-dynamics simulation models used for internal combustion engine simulations. It appears that more accurate and faster numerical method is available, in particular, those developed in aeronautical engineering, and the author successfully implements one for the exhaust system. The author then develops a comprehensive literature search to better understand the aftertreatment devices. A number of these devices require a secondary injection of fuel or reductant in the exhaust stream. Accordingly, the author develops a simple post-cylinder injection model which can be easily tuned to match experimental findings. In addition, the author creates a general catalyst model which can be used to model virtually all of the different aftertreatment devices. Extensive validation of this model with experimental data is presented along with all of the numerical algorithms needed to reproduce the model.
Characterization of Space Shuttle Ascent Debris Aerodynamics Using CFD Methods
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.
2005-01-01
An automated Computational Fluid Dynamics process for determining the aerodynamic Characteristics of debris shedding from the Space Shuttle Launch Vehicle during ascent is presented. This process uses Cartesian fully-coupled, six-degree-of-freedom simulations of isolated debris pieces in a Monte Carlo fashion to produce models for the drag and crossrange behavior over a range of debris shapes and shedding scenarios. A validation of the Cartesian methods against ballistic range data for insulating foam debris shapes at flight conditions, as well as validation of the resulting models, are both contained. These models are integrated with the existing shuttle debris transport analysis software to provide an accurate and efficient engineering tool for analyzing debris sources and their potential for damage.
Software development predictors, error analysis, reliability models and software metric analysis
NASA Technical Reports Server (NTRS)
Basili, Victor
1983-01-01
The use of dynamic characteristics as predictors for software development was studied. It was found that there are some significant factors that could be useful as predictors. From a study on software errors and complexity, it was shown that meaningful results can be obtained which allow insight into software traits and the environment in which it is developed. Reliability models were studied. The research included the field of program testing because the validity of some reliability models depends on the answers to some unanswered questions about testing. In studying software metrics, data collected from seven software engineering laboratory (FORTRAN) projects were examined and three effort reporting accuracy checks were applied to demonstrate the need to validate a data base. Results are discussed.
NASA Technical Reports Server (NTRS)
Papadakis, M.; Breer, M.; Craig, N.; Liu, X.
1994-01-01
An experimental method has been developed to determine the water droplet impingement characteristics on two- and three-dimensional aircraft surfaces. The experimental water droplet impingement data are used to validate particle trajectory analysis codes that are used in aircraft icing analyses and engine inlet particle separator analyses. The aircraft surface is covered with thin strips of blotter paper in areas of interest. The surface is then exposed to an airstream that contains a dyed-water spray cloud. The water droplet impingement data are extracted from the dyed blotter paper strips by measuring the optical reflectance of each strip with an automated reflectometer. Experimental impingement efficiency data represented for a NLF (1)-0414 airfoil, a swept MS (1)-0317 airfoil, a Boeing 737-300 engine inlet model, two simulated ice shapes and a swept NACA 0012 wingtip. Analytical impingement efficiency data are also presented for the NLF (1)-0414 airfoil and the Boeing 737-300 engine inlet model.
Validation of High Displacement Piezoelectric Actuator Finite Element Models
NASA Technical Reports Server (NTRS)
Taleghani, B. K.
2000-01-01
The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
Validation of Heat Transfer Thermal Decomposition and Container Pressurization of Polyurethane Foam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Sarah Nicole; Dodd, Amanda B.; Larsen, Marvin E.
Polymer foam encapsulants provide mechanical, electrical, and thermal isolation in engineered systems. In fire environments, gas pressure from thermal decomposition of polymers can cause mechanical failure of sealed systems. In this work, a detailed uncertainty quantification study of PMDI-based polyurethane foam is presented to assess the validity of the computational model. Both experimental measurement uncertainty and model prediction uncertainty are examined and compared. Both the mean value method and Latin hypercube sampling approach are used to propagate the uncertainty through the model. In addition to comparing computational and experimental results, the importance of each input parameter on the simulation resultmore » is also investigated. These results show that further development in the physics model of the foam and appropriate associated material testing are necessary to improve model accuracy.« less
Pathways to Engineering: The Validation Experiences of Transfer Students
ERIC Educational Resources Information Center
Zhang, Yi; Ozuna, Taryn
2015-01-01
Community college engineering transfer students are a critical student population of engineering degree recipients and technical workforce in the United States. Focusing on this group of students, we adopted Rendón's (1994) validation theory to explore the students' experiences in community colleges prior to transferring to a four-year…
System engineering approach to GPM retrieval algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, C. R.; Chandrasekar, V.
2004-01-01
System engineering principles and methods are very useful in large-scale complex systems for developing the engineering requirements from end-user needs. Integrating research into system engineering is a challenging task. The proposed Global Precipitation Mission (GPM) satellite will use a dual-wavelength precipitation radar to measure and map global precipitation with unprecedented accuracy, resolution and areal coverage. The satellite vehicle, precipitation radars, retrieval algorithms, and ground validation (GV) functions are all critical subsystems of the overall GPM system and each contributes to the success of the mission. Errors in the radar measurements and models can adversely affect the retrieved output values. Groundmore » validation (GV) systems are intended to provide timely feedback to the satellite and retrieval algorithms based on measured data. These GV sites will consist of radars and DSD measurement systems and also have intrinsic constraints. One of the retrieval algorithms being studied for use with GPM is the dual-wavelength DSD algorithm that does not use the surface reference technique (SRT). The underlying microphysics of precipitation structures and drop-size distributions (DSDs) dictate the types of models and retrieval algorithms that can be used to estimate precipitation. Many types of dual-wavelength algorithms have been studied. Meneghini (2002) analyzed the performance of single-pass dual-wavelength surface-reference-technique (SRT) based algorithms. Mardiana (2003) demonstrated that a dual-wavelength retrieval algorithm could be successfully used without the use of the SRT. It uses an iterative approach based on measured reflectivities at both wavelengths and complex microphysical models to estimate both No and Do at each range bin. More recently, Liao (2004) proposed a solution to the Do ambiguity problem in rain within the dual-wavelength algorithm and showed a possible melting layer model based on stratified spheres. With the No and Do calculated at each bin, the rain rate can then be calculated based on a suitable rain-rate model. This paper develops a system engineering interface to the retrieval algorithms while remaining cognizant of system engineering issues so that it can be used to bridge the divide between algorithm physics an d overall mission requirements. Additionally, in line with the systems approach, a methodology is developed such that the measurement requirements pass through the retrieval model and other subsystems and manifest themselves as measurement and other system constraints. A systems model has been developed for the retrieval algorithm that can be evaluated through system-analysis tools such as MATLAB/Simulink.« less
Mode transition coordinated control for a compound power-split hybrid car
NASA Astrophysics Data System (ADS)
Wang, Chen; Zhao, Zhiguo; Zhang, Tong; Li, Mengna
2017-03-01
With a compound power-split transmission directly connected to the engine in hybrid cars, dramatic fluctuations in engine output torque result in noticeable jerks when the car is in mode transition from electric drive mode to hybrid drive mode. This study designed a mode transition coordinated control strategy, and verified that strategy's effectiveness with both simulations and experiments. Firstly, the mode transition process was analyzed, and ride comfort issues during the mode transition process were demonstrated. Secondly, engine ripple torque was modeled using the measured cylinder pumping pressure when the engine was not in operation. The complete dynamic plant model of the power-split hybrid car was deduced, and its effectiveness was validated by a comparison of experimental and simulation results. Thirdly, a coordinated control strategy was designed to determine the desired engine torque, motor torque, and the moment of fuel injection. Active damping control with two degrees of freedom, based on reference output shaft speed estimation, was designed to mitigate driveline speed oscillations. Carrier torque estimation based on transmission kinematics and dynamics was used to suppress torque disturbance during engine cranking. The simulation and experimental results indicate that the proposed strategy effectively suppressed vehicle jerks and improved ride comfort during mode transition.
Sheng, Shiqi; Tu, Z C
2014-01-01
The concepts of weighted reciprocal of temperature and weighted thermal flux are proposed for a heat engine operating between two heat baths and outputting mechanical work. With the aid of these two concepts, the generalized thermodynamic fluxes and forces can be expressed in a consistent way within the framework of irreversible thermodynamics. Then the efficiency at maximum power output for a heat engine, one of key topics in finite-time thermodynamics, is investigated on the basis of a generic model under the tight-coupling condition. The corresponding results have the same forms as those of low-dissipation heat engines [ M. Esposito, R. Kawai, K. Lindenberg and C. Van den Broeck Phys. Rev. Lett. 105 150603 (2010)]. The mappings from two kinds of typical heat engines, such as the low-dissipation heat engine and the Feynman ratchet, into the present generic model are constructed. The universal efficiency at maximum power output up to the quadratic order is found to be valid for a heat engine coupled symmetrically and tightly with two baths. The concepts of weighted reciprocal of temperature and weighted thermal flux are also transplanted to the optimization of refrigerators.
Engineering a humanized bone organ model in mice to study bone metastases.
Martine, Laure C; Holzapfel, Boris M; McGovern, Jacqui A; Wagner, Ferdinand; Quent, Verena M; Hesami, Parisa; Wunner, Felix M; Vaquette, Cedryck; De-Juan-Pardo, Elena M; Brown, Toby D; Nowlan, Bianca; Wu, Dan Jing; Hutmacher, Cosmo Orlando; Moi, Davide; Oussenko, Tatiana; Piccinini, Elia; Zandstra, Peter W; Mazzieri, Roberta; Lévesque, Jean-Pierre; Dalton, Paul D; Taubenberger, Anna V; Hutmacher, Dietmar W
2017-04-01
Current in vivo models for investigating human primary bone tumors and cancer metastasis to the bone rely on the injection of human cancer cells into the mouse skeleton. This approach does not mimic species-specific mechanisms occurring in human diseases and may preclude successful clinical translation. We have developed a protocol to engineer humanized bone within immunodeficient hosts, which can be adapted to study the interactions between human cancer cells and a humanized bone microenvironment in vivo. A researcher trained in the principles of tissue engineering will be able to execute the protocol and yield study results within 4-6 months. Additive biomanufactured scaffolds seeded and cultured with human bone-forming cells are implanted ectopically in combination with osteogenic factors into mice to generate a physiological bone 'organ', which is partially humanized. The model comprises human bone cells and secreted extracellular matrix (ECM); however, other components of the engineered tissue, such as the vasculature, are of murine origin. The model can be further humanized through the engraftment of human hematopoietic stem cells (HSCs) that can lead to human hematopoiesis within the murine host. The humanized organ bone model has been well characterized and validated and allows dissection of some of the mechanisms of the bone metastatic processes in prostate and breast cancer.
Center for Modeling of Turbulence and Transition (CMOTT): Research Briefs, 1992
NASA Technical Reports Server (NTRS)
Liou, William W. (Editor)
1992-01-01
The progress is reported of the Center for Modeling of Turbulence and Transition (CMOTT). The main objective of the CMOTT is to develop, validate and implement the turbulence and transition models for practical engineering flows. The flows of interest are three-dimensional, incompressible and compressible flows with chemical reaction. The research covers two-equation (e.g., k-e) and algebraic Reynolds-stress models, second moment closure models, probability density function (pdf) models, Renormalization Group Theory (RNG), Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).
Hyper-X Engine Design and Ground Test Program
NASA Technical Reports Server (NTRS)
Voland, R. T.; Rock, K. E.; Huebner, L. D.; Witte, D. W.; Fischer, K. E.; McClinton, C. R.
1998-01-01
The Hyper-X Program, NASA's focused hypersonic technology program jointly run by NASA Langley and Dryden, is designed to move hypersonic, air-breathing vehicle technology from the laboratory environment to the flight environment, the last stage preceding prototype development. The Hyper-X research vehicle will provide the first ever opportunity to obtain data on an airframe integrated supersonic combustion ramjet propulsion system in flight, providing the first flight validation of wind tunnel, numerical and analytical methods used for design of these vehicles. A substantial portion of the integrated vehicle/engine flowpath development, engine systems verification and validation and flight test risk reduction efforts are experimentally based, including vehicle aeropropulsive force and moment database generation for flight control law development, and integrated vehicle/engine performance validation. The Mach 7 engine flowpath development tests have been completed, and effort is now shifting to engine controls, systems and performance verification and validation tests, as well as, additional flight test risk reduction tests. The engine wind tunnel tests required for these efforts range from tests of partial width engines in both small and large scramjet test facilities, to tests of the full flight engine on a vehicle simulator and tests of a complete flight vehicle in the Langley 8-Ft. High Temperature Tunnel. These tests will begin in the summer of 1998 and continue through 1999. The first flight test is planned for early 2000.
Model-Based Thermal System Design Optimization for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe; Niedner, Malcolm B.; Fixsen, Dale J.; Moseley, Samuel H.
2017-01-01
Spacecraft thermal model validation is normally performed by comparing model predictions with thermal test data and reducing their discrepancies to meet the mission requirements. Based on thermal engineering expertise, the model input parameters are adjusted to tune the model output response to the test data. The end result is not guaranteed to be the best solution in terms of reduced discrepancy and the process requires months to complete. A model-based methodology was developed to perform the validation process in a fully automated fashion and provide mathematical bases to the search for the optimal parameter set that minimizes the discrepancies between model and data. The methodology was successfully applied to several thermal subsystems of the James Webb Space Telescope (JWST). Global or quasiglobal optimal solutions were found and the total execution time of the model validation process was reduced to about two weeks. The model sensitivities to the parameters, which are required to solve the optimization problem, can be calculated automatically before the test begins and provide a library for sensitivity studies. This methodology represents a crucial commodity when testing complex, large-scale systems under time and budget constraints. Here, results for the JWST Core thermal system will be presented in detail.
Model-based thermal system design optimization for the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Cataldo, Giuseppe; Niedner, Malcolm B.; Fixsen, Dale J.; Moseley, Samuel H.
2017-10-01
Spacecraft thermal model validation is normally performed by comparing model predictions with thermal test data and reducing their discrepancies to meet the mission requirements. Based on thermal engineering expertise, the model input parameters are adjusted to tune the model output response to the test data. The end result is not guaranteed to be the best solution in terms of reduced discrepancy and the process requires months to complete. A model-based methodology was developed to perform the validation process in a fully automated fashion and provide mathematical bases to the search for the optimal parameter set that minimizes the discrepancies between model and data. The methodology was successfully applied to several thermal subsystems of the James Webb Space Telescope (JWST). Global or quasiglobal optimal solutions were found and the total execution time of the model validation process was reduced to about two weeks. The model sensitivities to the parameters, which are required to solve the optimization problem, can be calculated automatically before the test begins and provide a library for sensitivity studies. This methodology represents a crucial commodity when testing complex, large-scale systems under time and budget constraints. Here, results for the JWST Core thermal system will be presented in detail.
NASA Technical Reports Server (NTRS)
Woodbury, Sarah K.
2008-01-01
The introduction of United Space Alliance's Human Engineering Modeling and Performance Laboratory began in early 2007 in an attempt to address the problematic workspace design issues that the Space Shuttle has imposed on technicians performing maintenance and inspection operations. The Space Shuttle was not expected to require the extensive maintenance it undergoes between flights. As a result, extensive, costly resources have been expended on workarounds and modifications to accommodate ground processing personnel. Consideration of basic human factors principles for design of maintenance is essential during the design phase of future space vehicles, facilities, and equipment. Simulation will be needed to test and validate designs before implementation.
Recent Progress in Engine Noise Reduction Technologies
NASA Technical Reports Server (NTRS)
Huff, Dennis; Gliebe, Philip
2003-01-01
Highlights from NASA-funded research over the past ten years for aircraft engine noise reduction are presented showing overall technical plans, accomplishments, and selected applications to turbofan engines. The work was sponsored by NASA's Advanced Subsonic Technology (AST) Noise Reduction Program. Emphasis is given to only the engine noise reduction research and significant accomplishments that were investigated at Technology Readiness Levels ranging from 4 to 6. The Engine Noise Reduction sub-element was divided into four work areas: source noise prediction, model scale tests, engine validation, and active noise control. Highlights from each area include technologies for higher bypass ratio turbofans, scarf inlets, forward-swept fans, swept and leaned stators, chevron/tabbed nozzles, advanced noise prediction analyses, and active noise control for fans. Finally, an industry perspective is given from General Electric Aircraft Engines showing how these technologies are being applied to commercial products. This publication contains only presentation vu-graphs from an invited lecture given at the 41st AIAA Aerospace Sciences Meeting, January 6-9, 2003.
Pegasus delivers SLS engine section
2017-03-03
NASA engineers install test hardware for the agency's new heavy lift rocket, the Space Launch System, into a newly constructed 50-foot structural test stand at NASA's Marshall Space Flight Center. In the stand, hydraulic cylinders will be electronically controlled to push, pull, twist and bend the test article with millions of pounds of force. Engineers will record and analyze over 3,000 channels of data for each test case to verify the capabilities of the engine section and validate that the design and analysis models accurately predict the amount of loads the core stage can withstand during launch and ascent. The engine section, recently delivered via NASA's barge Pegasus from NASA's Michoud Assembly Facility, is the first of four core stage structural test articles scheduled to be delivered to Marshall for testing. The engine section, located at the bottom of SLS's massive core stage, will house the rocket's four RS-25 engines and be an attachment point for the two solid rocket boosters.
Pegasus delivers SLS engine section
2017-05-18
NASA engineers install test hardware for the agency's new heavy lift rocket, the Space Launch System, into a newly constructed 50-foot structural test stand at NASA's Marshall Space Flight Center. In the stand, hydraulic cylinders will be electronically controlled to push, pull, twist and bend the test article with millions of pounds of force. Engineers will record and analyze over 3,000 channels of data for each test case to verify the capabilities of the engine section and validate that the design and analysis models accurately predict the amount of loads the core stage can withstand during launch and ascent. The engine section, recently delivered via NASA's barge Pegasus from NASA's Michoud Assembly Facility, is the first of four core stage structural test articles scheduled to be delivered to Marshall for testing. The engine section, located at the bottom of SLS's massive core stage, will house the rocket's four RS-25 engines and be an attachment point for the two solid rocket boosters.
Design Analysis Kit for Optimization and Terascale Applications 6.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-10-19
Sandia's Dakota software (available at http://dakota.sandia.gov) supports science and engineering transformation through advanced exploration of simulations. Specifically it manages and analyzes ensembles of simulations to provide broader and deeper perspective for analysts and decision makers. This enables them to: (1) enhance understanding of risk, (2) improve products, and (3) assess simulation credibility. In its simplest mode, Dakota can automate typical parameter variation studies through a generic interface to a computational model. However, Dakota also delivers advanced parametric analysis techniques enabling design exploration, optimization, model calibration, risk analysis, and quantification of margins and uncertainty with such models. It directly supports verificationmore » and validation activities. The algorithms implemented in Dakota aim to address challenges in performing these analyses with complex science and engineering models from desktop to high performance computers.« less
Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors.
Mehdizadeh, Hamidreza; Lauri, David; Karry, Krizia M; Moshgbar, Mojgan; Procopio-Melino, Renee; Drapeau, Denis
2015-01-01
Raman-based multivariate calibration models have been developed for real-time in situ monitoring of multiple process parameters within cell culture bioreactors. Developed models are generic, in the sense that they are applicable to various products, media, and cell lines based on Chinese Hamster Ovarian (CHO) host cells, and are scalable to large pilot and manufacturing scales. Several batches using different CHO-based cell lines and corresponding proprietary media and process conditions have been used to generate calibration datasets, and models have been validated using independent datasets from separate batch runs. All models have been validated to be generic and capable of predicting process parameters with acceptable accuracy. The developed models allow monitoring multiple key bioprocess metabolic variables, and hence can be utilized as an important enabling tool for Quality by Design approaches which are strongly supported by the U.S. Food and Drug Administration. © 2015 American Institute of Chemical Engineers.
Formal Methods for Automated Diagnosis of Autosub 6000
NASA Technical Reports Server (NTRS)
Ernits, Juhan; Dearden, Richard; Pebody, Miles
2009-01-01
This is a progress report on applying formal methods in the context of building an automated diagnosis and recovery system for Autosub 6000, an Autonomous Underwater Vehicle (AUV). The diagnosis task involves building abstract models of the control system of the AUV. The diagnosis engine is based on Livingstone 2, a model-based diagnoser originally built for aerospace applications. Large parts of the diagnosis model can be built without concrete knowledge about each mission, but actual mission scripts and configuration parameters that carry important information for diagnosis are changed for every mission. Thus we use formal methods for generating the mission control part of the diagnosis model automatically from the mission script and perform a number of invariant checks to validate the configuration. After the diagnosis model is augmented with the generated mission control component model, it needs to be validated using verification techniques.
NASA Astrophysics Data System (ADS)
Pizette, Patrick; Govender, Nicolin; Wilke, Daniel N.; Abriak, Nor-Edine
2017-06-01
The use of the Discrete Element Method (DEM) for industrial civil engineering industrial applications is currently limited due to the computational demands when large numbers of particles are considered. The graphics processing unit (GPU) with its highly parallelized hardware architecture shows potential to enable solution of civil engineering problems using discrete granular approaches. We demonstrate in this study the pratical utility of a validated GPU-enabled DEM modeling environment to simulate industrial scale granular problems. As illustration, the flow discharge of storage silos using 8 and 17 million particles is considered. DEM simulations have been performed to investigate the influence of particle size (equivalent size for the 20/40-mesh gravel) and induced shear stress for two hopper shapes. The preliminary results indicate that the shape of the hopper significantly influences the discharge rates for the same material. Specifically, this work shows that GPU-enabled DEM modeling environments can model industrial scale problems on a single portable computer within a day for 30 seconds of process time.
NASA Astrophysics Data System (ADS)
Endryansyah; Wanarti Rusimamto, Puput; Ridianto, Adam; Sugiarto, Hariyadi
2018-04-01
In the Department of Electrical Engineering FT Unesa, there are 3 majors: S1 Electrical Engineering Education, S1 Electrical Engineering, and D3 Electrical Engineering. Courses the Basic System Settings go to in the curriculum of the three programs. Team lecturer college of basic system settings seek learning innovation, focused on the development of trainer to student practicum at the laboratory of systems control. Trainer developed is a servo motor along with the lab module that contains a wide variety of theories about the servo motor and guide the practicum. This research type is development research using methods Research & development (R & D). In which the steps are applied in this study is as follows: pay attention to the potential and existing problems, gather information and study the literature, design the product, validate the design, revise the design, a limited trial. The results of the validation of learning device in the form of modules and trainer obtained as follows: score validation of learning device is 3,64; score validation lab module Servo Motor is 3,47; and questionnaire responses of students is 3,73. The result of the whole validation value is located in the interval >of 3.25 s/d 4 with the category of “Very Valid”, so it can be concluded that all instruments have a level of validity “Very Valid” and worthy of use for further learning.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb
2014-01-01
SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.
ISGV Self-rectifying Turbine Design For Thermoacoustic Application
NASA Astrophysics Data System (ADS)
Sammak, Shervin; Asghary, Maryam; Ghorbanian, Kaveh
2014-11-01
Thermoacoustic engines produce the acoustic power from wasted heat and then electricity can be generated from acoustic power. Utilizing self-rectifying turbine after a thermoacoustic engine allows for deploying standard generators with high enough rotational speed that remarkably reduce abrasion, size and cost and significantly increase efficiency and controllability in comparison with linear alternators. In this paper, by evaluating all different type of self-rectifying turbine, impulse turbine with self-piched controlled (ISGV) is chosen as the most appropriate type for this application. This kind of turbine is designed in detail for a popular engine, thermoacoustic stirling heat engine (TASHE). In order to validate the design, a full scale size of designed turbine is modeled in ANSYS CFX. As a result, optimum power and efficiency gained based on numerical data.
Multi-Disciplinary Design Optimization Using WAVE
NASA Technical Reports Server (NTRS)
Irwin, Keith
2000-01-01
The current preliminary design tools lack the product performance, quality and cost prediction fidelity required to design Six Sigma products. They are also frequently incompatible with the tools used in detailed design, leading to a great deal of rework and lost or discarded data in the transition from preliminary to detailed design. Thus, enhanced preliminary design tools are needed in order to produce adequate financial returns to the business. To achieve this goal, GEAE has focused on building the preliminary design system around the same geometric 3D solid model that will be used in detailed design. With this approach, the preliminary designer will no longer convert a flowpath sketch into an engine cross section but rather, automatically create 3D solid geometry for structural integrity, life, weight, cost, complexity, producibility, and maintainability assessments. Likewise, both the preliminary design and the detailed design can benefit from the use of the same preliminary part sizing routines. The design analysis tools will also be integrated with the 3D solid model to eliminate manual transfer of data between programs. GEAE has aggressively pursued the computerized control of engineering knowledge for many years. Through its study and validation of 3D CAD programs and processes, GEAE concluded that total system control was not feasible at that time. Prior CAD tools focused exclusively on detail part geometry and Knowledge Based Engineering systems concentrated on rules input and data output. A system was needed to bridge the gap between the two to capture the total system. With the introduction of WAVE Engineering from UGS, the possibilities of an engineering system control device began to formulate. GEAE decided to investigate the new WAVE functionality to accomplish this task. NASA joined GEAE in funding this validation project through Task Order No. 1. With the validation project complete, the second phase under Task Order No. 2 was established to develop an associative control structure (framework) in the UG WAVE environment enabling multi-disciplinary design of turbine propulsion systems. The capabilities of WAVE were evaluated to assess its use as a rapid optimization and productivity tool. This project also identified future WAVE product enhancements that will make the tool still more beneficial for product development.
Supporting the Use of CERT (registered trademark) Secure Coding Standards in DoD Acquisitions
2012-07-01
Capability Maturity Model IntegrationSM (CMMI®) [Davis 2009]. SM Team Software Process, TSP, and Capability Maturity Model Integration are service...STP Software Test Plan TEP Test and Evaluation Plan TSP Team Software Process V & V verification and validation CMU/SEI-2012-TN-016 | 47...Supporting the Use of CERT® Secure Coding Standards in DoD Acquisitions Tim Morrow ( Software Engineering Institute) Robert Seacord ( Software
High-fidelity simulations of a standing-wave thermoacoustic-piezoelectric engine
NASA Astrophysics Data System (ADS)
Lin, Jeffrey; Scalo, Carlo; Hesselink, Lambertus
2014-11-01
We have carried out time-domain three-dimensional and one-dimensional numerical simulations of a thermoacoustic Stirling heat engine (TASHE). The TASHE model adopted for our study is that of a standing-wave engine: a thermal gradient is imposed in a resonator tube and is capped with a piezoelectric diaphragm in a Helmholtz resonator cavity for acoustic energy extraction. The 0.51 m engine sustains 500 Pa pressure oscillations with atmospheric air and pressure. Such an engine is interesting in practice as an external heat engine with no mechanically-moving parts. Our numerical setup allows for both the evaluation of the nonlinear effects of scaling and the effect of a fully electromechanically-coupled impedance boundary condition, representative of a piezoelectric element. The thermoacoustic stack is fully resolved. Previous modeling efforts have focused on steady-state solvers with impedances or nonlinear effects without energy extraction. Optimization of scaling and the impedance for power output can now be simultaneously applied; engines of smaller sizes and higher frequencies suitable for piezoelectric energy extraction can be studied with three-dimensional solvers without restriction. Results at a low-amplitude regime were validated against results obtained from the steady-state solver DeltaEC and from experimental results in literature. Pressure and velocity amplitudes within the cavities match within 2% difference.
2011-11-01
sensor. volume 79781K. Proceedings of the SPIE 7978, 2011. [9] D.J. Hartl , D.C. Lagoudas, F.T. Calkins, and J.H. Mabe . Use of a ni60ti shape memory...alloy for active jet engine chevron application: I. thermomechanical characterization. Smart Materials and Structures, 19:1–14, 2010. [10] D.J. Hartl ...D.C. Lagoudas, F.T. Calkins, and J.H. Mabe . Use of a ni60ti shape memory alloy for active jet engine chevron application: II. experimentally validated
CMC Research at NASA Glenn in 2017: Recent Progress and Plans
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2017-01-01
As part of NASA's Aeronautics research mission, Glenn Research Center has developed advanced constituents for 2700F CMC turbine engine applications. In this presentation, fiber and matrix development and characterization for SiCSiC composites will be reviewed and resulting improvements in CMC durability and mechanical properties will be summarized. Progress toward the development and validation of models predicting the effects of the engine environment on durability of CMC and Environmental Barrier Coatings will be summarized and plans for research and collaborations in 2017 will be summarized.
Development of Methods to Predict the Effects of Test Media in Ground-Based Propulsion Testing
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Danehy, Paul M.; Gaffney, Richard L., Jr.; Parker, Peter A.; Tedder, Sarah A.; Chelliah, Harsha K.; Cutler, Andrew D.; Bivolaru, Daniel; Givi, Peyman; Hassan, Hassan A.
2009-01-01
This report discusses work that began in mid-2004 sponsored by the Office of the Secretary of Defense (OSD) Test & Evaluation/Science & Technology (T&E/S&T) Program. The work was undertaken to improve the state of the art of CFD capabilities for predicting the effects of the test media on the flameholding characteristics in scramjet engines. The program had several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. This report provides details of the completed work, involving the development of phenomenological models for Reynolds averaged Navier-Stokes codes, large-eddy simulation techniques and reduced-kinetics models. Experiments that provided data for the modeling efforts are also described, along with with the associated nonintrusive diagnostics used to collect the data.
Predicting the Effects of Test Media in Ground-Based Propulsion Testing
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Parker, Peter A.; Chelliah, Harsha K.; Cutler, Andrew D.; Givi, Peyman; Hassan, Hassan, A.
2006-01-01
This paper discusses the progress of work which began in mid-2004 sponsored by the Office of the Secretary of Defense (OSD) Test & Evaluation/Science & Technology (T&E/S&T) Program. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the effects of the test media on the flameholding characteristics in scramjet engines. The program has several components including the development of advance algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work involving the development of phenomenological models for Reynolds averaged Navier-Stokes codes, large-eddy simulation techniques and reduced-kinetics models. Experiments that will provide data for the modeling efforts will also be described, along with with the associated nonintrusive diagnostics used to collect the data.
Implementation of In-Situ Impedance Techniques on a Full Scale Aero-Engine System
NASA Technical Reports Server (NTRS)
Gaeta, R. J.; Mendoza, J. M.; Jones, M. G.
2007-01-01
Determination of acoustic liner impedance for jet engine applications remains a challenge for the designer. Although suitable models have been developed that take account of source amplitude and the local flow environment experienced by the liner, experimental validation of these models has been difficult. This is primarily due to the inability of researchers to faithfully mimic the environment in jet engine nacelles in the laboratory. An in-situ measurement technique, one that can be implemented in an actual engine, is desirable so an accurate impedance can be determined for future modeling and quality control. This paper documents the implementation of such a local acoustic impedance measurement technique that is used under controlled laboratory conditions as well as on full scale turbine engine liner test article. The objective for these series of in-situ measurements is to substantiate treatment design, provide understanding of flow effects on installed liner performance, and provide modeling input for fan noise propagation computations. A series of acoustic liner evaluation tests are performed that includes normal incidence tube, grazing incidence tube, and finally testing on a full scale engine on a static test stand. Lab tests were intended to provide insight and guidance for accurately measuring the impedance of the liner housed in the inlet of a Honeywell Tech7000 turbofan. Results have shown that one can acquire very reasonable liner impedance data for a full scale engine under realistic test conditions. Furthermore, higher fidelity results can be obtained by using a three-microphone coherence technique that can enhance signal-to-noise ratio at high engine power settings. This research has also confirmed the limitations of this particular type of in-situ measurement. This is most evident in the installation of instrumentation and its effect on what is being measured.
NASA Astrophysics Data System (ADS)
Sun, Dongliang; Huang, Guangtuan; Jiang, Juncheng; Zhang, Mingguang; Wang, Zhirong
2013-04-01
Overpressure is one important cause of domino effect in accidents of chemical process equipments. Some models considering propagation probability and threshold values of the domino effect caused by overpressure have been proposed in previous study. In order to prove the rationality and validity of the models reported in the reference, two boundary values of three damage degrees reported were considered as random variables respectively in the interval [0, 100%]. Based on the overpressure data for damage to the equipment and the damage state, and the calculation method reported in the references, the mean square errors of the four categories of damage probability models of overpressure were calculated with random boundary values, and then a relationship of mean square error vs. the two boundary value was obtained, the minimum of mean square error was obtained, compared with the result of the present work, mean square error decreases by about 3%. Therefore, the error was in the acceptable range of engineering applications, the models reported can be considered reasonable and valid.
40 CFR 89.609 - Final admission of modification nonroad engines and test nonroad engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Independent Commercial Importer (ICI) possessing a currently valid certificate of conformity only if: (1) The nonroad engine is six original production years old or older; and (2) The ICI's name has not been placed..., as described in paragraph (e) of this section; and (3) The ICI has a currently valid certificate of...
Tóth-Nagy, Csaba; Conley, John J; Jarrett, Ronald P; Clark, Nigel N
2006-07-01
With the advent of hybrid electric vehicles, computer-based vehicle simulation becomes more useful to the engineer and designer trying to optimize the complex combination of control strategy, power plant, drive train, vehicle, and driving conditions. With the desire to incorporate emissions as a design criterion, researchers at West Virginia University have developed artificial neural network (ANN) models for predicting emissions from heavy-duty vehicles. The ANN models were trained on engine and exhaust emissions data collected from transient dynamometer tests of heavy-duty diesel engines then used to predict emissions based on engine speed and torque data from simulated operation of a tractor truck and hybrid electric bus. Simulated vehicle operation was performed with the ADVISOR software package. Predicted emissions (carbon dioxide [CO2] and oxides of nitrogen [NO(x)]) were then compared with actual emissions data collected from chassis dynamometer tests of similar vehicles. This paper expands on previous research to include different driving cycles for the hybrid electric bus and varying weights of the conventional truck. Results showed that different hybrid control strategies had a significant effect on engine behavior (and, thus, emissions) and may affect emissions during different driving cycles. The ANN models underpredicted emissions of CO2 and NO(x) in the case of a class-8 truck but were more accurate as the truck weight increased.
Integrating Reliability Analysis with a Performance Tool
NASA Technical Reports Server (NTRS)
Nicol, David M.; Palumbo, Daniel L.; Ulrey, Michael
1995-01-01
A large number of commercial simulation tools support performance oriented studies of complex computer and communication systems. Reliability of these systems, when desired, must be obtained by remodeling the system in a different tool. This has obvious drawbacks: (1) substantial extra effort is required to create the reliability model; (2) through modeling error the reliability model may not reflect precisely the same system as the performance model; (3) as the performance model evolves one must continuously reevaluate the validity of assumptions made in that model. In this paper we describe an approach, and a tool that implements this approach, for integrating a reliability analysis engine into a production quality simulation based performance modeling tool, and for modeling within such an integrated tool. The integrated tool allows one to use the same modeling formalisms to conduct both performance and reliability studies. We describe how the reliability analysis engine is integrated into the performance tool, describe the extensions made to the performance tool to support the reliability analysis, and consider the tool's performance.
International Space Station Passive Thermal Control System Analysis, Top Ten Lessons-Learned
NASA Technical Reports Server (NTRS)
Iovine, John
2011-01-01
The International Space Station (ISS) has been on-orbit for over 10 years, and there have been numerous technical challenges along the way from design to assembly to on-orbit anomalies and repairs. The Passive Thermal Control System (PTCS) management team has been a key player in successfully dealing with these challenges. The PTCS team performs thermal analysis in support of design and verification, launch and assembly constraints, integration, sustaining engineering, failure response, and model validation. This analysis is a significant body of work and provides a unique opportunity to compile a wealth of real world engineering and analysis knowledge and the corresponding lessons-learned. The analysis lessons encompass the full life cycle of flight hardware from design to on-orbit performance and sustaining engineering. These lessons can provide significant insight for new projects and programs. Key areas to be presented include thermal model fidelity, verification methods, analysis uncertainty, and operations support.
Hutmacher, Dietmar Werner; Holzapfel, Boris Michael; De-Juan-Pardo, Elena Maria; Pereira, Brooke Anne; Ellem, Stuart John; Loessner, Daniela; Risbridger, Gail Petuna
2015-12-01
In order to progress beyond currently available medical devices and implants, the concept of tissue engineering has moved into the centre of biomedical research worldwide. The aim of this approach is not to replace damaged tissue with an implant or device but rather to prompt the patient's own tissue to enact a regenerative response by using a tissue-engineered construct to assemble new functional and healthy tissue. More recently, it has been suggested that the combination of Synthetic Biology and translational tissue-engineering techniques could enhance the field of personalized medicine, not only from a regenerative medicine perspective, but also to provide frontier technologies for building and transforming the research landscape in the field of in vitro and in vivo disease models. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Cold flow testing of the Space Shuttle Main Engine high pressure fuel turbine model
NASA Technical Reports Server (NTRS)
Hudson, Susan T.; Gaddis, Stephen W.; Johnson, P. D.; Boynton, James L.
1991-01-01
In order to experimentally determine the performance of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) turbine, a 'cold' air flow turbine test program was established at NASA's Marshall Space Flight Center. As part of this test program, a baseline test of Rocketdyne's HPFTP turbine has been completed. The turbine performance and turbine diagnostics such as airfoil surface static pressure distributions, static pressure drops through the turbine, and exit swirl angles were investigated at the turbine design point, over its operating range, and at extreme off-design points. The data was compared to pretest predictions with good results. The test data has been used to improve meanline prediction codes and is now being used to validate various three-dimensional codes. The data will also be scaled to engine conditions and used to improve the SSME steady-state performance model.
NASA Technical Reports Server (NTRS)
2002-01-01
Ames Research Center granted Reality Capture Technologies (RCT), Inc., a license to further develop NASA's Mars Map software platform. The company incorporated NASA#s innovation into software that uses the Virtual Plant Model (VPM)(TM) to structure, modify, and implement the construction sites of industrial facilities, as well as develop, validate, and train operators on procedures. The VPM orchestrates the exchange of information between engineering, production, and business transaction systems. This enables users to simulate, control, and optimize work processes while increasing the reliability of critical business decisions. Engineers can complete the construction process and test various aspects of it in virtual reality before building the actual structure. With virtual access to and simulation of the construction site, project personnel can manage, access control, and respond to changes on complex constructions more effectively. Engineers can also create operating procedures, training, and documentation. Virtual Plant Model(TM) is a trademark of Reality Capture Technologies, Inc.
Results of Microgravity Fluid Dynamics Captured With the Spheres-Slosh Experiment
NASA Technical Reports Server (NTRS)
Lapilli, Gabriel; Kirk, Daniel; Gutierrez, Hector; Schallhorn, Paul; Marsell, Brandon; Roth, Jacob; Moder, Jeffrey
2015-01-01
This paper provides an overview of the SPHERES-Slosh Experiment (SSE) aboard the International Space Station (ISS) and presents on-orbit results with data analysis. In order to predict the location of the liquid propellant during all times of a spacecraft mission, engineers and mission analysts utilize Computational Fluid Dynamics (CFD). These state-of-the-art computer programs numerically solve the fluid flow equations to predict the location of the fluid at any point in time during different spacecraft maneuvers. The models and equations used by these programs have been extensively validated on the ground, but long duration data has never been acquired in a microgravity environment. The SSE aboard the ISS is designed to acquire this type of data, used by engineers on earth to validate and improve the CFD prediction models, improving the design of the next generation of space vehicles as well as the safety of current missions. The experiment makes use of two Synchronized Position Hold, Engage, Reorient Experimental Satellites (SPHERES) connected by a frame. In the center of the frame there is a plastic, pill shaped tank that is partially filled with green-colored water. A pair of high resolution cameras records the movement of the liquid inside the tank as the experiment maneuvers within the Japanese Experimental Module test volume. Inertial measurement units record the accelerations and rotations of the tank, making the combination of stereo imaging and inertial data the inputs for CFD model validation.
Result of Microgravity Fluid Dynamics Captured with the SPHERES-Slosh Experiment
NASA Technical Reports Server (NTRS)
Lapilli, Gabriel; Kirk, Daniel; Gutierrez, Hector; Schallhorn, Paul; Marsell, Brandon; Roth, Jacob; Moder, Jeffrey
2015-01-01
This paper provides an overview of the SPHERES-Slosh Experiment (SSE) aboard the International Space Station (ISS) and presents on-orbit results with data analysis. In order to predict the location of the liquid propellant during all times of a spacecraft mission, engineers and mission analysts utilize Computational Fluid Dynamics (CFD). These state-of-the-art computer programs numerically solve the fluid flow equations to predict the location of the fluid at any point in time during different spacecraft maneuvers. The models and equations used by these programs have been extensively validated on the ground, but long duration data has never been acquired in a microgravity environment. The SSE aboard the ISS is designed to acquire this type of data, used by engineers on earth to validate and improve the CFD prediction models, improving the design of the next generation of space vehicles as well as the safety of current missions. The experiment makes use of two Synchronized Position Hold, Engage, Reorient Experimental Satellites (SPHERES) connected by a frame. In the center of the frame there is a plastic, pill shaped tank that is partially filled with green-colored water. A pair of high resolution cameras records the movement of the liquid inside the tank as the experiment maneuvers within the Japanese Experimental Module test volume. Inertial measurement units record the accelerations and rotations of the tank, making the combination of stereo imaging and inertial data the inputs for CFD model validation.
Results of Microgravity Fluid Dynamics Captured with the Spheres-Slosh Experiment
NASA Technical Reports Server (NTRS)
Lapilli, Gabriel; Kirk, Daniel Robert; Gutierrez, Hector; Schallhorn, Paul; Marsell, Brandon; Roth, Jacob; Jeffrey Moder
2015-01-01
This paper provides an overview of the SPHERES-Slosh Experiment (SSE) aboard the International Space Station (ISS) and presents on-orbit results with data analysis. In order to predict the location of the liquid propellant during all times of a spacecraft mission, engineers and mission analysts utilize Computational Fluid Dynamics (CFD). These state-of-the-art computer programs numerically solve the fluid flow equations to predict the location of the fluid at any point in time during different spacecraft maneuvers. The models and equations used by these programs have been extensively validated on the ground, but long duration data has never been acquired in a microgravity environment. The SSE aboard the ISS is designed to acquire this type of data, used by engineers on earth to validate and improve the CFD prediction models, improving the design of the next generation of space vehicles as well as the safety of current missions. The experiment makes use of two Synchronized Position Hold, Engage, Reorient Experimental Satellites (SPHERES) connected by a frame. In the center of the frame there is a plastic, pill shaped tank that is partially filled with green-colored water. A pair of high resolution cameras records the movement of the liquid inside the tank as the experiment maneuvers within the Japanese Experimental Module test volume. Inertial measurement units record the accelerations and rotations of the tank, making the combination of stereo imaging and inertial data the inputs for CFD model validation.
Hydraulic modeling development and application in water resources engineering
Simoes, Francisco J.; Yang, Chih Ted; Wang, Lawrence K.
2015-01-01
The use of modeling has become widespread in water resources engineering and science to study rivers, lakes, estuaries, and coastal regions. For example, computer models are commonly used to forecast anthropogenic effects on the environment, and to help provide advanced mitigation measures against catastrophic events such as natural and dam-break floods. Linking hydraulic models to vegetation and habitat models has expanded their use in multidisciplinary applications to the riparian corridor. Implementation of these models in software packages on personal desktop computers has made them accessible to the general engineering community, and their use has been popularized by the need of minimal training due to intuitive graphical user interface front ends. Models are, however, complex and nontrivial, to the extent that even common terminology is sometimes ambiguous and often applied incorrectly. In fact, many efforts are currently under way in order to standardize terminology and offer guidelines for good practice, but none has yet reached unanimous acceptance. This chapter provides a view of the elements involved in modeling surface flows for the application in environmental water resources engineering. It presents the concepts and steps necessary for rational model development and use by starting with the exploration of the ideas involved in defining a model. Tangible form of those ideas is provided by the development of a mathematical and corresponding numerical hydraulic model, which is given with a substantial amount of detail. The issues of model deployment in a practical and productive work environment are also addressed. The chapter ends by presenting a few model applications highlighting the need for good quality control in model validation.
ERIC Educational Resources Information Center
Daniel, Mark; And Others
A study examined the relationship of aptitudes to the performance of skilled technical jobs in engine manufacturing. During the study, several approaches were utilized, including criterion-referenced validation, taxonomic validation, construct validation, and detailed anlaysis of the behaviors involved in performing the jobs. The study sample…
An overview of NASA intermittent combustion engine research
NASA Technical Reports Server (NTRS)
Willis, E. A.; Wintucky, W. T.
1984-01-01
This paper overviews the current program, whose objective is to establish the generic technology base for advanced aircraft I.C. engines of the early 1990's and beyond. The major emphasis of this paper is on development of the past two years. Past studies and ongoing confirmatory experimental efforts are reviewed, which show unexpectedly high potential when modern aerospace technologies are applied to inherently compact and balanced I.C. engine configurations. Currently, the program is focussed on two engine concepts, the stratified-charge, multi-fuel rotary and the lightweight two-stroke diesel. A review is given of contracted and planned high performance one-rotor and one-cylinder test engine work addressing several levels of technology. Also reviewed are basic supporting efforts, e.g., the development and experimental validation of computerized airflow and combustion process models, being performed in-house at Lewis Research Center and by university grants. Previously announced in STAR as N84-24583
An overview of NASA intermittent combustion engine research
NASA Technical Reports Server (NTRS)
Willis, E. A.; Wintucky, W. T.
1984-01-01
This paper overviews the current program, whose objective is to establish the generic technology base for advanced aircraft I.C. engines of the early 1990's and beyond. The major emphasis of this paper is on development of the past two years. Past studies and ongoing confirmatory experimental efforts are reviewed, which show unexpectly high potential when modern aerospace technologies are applied to inherently compact and balanced I.C. engine configurations. Currently, the program is focussed on two engine concepts the stratified-charge, multi-fuel rotary, and the lightweight two-stroke diesel. A review is given of contracted and planned high performance one-rotor and one-cylinder test engine work addressing several levels of technology. Also reviewed are basic supporting efforts, e.g., the development and experimental validation of computerized airflow and combustion process models, being performed in-house at Lewis Research Center and by university grants.
NASA Technical Reports Server (NTRS)
Geng, Steven M.
1987-01-01
A free-piston Stirling engine performance code is being upgraded and validated at the NASA Lewis Research Center under an interagency agreement between the Department of Energy's Oak Ridge National Laboratory and NASA Lewis. Many modifications were made to the free-piston code in an attempt to decrease the calibration effort. A procedure was developed that made the code calibration process more systematic. Engine-specific calibration parameters are often used to bring predictions and experimental data into better agreement. The code was calibrated to a matrix of six experimental data points. Predictions of the calibrated free-piston code are compared with RE-1000 free-piston Stirling engine sensitivity test data taken at NASA Lewis. Reasonable agreement was obtained between the code prediction and the experimental data over a wide range of engine operating conditions.
Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B.
2017-01-01
This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench. PMID:29258270
NASA Technical Reports Server (NTRS)
Geng, Steven M.
1987-01-01
A free-piston Stirling engine performance code is being upgraded and validated at the NASA Lewis Research Center under an interagency agreement between the Department of Energy's Oak Ridge National Laboratory and NASA Lewis. Many modifications were made to the free-piston code in an attempt to decrease the calibration effort. A procedure was developed that made the code calibration process more systematic. Engine-specific calibration parameters are often used to bring predictions and experimental data into better agreement. The code was calibrated to a matrix of six experimental data points. Predictions of the calibrated free-piston code are compared with RE-1000 free-piston Stirling engine sensitivity test data taken at NASA Lewis. Resonable agreement was obtained between the code predictions and the experimental data over a wide range of engine operating conditions.
Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B
2017-12-18
This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench.
A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades
Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan
2017-01-01
Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors. PMID:28773064
A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades.
Zhu, Shun-Peng; Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan
2017-06-26
Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner's rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.
Man-machine analysis of translation and work tasks of Skylab films
NASA Technical Reports Server (NTRS)
Hosler, W. W.; Boelter, J. G.; Morrow, J. R., Jr.; Jackson, J. T.
1979-01-01
An objective approach to determine the concurrent validity of computer-graphic models is real time film analysis. This technique was illustrated through the procedures and results obtained in an evaluation of translation of Skylab mission astronauts. The quantitative analysis was facilitated by the use of an electronic film analyzer, minicomputer, and specifically supportive software. The uses of this technique for human factors research are: (1) validation of theoretical operator models; (2) biokinetic analysis; (3) objective data evaluation; (4) dynamic anthropometry; (5) empirical time-line analysis; and (6) consideration of human variability. Computer assisted techniques for interface design and evaluation have the potential for improving the capability for human factors engineering.
NASA Astrophysics Data System (ADS)
Filippone, Antonio
2014-07-01
This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.
NASA Astrophysics Data System (ADS)
Cook, L. M.; Samaras, C.; Anderson, C.
2016-12-01
Engineers generally use historical precipitation trends to inform assumptions and parameters for long-lived infrastructure designs. However, resilient design calls for the adjustment of current engineering practice to incorporate a range of future climate conditions that are likely to be different than the past. Despite the availability of future projections from downscaled climate models, there remains a considerable mismatch between climate model outputs and the inputs needed in the engineering community to incorporate climate resiliency. These factors include differences in temporal and spatial scales, model uncertainties, and a lack of criteria for selection of an ensemble of models. This research addresses the limitations to working with climate data by providing a framework for the use of publicly available downscaled climate projections to inform engineering resiliency. The framework consists of five steps: 1) selecting the data source based on the engineering application, 2) extracting the data at a specific location, 3) validating for performance against observed data, 4) post-processing for bias or scale, and 5) selecting the ensemble and calculating statistics. The framework is illustrated with an example application to extreme precipitation-frequency statistics, the 25-year daily precipitation depth, using four publically available climate data sources: NARCCAP, USGS, Reclamation, and MACA. The attached figure presents the results for step 5 from the framework, analyzing how the 24H25Y depth changes when the model ensemble is culled based on model performance against observed data, for both post-processing techniques: bias-correction and change factor. Culling the model ensemble increases both the mean and median values for all data sources, and reduces range for NARCCAP and MACA ensembles due to elimination of poorer performing models, and in some cases, those that predict a decrease in future 24H25Y precipitation volumes. This result is especially relevant to engineers who wish to reduce the range of the ensemble and remove contradicting models; however, this result is not generalizable for all cases. Finally, this research highlights the need for the formation of an intermediate entity that is able to translate climate projections into relevant engineering information.
Future Directions for Space Transportation and Propulsion at NASA
NASA Technical Reports Server (NTRS)
Sackheim, Robert L.
2005-01-01
Contents include the following: Oxygen Compatible Materials. Manufacturing Technology Demonstrations. Turbopump Inducer Waterflow Test. Turbine Damping "Whirligig" Test. Single Element Preburner and Main Injector Test. 40K Multi-Element Preburner and MI. Full-Scale Battleship Preburner. Prototype Preburner Test Article. Full-Scale Prototype TCA. Turbopump Hot-Fire Test Article. Prototype Engine. Validated Analytical Models.
Engineering research, development and technology FY99
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langland, R T
The growth of computer power and connectivity, together with advances in wireless sensing and communication technologies, is transforming the field of complex distributed systems. The ability to deploy large numbers of sensors with a rapid, broadband communication system will enable high-fidelity, near real-time monitoring of complex systems. These technological developments will provide unprecedented insight into the actual performance of engineered and natural environment systems, enable the evolution of many new types of engineered systems for monitoring and detection, and enhance our ability to perform improved and validated large-scale simulations of complex systems. One of the challenges facing engineering is tomore » develop methodologies to exploit the emerging information technologies. Particularly important will be the ability to assimilate measured data into the simulation process in a way which is much more sophisticated than current, primarily ad hoc procedures. The reports contained in this section on the Center for Complex Distributed Systems describe activities related to the integrated engineering of large complex systems. The first three papers describe recent developments for each link of the integrated engineering process for large structural systems. These include (1) the development of model-based signal processing algorithms which will formalize the process of coupling measurements and simulation and provide a rigorous methodology for validation and update of computational models; (2) collaborative efforts with faculty at the University of California at Berkeley on the development of massive simulation models for the earth and large bridge structures; and (3) the development of wireless data acquisition systems which provide a practical means of monitoring large systems like the National Ignition Facility (NIF) optical support structures. These successful developments are coming to a confluence in the next year with applications to NIF structural characterizations and analysis of large bridge structures for the State of California. Initial feasibility investigations into the development of monitoring and detection systems are described in the papers on imaging of underground structures with ground-penetrating radar, and the use of live insects as sensor platforms. These efforts are establishing the basic performance characteristics essential to the decision process for future development of sensor arrays for information gathering related to national security.« less
Design of a high-temperature experiment for evaluating advanced structural materials
NASA Technical Reports Server (NTRS)
Mockler, Theodore T.; Castro-Cedeno, Mario; Gladden, Herbert J.; Kaufman, Albert
1992-01-01
This report describes the design of an experiment for evaluating monolithic and composite material specimens in a high-temperature environment and subject to big thermal gradients. The material specimens will be exposed to aerothermal loads that correspond to thermally similar engine operating conditions. Materials evaluated in this study were monolithic nickel alloys and silicon carbide. In addition, composites such as tungsten/copper were evaluated. A facility to provide the test environment has been assembled in the Engine Research Building at the Lewis Research Center. The test section of the facility will permit both regular and Schlieren photography, thermal imaging, and laser Doppler anemometry. The test environment will be products of hydrogen-air combustion at temperatures from about 1200 F to as high as 4000 F. The test chamber pressure will vary up to 60 psia, and the free-stream flow velocity can reach Mach 0.9. The data collected will be used to validate thermal and stress analysis models of the specimen. This process of modeling, testing, and validation is expected to yield enhancements to existing analysis tools and techniques.
NASA Technical Reports Server (NTRS)
Gaddis, Stephen W.; Hudson, Susan T.; Johnson, P. D.
1992-01-01
NASA's Marshall Space Flight Center has established a cold airflow turbine test program to experimentally determine the performance of liquid rocket engine turbopump drive turbines. Testing of the SSME alternate turbopump development (ATD) fuel turbine was conducted for back-to-back comparisons with the baseline SSME fuel turbine results obtained in the first quarter of 1991. Turbine performance, Reynolds number effects, and turbine diagnostics, such as stage reactions and exit swirl angles, were investigated at the turbine design point and at off-design conditions. The test data showed that the ATD fuel turbine test article was approximately 1.4 percent higher in efficiency and flowed 5.3 percent more than the baseline fuel turbine test article. This paper describes the method and results used to validate the ATD fuel turbine aerodynamic design. The results are being used to determine the ATD high pressure fuel turbopump (HPFTP) turbine performance over its operating range, anchor the SSME ATD steady-state performance model, and validate various prediction and design analyses.
NASA Technical Reports Server (NTRS)
Ray, Ronald J.
1994-01-01
New flight test maneuvers and analysis techniques for evaluating the dynamic response of in-flight thrust models during throttle transients have been developed and validated. The approach is based on the aircraft and engine performance relationship between thrust and drag. Two flight test maneuvers, a throttle step and a throttle frequency sweep, were developed and used in the study. Graphical analysis techniques, including a frequency domain analysis method, were also developed and evaluated. They provide quantitative and qualitative results. Four thrust calculation methods were used to demonstrate and validate the test technique. Flight test applications on two high-performance aircraft confirmed the test methods as valid and accurate. These maneuvers and analysis techniques were easy to implement and use. Flight test results indicate the analysis techniques can identify the combined effects of model error and instrumentation response limitations on the calculated thrust value. The methods developed in this report provide an accurate approach for evaluating, validating, or comparing thrust calculation methods for dynamic flight applications.
Numerical modeling of local scour around hydraulic structure in sandy beds by dynamic mesh method
NASA Astrophysics Data System (ADS)
Fan, Fei; Liang, Bingchen; Bai, Yuchuan; Zhu, Zhixia; Zhu, Yanjun
2017-10-01
Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.
Simulation validation and management
NASA Astrophysics Data System (ADS)
Illgen, John D.
1995-06-01
Illgen Simulation Technologies, Inc., has been working interactive verification and validation programs for the past six years. As a result, they have evolved a methodology that has been adopted and successfully implemented by a number of different verification and validation programs. This methodology employs a unique case of computer-assisted software engineering (CASE) tools to reverse engineer source code and produce analytical outputs (flow charts and tables) that aid the engineer/analyst in the verification and validation process. We have found that the use of CASE tools saves time,which equate to improvements in both schedule and cost. This paper will describe the ISTI-developed methodology and how CASe tools are used in its support. Case studies will be discussed.
Naert, Thomas; Van Nieuwenhuysen, Tom; Vleminckx, Kris
2017-01-01
The targeted nuclease revolution (TALENs, CRISPR/Cas9) now allows Xenopus researchers to rapidly generate custom on-demand genetic knockout models. These novel methods to perform reverse genetics are unprecedented and are fueling a wide array of human disease models within the aquatic diploid model organism Xenopus tropicalis (X. tropicalis). This emerging technology review focuses on the tools to rapidly generate genetically engineered X. tropicalis models (GEXM), with a focus on establishment of genuine genetic and clinically relevant cancer models. We believe that due to particular advantageous characteristics, outlined within this review, GEXM will become a valuable alternative animal model for modeling human cancer. Furthermore, we provide perspectives of how GEXM will be used as a platform for elucidation of novel therapeutic targets and for preclinical drug validation. Finally, we also discuss some future prospects on how the recent expansions and adaptations of the CRISPR/Cas9 toolbox might influence and push forward X. tropicalis cancer research. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruzic, Jamie J.; Evans, T. Matthew; Greaney, P. Alex
The report describes the development of a discrete element method (DEM) based modeling approach to quantitatively predict deformation and failure of typical nickel based superalloys. A series of experimental data, including microstructure and mechanical property characterization at 600°C, was collected for a relatively simple, model solid solution Ni-20Cr alloy (Nimonic 75) to determine inputs for the model and provide data for model validation. Nimonic 75 was considered ideal for this study because it is a certified tensile and creep reference material. A series of new DEM modeling approaches were developed to capture the complexity of metal deformation, including cubic elasticmore » anisotropy and plastic deformation both with and without strain hardening. Our model approaches were implemented into a commercially available DEM code, PFC3D, that is commonly used by engineers. It is envisioned that once further developed, this new DEM modeling approach can be adapted to a wide range of engineering applications.« less
Why do verification and validation?
Hu, Kenneth T.; Paez, Thomas L.
2016-02-19
In this discussion paper, we explore different ways to assess the value of verification and validation (V&V) of engineering models. We first present a literature review on the value of V&V and then use value chains and decision trees to show how value can be assessed from a decision maker's perspective. In this context, the value is what the decision maker is willing to pay for V&V analysis with the understanding that the V&V results are uncertain. As a result, the 2014 Sandia V&V Challenge Workshop is used to illustrate these ideas.
1988-05-01
represented name Emitted Organics Included in All Models CO Carbon Monoxide C:C, Ethene HCHO Formaldehyde CCHO Acetaldehyde RCHO Propionaldehyde and other...of species in the mixture, and for proper use of this program, these files should be "normalized," i.e., the number of carbons in the mixture should...scenario in memory. Valid parmtypes are SCEN, PHYS, CHEM, VP, NSP, OUTP, SCHEDS. LIST ALLCOMP Lists all available composition filenames. LIST ALLSCE
Event reweighting with the NuWro neutrino interaction generator
NASA Astrophysics Data System (ADS)
Pickering, Luke; Stowell, Patrick; Sobczyk, Jan
2017-09-01
Event reweighting has been implemented in the NuWro neutrino event generator for a number of free theory parameters in the interaction model. Event reweighting is a key analysis technique, used to efficiently study the effect of neutrino interaction model uncertainties. This opens up the possibility for NuWro to be used as a primary event generator by experimental analysis groups. A preliminary model tuning to ANL and BNL data of quasi-elastic and single pion production events was performed to validate the reweighting engine.
Experiences Using Lightweight Formal Methods for Requirements Modeling
NASA Technical Reports Server (NTRS)
Easterbrook, Steve; Lutz, Robyn; Covington, Rick; Kelly, John; Ampo, Yoko; Hamilton, David
1997-01-01
This paper describes three case studies in the lightweight application of formal methods to requirements modeling for spacecraft fault protection systems. The case studies differ from previously reported applications of formal methods in that formal methods were applied very early in the requirements engineering process, to validate the evolving requirements. The results were fed back into the projects, to improve the informal specifications. For each case study, we describe what methods were applied, how they were applied, how much effort was involved, and what the findings were. In all three cases, formal methods enhanced the existing verification and validation processes, by testing key properties of the evolving requirements, and helping to identify weaknesses. We conclude that the benefits gained from early modeling of unstable requirements more than outweigh the effort needed to maintain multiple representations.
Reverse Engineering Validation using a Benchmark Synthetic Gene Circuit in Human Cells
Kang, Taek; White, Jacob T.; Xie, Zhen; Benenson, Yaakov; Sontag, Eduardo; Bleris, Leonidas
2013-01-01
Multi-component biological networks are often understood incompletely, in large part due to the lack of reliable and robust methodologies for network reverse engineering and characterization. As a consequence, developing automated and rigorously validated methodologies for unraveling the complexity of biomolecular networks in human cells remains a central challenge to life scientists and engineers. Today, when it comes to experimental and analytical requirements, there exists a great deal of diversity in reverse engineering methods, which renders the independent validation and comparison of their predictive capabilities difficult. In this work we introduce an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network. PMID:23654266
Reverse engineering validation using a benchmark synthetic gene circuit in human cells.
Kang, Taek; White, Jacob T; Xie, Zhen; Benenson, Yaakov; Sontag, Eduardo; Bleris, Leonidas
2013-05-17
Multicomponent biological networks are often understood incompletely, in large part due to the lack of reliable and robust methodologies for network reverse engineering and characterization. As a consequence, developing automated and rigorously validated methodologies for unraveling the complexity of biomolecular networks in human cells remains a central challenge to life scientists and engineers. Today, when it comes to experimental and analytical requirements, there exists a great deal of diversity in reverse engineering methods, which renders the independent validation and comparison of their predictive capabilities difficult. In this work we introduce an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network.
Real-time sensor data validation
NASA Technical Reports Server (NTRS)
Bickmore, Timothy W.
1994-01-01
This report describes the status of an on-going effort to develop software capable of detecting sensor failures on rocket engines in real time. This software could be used in a rocket engine controller to prevent the erroneous shutdown of an engine due to sensor failures which would otherwise be interpreted as engine failures by the control software. The approach taken combines analytical redundancy with Bayesian belief networks to provide a solution which has well defined real-time characteristics and well-defined error rates. Analytical redundancy is a technique in which a sensor's value is predicted by using values from other sensors and known or empirically derived mathematical relations. A set of sensors and a set of relations among them form a network of cross-checks which can be used to periodically validate all of the sensors in the network. Bayesian belief networks provide a method of determining if each of the sensors in the network is valid, given the results of the cross-checks. This approach has been successfully demonstrated on the Technology Test Bed Engine at the NASA Marshall Space Flight Center. Current efforts are focused on extending the system to provide a validation capability for 100 sensors on the Space Shuttle Main Engine.
Integrated Testing Approaches for the NASA Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Taylor, James L.; Cockrell, Charles E.; Tuma, Margaret L.; Askins, Bruce R.; Bland, Jeff D.; Davis, Stephan R.; Patterson, Alan F.; Taylor, Terry L.; Robinson, Kimberly L.
2008-01-01
The Ares I crew launch vehicle is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew and cargo access to the International Space Station (ISS) and, together with the Ares V cargo launch vehicle, serves as a critical component of NASA's future human exploration of the Moon. During the preliminary design phase, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements - including the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine - will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the upper stage Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle ground vibration test (IVGVT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, validate the ability of the upper stage to manage cryogenic propellants to achieve upper stage engine start conditions, and a high-altitude demonstration of the launch abort system (LAS) following stage separation. The Orion 1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.
Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckerle, Wayne; Rutland, Chris; Rohlfing, Eric
This report is based on a SC/EERE Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE), held March 3, 2011, to determine strategic focus areas that will accelerate innovation in engine design to meet national goals in transportation efficiency. The U.S. has reached a pivotal moment when pressures of energy security, climate change, and economic competitiveness converge. Oil prices remain volatile and have exceeded $100 per barrel twice in five years. At these prices, the U.S. spends $1 billion per day on imported oil to meet our energy demands. Because the transportation sector accountsmore » for two-thirds of our petroleum use, energy security is deeply entangled with our transportation needs. At the same time, transportation produces one-quarter of the nation’s carbon dioxide output. Increasing the efficiency of internal combustion engines is a technologically proven and cost-effective approach to dramatically improving the fuel economy of the nation’s fleet of vehicles in the near- to mid-term, with the corresponding benefits of reducing our dependence on foreign oil and reducing carbon emissions. Because of their relatively low cost, high performance, and ability to utilize renewable fuels, internal combustion engines—including those in hybrid vehicles—will continue to be critical to our transportation infrastructure for decades. Achievable advances in engine technology can improve the fuel economy of automobiles by over 50% and trucks by over 30%. Achieving these goals will require the transportation sector to compress its product development cycle for cleaner, more efficient engine technologies by 50% while simultaneously exploring innovative design space. Concurrently, fuels will also be evolving, adding another layer of complexity and further highlighting the need for efficient product development cycles. Current design processes, using “build and test” prototype engineering, will not suffice. Current market penetration of new engine technologies is simply too slow—it must be dramatically accelerated. These challenges present a unique opportunity to marshal U.S. leadership in science-based simulation to develop predictive computational design tools for use by the transportation industry. The use of predictive simulation tools for enhancing combustion engine performance will shrink engine development timescales, accelerate time to market, and reduce development costs, while ensuring the timely achievement of energy security and emissions targets and enhancing U.S. industrial competitiveness. In 2007 Cummins achieved a milestone in engine design by bringing a diesel engine to market solely with computer modeling and analysis tools. The only testing was after the fact to confirm performance. Cummins achieved a reduction in development time and cost. As important, they realized a more robust design, improved fuel economy, and met all environmental and customer constraints. This important first step demonstrates the potential for computational engine design. But, the daunting complexity of engine combustion and the revolutionary increases in efficiency needed require the development of simulation codes and computation platforms far more advanced than those available today. Based on these needs, a Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE) convened over 60 U.S. leaders in the engine combustion field from industry, academia, and national laboratories to focus on two critical areas of advanced simulation, as identified by the U.S. automotive and engine industries. First, modern engines require precise control of the injection of a broad variety of fuels that is far more subtle than achievable to date and that can be obtained only through predictive modeling and simulation. Second, the simulation, understanding, and control of these stochastic in-cylinder combustion processes lie on the critical path to realizing more efficient engines with greater power density. Fuel sprays set the initial conditions for combustion in essentially all future transportation engines; yet today designers primarily use empirical methods that limit the efficiency achievable. Three primary spray topics were identified as focus areas in the workshop: The fuel delivery system, which includes fuel manifolds and internal injector flow, The multi-phase fuel–air mixing in the combustion chamber of the engine, and The heat transfer and fluid interactions with cylinder walls. Current understanding and modeling capability of stochastic processes in engines remains limited and prevents designers from achieving significantly higher fuel economy. To improve this situation, the workshop participants identified three focus areas for stochastic processes: Improve fundamental understanding that will help to establish and characterize the physical causes of stochastic events, Develop physics-based simulation models that are accurate and sensitive enough to capture performance-limiting variability, and Quantify and manage uncertainty in model parameters and boundary conditions. Improved models and understanding in these areas will allow designers to develop engines with reduced design margins and that operate reliably in more efficient regimes. All of these areas require improved basic understanding, high-fidelity model development, and rigorous model validation. These advances will greatly reduce the uncertainties in current models and improve understanding of sprays and fuel–air mixture preparation that limit the investigation and development of advanced combustion technologies. The two strategic focus areas have distinctive characteristics but are inherently coupled. Coordinated activities in basic experiments, fundamental simulations, and engineering-level model development and validation can be used to successfully address all of the topics identified in the PreSICE workshop. The outcome will be: New and deeper understanding of the relevant fundamental physical and chemical processes in advanced combustion technologies, Implementation of this understanding into models and simulation tools appropriate for both exploration and design, and Sufficient validation with uncertainty quantification to provide confidence in the simulation results. These outcomes will provide the design tools for industry to reduce development time by up to 30% and improve engine efficiencies by 30% to 50%. The improved efficiencies applied to the national mix of transportation applications have the potential to save over 5 million barrels of oil per day, a current cost savings of $500 million per day.« less
NASA Astrophysics Data System (ADS)
Lorenzo Alvarez, Jose; Metselaar, Harold; Amiaux, Jerome; Saavedra Criado, Gonzalo; Gaspar Venancio, Luis M.; Salvignol, Jean-Christophe; Laureijs, René J.; Vavrek, Roland
2016-08-01
In the last years, the system engineering field is coming to terms with a paradigm change in the approach for complexity management. Different strategies have been proposed to cope with highly interrelated systems, system of systems and collaborative system engineering have been proposed and a significant effort is being invested into standardization and ontology definition. In particular, Model Based System Engineering (MBSE) intends to introduce methodologies for a systematic system definition, development, validation, deployment, operation and decommission, based on logical and visual relationship mapping, rather than traditional 'document based' information management. The practical implementation in real large-scale projects is not uniform across fields. In space science missions, the usage has been limited to subsystems or sample projects with modeling being performed 'a-posteriori' in many instances. The main hurdle for the introduction of MBSE practices in new projects is still the difficulty to demonstrate their added value to a project and whether their benefit is commensurate with the level of effort required to put them in place. In this paper we present the implemented Euclid system modeling activities, and an analysis of the benefits and limitations identified to support in particular requirement break-down and allocation, and verification planning at mission level.
Experience with Aero- and Fluid-Dynamic Testing for Engineering and CFD Validation
NASA Technical Reports Server (NTRS)
Ross, James C.
2016-01-01
Ever since computations have been used to simulate aerodynamics the need to ensure that the computations adequately represent real life has followed. Many experiments have been performed specifically for validation and as computational methods have improved, so have the validation experiments. Validation is also a moving target because computational methods improve requiring validation for the new aspect of flow physics that the computations aim to capture. Concurrently, new measurement techniques are being developed that can help capture more detailed flow features pressure sensitive paint (PSP) and particle image velocimetry (PIV) come to mind. This paper will present various wind-tunnel tests the author has been involved with and how they were used for validation of various kinds of CFD. A particular focus is the application of advanced measurement techniques to flow fields (and geometries) that had proven to be difficult to predict computationally. Many of these difficult flow problems arose from engineering and development problems that needed to be solved for a particular vehicle or research program. In some cases the experiments required to solve the engineering problems were refined to provide valuable CFD validation data in addition to the primary engineering data. All of these experiments have provided physical insight and validation data for a wide range of aerodynamic and acoustic phenomena for vehicles ranging from tractor-trailers to crewed spacecraft.
Communication Problems in Requirements Engineering: A Field Study
NASA Technical Reports Server (NTRS)
Al-Rawas, Amer; Easterbrook, Steve
1996-01-01
The requirements engineering phase of software development projects is characterized by the intensity and importance of communication activities. During this phase, the various stakeholders must be able to communicate their requirements to the analysts, and the analysts need to be able to communicate the specifications they generate back to the stakeholders for validation. This paper describes a field investigation into the problems of communication between disparate communities involved in the requirements specification activities. The results of this study are discussed in terms of their relation to three major communication barriers: (1) ineffectiveness of the current communication channels; (2) restrictions on expressiveness imposed by notations; and (3) social and organizational barriers. The results confirm that organizational and social issues have great influence on the effectiveness of communication. They also show that in general, end-users find the notations used by software practitioners to model their requirements difficult to understand and validate.
CFD Modeling of Free-Piston Stirling Engines
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir B.; Zhang, Zhi-Guo; Tew, Roy C., Jr.; Gedeon, David; Simon, Terrence W.
2001-01-01
NASA Glenn Research Center (GRC) is funding Cleveland State University (CSU) to develop a reliable Computational Fluid Dynamics (CFD) code that can predict engine performance with the goal of significant improvements in accuracy when compared to one-dimensional (1-D) design code predictions. The funding also includes conducting code validation experiments at both the University of Minnesota (UMN) and CSU. In this paper a brief description of the work-in-progress is provided in the two areas (CFD and Experiments). Also, previous test results are compared with computational data obtained using (1) a 2-D CFD code obtained from Dr. Georg Scheuerer and further developed at CSU and (2) a multidimensional commercial code CFD-ACE+. The test data and computational results are for (1) a gas spring and (2) a single piston/cylinder with attached annular heat exchanger. The comparisons among the codes are discussed. The paper also discusses plans for conducting code validation experiments at CSU and UMN.
The development of the ICME supply-chain: Route to ICME implementation and sustainment
NASA Astrophysics Data System (ADS)
Furrer, David; Schirra, John
2011-04-01
Over the past twenty years, integrated computational materials engineering (ICME) has emerged as a key engineering field with great promise. Models simulating materials-related phenomena have been developed and are being validated for industrial application. The integration of computational methods into material, process and component design has been a challenge, however, in part due to the complexities in the development of an ICME "supply-chain" that supports, sustains and delivers this emerging technology. ICME touches many disciplines, which results in a requirement for many types of computational-based technology organizations to be involved to provide tools that can be rapidly developed, validated, deployed and maintained for industrial applications. The need for, and the current state of an ICME supply-chain along with development and future requirements for the continued pace of introduction of ICME into industrial design practices will be reviewed within this article.
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka; Hama, Yukihiro; Koyama, Yoshinori; Barrett, Tristan; Urano, Yasuteru; Choyke, Peter L.
2007-02-01
Target-specific contrast agents are being developed for the molecular imaging of cancer. Optically detectable target-specific agents are promising for clinical applications because of their high sensitivity and specificity. Pre clinical testing is needed, however, to validate the actual sensitivity and specificity of these agents in animal models, and involves both conventional histology and immunohistochemistry, which requires large numbers of animals and samples with costly handling. However, a superior validation tool takes advantage of genetic engineering technology whereby cell lines are transfected with genes that induce the target cell to produce fluorescent proteins with characteristic emission spectra thus, identifying them as cancer cells. Multicolor fluorescence imaging of these genetically engineered probes can provide rapid validation of newly developed exogenous probes that fluoresce at different wavelengths. For example, the plasmid containing the gene encoding red fluorescent protein (RFP) was transfected into cell lines previously developed to either express or not-express specific cell surface receptors. Various antibody-based or receptor ligand-based optical contrast agents with either green or near infrared fluorophores were developed to concurrently target and validate cancer cells and their positive and negative controls, such as β-D-galactose receptor, HER1 and HER2 in a single animal/organ. Spectrally resolved fluorescence multicolor imaging was used to detect separate fluorescent emission spectra from the exogenous agents and RFP. Therefore, using this in vivo imaging technique, we were able to demonstrate the sensitivity and specificity of the target-specific optical contrast agents, thus reducing the number of animals needed to conduct these experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanz Rodrigo, Javier; Chávez Arroyo, Roberto Aurelio; Moriarty, Patrick
The increasing size of wind turbines, with rotors already spanning more than 150 m diameter and hub heights above 100 m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer structure with unique physics. This poses significant challenges to traditional wind engineering models that rely on surface-layer theories and engineering wind farm models to simulate the flow in and around wind farms. However, adopting an ABL approach offers the opportunity to better integrate wind farm design tools and meteorological models. The challenge ismore » how to build the bridge between atmospheric and wind engineering model communities and how to establish a comprehensive evaluation process that identifies relevant physical phenomena for wind energy applications with modeling and experimental requirements. A framework for model verification, validation, and uncertainty quantification is established to guide this process by a systematic evaluation of the modeling system at increasing levels of complexity. In terms of atmospheric physics, 'building the bridge' means developing models for the so-called 'terra incognita,' a term used to designate the turbulent scales that transition from mesoscale to microscale. This range of scales within atmospheric research deals with the transition from parameterized to resolved turbulence and the improvement of surface boundary-layer parameterizations. The coupling of meteorological and wind engineering flow models and the definition of a formal model evaluation methodology, is a strong area of research for the next generation of wind conditions assessment and wind farm and wind turbine design tools. Some fundamental challenges are identified in order to guide future research in this area.« less
NASA Technical Reports Server (NTRS)
Low, John K. C.; Schweiger, Paul S.; Premo, John W.; Barber, Thomas J.; Saiyed, Naseem (Technical Monitor)
2000-01-01
NASA s model-scale nozzle noise tests show that it is possible to achieve a 3 EPNdB jet noise reduction with inwardfacing chevrons and flipper-tabs installed on the primary nozzle and fan nozzle chevrons. These chevrons and tabs are simple devices and are easy to be incorporated into existing short duct separate-flow nonmixed nozzle exhaust systems. However, these devices are expected to cause some small amount of thrust loss relative to the axisymmetric baseline nozzle system. Thus, it is important to have these devices further tested in a calibrated nozzle performance test facility to quantify the thrust performances of these devices. The choice of chevrons or tabs for jet noise suppression would most likely be based on the results of thrust loss performance tests to be conducted by Aero System Engineering (ASE) Inc. It is anticipated that the most promising concepts identified from this program will be validated in full scale engine tests at both Pratt & Whitney and Allied-Signal, under funding from NASA s Engine Validation of Noise Reduction Concepts (EVNRC) programs. This will bring the technology readiness level to the point where the jet noise suppression concepts could be incorporated with high confidence into either new or existing turbofan engines having short-duct, separate-flow nacelles.
Synthetic Teammates as Team Players: Coordination of Human and Synthetic Teammates
2016-05-31
distribution is unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This project is part of a larger effort that focuses on human-automation coordination in the...context of the development, integration, and validation of a computational cognitive model that acts as a full-fledged synthetic teammate on an...integrated the synthetic teammate model into the CERTT II (Cognitive Engineering Research on Team Tasks II) testbed in order to empirically address these
Hyper-X Flight Engine Ground Testing for X-43 Flight Risk Reduction
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Rock, Kenneth E.; Ruf, Edward G.; Witte, David W.; Andrews, Earl H., Jr.
2001-01-01
Airframe-integrated scramjet engine testing has been completed at Mach 7 flight conditions in the NASA Langley 8-Foot High Temperature Tunnel as part of the NASA Hyper-X program. This test provided engine performance and operability data, as well as design and database verification, for the Mach 7 flight tests of the Hyper-X research vehicle (X-43), which will provide the first-ever airframe-integrated scramjet data in flight. The Hyper-X Flight Engine, a duplicate Mach 7 X-43 scramjet engine, was mounted on an airframe structure that duplicated the entire three-dimensional propulsion flowpath from the vehicle leading edge to the vehicle trailing edge. This model was also tested to verify and validate the complete flight-like engine system. This paper describes the subsystems that were subjected to flight-like conditions and presents supporting data. The results from this test help to reduce risk for the Mach 7 flights of the X-43.
Orbit transfer rocket engine technology program: Automated preflight methods concept definition
NASA Technical Reports Server (NTRS)
Erickson, C. M.; Hertzberg, D. W.
1991-01-01
The possibility of automating preflight engine checkouts on orbit transfer engines is discussed. The minimum requirements in terms of information and processing necessary to assess the engine'e integrity and readiness to perform its mission were first defined. A variety of ways for remotely obtaining that information were generated. The sophistication of these approaches varied from a simple preliminary power up, where the engine is fired up for the first time, to the most advanced approach where the sensor and operational history data system alone indicates engine integrity. The critical issues and benefits of these methods were identified, outlined, and prioritized. The technology readiness of each of these automated preflight methods were then rated on a NASA Office of Exploration scale used for comparing technology options for future mission choices. Finally, estimates were made of the remaining cost to advance the technology for each method to a level where the system validation models have been demonstrated in a simulated environment.
Flight-determined engine exhaust characteristics of an F404 engine in an F-18 airplane
NASA Technical Reports Server (NTRS)
Ennix, Kimberly A.; Burcham, Frank W., Jr.; Webb, Lannie D.
1993-01-01
Personnel at the NASA Langley Research Center (NASA-Langley) and the NASA Dryden Flight Research Facility (NASA-Dryden) recently completed a joint acoustic flight test program. Several types of aircraft with high nozzle pressure ratio engines were flown to satisfy a twofold objective. First, assessments were made of subsonic climb-to-cruise noise from flights conducted at varying altitudes in a Mach 0.30 to 0.90 range. Second, using data from flights conducted at constant altitude in a Mach 0.30 to 0.95 range, engineers obtained a high quality noise database. This database was desired to validate the Aircraft Noise Prediction Program and other system noise prediction codes. NASA-Dryden personnel analyzed the engine data from several aircraft that were flown in the test program to determine the exhaust characteristics. The analysis of the exhaust characteristics from the F-18 aircraft are reported. An overview of the flight test planning, instrumentation, test procedures, data analysis, engine modeling codes, and results are presented.
Engineering and fabrication cost considerations for cryogenic wind tunnel models
NASA Technical Reports Server (NTRS)
Boykin, R. M., Jr.; Davenport, J. B., Jr.
1983-01-01
Design and fabrication cost drivers for cryogenic transonic wind tunnel models are defined. The major cost factors for wind tunnel models are model complexity, tolerances, surface finishes, materials, material validation, and model inspection. The cryogenic temperatures require the use of materials with relatively high fracture toughness but at the same time high strength. Some of these materials are very difficult to machine, requiring extensive machine hours which can add significantly to the manufacturing costs. Some additional engineering costs are incurred to certify the materials through mechanical tests and nondestructive evaluation techniques, which are not normally required with conventional models. When instrumentation such as accelerometers and electronically scanned pressure modules is required, temperature control of these devices needs to be incorporated into the design, which requires added effort. Additional thermal analyses and subsystem tests may be necessary, which also adds to the design costs. The largest driver to the design costs is potentially the additional static and dynamic analyses required to insure structural integrity of the model and support system.
A stochastic evolutionary model generating a mixture of exponential distributions
NASA Astrophysics Data System (ADS)
Fenner, Trevor; Levene, Mark; Loizou, George
2016-02-01
Recent interest in human dynamics has stimulated the investigation of the stochastic processes that explain human behaviour in various contexts, such as mobile phone networks and social media. In this paper, we extend the stochastic urn-based model proposed in [T. Fenner, M. Levene, G. Loizou, J. Stat. Mech. 2015, P08015 (2015)] so that it can generate mixture models, in particular, a mixture of exponential distributions. The model is designed to capture the dynamics of survival analysis, traditionally employed in clinical trials, reliability analysis in engineering, and more recently in the analysis of large data sets recording human dynamics. The mixture modelling approach, which is relatively simple and well understood, is very effective in capturing heterogeneity in data. We provide empirical evidence for the validity of the model, using a data set of popular search engine queries collected over a period of 114 months. We show that the survival function of these queries is closely matched by the exponential mixture solution for our model.
Engineering Inertial and Primary-Frequency Response for Distributed Energy Resources: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Zhao, Changhong; Guggilam, Swaroop
We propose a framework to engineer synthetic-inertia and droop-control parameters for distributed energy resources (DERs) so that the system frequency in a network composed of DERs and synchronous generators conforms to prescribed transient and steady-state performance specifications. Our approach is grounded in a second-order lumped-parameter model that captures the dynamics of synchronous generators and frequency-responsive DERs endowed with inertial and droop control. A key feature of this reduced-order model is that its parameters can be related to those of the originating higher-order dynamical model. This allows one to systematically design the DER inertial and droop-control coefficients leveraging classical frequency-domain responsemore » characteristics of second-order systems. Time-domain simulations validate the accuracy of the model-reduction method and demonstrate how DER controllers can be designed to meet steady-state-regulation and transient-performance specifications.« less
Engineering Inertial and Primary-Frequency Response for Distributed Energy Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Zhao, Changhong; Guggilam, Swaroop
We propose a framework to engineer synthetic-inertia and droop-control parameters for distributed energy resources (DERs) so that the system frequency in a network composed of DERs and synchronous generators conforms to prescribed transient and steady-state performance specifications. Our approach is grounded in a second-order lumped-parameter model that captures the dynamics of synchronous generators and frequency-responsive DERs endowed with inertial and droop control. A key feature of this reduced-order model is that its parameters can be related to those of the originating higherorder dynamical model. This allows one to systematically design the DER inertial and droop-control coefficients leveraging classical frequency-domain responsemore » characteristics of second-order systems. Time-domain simulations validate the accuracy of the model-reduction method and demonstrate how DER controllers can be designed to meet steady-state-regulation and transient-performance specifications.« less
Dependency of the Reynolds number on the water flow through the perforated tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Závodný, Zdenko, E-mail: zdenko.zavodny@stuba.sk; Bereznai, Jozef, E-mail: jozef.bereznai@stuba.sk; Urban, František
Safe and effective loading of nuclear reactor fuel assemblies demands qualitative and quantitative analysis of the relationship between the coolant temperature in the fuel assembly outlet, measured by the thermocouple, and the mean coolant temperature profile in the thermocouple plane position. It is not possible to perform the analysis directly in the reactor, so it is carried out using measurements on the physical model, and the CFD fuel assembly coolant flow models. The CFD models have to be verified and validated in line with the temperature and velocity profile obtained from the measurements of the cooling water flowing in themore » physical model of the fuel assembly. Simplified physical model with perforated central tube and its validated CFD model serve to design of the second physical model of the fuel assembly of the nuclear reactor VVER 440. Physical model will be manufactured and installed in the laboratory of the Institute of Energy Machines, Faculty of Mechanical Engineering of the Slovak University of Technology in Bratislava.« less
Irma 5.1 multisensor signature prediction model
NASA Astrophysics Data System (ADS)
Savage, James; Coker, Charles; Edwards, Dave; Thai, Bea; Aboutalib, Omar; Chow, Anthony; Yamaoka, Neil; Kim, Charles
2006-05-01
The Irma synthetic signature prediction code is being developed to facilitate the research and development of multi-sensor systems. Irma was one of the first high resolution, physics-based Infrared (IR) target and background signature models to be developed for tactical weapon applications. Originally developed in 1980 by the Munitions Directorate of the Air Force Research Laboratory (AFRL/MN), the Irma model was used exclusively to generate IR scenes. In 1988, a number of significant upgrades to Irma were initiated including the addition of a laser (or active) channel. This two-channel version was released to the user community in 1990. In 1992, an improved scene generator was incorporated into the Irma model, which supported correlated frame-to-frame imagery. A passive IR/millimeter wave (MMW) code was completed in 1994. This served as the cornerstone for the development of the co-registered active/passive IR/MMW model, Irma 4.0. In 2000, Irma version 5.0 was released which encompassed several upgrades to both the physical models and software. Circular polarization was added to the passive channel, and a Doppler capability was added to the active MMW channel. In 2002, the multibounce technique was added to the Irma passive channel. In the ladar channel, a user-friendly Ladar Sensor Assistant (LSA) was incorporated which provides capability and flexibility for sensor modeling. Irma 5.0 runs on several platforms including Windows, Linux, Solaris, and SGI Irix. Irma is currently used to support a number of civilian and military applications. The Irma user base includes over 130 agencies within the Air Force, Army, Navy, DARPA, NASA, Department of Transportation, academia, and industry. In 2005, Irma version 5.1 was released to the community. In addition to upgrading the Ladar channel code to an object oriented language (C++) and providing a new graphical user interface to construct scenes, this new release significantly improves the modeling of the ladar channel and includes polarization effects, time jittering, speckle effect, and atmospheric turbulence. More importantly, the Munitions Directorate has funded three field tests to verify and validate the re-engineered ladar channel. Each of the field tests was comprehensive and included one month of sensor characterization and a week of data collection. After each field test, the analysis included comparisons of Irma predicted signatures with measured signatures, and if necessary, refining the model to produce realistic imagery. This paper will focus on two areas of the Irma 5.1 development effort: report on the analysis results of the validation and verification of the Irma 5.1 ladar channel, and the software development plan and validation efforts of the Irma passive channel. As scheduled, the Irma passive code is being re-engineered using object oriented language (C++), and field data collection is being conducted to validate the re-engineered passive code. This software upgrade will remove many constraints and limitations of the legacy code including limits on image size and facet counts. The field test to validate the passive channel is expected to be complete in the second quarter of 2006.
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Wong, Edmond; Krasowski, Michael J.; Greer, Lawrence C.
2003-01-01
Cooperative behavior algorithms utilizing swarm intelligence are being developed for mobile sensor platforms to inspect jet engines on-wing. Experiments are planned in which several relatively simple autonomous platforms will work together in a coordinated fashion to carry out complex maintenance-type tasks within the constrained working environment modeled on the interior of a turbofan engine. The algorithms will emphasize distribution of the tasks among multiple units; they will be scalable and flexible so that units may be added in the future; and will be designed to operate on an individual unit level to produce the desired global effect. This proof of concept demonstration will validate the algorithms and provide justification for further miniaturization and specialization of the hardware toward the true application of on-wing in situ turbine engine maintenance.
Test results of the highly instrumented Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Mcconnaughey, H. V.; Leopard, J. L.; Lightfoot, R. M.
1992-01-01
Test results of a highly instrumented Space Shuttle Main Engine (SSME) are presented. The instrumented engine, when combined with instrumented high pressure turbopumps, contains over 750 special measurements, including flowrates, pressures, temperatures, and strains. To date, two different test series, accounting for a total of sixteen tests and 1,667 seconds, have been conducted with this engine. The first series, which utilized instrumented turbopumps, characterized the internal operating environment of the SSME for a variety of operating conditions. The second series provided system-level validation of a high pressure liquid oxygen turbopump that had been retrofitted with a fluid-film bearing in place of the usual pump-end ball bearings. Major findings from these two test series are highlighted in this paper. In addition, comparisons are made between model predictions and measured test data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Piljae; Bhandari, Mahabir S.; New, Joshua Ryan
This document describes the Oak Ridge National Laboratory (ORNL) multiyear experimental plan for validation and uncertainty characterization of whole-building energy simulation for a multi-zone research facility using a traditional rooftop unit (RTU) as a baseline heating, ventilating, and air conditioning (HVAC) system. The project’s overarching objective is to increase the accuracy of energy simulation tools by enabling empirical validation of key inputs and algorithms. Doing so is required to inform the design of increasingly integrated building systems and to enable accountability for performance gaps between design and operation of a building. The project will produce documented data sets that canmore » be used to validate key functionality in different energy simulation tools and to identify errors and inadequate assumptions in simulation engines so that developers can correct them. ASHRAE Standard 140, Method of Test for the Evaluation of Building Energy Analysis Computer Programs (ASHRAE 2004), currently consists primarily of tests to compare different simulation programs with one another. This project will generate sets of measured data to enable empirical validation, incorporate these test data sets in an extended version of Standard 140, and apply these tests to the Department of Energy’s (DOE) EnergyPlus software (EnergyPlus 2016) to initiate the correction of any significant deficiencies. The fitness-for-purpose of the key algorithms in EnergyPlus will be established and demonstrated, and vendors of other simulation programs will be able to demonstrate the validity of their products. The data set will be equally applicable to validation of other simulation engines as well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, Peter; Christ, Norman; Gara, Alan
A list prefetch engine improves a performance of a parallel computing system. The list prefetch engine receives a current cache miss address. The list prefetch engine evaluates whether the current cache miss address is valid. If the current cache miss address is valid, the list prefetch engine compares the current cache miss address and a list address. A list address represents an address in a list. A list describes an arbitrary sequence of prior cache miss addresses. The prefetch engine prefetches data according to the list, if there is a match between the current cache miss address and the listmore » address.« less
Boyle, Peter [Edinburgh, GB; Christ, Norman [Irvington, NY; Gara, Alan [Yorktown Heights, NY; Kim,; Changhoan, [San Jose, CA; Mawhinney, Robert [New York, NY; Ohmacht, Martin [Yorktown Heights, NY; Sugavanam, Krishnan [Yorktown Heights, NY
2012-08-28
A list prefetch engine improves a performance of a parallel computing system. The list prefetch engine receives a current cache miss address. The list prefetch engine evaluates whether the current cache miss address is valid. If the current cache miss address is valid, the list prefetch engine compares the current cache miss address and a list address. A list address represents an address in a list. A list describes an arbitrary sequence of prior cache miss addresses. The prefetch engine prefetches data according to the list, if there is a match between the current cache miss address and the list address.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luh, G.C.
1994-01-01
This thesis presents the application of advanced modeling techniques to construct nonlinear forward and inverse models of internal combustion engines for the detection and isolation of incipient faults. The NARMAX (Nonlinear Auto-Regressive Moving Average modeling with eXogenous inputs) technique of system identification proposed by Leontaritis and Billings was used to derive the nonlinear model of a internal combustion engine, over operating conditions corresponding to the I/M240 cycle. The I/M240 cycle is a standard proposed by the United States Environmental Protection Agency to measure tailpipe emissions in inspection and maintenance programs and consists of a driving schedule developed for the purposemore » of testing compliance with federal vehicle emission standards for carbon monoxide, unburned hydrocarbons, and nitrogen oxides. The experimental work for model identification and validation was performed on a 3.0 liter V6 engine installed in an engine test cell at the Center for Automotive Research at The Ohio State University. In this thesis, different types of model structures were proposed to obtain multi-input multi-output (MIMO) nonlinear NARX models. A modification of the algorithm proposed by He and Asada was used to estimate the robust orders of the derived MIMO nonlinear models. A methodology for the analysis of inverse NARX model was developed. Two methods were proposed to derive the inverse NARX model: (1) inversion from the forward NARX model; and (2) direct identification of inverse model from the output-input data set. In this thesis, invertibility, minimum-phase characteristic of zero dynamics, and stability analysis of NARX forward model are also discussed. Stability in the sense of Lyapunov is also investigated to check the stability of the identified forward and inverse models. This application of inverse problem leads to the estimation of unknown inputs and to actuator fault diagnosis.« less
NASA Technical Reports Server (NTRS)
Garrett, J. L.; Syed, S. A.
1992-01-01
CFD analyses of the Space Transportation Main Engine film/dump cooled subscale nozzle are presented, with an emphasis on the timely impact of CFD in the design of the subscale nozzle secondary coolant system. Calculations were performed with the Generalized Aerodynamic Simulation Program (GASP), using a Baldwin-Lomas Turbulence model, and finite rate hydrogen-oxygen chemistry. Design iterations for both the secondary coolant cavity passage and the secondary coolant lip are presented. In addition, validation of the GASP chemistry and turbulence models by comparison with data and other CFD codes are presented for a hypersonic laminar separation corner, a backward facing step, and a 2D scramjet nozzle with hydrogen-oxygen kinetics.
ERIC Educational Resources Information Center
Kardanova, Elena; Loyalka, Prashant; Chirikov, Igor; Liu, Lydia; Li, Guirong; Wang, Huan; Enchikova, Ekaterina; Shi, Henry; Johnson, Natalie
2016-01-01
Relatively little is known about differences in the quality of engineering education within and across countries because of the lack of valid instruments that allow for the assessment and comparison of engineering students' skill gains. The purpose of our study is to develop and validate instruments that can be used to compare student skill gains…
Prognostic modelling options for remaining useful life estimation by industry
NASA Astrophysics Data System (ADS)
Sikorska, J. Z.; Hodkiewicz, M.; Ma, L.
2011-07-01
Over recent years a significant amount of research has been undertaken to develop prognostic models that can be used to predict the remaining useful life of engineering assets. Implementations by industry have only had limited success. By design, models are subject to specific assumptions and approximations, some of which are mathematical, while others relate to practical implementation issues such as the amount of data required to validate and verify a proposed model. Therefore, appropriate model selection for successful practical implementation requires not only a mathematical understanding of each model type, but also an appreciation of how a particular business intends to utilise a model and its outputs. This paper discusses business issues that need to be considered when selecting an appropriate modelling approach for trial. It also presents classification tables and process flow diagrams to assist industry and research personnel select appropriate prognostic models for predicting the remaining useful life of engineering assets within their specific business environment. The paper then explores the strengths and weaknesses of the main prognostics model classes to establish what makes them better suited to certain applications than to others and summarises how each have been applied to engineering prognostics. Consequently, this paper should provide a starting point for young researchers first considering options for remaining useful life prediction. The models described in this paper are Knowledge-based (expert and fuzzy), Life expectancy (stochastic and statistical), Artificial Neural Networks, and Physical models.
Control Activity in Support of NASA Turbine Based Combined Cycle (TBCC) Research
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Vrnak, Daniel R.; Le, Dzu K.; Ouzts, Peter J.
2010-01-01
Control research for a Turbine Based Combined Cycle (TBCC) propulsion system is the current focus of the Hypersonic Guidance, Navigation, and Control (GN&C) discipline team. The ongoing work at the NASA Glenn Research Center (GRC) supports the Hypersonic GN&C effort in developing tools to aid the design of control algorithms to manage a TBCC airbreathing propulsion system during a critical operating period. The critical operating period being addressed in this paper is the span when the propulsion system transitions from one cycle to another, referred to as mode transition. One such tool, that is a basic need for control system design activities, is computational models (hereto forth referred to as models) of the propulsion system. The models of interest for designing and testing controllers are Control Development Models (CDMs) and Control Validation Models (CVMs). CDMs and CVMs are needed for each of the following propulsion system elements: inlet, turbine engine, ram/scram dual-mode combustor, and nozzle. This paper presents an overall architecture for a TBCC propulsion system model that includes all of the propulsion system elements. Efforts are under way, focusing on one of the propulsion system elements, to develop CDMs and CVMs for a TBCC propulsion system inlet. The TBCC inlet aerodynamic design being modeled is that of the Combined-Cycle Engine (CCE) Testbed. The CCE Testbed is a large-scale model of an aerodynamic design that was verified in a small-scale screening experiment. The modeling approach includes employing existing state-of-the-art simulation codes, developing new dynamic simulations, and performing system identification experiments on the hardware in the NASA GRC 10 by10-Foot Supersonic Wind Tunnel. The developed CDMs and CVMs will be available for control studies prior to hardware buildup. The system identification experiments on the CCE Testbed will characterize the necessary dynamics to be represented in CDMs for control design. These system identification models will also be the reference models to validate the CDM and CVM models. Validated models will give value to the tools used to develop the models.
Methodology for assessing the safety of Hydrogen Systems: HyRAM 1.1 technical reference manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groth, Katrina; Hecht, Ethan; Reynolds, John Thomas
The HyRAM software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen infrastructure and transportation systems. HyRAM is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of hydrogen safety, hazards, and risk. HyRAM is envisioned as a unifying platform combining validated, analytical models of hydrogen behavior, a stan- dardized, transparent QRA approach, and engineering models and generic data for hydrogen installations. HyRAM is being developed at Sandia National Laboratories for the U. S. De- partment of Energy to increase access to technical data about hydrogen safety andmore » to enable the use of that data to support development and revision of national and international codes and standards. This document provides a description of the methodology and models contained in the HyRAM version 1.1. HyRAM 1.1 includes generic probabilities for hydrogen equipment fail- ures, probabilistic models for the impact of heat flux on humans and structures, and computa- tionally and experimentally validated analytical and first order models of hydrogen release and flame physics. HyRAM 1.1 integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hydrogen hazards (thermal effects from jet fires, overpressure effects from deflagrations), and assessing impact on people and structures. HyRAM is a prototype software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals.« less
IMPACT: a generic tool for modelling and simulating public health policy.
Ainsworth, J D; Carruthers, E; Couch, P; Green, N; O'Flaherty, M; Sperrin, M; Williams, R; Asghar, Z; Capewell, S; Buchan, I E
2011-01-01
Populations are under-served by local health policies and management of resources. This partly reflects a lack of realistically complex models to enable appraisal of a wide range of potential options. Rising computing power coupled with advances in machine learning and healthcare information now enables such models to be constructed and executed. However, such models are not generally accessible to public health practitioners who often lack the requisite technical knowledge or skills. To design and develop a system for creating, executing and analysing the results of simulated public health and healthcare policy interventions, in ways that are accessible and usable by modellers and policy-makers. The system requirements were captured and analysed in parallel with the statistical method development for the simulation engine. From the resulting software requirement specification the system architecture was designed, implemented and tested. A model for Coronary Heart Disease (CHD) was created and validated against empirical data. The system was successfully used to create and validate the CHD model. The initial validation results show concordance between the simulation results and the empirical data. We have demonstrated the ability to connect health policy-modellers and policy-makers in a unified system, thereby making population health models easier to share, maintain, reuse and deploy.
A Framework for Performing Verification and Validation in Reuse Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward A.
1997-01-01
Verification and Validation (V&V) is currently performed during application development for many systems, especially safety-critical and mission- critical systems. The V&V process is intended to discover errors, especially errors related to critical processing, as early as possible during the development process. The system application provides the context under which the software artifacts are validated. This paper describes a framework that extends V&V from an individual application system to a product line of systems that are developed within an architecture-based software engineering environment. This framework includes the activities of traditional application-level V&V, and extends these activities into domain engineering and into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for the activities.
Improved engineering models for turbulent wall flows
NASA Astrophysics Data System (ADS)
She, Zhen-Su; Chen, Xi; Zou, Hong-Yue; Hussain, Fazle
2015-11-01
We propose a new approach, called structural ensemble dynamics (SED), involving new concepts to describe the mean quantities in wall-bounded flows, and its application to improving the existing engineering turbulence models, as well as its physical interpretation. First, a revised k - ω model for pipe flows is obtained, which accurately predicts, for the first time, both mean velocity and (streamwise) kinetic energy for a wide range of the Reynolds number (Re), validated by Princeton experimental data. In particular, a multiplicative factor is introduced in the dissipation term to model an anomaly in the energy cascade in a meso-layer, predicting the outer peak of agreeing with data. Secondly, a new one-equation model is obtained for compressible turbulent boundary layers (CTBL), building on a multi-layer formula of the stress length function and a generalized temperature-velocity relation. The former refines the multi-layer description - viscous sublayer, buffer layer, logarithmic layer and a newly defined bulk zone - while the latter characterizes a parabolic relation between the mean velocity and temperature. DNS data show our predictions to have a 99% accuracy for several Mach numbers Ma = 2.25, 4.5, improving, up to 10%, a previous similar one-equation model (Baldwin & Lomax, 1978). Our results promise notable improvements in engineering models.
40 CFR 86.1305 - Introduction; structure of subpart.
Code of Federal Regulations, 2014 CFR
2014-07-01
... this part. (e) Use the fuels specified in 40 CFR part 1065 to perform valid tests, as follows: (1) For service accumulation, use the test fuel or any commercially available fuel that is representative of the... subpart A of this part in a given model year based on this E0 test fuel if those engines are certified...
A Review on Liquid Spray Models for Diesel Engine Computational Analysis
2014-05-01
developed by Los Alamos National Laboratories, USA (15); OpenFoam developed by OpenCFD, U.K.; and AVBP developed by Centre Européen de Recherche et de...Validating Non-Reacting Spray Cases With KIVA-3V and OpenFoam , SAE technical paper 2013-01-1595, 2013. 17. Senecal, P.; Pomraning, E.; Richards, K
ERIC Educational Resources Information Center
Hardy, Precious; Aruguete, Mara
2014-01-01
Retention is a major problem in most colleges and universities. High dropout rates, especially in the STEM disciplines (science, technology, engineering and mathematics), have proved intractable despite the offering of supplemental instruction. A broad model of support systems that includes psychological factors is needed to address retention in…
Modeling Martian Dust Using Mars-GRAM
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, C. G.
2010-01-01
Engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). From the surface to 80 km altitude, Mars-GRAM is based on NASA Ames Mars General Circulation Model (MGCM). Mars-GRAM and MGCM use surface topography from Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA), with altitudes referenced to the MOLA areoid, or constant potential surface. Traditional Mars-GRAM options for representing the mean atmosphere along entry corridors include: TES Mapping Years 1 and 2, with Mars-GRAM data coming from MGCM model results driven by observed TES dust optical depth TES Mapping Year 0, with user-controlled dust optical depth and Mars-GRAM data interpolated from MGCM model results driven by selected values of globally-uniform dust optical depth. Mars-GRAM 2005 has been validated against Radio Science data, and both nadir and limb data from the Thermal Emission Spectrometer (TES).
NASA Technical Reports Server (NTRS)
Chan, David T.; Hooker, John R.; Wick, Andrew; Plumley, Ryan W.; Zeune, Cale H.; Ol, Michael V.; DeMoss, Joshua A.
2017-01-01
A wind tunnel investigation of a 0.04-scale model of the Lockheed Martin Hybrid Wing Body (HWB) with Over Wing Nacelles (OWN) air mobility transport configuration was conducted in the National Transonic Facility at the NASA Langley Research Center under a collaborative partnership between NASA, the Air Force Research Laboratory, and Lockheed Martin Aeronautics Company. The wind tunnel test sought to validate the transonic aerodynamic performance of the HWB and to validate the efficiency benefits of the OWN installation as compared to the traditional under-wing installation. The semispan HWB model was tested in a clean wing configuration and also tested with two different nacelles representative of a modern turbofan engine and a future advanced high bypass ratio engine. The nacelles were installed in three different locations with two over-wing positions and one under-wing position. Five-component force and moment data, surface static pressure data, and aeroelastic deformation data were acquired. For the cruise configuration, the model was tested in an angle-of-attack range between -2 and 10 degrees at free-stream Mach numbers from 0.3 to 0.9 and at unit Reynolds numbers between 8 and 39 million per foot, achieving a maximum of 80% of flight Reynolds numbers across the Mach number range. The test results validated pretest computational fluid dynamic (CFD) simulations of the HWB performance including the OWN benefit and the results also exhibited excellent transonic drag data repeatability to within +/-1 drag count. This paper details the experimental setup and model overview, presents some sample data results, and describes the facility improvements that led to the success of the test.
Díaz-Zuccarini, V.; Narracott, A.J.; Burriesci, G.; Zervides, C.; Rafiroiu, D.; Jones, D.; Hose, D.R.; Lawford, P.V.
2009-01-01
This paper describes the use of diverse software tools in cardiovascular applications. These tools were primarily developed in the field of engineering and the applications presented push the boundaries of the software to address events related to venous and arterial valve closure, exploration of dynamic boundary conditions or the inclusion of multi-scale boundary conditions from protein to organ levels. The future of cardiovascular research and the challenges that modellers and clinicians face from validation to clinical uptake are discussed from an end-user perspective. PMID:19487202
Engineering innovation to reduce wind power COE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammerman, Curtt Nelson
There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.
Díaz-Zuccarini, V; Narracott, A J; Burriesci, G; Zervides, C; Rafiroiu, D; Jones, D; Hose, D R; Lawford, P V
2009-07-13
This paper describes the use of diverse software tools in cardiovascular applications. These tools were primarily developed in the field of engineering and the applications presented push the boundaries of the software to address events related to venous and arterial valve closure, exploration of dynamic boundary conditions or the inclusion of multi-scale boundary conditions from protein to organ levels. The future of cardiovascular research and the challenges that modellers and clinicians face from validation to clinical uptake are discussed from an end-user perspective.
NASA Technical Reports Server (NTRS)
Santi, Louis M.; Butas, John P.; Aguilar, Robert B.; Sowers, Thomas S.
2008-01-01
The J-2X is an expendable liquid hydrogen (LH2)/liquid oxygen (LOX) gas generator cycle rocket engine that is currently being designed as the primary upper stage propulsion element for the new NASA Ares vehicle family. The J-2X engine will contain abort logic that functions as an integral component of the Ares vehicle abort system. This system is responsible for detecting and responding to conditions indicative of impending Loss of Mission (LOM), Loss of Vehicle (LOV), and/or catastrophic Loss of Crew (LOC) failure events. As an earth orbit ascent phase engine, the J-2X is a high power density propulsion element with non-negligible risk of fast propagation rate failures that can quickly lead to LOM, LOV, and/or LOC events. Aggressive reliability requirements for manned Ares missions and the risk of fast propagating J-2X failures dictate the need for on-engine abort condition monitoring and autonomous response capability as well as traditional abort agents such as the vehicle computer, flight crew, and ground control not located on the engine. This paper describes the baseline J-2X abort subsystem concept of operations, as well as the development process for this subsystem. A strategy that leverages heritage system experience and responds to an evolving engine design as well as J-2X specific test data to support abort system development is described. The utilization of performance and failure simulation models to support abort system sensor selection, failure detectability and discrimination studies, decision threshold definition, and abort system performance verification and validation is outlined. The basis for abort false positive and false negative performance constraints is described. Development challenges associated with information shortfalls in the design cycle, abort condition coverage and response assessment, engine-vehicle interface definition, and abort system performance verification and validation are also discussed.
Aithal, S. M.
2018-01-01
Initial conditions of the working fluid (air-fuel mixture) within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF) in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accuratelymore » interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4%) in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aithal, S. M.
Initial conditions of the working fluid (air-fuel mixture) within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF) in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accuratelymore » interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4%) in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.« less
NASA Astrophysics Data System (ADS)
Lezberg, Erwin A.; Mularz, Edward J.; Liou, Meng-Sing
1991-03-01
The objectives and accomplishments of research in chemical reacting flows, including both experimental and computational problems are described. The experimental research emphasizes the acquisition of reliable reacting-flow data for code validation, the development of chemical kinetics mechanisms, and the understanding of two-phase flow dynamics. Typical results from two nonreacting spray studies are presented. The computational fluid dynamics (CFD) research emphasizes the development of efficient and accurate algorithms and codes, as well as validation of methods and modeling (turbulence and kinetics) for reacting flows. Major developments of the RPLUS code and its application to mixing concepts, the General Electric combustor, and the Government baseline engine for the National Aerospace Plane are detailed. Finally, the turbulence research in the newly established Center for Modeling of Turbulence and Transition (CMOTT) is described.
Numerical Analysis of a Pulse Detonation Cross Flow Heat Load Experiment
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Naples, Andrew .; Hoke, John L.; Schauer, Fred
2011-01-01
A comparison between experimentally measured and numerically simulated, time-averaged, point heat transfer rates in a pulse detonation (PDE) engine is presented. The comparison includes measurements and calculations for heat transfer to a cylinder in crossflow and to the tube wall itself using a novel spool design. Measurements are obtained at several locations and under several operating conditions. The measured and computed results are shown to be in substantial agreement, thereby validating the modeling approach. The model, which is based in computational fluid dynamics (CFD) is then used to interpret the results. A preheating of the incoming fuel charge is predicted, which results in increased volumetric flow and subsequent overfilling. The effect is validated with additional measurements.
Applying the Health Belief Model to college students' health behavior
Kim, Hak-Seon; Ahn, Joo
2012-01-01
The purpose of this research was to investigate how university students' nutrition beliefs influence their health behavioral intention. This study used an online survey engine (Qulatrics.com) to collect data from college students. Out of 253 questionnaires collected, 251 questionnaires (99.2%) were used for the statistical analysis. Confirmatory Factor Analysis (CFA) revealed that six dimensions, "Nutrition Confidence," "Susceptibility," "Severity," "Barrier," "Benefit," "Behavioral Intention to Eat Healthy Food," and "Behavioral Intention to do Physical Activity," had construct validity; Cronbach's alpha coefficient and composite reliabilities were tested for item reliability. The results validate that objective nutrition knowledge was a good predictor of college students' nutrition confidence. The results also clearly showed that two direct measures were significant predictors of behavioral intentions as hypothesized. Perceived benefit of eating healthy food and perceived barrier for eat healthy food to had significant effects on Behavioral Intentions and was a valid measurement to use to determine Behavioral Intentions. These findings can enhance the extant literature on the universal applicability of the model and serve as useful references for further investigations of the validity of the model within other health care or foodservice settings and for other health behavioral categories. PMID:23346306
Microstructure Modeling of 3rd Generation Disk Alloys
NASA Technical Reports Server (NTRS)
Jou, Herng-Jeng
2010-01-01
The objective of this program is to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool will be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishment achieved during the second year (2008) of the program is summarized. The activities of this year include final selection of multicomponent thermodynamics and mobility databases, precipitate surface energy determination from nucleation experiment, multiscale comparison of predicted versus measured intragrain precipitation microstructure in quench samples showing good agreement, isothermal coarsening experiment and interaction of grain boundary and intergrain precipitates, primary microstructure of subsolvus treatment, and finally the software implementation plan for the third year of the project. In the following year, the calibrated models and simulation tools will be validated against an independently developed experimental data set, with actual disc heat treatment process conditions. Furthermore, software integration and implementation will be developed to provide material engineers valuable information in order to optimize the processing of the 3rd generation gas turbine disc alloys.
2014-05-01
solver to treat the spray process. An Adaptive Mesh Refinement (AMR) and fixed embedding technique is employed to capture the gas - liquid interface with...Adaptive Mesh Refinement (AMR) and fixed embedding technique is employed to capture the gas - liquid interface with high fidelity while keeping the cell...in single and multi-hole nozzle configurations. The models were added to the present CONVERGE liquid fuel database and validated extensively
Numerical Prediction of Non-Reacting and Reacting Flow in a Model Gas Turbine Combustor
NASA Technical Reports Server (NTRS)
Davoudzadeh, Farhad; Liu, Nan-Suey
2005-01-01
The three-dimensional, viscous, turbulent, reacting and non-reacting flow characteristics of a model gas turbine combustor operating on air/methane are simulated via an unstructured and massively parallel Reynolds-Averaged Navier-Stokes (RANS) code. This serves to demonstrate the capabilities of the code for design and analysis of real combustor engines. The effects of some design features of combustors are examined. In addition, the computed results are validated against experimental data.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Ganushkina, N. Y.; Guild, T. B.; Jiggens, P.; Jun, I.; Mazur, J. E.; Meier, M. M.; Minow, J. I.; Pitchford, D. A.; O'Brien, T. P., III; Shprits, Y.; Tobiska, W. K.; Xapsos, M.; Rastaetter, L.; Jordanova, V. K.; Kellerman, A. C.; Fok, M. C. H.
2017-12-01
The Community Coordinated Modeling Center (CCMC) has been leading the community-wide model validation projects for many years. Such effort has been broadened and extended via the newly-launched International Forum for Space Weather Modeling Capabilities Assessment (https://ccmc.gsfc.nasa.gov/assessment/), Its objective is to track space weather models' progress and performance over time, which is critically needed in space weather operations. The Radiation and Plasma Effects Working Team is working on one of the many focused evaluation topics and deals with five different subtopics: Surface Charging from 10s eV to 40 keV electrons, Internal Charging due to energetic electrons from hundreds keV to several MeVs. Single Event Effects from solar energetic particles (SEPs) and galactic cosmic rays (GCRs) (several MeV to TeVs), Total Dose due to accumulation of doses from electrons (>100 KeV) and protons (> 1 MeV) in a broad energy range, and Radiation Effects from SEPs and GCRs at aviation altitudes. A unique aspect of the Radiation and Plasma Effects focus area is that it bridges the space environments, engineering and user community. This presentation will summarize the working team's progress in metrics discussion/definition and the CCMC web interface/tools to facilitate the validation efforts. As an example, tools in the areas of surface charging/internal charging will be demoed.
NASA Astrophysics Data System (ADS)
Groeneweg, John F.; Sofrin, Thomas G.; Rice, Edward J.; Gliebe, Phillip R.
1991-08-01
Summarized here are key advances in experimental techniques and theoretical applications which point the way to a broad understanding and control of turbomachinery noise. On the experimental side, the development of effective inflow control techniques makes it possible to conduct, in ground based facilities, definitive experiments in internally controlled blade row interactions. Results can now be valid indicators of flight behavior and can provide a firm base for comparison with analytical results. Inflow control coupled with detailed diagnostic tools such as blade pressure measurements can be used to uncover the more subtle mechanisms such as rotor strut interaction, which can set tone levels for some engine configurations. Initial mappings of rotor wake-vortex flow fields have provided a data base for a first generation semiempirical flow disturbance model. Laser velocimetry offers a nonintrusive method for validating and improving the model. Digital data systems and signal processing algorithms are bringing mode measurement closer to a working tool that can be frequently applied to a real machine such as a turbofan engine. On the analytical side, models of most of the links in the chain from turbomachine blade source to far field observation point have been formulated. Three dimensional lifting surface theory for blade rows, including source noncompactness and cascade effects, blade row transmission models incorporating mode and frequency scattering, and modal radiation calculations, including hybrid numerical-analytical approaches, are tools which await further application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.
2011-02-01
This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs,more » and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.« less
Nonlinear scaling of the Unit Hydrograph Peaking Factor for dam safety
NASA Astrophysics Data System (ADS)
Pradhan, N. R.; Loney, D.
2017-12-01
Existing U.S. Army Corps of Engineers (USACE) policy suggests unit hydrograph peaking factor (UHPF), the ratio of an observed and modeled event unit hydrograph peak, range between 1.25 and 1.50 to ensure dam safety. It is pertinent to investigate the impact of extreme flood events on the validity of this range through physically based rainfall-runoff models not available during the planning and design of most USACE dams. The UHPF range was analyzed by deploying the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model in the Goose Creek, VA, watershed to develop a UHPF relationship with excess rainfall across various return-period events. An effective rainfall factor (ERF) is introduced to validate existing UHPF guidance as well as provide a nonlinear UHPF scaling relation when effective rainfall does not match that of the UH design event.
NASA Technical Reports Server (NTRS)
Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David
2015-01-01
The engineering development of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS) requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The nominal and off-nominal characteristics of SLS's elements and subsystems must be understood and matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex systems engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model-based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model-based algorithms and their development lifecycle from inception through FSW certification are an important focus of SLS's development effort to further ensure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. To test and validate these M&FM algorithms a dedicated test-bed was developed for full Vehicle Management End-to-End Testing (VMET). For addressing fault management (FM) early in the development lifecycle for the SLS program, NASA formed the M&FM team as part of the Integrated Systems Health Management and Automation Branch under the Spacecraft Vehicle Systems Department at the Marshall Space Flight Center (MSFC). To support the development of the FM algorithms, the VMET developed by the M&FM team provides the ability to integrate the algorithms, perform test cases, and integrate vendor-supplied physics-based launch vehicle (LV) subsystem models. Additionally, the team has developed processes for implementing and validating the M&FM algorithms for concept validation and risk reduction. The flexibility of the VMET capabilities enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the developed algorithms utilizing actual subsystem models such as MPS, GNC, and others. One of the principal functions of VMET is to validate the M&FM algorithms and substantiate them with performance baselines for each of the target vehicle subsystems in an independent platform exterior to the flight software test and validation processes. In any software development process there is inherent risk in the interpretation and implementation of concepts from requirements and test cases into flight software compounded with potential human errors throughout the development and regression testing lifecycle. Risk reduction is addressed by the M&FM group but in particular by the Analysis Team working with other organizations such as S&MA, Structures and Environments, GNC, Orion, Crew Office, Flight Operations, and Ground Operations by assessing performance of the M&FM algorithms in terms of their ability to reduce Loss of Mission (LOM) and Loss of Crew (LOC) probabilities. In addition, through state machine and diagnostic modeling, analysis efforts investigate a broader suite of failure effects and associated detection and responses to be tested in VMET to ensure reliable failure detection, and confirm responses do not create additional risks or cause undesired states through interactive dynamic effects with other algorithms and systems. VMET further contributes to risk reduction by prototyping and exercising the M&FM algorithms early in their implementation and without any inherent hindrances such as meeting FSW processor scheduling constraints due to their target platform - the ARINC 6535-partitioned Operating System, resource limitations, and other factors related to integration with other subsystems not directly involved with M&FM such as telemetry packing and processing. The baseline plan for use of VMET encompasses testing the original M&FM algorithms coded in the same C++ language and state machine architectural concepts as that used by FSW. This enables the development of performance standards and test cases to characterize the M&FM algorithms and sets a benchmark from which to measure their effectiveness and performance in the exterior FSW development and test processes. This paper is outlined in a systematic fashion analogous to a lifecycle process flow for engineering development of algorithms into software and testing. Section I describes the NASA SLS M&FM context, presenting the current infrastructure, leading principles, methods, and participants. Section II defines the testing philosophy of the M&FM algorithms as related to VMET followed by section III, which presents the modeling methods of the algorithms to be tested and validated in VMET. Its details are then further presented in section IV followed by Section V presenting integration, test status, and state analysis. Finally, section VI addresses the summary and forward directions followed by the appendices presenting relevant information on terminology and documentation.
NASA Technical Reports Server (NTRS)
Tijidjian, Raffi P.
2010-01-01
The TEAMS model analyzer is a supporting tool developed to work with models created with TEAMS (Testability, Engineering, and Maintenance System), which was developed by QSI. In an effort to reduce the time spent in the manual process that each TEAMS modeler must perform in the preparation of reporting for model reviews, a new tool has been developed as an aid to models developed in TEAMS. The software allows for the viewing, reporting, and checking of TEAMS models that are checked into the TEAMS model database. The software allows the user to selectively model in a hierarchical tree outline view that displays the components, failure modes, and ports. The reporting features allow the user to quickly gather statistics about the model, and generate an input/output report pertaining to all of the components. Rules can be automatically validated against the model, with a report generated containing resulting inconsistencies. In addition to reducing manual effort, this software also provides an automated process framework for the Verification and Validation (V&V) effort that will follow development of these models. The aid of such an automated tool would have a significant impact on the V&V process.
NASA Technical Reports Server (NTRS)
Schmidt, H.; Tango, G. J.; Werby, M. F.
1985-01-01
A new matrix method for rapid wave propagation modeling in generalized stratified media, which has recently been applied to numerical simulations in diverse areas of underwater acoustics, solid earth seismology, and nondestructive ultrasonic scattering is explained and illustrated. A portion of recent efforts jointly undertaken at NATOSACLANT and NORDA Numerical Modeling groups in developing, implementing, and testing a new fast general-applications wave propagation algorithm, SAFARI, formulated at SACLANT is summarized. The present general-applications SAFARI program uses a Direct Global Matrix Approach to multilayer Green's function calculation. A rapid and unconditionally stable solution is readily obtained via simple Gaussian ellimination on the resulting sparsely banded block system, precisely analogous to that arising in the Finite Element Method. The resulting gains in accuracy and computational speed allow consideration of much larger multilayered air/ocean/Earth/engineering material media models, for many more source-receiver configurations than previously possible. The validity and versatility of the SAFARI-DGM method is demonstrated by reviewing three practical examples of engineering interest, drawn from ocean acoustics, engineering seismology and ultrasonic scattering.
Conceptual Design and Structural Analysis of an Open Rotor Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Gern, Frank H.
2013-01-01
Through a recent NASA contract, Boeing Research and Technology in Huntington Beach, CA developed and optimized a conceptual design of an open rotor hybrid wing body aircraft (HWB). Open rotor engines offer a significant potential for fuel burn savings over turbofan engines, while the HWB configuration potentially allows to offset noise penalties through possible engine shielding. Researchers at NASA Langley converted the Boeing design to a FLOPS model which will be used to develop take-off and landing trajectories for community noise analyses. The FLOPS model was calibrated using Boeing data and shows good agreement with the original Boeing design. To complement Boeing s detailed aerodynamics and propulsion airframe integration work, a newly developed and validated conceptual structural analysis and optimization tool was used for a conceptual loads analysis and structural weights estimate. Structural optimization and weight calculation are based on a Nastran finite element model of the primary HWB structure, featuring centerbody, mid section, outboard wing, and aft body. Results for flight loads, deformations, wing weight, and centerbody weight are presented and compared to Boeing and FLOPS analyses.
Argento, G; de Jonge, N; Söntjens, S H M; Oomens, C W J; Bouten, C V C; Baaijens, F P T
2015-06-01
The anisotropic collagen architecture of an engineered cardiovascular tissue has a major impact on its in vivo mechanical performance. This evolving collagen architecture is determined by initial scaffold microstructure and mechanical loading. Here, we developed and validated a theoretical and computational microscale model to quantitatively understand the interplay between scaffold architecture and mechanical loading on collagen synthesis and degradation. Using input from experimental studies, we hypothesize that both the microstructure of the scaffold and the loading conditions influence collagen turnover. The evaluation of the mechanical and topological properties of in vitro engineered constructs reveals that the formation of extracellular matrix layers on top of the scaffold surface influences the mechanical anisotropy on the construct. Results show that the microscale model can successfully capture the collagen arrangement between the fibers of an electrospun scaffold under static and cyclic loading conditions. Contact guidance by the scaffold, and not applied load, dominates the collagen architecture. Therefore, when the collagen grows inside the pores of the scaffold, pronounced scaffold anisotropy guarantees the development of a construct that mimics the mechanical anisotropy of the native cardiovascular tissue.
NEXT Single String Integration Test Results
NASA Technical Reports Server (NTRS)
Soulas, George C.; Patterson, Michael J.; Pinero, Luis; Herman, Daniel A.; Snyder, Steven John
2010-01-01
As a critical part of NASA's Evolutionary Xenon Thruster (NEXT) test validation process, a single string integration test was performed on the NEXT ion propulsion system. The objectives of this test were to verify that an integrated system of major NEXT ion propulsion system elements meets project requirements, to demonstrate that the integrated system is functional across the entire power processor and xenon propellant management system input ranges, and to demonstrate to potential users that the NEXT propulsion system is ready for transition to flight. Propulsion system elements included in this system integration test were an engineering model ion thruster, an engineering model propellant management system, an engineering model power processor unit, and a digital control interface unit simulator that acted as a test console. Project requirements that were verified during this system integration test included individual element requirements ; integrated system requirements, and fault handling. This paper will present the results of these tests, which include: integrated ion propulsion system demonstrations of performance, functionality and fault handling; a thruster re-performance acceptance test to establish baseline performance: a risk-reduction PMS-thruster integration test: and propellant management system calibration checks.
Coupled thermal-fluid analysis with flowpath-cavity interaction in a gas turbine engine
NASA Astrophysics Data System (ADS)
Fitzpatrick, John Nathan
This study seeks to improve the understanding of inlet conditions of a large rotor-stator cavity in a turbofan engine, often referred to as the drive cone cavity (DCC). The inlet flow is better understood through a higher fidelity computational fluid dynamics (CFD) modeling of the inlet to the cavity, and a coupled finite element (FE) thermal to CFD fluid analysis of the cavity in order to accurately predict engine component temperatures. Accurately predicting temperature distribution in the cavity is important because temperatures directly affect the material properties including Young's modulus, yield strength, fatigue strength, creep properties. All of these properties directly affect the life of critical engine components. In addition, temperatures cause thermal expansion which changes clearances and in turn affects engine efficiency. The DCC is fed from the last stage of the high pressure compressor. One of its primary functions is to purge the air over the rotor wall to prevent it from overheating. Aero-thermal conditions within the DCC cavity are particularly challenging to predict due to the complex air flow and high heat transfer in the rotating component. Thus, in order to accurately predict metal temperatures a two-way coupled CFD-FE analysis is needed. Historically, when the cavity airflow is modeled for engine design purposes, the inlet condition has been over-simplified for the CFD analysis which impacts the results, particularly in the region around the compressor disc rim. The inlet is typically simplified by circumferentially averaging the velocity field at the inlet to the cavity which removes the effect of pressure wakes from the upstream rotor blades. The way in which these non-axisymmetric flow characteristics affect metal temperatures is not well understood. In addition, a constant air temperature scaled from a previous analysis is used as the simplified cavity inlet air temperature. Therefore, the objectives of this study are: (a) model the DCC cavity with a more physically representative inlet condition while coupling the solid thermal analysis and compressible air flow analysis that includes the fluid velocity, pressure, and temperature fields; (b) run a coupled analysis whose boundary conditions come from computational models, rather than thermocouple data; (c) validate the model using available experimental data; and (d) based on the validation, determine if the model can be used to predict air inlet and metal temperatures for new engine geometries. Verification with experimental results showed that the coupled analysis with the 3D no-bolt CFD model with predictive boundary conditions, over-predicted the HP6 offtake temperature by 16k. The maximum error was an over-prediction of 50k while the average error was 17k. The predictive model with 3D bolts also predicted cavity temperatures with an average error of 17k. For the two CFD models with predicted boundary conditions, the case without bolts performed better than the case with bolts. This is due to the flow errors caused by placing stationary bolts in a rotating reference frame. Therefore it is recommended that this type of analysis only be attempted for drive cone cavities with no bolts or shielded bolts.
Simulation of wake effects between two wind farms
NASA Astrophysics Data System (ADS)
Hansen, K. S.; Réthoré, P.-E.; Palma, J.; Hevia, B. G.; Prospathopoulos, J.; Peña, A.; Ott, S.; Schepers, G.; Palomares, A.; van der Laan, M. P.; Volker, P.
2015-06-01
SCADA data, recorded on the downstream wind farm, has been used to identify flow cases with visible clustering effects. The inflow condition is derived from a partly undisturbed wind turbine, due to lack of mast measurements. The SCADA data analysis concludes that centre of the deficit for the downstream wind farm with disturbed inflow has a distinct visible maximum deficit zone located only 5-10D downstream from the entrance. This zone, representing 20-30% speed reduction, increases and moves downstream for increasing cluster effect and is not visible outside a flow sector of 20-30°. The eight flow models represented in this benchmark include both RANS models, mesoscale models and engineering models. The flow cases, identified according to the wind speed level and inflow sector, have been simulated and validated with the SCADA results. The model validation concludes that all models more or less are able to predict the location and size of the deficit zone inside the downwind wind farm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruzic, Jamie J; Siegmund, Thomas; Tomar, Vikas
This project developed and validated a novel, multi-scale, mechanism-based model to quantitatively predict creep-fatigue crack growth and failure for Ni-based Alloy 617 at 800°C. Alloy 617 is a target material for intermediate heat exchangers in Generation IV very high temperature reactor designs, and it is envisioned that this model will aid in the design of safe, long lasting nuclear power plants. The technical effectiveness of the model was shown by demonstrating that experimentally observed crack growth rates can be predicted under both steady state and overload crack growth conditions. Feasibility was considered by incorporating our model into a commercially availablemore » finite element method code, ABAQUS, that is commonly used by design engineers. While the focus of the project was specifically on an alloy targeted for Generation IV nuclear reactors, the benefits to the public are expected to be wide reaching. Indeed, creep-fatigue failure is a design consideration for a wide range of high temperature mechanical systems that rely on Ni-based alloys, including industrial gas power turbines, advanced ultra-super critical steam turbines, and aerospace turbine engines. It is envisioned that this new model can be adapted to a wide range of engineering applications.« less
NASA Astrophysics Data System (ADS)
Afshar, Ali
An evaluation of Lagrangian-based, discrete-phase models for multi-component liquid sprays encountered in the combustors of gas turbine engines is considered. In particular, the spray modeling capabilities of the commercial software, ANSYS Fluent, was evaluated. Spray modeling was performed for various cold flow validation cases. These validation cases include a liquid jet in a cross-flow, an airblast atomizer, and a high shear fuel nozzle. Droplet properties including velocity and diameter were investigated and compared with previous experimental and numerical results. Different primary and secondary breakup models were evaluated in this thesis. The secondary breakup models investigated include the Taylor analogy breakup (TAB) model, the wave model, the Kelvin-Helmholtz Rayleigh-Taylor model (KHRT), and the Stochastic secondary droplet (SSD) approach. The modeling of fuel sprays requires a proper treatment for the turbulence. Reynolds-averaged Navier-Stokes (RANS), large eddy simulation (LES), hybrid RANS/LES, and dynamic LES (DLES) were also considered for the turbulent flows involving sprays. The spray and turbulence models were evaluated using the available benchmark experimental data.
Design control for clinical translation of 3D printed modular scaffolds.
Hollister, Scott J; Flanagan, Colleen L; Zopf, David A; Morrison, Robert J; Nasser, Hassan; Patel, Janki J; Ebramzadeh, Edward; Sangiorgio, Sophia N; Wheeler, Matthew B; Green, Glenn E
2015-03-01
The primary thrust of tissue engineering is the clinical translation of scaffolds and/or biologics to reconstruct tissue defects. Despite this thrust, clinical translation of tissue engineering therapies from academic research has been minimal in the 27 year history of tissue engineering. Academic research by its nature focuses on, and rewards, initial discovery of new phenomena and technologies in the basic research model, with a view towards generality. Translation, however, by its nature must be directed at specific clinical targets, also denoted as indications, with associated regulatory requirements. These regulatory requirements, especially design control, require that the clinical indication be precisely defined a priori, unlike most academic basic tissue engineering research where the research target is typically open-ended, and furthermore requires that the tissue engineering therapy be constructed according to design inputs that ensure it treats or mitigates the clinical indication. Finally, regulatory approval dictates that the constructed system be verified, i.e., proven that it meets the design inputs, and validated, i.e., that by meeting the design inputs the therapy will address the clinical indication. Satisfying design control requires (1) a system of integrated technologies (scaffolds, materials, biologics), ideally based on a fundamental platform, as compared to focus on a single technology, (2) testing of design hypotheses to validate system performance as opposed to mechanistic hypotheses of natural phenomena, and (3) sequential testing using in vitro, in vivo, large preclinical and eventually clinical tests against competing therapies, as compared to single experiments to test new technologies or test mechanistic hypotheses. Our goal in this paper is to illustrate how design control may be implemented in academic translation of scaffold based tissue engineering therapies. Specifically, we propose to (1) demonstrate a modular platform approach founded on 3D printing for developing tissue engineering therapies and (2) illustrate the design control process for modular implementation of two scaffold based tissue engineering therapies: airway reconstruction and bone tissue engineering based spine fusion.
Design Control for Clinical Translation of 3D Printed Modular Scaffolds
Hollister, Scott J.; Flanagan, Colleen L.; Zopf, David A.; Morrison, Robert J.; Nasser, Hassan; Patel, Janki J.; Ebramzadeh, Edward; Sangiorgio, Sophia N.; Wheeler, Matthew B.; Green, Glenn E.
2015-01-01
The primary thrust of tissue engineering is the clinical translation of scaffolds and/or biologics to reconstruct tissue defects. Despite this thrust, clinical translation of tissue engineering therapies from academic research has been minimal in the 27 year history of tissue engineering. Academic research by its nature focuses on, and rewards, initial discovery of new phenomena and technologies in the basic research model, with a view towards generality. Translation, however, by its nature must be directed at specific clinical targets, also denoted as indications, with associated regulatory requirements. These regulatory requirements, especially design control, require that the clinical indication be precisely defined a priori, unlike most academic basic tissue engineering research where the research target is typically open-ended, and furthermore requires that the tissue engineering therapy be constructed according to design inputs that ensure it treats or mitigates the clinical indication. Finally, regulatory approval dictates that the constructed system be verified, i.e., proven that it meets the design inputs, and validated, i.e., that by meeting the design inputs the therapy will address the clinical indication. Satisfying design control requires (1) a system of integrated technologies (scaffolds, materials, biologics), ideally based on a fundamental platform, as compared to focus on a single technology, (2) testing of design hypotheses to validate system performance as opposed to mechanistic hypotheses of natural phenomena, and (3) sequential testing using in vitro, in vivo, large preclinical and eventually clinical tests against competing therapies, as compared to single experiments to test new technologies or test mechanistic hypotheses. Our goal in this paper is to illustrate how design control may be implemented in academic translation of scaffold based tissue engineering therapies. Specifically, we propose to (1) demonstrate a modular platform approach founded on 3D printing for developing tissue engineering therapies and (2) illustrate the design control process for modular implementation of two scaffold based tissue engineering therapies: airway reconstruction and bone tissue engineering based spine fusion. PMID:25666115
Slide presentation at Conference: ASCE 7th Civil Engineering Conference in the Asian Region. USEPA in partnership with the Cadmus Group, Carollo Engineers, and other State & Industry collaborators, are evaluating new approaches for validating UV reactors to meet groundwater & sur...
NASA Technical Reports Server (NTRS)
Mathews, Douglas; Bock, Larry A.; Bielak, Gerald W.; Dougherty, R. P.; Premo, John W.; Scharpf, Dan F.; Yu, Jia
2014-01-01
Major airports in the world's air transportation systems face a serious problem in providing greater capacity to meet the ever increasing demands of air travel. This problem could be relieved if airports are allowed to increase their operating time, now restricted by curfews and by relaxing present limits on takeoffs and landings. The key operational issue in extending the present curfews is noise. In response to these increasing restrictive noise regulations, NASA has launched a program to validate through engine testing, noise reduction concepts and technologies that have evolved from the Advanced Subsonic Technologies (AST) Noise Reduction Program. The goal of this AST program was to develop and validate technology that reduces engine noise and improves nacelle suppression effectiveness relative to 1992 technology. Contract NAS3-97144 titled "Engine Validation of Noise Reduction Concepts" (EVNRC) was awarded to P&W on August 12, 1997 to conduct full scale noise reduction tests in two Phases on a PW4098 engine. The following Section 1.2 provides a brief description of the overall program. The remainder of this report provides a detailed documentation of Phase I of the program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, Marte
The research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to: 1) Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation. 2) Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator. 3) Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the resultsmore » to improve understand of proppant flow and transport. 4) Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production. 5) Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include: 1) A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS, 2) Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock, 3) Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications, and 4) Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, Marte
2013-12-31
This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understandmore » of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.« less
System Study: Technology Assessment and Prioritizing Update
NASA Technical Reports Server (NTRS)
2008-01-01
For the Intelligent Engine System (Propulsion 21) study, each technology was evaluated to determine the impact to fuel burn, acoustics, and NOx emissions. The optimum combination of technologies and their overall benefits to the system were also evaluated, resulting in noise improvement potential of 1.89 EPNdB cumulative margin,-1.34 percent fuel burn, and 50 percent NOx reduction from the 2015 UEET-QAT baseline. All the technology evaluations, except T18-20D, were based on newengines, where the engine was resized to obtain the maximum system benefit while maintaining the same cycle parameters as the 2015 UEET-QAT baseline. The impact of turbine clearance control on deteriorated engines, T18-20D, was also evaluated. Recommendations for future system study work include, but were not limited to, validation of a university-developed engine deterioration model and customer value analysis as figures of merit beside fuel burn, emissions, and acoustics.
Vallat, Laurent; Kemper, Corey A; Jung, Nicolas; Maumy-Bertrand, Myriam; Bertrand, Frédéric; Meyer, Nicolas; Pocheville, Arnaud; Fisher, John W; Gribben, John G; Bahram, Seiamak
2013-01-08
Cellular behavior is sustained by genetic programs that are progressively disrupted in pathological conditions--notably, cancer. High-throughput gene expression profiling has been used to infer statistical models describing these cellular programs, and development is now needed to guide orientated modulation of these systems. Here we develop a regression-based model to reverse-engineer a temporal genetic program, based on relevant patterns of gene expression after cell stimulation. This method integrates the temporal dimension of biological rewiring of genetic programs and enables the prediction of the effect of targeted gene disruption at the system level. We tested the performance accuracy of this model on synthetic data before reverse-engineering the response of primary cancer cells to a proliferative (protumorigenic) stimulation in a multistate leukemia biological model (i.e., chronic lymphocytic leukemia). To validate the ability of our method to predict the effects of gene modulation on the global program, we performed an intervention experiment on a targeted gene. Comparison of the predicted and observed gene expression changes demonstrates the possibility of predicting the effects of a perturbation in a gene regulatory network, a first step toward an orientated intervention in a cancer cell genetic program.
Dynamic Characterization of an Inflatable Concentrator for Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Leigh, Larry; Hamidzadeh, Hamid; Tinker, Michael L.; Rodriguez, Pedro I. (Technical Monitor)
2001-01-01
An inflatable structural system that is a technology demonstrator for solar thermal propulsion and other applications is characterized for structural dynamic behavior both experimentally and computationally. The inflatable structure is a pressurized assembly developed for use in orbit to support a Fresnel lens or inflatable lenticular element for focusing sunlight into a solar thermal rocket engine. When the engine temperature reaches a pre-set level, the propellant is injected into the engine, absorbs heat from an exchanger, and is expanded through the nozzle to produce thrust. The inflatable structure is a passively adaptive system in that a regulator and relief valve are utilized to maintain pressure within design limits during the full range of orbital conditions. Modeling and test activities are complicated by the fact that the polyimide film material used for construction of the inflatable is nonlinear, with modulus varying as a function of frequency, temperature, and level of excitation. Modal vibration testing and finite element modeling are described in detail in this paper. The test database is used for validation and modification of the model. This work is highly significant because of the current interest in inflatable structures for space application, and because of the difficulty in accurately modeling such systems.
Application of monotone integrated large eddy simulation to Rayleigh-Taylor mixing.
Youngs, David L
2009-07-28
Rayleigh-Taylor (RT) instability occurs when a dense fluid rests on top of a light fluid in a gravitational field. It also occurs in an equivalent situation (in the absence of gravity) when an interface between fluids of different density is accelerated by a pressure gradient, e.g. in inertial confinement fusion implosions. Engineering models (Reynolds-averaged Navier-Stokes models) are needed to represent the effect of mixing in complex applications. However, large eddy simulation (LES) currently makes an essential contribution to understanding the mixing process and calibration or validation of the engineering models. In this paper, three cases are used to illustrate the current role of LES: (i) mixing at a plane boundary, (ii) break-up of a layer of dense fluid due to RT instability, and (iii) mixing in a simple spherical implosion. A monotone integrated LES approach is preferred because of the need to treat discontinuities in the flow, i.e. the initial density discontinuities or shock waves. Of particular interest is the influence of initial conditions and how this needs to be allowed for in engineering modelling. It is argued that loss of memory of the initial conditions is unlikely to occur in practical applications.
Do Over or Make Do? Climate Models as a Software Development Challenge (Invited)
NASA Astrophysics Data System (ADS)
Easterbrook, S. M.
2010-12-01
We present the results of a comparative study of the software engineering culture and practices at four different earth system modeling centers: the UK Met Office Hadley Centre, the National Center for Atmospheric Research (NCAR), The Max-Planck-Institut für Meteorologie (MPI-M), and the Institut Pierre Simon Laplace (IPSL). The study investigated the software tools and techniques used at each center to assess their effectiveness. We also investigated how differences in the organizational structures, collaborative relationships, and technical infrastructures constrain the software development and affect software quality. Specific questions for the study included 1) Verification and Validation - What techniques are used to ensure that the code matches the scientists’ understanding of what it should do? How effective are these are at eliminating errors of correctness and errors of understanding? 2) Coordination - How are the contributions from across the modeling community coordinated? For coupled models, how are the differences in the priorities of different, overlapping communities of users addressed? 3) Division of responsibility - How are the responsibilities for coding, verification, and coordination distributed between different roles (scientific, engineering, support) in the organization? 4) Planning and release processes - How do modelers decide on priorities for model development, how do they decide which changes to tackle in a particular release of the model? 5) Debugging - How do scientists debug the models, what types of bugs do they find in their code, and how they find them? The results show that each center has evolved a set of model development practices that are tailored to their needs and organizational constraints. These practices emphasize scientific validity, but tend to neglect other software qualities, and all the centers struggle frequently with software problems. The testing processes are effective at removing software errors prior to release, but the code is hard to understand and hard to change. Software errors and model configuration problems are common during model development, and appear to have a serious impact on scientific productivity. These problems have grown dramatically in recent years with the growth in size and complexity of earth system models. Much of the success in obtaining valid simulations from the models depends on the scientists developing their own code, experimenting with alternatives, running frequent full system tests, and exploring patterns in the results. Blind application of generic software engineering processes is unlikely to work well. Instead, each center needs to lean how to balance the need for better coordination through a more disciplined approach with the freedom to explore, and the value of having scientists work directly with the code. This suggests that each center can learn a lot from comparing their practices with others, but that each might need to develop a different set of best practices.
Constant speed control of four-stroke micro internal combustion swing engine
NASA Astrophysics Data System (ADS)
Gao, Dedong; Lei, Yong; Zhu, Honghai; Ni, Jun
2015-09-01
The increasing demands on safety, emission and fuel consumption require more accurate control models of micro internal combustion swing engine (MICSE). The objective of this paper is to investigate the constant speed control models of four-stroke MICSE. The operation principle of the four-stroke MICSE is presented based on the description of MICSE prototype. A two-level Petri net based hybrid model is proposed to model the four-stroke MICSE engine cycle. The Petri net subsystem at the upper level controls and synchronizes the four Petri net subsystems at the lower level. The continuous sub-models, including breathing dynamics of intake manifold, thermodynamics of the chamber and dynamics of the torque generation, are investigated and integrated with the discrete model in MATLAB Simulink. Through the comparison of experimental data and simulated DC voltage output, it is demonstrated that the hybrid model is valid for the four-stroke MICSE system. A nonlinear model is obtained from the cycle average data via the regression method, and it is linearized around a given nominal equilibrium point for the controller design. The feedback controller of the spark timing and valve duration timing is designed with a sequential loop closing design approach. The simulation of the sequential loop closure control design applied to the hybrid model is implemented in MATLAB. The simulation results show that the system is able to reach its desired operating point within 0.2 s, and the designed controller shows good MICSE engine performance with a constant speed. This paper presents the constant speed control models of four-stroke MICSE and carries out the simulation tests, the models and the simulation results can be used for further study on the precision control of four-stroke MICSE.
Livingstone Model-Based Diagnosis of Earth Observing One Infusion Experiment
NASA Technical Reports Server (NTRS)
Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.
2004-01-01
The Earth Observing One satellite, launched in November 2000, is an active earth science observation platform. This paper reports on the progress of an infusion experiment in which the Livingstone 2 Model-Based Diagnostic engine is deployed on Earth Observing One, demonstrating the capability to monitor the nominal operation of the spacecraft under command of an on-board planner, and demonstrating on-board diagnosis of spacecraft failures. Design and development of the experiment, specification and validation of diagnostic scenarios, characterization of performance results and benefits of the model- based approach are presented.
NASA Astrophysics Data System (ADS)
Formosa, F.; Fréchette, L. G.
2015-12-01
An electrical circuit equivalent (ECE) approach has been set up allowing elementary oscillatory microengine components to be modelled. They cover gas channel/chamber thermodynamics, viscosity and thermal effects, mechanical structure and electromechanical transducers. The proposed tool has been validated on a centimeter scale Free Piston membrane Stirling engine [1]. We propose here new developments taking into account scaling effects to establish models suitable for any microengines. They are based on simplifications derived from the comparison of the hydraulic radius with respect to the viscous and thermal penetration depths respectively).
Low Complexity Models to improve Incomplete Sensitivities for Shape Optimization
NASA Astrophysics Data System (ADS)
Stanciu, Mugurel; Mohammadi, Bijan; Moreau, Stéphane
2003-01-01
The present global platform for simulation and design of multi-model configurations treat shape optimization problems in aerodynamics. Flow solvers are coupled with optimization algorithms based on CAD-free and CAD-connected frameworks. Newton methods together with incomplete expressions of gradients are used. Such incomplete sensitivities are improved using reduced models based on physical assumptions. The validity and the application of this approach in real-life problems are presented. The numerical examples concern shape optimization for an airfoil, a business jet and a car engine cooling axial fan.
Analytical Modeling of Triple-Metal Hetero-Dielectric DG SON TFET
NASA Astrophysics Data System (ADS)
Mahajan, Aman; Dash, Dinesh Kumar; Banerjee, Pritha; Sarkar, Subir Kumar
2018-02-01
In this paper, a 2-D analytical model of triple-metal hetero-dielectric DG TFET is presented by combining the concepts of triple material gate engineering and hetero-dielectric engineering. Three metals with different work functions are used as both front- and back gate electrodes to modulate the barrier at source/channel and channel/drain interface. In addition to this, front gate dielectric consists of high-K HfO2 at source end and low-K SiO2 at drain side, whereas back gate dielectric is replaced by air to further improve the ON current of the device. Surface potential and electric field of the proposed device are formulated solving 2-D Poisson's equation and Young's approximation. Based on this electric field expression, tunneling current is obtained by using Kane's model. Several device parameters are varied to examine the behavior of the proposed device. The analytical model is validated with TCAD simulation results for proving the accuracy of our proposed model.
Vaughan, Benjamin L; Galie, Peter A; Stegemann, Jan P; Grotberg, James B
2013-11-05
In the creation of engineered tissue constructs, the successful transport of nutrients and oxygen to the contained cells is a significant challenge. In highly porous scaffolds subject to cyclic strain, the mechanical deformations can induce substantial fluid pressure gradients, which affect the transport of solutes. In this article, we describe a poroelastic model to predict the solid and fluid mechanics of a highly porous hydrogel subject to cyclic strain. The model was validated by matching the predicted penetration of a bead into the hydrogel from the model with experimental observations and provides insight into nutrient transport. Additionally, the model provides estimates of the wall-shear stresses experienced by the cells embedded within the scaffold. These results provide insight into the mechanics of and convective nutrient transport within a cyclically strained hydrogel, which could lead to the improved design of engineered tissues. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Genetically engineered mice as experimental tools to dissect the critical events in breast cancer.
Menezes, Mitchell E; Das, Swadesh K; Emdad, Luni; Windle, Jolene J; Wang, Xiang-Yang; Sarkar, Devanand; Fisher, Paul B
2014-01-01
Elucidating the mechanism of pathogenesis of breast cancer has greatly benefited from breakthrough advances in both genetically engineered mouse (GEM) models and xenograft transplantation technologies. The vast array of breast cancer mouse models currently available is testimony to the complexity of mammary tumorigenesis and attempts by investigators to accurately portray the heterogeneity and intricacies of this disease. Distinct molecular changes that drive various aspects of tumorigenesis, such as alterations in tumor cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and drug resistance have been evaluated using the currently available GEM breast cancer models. GEM breast cancer models are also being exploited to evaluate and validate the efficacy of novel therapeutics, vaccines, and imaging modalities for potential use in the clinic. This review provides a synopsis of the various GEM models that are expanding our knowledge of the nuances of breast cancer development and progression and can be instrumental in the development of novel prevention and therapeutic approaches for this disease. © 2014 Elsevier Inc. All rights reserved.
Genetically Engineered Mice as Experimental Tools to Dissect the Critical Events in Breast Cancer
Menezes, Mitchell E.; Das, Swadesh K.; Emdad, Luni; Windle, Jolene J.; Wang, Xiang-Yang; Sarkar, Devanand; Fisher, Paul B.
2015-01-01
Elucidating the mechanism of pathogenesis of breast cancer has greatly benefited from breakthrough advances in both genetically engineered mouse (GEM) models and xenograft transplantation technologies. The vast array of breast cancer mouse models currently available is testimony to the complexity of mammary tumorigenesis and attempts by investigators to accurately portray the heterogeneity and intricacies of this disease. Distinct molecular changes that drive various aspects of tumorigenesis, such as alterations in tumor cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and drug resistance have been evaluated using the currently available GEM breast cancer models. GEM breast cancer models are also being exploited to evaluate and validate the efficacy of novel therapeutics, vaccines, and imaging modalities for potential use in the clinic. This review provides a synopsis of the various GEM models that are expanding our knowledge of the nuances of breast cancer development and progression and can be instrumental in the development of novel prevention and therapeutic approaches for this disease. PMID:24889535
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blau, P. J.; Qu, J.; Lu, R.
One significant concern in the operation of light water nuclear reactors is the fretting wear damage to fuel cladding from flow-induced vibrations. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. Furthermore, the multi-stage model accounts for oxide layers and wear rate transitions. Our paper describes themore » basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.« less
Modal Survey of ETM-3, A 5-Segment Derivative of the Space Shuttle Solid Rocket Booster
NASA Technical Reports Server (NTRS)
Nielsen, D.; Townsend, J.; Kappus, K.; Driskill, T.; Torres, I.; Parks, R.
2005-01-01
The complex interactions between internal motor generated pressure oscillations and motor structural vibration modes associated with the static test configuration of a Reusable Solid Rocket Motor have potential to generate significant dynamic thrust loads in the 5-segment configuration (Engineering Test Motor 3). Finite element model load predictions for worst-case conditions were generated based on extrapolation of a previously correlated 4-segment motor model. A modal survey was performed on the largest rocket motor to date, Engineering Test Motor #3 (ETM-3), to provide data for finite element model correlation and validation of model generated design loads. The modal survey preparation included pretest analyses to determine an efficient analysis set selection using the Effective Independence Method and test simulations to assure critical test stand component loads did not exceed design limits. Historical Reusable Solid Rocket Motor modal testing, ETM-3 test analysis model development and pre-test loads analyses, as well as test execution, and a comparison of results to pre-test predictions are discussed.
NASA Technical Reports Server (NTRS)
Stovall, John R.; Wray, Richard B.
1994-01-01
This paper presents a description of a model for a space vehicle operational scenario and the commands for avionics. This model will be used in developing a dynamic architecture simulation model using the Statemate CASE tool for validation of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA has been proposed as an avionics architecture standard to NASA through its Strategic Avionics Technology Working Group (SATWG) and has been accepted by the Society of Automotive Engineers (SAE) for conversion into an SAE Avionics Standard. This architecture was developed for the Flight Data Systems Division (FDSD) of the NASA Johnson Space Center (JSC) by the Lockheed Engineering and Sciences Company (LESC), Houston, Texas. This SGOAA includes a generic system architecture for the entities in spacecraft avionics, a generic processing external and internal hardware architecture, and a nine class model of interfaces. The SGOAA is both scalable and recursive and can be applied to any hierarchical level of hardware/software processing systems.
Blau, P. J.; Qu, J.; Lu, R.
2016-09-21
One significant concern in the operation of light water nuclear reactors is the fretting wear damage to fuel cladding from flow-induced vibrations. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. Furthermore, the multi-stage model accounts for oxide layers and wear rate transitions. Our paper describes themore » basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.« less
NASA Astrophysics Data System (ADS)
Velioglu Sogut, Deniz; Yalciner, Ahmet Cevdet
2018-06-01
Field observations provide valuable data regarding nearshore tsunami impact, yet only in inundation areas where tsunami waves have already flooded. Therefore, tsunami modeling is essential to understand tsunami behavior and prepare for tsunami inundation. It is necessary that all numerical models used in tsunami emergency planning be subject to benchmark tests for validation and verification. This study focuses on two numerical codes, NAMI DANCE and FLOW-3D®, for validation and performance comparison. NAMI DANCE is an in-house tsunami numerical model developed by the Ocean Engineering Research Center of Middle East Technical University, Turkey and Laboratory of Special Research Bureau for Automation of Marine Research, Russia. FLOW-3D® is a general purpose computational fluid dynamics software, which was developed by scientists who pioneered in the design of the Volume-of-Fluid technique. The codes are validated and their performances are compared via analytical, experimental and field benchmark problems, which are documented in the ``Proceedings and Results of the 2011 National Tsunami Hazard Mitigation Program (NTHMP) Model Benchmarking Workshop'' and the ``Proceedings and Results of the NTHMP 2015 Tsunami Current Modeling Workshop". The variations between the numerical solutions of these two models are evaluated through statistical error analysis.
VAVUQ, Python and Matlab freeware for Verification and Validation, Uncertainty Quantification
NASA Astrophysics Data System (ADS)
Courtney, J. E.; Zamani, K.; Bombardelli, F. A.; Fleenor, W. E.
2015-12-01
A package of scripts is presented for automated Verification and Validation (V&V) and Uncertainty Quantification (UQ) for engineering codes that approximate Partial Differential Equations (PDFs). The code post-processes model results to produce V&V and UQ information. This information can be used to assess model performance. Automated information on code performance can allow for a systematic methodology to assess the quality of model approximations. The software implements common and accepted code verification schemes. The software uses the Method of Manufactured Solutions (MMS), the Method of Exact Solution (MES), Cross-Code Verification, and Richardson Extrapolation (RE) for solution (calculation) verification. It also includes common statistical measures that can be used for model skill assessment. Complete RE can be conducted for complex geometries by implementing high-order non-oscillating numerical interpolation schemes within the software. Model approximation uncertainty is quantified by calculating lower and upper bounds of numerical error from the RE results. The software is also able to calculate the Grid Convergence Index (GCI), and to handle adaptive meshes and models that implement mixed order schemes. Four examples are provided to demonstrate the use of the software for code and solution verification, model validation and uncertainty quantification. The software is used for code verification of a mixed-order compact difference heat transport solver; the solution verification of a 2D shallow-water-wave solver for tidal flow modeling in estuaries; the model validation of a two-phase flow computation in a hydraulic jump compared to experimental data; and numerical uncertainty quantification for 3D CFD modeling of the flow patterns in a Gust erosion chamber.
NASA Astrophysics Data System (ADS)
Silva, F.; Maechling, P. J.; Goulet, C. A.; Somerville, P.; Jordan, T. H.
2014-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving geoscientists, earthquake engineers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform (BBP) is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms for a well-observed historical earthquake. Then, the BBP calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, and several new data products, such as map and distance-based goodness of fit plots. As the number and complexity of scenarios simulated using the Broadband Platform increases, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.
Modelling the permafrost extent on the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Zhao, L.; Zou, D.; Sheng, Y.; Chen, J.; Wu, T.; Wu, J.; Pang, Q.; Wang, W.
2016-12-01
The Tibetan Plateau (TP) possesses the largest areas of permafrost terrain in mid- and low-latitude regions of the world. Permafrost plays significant role in climatic, hydrological, and ecological systems, and has great influences on landforms formation, slope and engineering construction. Detailed database of distribution and characteristics of permafrost is crucial for engineering planning, water resource management, ecosystem protection, climate modeling, and carbon cycle research. Although some permafrost distribution maps were compiled in previous studies and proved very useful, due to the limited data source, ambiguous criteria, little validation, and the deficiency of high-quality spatial datasets, there are a large uncertainty in the mapping permafrost distribution. In this paper, a new permafrost map was generated mostly based on freezing and thawing indices from modified MODIS land surface temperatures (LSTs), and validated by various ground-based dataset. Soil thermal properties of five soil types across the TP estimated according to the empirical equation and in situ observed soil properties (water content and bulk density) which were obtained during the field survey. Based on these data sets, the model of Temperature at the Top Of Permafrost (TTOP) was applied to simulate permafrost distribution over the TP. The results show that permafrost, seasonally frozen ground, and unfrozen ground covered areas of 106.4´104 km2, 145.6´104 km2, and 2.9´104 km2. The ground based observations of permafrost distribution across the five investigated regions (IRs) and three highway transects (across the entire permafrost regions from north to south) have been using to validate the model. Result of validation shows that the kappa coefficient vary from 0.38 to 0.78 in average 0.57 at the five IRs and from 0.62 to 0.74 in average 0.68 within three transects. The result of TTOP modeling shows more accuracy to identify thawing regions in comparison with two maps, compiled in 1996 and 2006 and could be better represent the detailed permafrost distribution than other methods. Overall, the results are providing much more detailed maps of permafrost distribution, which could be a promising basic data set for further research on permafrost on the Tibetan Plateau.