Sample records for validated fatigue model

  1. Validation of Fatigue Modeling Predictions in Aviation Operations

    NASA Technical Reports Server (NTRS)

    Gregory, Kevin; Martinez, Siera; Flynn-Evans, Erin

    2017-01-01

    Bio-mathematical fatigue models that predict levels of alertness and performance are one potential tool for use within integrated fatigue risk management approaches. A number of models have been developed that provide predictions based on acute and chronic sleep loss, circadian desynchronization, and sleep inertia. Some are publicly available and gaining traction in settings such as commercial aviation as a means of evaluating flight crew schedules for potential fatigue-related risks. Yet, most models have not been rigorously evaluated and independently validated for the operations to which they are being applied and many users are not fully aware of the limitations in which model results should be interpreted and applied.

  2. Validating and Verifying Biomathematical Models of Human Fatigue

    NASA Technical Reports Server (NTRS)

    Martinez, Siera Brooke; Quintero, Luis Ortiz; Flynn-Evans, Erin

    2015-01-01

    Airline pilots experience acute and chronic sleep deprivation, sleep inertia, and circadian desynchrony due to the need to schedule flight operations around the clock. This sleep loss and circadian desynchrony gives rise to cognitive impairments, reduced vigilance and inconsistent performance. Several biomathematical models, based principally on patterns observed in circadian rhythms and homeostatic drive, have been developed to predict a pilots levels of fatigue or alertness. These models allow for the Federal Aviation Administration (FAA) and commercial airlines to make decisions about pilot capabilities and flight schedules. Although these models have been validated in a laboratory setting, they have not been thoroughly tested in operational environments where uncontrolled factors, such as environmental sleep disrupters, caffeine use and napping, may impact actual pilot alertness and performance. We will compare the predictions of three prominent biomathematical fatigue models (McCauley Model, Harvard Model, and the privately-sold SAFTE-FAST Model) to actual measures of alertness and performance. We collected sleep logs, movement and light recordings, psychomotor vigilance task (PVT), and urinary melatonin (a marker of circadian phase) from 44 pilots in a short-haul commercial airline over one month. We will statistically compare with the model predictions to lapses on the PVT and circadian phase. We will calculate the sensitivity and specificity of each model prediction under different scheduling conditions. Our findings will aid operational decision-makers in determining the reliability of each model under real-world scheduling situations.

  3. Cross-Cultural Validation of the Korean Version of the Chalder Fatigue Scale.

    PubMed

    Ha, Hyeju; Jeong, Donghee; Hahm, Bong-Jin; Shim, Eun-Jung

    2018-06-01

    University students are vulnerable to fatigue. If not adequately dealt with, fatigue might develop into various health problems and negatively affect quality of life (QOL). The present study examined psychometric properties of the Korean version of the Chalder Fatigue Scale (K-CFQ) in university students. Data were obtained from two samples of undergraduate students in Korea. The first dataset (N = 557) was collected in a cross-sectional survey in 2015 and the second dataset (N = 338) from a longitudinal survey with three time points over a semester period in 2016. Participants completed measures of fatigue, QOL, depression, anxiety, and sleep quality. Three-factor model (physical fatigue, low energy, and mental fatigue) rather than the original two-factor model (physical and mental fatigue) provided a better goodness of fit indices to the data. Internal consistency of the K-CFQ was satisfactory, with Cronbach's α value of 0.88 for the total scale and those of subscales ranging from 0.73 to 0.87. Its convergent validity was supported by its significant association with anxiety, depression, sleep quality, and QOL. Significant association between T1 K-CFQ with physical QOL at T2 and T3 supported its predictive validity. Its known-group validity was proven with higher K-CFQ scores observed in the participants with depression and those with poor sleep quality. Current results suggest that K-CFQ is a valid and reliable measure of fatigue, and a better model fit of the three-factor structure of the K-CFQ implies potential cross-cultural differences in the dimensionality of fatigue.

  4. Further Validation of the Multidimensional Fatigue Symptom Inventory-Short Form

    PubMed Central

    Stein, Kevin D.; Jacobsen, Paul B.; Blanchard, Chris M.; Thors, Christina

    2008-01-01

    A growing body of evidence is documenting the multidimensional nature of cancer-related fatigue. Although several multidimensional measures of fatigue have been developed, further validation of these scales is needed. To this end, the current study sought to evaluate the factorial and construct validity of the 30-item Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF). A heterogeneous sample of 304 cancer patients (mean age 55 years) completed the MFSI-SF, along with several other measures of psychosocial functioning including the MOS-SF-36 and Fatigue Symptom Inventory, following the fourth cycle of chemotherapy treatment. The results of a confirmatory factor analysis indicated the 5-factor model provided a good fit to the data as evidenced by commonly used goodness of fit indices (CFI 0.90 and IFI 0.90). Additional evidence for the validity of the MFSI-SF was provided via correlations with other relevant instruments (range −0.21 to 0.82). In sum, the current study provides support for the MFSI-SF as a valuable tool for the multidimensional assessment of cancer-related fatigue. PMID:14711465

  5. Fatigue and damage tolerance scatter models

    NASA Astrophysics Data System (ADS)

    Raikher, Veniamin L.

    1994-09-01

    Effective Total Fatigue Life and Crack Growth Scatter Models are proposed. The first of them is based on the power form of the Wohler curve, fatigue scatter dependence on mean life value, cycle stress ratio influence on fatigue scatter, and validated description of the mean stress influence on the mean fatigue life. The second uses in addition are fracture mechanics approach, assumption of initial damage existence, and Paris equation. Simple formulas are derived for configurations of models. A preliminary identification of the parameters of the models is fulfilled on the basis of experimental data. Some new and important results for fatigue and crack growth scatter characteristics are obtained.

  6. Validation of an Arabic version of Fatigue Severity Scale

    PubMed Central

    Al-Sobayel, Hana I.; Al-Hugail, Hind A.; AlSaif, Ranyah M.; Albawardi, Nada M.; Alnahdi, Ali H.; Daif, Abdulkader M.; Al-Arfaj, Hussein F.

    2016-01-01

    Objectives: To develop and test the psychometric properties of an Arabic version of Fatigue Severity Scale (FSS-Ar) that can be used to measure fatigue in Arabic patients with disorders where fatigue is a major symptom. Methods: Forward and backward translations of FSS were undertaken to develop an Arabic version. The validity and reliability of the FSS-Ar was then tested on 28 patients with systemic lupus erythematosus (SLE), 24 patients with multiple sclerosis (MS), and 31 healthy subjects. Exploratory factor analysis and hypothesis testing methods were used to examine construct validity. The correlation between FSS-Ar and the vitality domain of the RAND 36-Item Health was examined to test construct validity. The study was conducted at the King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia between February and June 2012. Results: Using a score of ≥4.05 to define fatigue, 39 of 52 (75%) participants were fatigued compared with 10 out of 31 (32%) healthy participants. The correlation between the FSS-Ar and the vitality domain of the RAND-36 was acceptable (r = -0.46). Factor analysis showed that items of the FSS-Ar measured one underlying construct, namely, fatigue. Test-retest reliability and internal consistency of the FSS-Ar was acceptable (intraclass correlation coefficient model 2,1 = 0.80; Cronbach’s alpha = 0.84). Conclusion: The Arabic version of the FSS demonstrated acceptable psychometric properties and was able to differentiate between patients with SLE or MS, and healthy subjects. PMID:26739978

  7. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    NASA Astrophysics Data System (ADS)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-03-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  8. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    NASA Astrophysics Data System (ADS)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-02-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  9. Validation of the Modified Fatigue Impact Scale in Parkinson's disease.

    PubMed

    Schiehser, Dawn M; Ayers, Catherine R; Liu, Lin; Lessig, Stephanie; Song, David S; Filoteo, J Vincent

    2013-03-01

    Fatigue is a common symptom in Parkinson's disease (PD); however, a multidimensional scale that measures the impact of fatigue on functioning has yet to be validated in this population. The aim of this study was to examine the validity of the Modified Fatigue Impact Scale (MFIS), a self-report measure that assesses the effects of fatigue on physical, cognitive, and psychosocial functioning, in a sample of nondemented PD patients. PD patients (N = 100) completed the MFIS, the Positive and Negative Affect Schedule (PANAS-X), and several additional measures of psychosocial, cognitive, and motor functioning. A Principal Component Analysis (PCA) and item analysis using Cronbach's alpha were conducted to determine structural validity and internal consistency of the MFIS. Correlational analyses were performed between the MFIS and the PANAS-X fatigue subscale to evaluate convergent validity and between the MFIS and measures of depression, anxiety, apathy, and disease-related symptoms to determine divergent validity. The PCA identified two viable MFIS subscales: a cognitive subscale and a combination of the original scale's physical and psychosocial subscales as one factor. Item analysis revealed high internal consistency of all 21 items and the items within the two subscales. The MFIS had strong convergent validity with the PANAS-X fatigue subscale and adequate divergent validity with measures of disease stage, motor function, and cognition. Overall, this study demonstrates that the MFIS is a valid multidimensional measure that can be used to evaluate the impact of fatigue on cognitive and physical/social functioning in PD patients without dementia. Published by Elsevier Ltd.

  10. Validation of the Neurological Fatigue Index for stroke (NFI-Stroke)

    PubMed Central

    2012-01-01

    Background Fatigue is a common symptom in Stroke. Several self-report scales are available to measure this debilitating symptom but concern has been expressed about their construct validity. Objective To examine the reliability and validity of a recently developed scale for multiple sclerosis (MS) fatigue, the Neurological Fatigue Index (NFI-MS), in a sample of stroke patients. Method Six patients with stroke participated in qualitative interviews which were analysed and the themes compared for equivalence to those derived from existing data on MS fatigue. 999 questionnaire packs were sent to those with a stroke within the past four years. Data from the four subscales, and the Summary scale of the NFI-MS were fitted to the Rasch measurement model. Results Themes identified by stroke patients were consistent with those identified by those with MS. 282 questionnaires were returned and respondents had a mean age of 67.3 years; 62% were male, and were on average 17.2 (SD 11.4, range 2–50) months post stroke. The Physical, Cognitive and Summary scales all showed good fit to the model, were unidimensional, and free of differential item functioning by age, sex and time. The sleep scales failed to show adequate fit in their current format. Conclusion Post stroke fatigue appears to be represented by a combination of physical and cognitive components, confirmed by both qualitative and quantitative processes. The NFI-Stroke, comprising a Physical and Cognitive subscale, and a 10-item Summary scale, meets the strictest measurement requirements. Fit to the Rasch model allows conversion of ordinal raw scores to a linear metric. PMID:22587411

  11. Lee Fatigue and Energy Scales: Exploring aspects of validity in a sample of women with HIV using an application of a Rasch model

    PubMed Central

    Lerdal, Anners; Kottorp, Anders; Gay, Caryl L.; Lee, Kathryn A.

    2012-01-01

    This study examines the psychometric properties of the Lee Fatigue and Energy Scales (visual analog version) using a Rasch model application. The relationship between fatigue and energy is also described for a convenience sample of 102 women with HIV/AIDS who completed the Lee Fatigue and Energy Scales in the morning and evening. Both scales were assessed for internal scale validity, unidimensionality, and uniform differential item functioning in relation to morning and evening ratings. Analyses confirmed that both the Fatigue and Energy Scales demonstrated evidence of internal scale validity and unidimensionality. Mean fatigue measures were also higher in the evening than in the morning and mean energy measures were higher in the morning than in the evening (both p<0.001), indicating that time of day is an important consideration. Fatigue and energy measures were moderately correlated with each other in the morning but not in the evening. The concepts of energy and fatigue were inversely related, but not polar opposites in this sample. Fatigue and energy may therefore be distinct constructs that should not be used interchangeably, either in measurement or when interpreting outcomes for research or clinical purposes. PMID:22985544

  12. Designing and Validation a Visual Fatigue Questionnaire for Video Display Terminals Operators

    PubMed Central

    Rajabi-Vardanjani, Hassan; Habibi, Ehsanollah; Pourabdian, Siyamak; Dehghan, Habibollah; Maracy, Mohammad Reza

    2014-01-01

    Background: Along with the rapid growth of technology its related tools such as computer, monitors and video display terminals (VDTs) grow as well. Based on the studies, the most common complaint reported is of the VDT users. Methods: This study attempts to design a proper tool to assess the visual fatigue of the VDT users. First draft of the questionnaire was prepared after a thorough study on the books, papers and similar questionnaires. The validity and reliability of the questionnaire was confirmed using the content validity index (CVI) beside that of the Cronbach's Coefficient Alpha. Then, a cross-sectional study was carried out on 248 of the VDT users in different professions. A theoretical model with four categories of symptoms of visual fatigue was derived from the previous studies and questionnaires. Having used the AMOS16 software, the construct validity of the questionnaire was evaluated using the confirmatory factor analysis. The correlation co-efficiency of the internal domains was calculated using the SPSS 11.5 software. To assess the quality check index and determining the visual fatigue levels, visual fatigue of the VDT users was measured by the questionnaire and visual fatigue meter (VFM) device. Cut-off points were identified by receiver operating characteristic curves. Results: CVI and reliability co-efficiency were both equal to 0.75. Model fit indices including root mean of squared error approximation, goodness of fit index and adjusted goodness of fit index were obtained 0.026, 0.96 and 0.92 respectfully. The correlation between the results measured with the questionnaire and VFM-90.1 device was −0.87. Cut-off points of the questionnaire were 0.65, 2.36 and 3.88. The confirmed questionnaire consists of four main areas: Eye strain (4 questions), visual impairment (5 questions) and the surface impairment of the eye (3 questions) and the out of eye problems (3 questions). Conclusions: The visual fatigue questionnaire contains 15 questions and

  13. Development and initial validation of a cessation fatigue scale.

    PubMed

    Mathew, Amanda R; Heckman, Bryan W; Meier, Ellen; Carpenter, Matthew J

    2017-07-01

    Smoking cessation fatigue, or tiredness of attempting to quit smoking, has been posited as a latent construct encompassing loss of motivation, loss of hope in cessation success, decreased self-efficacy, and exhaustion of self-control resources. Despite the potential clinical impact of characterizing cessation fatigue, there is currently no validated measure to assess it. Using a rational scale development approach, we developed a cessation fatigue measure and examined its reliability and construct validity in relation to a) smokers' experience of a recently failed quit attempt (QA) and b) readiness to engage in a subsequent QA. Data were drawn from an online cross-sectional survey of 484 smokers who relapsed from a QA within the past 30days. Exploratory factor analysis identified three factors within the 17-item Cessation Fatigue Scale (CFS), which we labeled: emotional exhaustion, pessimism, and devaluation. High internal consistency was observed for each factor and across the full scale. As expected, CFS overall was positively associated with withdrawal severity and difficulty quitting. CFS was negatively associated with previously validated measures of intention to quit, self-efficacy, and abstinence-related motivational engagement, even after adjusting for nicotine dependence. Findings provide initial validation for a new tool to assess cessation fatigue and contribute needed information on a theory-driven component of cessation-related motivation and relapse risk. Copyright © 2017. Published by Elsevier B.V.

  14. PedsQL™ Multidimensional Fatigue Scale in sickle cell disease: feasibility, reliability, and validity.

    PubMed

    Panepinto, Julie A; Torres, Sylvia; Bendo, Cristiane B; McCavit, Timothy L; Dinu, Bogdan; Sherman-Bien, Sandra; Bemrich-Stolz, Christy; Varni, James W

    2014-01-01

    Sickle cell disease (SCD) is an inherited blood disorder characterized by a chronic hemolytic anemia that can contribute to fatigue and global cognitive impairment in patients. The study objective was to report on the feasibility, reliability, and validity of the PedsQL™ Multidimensional Fatigue Scale in SCD for pediatric patient self-report ages 5-18 years and parent proxy-report for ages 2-18 years. This was a cross-sectional multi-site study whereby 240 pediatric patients with SCD and 303 parents completed the 18-item PedsQL™ Multidimensional Fatigue Scale. Participants also completed the PedsQL™ 4.0 Generic Core Scales. The PedsQL™ Multidimensional Fatigue Scale evidenced excellent feasibility, excellent reliability for the Total Scale Scores (patient self-report α = 0.90; parent proxy-report α = 0.95), and acceptable reliability for the three individual scales (patient self-report α = 0.77-0.84; parent proxy-report α = 0.90-0.97). Intercorrelations of the PedsQL™ Multidimensional Fatigue Scale with the PedsQL™ Generic Core Scales were predominantly in the large (≥0.50) range, supporting construct validity. PedsQL™ Multidimensional Fatigue Scale Scores were significantly worse with large effects sizes (≥0.80) for patients with SCD than for a comparison sample of healthy children, supporting known-groups discriminant validity. Confirmatory factor analysis demonstrated an acceptable to excellent model fit in SCD. The PedsQL™ Multidimensional Fatigue Scale demonstrated acceptable to excellent measurement properties in SCD. The results demonstrate the relative severity of fatigue symptoms in pediatric patients with SCD, indicating the potential clinical utility of multidimensional assessment of fatigue in patients with SCD in clinical research and practice. © 2013 Wiley Periodicals, Inc.

  15. Screening Poststroke Fatigue; Feasibility and Validation of an Instrument for the Screening of Poststroke Fatigue throughout the Rehabilitation Process.

    PubMed

    Kruithof, Nena; Van Cleef, Melanie Hubertina Maria; Rasquin, Sascha Maria Cornelia; Bovend'Eerdt, Thamar Johannes Henricus

    2016-01-01

    Our objective is to investigate the feasibility and validity of a new instrument to screen for determinants of poststroke fatigue during the rehabilitation process. This prospective cohort study was conducted within the stroke department of a rehabilitation center. The participants in the study were postacute adult stroke patients. The Detection List Fatigue (DLF)was administered 2 weeks after the start of the rehabilitation program and again 6 weeks later. To determine the construct validity, the Hospital Anxiety and Depression Scale, the Checklist Individual Strength subscale fatigue, and the Fatigue Severity Scale--7-item version were administered. A fatigue rating scale was used to measure the patients' fatigue experience. Frequency analyses of the number of patients reporting poststroke fatigue determinants according to the DLF were performed. One hundred seven patients (mean age 60 years) without severe communication difficulties were included in the study. The DLF was easy to understand and quick to administer. The DLF showed good internal consistency (Cronbach's alpha: .79 and .87), high convergent validity (rs = .85 and rs = .79), and good divergent validity (rs = .31 and rs = .45). The majority of the patients (88.4%-90.2%) experienced at least 2 poststroke fatigue (PSF) determinants,of which "sleeping problem" was most frequently reported. The DLF is a feasible and valid instrument for the screening of PSF determinants throughout the rehabilitation process in stroke patients. Future studies should investigate whether the use of the list in determining a treatment plan prevents the development of PSF.

  16. Validity and reliability of the Traditional Chinese version of the Multidimensional Fatigue Inventory in general population.

    PubMed

    Chuang, Li-Ling; Chuang, Yu-Fen; Hsu, Miao-Ju; Huang, Ying-Zu; Wong, Alice M K; Chang, Ya-Ju

    2018-01-01

    Fatigue is a common symptom in the general population and has a substantial effect on individuals' quality of life. The Multidimensional Fatigue Inventory (MFI) has been widely used to quantify the impact of fatigue, but no Traditional Chinese translation has yet been validated. The goal of this study was to translate the MFI from English into Traditional Chinese ('the MFI-TC') and subsequently to examine its validity and reliability. The study recruited a convenience sample of 123 people from various age groups in Taiwan. The MFI was examined using a two-step process: (1) translation and back-translation of the instrument; and (2) examination of construct validity, convergent validity, internal consistency, test-retest reliability, and measurement error. The validity and reliability of the MFI-TC were assessed by factor analysis, Spearman rho correlation coefficient, Cronbach's alpha coefficient, intraclass correlation coefficient (ICC), minimal detectable change (MDC), and Bland-Altman analysis. All participants completed the Short-Form-36 Health Survey Taiwan Form (SF-36-T) and the Chinese version of the Pittsburgh Sleep Quality Index (PSQI) concurrently to test the convergent validity of the MFI-TC. Test-retest reliability was assessed by readministration of the MFI-TC after a 1-week interval. Factor analysis confirmed the four dimensions of fatigue: general/physical fatigue, reduced activity, reduced motivation, and mental fatigue. A four-factor model was extracted, combining general fatigue and physical fatigue as one factor. The results demonstrated moderate convergent validity when correlating fatigue (MFI-TC) with quality of life (SF-36-T) and sleep disturbances (PSQI) (Spearman's rho = 0.68 and 0.47, respectively). Cronbach's alpha for the MFI-TC total scale and subscales ranged from 0.73 (mental fatigue subscale) to 0.92 (MFI-TC total scale). ICCs ranged from 0.85 (reduced motivation) to 0.94 (MFI-TC total scale), and the MDC ranged from 2.33 points

  17. Validity and reliability of the Traditional Chinese version of the Multidimensional Fatigue Inventory in general population

    PubMed Central

    Chuang, Li-Ling; Chuang, Yu-Fen; Hsu, Miao-Ju; Huang, Ying-Zu; Wong, Alice M. K.

    2018-01-01

    Background Fatigue is a common symptom in the general population and has a substantial effect on individuals’ quality of life. The Multidimensional Fatigue Inventory (MFI) has been widely used to quantify the impact of fatigue, but no Traditional Chinese translation has yet been validated. The goal of this study was to translate the MFI from English into Traditional Chinese (‘the MFI-TC’) and subsequently to examine its validity and reliability. Methods The study recruited a convenience sample of 123 people from various age groups in Taiwan. The MFI was examined using a two-step process: (1) translation and back-translation of the instrument; and (2) examination of construct validity, convergent validity, internal consistency, test-retest reliability, and measurement error. The validity and reliability of the MFI-TC were assessed by factor analysis, Spearman rho correlation coefficient, Cronbach’s alpha coefficient, intraclass correlation coefficient (ICC), minimal detectable change (MDC), and Bland-Altman analysis. All participants completed the Short-Form-36 Health Survey Taiwan Form (SF-36-T) and the Chinese version of the Pittsburgh Sleep Quality Index (PSQI) concurrently to test the convergent validity of the MFI-TC. Test-retest reliability was assessed by readministration of the MFI-TC after a 1-week interval. Results Factor analysis confirmed the four dimensions of fatigue: general/physical fatigue, reduced activity, reduced motivation, and mental fatigue. A four-factor model was extracted, combining general fatigue and physical fatigue as one factor. The results demonstrated moderate convergent validity when correlating fatigue (MFI-TC) with quality of life (SF-36-T) and sleep disturbances (PSQI) (Spearman's rho = 0.68 and 0.47, respectively). Cronbach’s alpha for the MFI-TC total scale and subscales ranged from 0.73 (mental fatigue subscale) to 0.92 (MFI-TC total scale). ICCs ranged from 0.85 (reduced motivation) to 0.94 (MFI-TC total scale), and

  18. PedsQL™ Multidimensional Fatigue Scale in Sickle Cell Disease: Feasibility, Reliability and Validity

    PubMed Central

    Panepinto, Julie A.; Torres, Sylvia; Bendo, Cristiane B.; McCavit, Timothy L.; Dinu, Bogdan; Sherman-Bien, Sandra; Bemrich-Stolz, Christy; Varni, James W.

    2013-01-01

    Background Sickle cell disease (SCD) is an inherited blood disorder characterized by a chronic hemolytic anemia that can contribute to fatigue and global cognitive impairment in patients. The study objective was to report on the feasibility, reliability, and validity of the PedsQL™ Multidimensional Fatigue Scale in SCD for pediatric patient self-report ages 5–18 years and parent proxy-report for ages 2–18 years. Procedure This was a cross-sectional multi-site study whereby 240 pediatric patients with SCD and 303 parents completed the 18-item PedsQL™ Multidimensional Fatigue Scale. Participants also completed the PedsQL™ 4.0 Generic Core Scales. Results The PedsQL™ Multidimensional Fatigue Scale evidenced excellent feasibility, excellent reliability for the Total Scale Scores (patient self-report α = 0.90; parent proxy-report α = 0.95), and acceptable reliability for the three individual scales (patient self-report α = 0.77–0.84; parent proxy-report α = 0.90–0.97). Intercorrelations of the PedsQL™ Multidimensional Fatigue Scale with the PedsQL™ Generic Core Scales were predominantly in the large (≥ 0.50) range, supporting construct validity. PedsQL™ Multidimensional Fatigue Scale Scores were significantly worse with large effects sizes (≥0.80) for patients with SCD than for a comparison sample of healthy children, supporting known-groups discriminant validity. Confirmatory factor analysis demonstrated an acceptable to excellent model fit in SCD. Conclusions The PedsQL™ Multidimensional Fatigue Scale demonstrated acceptable to excellent measurement properties in SCD. The results demonstrate the relative severity of fatigue symptoms in pediatric patients with SCD, indicating the potential clinical utility of multidimensional assessment of fatigue in patients with SCD in clinical research and practice. PMID:24038960

  19. Fatigue Damage of Collagenous Tissues: Experiment, Modeling and Simulation Studies

    PubMed Central

    Martin, Caitlin; Sun, Wei

    2017-01-01

    Mechanical fatigue damage is a critical issue for soft tissues and tissue-derived materials, particularly for musculoskeletal and cardiovascular applications; yet, our understanding of the fatigue damage process is incomplete. Soft tissue fatigue experiments are often difficult and time-consuming to perform, which has hindered progress in this area. However, the recent development of soft-tissue fatigue-damage constitutive models has enabled simulation-based fatigue analyses of tissues under various conditions. Computational simulations facilitate highly controlled and quantitative analyses to study the distinct effects of various loading conditions and design features on tissue durability; thus, they are advantageous over complex fatigue experiments. Although significant work to calibrate the constitutive models from fatigue experiments and to validate predictability remains, further development in these areas will add to our knowledge of soft-tissue fatigue damage and will facilitate the design of durable treatments and devices. In this review, the experimental, modeling, and simulation efforts to study collagenous tissue fatigue damage are summarized and critically assessed. PMID:25955007

  20. Fatigue in children: reliability and validity of the Dutch PedsQL™ Multidimensional Fatigue Scale.

    PubMed

    Gordijn, M Suzanne; Suzanne Gordijn, M; Cremers, Eline M P; Kaspers, Gertjan J L; Gemke, Reinoud J B J

    2011-09-01

    The aim of the study is to report on the feasibility, reliability, validity, and the norm-references of the Dutch version of the PedsQL™ Multidimensional Fatigue Scale. The study participants are four hundred and ninety-seven parents of children aged 2-18 years and 366 children aged 5-18 years from various day care facilities, elementary schools, and a high school who completed the Dutch version of the PedsQL™ Multidimensional Fatigue Scale. The number of missing items was minimal. All scales showed satisfactory internal consistency reliability, with Cronbach's coefficient alpha exceeding 0.70. Test-retest reliability was good to excellent (ICCs 0.68-0.84) and inter-observer reliability varied from moderate to excellent (ICCs 0.56-0.93) for total scores. Parent/child concordance for total scores was poor to good (ICCs 0.25-0.68). The PedsQL™ Multidimensional Fatigue Scale was able to distinguish between healthy children and children with an impaired health condition. The Dutch version of the PedsQL™ Multidimensional Fatigue Scale demonstrates an adequate feasibility, reliability, and validity in another sociocultural context. With the obtained norm-references, it can be utilized as a tool in the evaluation of fatigue in healthy and chronically ill children aged 2-18 years.

  1. Modelling fatigue and the use of fatigue models in work settings.

    PubMed

    Dawson, Drew; Ian Noy, Y; Härmä, Mikko; Akerstedt, Torbjorn; Belenky, Gregory

    2011-03-01

    In recent years, theoretical models of the sleep and circadian system developed in laboratory settings have been adapted to predict fatigue and, by inference, performance. This is typically done using the timing of prior sleep and waking or working hours as the primary input and the time course of the predicted variables as the primary output. The aim of these models is to provide employers, unions and regulators with quantitative information on the likely average level of fatigue, or risk, associated with a given pattern of work and sleep with the goal of better managing the risk of fatigue-related errors and accidents/incidents. The first part of this review summarises the variables known to influence workplace fatigue and draws attention to the considerable variability attributable to individual and task variables not included in current models. The second part reviews the current fatigue models described in the scientific and technical literature and classifies them according to whether they predict fatigue directly by using the timing of prior sleep and wake (one-step models) or indirectly by using work schedules to infer an average sleep-wake pattern that is then used to predict fatigue (two-step models). The third part of the review looks at the current use of fatigue models in field settings by organizations and regulators. Given their limitations it is suggested that the current generation of models may be appropriate for use as one element in a fatigue risk management system. The final section of the review looks at the future of these models and recommends a standardised approach for their use as an element of the 'defenses-in-depth' approach to fatigue risk management. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Reliability and validity of the PedsQL™ Multidimensional Fatigue Scale in Japan.

    PubMed

    Kobayashi, Kyoko; Okano, Yoshiyuki; Hohashi, Naohiro

    2011-09-01

    To examine the reliability and validity of the Japanese-language version of the PedsQL™ Multidimensional Fatigue Scale and to investigate the agreement between child self-reported fatigue and parent proxy-reported fatigue. The Japanese-language version of the PedsQL™ Multidimensional Fatigue Scale was administered to 652 preschoolers and schoolchildren aged 5-12 and their parents, and to 91 parents of preschool children aged 1-4. Internal consistency reliability was 0.62-0.87 for children and 0.81-0.93 for parents. Known-group validity was examined between a group of healthy samples (n = 530) and chronic condition sample (n = 102); the chronically ill group reported a significantly higher perceived fatigue problem. Correlations between child self- and parent proxy reports ranged from poor to fair. In subgroups identified by cluster analysis based on child self-reported scores, the greatest agreement between child and parent reports was seen in the good HRQOL group, while the least occurred in the poor HRQOL group. The parents overestimated their child's fatigue more when the child's HRQOL was low. The Japanese-language version of the PedsQL™ Multidimensional Fatigue Scale demonstrated good reliability and validity and could be useful in evaluating Japanese children in school and health care settings.

  3. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  4. PROMIS Fatigue Item Bank had Clinical Validity across Diverse Chronic Conditions.

    PubMed

    Cella, David; Lai, Jin-Shei; Jensen, Sally E; Christodoulou, Christopher; Junghaenel, Doerte U; Reeve, Bryce B; Stone, Arthur A

    2016-05-01

    To evaluate the comparability and responsiveness of Patient-Reported Outcomes Measurement Information System (PROMIS) fatigue item bank across six chronic conditions. Individuals (n = 1,430) with chronic obstructive pulmonary disease (n = 125), chronic heart failure (n = 60), chronic back pain (n = 218), major depressive disorder (n = 196), rheumatoid arthritis (n = 521), and cancer (n = 310) completed assessments from the PROMIS fatigue item bank at baseline and a clinically relevant follow-up. The cancer and arthritis samples were followed in observational studies; the other four groups were enrolled immediately before a planned clinical intervention. All participants completed global ratings of change at follow-up. Linear mixed-effects models and standardized response means were estimated to examine clinical validity and responsiveness to change. All patient groups reported more fatigue than the general population (range = 0.2-1.29 standard deviation worse). The four clinical groups with pretreatment baseline data experienced significant improvement in fatigue at follow-up (effect size range = 0.25-0.91). Individuals reporting better overall health usually experienced larger fatigue changes than those reporting worse overall health. The results support the PROMIS fatigue measures's responsiveness to change in six different chronic conditions. In addition, these results support the ability of the PROMIS fatigue measures to compare differences in fatigue across a range of chronic conditions, thereby enabling comparative effectiveness research. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Construct Validation of a Multidimensional Computerized Adaptive Test for Fatigue in Rheumatoid Arthritis

    PubMed Central

    Nikolaus, Stephanie; Bode, Christina; Taal, Erik; Vonkeman, Harald E.; Glas, Cees A. W.; van de Laar, Mart A. F. J.

    2015-01-01

    Objective Multidimensional computerized adaptive testing enables precise measurements of patient-reported outcomes at an individual level across different dimensions. This study examined the construct validity of a multidimensional computerized adaptive test (CAT) for fatigue in rheumatoid arthritis (RA). Methods The ‘CAT Fatigue RA’ was constructed based on a previously calibrated item bank. It contains 196 items and three dimensions: ‘severity’, ‘impact’ and ‘variability’ of fatigue. The CAT was administered to 166 patients with RA. They also completed a traditional, multidimensional fatigue questionnaire (BRAF-MDQ) and the SF-36 in order to examine the CAT’s construct validity. A priori criterion for construct validity was that 75% of the correlations between the CAT dimensions and the subscales of the other questionnaires were as expected. Furthermore, comprehensive use of the item bank, measurement precision and score distribution were investigated. Results The a priori criterion for construct validity was supported for two of the three CAT dimensions (severity and impact but not for variability). For severity and impact, 87% of the correlations with the subscales of the well-established questionnaires were as expected but for variability, 53% of the hypothesised relations were found. Eighty-nine percent of the items were selected between one and 137 times for CAT administrations. Measurement precision was excellent for the severity and impact dimensions, with more than 90% of the CAT administrations reaching a standard error below 0.32. The variability dimension showed good measurement precision with 90% of the CAT administrations reaching a standard error below 0.44. No floor- or ceiling-effects were found for the three dimensions. Conclusion The CAT Fatigue RA showed good construct validity and excellent measurement precision on the dimensions severity and impact. The dimension variability had less ideal measurement characteristics

  6. Validation of the Modified Fatigue Impact Scale in mild to moderate traumatic brain injury.

    PubMed

    Schiehser, Dawn M; Delano-Wood, Lisa; Jak, Amy J; Matthews, Scott C; Simmons, Alan N; Jacobson, Mark W; Filoteo, J Vincent; Bondi, Mark W; Orff, Henry J; Liu, Lin

    2015-01-01

    To evaluate the validity of the Modified Fatigue Impact Scale (MFIS) in veterans with a history of mild to moderate traumatic brain injury (TBI). Veterans (N = 106) with mild (92%) or moderate (8%) TBI. Veterans Administration Health System. Factor structure, internal consistency, convergent validity, sensitivity, and specificity of the MFIS were examined. Principal component analysis identified 2 viable MFIS factors: a Cognitive subscale and a Physical/Activities subscale. Item analysis revealed high internal consistency of the MFIS Total scale and subscale items. Strong convergent validity of the MFIS scales was established with 2 Beck Depression Inventory II fatigue items. Receiver operating characteristic curve analysis revealed good to excellent accuracy of the MFIS in classifying fatigued versus nonfatigued individuals. The MFIS is a valid multidimensional measure that can be used to evaluate the impact of fatigue on cognitive and physical functioning in individuals with mild to moderate TBI. The psychometric properties of the MFIS make it useful for evaluating fatigue and provide the potential for improving research on fatigue in this population.

  7. Mechanisms of in vivo muscle fatigue in humans: investigating age‐related fatigue resistance with a computational model

    PubMed Central

    Callahan, Damien M.; Umberger, Brian R.

    2016-01-01

    . This model was compared with metabolic and contractile responses to repeated activation using values reported in the literature. Once validated in this way, the model was modified to reflect age‐related changes in neuromuscular function. Comparisons between initial and age‐modified simulations indicated that the age‐modified model predicted less fatigue during repeated isometric contractions, consistent with reports in the literature. Together, our simulations suggest that reduced glycolytic flux is the greatest contributor to the phenomenon of age‐related fatigue resistance. In contrast, oxidative resynthesis of phosphocreatine between intermittent contractions and inherent buffering capacity had minimal impact on predicted fatigue during isometric contractions. The insights gained from these simulations cannot be achieved through traditional in vivo or in vitro experimentation alone. PMID:26824934

  8. The PedsQL Multidimensional Fatigue Scale in pediatric rheumatology: reliability and validity.

    PubMed

    Varni, James W; Burwinkle, Tasha M; Szer, Ilona S

    2004-12-01

    . The PedsQL (Pediatric Quality of Life Inventory) is a modular instrument designed to measure health related quality of life (HRQOL) in children and adolescents ages 2-18 years. The recently developed 18-item PedsQL Multidimensional Fatigue Scale was designed to measure fatigue in pediatric patients and comprises the General Fatigue Scale (6 items), Sleep/Rest Fatigue Scale (6 items), and Cognitive Fatigue Scale (6 items). The PedsQL 4.0 Generic Core Scales were developed as the generic core measure to be integrated with the PedsQL Disease-Specific Modules. The PedsQL 3.0 Rheumatology Module was designed to measure pediatric rheumatology-specific HRQOL. Methods. The PedsQL Multidimensional Fatigue Scale, Generic Core Scales, and Rheumatology Module were administered to 163 children and 154 parents (183 families accrued overall) recruited from a pediatric rheumatology clinic. Results. Internal consistency reliability for the PedsQL Multidimensional Fatigue Scale Total Score (a = 0.95 child, 0.95 parent report), General Fatigue Scale (a = 0.93 child, 0.92 parent), Sleep/Rest Fatigue Scale (a = 0.88 child, 0.90 parent), and Cognitive Fatigue Scale (a = 0.93 child, 0.96 parent) were excellent for group and individual comparisons. The validity of the PedsQL Multidimensional Fatigue Scale was confirmed through hypothesized intercorrelations with dimensions of generic and rheumatology-specific HRQOL. The PedsQL Multidimensional Fatigue Scale distinguished between healthy children and children with rheumatic diseases as a group, and was associated with greater disease severity. Children with fibromyalgia manifested greater fatigue than children with other rheumatic diseases. The results confirm the initial reliability and validity of the PedsQL Multidimensional Fatigue Scale in pediatric rheumatology.

  9. Validity and Reliability of a New Instrument to Measure Cancer-Related Fatigue in Adolescents

    PubMed Central

    Hinds, Pamela S.; Hockenberry, Marilyn; Tong, Xin; Rai, Shesh N.; Gattuso, Jamie S.; McCarthy, Kathleen; Pui, Ching-Hon; Srivastava, Deo Kumar

    2008-01-01

    Adolescents undergoing treatment for cancer rate fatigue as their most prevalent and intense cancer- and treatment-related effect. Parents and staff rate it similarly. Despite its reported prevalence, intensity, and distressing effects, cancer-related fatigue in adolescents is not routinely assessed during or after cancer treatment. We contend that the insufficient clinical attention is primarily due to the lack of a reliable and valid self-report instrument with which adolescent cancer-related fatigue can be measured. Our aim was to determine the reliability and construct validity of a new instrument and its ability to measure change in fatigue over time. Initial testing involved 64 adolescents undergoing curative treatment of cancer who completed the Fatigue Scale-Adolescent (FS-A) at two to four key points in treatment in one of four studies. Internal consistency estimates ranged from 0.67 to 0.95. Validity estimates involving the FS-A with the parent version ranged from 0.13 to 0.76; estimates involving the staff version and the Reynolds Depression Scale were 0.27 and 0.87 respectively. Additional validity findings included significant fatigue differences between anemic and non-anemic patients (P = 0.042) and the emergence of four factors in an exploratory factor analysis. Findings further indicate that the FS-A can be used to measure change over time (t = 2.55, P <0.01). In summary, the FS-A has moderate to strong reliability and impressive validity coefficients for a new research instrument. PMID:17629669

  10. The PedsQL multidimensional fatigue scale in pediatric obesity: feasibility, reliability and validity.

    PubMed

    Varni, James W; Limbers, Christine A; Bryant, William P; Wilson, Don P

    2010-01-01

    The PedsQL (Pediatric Quality of Life Inventory) is a modular instrument designed to measure health-related quality of life (HRQOL) and disease-specific symptoms in children and adolescents. The PedsQL Multidimensional Fatigue Scale was designed as a child self-report and parent proxy-report generic symptom-specific instrument to measure fatigue in pediatric patients. The objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in pediatric obesity. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains) and the PedsQL 4.0 Generic Core Scales were completed by 41 pediatric patients with a physician-diagnosis of obesity and 43 parents from a hospital-based Pediatric Endocrinology Clinic. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses (1.6%, child report; 0.5%, parent report), achieved excellent reliability for the Total Fatigue Scale Score (alpha = 0.90 child report, 0.90 parent report), distinguished between pediatric patients with obesity and healthy children, and was significantly correlated with the PedsQL 4.0 Generic Core Scales supporting construct validity. Pediatric patients with obesity experienced fatigue comparable with pediatric patients receiving cancer treatment, demonstrating the relative severity of their fatigue symptoms. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in pediatric obesity. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the standardized evaluation of fatigue in pediatric patients with obesity.

  11. A differential CDM model for fatigue of unidirectional metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Kruch, S.

    1992-01-01

    A multiaxial, isothermal, continuum damage mechanics (CDM) model for fatigue of a unidirectional metal matrix composite volume element is presented. The model is phenomenological, stress based, and assumes a single scalar internal damage variable, the evolution of which is anisotropic. The development of the fatigue damage model, (i.e., evolutionary law) is based on the definition of an initially transversely isotropic fatigue limit surface, a static fracture surface, and a normalized stress amplitude function. The anisotropy of these surfaces and function, and therefore the model, is defined through physically meaningful invariants reflecting the local stress and material orientation. This transversely isotropic model is shown, when taken to it's isotropic limit, to directly simplify to a previously developed and validated isotropic fatigue continuum damage model. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation in attempting to characterize a class of composite materials, and (2) the capability of the formulation in predicting anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Also, specific material parameters representing an initial characterization of the composite system SiC/Ti 15-3 and the matrix material (Ti 15-3) are reported.

  12. The reliability and validity of fatigue measures during short-duration maximal-intensity intermittent cycling.

    PubMed

    Glaister, Mark; Stone, Michael H; Stewart, Andrew M; Hughes, Michael; Moir, Gavin L

    2004-08-01

    The purpose of the present study was to assess the reliability and validity of fatigue measures, as derived from 4 separate formulae, during tests of repeat sprint ability. On separate days over a 3-week period, 2 groups of 7 recreationally active men completed 6 trials of 1 of 2 maximal (20 x 5 seconds) intermittent cycling tests with contrasting recovery periods (10 or 30 seconds). All trials were conducted on a friction-braked cycle ergometer, and fatigue scores were derived from measures of mean power output for each sprint. Apart from formula 1, which calculated fatigue from the percentage difference in mean power output between the first and last sprint, all remaining formulae produced fatigue scores that showed a reasonably good level of test-retest reliability in both intermittent test protocols (intraclass correlation range: 0.78-0.86; 95% likely range of true values: 0.54-0.97). Although between-protocol differences in the magnitude of the fatigue scores suggested good construct validity, within-protocol differences highlighted limitations with each formula. Overall, the results support the use of the percentage decrement score as the most valid and reliable measure of fatigue during brief maximal intermittent work.

  13. Validation of the Fatigue Impact Scale in Hungarian patients with multiple sclerosis.

    PubMed

    Losonczi, Erika; Bencsik, Krisztina; Rajda, Cecília; Lencsés, Gyula; Török, Margit; Vécsei, László

    2011-03-01

    Fatigue is one of the most frequent complaints of patients with multiple sclerosis (MS). The Fatigue Impact Scale (FIS), one of the 30 available fatigue questionnaires, is commonly applied because it evaluates multidimensional aspects of fatigue. The main purposes of this study were to test the validity, test-retest reliability, and internal consistency of the Hungarian version of the FIS. One hundred and eleven MS patients and 85 healthy control (HC) subjects completed the FIS and the Beck Depression Inventory, a large majority of them on two occasions, 3 months apart. The total FIS score and subscale scores differed statistically between the MS patients and the HC subjects in both FIS sessions. In the test-retest reliability assessment, statistically, the intraclass correlation coefficients were high in both the MS and HC groups. Cronbach's alpha values were also notably high. The results of this study indicate that the FIS can be regarded as a valid and reliable scale with which to improve our understanding of the impact of fatigue on the health-related quality of life in MS patients without severe disability.

  14. Validation of the Modified Fatigue Impact Scale and the relationships among fatigue, pain and serum interleukin-6 levels in patients with neuromyelitis optica spectrum disorder.

    PubMed

    Masuda, Hiroki; Mori, Masahiro; Uzawa, Akiyuki; Uchida, Tomohiko; Ohtani, Ryohei; Kobayashi, Shigeo; Kuwabara, Satoshi

    2018-02-15

    Fatigue and pain are disabling symptoms in patients with neuromyelitis optica spectrum disorder (NMOSD). The Modified Fatigue Impact Scale (MFIS) has not yet been validated in patients with NMOSD, and anti-interleukin-6 (IL-6) receptor antibody was reported to decrease pain and fatigue in patients with NMOSD. The aim of this study was to validate MFIS and to investigate the relationships among fatigue, pain and serum IL-6 levels in patients with NMOSD. MFIS and the Multidimensional Fatigue Inventory (MFI), an established scale for fatigue, were administered to patients with NMOSD and age- and sex-matched healthy controls (HCs). The Pain Effects Scale score and serum IL-6 levels were also measured in patients with NMOSD. Correlations among clinical characteristics, laboratory data and each score were investigated. To validate MFIS in patients with NMOSD, MFIS was administered twice within 4days from the first administration. Fifty-one patients answered the first MFIS, and 26 patients answered the second MFIS. There was no difference between the first and second MFIS scores. Patients with NMOSD had higher MFIS and MFI scores than HCs. No correlations were observed between serum IL-6 levels and either score. MFIS was validated in patients with NMOSD. Serum IL-6 levels may not be involved in the pathogenesis of fatigue and pain in patients with NMOSD. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Feasibility, Validity, and Reliability of the Italian Pediatric Quality of Life Inventory Multidimensional Fatigue Scale for Adults in Inpatients with Severe Obesity.

    PubMed

    Manzoni, Gian Mauro; Rossi, Alessandro; Marazzi, Nicoletta; Agosti, Fiorenza; De Col, Alessandra; Pietrabissa, Giada; Castelnuovo, Gianluca; Molinari, Enrico; Sartorio, Allessandro

    2018-01-01

    This study was aimed to examine the feasibility, validity, and reliability of the Italian Pediatric Quality of Life Inventory Multidimensional Fatigue Scale (PedsQL™ MFS) for adult inpatients with severe obesity. 200 inpatients (81% females) with severe obesity (BMI ≥ 35 kg/m2) completed the PedsQL MFS (General Fatigue, Sleep/Rest Fatigue and Cognitive Fatigue domains), the Fatigue Severity Scale, and the Center for Epidemiologic Studies Depression Scale immediately after admission to a 3-week residential body weight reduction program. A randomized subsample of 48 patients re-completed the PedsQL MFS after 3 days. Confirmatory factor analysis showed that a modified hierarchical model with two items moved from the Sleep/Rest Fatigue domain to the General Fatigue domain and a second-order latent factor best fitted the data. Internal consistency and test-retest reliabilities were acceptable to high in all scales, and small to high statistically significant correlations were found with all convergent measures, with the exception of BMI. Significant floor effects were found in two scales (Cognitive Fatigue and Sleep/Rest Fatigue). The Italian modified PedsQL MFS for adults showed to be a valid and reliable tool for the assessment of fatigue in inpatients with severe obesity. Future studies should assess its discriminant validity as well as its responsiveness to weight reduction. © 2018 The Author(s) Published by S. Karger GmbH, Freiburg.

  16. Feasibility, Validity, and Reliability of the Italian Pediatric Quality of Life Inventory Multidimensional Fatigue Scale for Adults in Inpatients with Severe Obesity

    PubMed Central

    Manzoni, Gian Mauro; Rossi, Alessandro; Marazzi, Nicoletta; Agosti, Fiorenza; De Col, Alessandra; Pietrabissa, Giada; Castelnuovo, Gianluca; Molinari, Enrico; Sartorio, Allessandro

    2018-01-01

    Objective This study was aimed to examine the feasibility, validity, and reliability of the Italian Pediatric Quality of Life Inventory Multidimensional Fatigue Scale (PedsQL™ MFS) for adult inpatients with severe obesity. Methods 200 inpatients (81% females) with severe obesity (BMI ≥ 35 kg/m2) completed the PedsQL MFS (General Fatigue, Sleep/Rest Fatigue and Cognitive Fatigue domains), the Fatigue Severity Scale, and the Center for Epidemiologic Studies Depression Scale immediately after admission to a 3-week residential body weight reduction program. A randomized subsample of 48 patients re-completed the PedsQL MFS after 3 days. Results Confirmatory factor analysis showed that a modified hierarchical model with two items moved from the Sleep/Rest Fatigue domain to the General Fatigue domain and a second-order latent factor best fitted the data. Internal consistency and test-retest reliabilities were acceptable to high in all scales, and small to high statistically significant correlations were found with all convergent measures, with the exception of BMI. Significant floor effects were found in two scales (Cognitive Fatigue and Sleep/Rest Fatigue). Conclusion The Italian modified PedsQL MFS for adults showed to be a valid and reliable tool for the assessment of fatigue in inpatients with severe obesity. Future studies should assess its discriminant validity as well as its responsiveness to weight reduction. PMID:29402854

  17. Translating Fatigue to Human Performance.

    PubMed

    Enoka, Roger M; Duchateau, Jacques

    2016-11-01

    Despite flourishing interest in the topic of fatigue-as indicated by the many presentations on fatigue at the 2015 Annual Meeting of the American College of Sports Medicine-surprisingly little is known about its effect on human performance. There are two main reasons for this dilemma: 1) the inability of current terminology to accommodate the scope of the conditions ascribed to fatigue, and 2) a paucity of validated experimental models. In contrast to current practice, a case is made for a unified definition of fatigue to facilitate its management in health and disease. On the basis of the classic two-domain concept of Mosso, fatigue is defined as a disabling symptom in which physical and cognitive function is limited by interactions between performance fatigability and perceived fatigability. As a symptom, fatigue can only be measured by self-report, quantified as either a trait characteristic or a state variable. One consequence of such a definition is that the word fatigue should not be preceded by an adjective (e.g., central, mental, muscle, peripheral, and supraspinal) to suggest the locus of the changes responsible for an observed level of fatigue. Rather, mechanistic studies should be performed with validated experimental models to identify the changes responsible for the reported fatigue. As indicated by three examples (walking endurance in old adults, time trials by endurance athletes, and fatigue in persons with multiple sclerosis) discussed in the review, however, it has proven challenging to develop valid experimental models of fatigue. The proposed framework provides a foundation to address the many gaps in knowledge of how laboratory measures of fatigue and fatigability affect real-world performance.

  18. The PedsQL Multidimensional Fatigue Scale in type 1 diabetes: feasibility, reliability, and validity.

    PubMed

    Varni, James W; Limbers, Christine A; Bryant, William P; Wilson, Don P

    2009-08-01

    The Pediatric Quality of Life Inventory (PedsQL, Mapi Research Trust, Lyon, France; www.pedsql.org) is a modular instrument designed to measure health-related quality of life and disease-specific symptoms in children and adolescents. The PedsQL Multidimensional Fatigue Scale was designed as a child self-report and parent proxy-report generic symptom-specific instrument to measure fatigue in pediatric patients. The objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in type 1 diabetes. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains) and the PedsQL 4.0 Generic Core Scales were administered to 83 pediatric patients with type 1 diabetes and 84 parents. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses (0.3% child report and 0.3% parent report), achieved excellent reliability for the Total Fatigue Scale score (alpha= 0.92 child report, 0.94 parent report), distinguished between pediatric patients with diabetes and healthy children, and was significantly correlated with the PedsQL 4.0 Generic Core Scales supporting construct validity. Pediatric patients with diabetes experienced fatigue that was comparable to pediatric patients with cancer on treatment, demonstrating the relative severity of their fatigue symptoms. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in type 1 diabetes. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the standardized evaluation of fatigue in pediatric patients with type 1 diabetes.

  19. Translating Fatigue to Human Performance

    PubMed Central

    Enoka, Roger M.; Duchateau, Jacques

    2016-01-01

    Despite flourishing interest in the topic of fatigue—as indicated by the many presentations on fatigue at the 2015 annual meeting of the American College of Sports Medicine—surprisingly little is known about its impact on human performance. There are two main reasons for this dilemma: (1) the inability of current terminology to accommodate the scope of the conditions ascribed to fatigue, and (2) a paucity of validated experimental models. In contrast to current practice, a case is made for a unified definition of fatigue to facilitate its management in health and disease. Based on the classic two-domain concept of Mosso, fatigue is defined as a disabling symptom in which physical and cognitive function is limited by interactions between performance fatigability and perceived fatigability. As a symptom, fatigue can only be measured by self-report, quantified as either a trait characteristic or a state variable. One consequence of such a definition is that the word fatigue should not be preceded by an adjective (e.g., central, mental, muscle, peripheral, and supraspinal) to suggest the locus of the changes responsible for an observed level of fatigue. Rather, mechanistic studies should be performed with validated experimental models to identify the changes responsible for the reported fatigue. As indicated by three examples (walking endurance in old adults, time trials by endurance athletes, and fatigue in persons with multiple sclerosis) discussed in the review, however, it has proven challenging to develop valid experimental models of fatigue. The proposed framework provides a foundation to address the many gaps in knowledge of how laboratory measures of fatigue and fatigability impact real-world performance. PMID:27015386

  20. High validity and reliability of the PedsQL™ Multidimensional Fatigue Scale for Brazilian children with cancer.

    PubMed

    Nascimento, Lucila Castanheira; Nunes, Michelle Darezzo Rodrigues; Rocha, Ester Leonardo; Bomfim, Emiliana Omena; Floria-Santos, Milena; Dos Santos, Claudia Benedita; Dos Santos, Danielle Maria de Souza Serio; de Lima, Regina Aparecida Garcia

    2015-01-01

    Among the main factors that affect patients' quality of life, fatigue is a significant symptom experienced by children during treatment. Despite the high incidence, there has been no validated scale to evaluate fatigue in children with cancer in Brazil. The purpose of this study was to examine the psychometric properties of the PedsQL™ Multidimensional Fatigue Scale, using self-reports of Brazilian children, 8 to 18 years of age, and proxy reports. A cross-sectional method was used to collect data from 216 subjects over an 18-month period. Reliability ranged from .70 to .90 except for sleep/rest fatigue, self-report (α = .55). No floor or ceiling effects were found in any dimension. Convergent validity was higher than .40 and divergent validity had 100% adjustment. The root mean square error of approximation was acceptable. The comparative fit index was lower than expected. The agreement between self and proxy responses was weak and moderate. The results demonstrate the reliability and validity of the Brazilian version in children with cancer. This is the first validated scale that assesses fatigue in Brazilian children and adolescents with cancer. © 2014 by Association of Pediatric Hematology/Oncology Nurses.

  1. Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue.

    PubMed

    Dougherty, John P; Wolff, Brian S; Cullen, Mary J; Saligan, Leorey N; Gershengorn, Marvin C

    2017-10-01

    Fatigue affects most cancer patients and has numerous potential causes, including cancer itself and cancer treatment. Cancer-related fatigue (CRF) is not relieved by rest, can decrease quality of life, and has no FDA-approved therapy. Thyrotropin-releasing hormone (TRH) has been proposed as a potential novel treatment for CRF, but its efficacy against CRF remains largely untested. Thus, we tested the TRH analog, taltirelin (TAL), in mouse models of CRF. To model fatigue, we used a mouse model of chemotherapy, a mouse model of radiation therapy, and mice bearing colon 26 carcinoma tumors. We used the treadmill fatigue test to assess fatigue-like behavior after treatment with TAL. Additionally, we used wild-type and TRH receptor knockout mice to determine which TRH receptor was necessary for the actions of TAL. Tumor-bearing mice displayed muscle wasting and all models caused fatigue-like behavior, with mice running a shorter distance in the treadmill fatigue test than controls. TAL reversed fatigue-like behavior in all three models and the mouse TRH 1 receptor was necessary for the effects of TAL. These data suggest that TAL may be useful in alleviating fatigue in all cancer patients and provide further support for evaluating TAL as a potential therapy for CRF in humans. Published by Elsevier Ltd.

  2. Validation of a Smartphone-Based Approach to In Situ Cognitive Fatigue Assessment

    PubMed Central

    Linden, Mark

    2017-01-01

    The most highly correlated results were from the PVT, which showed a positive correlation with those from the prevalidated MFS, measuring 0.342 (P<.008). Scores from the cognitive tests were entered into a regression model and showed that only reaction time in the PVT was a significant predictor of fatigue (P=.016, F=2.682, 95% CI 9.0-84.2). Higher scores on the MFS were related to increases in reaction time during our mobile variant of the PVT. Conclusions The results show that the PVT mobile cognitive test developed for this study could be used as a valid and reliable method for measuring cognitive fatigue in situ. This test would remove the subjectivity associated with established self-assessment approaches and the need for assessments to be performed in a medical setting. Based on our findings, future work could explore delivering a small set of tests with increased duration to further improve measurement reliability. Moreover, as the smartphone assessment tool can be used as part of everyday life, additional sources of data relating to physiological, psychological, and environmental context could be included within the analysis to improve the nature and precision of the assessment process. PMID:28818818

  3. Validation of a Smartphone-Based Approach to In Situ Cognitive Fatigue Assessment.

    PubMed

    Price, Edward; Moore, George; Galway, Leo; Linden, Mark

    2017-08-17

    were from the PVT, which showed a positive correlation with those from the prevalidated MFS, measuring 0.342 (P<.008). Scores from the cognitive tests were entered into a regression model and showed that only reaction time in the PVT was a significant predictor of fatigue (P=.016, F=2.682, 95% CI 9.0-84.2). Higher scores on the MFS were related to increases in reaction time during our mobile variant of the PVT. The results show that the PVT mobile cognitive test developed for this study could be used as a valid and reliable method for measuring cognitive fatigue in situ. This test would remove the subjectivity associated with established self-assessment approaches and the need for assessments to be performed in a medical setting. Based on our findings, future work could explore delivering a small set of tests with increased duration to further improve measurement reliability. Moreover, as the smartphone assessment tool can be used as part of everyday life, additional sources of data relating to physiological, psychological, and environmental context could be included within the analysis to improve the nature and precision of the assessment process. ©Edward Price, George Moore, Leo Galway, Mark Linden. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 17.08.2017.

  4. Reliability and validity of a Chinese version of the Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF-C).

    PubMed

    Pien, Li-Chung; Chu, Hsin; Chen, Wen-Chun; Chang, Yu-Shiun; Liao, Yuan-Mei; Chen, Chiung-Hua; Chou, Kuei-Ru

    2011-08-01

    To examine the psychometric properties of the Chinese version of the Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF-C) for use in Chinese-speaking countries. The assessment of fatigue is a challenging task for most researchers because culture may influence perceptions of meaning of fatigue. The lack of examination of the psychometric properties of the fatigue measures across studies limits the scientific rigour for generating additional research on the concept of 'fatigue.' A cross-sectional study. The study recruited 107 cancer inpatients from two medical centres in Taiwan. The MFSI-SF-C was examined using a two step process: (1) Translation and back-translation of the instrument; and (2) Examination of internal consistency reliability, test-retest reliability, content validity and construct validity. The results showed that the Cronbach's α of MFSI-SF-C total scale and subscales ranged between 0·83-0·92. The content validity index was 0·93. The difference between the fatigue of cancer patients and the comparison group of healthy people in the community was significant. The results demonstrated good convergent validity when comparing fatigue with depression and quality of life. Factor analysis confirmed the four dimensions of fatigue: physical, emotional, mental and vigour. It showed moderate intercorrelation between subscales and high factor loadings also helped to clarify the psychometric meaning. The reliability and validity information presented in this article support the use of the Chinese version of the MFSI-SF as a research instrument for measuring fatigue in Chinese populations. This study also provides evidence that the MFSI-SF possesses robust psychometric properties. The MFSI-SF-C is an effective and comprehensive tool for measuring fatigue in Chinese patients with cancer. © 2011 Blackwell Publishing Ltd.

  5. Development of a patient reported outcome scale for fatigue in multiple sclerosis: The Neurological Fatigue Index (NFI-MS)

    PubMed Central

    2010-01-01

    Background Fatigue is a common and debilitating symptom in multiple sclerosis (MS). Best-practice guidelines suggest that health services should repeatedly assess fatigue in persons with MS. Several fatigue scales are available but concern has been expressed about their validity. The objective of this study was to examine the reliability and validity of a new scale for MS fatigue, the Neurological Fatigue Index (NFI-MS). Methods Qualitative analysis of 40 MS patient interviews had previously contributed to a coherent definition of fatigue, and a potential 52 item set representing the salient themes. A draft questionnaire was mailed out to 1223 people with MS, and the resulting data subjected to both factor and Rasch analysis. Results Data from 635 (51.9% response) respondents were split randomly into an 'evaluation' and 'validation' sample. Exploratory factor analysis identified four potential subscales: 'physical', 'cognitive', 'relief by diurnal sleep or rest' and 'abnormal nocturnal sleep and sleepiness'. Rasch analysis led to further item reduction and the generation of a Summary scale comprising items from the Physical and Cognitive subscales. The scales were shown to fit Rasch model expectations, across both the evaluation and validation samples. Conclusion A simple 10-item Summary scale, together with scales measuring the physical and cognitive components of fatigue, were validated for MS fatigue. PMID:20152031

  6. Psychosocial factors, musculoskeletal disorders and work-related fatigue amongst nurses in Brunei: structural equation model approach.

    PubMed

    Abdul Rahman, Hanif; Abdul-Mumin, Khadizah; Naing, Lin

    2017-09-01

    Psychosocial factors, musculoskeletal disorders and work-related fatigue have adverse effects on individual nurses and place a substantial financial burden on health care. Evidence of an association has been reported in the literature, but no theoretical explanation has been published to date. To explore and develop a structural model to provide a theoretical explanation for this relationship. A cross-sectional study using data from 201 valid samples of emergency and critical care nurses across public hospitals in Brunei was performed via self-administered questionnaire. The structural equation model was assessed using partial least squares analysis. A valid and robust structural model was constructed. This revealed that 61.5% of the variance in chronic fatigue could be explained by psychosocial factors and musculoskeletal disorders pathways. Among the psychosocial factors, work-family conflict was identified as a key mediator for progression of musculoskeletal problems and subsequent fatigue through stress and burnout. This report provides a novel theoretical contribution to understanding the relationship between psychosocial factors, musculoskeletal disorders and work-related fatigue. These preliminary results may be useful for future studies on the development of work-related fatigue and musculoskeletal disorders, particularly the central role of work-family conflict. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Validity and reliability of the multidimensional assessment of fatigue scale in Iranian patients with relapsing-remitting subtype of multiple sclerosis.

    PubMed

    Behrangrad, Shabnam; Kordi Yoosefinejad, Amin

    2018-03-01

    The purpose of this study is to investigate the validity and reliability of the Persian version of the Multidimensional Assessment of Fatigue Scale (MAFS) in an Iranian population with multiple sclerosis. A self-reported survey on fatigue including the MAFS, Fatigue Impact Scale and demographic measures was completed by 130 patients with multiple sclerosis and 60 healthy persons sampled with a convenience method. Test-retest reliability and validity were evaluated 3 days apart. Construct validity of the MAFS was assessed with the Fatigue Impact Scale. The MAFS had high internal consistency (Cronbach's alpha >0.9) and 3-d test-retest reliability (intraclass correlation coefficient = 0.99). Correlation between the Fatigue Impact Scale and MAFS was high (r = 0.99). Correlation between MAFS scores and the Expanded Disability Status Scale was also strong (r = 0.85). Questionnaire items showed acceptable item-scale correlation (0.968-0.993). The Persian version of the MAFS appears to be a valid and reliable questionnaire. It is an appropriate short multidimensional instrument to assess fatigue in patients with multiple sclerosis in clinical practice and research. Implications for Rehabilitation The Persian version of Multidimensional Assessment of Fatigue is a valid and reliable instrument for the assessment and monitoring the fatigue in Persian-language patients with multiple sclerosis. It is very easy to administer and a time efficient scale in comparison to other instruments evaluating fatigue in patients with multiple sclerosis.

  8. Micromechanical Fatigue Visco-Damage Model for Short Glass Fiber Reinforced Polyamide-66

    NASA Astrophysics Data System (ADS)

    Despringre, N.; Chemisky, Y.; Robert, G.; Meraghni, F.

    This work presents a micromechanical fatigue damage model developed for short glass fiber reinforced PA66. It has been developed to predict the high cycle fatigue behavior of PA66/GF30. The model is based on an extended Mori-Tanaka method which includes coated inclusions, matrix viscoelasticity and the evolution of micro-scale damage. The developed model accounts for the nonlinear matrix viscoelasticity and the reinforcement orientation. The description of the damage processes is based on the experimental investigation of damage mechanisms previously performed through in-situ SEM tests and X-ray micro-computed tomography observations. Damage chronologies have been proposed involving three different processes: interface debonding/coating, matrix micro-cracking and fiber breakages. Their occurrence strongly depends on the microstructure and the relative humidity. Each damage mechanism is introduced through an evolution law coupled to local stress fields. The developed model is implemented using a UMAT subroutine. Its experimental validation is achieved under stress or strain controlled fatigue tests.

  9. Validity of the Multidimensional Fatigue Symptom Inventory-Short Form in an African American Community-Based Sample

    PubMed Central

    Asvat, Yasmin; Malcarne, Vanessa L.; Sadler, Georgia R.; Jacobsen, Paul B.

    2014-01-01

    Objectives This study examined the psychometric properties of the Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF) in a community-based sample of African Americans. Design. A sample of 340 African Americans (116 men, 224 women) ranging in age from 18–81 years were recruited from the community (e.g., churches, health fairs, beauty salons). Participants completed a brief demographic survey, the MFSI-SF and the Positive and Negative Affect Schedule. Results The structural validity of the MFSI-SF for a community-based sample of African Americans was not supported. The five dimensions of fatigue (General, Emotional, Physical, Mental, Vigor) found for Whites in prior research were not found for African Americans in this study. Instead, fatigue, while multidimensional for African Americans, was best represented by a unique four-four profile in which general and emotional fatigue are collapsed into a single dimension and physical fatigue, mental fatigue, and vigor are relatively distinct. Hence, in the absence of modifications, the MFSI-SF cannot be considered to be structurally invariant across ethnic groups. A modified four-factor version of the MFSI-SF exhibited excellent internal consistency reliability and evidence supports its convergent validity. Using the modified four-factor version, gender and age were not meaningfully associated with MFSI-SF scores. Conclusion Future research should further examine whether modifications to the MFSI-SF would, as the findings suggest, improve its validity as a measure of multidimensional fatigue in African Americans. PMID:24527980

  10. Chronic fatigue in patients with unexplained self-reported food hypersensitivity and irritable bowel syndrome: validation of a Norwegian translation of the Fatigue Impact Scale.

    PubMed

    Lind, Ragna; Berstad, Arnold; Hatlebakk, Jan; Valeur, Jørgen

    2013-01-01

    Patients with unexplained self-reported food hypersensitivity and irritable bowel syndrome (IBS) suffer from several health complaints, including fatigue. The aim of the present study was to validate a Norwegian translation of the Fatigue Impact Scale (FIS), and to assess the impact of fatigue in patients with self-reported food hypersensitivity and IBS, as compared with healthy controls. Thirty-eight patients with unexplained self-reported food hypersensitivity and IBS, who participated in the validation of the FIS completed the following additional questionnaires: the Short Form of Nepean Dyspepsia Index for assessment of quality of life, the Subjective Health Complaint Inventory, and questionnaires for diagnosis and severity of IBS. Impact of fatigue was studied in 43 patients with unexplained self-reported food hypersensitivity, 70% diagnosed with IBS, and 42 healthy controls. Cronbach's α for the FIS was 0.98, indicating excellent agreement between individual items. Scores on the FIS correlated with scores on the Short Form of Nepean Dyspepsia Index (r = 0.50, P = 0.001), indicating good convergent validity, and were higher in patients (median 85.0, interquartile range 36.8-105.3) than in controls (median 14.0, interquartile range 3.0-29.0, P ≤ 0.0001). The Norwegian translation of the FIS performed excellently in patients with unexplained self-reported food hypersensitivity and IBS, with patients reporting significantly more impact of chronic fatigue than healthy controls.

  11. Microstructure-Sensitive Modeling of High Cycle Fatigue (Preprint)

    DTIC Science & Technology

    2009-03-01

    SUBJECT TERMS microplasticity , microstructure-sensitive modeling, high cycle fatigue, fatigue variability 16. SECURITY CLASSIFICATION OF: 17...3Air Force Research Laboratory Wright Patterson Air Force Base, Ohio 45433 Keywords: Microplasticity , microstructure-sensitive modeling, high cycle...cyclic microplasticity ) plays a key role in modeling fatigue resistance. Unlike effective properties such as elastic stiffness, fatigue is

  12. Development and validation of a fatigue assessment scale for U.S. construction workers.

    PubMed

    Zhang, Mingzong; Sparer, Emily H; Murphy, Lauren A; Dennerlein, Jack T; Fang, Dongping; Katz, Jeffrey N; Caban-Martinez, Alberto J

    2015-02-01

    To develop a fatigue assessment scale and test its reliability and validity for commercial construction workers. Using a two-phased approach, we first identified items (first phase) for the development of a Fatigue Assessment Scale for Construction Workers (FASCW) through review of existing scales in the scientific literature, key informant interviews (n = 11) and focus groups (three groups with six workers each) with construction workers. The second phase included assessment for the reliability, validity, and sensitivity of the new scale using a repeated-measures study design with a convenience sample of construction workers (n = 144). Phase one resulted in a 16-item preliminary scale that after factor analysis yielded a final 10-item scale with two sub-scales ("Lethargy" and "Bodily Ailment"). During phase two, the FASCW and its subscales demonstrated satisfactory internal consistency (alpha coefficients were FASCW [0.91], Lethargy [0.86] and Bodily Ailment [0.84]) and acceptable test-retest reliability (Pearson Correlations Coefficients: 0.59-0.68; Intraclass Correlation Coefficients: 0.74-0.80). Correlation analysis substantiated concurrent and convergent validity. A discriminant analysis demonstrated that the FASCW differentiated between groups with arthritis status and different work hours. The 10-item FASCW with good reliability and validity is an effective tool for assessing the severity of fatigue among construction workers. © 2015 Wiley Periodicals, Inc.

  13. Development and Validation of a Fatigue Assessment Scale for U.S. Construction Workers

    PubMed Central

    Zhang, Mingzong; Sparer, Emily H.; Murphy, Lauren A.; Dennerlein, Jack T.; Fang, Dongping; Katz, Jeffrey N.; Caban-Martinez, Alberto J.

    2015-01-01

    Objective To develop a fatigue assessment scale and test its reliability and validity for commercial construction workers. Methods Using a two-phased approach, we first identified items for the development of a Fatigue Assessment Scale for Construction Workers (FASCW) through review of existing scales in the scientific literature, key informant interviews (n=11) and focus groups (3 groups with 6 workers each) with construction workers. The second phase included assessment for the reliability, validity and sensitivity of the new scale using a repeated-measures study design with a convenience sample of construction workers (n=144). Results Phase one resulted in a 16-item preliminary scale that after factor analysis yielded a final 10-item scale with two sub-scales (“Lethargy” and “Bodily Ailment”).. During phase two, the FASCW and its subscales demonstrated satisfactory internal consistency (alpha coefficients were FASCW (0.91), Lethargy (0.86) and Bodily Ailment (0.84)) and acceptable test-retest reliability (Pearson Correlations Coefficients: 0.59–0.68; Intraclass Correlation Coefficients: 0.74–0.80). Correlation analysis substantiated concurrent and convergent validity. A discriminant analysis demonstrated that the FASCW differentiated between groups with arthritis status and different work hours. Conclusions The 10-item FASCW with good reliability and validity is an effective tool for assessing the severity of fatigue among construction workers. PMID:25603944

  14. Can the Fatigue Severity Scale 7-item version be used across different patient populations as a generic fatigue measure - a comparative study using a Rasch model approach

    PubMed Central

    2014-01-01

    Background Fatigue is a disabling symptom associated with reduced quality of life in various populations living with chronic illnesses. The transfer of knowledge about fatigue from one group to another is crucial in both research and healthcare. Outcomes should be validly and reliably comparable between groups and should not be unduly influenced by diagnostic variations. The present study evaluates whether the Fatigue Severity Scale 7-item version (FSS-7) demonstrates similar item hierarchy across people with multiple sclerosis, stroke or HIV/AIDS to ensure valid comparisons between groups, and provide further evidence of internal scale validity. Methods A secondary comparative analysis was performed using data from three different studies of three different chronic illnesses: multiple sclerosis, stroke and HIV/AIDS. Each of these studies had previously concluded that the FSS-7 has better psychometric properties than the original FSS for measuring fatigue interference. Data from 224 people with multiple sclerosis, 104 people with stroke and 316 people with HIV/AIDS were examined. Item response theory and a Rasch model were chosen to analyze the similarity of the FSS-7 item hierarchy across the three diagnostic groups Results Cross-sample differences were found for items #3, #5, #6 and #9 for two of the three samples, which raise questions about item validity across groups. However, disease-specific and disease-generic Rasch measures were similar across samples, indicating that individual fatigue interference measures in these three chronic illnesses might still be reliably comparable using the FSS-7. Conclusions Some items performed differently between the three samples but did not bias person measures, thereby indicating that fatigue interference in these illnesses might still be reliably compared using FSS-7 scores. However, caution is warranted when comparing fatigue raw sum scores directly across diagnostic groups using the FSS-7. Further studies of the scale

  15. Characterization and Modeling of Asphalt Binder Fatigue

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz

    Fatigue cracking is a primary distress in asphalt pavements caused by the accumulation of damage under repeated traffic loading. Many factors influence fatigue damage in pavements, including pavement structure, environmental conditions, and asphalt mixture volumetric properties. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design. A comprehensive understanding and prediction of asphalt binder fatigue performance require a suitable experiment coupled with a model to predict how the binder will perform under various traffic, temperature, and structural conditions encountered in the field. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. Although the literature shows promise for applying VECD modeling to asphalt binder fatigue, the past efforts have several shortcomings. It has been demonstrated that flow and adhesion loss can impede DSR fatigue test results. Thus, definition of test conditions (e.g., temperature) where cyclic DSR tests are appropriate for fatigue characterization of binders is necessary. In addition, the applicability of the model to predict fatigue performance under varying loading and thermal history has not been rigorously evaluated. Furthermore, the effects of material nonlinearity have been largely neglected in past modeling efforts for simplicity. In addition, past efforts have employed the parallel plate DSR geometry for the fatigue characterization of asphalt binders. In the parallel plate geometry, the strain depends on the radial distance from the specimen center. Therefore, the material will fail at different rates as a function of

  16. Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures

    NASA Astrophysics Data System (ADS)

    Tahir, Fraaz

    imaging analysis showed that the microstructural damage features (cracks and voids) are correlated with a new mechanical driving force parameter. The results from this image-based damage analysis were used to develop a phenomenological life-prediction methodology called the effective time fraction approach. Finally, the constitutive creep-fatigue response of the material at 950°C was modeled using a unified viscoplastic model coupled with a damage accumulation model. The simulation results were used to validate an energy-based constitutive life-prediction model, as a mechanistic model for potential component and structure level creep-fatigue analysis.

  17. Construct validity of the Swedish version of the revised piper fatigue scale in an oncology sample--a Rasch analysis.

    PubMed

    Lundgren-Nilsson, Asa; Dencker, Anna; Jakobsson, Sofie; Taft, Charles; Tennant, Alan

    2014-06-01

    Fatigue is a common and distressing symptom in cancer patients due to both the disease and its treatments. The concept of fatigue is multidimensional and includes both physical and mental components. The 22-item Revised Piper Fatigue Scale (RPFS) is a multidimensional instrument developed to assess cancer-related fatigue. This study reports on the construct validity of the Swedish version of the RPFS from the perspective of Rasch measurement. The Swedish version of the RPFS was answered by 196 cancer patients fatigued after 4 to 5 weeks of curative radiation therapy. Data from the scale were fitted to the Rasch measurement model. This involved testing a series of assumptions, including the stochastic ordering of items, local response dependency, and unidimensionality. A series of fit statistics were computed, differential item functioning (DIF) was tested, and local response dependency was accommodated through testlets. The Behavioral, Affective and Sensory domains all satisfied the Rasch model expectations. No DIF was observed, and all domains were found to be unidimensional. The Mood/Cognitive scale failed to fit the model, and substantial multidimensionality was found. Splitting the scale between Mood and Cognitive items resolved fit to the Rasch model, and new domains were unidimensional without DIF. The current Rasch analyses add to the evidence of measurement properties of the scale and show that the RPFS has good psychometric properties and works well to measure fatigue. The original four-factor structure, however, was not supported. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  18. Qualitative Research on Fatigue Associated with Depression: Content Validity of the Fatigue Associated with Depression Questionnaire (FAsD-V2).

    PubMed

    Matza, Louis S; Murray, Lindsey T; Phillips, Glenn A; Konechnik, Thomas J; Dennehy, Ellen B; Bush, Elizabeth N; Revicki, Dennis A

    2015-10-01

    Fatigue is one of the most common symptoms of major depressive disorder (MDD). The Fatigue Associated with Depression Questionnaire (FAsD) was developed to assess fatigue and its impact in patients with MDD. The current article presents the qualitative research conducted to develop and examine the content validity of the FAsD and FASD-Version 2 (FAsD-V2). Three phases of qualitative research were conducted with patients recruited from a geographically diverse range of clinics in the US. Phase I included concept elicitation focus groups, followed by cognitive interviews. Phase II employed similar techniques in a more targeted sample. Phase III included cognitive interviews to examine whether minor edits made after Phase II altered comprehensibility of the instrument. Concept elicitation focused on patients' perceptions of fatigue and its impact. Cognitive interviews focused on comprehension, clarity, relevance, and comprehensiveness of the instrument. Data were collected using semi-structured discussion guides. Thematic analyses were conducted and saturation was examined. A total of 98 patients with MDD were included. Patients' statements during concept elicitation in phases I and II supported item development and content. Cognitive interviews supported the relevance of the instrument in the target population, and patients consistently demonstrated a good understanding of the instructions, items, response options, and recall period. Minor changes to instructions for the FAsD-V2 did not affect interpretation of the instrument. This qualitative research supports the content validity of the FAsD and FAsD-V2. These results add to previous quantitative psychometric analysis suggesting the FAsD-V2 is a useful tool for assessing fatigue and its impact in patients with MDD.

  19. Measurement of fatigue: Comparison of the reliability and validity of single-item and short measures to a comprehensive measure.

    PubMed

    Kim, Hee-Ju; Abraham, Ivo

    2017-01-01

    Evidence is needed on the clinicometric properties of single-item or short measures as alternatives to comprehensive measures. We examined whether two single-item fatigue measures (i.e., Likert scale, numeric rating scale) or a short fatigue measure were comparable to a comprehensive measure in reliability (i.e., internal consistency and test-retest reliability) and validity (i.e., convergent, concurrent, and predictive validity) in Korean young adults. For this quantitative study, we selected the Functional Assessment of Chronic Illness Therapy-Fatigue for the comprehensive measure and the Profile of Mood States-Brief, Fatigue subscale for the short measure; and constructed two single-item measures. A total of 368 students from four nursing colleges in South Korea participated. We used Cronbach's alpha and item-total correlation for internal consistency reliability and intraclass correlation coefficient for test-retest reliability. We assessed Pearson's correlation with a comprehensive measure for convergent validity, with perceived stress level and sleep quality for concurrent validity and the receiver operating characteristic curve for predictive validity. The short measure was comparable to the comprehensive measure in internal consistency reliability (Cronbach's alpha=0.81 vs. 0.88); test-retest reliability (intraclass correlation coefficient=0.66 vs. 0.61); convergent validity (r with comprehensive measure=0.79); concurrent validity (r with perceived stress=0.55, r with sleep quality=0.39) and predictive validity (area under curve=0.88). Single-item measures were not comparable to the comprehensive measure. A short fatigue measure exhibited similar levels of reliability and validity to the comprehensive measure in Korean young adults. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Differential continuum damage mechanics models for creep and fatigue of unidirectional metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Kruch, S.

    1991-01-01

    Three multiaxial isothermal continuum damage mechanics models for creep, fatigue, and creep/fatigue interaction of a unidirectional metal matrix composite volume element are presented, only one of which will be discussed in depth. Each model is phenomenological and stress based, with varying degrees of complexity to accurately predict the initiation and propagation of intergranular and transgranular defects over a wide range of loading conditions. The development of these models is founded on the definition of an initially transversely isotropic fatigue limit surface, static fracture surface, normalized stress amplitude function and isochronous creep damage failure surface, from which both fatigue and creep damage evolutionary laws can be obtained. The anisotropy of each model is defined through physically meaningful invariants reflecting the local stress and material orientation. All three transversely isotropic models have been shown, when taken to their isotropic limit, to directly simplify to previously developed and validated creep and fatigue continuum damage theories. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation when attempting to characterize a large class of composite materials, and (2) its ability to predict anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Additionally, the potential for the inclusion of various micromechanical effects (e.g., fiber/matrix bond strength, fiber volume fraction, etc.), into the phenomenological anisotropic parameters is noted, as well as a detailed discussion regarding the necessary exploratory and characterization experiments needed to utilize the featured damage theories.

  1. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades.

    PubMed

    Zhu, Shun-Peng; Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-06-26

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner's rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  2. The PedsQL Multidimensional Fatigue Scale in young adults: feasibility, reliability and validity in a University student population.

    PubMed

    Varni, James W; Limbers, Christine A

    2008-02-01

    The PedsQL (Pediatric Quality of Life Inventory) is a modular instrument designed to measure health-related quality of life (HRQOL) and disease-specific symptoms in children and adolescents ages 2-18. The PedsQL Multidimensional Fatigue Scale was designed as a generic symptom-specific instrument to measure fatigue in pediatric patients ages 2-18. Since a sizeable number of pediatric patients prefer to remain with their pediatric providers after age 18, the objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in young adults. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains), the PedsQL 4.0 Generic Core Scales Young Adult Version, and the SF-8 Health Survey were completed by 423 university students ages 18-25. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses, achieved excellent reliability for the Total Scale Score (alpha = 0.90), distinguished between healthy young adults and young adults with chronic health conditions, was significantly correlated with the relevant PedsQL 4.0 Generic Core Scales and the SF-8 standardized scores, and demonstrated a factor-derived structure largely consistent with the a priori conceptual model. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in a convenience sample of young adult university students. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the evaluation of fatigue for a broad age range.

  3. Probabilistic Mesomechanical Fatigue Model

    NASA Technical Reports Server (NTRS)

    Tryon, Robert G.

    1997-01-01

    A probabilistic mesomechanical fatigue life model is proposed to link the microstructural material heterogeneities to the statistical scatter in the macrostructural response. The macrostructure is modeled as an ensemble of microelements. Cracks nucleation within the microelements and grow from the microelements to final fracture. Variations of the microelement properties are defined using statistical parameters. A micromechanical slip band decohesion model is used to determine the crack nucleation life and size. A crack tip opening displacement model is used to determine the small crack growth life and size. Paris law is used to determine the long crack growth life. The models are combined in a Monte Carlo simulation to determine the statistical distribution of total fatigue life for the macrostructure. The modeled response is compared to trends in experimental observations from the literature.

  4. A model of rotationally-sampled wind turbulence for predicting fatigue loads in wind turbines

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1995-01-01

    Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.

  5. A validity and reliability study of the Turkish Multidimensional Assessment of Fatigue (MAF) scale in chronic musculoskeletal physical therapy patients.

    PubMed

    Yildirim, Yücel; Ergin, Gülbin

    2013-01-01

    Fatigue is primarily a subjective experience and self-report is the most common approach used to measure fatigue. Numerous self-report instruments have been developed to measure fatigue. Unfortunately, each of these measures was tailored for the situation in which fatigue was studied. Therefore, the aim of this study was to determine the reliability and validity of the Turkish language version of the Multidimensional Assessment of Fatigue Scale (MAF-T) in chronic musculoskeletal physical therapy patients. The MAF-T was supplied by the MAPI Research Institute, and 69 chronic musculoskeletal physical therapy patients were evaluated. To validate MAF-T, all participants completed the MAF-T and Short Form-36 (SF-36). The MAF was administered again one week later to assess test-retest reliability. Using Cronbach α, the internal consistency reliability of the MAF-T was 0.90, the Intraclass Correlation Coefficient (ICC) reliability was 0.96. Item-discriminant validity was calculated between r=0.14 and r=0.82. The correlations between the total scores of the MAF-T scale and the subscale scores of SF-36 were negative and significant (p< 0.01). The MAF-T is a valid and reliable scale for assessing fatigue in chronic musculoskeletal physical therapy patients.

  6. A motor unit-based model of muscle fatigue

    PubMed Central

    2017-01-01

    Muscle fatigue is a temporary decline in the force and power capacity of skeletal muscle resulting from muscle activity. Because control of muscle is realized at the level of the motor unit (MU), it seems important to consider the physiological properties of motor units when attempting to understand and predict muscle fatigue. Therefore, we developed a phenomenological model of motor unit fatigue as a tractable means to predict muscle fatigue for a variety of tasks and to illustrate the individual contractile responses of MUs whose collective action determines the trajectory of changes in muscle force capacity during prolonged activity. An existing MU population model was used to simulate MU firing rates and isometric muscle forces and, to that model, we added fatigue-related changes in MU force, contraction time, and firing rate associated with sustained voluntary contractions. The model accurately estimated endurance times for sustained isometric contractions across a wide range of target levels. In addition, simulations were run for situations that have little experimental precedent to demonstrate the potential utility of the model to predict motor unit fatigue for more complicated, real-world applications. Moreover, the model provided insight into the complex orchestration of MU force contributions during fatigue, that would be unattainable with current experimental approaches. PMID:28574981

  7. Discrete Dislocation Modeling of Fatigue

    NASA Astrophysics Data System (ADS)

    Needleman, Alan

    2004-03-01

    In joint work with V.S. Deshpande of Cambridge University and E. Van der Giessen of the University of Groningen a framework has been developed for the analysis of crack growth under cyclic loading conditions where plastic flow arises from the motion of large numbers of discrete dislocations and the fracture properties are embedded in a cohesive surface constitutive relation. The material model is independent of the presence of a crack and the only distinction between an analysis of monotonic crack growth and fatigue crack growth is that in fatigue the remote loading is specified to be an oscillating function of time. Thus, a basic question is: within this framework, do cracks grow at a lower driving force under cyclic loading than under monotonic loading, and if so, what features of fatigue crack growth emerge? Fatigue does emerge from the calculations as a consequence of the evolution of internal stresses associated with the irreversibility of the dislocation motion. A fatigue threshold, Paris law behavior, striations and the accelerated growth of short cracks are outcomes of the simulations. Also, scaling predictions obtained for the fatigue threshold and the fatigue crack growth rate are discussed.

  8. A Model of Fatigue Following Traumatic Brain Injury.

    PubMed

    Ponsford, Jennie; Schönberger, Michael; Rajaratnam, Shantha M W

    2015-01-01

    Fatigue is one of the most frequent sequelae of traumatic brain injury (TBI), although its causes are poorly understood. This study investigated the interrelationships between fatigue and sleepiness, vigilance performance, depression, and anxiety, using a structural equation modeling approach. Seventy-two participants with moderate to severe TBI (78% males) were recruited a median of 305 days postinjury. They completed the Fatigue Severity Scale, a vigilance task, the Epworth Sleepiness Scale, and Hospital Anxiety and Depression Scale. A model of the interrelationships between the study variables was developed, tested, and modified with path analysis. The modified model had a good overall fit (χ2 = 1.3, P = .54; comparative fit index = 1.0; root-mean square error of approximation = 0.0; standardized root-mean square residual = 0.02). Most paths in this model were significant (P < .05). Fatigue predicted anxiety, depression, and daytime sleepiness. Depression predicted daytime sleepiness and poor vigilance, whereas anxiety tended to predict reduced daytime sleepiness. This model confirms the complexity of fatigue experience. It supports the hypothesis that fatigue after TBI is a cause, not a consequence, of anxiety, depression, and daytime sleepiness, which, in turn (especially depression), may exacerbate fatigue by affecting cognitive functioning. These findings suggest that to alleviate fatigue, it is important to address each of these factors. However, the findings need to be confirmed with a longitudinal research design.

  9. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades

    PubMed Central

    Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-01-01

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors. PMID:28773064

  10. Study on Standard Fatigue Vehicle Load Model

    NASA Astrophysics Data System (ADS)

    Huang, H. Y.; Zhang, J. P.; Li, Y. H.

    2018-02-01

    Based on the measured data of truck from three artery expressways in Guangdong Province, the statistical analysis of truck weight was conducted according to axle number. The standard fatigue vehicle model applied to industrial areas in the middle and late was obtained, which adopted equivalence damage principle, Miner linear accumulation law, water discharge method and damage ratio theory. Compared with the fatigue vehicle model Specified by the current bridge design code, the proposed model has better applicability. It is of certain reference value for the fatigue design of bridge in China.

  11. Validation of Analytical Damping Ratio by Fatigue Stress Limit

    NASA Astrophysics Data System (ADS)

    Foong, Faruq Muhammad; Chung Ket, Thein; Beng Lee, Ooi; Aziz, Abdul Rashid Abdul

    2018-03-01

    The optimisation process of a vibration energy harvester is usually restricted to experimental approaches due to the lack of an analytical equation to describe the damping of a system. This study derives an analytical equation, which describes the first mode damping ratio of a clamp-free cantilever beam under harmonic base excitation by combining the transverse equation of motion of the beam with the damping-stress equation. This equation, as opposed to other common damping determination methods, is independent of experimental inputs or finite element simulations and can be solved using a simple iterative convergence method. The derived equation was determined to be correct for cases when the maximum bending stress in the beam is below the fatigue limit stress of the beam. However, an increasing trend in the error between the experiment and the analytical results were observed at high stress levels. Hence, the fatigue limit stress was used as a parameter to define the validity of the analytical equation.

  12. A new simple local muscle recovery model and its theoretical and experimental validation.

    PubMed

    Ma, Liang; Zhang, Wei; Wu, Su; Zhang, Zhanwu

    2015-01-01

    This study was conducted to provide theoretical and experimental validation of a local muscle recovery model. Muscle recovery has been modeled in different empirical and theoretical approaches to determine work-rest allowance for musculoskeletal disorder (MSD) prevention. However, time-related parameters and individual attributes have not been sufficiently considered in conventional approaches. A new muscle recovery model was proposed by integrating time-related task parameters and individual attributes. Theoretically, this muscle recovery model was compared to other theoretical models mathematically. Experimentally, a total of 20 subjects participated in the experimental validation. Hand grip force recovery and shoulder joint strength recovery were measured after a fatiguing operation. The recovery profile was fitted by using the recovery model, and individual recovery rates were calculated as well after fitting. Good fitting values (r(2) > .8) were found for all the subjects. Significant differences in recovery rates were found among different muscle groups (p < .05). The theoretical muscle recovery model was primarily validated by characterization of the recovery process after fatiguing operation. The determined recovery rate may be useful to represent individual recovery attribute.

  13. Fatigue of Chinese railway employees and its influential factors: Structural equation modelling.

    PubMed

    Tsao, Liuxing; Chang, Jing; Ma, Liang

    2017-07-01

    Fatigue is an identifiable and preventable cause of accidents in transport operations. Regarding the railway sector, incident logs and simulation studies show that employee fatigue leads to lack of alertness, impaired performance, and occurrence of incidents. China has one of the largest rail systems in the world, and Chinese railway employees work under high fatigue risks; therefore, it is important to assess their fatigue level and find the major factors leading to fatigue. We designed a questionnaire that uses Multidimensional Fatigue Instrument (MFI-20), NASA-TLX and subjective rating of work overtime feelings to assess employee fatigue. The contribution of each influential factor of fatigue was analysed using structural equation modelling. In total, 297 employees from the rail maintenance department and 227 employees from the locomotive department returned valid responses. The average scores and standard deviations for the five subscales of MFI-20, namely General Fatigue, Physical Fatigue, Reduced Activity, Reduced Motivation, and Mental Fatigue, were 2.9 (0.8), 2.8 (0.8), 2.5 (0.8), 2.5 (0.7), and 2.4 (0.8) among the rail maintenance employees and 3.5 (0.8), 3.5 (0.7), 3.3 (0.7), 3.0 (0.6), and 3.1 (0.7), respectively, among the locomotive employees. The fatigue of the locomotive employees was influenced by feelings related to working overtime (standardized r = 0.22) and workload (standardized r = 0.27). The work overtime control and physical working environment significantly influenced subjective feelings (standardized r = -0.25 and 0.47, respectively), while improper work/rest rhythms and an adverse physical working environment significantly increased the workload (standardized r = 0.48 and 0.33, respectively). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Construction and validation of the fatigue impact and severity self-assessment for youth and young adults with cerebral palsy.

    PubMed

    Brunton, Laura K; Bartlett, Doreen J

    2017-07-01

    The Fatigue Impact and Severity Self-Assessment (FISSA) was created to assess the impact, severity, and self-management of fatigue for individuals with cerebral palsy (CP) aged 14-31 years. Items were generated from a review of measures and interviews with individuals with CP. Focus groups with health-care professionals were used for item reduction. A mailed survey was conducted (n=163/367) to assess the factor structure, known-groups validity, and test-retest reliability. The final measure contained 31 items in two factors and discriminated between individuals expected to have different levels of fatigue. Individuals with more functional abilities reported less fatigue (p < 0.002) and those with higher pain reported higher fatigue (p < 0.001). The FISSA was shown to have adequate test-retest reliability, intraclass correlation coefficient (ICC)(3,1)=0.74 (95% confidence interval [CI] 0.53-0.87). The FISSA valid and reliable for individuals with CP. It allows for identification of the activities that may be compromised by fatigue to enhance collaborative goal setting and intervention planning.

  15. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1988-01-01

    A major objective of the fatigue and fracture efforts under the Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  16. Compassion Fatigue and Psychological Distress Among Social Workers: A Validation Study

    PubMed Central

    Adams, Richard E.; Boscarino, Joseph A.; Figley, Charles R.

    2009-01-01

    Few studies have focused on caring professionals and their emotional exhaustion from working with traumatized clients, referred to as compassion fatigue (CF). The present study had 2 goals: (a) to assess the psychometric properties of a CF scale, and (b) to examine the scale's predictive validity in a multivariate model. The data came from a survey of social workers living in New York City following the September 11, 2001, terrorist attacks on the World Trade Center. Factor analyses indicated that the CF scale measured multiple dimensions. After overlapping items were eliminated, the scale measured 2 key underlying dimensions—secondary trauma and job burnout. In a multivariate model, these dimensions were related to psychological distress, even after other risk factors were controlled. The authors discuss the results in light of increasing the ability of professional caregivers to meet the emotional needs of their clients within a stressful environment without experiencing CF. PMID:16569133

  17. Fatigue models for applied research in warfighting.

    PubMed

    Hursh, Steven R; Redmond, Daniel P; Johnson, Michael L; Thorne, David R; Belenky, Gregory; Balkin, Thomas J; Storm, William F; Miller, James C; Eddy, Douglas R

    2004-03-01

    The U.S. Department of Defense (DOD) has long pursued applied research concerning fatigue in sustained and continuous military operations. In 1996, Hursh developed a simple homeostatic fatigue model and programmed the model into an actigraph to give a continuous indication of performance. Based on this initial work, the Army conducted a study of 1 wk of restricted sleep in 66 subjects with multiple measures of performance, termed the Sleep Dose-Response Study (SDR). This study provided numerical estimation of parameters for the Walter Reed Army Institute of Research Sleep Performance Model (SPM) and elucidated the relationships among several sleep-related performance measures. Concurrently, Hursh extended the original actigraph modeling structure and software expressions for use in other practical applications. The model became known as the Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE) Model, and Hursh has applied it in the construction of a Fatigue Avoidance Scheduling Tool. This software is designed to help optimize the operational management of aviation ground and flight crews, but is not limited to that application. This paper describes the working fatigue model as it is being developed by the DOD laboratories, using the conceptual framework, vernacular, and notation of the SAFTE Model. At specific points where the SPM may differ from SAFTE, this is discussed. Extensions of the SAFTE Model to incorporate dynamic phase adjustment for both transmeridian relocation and shift work are described. The unexpected persistence of performance effects following chronic sleep restriction found in the SDR study necessitated some revisions of the SAFTE Model that are also described. The paper concludes with a discussion of several important modeling issues that remain to be addressed.

  18. The reliability and validity of fatigue measures during multiple-sprint work: an issue revisited.

    PubMed

    Glaister, Mark; Howatson, Glyn; Pattison, John R; McInnes, Gill

    2008-09-01

    The ability to repeatedly produce a high-power output or sprint speed is a key fitness component of most field and court sports. The aim of this study was to evaluate the validity and reliability of eight different approaches to quantify this parameter in tests of multiple-sprint performance. Ten physically active men completed two trials of each of two multiple-sprint running protocols with contrasting recovery periods. Protocol 1 consisted of 12 x 30-m sprints repeated every 35 seconds; protocol 2 consisted of 12 x 30-m sprints repeated every 65 seconds. All testing was performed in an indoor sports facility, and sprint times were recorded using twin-beam photocells. All but one of the formulae showed good construct validity, as evidenced by similar within-protocol fatigue scores. However, the assumptions on which many of the formulae were based, combined with poor or inconsistent test-retest reliability (coefficient of variation range: 0.8-145.7%; intraclass correlation coefficient range: 0.09-0.75), suggested many problems regarding logical validity. In line with previous research, the results support the percentage decrement calculation as the most valid and reliable method of quantifying fatigue in tests of multiple-sprint performance.

  19. Reliability and Validity of the Korean Version of the Multidimensional Fatigue Inventory (MFI-20): A Multicenter, Cross-Sectional Study.

    PubMed

    Song, Sang-Wook; Kang, Sung-Goo; Kim, Kyung-Soo; Kim, Moon-Jong; Kim, Kwang-Min; Cho, Doo-Yeoun; Kim, Young-Sang; Joo, Nam-Seok; Kim, Kyu-Nam

    2018-01-01

    A nonspecific symptom, fatigue accompanies a variety of diseases, including cancer, and can have a grave impact on patients' quality of life. As for multidimensional instruments, one of the most widely used is the Multidimensional Fatigue Inventory (MFI). This study aims to verify the reliability and validity of the MFI Korean (MFI-K) version. This study was performed at four university hospitals in the Republic of Korea. Among outpatients visiting the Department of Family Medicine, those complaining of fatigue or visiting a chronic care clinic were enrolled in this study. A total of 595 participants were included, and the mean age was 42.2 years. The Cronbach's alpha coefficient of the MFI-K was 0.88. The MFI-K had good convergent validity. Most subscales of the MFI-K were significantly correlated with the Visual Analogue Scale (VAS) and Fatigue Severity Scale (FSS). In particular, general and physical fatigue had the greatest correlation with the VAS and FSS. Although the English version of MFI had five subscales, the factor analysis led to four subscales in the Korean version. This study demonstrated the clinical usefulness of MFI-K instrument, particularly in assessing the degree of fatigue and performing a multidimensional assessment of fatigue.

  20. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1989-01-01

    A major objective of the fatigue and fracture efforts under the NASA Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  1. Predicting non-isometric fatigue induced by electrical stimulation pulse trains as a function of pulse duration

    PubMed Central

    2013-01-01

    Background Our previous model of the non-isometric muscle fatigue that occurs during repetitive functional electrical stimulation included models of force, motion, and fatigue and accounted for applied load but not stimulation pulse duration. Our objectives were to: 1) further develop, 2) validate, and 3) present outcome measures for a non-isometric fatigue model that can predict the effect of a range of pulse durations on muscle fatigue. Methods A computer-controlled stimulator sent electrical pulses to electrodes on the thighs of 25 able-bodied human subjects. Isometric and non-isometric non-fatiguing and fatiguing knee torques and/or angles were measured. Pulse duration (170–600 μs) was the independent variable. Measurements were divided into parameter identification and model validation subsets. Results The fatigue model was simplified by removing two of three non-isometric parameters. The third remained a function of other model parameters. Between 66% and 77% of the variability in the angle measurements was explained by the new model. Conclusion Muscle fatigue in response to different stimulation pulse durations can be predicted during non-isometric repetitive contractions. PMID:23374142

  2. Stuy on Fatigue Life of Aluminum Alloy Considering Fretting

    NASA Astrophysics Data System (ADS)

    Yang, Maosheng; Zhao, Hongqiang; Wang, Yunxiang; Chen, Xiaofei; Fan, Jiali

    2018-01-01

    To study the influence of fretting on Aluminum Alloy, a global finite element model considering fretting was performed using the commercial code ABAQUS. With which a new model for predicting fretting fatigue life has been presented based on friction work. The rationality and effectiveness of the model were validated according to the contrast of experiment life and predicting life. At last influence factor on fretting fatigue life of aerial aluminum alloy was investigated with the model. The results revealed that fretting fatigue life decreased monotonously with the increasing of normal load and then became constant at higher pressures. At low normal load, fretting fatigue life was found to increase with increase in the pad radius. At high normal load, however, the fretting fatigue life remained almost unchanged with changes in the fretting pad radius. The bulk stress amplitude had the dominant effect on fretting fatigue life. The fretting fatigue life diminished as the bulk stress amplitude increased.

  3. Computational Modeling to Predict Fatigue Behavior of NiTi Stents: What Do We Need?

    PubMed Central

    Dordoni, Elena; Petrini, Lorenza; Wu, Wei; Migliavacca, Francesco; Dubini, Gabriele; Pennati, Giancarlo

    2015-01-01

    NiTi (nickel-titanium) stents are nowadays commonly used for the percutaneous treatment of peripheral arterial disease. However, their effectiveness is still debated in the clinical field. In fact a peculiar cyclic biomechanical environment is created before and after stent implantation, with the risk of device fatigue failure. An accurate study of the device fatigue behavior is of primary importance to ensure a successful stenting procedure. Regulatory authorities recognize the possibility of performing computational analyses instead of experimental tests for the assessment of medical devices. However, confidence in numerical methods is only possible after verification and validation of the models used. For the case of NiTi stents, mechanical properties are strongly dependent on the device dimensions and the whole treatments undergone during manufacturing process. Hence, special attention should be paid to the accuracy of the description of the device geometry and the material properties implementation into the numerical code, as well as to the definition of the fatigue limit. In this paper, a path for setting up an effective numerical model for NiTi stent fatigue assessment is proposed and the results of its application in a specific case study are illustrated. PMID:26011245

  4. Is the Sørensen test valid to assess muscle fatigue of the trunk extensor muscles?

    PubMed

    Demoulin, Christophe; Boyer, Mathieu; Duchateau, Jacques; Grosdent, Stéphanie; Jidovtseff, Boris; Crielaard, Jean-Michel; Vanderthommen, Marc

    2016-01-01

    Very few studies have quantified the degree of fatigue characterized by the decline in the maximal voluntary contraction (MVC) force of the trunk extensors induced by the widely used Sørensen test. Measure the degree of fatigue of the trunk extensor muscles induced by the Sørensen test. Eighty young healthy subjects were randomly divided into a control group (CG) and an experimental group (EG), each including 50% of the two genders. The EG performed an isometric MVC of the trunk extensors (pre-fatigue test) followed by the Sørensen test, the latter being immediately followed by another MVC (post-fatigue test). The CG performed only the pre- and post-fatigue tests without any exertion in between. The comparison of the pre- and post-fatigue tests revealed a significant (P< 0.05) decrease in MVC force normalized by body mass (-13%) in the EG, whereas a small increase occurred in the CG (+2.7%, P= 0.001). This study shows that the Sørensen test performed until failure in a young healthy population results in a reduced ability of the trunk extensor muscles to generate maximal force, and indicates that this test is valid for the assessment of fatigue in trunk extensor muscles.

  5. Model-based analysis of fatigued human knee extensors : Effects of isometrically induced fatigue on Hill-type model parameters and ballistic contractions.

    PubMed

    Penasso, Harald; Thaller, Sigrid

    2018-05-05

    This study investigated the effect of isometrically induced fatigue on Hill-type muscle model parameters and related task-dependent effects. Parameter identification methods were used to extract fatigue-related parameter trends from isometric and ballistic dynamic maximum voluntary knee extensions. Nine subjects, who completed ten fatiguing sets, each consisting of nine 3 s isometric maximum voluntary contractions with 3 s rest plus two ballistic contractions with different loads, were analyzed. Only at the isometric task, the identified optimized model parameter values of muscle activation rate and maximum force generating capacity of the contractile element decreased from [Formula: see text] to [Formula: see text] Hz and from [Formula: see text] to [Formula: see text] N, respectively. For all tasks, the maximum efficiency of the contractile element, mathematically related to the curvature of the force-velocity relation, increased from [Formula: see text] to [Formula: see text]. The model parameter maximum contraction velocity decreased from [Formula: see text] to [Formula: see text] m/s and the stiffness of the serial elastic element from [Formula: see text] to [Formula: see text] N/mm. Thus, models of fatigue should consider fatigue dependencies in active as well as in passive elements, and muscle activation dynamics should account for the task dependency of fatigue.

  6. Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics

    NASA Astrophysics Data System (ADS)

    Li, C. James; Lee, Hyungdae

    2005-07-01

    This paper presents a model-based method that predicts remaining useful life of a gear with a fatigue crack. The method consists of an embedded model to identify gear meshing stiffness from measured gear torsional vibration, an inverse method to estimate crack size from the estimated meshing stiffness; a gear dynamic model to simulate gear meshing dynamics and determine the dynamic load on the cracked tooth; and a fast crack propagation model to forecast the remaining useful life based on the estimated crack size and dynamic load. The fast crack propagation model was established to avoid repeated calculations of FEM and facilitate field deployment of the proposed method. Experimental studies were conducted to validate and demonstrate the feasibility of the proposed method for prognosis of a cracked gear.

  7. Classifying post-stroke fatigue: Optimal cut-off on the Fatigue Assessment Scale.

    PubMed

    Cumming, Toby B; Mead, Gillian

    2017-12-01

    Post-stroke fatigue is common and has debilitating effects on independence and quality of life. The Fatigue Assessment Scale (FAS) is a valid screening tool for fatigue after stroke, but there is no established cut-off. We sought to identify the optimal cut-off for classifying post-stroke fatigue on the FAS. In retrospective analysis of two independent datasets (the '2015' and '2007' studies), we evaluated the predictive validity of FAS score against a case definition of fatigue (the criterion standard). Area under the curve (AUC) and sensitivity and specificity at the optimal cut-off were established in the larger 2015 dataset (n=126), and then independently validated in the 2007 dataset (n=52). In the 2015 dataset, AUC was 0.78 (95% CI 0.70-0.86), with the optimal ≥24 cut-off giving a sensitivity of 0.82 and specificity of 0.66. The 2007 dataset had an AUC of 0.83 (95% CI 0.71-0.94), and applying the ≥24 cut-off gave a sensitivity of 0.84 and specificity of 0.67. Post-hoc analysis of the 2015 dataset revealed that using only the 3 most predictive FAS items together ('FAS-3') also yielded good validity: AUC 0.81 (95% CI 0.73-0.89), with sensitivity of 0.83 and specificity of 0.75 at the optimal ≥8 cut-off. We propose ≥24 as a cut-off for classifying post-stroke fatigue on the FAS. While further validation work is needed, this is a positive step towards a coherent approach to reporting fatigue prevalence using the FAS. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Probabilistic Flexural Fatigue in Plain and Fiber-Reinforced Concrete

    PubMed Central

    Ríos, José D.

    2017-01-01

    The objective of this work is two-fold. First, we attempt to fit the experimental data on the flexural fatigue of plain and fiber-reinforced concrete with a probabilistic model (Saucedo, Yu, Medeiros, Zhang and Ruiz, Int. J. Fatigue, 2013, 48, 308–318). This model was validated for compressive fatigue at various loading frequencies, but not for flexural fatigue. Since the model is probabilistic, it is not necessarily related to the specific mechanism of fatigue damage, but rather generically explains the fatigue distribution in concrete (plain or reinforced with fibers) for damage under compression, tension or flexion. In this work, more than 100 series of flexural fatigue tests in the literature are fit with excellent results. Since the distribution of monotonic tests was not available in the majority of cases, a two-step procedure is established to estimate the model parameters based solely on fatigue tests. The coefficient of regression was more than 0.90 except for particular cases where not all tests were strictly performed under the same loading conditions, which confirms the applicability of the model to flexural fatigue data analysis. Moreover, the model parameters are closely related to fatigue performance, which demonstrates the predictive capacity of the model. For instance, the scale parameter is related to flexural strength, which improves with the addition of fibers. Similarly, fiber increases the scattering of fatigue life, which is reflected by the decreasing shape parameter. PMID:28773123

  9. Probabilistic Flexural Fatigue in Plain and Fiber-Reinforced Concrete.

    PubMed

    Ríos, José D; Cifuentes, Héctor; Yu, Rena C; Ruiz, Gonzalo

    2017-07-07

    The objective of this work is two-fold. First, we attempt to fit the experimental data on the flexural fatigue of plain and fiber-reinforced concrete with a probabilistic model (Saucedo, Yu, Medeiros, Zhang and Ruiz, Int. J. Fatigue, 2013, 48, 308-318). This model was validated for compressive fatigue at various loading frequencies, but not for flexural fatigue. Since the model is probabilistic, it is not necessarily related to the specific mechanism of fatigue damage, but rather generically explains the fatigue distribution in concrete (plain or reinforced with fibers) for damage under compression, tension or flexion. In this work, more than 100 series of flexural fatigue tests in the literature are fit with excellent results. Since the distribution of monotonic tests was not available in the majority of cases, a two-step procedure is established to estimate the model parameters based solely on fatigue tests. The coefficient of regression was more than 0.90 except for particular cases where not all tests were strictly performed under the same loading conditions, which confirms the applicability of the model to flexural fatigue data analysis. Moreover, the model parameters are closely related to fatigue performance, which demonstrates the predictive capacity of the model. For instance, the scale parameter is related to flexural strength, which improves with the addition of fibers. Similarly, fiber increases the scattering of fatigue life, which is reflected by the decreasing shape parameter.

  10. Factors associated with intern fatigue.

    PubMed

    Friesen, Lindsay D; Vidyarthi, Arpana R; Baron, Robert B; Katz, Patricia P

    2008-12-01

    Prior data suggest that fatigue adversely affects patient safety and resident well-being. ACGME duty hour limitations were intended, in part, to reduce resident fatigue, but the factors that affect intern fatigue are unknown. To identify factors associated with intern fatigue following implementation of duty hour limitations. Cross-sectional confidential survey of validated questions related to fatigue, sleep, and stress, as well as author-developed teamwork questions. Interns in cognitive specialties at the University of California, San Francisco. Univariate statistics characterized the distribution of responses. Pearson correlations elucidated bivariate relationships between fatigue and other variables. Multivariate linear regression models identified factors independently associated with fatigue, sleep, and stress. Of 111 eligible interns, 66 responded (59%). In a regression analysis including gender, hours worked in the previous week, sleep quality, perceived stress, and teamwork, only poorer quality of sleep and greater perceived stress were significantly associated with fatigue (p < 0.001 and p = 0.02, respectively). To identify factors that may affect sleep, specifically duty hours and stress, a secondary model was constructed. Only greater perceived stress was significantly associated with diminished sleep quality (p = 0.04), and only poorer teamwork was significantly associated with perceived stress (p < 0.001). Working >80 h was not significantly associated with perceived stress, quality of sleep, or fatigue. Simply decreasing the number of duty hours may be insufficient to reduce intern fatigue. Residency programs may need to incorporate programmatic changes to reduce stress, improve sleep quality, and foster teamwork in order to decrease intern fatigue and its deleterious consequences.

  11. Critical research issues in development of biomathematical models of fatigue and performance.

    PubMed

    Dinges, David F

    2004-03-01

    This article reviews the scientific research needed to ensure the continued development, validation, and operational transition of biomathematical models of fatigue and performance. These models originated from the need to ascertain the formal underlying relationships among sleep and circadian dynamics in the control of alertness and neurobehavioral performance capability. Priority should be given to research that further establishes their basic validity, including the accuracy of the core mathematical formulae and parameters that instantiate the interactions of sleep/wake and circadian processes. Since individuals can differ markedly and reliably in their responses to sleep loss and to countermeasures for it, models must incorporate estimates of these inter-individual differences, and research should identify predictors of them. To ensure models accurately predict recovery of function with sleep of varying durations, dose-response curves for recovery of performance as a function of prior sleep homeostatic load and the number of days of recovery are needed. It is also necessary to establish whether the accuracy of models is affected by using work/rest schedules as surrogates for sleep/wake inputs to models. Given the importance of light as both a circadian entraining agent and an alerting agent, research should determine the extent to which light input could incrementally improve model predictions of performance, especially in persons exposed to night work, jet lag, and prolonged work. Models seek to estimate behavioral capability and/or the relative risk of adverse events in a fatigued state. Research is needed on how best to scale and interpret metrics of behavioral capability, and incorporate factors that amplify or diminish the relationship between model predictions of performance and risk outcomes.

  12. Does Implementation of Biomathematical Models Mitigate Fatigue and Fatigue-related Risks in Emergency Medical Services Operations? A Systematic Review.

    PubMed

    James, Francine O; Waggoner, Lauren B; Weiss, Patricia M; Patterson, P Daniel; Higgins, J Stephen; Lang, Eddy S; Van Dongen, Hans P A

    2018-02-15

    Work schedules like those of Emergency Medical Services (EMS) personnel have been associated with increased risk of fatigue-related impairment. Biomathematical modeling is a means of objectively estimating the potential impacts of fatigue on performance, which may be used in the mitigation of fatigue-related safety risks. In the context of EMS operations, our objective was to assess the evidence in the literature regarding the effectiveness of using biomathematical models to help mitigate fatigue and fatigue-related risks. A systematic review of the evidence evaluating the use of biomathematical models to manage fatigue in EMS personnel or similar shift workers was performed. Procedures proposed by the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology were used to summarize and rate the certainty in the evidence. Potential bias attached to retained studies was documented using the Cochrane Collaboration's Risk of Bias tool for experimental studies. The literature search strategy, which focused on both EMS personnel and non-EMS shift workers, yielded n = 2,777 unique records. One paper, which investigated non-EMS shift workers, met inclusion criteria. As part of a larger effort, managers and dispatchers of a trucking operation were provided with monthly biomathematical model analyses of predicted fatigue in the driver workforce, and educated on how they could reduce predicted fatigue by means of schedule adjustments. The intervention showed a significant reduction in the number and cost of vehicular accidents during the period in which biomathematical modeling was used. The overall GRADE assessment of evidence quality was very low due to risk of bias, indirectness, imprecision, and publication bias. This systematic review identified no studies that investigated the impact of biomathematical models in EMS operations. Findings from one study of non-EMS shift workers were favorable toward use of biomathematical models as a fatigue

  13. High-strength bolt corrosion fatigue life model and application.

    PubMed

    Hui-li, Wang; Si-feng, Qin

    2014-01-01

    The corrosion fatigue performance of high-strength bolt was studied. Based on the fracture mechanics theory and the Gerberich-Chen formula, the high-strength bolt corrosion fracture crack model and the fatigue life model were established. The high-strength bolt crack depth and the fatigue life under corrosion environment were quantitatively analyzed. The factors affecting high-strength bolt corrosion fatigue life were discussed. The result showed that the high-strength bolt corrosion fracture biggest crack depth reduces along with the material yield strength and the applied stress increases. The material yield strength was the major factor. And the high-strength bolt corrosion fatigue life reduced along with the increase of material strength, the applied stress or stress amplitude. The stress amplitude influenced the most, and the material yield strength influenced the least. Low bolt strength and a low stress amplitude level could extend high-strength bolt corrosion fatigue life.

  14. Stereoscopic visual fatigue assessment and modeling

    NASA Astrophysics Data System (ADS)

    Wang, Danli; Wang, Tingting; Gong, Yue

    2014-03-01

    Evaluation of stereoscopic visual fatigue is one of the focuses in the user experience research. It is measured in either subjective or objective methods. Objective measures are more preferred for their capability to quantify the degree of human visual fatigue without being affected by individual variation. However, little research has been conducted on the integration of objective indicators, or the sensibility of each objective indicator in reflecting subjective fatigue. The paper proposes a simply effective method to evaluate visual fatigue more objectively. The stereoscopic viewing process is divided into series of sessions, after each of which viewers rate their visual fatigue with subjective scores (SS) according to a five-grading scale, followed by tests of the punctum maximum accommodation (PMA) and visual reaction time (VRT). Throughout the entire viewing process, their eye movements are recorded by an infrared camera. The pupil size (PS) and percentage of eyelid closure over the pupil over time (PERCLOS) are extracted from the videos processed by the algorithm. Based on the method, an experiment with 14 subjects was conducted to assess visual fatigue induced by 3D images on polarized 3D display. The experiment consisted of 10 sessions (5min per session), each containing the same 75 images displayed randomly. The results show that PMA, VRT and PERCLOS are the most efficient indicators of subjective visual fatigue and finally a predictive model is derived from the stepwise multiple regressions.

  15. Reliability and Validity of Survey Instruments to Measure Work-Related Fatigue in the Emergency Medical Services Setting: A Systematic Review.

    PubMed

    Patterson, P Daniel; Weaver, Matthew D; Fabio, Anthony; Teasley, Ellen M; Renn, Megan L; Curtis, Brett R; Matthews, Margaret E; Kroemer, Andrew J; Xun, Xiaoshuang; Bizhanova, Zhadyra; Weiss, Patricia M; Sequeira, Denisse J; Coppler, Patrick J; Lang, Eddy S; Higgins, J Stephen

    2018-02-15

    This study sought to systematically search the literature to identify reliable and valid survey instruments for fatigue measurement in the Emergency Medical Services (EMS) occupational setting. A systematic review study design was used and searched six databases, including one website. The research question guiding the search was developed a priori and registered with the PROSPERO database of systematic reviews: "Are there reliable and valid instruments for measuring fatigue among EMS personnel?" (2016:CRD42016040097). The primary outcome of interest was criterion-related validity. Important outcomes of interest included reliability (e.g., internal consistency), and indicators of sensitivity and specificity. Members of the research team independently screened records from the databases. Full-text articles were evaluated by adapting the Bolster and Rourke system for categorizing findings of systematic reviews, and the rated data abstracted from the body of literature as favorable, unfavorable, mixed/inconclusive, or no impact. The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology was used to evaluate the quality of evidence. The search strategy yielded 1,257 unique records. Thirty-four unique experimental and non-experimental studies were determined relevant following full-text review. Nineteen studies reported on the reliability and/or validity of ten different fatigue survey instruments. Eighteen different studies evaluated the reliability and/or validity of four different sleepiness survey instruments. None of the retained studies reported sensitivity or specificity. Evidence quality was rated as very low across all outcomes. In this systematic review, limited evidence of the reliability and validity of 14 different survey instruments to assess the fatigue and/or sleepiness status of EMS personnel and related shift worker groups was identified.

  16. Factors Associated with Intern Fatigue

    PubMed Central

    Vidyarthi, Arpana R.; Baron, Robert B.; Katz, Patricia P.

    2008-01-01

    ABSTRACT BACKGROUND Prior data suggest that fatigue adversely affects patient safety and resident well-being. ACGME duty hour limitations were intended, in part, to reduce resident fatigue, but the factors that affect intern fatigue are unknown. OBJECTIVE To identify factors associated with intern fatigue following implementation of duty hour limitations. DESIGN Cross-sectional confidential survey of validated questions related to fatigue, sleep, and stress, as well as author-developed teamwork questions. SUBJECTS Interns in cognitive specialties at the University of California, San Francisco. MEASUREMENTS Univariate statistics characterized the distribution of responses. Pearson correlations elucidated bivariate relationships between fatigue and other variables. Multivariate linear regression models identified factors independently associated with fatigue, sleep, and stress. RESULTS Of 111 eligible interns, 66 responded (59%). In a regression analysis including gender, hours worked in the previous week, sleep quality, perceived stress, and teamwork, only poorer quality of sleep and greater perceived stress were significantly associated with fatigue (p < 0.001 and p = 0.02, respectively). To identify factors that may affect sleep, specifically duty hours and stress, a secondary model was constructed. Only greater perceived stress was significantly associated with diminished sleep quality (p = 0.04), and only poorer teamwork was significantly associated with perceived stress (p < 0.001). Working >80 h was not significantly associated with perceived stress, quality of sleep, or fatigue. CONCLUSIONS Simply decreasing the number of duty hours may be insufficient to reduce intern fatigue. Residency programs may need to incorporate programmatic changes to reduce stress, improve sleep quality, and foster teamwork in order to decrease intern fatigue and its deleterious consequences. PMID:18807096

  17. Fatigue and fatigability in neurologic illnesses

    PubMed Central

    Krupp, Lauren B.; Enoka, Roger M.

    2013-01-01

    Fatigue is commonly reported in many neurologic illnesses, including multiple sclerosis, Parkinson disease, myasthenia gravis, traumatic brain injury, and stroke. Fatigue contributes substantially to decrements in quality of life and disability in these illnesses. Despite the clear impact of fatigue as a disabling symptom, our understanding of fatigue pathophysiology is limited and current treatment options rarely lead to meaningful improvements in fatigue. Progress continues to be hampered by issues related to terminology and assessment. In this article, we propose a unified taxonomy and a novel assessment approach to addressing distinct aspects of fatigue and fatigability in clinical and research settings. This taxonomy is based on our current knowledge of the pathophysiology and phenomenology of fatigue and fatigability. Application of our approach indicates that the assessment and reporting of fatigue can be clarified and improved by utilizing this taxonomy and creating measures to address distinct aspects of fatigue and fatigability. We review the strengths and weaknesses of several common measures of fatigue and suggest, based on our model, that many research questions may be better addressed by using multiple measures. We also provide examples of how to apply and validate the taxonomy and suggest directions for future research. PMID:23339207

  18. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-05-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

  19. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-04-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

  20. Several submaximal exercise tests are reliable, valid and acceptable in people with chronic pain, fibromyalgia or chronic fatigue: a systematic review.

    PubMed

    Ratter, Julia; Radlinger, Lorenz; Lucas, Cees

    2014-09-01

    Are submaximal and maximal exercise tests reliable, valid and acceptable in people with chronic pain, fibromyalgia and fatigue disorders? Systematic review of studies of the psychometric properties of exercise tests. People older than 18 years with chronic pain, fibromyalgia and chronic fatigue disorders. Studies of the measurement properties of tests of physical capacity in people with chronic pain, fibromyalgia or chronic fatigue disorders were included. Studies were required to report: reliability coefficients (intraclass correlation coefficient, alpha reliability coefficient, limits of agreements and Bland-Altman plots); validity coefficients (intraclass correlation coefficient, Spearman's correlation, Kendal T coefficient, Pearson's correlation); or dropout rates. Fourteen studies were eligible: none had low risk of bias, 10 had unclear risk of bias and four had high risk of bias. The included studies evaluated: Åstrand test; modified Åstrand test; Lean body mass-based Åstrand test; submaximal bicycle ergometer test following another protocol other than Åstrand test; 2-km walk test; 5-minute, 6-minute and 10-minute walk tests; shuttle walk test; and modified symptom-limited Bruce treadmill test. None of the studies assessed maximal exercise tests. Where they had been tested, reliability and validity were generally high. Dropout rates were generally acceptable. The 2-km walk test was not recommended in fibromyalgia. Moderate evidence was found for reliability, validity and acceptability of submaximal exercise tests in patients with chronic pain, fibromyalgia or chronic fatigue. There is no evidence about maximal exercise tests in patients with chronic pain, fibromyalgia and chronic fatigue. Copyright © 2014. Published by Elsevier B.V.

  1. Validation of the Compassion Fatigue Short Scale among Chinese medical workers and firefighters: a cross-sectional study

    PubMed Central

    Sun, Binghai; Hu, Mengna; Yu, Shitian; Jiang, Yiru; Lou, Baona

    2016-01-01

    Objectives To examine the psychometric properties of the Chinese version of the C-Compassion Fatigue (CF)-Short Scale among 4 independent samples of Chinese emergency workers (medical workers and firefighters). Design Cross-sectional. Setting 6 hospitals in Zhejiang Province and 12 fire stations in Shanghai. Participants Emergency workers (medical and firefighters) were consecutively recruited and divided into 4 groups: the MW1 group (medical workers, n=167), the FF1 group (firefighters, n=157), the MW2 group (medical workers, n=265) and the FF2 group (firefighters, n=231). Interventions All patients completed the C-CF-Short Scale to identify factors associated with compassion fatigue. The MW1 and FF1 groups were used for the exploratory analyses. The MW2 and FF2 groups were used for the confirmatory factor analyses. Primary and secondary outcome measures Factor loading, correlations with previously validated questionnaires (the Ego-Resiliency Scale, the Social Support Questionnaire and the Job Pressure Scale) and Cronbach's α coefficient were tested for each factor. Results The C-CF-Short Scale demonstrated excellent construct validity and good internal consistency. Specifically, the results of exploratory factor analyses in the MW1 and FF1 groups showed that secondary trauma and job burnout were associated with compassion fatigue in these emergency workers. The confirmatory factor analyses in the MW2 and FF2 groups indicated that all the fit indices of the 2-factor model were satisfactory. Finally, the Cronbach's α coefficient of each factor was excellent. Conclusions The findings suggest that the C-CF-Short Scale has good psychometric properties and can be applied to study Chinese emergency workers. PMID:27363817

  2. Fatigue design of a cellular phone folder using regression model-based multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Kim, Young Gyun; Lee, Jongsoo

    2016-08-01

    In a folding cellular phone, the folding device is repeatedly opened and closed by the user, which eventually results in fatigue damage, particularly to the front of the folder. Hence, it is important to improve the safety and endurance of the folder while also reducing its weight. This article presents an optimal design for the folder front that maximizes its fatigue endurance while minimizing its thickness. Design data for analysis and optimization were obtained experimentally using a test jig. Multi-objective optimization was carried out using a nonlinear regression model. Three regression methods were employed: back-propagation neural networks, logistic regression and support vector machines. The AdaBoost ensemble technique was also used to improve the approximation. Two-objective Pareto-optimal solutions were identified using the non-dominated sorting genetic algorithm (NSGA-II). Finally, a numerically optimized solution was validated against experimental product data, in terms of both fatigue endurance and thickness index.

  3. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  4. Cross-cultural adaptation, reliability, and validity of the Turkish version of the Cancer Fatigue Scale in patients with breast cancer

    PubMed

    Şahin, Sedef; Huri, Meral; Aran, Orkun Tahir; Uyanık, Mine

    2018-02-23

    Background/aim: The Cancer Fatigue Scale (CFS) was developed to evaluate the severity of fatigue in patients with breast cancer. The aim of this study is to translate and culturally adapt a Turkish version and investigate the validity and reliability of the CFS in Turkish patients with fatigue symptoms. Materials and methods: Eighty participants completed the Turkish version of the CFS for breast cancer and the European Organization for Research and Treatment of Cancer Quality of Life Core Questionnaire ″Core 30″ (EORTC QLQ-C30). Test-retest reliability was evaluated by repeating the CFS with a 7-day interval. Results: The CFS demonstrated high test-retest reliability (ICC = 0.95) and good internal consistency (Cronbach′s alpha = 0.74) for all domains. The Kaiser-Meyer-Olkin measure of sampling adequacy was found to be 0.819, which is considered to be satisfactory (>0.5). Correlations between domains of CFS physical and EORTC physical (r: 0.77), CFS cognitive and EORTC cognitive (r: 0.70), and CFS physical and EORTC fatigue (r: 0.80) were found to be significant. Conclusion: The Turkish version of the CFS is a reliable and valid instrument to assess physical, effective, and cognitive dimensions of fatigue. The CFS may be used to evaluate the severity of fatigue in Turkish-speaking breast cancer patients.

  5. The revised Bristol Rheumatoid Arthritis Fatigue measures and the Rheumatoid Arthritis Impact of Disease scale: validation in six countries

    PubMed Central

    Kirwan, John; Bode, Christina; Cramp, Fiona; Carmona, Loreto; Dures, Emma; Englbrecht, Matthias; Fransen, Jaap; Greenwood, Rosemary; Hagel, Sofia; van de Laar, Maart; Molto, Anna; Nicklin, Joanna; Petersson, Ingemar F; Redondo, Marta; Schett, Georg; Gossec, Laure

    2018-01-01

    Abstract Objective To evaluate the Bristol Rheumatoid Arthritis Fatigue Multidimensional Questionnaire (BRAF-MDQ), the revised Bristol Rheumatoid Arthritis Numerical Rating Scales (BRAF-NRS V2) and the Rheumatoid Arthritis Impact of Disease (RAID) scale in six countries. Methods We surveyed RA patients in France, Germany, The Netherlands, Spain, Sweden and the UK, including the HAQ, 36-item Short Form Health Survey (SF-36) and potential revisions of the BRAF-NRS coping and Spanish RAID coping items. Factor structure and internal consistency were examined by factor analysis and Cronbach’s α and construct validity by Spearman’s correlation. Results A total of 1276 patients participated (76% female, 25% with a disease duration <5 years, median HAQ 1.0). The original BRAF-MDQ four-factor structure and RAID single-factor structure were confirmed in every country with ⩾66% of variation in items explained by each factor and all item factor loadings of 0.71–0.98. Internal consistency for the BRAF-MDQ total and subscales was a Cronbach’s α of 0.75–0.96 and for RAID, 0.93–0.96. Fatigue construct validity was shown for the BRAF-MDQ and BRAF-NRS severity and effect scales, correlated internally with SF-36 vitality and with RAID fatigue (r = 0.63–0.93). Broader construct validity for the BRAFs and RAID was shown by correlation with each other, HAQ and SF-36 domains (r = 0.46–0.82), with similar patterns in individual countries. The revised BRAF-NRS V2 Coping item had stronger validity than the original in all analyses. The revised Spanish RAID coping item performed as well as the original. Conclusion Across six European countries, the BRAF-MDQ identifies the same four aspects of fatigue, and along with the RAID, shows strong factor structure and internal consistency and moderate–good construct validity. The revised BRAF-NRS V2 shows improved construct validity and replaces the original. PMID:29087507

  6. The revised Bristol Rheumatoid Arthritis Fatigue measures and the Rheumatoid Arthritis Impact of Disease scale: validation in six countries.

    PubMed

    Hewlett, Sarah; Kirwan, John; Bode, Christina; Cramp, Fiona; Carmona, Loreto; Dures, Emma; Englbrecht, Matthias; Fransen, Jaap; Greenwood, Rosemary; Hagel, Sofia; van de Laar, Maart; Molto, Anna; Nicklin, Joanna; Petersson, Ingemar F; Redondo, Marta; Schett, Georg; Gossec, Laure

    2018-02-01

    To evaluate the Bristol Rheumatoid Arthritis Fatigue Multidimensional Questionnaire (BRAF-MDQ), the revised Bristol Rheumatoid Arthritis Numerical Rating Scales (BRAF-NRS V2) and the Rheumatoid Arthritis Impact of Disease (RAID) scale in six countries. We surveyed RA patients in France, Germany, The Netherlands, Spain, Sweden and the UK, including the HAQ, 36-item Short Form Health Survey (SF-36) and potential revisions of the BRAF-NRS coping and Spanish RAID coping items. Factor structure and internal consistency were examined by factor analysis and Cronbach's α and construct validity by Spearman's correlation. A total of 1276 patients participated (76% female, 25% with a disease duration <5 years, median HAQ 1.0). The original BRAF-MDQ four-factor structure and RAID single-factor structure were confirmed in every country with ⩾66% of variation in items explained by each factor and all item factor loadings of 0.71-0.98. Internal consistency for the BRAF-MDQ total and subscales was a Cronbach's α of 0.75-0.96 and for RAID, 0.93-0.96. Fatigue construct validity was shown for the BRAF-MDQ and BRAF-NRS severity and effect scales, correlated internally with SF-36 vitality and with RAID fatigue (r = 0.63-0.93). Broader construct validity for the BRAFs and RAID was shown by correlation with each other, HAQ and SF-36 domains (r = 0.46-0.82), with similar patterns in individual countries. The revised BRAF-NRS V2 Coping item had stronger validity than the original in all analyses. The revised Spanish RAID coping item performed as well as the original. Across six European countries, the BRAF-MDQ identifies the same four aspects of fatigue, and along with the RAID, shows strong factor structure and internal consistency and moderate-good construct validity. The revised BRAF-NRS V2 shows improved construct validity and replaces the original. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology.

  7. A Crystal Plasticity Model of Fatigue of Dissimilar Magnesium Alloy Bi-Crystals

    NASA Astrophysics Data System (ADS)

    Knight, Simon

    A crystal plasticity finite element (CPFE) model was applied to the fatigue deformation of dissimilar Mg alloy bi-crystals. The mesoscopic stress-strain and microscopic slip and twinning behaviour of the model were first validated with experimental tension and compression data of pure Mg single crystals. High-cycle fatigue (HCF) simulations up to 1000 cycles were then used to systematically examine the effect of different textures on the cyclic deformation behavior of Mg AZ31-AZ80 bi-crystals at room-temperature. Fatigue behaviour was characterized in terms of the mesoscopic average stress-strain response and the evolution of the microscopic deformation (slip/twin activity). The model captures load asymmetry, cyclic hardening/softening and ratcheting. However, the model did not capture stress concentrations at the grain boundary (GB) for the grain shapes considered. Either basal slip or tensile twinning was activated for any given orientation. When the soft AZ31 grain is oriented for basal slip almost all the shear strain is contained in that grain and has approximately ten times more accumulated shear strain than the other orientations. The results reveal there is a strong effect from orientation combinations on the cyclic deformation wherein a "hard" orientation shields a "soft" orientation from strain. When the AZ80 grain is oriented for basal slip and the AZ31 grain is oriented for tensile twinning the bi-crystal is soft, but only in one direction since twinning is a polar mechanism. Approximately half as much accumulated shear strain occurs when both grains are oriented for twinning. The slip and twinning systems quickly harden in AZ31 in the first few hundred cycles and the shear strain amplitudes quickly devolve from values between 10-6 - 10-4 to around 10-7; values which would be difficult to resolve experimentally. The results were then extended to the possible effects on the fatigue behaviour of an AZ31-AZ80 dissimilar weld idealized as an AZ31-AZ80 bi

  8. Fatigue of restorative materials.

    PubMed

    Baran, G; Boberick, K; McCool, J

    2001-01-01

    Failure due to fatigue manifests itself in dental prostheses and restorations as wear, fractured margins, delaminated coatings, and bulk fracture. Mechanisms responsible for fatigue-induced failure depend on material ductility: Brittle materials are susceptible to catastrophic failure, while ductile materials utilize their plasticity to reduce stress concentrations at the crack tip. Because of the expense associated with the replacement of failed restorations, there is a strong desire on the part of basic scientists and clinicians to evaluate the resistance of materials to fatigue in laboratory tests. Test variables include fatigue-loading mode and test environment, such as soaking in water. The outcome variable is typically fracture strength, and these data typically fit the Weibull distribution. Analysis of fatigue data permits predictive inferences to be made concerning the survival of structures fabricated from restorative materials under specified loading conditions. Although many dental-restorative materials are routinely evaluated, only limited use has been made of fatigue data collected in vitro: Wear of materials and the survival of porcelain restorations has been modeled by both fracture mechanics and probabilistic approaches. A need still exists for a clinical failure database and for the development of valid test methods for the evaluation of composite materials.

  9. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size

    PubMed Central

    Wang, Qiang; Zhang, Wei; Jiang, Shan

    2015-01-01

    Failure analysis and fatigue life prediction are necessary and critical for engineering structural materials. In this paper, a general methodology is proposed to predict fatigue life of smooth and circular-hole specimens, in which the crack closure model and equivalent initial flaw size (EIFS) concept are employed. Different effects of crack closure on small crack growth region and long crack growth region are considered in the proposed method. The EIFS is determined by the fatigue limit and fatigue threshold stress intensity factor △Kth. Fatigue limit is directly obtained from experimental data, and △Kth is calculated by using a back-extrapolation method. Experimental data for smooth and circular-hole specimens in three different alloys (Al2024-T3, Al7075-T6 and Ti-6Al-4V) under multiple stress ratios are used to validate the method. In the validation section, Semi-circular surface crack and quarter-circular corner crack are assumed to be the initial crack shapes for the smooth and circular-hole specimens, respectively. A good agreement is observed between model predictions and experimental data. The detailed analysis and discussion are performed on the proposed model. Some conclusions and future work are given. PMID:28793625

  10. Translation and validation of the Cancer-Related Fatigue Scale in Greek in a sample of patients with advanced prostate cancer

    PubMed Central

    Kaite, Charis; Constantinou, Marianna; Kouta, Christiana

    2016-01-01

    Objective To translate and validate the Cancer-Related Fatigue (CRF) Scale in the Greek language. Design A cross-sectional descriptive design was used in order to translate and validate the CRF Scale in Greek. Factor analyses were performed to understand the psychometric properties of the scale and to establish construct, criterion and convergent validity. Setting Outpatients' oncology clinics of two public hospitals in Cyprus. Participants 148 patients with advanced prostate cancer undergoing chemotherapy. Results The Cancer Fatigue Scale (CFS) had good stability (test–retest reliability r=0.79, p<0.001) and good internal consistency (Cronbach's α coefficient for all 15 items α=0.916). Furthermore, the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO value) was found to be 0.743 and considered to be satisfactory (>0.5). The correlations between the CFS physical scale (CFS-FS scale) and the European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30 physical subscales were found to be significant (r=−0.715). The same occurred between CFS cognitive and EORTC cognitive subscale (r=−0.579). Overall, the criterion validity was verified. The same occurs for the convergent validity of the CFS since all correlations with the Global Health Status (q29–q30) were found to be significant. Conclusions This is the first validation study of the CRF Scale in Greek and warrant of its use in the assessment of prostate cancer patient's related fatigue. However, further testing and validation is needed in the early stages of the disease and in patients in later chemotherapy cycles. PMID:27913557

  11. Fatigue behavior of ULTIMETRTM alloy: Experiment and theoretical modeling

    NASA Astrophysics Data System (ADS)

    Jiang, Liang

    ULTIMETRTM alloy is a commercial Co-26Cr-9Ni (weight percent) superalloy, which possesses excellent resistance to both wear and corrosion. In order to extend the structural applications of this alloy and improve the fundamental understanding of the fatigue damage mechanisms, stress- and strain-controlled fatigue tests were performed at various temperatures and in different environments. The stress- and strain-life data were developed for the structural design and engineering applications of this material. Fractographic studies characterized the crack-initiation and propagation behavior of the alloy. Microstructure evolution during fatigue was revealed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Specifically, it was found that the metastable face-centered-cubic structure of this alloy in the as-received condition could be transformed into a hexagonal-close-packed structure either under the action of plastic deformation at room temperature, or due to the aging and cyclic deformation at intermediate temperatures. This interesting observation constructed a sound basis for the alloy development. The dominant mechanisms, which control the fatigue behavior of ULTIMET alloy, were characterized. High-speed, high-resolution infrared (IR) thermography, as a non-contact, full-field, and nondestructive technique, was used to characterize the damage during fatigue. The temperature variations during each fatigue cycle, which were due to the thermal-elastic-plastic effect, were observed and related to stress-strain analyses. The temperature evolution during fatigue manifested the cumulative fatigue damage process. A constitutive model was developed to predict thermal and mechanical responses of ULTIMET alloy subjected to cyclic deformation. The predicted cyclic stress-strain responses and temperature variations were found to be in good agreement with the experimental results. In addition, a fatigue life prediction model was developed

  12. Application of the multidimensional fatigue inventory (MFI-20) in cancer patients receiving radiotherapy.

    PubMed Central

    Smets, E. M.; Garssen, B.; Cull, A.; de Haes, J. C.

    1996-01-01

    In this paper the psychometric properties of the multidimensional fatigue inventory (MFI-20) are established further in cancer patients. The MFI is a 20-item self-report instrument designed to measure fatigue. It covers the following dimensions: general fatigue, physical fatigue, reduced activity, reduced motivation and mental fatigue. The instrument was used in a Dutch and Scottish sample of cancer patients receiving radiotherapy. The dimensional structure was assessed using confirmatory factor analyses (Lisrel's unweighted least-squares method). The hypothesised five-factor model appeared to fit the data in both samples (adjusted goodness of fit; AGFI: 0.97 and 0.98). Internal consistency of the separate scales was good in both the Dutch and Scottish samples with Cronbach's alpha coefficients ranging from 0.79 to 0.93. Construct validity was assessed by correlating the MFI-20 to activities of daily living, anxiety and depression. Significant relations were assumed. Convergent validity was investigated by correlating the MFI scales with a visual analogue scale measuring fatigue and with a fatigue-scale derived from the Rotterdam Symptom Checklist. Results support the validity of the MFI-20. The highly similar results in the Dutch and Scottish sample suggest that the portrayal of fatigue using the MFI-20 is quite robust. PMID:8546913

  13. Toward a comprehensive, theoretical model of compassion fatigue: An integrative literature review.

    PubMed

    Coetzee, Siedine K; Laschinger, Heather K S

    2018-03-01

    This study was an integrative literature review in relation to compassion fatigue models, appraising these models, and developing a comprehensive theoretical model of compassion fatigue. A systematic search on PubMed, EbscoHost (Academic Search Premier, E-Journals, Medline, PsycINFO, Health Source Nursing/Academic Edition, CINAHL, MasterFILE Premier and Health Source Consumer Edition), gray literature, and manual searches of included reference lists was conducted in 2016. The studies (n = 11) were analyzed, and the strengths and limitations of the compassion fatigue models identified. We further built on these models through the application of the conservation of resources theory and the social neuroscience of empathy. The compassion fatigue model shows that it is not empathy that puts nurses at risk of developing compassion fatigue, but rather a lack of resources, inadequate positive feedback, and the nurse's response to personal distress. By acting on these three aspects, the risk of developing compassion fatigue can be addressed, which could improve the retention of a compassionate and committed nurse workforce. © 2017 John Wiley & Sons Australia, Ltd.

  14. Study on sand particles creep model and open pit mine landslide mechanism caused by sand fatigue liquefaction

    NASA Astrophysics Data System (ADS)

    Du, Dong-Ning; Wang, Lai-Gui; Zhang, Xiang-Dong; Zhang, Shu-Kun

    2017-06-01

    The sand particles in the sand - rock composite slope of the open pit mine occurs creep deformation and fatigue liquefaction under the action of vehicle load vibration and hydraulic gradient, which causes landslide geological disasters and it destroys the surface environment. To reveal the mechanism, a mechanics model based on the model considering the soil structural change with a new “plastic hinge” element is developed, to improve its constitutive and creep curve equations. Data from sand creep experiments are used to identify the parameters in the model and to validate the model. The results show that the mechanical model can describe the rotation progress between the sand particles, disclose the negative acceleration creep deformation stage during the third phase, and require fewer parameters while maintaining accuracy. It provides a new creep model considering rotation to analyze sand creep mechanism, which provides a theoretical basis for revealing the open pit mine landslide mechanism induced by creep deformation and fatigue liquefaction of sandy soil.

  15. Crack propagation monitoring in a full-scale aircraft fatigue test based on guided wave-Gaussian mixture model

    NASA Astrophysics Data System (ADS)

    Qiu, Lei; Yuan, Shenfang; Bao, Qiao; Mei, Hanfei; Ren, Yuanqiang

    2016-05-01

    For aerospace application of structural health monitoring (SHM) technology, the problem of reliable damage monitoring under time-varying conditions must be addressed and the SHM technology has to be fully validated on real aircraft structures under realistic load conditions on ground before it can reach the status of flight test. In this paper, the guided wave (GW) based SHM method is applied to a full-scale aircraft fatigue test which is one of the most similar test status to the flight test. To deal with the time-varying problem, a GW-Gaussian mixture model (GW-GMM) is proposed. The probability characteristic of GW features, which is introduced by time-varying conditions is modeled by GW-GMM. The weak cumulative variation trend of the crack propagation, which is mixed in time-varying influence can be tracked by the GW-GMM migration during on-line damage monitoring process. A best match based Kullback-Leibler divergence is proposed to measure the GW-GMM migration degree to reveal the crack propagation. The method is validated in the full-scale aircraft fatigue test. The validation results indicate that the reliable crack propagation monitoring of the left landing gear spar and the right wing panel under realistic load conditions are achieved.

  16. Modelling Attempts to Predict Fretting-Fatigue Life on Turbine Components

    DTIC Science & Technology

    2004-06-01

    validation purposes life prediction is compared with experimental results . 1. THE PROBLEMATIC OF FRETTING/WEAR FATIGUE ON AEROENGINES 1.1. Damage...Furthermore, unlike real engine conditions, there are no additional vibrational loads exerted on the dummy due to the fact that the test is run

  17. Validity and everyday clinical applicability of lumbar muscle fatigue assessment methods in patients with chronic non-specific low back pain: a systematic review.

    PubMed

    Villafañe, Jorge H; Gobbo, Massimiliano; Peranzoni, Matteo; Naik, Ganesh; Imperio, Grace; Cleland, Joshua A; Negrini, Stefano

    2016-09-01

    This systematic literature review aimed at examining the validity and applicability in everyday clinical rehabilitation practise of methods for the assessment of back muscle fatiguability in patients with chronic non-specific low back pain (CNSLBP). Extensive research was performed in MEDLINE, Cumulative Index of Nursing and Allied Health Literature (CINAHL), Embase, Physiotherapy Evidence Database (PEDro) and Cochrane Central Register of Controlled Trials (CENTRAL) databases from their inception to September 2014. Potentially relevant articles were also manually looked for in the reference lists of the identified publications. Studies examining lumbar muscle fatigue in people with CNSLBP were selected. Two reviewers independently selected the articles, carried out the study quality assessment and extracted the results. A modified Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) scale was used to evaluate the scientific rigour of the selected works. Twenty-four studies fulfilled the selection criteria and were included in the systematic review. We found conflicting data regarding the validity of methods used to examine back muscle fatigue. The Biering-Sorensen test, performed in conjunction with surface electromyography spectral analysis, turned out to be the most widely used and comparatively, the most optimal modality currently available to assess objective back muscle fatigue in daily clinical practise, even though critical limitations are discussed. Future research should address the identification of an advanced method for lower back fatigue assessment in patients with CNSLBP which, eventually, might provide physical therapists with an objective and reliable test usable in everyday clinical practise. Implications for Rehabilitation Despite its limitations, the Biering-Sorensen test is currently the most used, convenient and easily available fatiguing test for lumbar muscles. To increase validity and reliability of the Biering

  18. International Psychometric Validation of an EORTC Quality of Life Module Measuring Cancer Related Fatigue (EORTC QLQ-FA12).

    PubMed

    Weis, Joachim; Tomaszewski, Krzysztof A; Hammerlid, Eva; Ignacio Arraras, Juan; Conroy, Thierry; Lanceley, Anne; Schmidt, Heike; Wirtz, Markus; Singer, Susanne; Pinto, Monica; Alm El-Din, Mohamed; Compter, Inge; Holzner, Bernhard; Hofmeister, Dirk; Chie, Wei-Chu; Czeladzki, Marek; Harle, Amelie; Jones, Louise; Ritter, Sabrina; Flechtner, Hans-Henning; Bottomley, Andrew

    2017-05-01

    The European Organisation for Research and Treatment of Cancer (EORTC) Group has developed a new multidimensional instrument measuring cancer-related fatigue to be used in conjunction with the quality of life core questionnaire (EORTC QLQ-C30). The module EORTC QLQ-FA13 assesses physical, cognitive, and emotional aspects of cancer-related fatigue. The methodology follows the EORTC guidelines for phase IV validation of modules. This paper focuses on the results of the psychometric validation of the factorial structure of the module. For validation and cross-validation confirmatory factor analysis (maximum likelihood estimation), intraclass correlation and Cronbach alpha for internal consistency were employed. The study involved an international multicenter collaboration of 11 European and non-European countries. A total of 946 patients with various tumor diagnoses were enrolled. Based on the confirmatory factor analysis, we could approve the three-dimensional structure of the module. Removing one item and reassigning the factorial mapping of another item resulted in the EORTC QLQ-FA12. For the revised scale, we found evidence supporting good local (indicator reliability ≥ 0.60, factor reliability ≥ 0.82) and global model fit (GFI t1|t2 = 0.965/0.957, CFI t1|t2 = 0.976/0.972, RMSEA t1|t2 = 0.060/0.069) for both measurement points. For each scale, test-retest reliability proved to be very good (intraclass correlation: R t1-t2 = 0.905-0.921) and internal consistency proved to be good to high (Cronbach alpha = .79-.90). Based on the former phase III module, the multidimensional structure was revised as a phase IV module (EORTC FA12) with an improved scale structure. For a comprehensive validation of the EORTC FA12, further aspects of convergent and divergent validity as well as sensitivity to change should be determined. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. A Fatigue Model for Discontinuous Particulate-Reinforced Aluminum Alloy Composite: Influence of Microstructure

    NASA Astrophysics Data System (ADS)

    McCullough, R. R.; Jordon, J. B.; Brammer, A. T.; Manigandan, K.; Srivatsan, T. S.; Allison, P. G.; Rushing, T. W.

    2014-01-01

    In this paper, the use of a microstructure-sensitive fatigue model is put forth for the analysis of discontinuously reinforced aluminum alloy metal matrix composite. The fatigue model was used for a ceramic particle-reinforced aluminum alloy deformed under conditions of fully reversed strain control. Experimental results revealed the aluminum alloy to be strongly influenced by volume fraction of the particulate reinforcement phase under conditions of strain-controlled fatigue. The model safely characterizes the evolution of fatigue damage in this aluminum alloy composite into the distinct stages of crack initiation and crack growth culminating in failure. The model is able to capture the specific influence of particle volume fraction, particle size, and nearest neighbor distance in quantifying fatigue life. The model yields good results for correlation of the predicted results with the experimental test results on the fatigue behavior of the chosen aluminum alloy for two different percentages of the ceramic particle reinforcement. Further, the model illustrates that both particle size and volume fraction are key factors that govern fatigue lifetime. This conclusion is well supported by fractographic observations of the cyclically deformed and failed specimens.

  20. Viscoelastic and fatigue properties of model methacrylate-based dentin adhesives

    PubMed Central

    Singh, Viraj; Misra, Anil; Marangos, Orestes; Park, Jonggu; Ye, Qiang; Kieweg, Sarah L.; Spencer, Paulette

    2013-01-01

    The objective of the current study is to characterize the viscoelastic and fatigue properties of model methacrylate-based dentin adhesives under dry and wet conditions. Static, creep, and fatigue tests were performed on cylindrical samples in a 3-point bending clamp. Static results showed that the apparent elastic modulus of the model adhesive varied from 2.56 to 3.53 GPa in the dry condition, and from 1.04 to 1.62 GPa in the wet condition, depending upon the rate of loading. Significant differences were also found for the creep behavior of the model adhesive under dry and wet conditions. A linear viscoelastic model was developed by fitting the adhesive creep behavior. The developed model with 5 Kelvin Voigt elements predicted the apparent elastic moduli measured in the static tests. The model was then utilized to interpret the fatigue test results. It was found that the failure under cyclic loading can be due to creep or fatigue, which has implications for the failure criterion that are applied for these types of tests. Finally, it was found that the adhesive samples tested under dry conditions were more durable than those tested under wet conditions. PMID:20848661

  1. Modeling stiffness loss in boron/aluminum below the fatigue limit

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1982-01-01

    Boron/aluminum can develop significant internal matrix cracking when fatigued. These matrix cracks can result in a 40 percent secant modulus loss in some laminates, even when fatigued below the fatigue limit. It is shown that the same amount of fatigue damage will develop during stress or strain-controlled tests. Stacking sequence has little influence on secant modulus loss. The secant modulus loss in unidirectional composites is small, whereas the losses are substantial in laminates containing off-axis plies. A simple analysis is presented that predicts unnotched laminate secant modulus loss due to fatigue. The analysis is based upon the elastic modulus and Poisson's ratio of the fiber and matrix, fiber volume fraction, fiber orientations, and the cyclic-hardened yield stress of the matrix material. Excellent agreement was achieved between model predictions and experimental results. With this model, designers can project the material stiffness loss for design load or strain levels and assess the feasibility of its use in stiffness-critical parts.

  2. 3D-FE Modeling of 316 SS under Strain-Controlled Fatigue Loading and CFD Simulation of PWR Surge Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Barua, Bipul; Listwan, Joseph

    In financial year 2017, we are focusing on developing a mechanistic fatigue model of surge line pipes for pressurized water reactors (PWRs). To that end, we plan to perform the following tasks: (1) conduct stress- and strain-controlled fatigue testing of surge-line base metal such as 316 stainless steel (SS) under constant, variable, and random fatigue loading, (2) develop cyclic plasticity material models of 316 SS, (3) develop one-dimensional (1D) analytical or closed-form model to validate the material models and to understand the mechanics associated with 316 SS cyclic hardening and/or softening, (4) develop three-dimensional (3D) finite element (FE) models withmore » implementation of evolutionary cyclic plasticity, and (5) develop computational fluid dynamics (CFD) model for thermal stratification, thermal-mechanical stress, and fatigue of example reactor components, such as a PWR surge line under plant heat-up, cool-down, and normal operation with/without grid-load-following. This semi-annual progress report presents the work completed on the above tasks for a 316 SS laboratory-scale specimen subjected to strain-controlled cyclic loading with constant, variable, and random amplitude. This is the first time that the accurate 3D-FE modeling of the specimen for its entire fatigue life, including the hardening and softening behavior, has been achieved. We anticipate that this work will pave the way for the development of a fully mechanistic-computer model that can be used for fatigue evaluation of safety-critical metallic components, which are traditionally evaluated by heavy reliance on time-consuming and costly test-based approaches. This basic research will not only help the nuclear reactor industry for fatigue evaluation of reactor components in a cost effective and less time-consuming way, but will also help other safety-related industries, such as aerospace, which is heavily dependent on test-based approaches, where a single full-scale fatigue test can

  3. Translation and validation of the Cancer-Related Fatigue Scale in Greek in a sample of patients with advanced prostate cancer.

    PubMed

    Charalambous, Andreas; Kaite, Charis; Constantinou, Marianna; Kouta, Christiana

    2016-12-02

    To translate and validate the Cancer-Related Fatigue (CRF) Scale in the Greek language. A cross-sectional descriptive design was used in order to translate and validate the CRF Scale in Greek. Factor analyses were performed to understand the psychometric properties of the scale and to establish construct, criterion and convergent validity. Outpatients' oncology clinics of two public hospitals in Cyprus. 148 patients with advanced prostate cancer undergoing chemotherapy. The Cancer Fatigue Scale (CFS) had good stability (test-retest reliability r=0.79, p<0.001) and good internal consistency (Cronbach's α coefficient for all 15 items α=0.916). Furthermore, the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO value) was found to be 0.743 and considered to be satisfactory (>0.5). The correlations between the CFS physical scale (CFS-FS scale) and the European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30 physical subscales were found to be significant (r=-0.715). The same occurred between CFS cognitive and EORTC cognitive subscale (r=-0.579). Overall, the criterion validity was verified. The same occurs for the convergent validity of the CFS since all correlations with the Global Health Status (q29-q30) were found to be significant. This is the first validation study of the CRF Scale in Greek and warrant of its use in the assessment of prostate cancer patient's related fatigue. However, further testing and validation is needed in the early stages of the disease and in patients in later chemotherapy cycles. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime

    NASA Astrophysics Data System (ADS)

    Sun, Chengqi; Liu, Xiaolong; Hong, Youshi

    2015-06-01

    In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.

  5. Study of cumulative fatigue damage detection for used parts with nonlinear output frequency response functions based on NARMAX modelling

    NASA Astrophysics Data System (ADS)

    Huang, Honglan; Mao, Hanying; Mao, Hanling; Zheng, Weixue; Huang, Zhenfeng; Li, Xinxin; Wang, Xianghong

    2017-12-01

    Cumulative fatigue damage detection for used parts plays a key role in the process of remanufacturing engineering and is related to the service safety of the remanufactured parts. In light of the nonlinear properties of used parts caused by cumulative fatigue damage, the based nonlinear output frequency response functions detection approach offers a breakthrough to solve this key problem. First, a modified PSO-adaptive lasso algorithm is introduced to improve the accuracy of the NARMAX model under impulse hammer excitation, and then, an effective new algorithm is derived to estimate the nonlinear output frequency response functions under rectangular pulse excitation, and a based nonlinear output frequency response functions index is introduced to detect the cumulative fatigue damage in used parts. Then, a novel damage detection approach that integrates the NARMAX model and the rectangular pulse is proposed for nonlinear output frequency response functions identification and cumulative fatigue damage detection of used parts. Finally, experimental studies of fatigued plate specimens and used connecting rod parts are conducted to verify the validity of the novel approach. The obtained results reveal that the new approach can detect cumulative fatigue damages of used parts effectively and efficiently and that the various values of the based nonlinear output frequency response functions index can be used to detect the different fatigue damages or working time. Since the proposed new approach can extract nonlinear properties of systems by only a single excitation of the inspected system, it shows great promise for use in remanufacturing engineering applications.

  6. An accurate fatigue damage model for welded joints subjected to variable amplitude loading

    NASA Astrophysics Data System (ADS)

    Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.; Langen, I.

    2017-12-01

    Researchers in the past have proposed several fatigue damage models to overcome the shortcomings of the commonly used Miner’s rule. However, requirements of material parameters or S-N curve modifications restricts their practical applications. Also, application of most of these models under variable amplitude loading conditions have not been found. To overcome these restrictions, a new fatigue damage model is proposed in this paper. The proposed model can be applied by practicing engineers using only the S-N curve given in the standard codes of practice. The model is verified with experimentally derived damage evolution curves for C 45 and 16 Mn and gives better agreement compared to previous models. The model predicted fatigue lives are also in better correlation with experimental results compared to previous models as shown in earlier published work by the authors. The proposed model is applied to welded joints subjected to variable amplitude loadings in this paper. The model given around 8% shorter fatigue lives compared to Eurocode given Miner’s rule. This shows the importance of applying accurate fatigue damage models for welded joints.

  7. Unified risk analysis of fatigue failure in ductile alloy components during all three stages of fatigue crack evolution process.

    PubMed

    Patankar, Ravindra

    2003-10-01

    Statistical fatigue life of a ductile alloy specimen is traditionally divided into three stages, namely, crack nucleation, small crack growth, and large crack growth. Crack nucleation and small crack growth show a wide variation and hence a big spread on cycles versus crack length graph. Relatively, large crack growth shows a lesser variation. Therefore, different models are fitted to the different stages of the fatigue evolution process, thus treating different stages as different phenomena. With these independent models, it is impossible to predict one phenomenon based on the information available about the other phenomenon. Experimentally, it is easier to carry out crack length measurements of large cracks compared to nucleating cracks and small cracks. Thus, it is easier to collect statistical data for large crack growth compared to the painstaking effort it would take to collect statistical data for crack nucleation and small crack growth. This article presents a fracture mechanics-based stochastic model of fatigue crack growth in ductile alloys that are commonly encountered in mechanical structures and machine components. The model has been validated by Ray (1998) for crack propagation by various statistical fatigue data. Based on the model, this article proposes a technique to predict statistical information of fatigue crack nucleation and small crack growth properties that uses the statistical properties of large crack growth under constant amplitude stress excitation. The statistical properties of large crack growth under constant amplitude stress excitation can be obtained via experiments.

  8. Multidimensional daily diary of fatigue-fibromyalgia-17 items (MDF-fibro-17). part 1: development and content validity.

    PubMed

    Morris, S; Li, Y; Smith, J A M; Dube', S; Burbridge, C; Symonds, T

    2017-05-16

    , and preliminary quantitative item level data, confirmed that FM-related fatigue is multidimensional and provided strong support for the content validity of the MDF-Fibro-17. The next stage was to quantitatively evaluate the measure to confirm the factor structure, psychometric properties, sensitivity to change, and meaningful change. This has been conducted and is being reported separately.

  9. Does Implementation of Biomathematical Models Mitigate Fatigue and Fatigue-related Risks in Emergency Medical Services Operations? A Systematic Review

    DOT National Transportation Integrated Search

    2018-01-11

    Background: Work schedules like those of Emergency Medical Services (EMS) personnel have been associated with increased risk of fatigue-related impairment. Biomathematical modeling is a means of objectively estimating the potential impacts of fatigue...

  10. Two-time scale fatigue modelling: application to damage

    NASA Astrophysics Data System (ADS)

    Devulder, Anne; Aubry, Denis; Puel, Guillaume

    2010-05-01

    A temporal multiscale modelling applied to fatigue damage evolution in cortical bone is presented. Microdamage accumulation in cortical bone, ensued from daily activities, leads to impaired mechanical properties, in particular by reducing the bone stiffness and inducing fatigue. However, bone damage is also known as a stimulus to bone remodelling, whose aim is to repair and generate new bone, adapted to its environment. This biological process by removing fatigue damage seems essential to the skeleton lifetime. As daily activities induce high frequency cycles (about 10,000 cycles a day), identifying two-time scale is very fruitful: a fast one connected with the high frequency cyclic loading and a slow one related to a quasi-static loading. A scaling parameter is defined between the intrinsic time (bone lifetime of several years) and the high frequency loading (few seconds). An asymptotic approach allows to decouple the two scales and to take into account history effects (Guennouni and Aubry in CR Acad Sci Paris Ser II 20:1765-1767, 1986). The method is here applied to a simple case of fatigue damage and a real cortical bone microstructure. A significant reduction in the amount of computation time in addition to a small computational error between time homogenized and non homogenized models are obtained. This method seems thus to give new perspectives to assess fatigue damage and, with regard to bone, to give a better understanding of bone remodelling.

  11. Lamb wave-based damage quantification and probability of detection modeling for fatigue life assessment of riveted lap joint

    NASA Astrophysics Data System (ADS)

    He, Jingjing; Wang, Dengjiang; Zhang, Weifang

    2015-03-01

    This study presents an experimental and modeling study for damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in-situ non-destructive testing during fatigue cyclical loading. A multi-feature integration method is developed to quantify the crack size using signal features of correlation coefficient, amplitude change, and phase change. In addition, probability of detection (POD) model is constructed to quantify the reliability of the developed sizing method. Using the developed crack size quantification method and the resulting POD curve, probabilistic fatigue life prediction can be performed to provide comprehensive information for decision-making. The effectiveness of the overall methodology is demonstrated and validated using several aircraft lap joint specimens from different manufactures and under different loading conditions.

  12. The Effect of Orem’s Self-Care Model on Fatigue in Patients With Multiple Sclerosis: A Single Blind Randomized Clinical Trial Study

    PubMed Central

    Afrasiabifar, Ardashir; Mehri, Zahra; Javad Sadat, Saied; Ghaffarian Shirazi, Hamid Reza

    2016-01-01

    Background Orem’s self-care model is a nursing model that was introduced with the purpose of improving the self-care of individuals, especially patients suffering from chronic diseases. Objectives To determining the effect of Orem’s self-care model on fatigue in multiple sclerosis patients. Patients and Methods This research involved a clinical trial. Sixty-three multiple sclerosis patients at the vice-chancellor in treatment affairs of Yasuj University of Medical Sciences were selected based on nonrandom sampling, but they were allocated to the two groups based on random allocation. In the intervention group, Orem’s model was applied during six sessions of 45 - 60 minutes in length, and the process continued for 1 month. The data were collected 1 week before and 7 weeks after the end of the intervention using the Orem’s self-care model-based assessment form and fatigue severity scale, the validity and reliability of which have been Results Before the intervention, 11.11% of the participants had a good knowledge of self-care. In addition, self-care willingness and skills were observed in 76.19% and 4.76% of participants, respectively. The mean difference in fatigue reduced significantly in the intervention group after the intervention (P < 0.05). After the intervention, a statistically significant difference was observed in the mean difference of fatigue between the two groups (P < 0.05). Conclusions Orem’s self-care model is significantly effective in reducing the fatigue of multiple sclerosis patients. PMID:27781119

  13. A New Multiaxial High-Cycle Fatigue Criterion Based on the Critical Plane for Ductile and Brittle Materials

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Shang, De-Guang; Wang, Xiao-Wei

    2015-02-01

    An improved high-cycle multiaxial fatigue criterion based on the critical plane was proposed in this paper. The critical plane was defined as the plane of maximum shear stress (MSS) in the proposed multiaxial fatigue criterion, which is different from the traditional critical plane based on the MSS amplitude. The proposed criterion was extended as a fatigue life prediction model that can be applicable for ductile and brittle materials. The fatigue life prediction model based on the proposed high-cycle multiaxial fatigue criterion was validated with experimental results obtained from the test of 7075-T651 aluminum alloy and some references.

  14. Medium fidelity modelling of loads in wind farms under non-neutral ABL stability conditions - a full-scale validation study

    NASA Astrophysics Data System (ADS)

    Larsen, G. C.; Larsen, T. J.; Chougule, A.

    2017-05-01

    The aim of the present paper is to demonstrate the capability of medium fidelity modelling of wind turbine component fatigue loading, when the wind turbines are subjected to wake affected non-stationary flow fields under non-neutral atmospheric stability conditions. To accomplish this we combine the classical Dynamic Wake Meandering model with a fundamental conjecture stating: Atmospheric boundary layer stability affects primary wake meandering dynamics driven by large turbulent scales, whereas wake expansion in the meandering frame of reference is hardly affected. Inclusion of stability (i.e. buoyancy) in description of both large- and small scale atmospheric boundary layer turbulence is facilitated by a generalization of the classical Mann spectral tensor, which consistently includes buoyancy effects. With non-stationary wind turbine inflow fields modelled as described above, fatigue loads are obtained using the state-of-the art aeroelastic model HAWC2. The Lillgrund offshore wind farm (WF) constitute an interesting case study for wind farm model validation, because the WT interspacing is small, which in turn means that wake effects are significant. A huge data set, comprising 5 years of blade and tower load recordings, is available for model validation. For a multitude of wake situations this data set displays a considerable scatter, which to a large degree seems to be caused by atmospheric boundary layer stability effects. Notable is also that rotating wind turbine components predominantly experience high fatigue loading for stable stratification with significant shear, whereas high fatigue loading of non-rotating wind turbine components are associated with unstable atmospheric boundary layer stratification.

  15. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  16. A microstructurally based model of solder joints under conditions of thermomechanical fatigue

    NASA Astrophysics Data System (ADS)

    Frear, D. R.; Burchett, S. N.; Rashid, M. M.

    The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue. We present two computational methodologies that have been developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions that are based on metallurgical tests as fundamental input for constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations from this model agree well with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single phase model is a computational technique that was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests and the results showed an adequate fit to experimental results. The single-phase model could be very useful for conditions where microstructural evolution is not a dominant factor in fatigue.

  17. Reliability and Validity of the Persian Version of the Fatigue Severity Scale in Idiopathic Parkinson's Disease Patients

    PubMed Central

    Hadizadeh, Hasti; Farhadi, Farzaneh; Delbari, Ahmad; Lökk, Johan

    2013-01-01

    As one of the most frequent symptoms, measurement of fatigue is an issue of interest in Parkinson's disease (PD). The fatigue severity scale (FSS) is one of the recommended questionnaires for this purpose. The aim of our study was to evaluate psychometric properties of the Persian version of the FSS (FSS-Per) to assess fatigue in PD patients. Ninety nondemented idiopathic Parkinson's disease (IPD) patients were consecutively recruited from an outpatient referral movement disorder clinic. In addition to the disease severity scales, the FSS-Per was used for fatigue measurement. The internal consistency coefficient was larger than 0.8 for all of the items with a total Cronbach's alpha of 0.96 (95% CI: 0.95–0.97). The FSS-Per score correlated with the UPDRS score (r = 0.55, P < 0.001) and the “Hoehn and Yahr” (HY) stage (r = 0.48, P < 0.001). The total score of the FSS-Per significantly discriminated IPD patients with more severe disability (HY stage > 2) versus those with less severe disease (HY stage ≤2) (AUC = 0.81 (95% CI: 0.72–0.90)). The FSS-Per fulfilled a high internal consistency and construct validity to measure the severity of fatigue in Iranian IPD patients. These acceptable psychometric properties were reproducible in subgroups of IPD patients regarding different levels of education, disease severity, sex and age groups. PMID:24089644

  18. Validating and Extending the Three Process Model of Alertness in Airline Operations

    PubMed Central

    Ingre, Michael; Van Leeuwen, Wessel; Klemets, Tomas; Ullvetter, Christer; Hough, Stephen; Kecklund, Göran; Karlsson, David; Åkerstedt, Torbjörn

    2014-01-01

    Sleepiness and fatigue are important risk factors in the transport sector and bio-mathematical sleepiness, sleep and fatigue modeling is increasingly becoming a valuable tool for assessing safety of work schedules and rosters in Fatigue Risk Management Systems (FRMS). The present study sought to validate the inner workings of one such model, Three Process Model (TPM), on aircrews and extend the model with functions to model jetlag and to directly assess the risk of any sleepiness level in any shift schedule or roster with and without knowledge of sleep timings. We collected sleep and sleepiness data from 136 aircrews in a real life situation by means of an application running on a handheld touch screen computer device (iPhone, iPod or iPad) and used the TPM to predict sleepiness with varying level of complexity of model equations and data. The results based on multilevel linear and non-linear mixed effects models showed that the TPM predictions correlated with observed ratings of sleepiness, but explorative analyses suggest that the default model can be improved and reduced to include only two-processes (S+C), with adjusted phases of the circadian process based on a single question of circadian type. We also extended the model with a function to model jetlag acclimatization and with estimates of individual differences including reference limits accounting for 50%, 75% and 90% of the population as well as functions for predicting the probability of any level of sleepiness for ecological assessment of absolute and relative risk of sleepiness in shift systems for safety applications. PMID:25329575

  19. Everyday cognitive failure and depressive symptoms predict fatigue in sarcoidosis: A prospective follow-up study.

    PubMed

    Hendriks, Celine; Drent, Marjolein; De Kleijn, Willemien; Elfferich, Marjon; Wijnen, Petal; De Vries, Jolanda

    2018-05-01

    Fatigue is a major and disabling problem in sarcoidosis. Knowledge concerning correlates of the development of fatigue and possible interrelationships is lacking. A conceptual model of fatigue was developed and tested. Sarcoidosis outpatients (n = 292) of Maastricht University Medical Center completed questionnaires regarding trait anxiety, depressive symptoms, cognitive failure, dyspnea, social support, and small fiber neuropathy (SFN) at baseline. Fatigue was assessed at 6 and 12 months. Sex, age, and time since diagnosis were taken from medical records. Pathways were estimated by means of path analyses in AMOS. Everyday cognitive failure, depressive symptoms, symptoms suggestive of SFN, and dyspnea were positive predictors of fatigue. Fit indices of the model were good. The model validly explains variation in fatigue. Everyday cognitive failure and depressive symptoms were the most important predictors of fatigue. In addition to physical functioning, cognitive and psychological aspects should be included in the management of sarcoidosis patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Computational cognitive modeling of the temporal dynamics of fatigue from sleep loss.

    PubMed

    Walsh, Matthew M; Gunzelmann, Glenn; Van Dongen, Hans P A

    2017-12-01

    Computational models have become common tools in psychology. They provide quantitative instantiations of theories that seek to explain the functioning of the human mind. In this paper, we focus on identifying deep theoretical similarities between two very different models. Both models are concerned with how fatigue from sleep loss impacts cognitive processing. The first is based on the diffusion model and posits that fatigue decreases the drift rate of the diffusion process. The second is based on the Adaptive Control of Thought - Rational (ACT-R) cognitive architecture and posits that fatigue decreases the utility of candidate actions leading to microlapses in cognitive processing. A biomathematical model of fatigue is used to control drift rate in the first account and utility in the second. We investigated the predicted response time distributions of these two integrated computational cognitive models for performance on a psychomotor vigilance test under conditions of total sleep deprivation, simulated shift work, and sustained sleep restriction. The models generated equivalent predictions of response time distributions with excellent goodness-of-fit to the human data. More importantly, although the accounts involve different modeling approaches and levels of abstraction, they represent the effects of fatigue in a functionally equivalent way: in both, fatigue decreases the signal-to-noise ratio in decision processes and decreases response inhibition. This convergence suggests that sleep loss impairs psychomotor vigilance performance through degradation of the quality of cognitive processing, which provides a foundation for systematic investigation of the effects of sleep loss on other aspects of cognition. Our findings illustrate the value of treating different modeling formalisms as vehicles for discovery.

  1. A data-driven approach to modeling physical fatigue in the workplace using wearable sensors.

    PubMed

    Sedighi Maman, Zahra; Alamdar Yazdi, Mohammad Ali; Cavuoto, Lora A; Megahed, Fadel M

    2017-11-01

    Wearable sensors are currently being used to manage fatigue in professional athletics, transportation and mining industries. In manufacturing, physical fatigue is a challenging ergonomic/safety "issue" since it lowers productivity and increases the incidence of accidents. Therefore, physical fatigue must be managed. There are two main goals for this study. First, we examine the use of wearable sensors to detect physical fatigue occurrence in simulated manufacturing tasks. The second goal is to estimate the physical fatigue level over time. In order to achieve these goals, sensory data were recorded for eight healthy participants. Penalized logistic and multiple linear regression models were used for physical fatigue detection and level estimation, respectively. Important features from the five sensors locations were selected using Least Absolute Shrinkage and Selection Operator (LASSO), a popular variable selection methodology. The results show that the LASSO model performed well for both physical fatigue detection and modeling. The modeling approach is not participant and/or workload regime specific and thus can be adopted for other applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Fatigue assessment of an existing steel bridge by finite element modelling and field measurements

    NASA Astrophysics Data System (ADS)

    Kwad, J.; Alencar, G.; Correia, J.; Jesus, A.; Calçada, R.; Kripakaran, P.

    2017-05-01

    The evaluation of fatigue life of structural details in metallic bridges is a major challenge for bridge engineers. A reliable and cost-effective approach is essential to ensure appropriate maintenance and management of these structures. Typically, local stresses predicted by a finite element model of the bridge are employed to assess the fatigue life of fatigue-prone details. This paper illustrates an approach for fatigue assessment based on measured data for a connection in an old bascule steel bridge located in Exeter (UK). A finite element model is first developed from the design information. The finite element model of the bridge is calibrated using measured responses from an ambient vibration test. The stress time histories are calculated through dynamic analysis of the updated finite element model. Stress cycles are computed through the rainflow counting algorithm, and the fatigue prone details are evaluated using the standard SN curves approach and the Miner’s rule. Results show that the proposed approach can estimate the fatigue damage of a fatigue prone detail in a structure using measured strain data.

  3. The Spanish version of the Fatigue Assessment Scale: reliability and validity assessment in postpartum women

    PubMed Central

    Cano-Climent, Antoni; de Vries, Jolanda

    2017-01-01

    Background Fatigue is the most widely reported symptom by women during pregnancy, labour, the postpartum period, and early parenting. The objective was to translate the Fatigue Assessment Scale (FAS) into Spanish and assess its psychometric properties. Methods Instrumental Design. The FAS was translated into Spanish (FAS-e) using forward and back translation. A convenience sample was constituted with 870 postpartum women recruited at discharge from 17 public hospitals in Eastern Spain. Data was obtained from clinical records and self-administered questionnaires at discharge. Internal consistency, factor structure, comparisons between known groups and correlations with other variables were assessed. Results Cronbach’s alpha coefficient was .80. Findings on the dimensionality of the FAS-e scale indicated that it was sufficiently unidimensional. FAS-e scores were higher among women who had undergone caesarean births (p < .05), had a higher level of postpartum pain (p < .01), experienced difficulties during breastfeeding (p < .01) and had lower levels of self-efficacy for breastfeeding (p < .01). Conclusions An equivalent Spanish version of the FAS was obtained with good reliability and validity properties. FAS-e is an appropriate tool to measure postpartum fatigue. PMID:28970968

  4. Chronicity and remission of fatigue in patients with established HIV infection.

    PubMed

    Pence, Brian Wells; Barroso, Julie; Harmon, James L; Leserman, Jane; Salahuddin, Naima; Hammill, Bradley G

    2009-04-01

    Fatigue is one of the most common and debilitating complaints of HIV-positive individuals, potentially leading to important functional limitations. We recruited 128 HIV-positive individuals (fatigued and nonfatigued) between March 2005 and May 2006; 66% were male, 66% were African American, 45% had greater than a high school education, 67% were unemployed, and ages ranged from 26-66 (median, 44). Every 3 months for 15 months, participants completed a 56-item self-report fatigue scale developed and validated by the authors. Participants were classified as fatigued or not fatigued at each assessment and received scores for fatigue intensity and impact of fatigue on functioning. We used linear mixed-effects models to assess longitudinal variation in fatigue scores and generalized estimating equations for binary outcomes to model predictors of fatigue remission among those fatigued at baseline. At baseline, 88% of the sample was fatigued. Fatigue measures were highly correlated across time points (rho 0.63-0.85 [intensity], 0.63-0.80 [functioning]) and showed no evidence of overall improvement, deterioration, or convergence over time. Predictors of lower fatigue scores included higher income, employment, longer time since HIV diagnosis, and antiretroviral therapy use. Those employed at baseline were likely to show improvements in fatigue while those unemployed were not. Of those fatigued at baseline, 11% experienced remission during follow-up; remission was associated with Caucasian race and employment. In summary, fatigue intensity and related functional limitations were persistent, stable, and unlikely to remit over 15 months of follow-up in this sample of patients with established HIV infection.

  5. Creep-fatigue modelling in structural steels using empirical and constitutive creep methods implemented in a strip-yield model

    NASA Astrophysics Data System (ADS)

    Andrews, Benjamin J.

    The phenomena of creep and fatigue have each been thoroughly studied. More recently, attempts have been made to predict the damage evolution in engineering materials due to combined creep and fatigue loading, but these formulations have been strictly empirical and have not been used successfully outside of a narrow set of conditions. This work proposes a new creep-fatigue crack growth model based on constitutive creep equations (adjusted to experimental data) and Paris law fatigue crack growth. Predictions from this model are compared to experimental data in two steels: modified 9Cr-1Mo steel and AISI 316L stainless steel. Modified 9Cr-1Mo steel is a high-strength steel used in the construction of pressure vessels and piping for nuclear and conventional power plants, especially for high temperature applications. Creep-fatigue and pure creep experimental data from the literature are compared to model predictions, and they show good agreement. Material constants for the constitutive creep model are obtained for AISI 316L stainless steel, an alloy steel widely used for temperature and corrosion resistance for such components as exhaust manifolds, furnace parts, heat exchangers and jet engine parts. Model predictions are compared to pure creep experimental data, with satisfactory results. Assumptions and constraints inherent in the implementation of the present model are examined. They include: spatial discretization, similitude, plane stress constraint and linear elasticity. It is shown that the implementation of the present model had a non-trivial impact on the model solutions in 316L stainless steel, especially the spatial discretization. Based on these studies, the following conclusions are drawn: 1. The constitutive creep model consistently performs better than the Nikbin, Smith and Webster (NSW) model for predicting creep and creep-fatigue crack extension. 2. Given a database of uniaxial creep test data, a constitutive material model such as the one developed for

  6. The numerical high cycle fatigue damage model of fillet weld joint under weld-induced residual stresses

    NASA Astrophysics Data System (ADS)

    Nguyen Van Do, Vuong

    2018-04-01

    In this study, a development of nonlinear continuum damage mechanics (CDM) model for multiaxial high cycle fatigue is proposed in which the cyclic plasticity constitutive model has been incorporated in the finite element (FE) framework. T-joint FE simulation of fillet welding is implemented to characterize sequentially coupled three-dimensional (3-D) of thermo-mechanical FE formulation and simulate the welding residual stresses. The high cycle fatigue damage model is then taken account into the fillet weld joints under the various cyclic fatigue load types to calculate the fatigue life considering the residual stresses. The fatigue crack initiation and the propagation in the present model estimated for the total fatigue is compared with the experimental results. The FE results illustrated that the proposed high cycle fatigue damage model in this study could become a powerful tool to effectively predict the fatigue life of the welds. Parametric studies in this work are also demonstrated that the welding residual stresses cannot be ignored in the computation of the fatigue life of welded structures.

  7. Effect of a Diffusion Zone on Fatigue Crack Propagation in Layered FGMs

    NASA Astrophysics Data System (ADS)

    Hauber, Brett; Brockman, Robert; Paulino, Glaucio

    2008-02-01

    Research into functionally graded materials (FGMs) has led to advances in our ability to analyze cracks. However, two prominent aspects remain relatively unexplored: 1) development and validation of modeling methods for fatigue crack propagation in FGMs, and 2) experimental validation of stress intensity models in engineered materials such as two phase monolithic and graded materials. This work addresses some of these problems for a limited set of conditions, material systems (e.g., Ti/TiB), and material gradients. Numerical analyses are conducted for single edge notch bend (SENB) specimens. Stress intensity factors are computed using the specialized finite element code I-Franc (Illinois Fracture Analysis Code), which is tailored for both homogeneous and graded materials, as well as Franc2DL and ABAQUS. Crack extension is considered by means of specified crack increments, together with fatigue evaluations to predict crack propagation life. Results will be used to determine linear material gradient parameters that are significant for prediction of fatigue crack growth behavior.

  8. A Rasch Analysis of Assessments of Morning and Evening Fatigue in Oncology Patients Using the Lee Fatigue Scale.

    PubMed

    Lerdal, Anners; Kottorp, Anders; Gay, Caryl; Aouizerat, Bradley E; Lee, Kathryn A; Miaskowski, Christine

    2016-06-01

    To accurately investigate diurnal variations in fatigue, a measure needs to be psychometrically sound and demonstrate stable item function in relationship to time of day. Rasch analysis is a modern psychometric approach that can be used to evaluate these characteristics. To evaluate, using Rasch analysis, the psychometric properties of the Lee Fatigue Scale (LFS) in a sample of oncology patients. The sample comprised 587 patients (mean age 57.3 ± 11.9 years, 80% women) undergoing chemotherapy for breast, gastrointestinal, gynecological, or lung cancer. Patients completed the 13-item LFS within 30 minutes of awakening (i.e., morning fatigue) and before going to bed (i.e., evening fatigue). Rasch analysis was used to assess validity and reliability. In initial analyses of differential item function, eight of the 13 items functioned differently depending on whether the LFS was completed in the morning or in the evening. Subsequent analyses were conducted separately for the morning and evening fatigue assessments. Nine of the morning fatigue items and 10 of the evening fatigue items demonstrated acceptable goodness-of-fit to the Rasch model. Principal components analyses indicated that both morning and evening assessments demonstrated unidimensionality. Person-separation indices indicated that both morning and evening fatigue scales were able to distinguish four distinct strata of fatigue severity. Excluding four items from the morning fatigue scale and three items from the evening fatigue scale improved the psychometric properties of the LFS for assessing diurnal variations in fatigue severity in oncology patients. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  9. Probabilistic material strength degradation model for Inconel 718 components subjected to high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of high-cycle mechanical

  10. Reliability and Validity of Survey Instruments to Measure Work-Related Fatigue in the Emergency Medical Services Setting: A Systematic Review

    DOT National Transportation Integrated Search

    2018-01-11

    Background: This study sought to systematically search the literature to identify reliable and valid survey instruments for fatigue measurement in the Emergency Medical Services (EMS) occupational setting. Methods: A systematic review study design wa...

  11. The Piper Fatigue Scale-12 (PFS-12): psychometric findings and item reduction in a cohort of breast cancer survivors.

    PubMed

    Reeve, Bryce B; Stover, Angela M; Alfano, Catherine M; Smith, Ashley Wilder; Ballard-Barbash, Rachel; Bernstein, Leslie; McTiernan, Anne; Baumgartner, Kathy B; Piper, Barbara F

    2012-11-01

    Brief, valid measures of fatigue, a prevalent and distressing cancer symptom, are needed for use in research. This study's primary aim was to create a shortened version of the revised Piper Fatigue Scale (PFS-R) based on data from a diverse cohort of breast cancer survivors. A secondary aim was to determine whether the PFS captured multiple distinct aspects of fatigue (a multidimensional model) or a single overall fatigue factor (a unidimensional model). Breast cancer survivors (n = 799; stages in situ through IIIa; ages 29-86 years) were recruited through three SEER registries (New Mexico, Western Washington, and Los Angeles, CA) as part of the Health, Eating, Activity, and Lifestyle (HEAL) study. Fatigue was measured approximately 3 years post-diagnosis using the 22-item PFS-R that has four subscales (Behavior, Affect, Sensory, and Cognition). Confirmatory factor analysis was used to compare unidimensional and multidimensional models. Six criteria were used to make item selections to shorten the PFS-R: scale's content validity, items' relationship with fatigue, content redundancy, differential item functioning by race and/or education, scale reliability, and literacy demand. Factor analyses supported the original 4-factor structure. There was also evidence from the bi-factor model for a dominant underlying fatigue factor. Six items tested positive for differential item functioning between African-American and Caucasian survivors. Four additional items either showed poor association, local dependence, or content validity concerns. After removing these 10 items, the reliability of the PFS-12 subscales ranged from 0.87 to 0.89, compared to 0.90-0.94 prior to item removal. The newly developed PFS-12 can be used to assess fatigue in African-American and Caucasian breast cancer survivors and reduces response burden without compromising reliability or validity. This is the first study to determine PFS literacy demand and to compare PFS-R responses in African

  12. The Piper Fatigue Scale-12 (PFS-12): Psychometric Findings and Item Reduction in a Cohort of Breast Cancer Survivors

    PubMed Central

    Reeve, Bryce B.; Stover, Angela M.; Alfano, Catherine M.; Smith, Ashley Wilder; Ballard-Barbash, Rachel; Bernstein, Leslie; McTiernan, Anne; Baumgartner, Kathy B.; Piper, Barbara F.

    2013-01-01

    Purpose Brief, valid measures of fatigue, a prevalent and distressing cancer symptom, are needed for use in research. This study’s primary aim was to create a shortened version of the revised Piper Fatigue Scale (PFS-R) based on data from a diverse cohort of breast cancer survivors. A secondary aim was to determine whether the PFS captured multiple distinct aspects of fatigue (a multidimensional model) or a single overall fatigue factor (a unidimensional model). Methods Breast cancer survivors (n=799; stages in situ through IIIa; ages 29–86 yrs) were recruited through 3 SEER registries (New Mexico, Western Washington, and Los Angeles, CA) as part of the Health, Eating, Activity, and Lifestyle (HEAL) study. Fatigue was measured approximately 3 years post-diagnosis using the 22-item PFS-R that has 4 subscales (Behavior, Affect, Sensory, and Cognition). Confirmatory factor analysis was used to compare unidimensional and multidimensional models. Six criteria were used to make item selections to shorten the PFS-R: scale’s content validity, items’ relationship with fatigue, content redundancy, differential item functioning by race and/or education, scale reliability, and literacy demand. Results Factor analyses supported the original 4-factor structure. There was also evidence from the bi-factor model for a dominant underlying fatigue factor. Six items tested positive for differential item functioning between African-American and Caucasian survivors. Four additional items either showed poor association, local dependence, or content validity concerns. After removing these 10 items, the reliability of the PFS-12 subscales ranged from 0.87–0.89, compared to 0.90–0.94 prior to item removal. Conclusion The newly developed PFS-12 can be used to assess fatigue in African-American and Caucasian breast cancer survivors and reduces response burden without compromising reliability or validity. This is the first study to determine PFS literacy demand and to compare PFS

  13. Energy Dissipation-Based Method for Fatigue Life Prediction of Rock Salt

    NASA Astrophysics Data System (ADS)

    He, Mingming; Huang, Bingqian; Zhu, Caihui; Chen, Yunsheng; Li, Ning

    2018-05-01

    The fatigue test for rock salt is conducted under different stress amplitudes, loading frequencies, confining pressures and loading rates, from which the evaluation rule of the dissipated energy is revealed and analysed. The evolution of energy dissipation under fatigue loading is divided into three stages: the initial stage, the second stage and the acceleration stage. In the second stage, the energy dissipation per cycle remains stable and shows an exponential relation with the stress amplitude; the failure dissipated energy only depends on the mechanical behaviour of the rock salt and confining pressure, but it is immune to the loading conditions. The energy dissipation of fatigued rock salt is discussed, and a novel model for fatigue life prediction is proposed on the basis of energy dissipation. A simple model for evolution of the accumulative dissipated energy is established. Its prediction results are compared with the test results, and the proposed model is validated.

  14. A microstructurally based model of solder joints under conditions of thermomechanical fatigue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frear, D.R.; Burchett, S.N.; Rashid, M.M.

    The thermomechanical fatigue failure of solder joints in increasingly becoming an important reliability issue. In this paper we present two computational methodologies that have been developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions that are based on metallurgical tests as fundamental input for constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations from this model agree well with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. Themore » single phase model is a computational technique that was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests and the results showed an adequate fit to experimental results. The single-phase model could be very useful for conditions where microstructural evolution is not a dominant factor in fatigue.« less

  15. Quantitative physiologically based modeling of subjective fatigue during sleep deprivation.

    PubMed

    Fulcher, B D; Phillips, A J K; Robinson, P A

    2010-05-21

    A quantitative physiologically based model of the sleep-wake switch is used to predict variations in subjective fatigue-related measures during total sleep deprivation. The model includes the mutual inhibition of the sleep-active neurons in the hypothalamic ventrolateral preoptic area (VLPO) and the wake-active monoaminergic brainstem populations (MA), as well as circadian and homeostatic drives. We simulate sleep deprivation by introducing a drive to the MA, which we call wake effort, to maintain the system in a wakeful state. Physiologically this drive is proposed to be afferent from the cortex or the orexin group of the lateral hypothalamus. It is hypothesized that the need to exert this effort to maintain wakefulness at high homeostatic sleep pressure correlates with subjective fatigue levels. The model's output indeed exhibits good agreement with existing clinical time series of subjective fatigue-related measures, supporting this hypothesis. Subjective fatigue, adrenaline, and body temperature variations during two 72h sleep deprivation protocols are reproduced by the model. By distinguishing a motivation-dependent orexinergic contribution to the wake-effort drive, the model can be extended to interpret variation in performance levels during sleep deprivation in a way that is qualitatively consistent with existing, clinically derived results. The example of sleep deprivation thus demonstrates the ability of physiologically based sleep modeling to predict psychological measures from the underlying physiological interactions that produce them. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Measuring fatigue in people living with HIV/AIDS: psychometric characteristics of the HIV-Related Fatigue Scale

    PubMed Central

    BW, Pence; Barroso, J.; Leserman, J.; Harmon, J.L.; Salahuddin, N.

    2008-01-01

    In the era of life-prolonging antiretroviral therapy, chronic fatigue is one of the most prevalent and disabling symptoms of people living with HIV/AIDS, yet its measurement remains challenging. No instruments have been developed specifically to describe HIV-related fatigue. We assessed the reliability and construct validity of the HIV-Related Fatigue Scale (HRFS), a 56-item self-report instrument developed through formative qualitative research and designed to measure the intensity and consequences of fatigue as well as the circumstances surrounding fatigue in people living with HIV. The HRFS has three main scales, which measure fatigue intensity, the responsiveness of fatigue to circumstances and fatigue-related impairment of functioning. The functioning scale can be further divided into subscales measuring impairment of activities of daily living, impairment of mental functioning and impairment of social functioning. Each scale demonstrated high internal consistency (Cronbach’s alpha=0.93, 0.91 and 0.97 for the intensity, responsiveness and functioning scales, respectively). The HRFS scales also demonstrated satisfactory convergent validity when compared to other fatigue measures. HIV-Related Fatigue Scales were moderately correlated with quality of nighttime sleep (rho = 0.46, 0.47 and 0.35) but showed only weak correlations with daytime sleepiness (rho = 0.20, 0.33 and 0.18). The scales were also moderately correlated with general mental and physical health as measured by the SF-36 Health Survey (rho ranged from 0.30 to 0.68 across the 8 SF-36 subscales with most >0.40). The HRFS is a promising tool to help facilitate research on the prevalence, etiology and consequences of fatigue in people living with HIV. PMID:18608084

  17. Measuring fatigue in people living with HIV/AIDS: psychometric characteristics of the HIV-related fatigue scale.

    PubMed

    Pence, B W; Barroso, J; Leserman, J; Harmon, J L; Salahuddin, N

    2008-08-01

    In the era of life-prolonging antiretroviral therapy, chronic fatigue is one of the most prevalent and disabling symptoms of people living with HIV/AIDS, yet its measurement remains challenging. No instruments have been developed specifically to describe HIV-related fatigue. We assessed the reliability and construct validity of the HIV-Related Fatigue Scale (HRFS), a 56-item self-report instrument developed through formative qualitative research and designed to measure the intensity and consequences of fatigue as well as the circumstances surrounding fatigue in people living with HIV. The HRFS has three main scales, which measure fatigue intensity, the responsiveness of fatigue to circumstances and fatigue-related impairment of functioning. The functioning scale can be further divided into subscales measuring impairment of activities of daily living, impairment of mental functioning and impairment of social functioning. Each scale demonstrated high internal consistency (Cronbach's alpha=0.93, 0.91 and 0.97 for the intensity, responsiveness and functioning scales, respectively). The HRFS scales also demonstrated satisfactory convergent validity when compared to other fatigue measures. HIV-Related Fatigue Scales were moderately correlated with quality of nighttime sleep (rho=0.46, 0.47 and 0.35) but showed only weak correlations with daytime sleepiness (rho=0.20, 0.33 and 0.18). The scales were also moderately correlated with general mental and physical health as measured by the SF-36 Health Survey (rho ranged from 0.30 to 0.68 across the 8 SF-36 subscales with most >0.40). The HRFS is a promising tool to help facilitate research on the prevalence, etiology and consequences of fatigue in people living with HIV.

  18. A Model of BGA Thermal Fatigue Life Prediction Considering Load Sequence Effects

    PubMed Central

    Hu, Weiwei; Li, Yaqiu; Sun, Yufeng; Mosleh, Ali

    2016-01-01

    Accurate testing history data is necessary for all fatigue life prediction approaches, but such data is always deficient especially for the microelectronic devices. Additionally, the sequence of the individual load cycle plays an important role in physical fatigue damage. However, most of the existing models based on the linear damage accumulation rule ignore the sequence effects. This paper proposes a thermal fatigue life prediction model for ball grid array (BGA) packages to take into consideration the load sequence effects. For the purpose of improving the availability and accessibility of testing data, a new failure criterion is discussed and verified by simulation and experimentation. The consequences for the fatigue underlying sequence load conditions are shown. PMID:28773980

  19. The PedsQL in pediatric cancer: reliability and validity of the Pediatric Quality of Life Inventory Generic Core Scales, Multidimensional Fatigue Scale, and Cancer Module.

    PubMed

    Varni, James W; Burwinkle, Tasha M; Katz, Ernest R; Meeske, Kathy; Dickinson, Paige

    2002-04-01

    The Pediatric Quality of Life Inventory (PedsQL) is a modular instrument designed to measure health-related quality of life (HRQOL) in children and adolescents ages 2-18 years. The PedsQL 4.0 Generic Core Scales are multidimensional child self-report and parent proxy-report scales developed as the generic core measure to be integrated with the PedsQL disease specific modules. The PedsQL Multidimensional Fatigue Scale was designed to measure fatigue in pediatric patients. The PedsQL 3.0 Cancer Module was designed to measure pediatric cancer specific HRQOL. The PedsQL Generic Core Scales, Multidimensional Fatigue Scale, and Cancer Module were administered to 339 families (220 child self-reports; 337 parent proxy-reports). Internal consistency reliability for the PedsQL Generic Core Total Scale Score (alpha = 0.88 child, 0.93 parent report), Multidimensional Fatigue Total Scale Score (alpha = 0.89 child, 0.92 parent report) and most Cancer Module Scales (average alpha = 0.72 child, 0.87 parent report) demonstrated reliability acceptable for group comparisons. Validity was demonstrated using the known-groups method. The PedsQL distinguished between healthy children and children with cancer as a group, and among children on-treatment versus off-treatment. The validity of the PedsQL Multidimensional Fatigue Scale was further demonstrated through hypothesized intercorrelations with dimensions of generic and cancer specific HRQOL. The results demonstrate the reliability and validity of the PedsQL Generic Core Scales, Multidimensional Fatigue Scale, and Cancer Module in pediatric cancer. The PedsQL may be utilized as an outcome measure in clinical trials, research, and clinical practice. Copyright 2002 American Cancer Society.

  20. Predictive model of muscle fatigue after spinal cord injury in humans.

    PubMed

    Shields, Richard K; Chang, Ya-Ju; Dudley-Javoroski, Shauna; Lin, Cheng-Hsiang

    2006-07-01

    The fatigability of paralyzed muscle limits its ability to deliver physiological loads to paralyzed extremities during repetitive electrical stimulation. The purposes of this study were to determine the reliability of measuring paralyzed muscle fatigue and to develop a model to predict the temporal changes in muscle fatigue that occur after spinal cord injury (SCI). Thirty-four subjects underwent soleus fatigue testing with a modified Burke electrical stimulation fatigue protocol. The between-day reliability of this protocol was high (intraclass correlation, 0.96). We fit the fatigue index (FI) data to a quadratic-linear segmental polynomial model. FI declined rapidly (0.3854 per year) for the first 1.7 years, and more slowly (0.01 per year) thereafter. The rapid decline of FI immediately after SCI implies that a "window of opportunity" exists for the clinician if the goal is to prevent these changes. Understanding the timing of change in muscle endurance properties (and, therefore, load-generating capacity) after SCI may assist clinicians when developing therapeutic interventions to maintain musculoskeletal integrity.

  1. Analysis of methods for determining high cycle fatigue strength of a material with investigation of titanium-aluminum-vanadium gigacycle fatigue behavior

    NASA Astrophysics Data System (ADS)

    Pollak, Randall D.

    Today, aerospace engineers still grapple with the qualitative and quantitative understanding of fatigue behavior in the design and testing of turbine-driven jet engines. The Department of Defense has taken a very active role in addressing this problem with the formation of the National High Cycle Fatigue Science & Technology Program in 1994. The primary goal of this program is to further the understanding of high cycle fatigue (HCF) behavior and develop methods in order to mitigate the negative impact of HCF on aerospace operations. This research supports this program by addressing the fatigue strength testing guidance currently provided by the DoD to engine manufacturers, with the primary goal to investigate current methods and recommend a test strategy to characterize the fatigue strength of a material at a specified number of cycles, such as the 109 design goal specified by MIL-HDBK-1783B, or range of cycles. The research utilized the benefits of numerical simulation to initially investigate the staircase method for use in fatigue strength testing. The staircase method is a commonly used fatigue strength test, but its ability to characterize fatigue strength variability is extremely suspect. A modified staircase approach was developed and shown to significantly reduce bias and scatter in estimates for fatigue strength variance. Experimental validation of this proposed test strategy was accomplished using a dual-phase Ti-6Al-4V alloy. The HCF behavior of a second material with a very different microstructure (beta annealed Ti-6Al-4V) was also investigated. The random fatigue limit (RFL) model, a recently developed analysis tool, was investigated to characterize stress-life behavior but found to have difficulty representing fatigue life curves with sharp transitions. Two alternative models (bilinear and hyperbolic) were developed based on maximum likelihood methods to better characterize the Ti-6Al-4V fatigue life behavior. These models provided a good fit to the

  2. Understanding health-related quality of life in caregivers of civilians and service members/veterans with traumatic brain injury: Establishing the reliability and validity of PROMIS Fatigue and Sleep Disturbance item banks.

    PubMed

    Carlozzi, Noelle E; Ianni, Phillip A; Tulsky, David S; Brickell, Tracey A; Lange, Rael T; French, Louis M; Cella, David; Kallen, Michael A; Miner, Jennifer A; Kratz, Anna L

    2018-06-19

    To examine the reliability and validity of Patient Reported Outcomes Measurement Information System (PROMIS) measures of sleep disturbance and fatigue in TBI caregivers and to determine the severity of fatigue and sleep disturbance in these caregivers. Cross-sectional survey data collected through an online data capture platform. Four rehabilitation hospitals and Walter Reed National Military Medical Center. Caregivers (N=560) of civilians (n=344) and service member/veterans (n=216) with TBI. Not Applicable MAIN OUTCOME MEASURES: PROMIS sleep and fatigue measures administered as both computerized adaptive tests (CATs) and 4-item short forms (SFs). For both samples, floor and ceiling effects for the PROMIS measures were low (<11%), internal consistency was very good (all alphas ≥0.80), and test-retest reliability was acceptable (all r≥0.70 except for the fatigue CAT in the service member/veteran sample r=0.63). Convergent validity was supported by moderate correlations between the PROMIS and related measures. Discriminant validity was supported by low correlations between PROMIS measures and measures of dissimilar constructs. PROMIS scores indicated significantly worse sleep and fatigue for those caring for someone with high levels versus low levels of impairment. Findings support the reliability and validity of the PROMIS CAT and SF measures of sleep disturbance and fatigue in caregivers of civilians and service members/veterans with TBI. Copyright © 2018. Published by Elsevier Inc.

  3. A Fatigue Life Prediction Model of Welded Joints under Combined Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Goes, Keurrie C.; Camarao, Arnaldo F.; Pereira, Marcos Venicius S.; Ferreira Batalha, Gilmar

    2011-01-01

    A practical and robust methodology is developed to evaluate the fatigue life in seam welded joints when subjected to combined cyclic loading. The fatigue analysis was conducted in virtual environment. The FE stress results from each loading were imported to fatigue code FE-Fatigue and combined to perform the fatigue life prediction using the S x N (stress x life) method. The measurement or modelling of the residual stresses resulting from the welded process is not part of this work. However, the thermal and metallurgical effects, such as distortions and residual stresses, were considered indirectly through fatigue curves corrections in the samples investigated. A tube-plate specimen was submitted to combined cyclic loading (bending and torsion) with constant amplitude. The virtual durability analysis result was calibrated based on these laboratory tests and design codes such as BS7608 and Eurocode 3. The feasibility and application of the proposed numerical-experimental methodology and contributions for the technical development are discussed. Major challenges associated with this modelling and improvement proposals are finally presented.

  4. Reliability and validity of Short Form 36 Version 2 to measure health perceptions in a sub-group of individuals with fatigue.

    PubMed

    Davenport, Todd E; Stevens, Staci R; Baroni, Katie; Van Ness, J Mark; Snell, Christopher R

    2011-01-01

    To determine the validity and reliability of Short Form 36 Version 2 (SF36v2) in sub-groups of individuals with fatigue. Thirty subjects participated in this study, including n = 16 subjects who met case definition criteria for chronic fatigue syndrome (CFS) and n = 14 non-disabled sedentary matched control subjects. SF36v2 and Multidimensional Fatigue Inventory (MFI-20) were administered before two maximal cardiopulmonary exercise tests (CPETs) administered 24 h apart and an open-ended recovery questionnaire was administered 7 days after CPET challenge. The main outcome measures were self-reported time to recover to pre-challenge functional and symptom status, frequency of post-exertional symptoms and SF36v2 sub-scale scores. Individuals with CFS demonstrated significantly lower SF36v2 and MFI-20 sub-scale scores prior to CPET. Between-group differences remained significant post-CPET, however, there were no significant group by test interaction effects. Subjects with CFS reported significantly more total symptoms (p < 0.001), as well as reports of fatigue (p < 0.001), neuroendocrine (p < 0.001), immune (p < 0.01), pain (p < 0.01) and sleep disturbance (p < 0.01) symptoms than control subjects as a result of CPET. Many symptom counts demonstrated significant relationships with SF36v2 sub-scale scores (p < 0.05). SF36v2 and MFI-20 sub-scale scores demonstrated significant correlations (p < 0.05). Various SF36v2 sub-scale scores demonstrated significant predictive validity to identify subjects who recovered from CPET challenge within 1 day and 7 days (p < 0.05). Potential floor effects were observed for both questionnaires for individuals with CFS. Various sub-scales of SF36v2 demonstrated adequate reliability and validity for clinical and research applications. Adequacy of sensitivity to change of SF36v2 as a result of a fatiguing stressor should be the subject of additional study.

  5. The assessment of fatigue: Psychometric qualities and norms for the Checklist individual strength.

    PubMed

    Worm-Smeitink, M; Gielissen, M; Bloot, L; van Laarhoven, H W M; van Engelen, B G M; van Riel, P; Bleijenberg, G; Nikolaus, S; Knoop, H

    2017-07-01

    The Checklist Individual Strength (CIS) measures four dimensions of fatigue: Fatigue severity, concentration problems, reduced motivation and activity. On the fatigue severity subscale, a cut-off score of 35 is used. This study 1) investigated the psychometric qualities of the CIS; 2) validated the cut-off score for severe fatigue and 3) provided norms. Representatives of the Dutch general population (n=2288) completed the CIS. The factor structure was investigated using an exploratory factor analysis. Internal consistency and test-retest reliability were determined. Concurrent validity was assessed in two additional samples by correlating the CIS with other fatigue scales (Chalder Fatigue Questionnaire, MOS Short form-36 Vitality subscale, EORTC QLQ-C30 fatigue subscale). To validate the fatigue severity cut-off score, a Receiver Operating Characteristics analysis was performed with patients referred to a chronic fatigue treatment centre (n=5243) and a healthy group (n=1906). Norm scores for CIS subscales were calculated for the general population, patients with chronic fatigue syndrome (CFS; n=1407) and eight groups with other medical conditions (n=1411). The original four-factor structure of the CIS was replicated. Internal consistency (α=0.84-0.95) and test-retest reliability (r=0.74-0.86) of the subscales were high. Correlations with other fatigue scales were moderate to high. The 35 points cut-off score for severe fatigue is appropriate, but, given the 17% false positive rate, should be adjusted to 40 for research in CFS. The CIS is a valid and reliable tool for the assessment of fatigue, with a validated cut-off score for severe fatigue that can be used in clinical practice. Copyright © 2017. Published by Elsevier Inc.

  6. A phenomenological model of muscle fatigue and the power-endurance relationship.

    PubMed

    James, A; Green, S

    2012-11-01

    The relationship between power output and the time that it can be sustained during exercise (i.e., endurance) at high intensities is curvilinear. Although fatigue is implicit in this relationship, there is little evidence pertaining to it. To address this, we developed a phenomenological model that predicts the temporal response of muscle power during submaximal and maximal exercise and which was based on the type, contractile properties (e.g., fatiguability), and recruitment of motor units (MUs) during exercise. The model was first used to predict power outputs during all-out exercise when fatigue is clearly manifest and for several distributions of MU type. The model was then used to predict times that different submaximal power outputs could be sustained for several MU distributions, from which several power-endurance curves were obtained. The model was simultaneously fitted to two sets of human data pertaining to all-out exercise (power-time profile) and submaximal exercise (power-endurance relationship), yielding a high goodness of fit (R(2) = 0.96-0.97). This suggested that this simple model provides an accurate description of human power output during submaximal and maximal exercise and that fatigue-related processes inherent in it account for the curvilinearity of the power-endurance relationship.

  7. Structure-property relations and modeling of small crack fatigue behavior of various magnesium alloys

    NASA Astrophysics Data System (ADS)

    Bernard, Jairus Daniel

    Lightweight structural components are important to the automotive and aerospace industries so that better fuel economy can be realized. Magnesium alloys in particular are being examined to fulfill this need due to their attractive stiffness- and strength-to-weight ratios when compared to other materials. However, when introducing a material into new roles, one needs to properly characterize its mechanical properties. Fatigue behavior is especially important considering aerospace and automotive component applications. Therefore, quantifying the structure-property relationships and accurately predicting the fatigue behavior for these materials are vital. This study has two purposes. The first is to quantify the structure-property relationships for the fatigue behavior in an AM30 magnesium alloy. The second is to use the microstructural-based MultiStage Fatigue (MSF) model in order to accurately predict the fatigue behavior of three magnesium alloys: AM30, Elektron 21, and AZ61. While some studies have previously quantified the MSF material constants for several magnesium alloys, detailed research into the fatigue regimes, notably the microstructurally small crack (MSC) region, is lacking. Hence, the contribution of this work is the first of its kind to experimentally quantify the fatigue crack incubation and MSC regimes that are used for the MultiStage Fatigue model. Using a multi-faceted experimental approach, these regimes were explored with a replica method that used a dual-stage silicone based compound along with previously published in situ fatigue tests. These observations were used in calibrating the MultiStage Fatigue model.

  8. Monitoring driver fatigue using a single-channel electroencephalographic device: A validation study by gaze-based, driving performance, and subjective data.

    PubMed

    Morales, José M; Díaz-Piedra, Carolina; Rieiro, Héctor; Roca-González, Joaquín; Romero, Samuel; Catena, Andrés; Fuentes, Luis J; Di Stasi, Leandro L

    2017-12-01

    Driver fatigue can impair performance as much as alcohol does. It is the most important road safety concern, causing thousands of accidents and fatalities every year. Thanks to technological developments, wearable, single-channel EEG devices are now getting considerable attention as fatigue monitors, as they could help drivers to assess their own levels of fatigue and, therefore, prevent the deterioration of performance. However, the few studies that have used single-channel EEG devices to investigate the physiological effects of driver fatigue have had inconsistent results, and the question of whether we can monitor driver fatigue reliably with these EEG devices remains open. Here, we assessed the validity of a single-channel EEG device (TGAM-based chip) to monitor changes in mental state (from alertness to fatigue). Fifteen drivers performed a 2-h simulated driving task while we recorded, simultaneously, their prefrontal brain activity and saccadic velocity. We used saccadic velocity as the reference index of fatigue. We also collected subjective ratings of alertness and fatigue, as well as driving performance. We found that the power spectra of the delta EEG band showed an inverted U-shaped quadratic trend (EEG power spectra increased for the first hour and half, and decreased during the last thirty minutes), while the power spectra of the beta band linearly increased as the driving session progressed. Coherently, saccadic velocity linearly decreased and speeding time increased, suggesting a clear effect of fatigue. Subjective data corroborated these conclusions. Overall, our results suggest that the TGAM-based chip EEG device is able to detect changes in mental state while performing a complex and dynamic everyday task as driving. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Empirical modeling of environment-enhanced fatigue crack propagation in structural alloys for component life prediction

    NASA Technical Reports Server (NTRS)

    Richey, Edward, III

    1995-01-01

    This research aims to develop the methods and understanding needed to incorporate time and loading variable dependent environmental effects on fatigue crack propagation (FCP) into computerized fatigue life prediction codes such as NASA FLAGRO (NASGRO). In particular, the effect of loading frequency on FCP rates in alpha + beta titanium alloys exposed to an aqueous chloride solution is investigated. The approach couples empirical modeling of environmental FCP with corrosion fatigue experiments. Three different computer models have been developed and incorporated in the DOS executable program. UVAFAS. A multiple power law model is available, and can fit a set of fatigue data to a multiple power law equation. A model has also been developed which implements the Wei and Landes linear superposition model, as well as an interpolative model which can be utilized to interpolate trends in fatigue behavior based on changes in loading characteristics (stress ratio, frequency, and hold times).

  10. An Investigation of High-Cycle Fatigue Models for Metallic Structures Exhibiting Snap-Through Response

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.; Sweitzer, Karl A.

    2007-01-01

    A study is undertaken to develop a methodology for determining the suitability of various high-cycle fatigue models for metallic structures subjected to combined thermal-acoustic loadings. Two features of this problem differentiate it from the fatigue of structures subject to acoustic loading alone. Potentially large mean stresses associated with the thermally pre- and post-buckled states require models capable of handling those conditions. Snap-through motion between multiple post-buckled equilibrium positions introduces very high alternating stress. The thermal-acoustic time history response of a clamped aluminum beam structure with geometric and material nonlinearities is determined via numerical simulation. A cumulative damage model is employed using a rainflow cycle counting scheme and fatigue estimates are made for 2024-T3 aluminum using various non-zero mean fatigue models, including Walker, Morrow, Morrow with true fracture strength, and MMPDS. A baseline zero-mean model is additionally considered. It is shown that for this material, the Walker model produces the most conservative fatigue estimates when the stress response has a tensile mean introduced by geometric nonlinearity, but remains in the linear elastic range. However, when the loading level is sufficiently high to produce plasticity, the response becomes more fully reversed and the baseline, Morrow, and Morrow with true fracture strength models produce the most conservative fatigue estimates.

  11. A Three-Parameter Model for Predicting Fatigue Life of Ductile Metals Under Constant Amplitude Multiaxial Loading

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Li, Jing; Zhang, Zhong-ping

    2013-04-01

    In this article, a fatigue damage parameter is proposed to assess the multiaxial fatigue lives of ductile metals based on the critical plane concept: Fatigue crack initiation is controlled by the maximum shear strain, and the other important effect in the fatigue damage process is the normal strain and stress. This fatigue damage parameter introduces a stress-correlated factor, which describes the degree of the non-proportional cyclic hardening. Besides, a three-parameter multiaxial fatigue criterion is used to correlate the fatigue lifetime of metallic materials with the proposed damage parameter. Under the uniaxial loading, this three-parameter model reduces to the recently developed Zhang's model for predicting the uniaxial fatigue crack initiation life. The accuracy and reliability of this three-parameter model are checked against the experimental data found in literature through testing six different ductile metals under various strain paths with zero/non-zero mean stress.

  12. The measurement of fatigue in chronic illness: a systematic review of unidimensional and multidimensional fatigue measures.

    PubMed

    Whitehead, Lisa

    2009-01-01

    Fatigue is a common symptom associated with a wide range of chronic diseases. A large number of instruments have been developed to measure fatigue. An assessment regarding the reliability, validity, and utility of fatigue measures is time-consuming for the clinician and researcher, and few reviews exist on which to draw such information. The aim of this article is to present a critical review of fatigue measures, the populations in which the scales have been used, and the extent to which the psychometric properties of each instrument have been evaluated to provide clinicians and researchers with information on which to base decisions. Seven databases were searched for all articles that measured fatigue and offered an insight into the psychometric properties of the scales used over the period 1980-2007. Criteria for judging the "ideal" measure were developed to encompass scale usability, clinical/research utility, and the robustness of psychometric properties. Twenty-two fatigue measures met the inclusion criteria and were evaluated. A further 17 measures met some of the criteria, but have not been tested beyond initial development, and are reviewed briefly at the end of the article. The review did not identify any instrument that met all the criteria of an ideal instrument. However, a small number of short instruments demonstrated good psychometric properties (Fatigue Severity Scale [FSS], Fatigue Impact Scale [FIS], and Brief Fatigue Inventory [BFI]), and three comprehensive instruments demonstrated the same (Fatigue Symptom Inventory [FSI], Multidimensional Assessment of Fatigue [MAF], and Multidimensional Fatigue Symptom Inventory [MFSI]). Only four measures (BFI, FSS, FSI, and MAF) demonstrated the ability to detect change over time. The clinician and researcher also should consider the populations in which the scale has been used previously to assess its validity with their own patient group, and assess the content of a scale to ensure that the key qualitative

  13. Visual fatigue modeling for stereoscopic video shot based on camera motion

    NASA Astrophysics Data System (ADS)

    Shi, Guozhong; Sang, Xinzhu; Yu, Xunbo; Liu, Yangdong; Liu, Jing

    2014-11-01

    As three-dimensional television (3-DTV) and 3-D movie become popular, the discomfort of visual feeling limits further applications of 3D display technology. The cause of visual discomfort from stereoscopic video conflicts between accommodation and convergence, excessive binocular parallax, fast motion of objects and so on. Here, a novel method for evaluating visual fatigue is demonstrated. Influence factors including spatial structure, motion scale and comfortable zone are analyzed. According to the human visual system (HVS), people only need to converge their eyes to the specific objects for static cameras and background. Relative motion should be considered for different camera conditions determining different factor coefficients and weights. Compared with the traditional visual fatigue prediction model, a novel visual fatigue predicting model is presented. Visual fatigue degree is predicted using multiple linear regression method combining with the subjective evaluation. Consequently, each factor can reflect the characteristics of the scene, and the total visual fatigue score can be indicated according to the proposed algorithm. Compared with conventional algorithms which ignored the status of the camera, our approach exhibits reliable performance in terms of correlation with subjective test results.

  14. Evaluation of Fatigue Crack Growth and Fracture Properties of Cryogenic Model Materials

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Forth, Scott C.; Everett, Richard A., Jr.; Newman, James C., Jr.; Kimmel, William M.

    2002-01-01

    The criteria used to prevent failure of wind-tunnel models and support hardware were revised as part of a project to enhance the capabilities of cryogenic wind tunnel testing at NASA Langley Research Center. Specifically, damage-tolerance fatigue life prediction methods are now required for critical components, and material selection criteria are more general and based on laboratory test data. The suitability of two candidate model alloys (AerMet 100 and C-250 steel) was investigated by obtaining the fatigue crack growth and fracture data required for a damage-tolerance fatigue life analysis. Finally, an example is presented to illustrate the newly implemented damage tolerance analyses required of wind-tunnel model system components.

  15. Corrosion fatigue crack propagation in metals

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1990-01-01

    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  16. Fatigue crack growth with single overload - Measurement and modeling

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J., Jr.; Dexter, R. J.

    1987-01-01

    This paper compares experiments with an analytical model of fatigue crack growth under variable amplitude. The stereoimaging technique was used to measure displacements near the tips of fatigue cracks undergoing simple variations in load amplitude-single overloads and overload/underload combinations. Measured displacements were used to compute strains, and stresses were determined from the strains. Local values of crack driving force (Delta-K effective) were determined using both locally measured opening loads and crack tip opening displacements. Experimental results were compared with simulations made for the same load variation conditions using Newman's FAST-2 model. Residual stresses caused by overloads, crack opening loads, and growth retardation periods were compared.

  17. Capturing the post-exertional exacerbation of fatigue following physical and cognitive challenge in patients with chronic fatigue syndrome.

    PubMed

    Keech, Andrew; Sandler, Carolina X; Vollmer-Conna, Ute; Cvejic, Erin; Lloyd, Andrew R; Barry, Benjamin K

    2015-12-01

    To design and validate an instrument to capture the characteristic post-exertional exacerbation of fatigue in patients with chronic fatigue syndrome (CFS). Firstly, patients with CFS (N=19) participated in five focus group discussions to jointly explore the nature of fatigue and dynamic changes after activity, and inform development of a self-report instrument - the Fatigue and Energy Scale (FES). The psychometric properties of the FES were then examined in two case-control challenge studies: a physically-demanding challenge (moderate-intensity aerobic exercise; N=10 patients), and a cognitively-demanding challenge (simulated driving; N=11 patients). Finally, ecological validity was evaluated by recording in association with tasks of daily living (N=9). Common descriptors for fatigue included 'exhaustion', 'tiredness', 'drained of energy', 'heaviness in the limbs', and 'foggy in the head'. Based on the qualitative data, fatigue was conceptualised as consisting of 'physical' and 'cognitive' dimensions. Analysis of the psychometric properties of the FES showed good sensitivity to the changing symptoms during a post-exertional exacerbation of fatigue following both physical exercise and driving simulation challenges, as well as tasks of daily living. The 'fatigue' experienced by patients with CFS covers both physical and cognitive components. The FES captured the phenomenon of a post-exertional exacerbation of fatigue commonly reported by patients with CFS. The characteristics of the symptom response to physical and cognitive challenges were similar. Both the FES and the challenge paradigms offer key tools to reliably investigate biological correlates of the dynamic changes in fatigue. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Multidimensional fatigue inventory and post-polio syndrome - a Rasch analysis.

    PubMed

    Dencker, Anna; Sunnerhagen, Katharina S; Taft, Charles; Lundgren-Nilsson, Åsa

    2015-02-12

    Fatigue is a common symptom in post-polio syndrome (PPS) and can have a substantial impact on patients. There is a need for validated questionnaires to assess fatigue in PPS for use in clinical practice and research. The aim with this study was to assess the validity and reliability of the Swedish version of Multidimensional Fatigue Inventory (MFI-20) in patients with PPS using the Rasch model. A total of 231 patients diagnosed with PPS completed the Swedish MFI-20 questionnaire at post-polio out-patient clinics in Sweden. The mean age of participants was 62 years and 61% were females. Data were tested against assumptions of the Rasch measurement model (i.e. unidimensionality of the scale, good item fit, independency of items and absence of differential item functioning). Reliability was tested with the person separation index (PSI). A transformation of the ordinal total scale scores into an interval scale for use in parametric analysis was performed. Dummy cases with minimum and maximum scoring were used for the transformation table to achieve interval scores between 20 and 100, which are comprehensive limits for the MFI-20 scale. An initial Rasch analysis of the full scale with 20 items showed misfit to the Rasch model (p < 0.001). Seven items showed slightly disordered thresholds and person estimates were not significantly improved by rescoring items. Analysis of MFI-20 scale with the 5 MFI-20 subscales as testlets showed good fit with a non-significant x (2) value (p = 0.089). PSI for the testlet solution was 0.86. Local dependency was present in all subscales and fit to the Rasch model was solved with testlets within each subscale. PSI ranged from 0.52 to 0.82 in the subscales. This study shows that the Swedish MFI-20 total scale and subscale scores yield valid and reliable measures of fatigue in persons with post-polio syndrome. The Rasch transformed total scores can be used for parametric statistical analyses in future clinical studies.

  19. Modeling of long-term fatigue damage of soft tissue with stress softening and permanent set effects

    PubMed Central

    Martin, Caitlin; Sun, Wei

    2012-01-01

    One of the major failure modes of bioprosthetic heart valves is non-calcific structural deterioration due to fatigue of the tissue leaflets. Experimental methods to characterize tissue fatigue properties are complex and time-consuming. A constitutive fatigue model that could be calibrated by isolated material tests would be ideal for investigating the effects of more complex loading conditions. However, there is a lack of tissue fatigue damage models in the literature. To address these limitations, in this study, a phenomenological constitutive model was developed to describe the stress softening and permanent set effects of tissue subjected to long-term cyclic loading. The model was used to capture characteristic uniaxial fatigue data for glutaraldehyde-treated bovine pericardium and was then implemented into finite element software. The simulated fatigue response agreed well with the experimental data and thus demonstrates feasibility of this approach. PMID:22945802

  20. Fatigue in children with juvenile idiopathic arthritis: reliability of the "Pediatric Quality of Life Inventory-Multidimensional Fatigue Scale".

    PubMed

    Paulo, Luciana Tudech S P; Len, Claudio A; Hilario, Maria Odete E; Pedroso, Soraya A; Vitalle, Maria Sylvia S; Terreri, Maria Teresa

    2015-01-01

    The aim of the study was (1) to translate the "Pediatric Quality of Life Inventory-Multidimensional Fatigue Scale" (PedsQL-Fatigue) into Brazilian Portuguese language and culture and evaluate its reliability and (2) to measure fatigue among patients with juvenile idiopathic arthritis (JIA): (1) Translation of the PedsQL-Fatigue by two bilingual researchers; (2) Backtranslation into English assessed by the authors of the original version; (3) Pilot study with five patients followed in the Pediatric Rheumatology Outpatient Clinic and their parents; and (4) Field study and assessment of measurement properties (internal consistency, reproducibility, and construct validity). In this stage, the scale was administered to 67 patients with JIA and 63 healthy individuals, aged from 2 to 18 years old, matched by age (from 2 to 4, 5 to 7, 8 to 12, and from 13 to 18 years old). Cronbach's alpha coefficient ranged from 0.6 to 0.8 for children and parents, indicating the instrument's good internal consistency. The scale's construct validity was confirmed by a satisfactory Spearman's coefficient between the PedsQL-Fatigue and the generic PedsQL 4.0 (0.840 for the children and 0.742 for the parents). Reproducibility was also adequate (0.764 for the children and 0.938 for the parents). No differences were found between the scores obtained by the JIA group and control group, though lower scores were observed among patients with clinically active JIA when compared to those without clinical activity. The PedsQL-Fatigue is a valid and reliable tool, and that can be used to measure fatigue among patients with JIA.

  1. Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Sloss, Clayton

    2014-10-01

    Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage ( e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.

  2. Proof test and fatigue crack growth modeling on 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Poe, C. C., Jr.; Dawicke, D. S.

    1990-01-01

    Pressure proof testing of aircraft fuselage structures has been suggested as a means of screening critical crack sizes and of extending their useful life. The objective of this paper is to study the proof-test concept and to model the crack-growth process on a ductile material. Simulated proof and operational fatigue life tests have been conducted on cracked panels made of 2024-T3 aluminum alloy sheet material. A fatigue crack-closure model was modified to simulate the proof test and operational fatigue cycling. Using crack-growth rate and resistance-curve data, the model was able to predict crack growth during and after the proof load. These tests and analyses indicate that the proof test increases fatigue life; but the beneficial life, after a 1.33 or 1.5 proof, was less than a few hundred cycles.

  3. A New Perspective on Fatigue Performance of Advanced High- Strength Steels (AHSS) GMAW Joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Chiang, Dr. John; Kuo, Dr. Min

    2008-01-01

    Weld fatigue performance is a critical aspect for application of advanced high-strength steels (AHSS) in automotive body structures. A comparative study has been conducted to evaluate the fatigue life of AHSS welds. The material studied included seven AHSS of various strength levels - DP 600, DP 780, DP 980, M130, M220, solution annealed boron and fully hardened boron steels. Two conventional steels, HSLA 590 and DR 210, were also included for baseline comparison. Lap fillet welds were made on 2-mm nominal thick sheets by the gas metal arc welding process (GMAW). Fatigue test was conducted under a number of stressmore » levels to obtain the S/N curves of the weld joints. It was found that, unlike in the static and impact loading conditions, the fatigue performance of AHSS is not influenced by the HAZ softening in AHSS. There are appreciable differences in the fatigue lives among different AHSS. Changes in weld parameters can influence the fatigue life of the weld joints, particularly of these of higher strength AHSS. A model is developed to predict the fatigue performance of AHSS welds. The validity of the model is benchmarked with the experimental results. This model is capable to capture the effects of weld geometry and weld microstructure and strength on the fatigue performance experimentally observed. The theoretical basis and application of the newly developed fatigue modeling methodology will be discussed.« less

  4. A psychometric study of the multidimensional fatigue inventory to assess fatigue in patients with schizophrenia spectrum disorders.

    PubMed

    Hedlund, Lena; Gyllensten, Amanda Lundvik; Hansson, Lars

    2015-04-01

    Fatigue is frequently reported by patients with mental illness. The multidimensional fatigue inventory (MFI-20) is a self-assessment instrument with 20 items including five dimensions of fatigue. The purpose of this study was to examine the test-retest reliability, internal consistency, convergent construct validity and feasibility of using MFI-20 in patients with schizophrenia spectrum disorders. Patients completed two self-assessment instruments, MFI-20 (n = 93) and Visual Analogue Scale (n = 79), twice within 1 week ± 2 days. Fifty-three patients also rated the feasibility of responding to the MFI-20 with a Likert scale. The test-retest reliability and validity were analysed by using Spearman's correlations and internal consistency by calculating Cronbach's α. The test-retest showed a correlation between .66 and .91 for all subscales of MFI. The internal consistency was .92. The analysis of convergent construct validity showed a correlation of .68 (time 1) and .77 (time 2). No item was systematically identified as being difficult to answer.

  5. Bidirectional Relationships Between Fatigue and Everyday Experiences in Persons Living With HIV.

    PubMed

    Cook, Paul F; Hartson, Kimberly R; Schmiege, Sarah J; Jankowski, Catherine; Starr, Whitney; Meek, Paula

    2016-06-01

    Fatigue symptoms are very common among persons living with HIV (PLWH). Fatigue is related to functional and psychological problems and to treatment nonadherence. Using secondary data from ecological momentary assessment, we examined fatigue as a predictor of PLWH everyday experiences. In bidirectional analyses based on the shape shifters model, we also examined these experiences as predictors of fatigue. Data were examined from 67 PLWH who completed daily surveys on a handheld computer. Brief validated scales were used to assess participants' control beliefs, mood, stress, coping, social support, experience of stigma, and motivation. At the beginning and end of the study, fatigue was measured with two CES-D items that have been used in past HIV symptom research. Multilevel models and logistic regression were used to test reciprocal predictive relationships between variables. Moderate to severe fatigue affected 45% of PLWH in the study. Initial fatigue predicted PLWH subsequent overall level of control beliefs, mood, stress, coping, and social support, all p < .05. These state variables remained relatively constant over time, regardless of participants' initial fatigue. In tests for reciprocal relationships with 33 PLWH, average daily stress, OR = 4.74, and stigma, OR = 4.86, also predicted later fatigue. Fatigue predicted several daily survey variables including stress and social support. Stress and support in turn predicted fatigue at a later time, suggesting a self-perpetuating cycle but also a possible avenue for intervention. Future studies should examine daily variation in fatigue among PLWH and its relation to other everyday experiences and behaviors. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Oxidative stress and fatigue in systemic lupus erythematosus.

    PubMed

    Segal, B M; Thomas, W; Zhu, X; Diebes, A; McElvain, G; Baechler, E; Gross, M

    2012-08-01

    The objective of this study is to investigate the relationship of oxidative stress to fatigue in systemic lupus erythematosus (SLE). Patients with a confirmed diagnosis of SLE by ACR criteria and healthy controls completed validated questionnaires to assess depression and fatigue. Fatigue was measured with the Fatigue Severity Scale (FSS) and the Profile of Fatigue (Prof-F). Visual analogue scales (VAS) were also used to assess fatigue and pain. Depression was measured with the Center for Epidemiologic Studies Depression Scale (CES-D). Plasma F(2)-isoprostane was measured with gas chromatography/mass spectroscopy to assess oxidative stress. Evaluation included medical record review, physical exam and calculation of body mass index (BMI), disease activity (SLEDAI) and damage (SLICC) in the SLE patients. Seventy-one SLE patients with low disease activity (mean SLEDAI = 1.62 standard error (SE) 0.37, range 0-8) were compared to 51 controls. Fatigue-limiting physical activity (defined as FSS ≥ 4) was present in 56% of patients and 12% of controls. F(2)-isoprostane was higher in SLE patients with fatigue compared to not-fatigued SLE subjects (p = .0076) who were otherwise similar in ethnicity, disease activity and cardiovascular risk factors. Plasma F(2)-isoprostane was strongly correlated with FSS and Profile of Somatic Fatigue (Prof-S) (p < .0001), VAS fatigue (p = .005), CES-D (p = .008) and with BMI (p = .0001.) In a multivariate model, F(2)-isoprostane was a significant predictor of FSS after adjustment for age, BMI, pain and depression (p = .0002). Fatigue in SLE patients with low disease activity is associated with increased F(2)-isoprostane. F2-isoprostane could provide a useful biomarker to explore mitochondrial function and the regulation of oxidative pathways in patients with SLE in whom fatigue is a debilitating symptom.

  7. Poststroke Fatigue: Who Is at Risk for an Increase in Fatigue?

    PubMed Central

    van Eijsden, Hanna Maria; van de Port, Ingrid Gerrie Lambert; Visser-Meily, Johanna Maria August; Kwakkel, Gert

    2012-01-01

    Background. Several studies have examined determinants related to post-stroke fatigue. However, it is unclear which determinants can predict an increase in poststroke fatigue over time. Aim. This prospective cohort study aimed to identify determinants which predict an increase in post-stroke fatigue. Methods. A total of 250 patients with stroke were examined at inpatient rehabilitation discharge (T0) and 24 weeks later (T1). Fatigue was measured using the Fatigue Severity Scale (FSS). An increase in post-stroke fatigue was defined as an increase in the FSS score beyond the 95% limits of the standard error of measurement of the FSS (i.e., 1.41 points) between T0 and T1. Candidate determinants included personal factors, stroke characteristics, physical, cognitive, and emotional functions, and activities and participation and were assessed at T0. Factors predicting an increase in fatigue were identified using forward multivariate logistic regression analysis. Results. The only independent predictor of an increase in post-stroke fatigue was FSS (OR 0.50; 0.38–0.64, P < 0.001). The model including FSS at baseline correctly predicted 7.9% of the patients who showed increased fatigue at T1. Conclusion. The prognostic model to predict an increase in fatigue after stroke has limited predictive value, but baseline fatigue is the most important independent predictor. Overall, fatigue levels remained stable over time. PMID:22028989

  8. Development of a clinician-administered National Institutes of Health-Brief Fatigue Inventory: A measure of fatigue in the context of depressive disorders.

    PubMed

    Saligan, Leorey N; Luckenbaugh, David A; Slonena, Elizabeth E; Machado-Vieira, Rodrigo; Zarate, Carlos A

    2015-09-01

    Fatigue is a complex, multidimensional condition. Although it is often associated with depression, it is not known whether it has a distinct network from depression or whether it can be clinically evaluated, separately. This study describes preliminary findings in the development of a brief, clinician-administered instrument to measure fatigue in the context of depressive disorders using items from existing clinician-administered depression and mania scales. Based on items from prior fatigue measurements, items were selected from the Hamilton Depression Rating Scale (HDRS), Montgomery-Asberg Depression Rating Scale (MADRS), Young Mania Rating Scale, and Structured Interview Guide for HDRS with Atypical Depression. The final items composed the NIH-Brief Fatigue Inventory (NIH-BFI). Responses from 89 depressed adults collected pre- and post-antidepressant therapy (ADT) determined the reliability and consistency of the NIH-BFI using Cronbach's alpha and principal components analysis (PCA). Correlations of the NIH-BFI and fatigue items from other scales before and after ADT explored validity. The 7-item NIH-BFI had Cronbach alphas ranging from 0.81 to 0.88 and PCA indicating a single dimension. The NIH-BFI score was strongly correlated (r = 0.73, p < 0.001) with fatigue items from Beck Depression Index, with MADRS without fatigue items (r = 0.77, p < 0.001), and HDRS without fatigue items (pre: r = 0.69, p < 0.001). Preliminary findings show support for internal consistency reliability and validity of the NIH-BFI, a clinician-administered measure of fatigue. Further testing in other clinical populations is recommended to obtain additional information on reliability and validity. The NIH-BFI provides a method for clinician-rated fatigue that may be a separate from depression. Published by Elsevier Ltd.

  9. Performance of the Swedish version of the Revised Piper Fatigue Scale.

    PubMed

    Jakobsson, Sofie; Taft, Charles; Östlund, Ulrika; Ahlberg, Karin

    2013-12-01

    The Revised Piper Fatigue scale is one of the most widely used instruments internationally to assess cancer-related fatigue. The aim of the present study was to evaluate selected psychometric properties of a Swedish version of the RPFS (SPFS). An earlier translation of the SPFS was further evaluated and developed. The new version was mailed to 300 patients undergoing curative radiotherapy. The internal validity was assessed using Principal Axis Factor Analysis with oblimin rotation and multitrait analysis. External validity was examined in relation to the Multidimensional Fatigue Inventory-20 (MFI-20) and in known-groups analyses. Totally 196 patients (response rate = 65%) returned evaluable questionnaires. Principal axis factoring analysis yielded three factors (74% of the variance) rather than four as in the original RPFS. Multitrait analyses confirmed the adequacy of scaling assumptions. Known-groups analyses failed to support the discriminative validity. Concurrent validity was satisfactory. The new Swedish version of the RPFS showed good acceptability, reliability and convergent and- discriminant item-scale validity. Our results converge with other international versions of the RPFS in failing to support the four-dimension conceptual model of the instrument. Hence, RPFS suitability for use in international comparisons may be limited which also may have implications for cross-cultural validity of the newly released 12-item version of the RPFS. Further research on the Swedish version should address reasons for high missing rates for certain items in the subscale of affective meaning, further evaluation of the discriminative validity and assessment of its sensitivity in detecting changes over time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating

    PubMed Central

    Lee, Young-Joo; Cho, Soojin

    2016-01-01

    Fatigue life prediction for a bridge should be based on the current condition of the bridge, and various sources of uncertainty, such as material properties, anticipated vehicle loads and environmental conditions, make the prediction very challenging. This paper presents a new approach for probabilistic fatigue life prediction for bridges using finite element (FE) model updating based on structural health monitoring (SHM) data. Recently, various types of SHM systems have been used to monitor and evaluate the long-term structural performance of bridges. For example, SHM data can be used to estimate the degradation of an in-service bridge, which makes it possible to update the initial FE model. The proposed method consists of three steps: (1) identifying the modal properties of a bridge, such as mode shapes and natural frequencies, based on the ambient vibration under passing vehicles; (2) updating the structural parameters of an initial FE model using the identified modal properties; and (3) predicting the probabilistic fatigue life using the updated FE model. The proposed method is demonstrated by application to a numerical model of a bridge, and the impact of FE model updating on the bridge fatigue life is discussed. PMID:26950125

  11. Developing measures of fatigue using an alcohol comparison to validate the effects of fatigue on performance.

    PubMed

    Williamson, A M; Feyer, A M; Mattick, R P; Friswell, R; Finlay-Brown, S

    2001-05-01

    The effects of 28 h of sleep deprivation were compared with varying doses of alcohol up to 0.1% blood alcohol concentration (BAC) in the same subjects. The study was conducted in the laboratory. Twenty long-haul truck drivers and 19 people not employed as professional drivers acted as subjects. Tests were selected that were likely to be affected by fatigue, including simple reaction time, unstable tracking, dual task, Mackworth clock vigilance test, symbol digit coding, visual search, sequential spatial memory and logical reasoning. While performance effects were seen due to alcohol for all tests, sleep deprivation affected performance on most tests, but had no effect on performance on the visual search and logical reasoning tests. Some tests showed evidence of a circadian rhythm effect on performance, in particular, simple reaction time, dual task, Mackworth clock vigilance, and symbol digit coding, but only for response speed and not response accuracy. Drivers were slower but more accurate than controls on the symbol digit test, suggesting that they took a more conservative approach to performance of this test. This study demonstrated which tests are most sensitive to sleep deprivation and fatigue. The study therefore has established a set of tests that can be used in evaluations of fatigue and fatigue countermeasures.

  12. Fatigue Behavior and Modeling of Additively Manufactured Ti-6Al-4V Including Interlayer Time Interval Effects

    NASA Astrophysics Data System (ADS)

    Torries, Brian; Shamsaei, Nima

    2017-12-01

    The effects of different cooling rates, as achieved by varying the interlayer time interval, on the fatigue behavior of additively manufactured Ti-6Al-4V specimens were investigated and modeled via a microstructure-sensitive fatigue model. Comparisons are made between two sets of specimens fabricated via Laser Engineered Net Shaping (LENS™), with variance in interlayer time interval accomplished by depositing either one or two specimens per print operation. Fully reversed, strain-controlled fatigue tests were conducted, with fractography following specimen failure. A microstructure-sensitive fatigue model was calibrated to model the fatigue behavior of both sets of specimens and was found to be capable of correctly predicting the longer fatigue lives of the single-built specimens and the reduced scatter of the double-built specimens; all data points fell within the predicted upper and lower bounds of fatigue life. The time interval effects and the ability to be modeled are important to consider when producing test specimens that are smaller than the production part (i.e., property-performance relationships).

  13. Fatigue after stroke: the development and evaluation of a case definition.

    PubMed

    Lynch, Joanna; Mead, Gillian; Greig, Carolyn; Young, Archie; Lewis, Susan; Sharpe, Michael

    2007-11-01

    While fatigue after stroke is a common problem, it has no generally accepted definition. Our aim was to develop a case definition for post-stroke fatigue and to test its psychometric properties. A case definition with face validity and an associated structured interview was constructed. After initial piloting, the feasibility, reliability (test-retest and inter-rater) and concurrent validity (in relation to four fatigue severity scales) were determined in 55 patients with stroke. All participating patients provided satisfactory answers to all the case definition probe questions demonstrating its feasibility For test-retest reliability, kappa was 0.78 (95% CI, 0.57-0.94, P<.01) and for inter-rater reliability kappa was 0.80 (95% CI, 0.62-0.99, P<.01). Patients fulfilling the case definition also had substantially higher fatigue scores on four fatigue severity scales (P<.001) indicating concurrent validity. The proposed case definition is feasible to administer and reliable in practice, and there is evidence of concurrent validity. It requires further evaluation in different settings.

  14. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.

  15. Stochastic model for fatigue crack size and cost effective design decisions. [for aerospace structures

    NASA Technical Reports Server (NTRS)

    Hanagud, S.; Uppaluri, B.

    1975-01-01

    This paper describes a methodology for making cost effective fatigue design decisions. The methodology is based on a probabilistic model for the stochastic process of fatigue crack growth with time. The development of a particular model for the stochastic process is also discussed in the paper. The model is based on the assumption of continuous time and discrete space of crack lengths. Statistical decision theory and the developed probabilistic model are used to develop the procedure for making fatigue design decisions on the basis of minimum expected cost or risk function and reliability bounds. Selections of initial flaw size distribution, NDT, repair threshold crack lengths, and inspection intervals are discussed.

  16. Microstructure-sensitive plasticity and fatigue modeling of extruded 6061 aluminum alloys

    NASA Astrophysics Data System (ADS)

    McCullough, Robert Ross

    In this study, the development of fatigue failure and stress anisotropy in light weight ductile metal alloys, specifically Al-Mg-Si aluminum alloys, was investigated. The experiments were carried out on an extruded 6061 aluminum alloy. Reverse loading experiments were performed up to a prestrain of 5% in both tension-followed-by-compression and compression-followed-by-tension. The development of isotropic and kinematic hardening and subsequent anisotropy was indicated by the observation of the Bauschinger effect phenomenon. Experimental results show that 6061 aluminum alloy exhibited a slight increase in the kinematic hardening versus applied prestrain. However, the ratio of kinematic-to-isotropic hardening remained near unity. An internal state variable (ISV) plasticity and damage model was used to capture the evolution of the anisotropy for the as-received T6 and partially annealed conditions. Following the stress anisotropy experiments, the same extruded 6061 aluminum alloy was tested under fully reversing, strain-controlled low cycle fatigue at up to 2.5% strain amplitudes and two heat treatment conditions. Observations were made of the development of striation fields up to the point of nucleation at cracked and clustered precipitants and free surfaces through localized precipitant slip band development. A finite element enabled micro-mechanics study of fatigue damage development of local strain field in the presence of hard phases was conducted. Both the FEA and experimental data sets were utilized in the implementation of a multi-stage fatigue model in order to predict the microstructure response, including fatigue nucleation and propagation contributions on the total fatigue life in AA6061. Good correlation between experimental and predicted results in the number of cycles to final failure was observed. The AA6061 material maintained relatively consistent low cycle fatigue performance despite two different heat treatments.

  17. Fatigue in industry.

    PubMed Central

    Grandjean, E

    1979-01-01

    Physical fatigue is a painful phenomenon which is localised in overstressed muscles. Mental fatigue is a diffuse sensation of weariness; it is a functional state, one of several intermediate conditions between the two extremes of alarm and sleep. A neurophysiological model of fatigue, involving an activating and inhibitory system has been developed. Fatigue in industrial practice has clinical symptoms: psychic instability, fits of depression and increased liability to illness. Indicators of fatigue are work of performance, subjective feelings of fatigue, electroencephalography, flicker-fusion frequency and various psychomotor and mental tests. Several field studies do, to some extent, confirm the above-mentioned concept of fatigue. PMID:40999

  18. A Morbidity Screening Tool for identifying fatigue, pain, upper limb dysfunction and lymphedema after breast cancer treatment: a validity study.

    PubMed

    Bulley, Catherine; Coutts, Fiona; Blyth, Christine; Jack, Wilma; Chetty, Udi; Barber, Matthew; Tan, Chee Wee

    2014-04-01

    This study aimed to investigate validity of a newly developed Morbidity Screening Tool (MST) to screen for fatigue, pain, swelling (lymphedema) and arm function after breast cancer treatment. A cross-sectional study included women attending reviews after completing treatment (surgery, chemotherapy and radiotherapy), without recurrence, who could read English. They completed the MST and comparator questionnaires: Disability of the Arm, Shoulder and Hand questionnaire (DASH), Chronic Pain Grade Questionnaire (CPGQ), Lymphedema and Breast Cancer Questionnaire (LBCQ) and Functional Assessment of Cancer Therapy questionnaire with subscales for fatigue (FACT F) and breast cancer (FACT B + 4). Bilateral combined shoulder ranges of motion were compared (upward reach; hand behind back) and percentage upper limb volume difference (%LVD =/>10% diagnosed as lymphedema) measured with the vertical perometer (400T). 613 of 617 participants completed questionnaires (mean age 62.3 years, SD 10.0; mean time since treatment 63.0 months, SD 46.6) and 417 completed objective testing. Morbidity prevalence was estimated as 35.8%, 21.9%, 19.8% and 34.4% for fatigue, impaired upper limb function, lymphedema and pain respectively. Comparing those self-reporting the presence or absence of each type of morbidity, statistically significant differences in comparator variables supported validity of the MST. Statistically significant correlations resulted between MST scores focussing on impact of morbidity, and comparator variables that reflect function and quality of life. Analysis supports the validity of all four short-forms of the MST as providing indications of both presence of morbidity and impacts on participants' lives. This may facilitate early and appropriate referral for intervention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Evaluating abdominal core muscle fatigue: Assessment of the validity and reliability of the prone bridging test.

    PubMed

    De Blaiser, C; De Ridder, R; Willems, T; Danneels, L; Vanden Bossche, L; Palmans, T; Roosen, P

    2018-02-01

    The aims of this study were to research the amplitude and median frequency characteristics of selected abdominal, back, and hip muscles of healthy subjects during a prone bridging endurance test, based on surface electromyography (sEMG), (a) to determine if the prone bridging test is a valid field test to measure abdominal muscle fatigue, and (b) to evaluate if the current method of administrating the prone bridging test is reliable. Thirty healthy subjects participated in this experiment. The sEMG activity of seven abdominal, back, and hip muscles was bilaterally measured. Normalized median frequencies were computed from the EMG power spectra. The prone bridging tests were repeated on separate days to evaluate inter and intratester reliability. Significant differences in normalized median frequency slope (NMF slope ) values between several abdominal, back, and hip muscles could be demonstrated. Moderate-to-high correlation coefficients were shown between NMF slope values and endurance time. Multiple backward linear regression revealed that the test endurance time could only be significantly predicted by the NMF slope of the rectus abdominis. Statistical analysis showed excellent reliability (ICC=0.87-0.89). The findings of this study support the validity and reliability of the prone bridging test for evaluating abdominal muscle fatigue. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. A model for life predictions of nickel-base superalloys in high-temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Romanoski, Glenn R.; Pelloux, Regis M.; Antolovich, Stephen D.

    1988-01-01

    Extensive characterization of low-cycle fatigue damage mechanisms was performed on polycrystalline Rene 80 and IN100 tested in the temperature range from 871 to 1000 C. Low-cycle fatigue life was found to be dominated by propagation of microcracks to a critical size governed by the maximum tensile stress. A model was developed which incorporates a threshold stress for crack extension, a stress-based crack growth expression, and a failure criterion. The mathematical equivalence between this mechanistically based model and the strain-life low-cycle fatigue law was demonstrated using cyclic stress-strain relationships. The model was shown to correlate the high-temperature low-cycle fatigue data of the different nickel-base superalloys considered in this study.

  1. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.

    PubMed

    Wang, Hongxun; Zhang, Weifang; Sun, Fuqiang; Zhang, Wei

    2017-05-18

    The relationships between the fatigue crack growth rate ( d a / d N ) and stress intensity factor range ( Δ K ) are not always linear even in the Paris region. The stress ratio effects on fatigue crack growth rate are diverse in different materials. However, most existing fatigue crack growth models cannot handle these nonlinearities appropriately. The machine learning method provides a flexible approach to the modeling of fatigue crack growth because of its excellent nonlinear approximation and multivariable learning ability. In this paper, a fatigue crack growth calculation method is proposed based on three different machine learning algorithms (MLAs): extreme learning machine (ELM), radial basis function network (RBFN) and genetic algorithms optimized back propagation network (GABP). The MLA based method is validated using testing data of different materials. The three MLAs are compared with each other as well as the classical two-parameter model ( K * approach). The results show that the predictions of MLAs are superior to those of K * approach in accuracy and effectiveness, and the ELM based algorithms show overall the best agreement with the experimental data out of the three MLAs, for its global optimization and extrapolation ability.

  2. Discriminative validity of metabolic and workload measurements for identifying people with chronic fatigue syndrome.

    PubMed

    Snell, Christopher R; Stevens, Staci R; Davenport, Todd E; Van Ness, J Mark

    2013-11-01

    Reduced functional capacity and postexertion fatigue after physical activity are hallmark symptoms of chronic fatigue syndrome (CFS) and may even qualify for biomarker status. That these symptoms are often delayed may explain the equivocal results for clinical cardiopulmonary exercise testing in people with CFS. Test reproducibility in people who are healthy is well documented. Test reproducibility may not be achievable in people with CFS because of delayed symptoms. The objective of this study was to determine the discriminative validity of objective measurements obtained during cardiopulmonary exercise testing to distinguish participants with CFS from participants who did not have a disability but were sedentary. A prospective cohort study was conducted. Gas exchange data, workloads, and related physiological parameters were compared in 51 participants with CFS and 10 control participants, all women, for 2 maximal exercise tests separated by 24 hours. Multivariate analysis showed no significant differences between control participants and participants with CFS for test 1. However, for test 2, participants with CFS achieved significantly lower values for oxygen consumption and workload at peak exercise and at the ventilatory or anaerobic threshold. Follow-up classification analysis differentiated between groups with an overall accuracy of 95.1%. Only individuals with CFS who were able to undergo exercise testing were included in this study. Individuals who were unable to meet the criteria for maximal effort during both tests, were unable to complete the 2-day protocol, or displayed overt cardiovascular abnormalities were excluded from the analysis. The lack of any significant differences between groups for the first exercise test would appear to support a deconditioning hypothesis for CFS symptoms. However, the results from the second test indicated the presence of CFS-related postexertion fatigue. It might be concluded that a single exercise test is insufficient

  3. Fatigue Failure of Space Shuttle Main Engine Turbine Blades

    NASA Technical Reports Server (NTRS)

    Swanson, Gregrory R.; Arakere, Nagaraj K.

    2000-01-01

    Experimental validation of finite element modeling of single crystal turbine blades is presented. Experimental results from uniaxial high cycle fatigue (HCF) test specimens and full scale Space Shuttle Main Engine test firings with the High Pressure Fuel Turbopump Alternate Turbopump (HPFTP/AT) provide the data used for the validation. The conclusions show the significant contribution of the crystal orientation within the blade on the resulting life of the component, that the analysis can predict this variation, and that experimental testing demonstrates it.

  4. Multiphysics Simulation of Low-Amplitude Acoustic Wave Detection by Piezoelectric Wafer Active Sensors Validated by In-Situ AE-Fatigue Experiment

    PubMed Central

    Giurgiutiu, Victor

    2017-01-01

    Piezoelectric wafer active sensors (PWAS) are commonly used for detecting Lamb waves for structural health monitoring application. However, in most applications of active sensing, the signals are of high-amplitude and easy to detect. In this article, we have shown a new avenue of using the PWAS transducer for detecting the low-amplitude fatigue-crack related acoustic emission (AE) signals. Multiphysics finite element (FE) simulations were performed with two PWAS transducers bonded to the structure. Various configurations of the sensors were studied by using the simulations. One PWAS was placed near to the fatigue-crack and the other one was placed at a certain distance from the crack. The simulated AE event was generated at the crack tip. The simulation results showed that both PWAS transducers were capable of sensing the AE signals. To validate the multiphysics simulation results, an in-situ AE-fatigue experiment was performed. Two PWAS transducers were bonded to the thin aerospace test coupon. The fatigue crack was generated in the test coupon which had produced low-amplitude acoustic waves. The low-amplitude fatigue-crack related AE signals were successfully captured by the PWAS transducers. The distance effect on the captured AE signals was also studied. It has been shown that some high-frequency contents of the AE signal have developed as they travel away from the crack. PMID:28817081

  5. Interactive Inverse Groundwater Modeling - Addressing User Fatigue

    NASA Astrophysics Data System (ADS)

    Singh, A.; Minsker, B. S.

    2006-12-01

    This paper builds on ongoing research on developing an interactive and multi-objective framework to solve the groundwater inverse problem. In this work we solve the classic groundwater inverse problem of estimating a spatially continuous conductivity field, given field measurements of hydraulic heads. The proposed framework is based on an interactive multi-objective genetic algorithm (IMOGA) that not only considers quantitative measures such as calibration error and degree of regularization, but also takes into account expert knowledge about the structure of the underlying conductivity field expressed as subjective rankings of potential conductivity fields by the expert. The IMOGA converges to the optimal Pareto front representing the best trade- off among the qualitative as well as quantitative objectives. However, since the IMOGA is a population-based iterative search it requires the user to evaluate hundreds of solutions. This leads to the problem of 'user fatigue'. We propose a two step methodology to combat user fatigue in such interactive systems. The first step is choosing only a few highly representative solutions to be shown to the expert for ranking. Spatial clustering is used to group the search space based on the similarity of the conductivity fields. Sampling is then carried out from different clusters to improve the diversity of solutions shown to the user. Once the expert has ranked representative solutions from each cluster a machine learning model is used to 'learn user preference' and extrapolate these for the solutions not ranked by the expert. We investigate different machine learning models such as Decision Trees, Bayesian learning model, and instance based weighting to model user preference. In addition, we also investigate ways to improve the performance of these models by providing information about the spatial structure of the conductivity fields (which is what the expert bases his or her rank on). Results are shown for each of these

  6. Translational validity of PASAT and the effect of fatigue and mood in patients with relapsing remitting MS: A functional MRI study.

    PubMed

    Iancheva, Dessislava; Trenova, Anastasiya G; Terziyski, Kiril; Kandilarova, Sevdalina; Mantarova, Stefka

    2018-04-03

    Paced Auditory Serial Addition Test (PASAT) is used for assessment of information processing speed, attention, and working memory, which are the most frequently affected cognitive domains in multiple sclerosis (MS) patients, and may be significantly affected by fatigue. However, the effect of fatigue and mood on the PASAT performance in MS patients translationally validated by fMRI has not been studied yet. The aim of this study is to investigate the translational validity of the PASAT, using fMRI during a paced visual serial addition test (PVSAT) paradigm in patients with relapsing remitting MS (RRMS) and to assess the impact of fatigue and mood on test performance. Fourteen patients with RRMS in remission and 14 healthy controls, matched by sex, age, and educational status, were enrolled in the study. The subjects underwent a standard neurological examination, neuropsychological evaluation with the PASAT 3', fMRI scanning with a PVSAT paradigm, and Beck Depression Inventory. All patients were assessed by the Modified Fatigue Impact Scale. Paced Auditory Serial Addition Test score was lower in patients (41.4 ± 15.5 vs 51.6 ± 7.5, P = .035). A moderate negative correlation (P = -0.563, P = 0.036) was found between PASAT and MIFS scores. The fMRI scanning showed significant activations in several clusters that differed between patients and controls. The patient group presented wider cluster activation; Brodmann area (BA) 6-bilaterally; left BA7, 8, and 9; and right BA40, while controls presented with activations in left BA6 and BA44. Significant negative correlations between PASAT score and cortical activations in left BA23, right BA32, and left BA7 were observed in patients only. Our results show that poorer performance on the PASAT is associated with higher activation in areas connected with working memory, attention, and emotional processes during the fMRI assessment with PVSAT paradigm, which provides evidence for the translational validity of the

  7. Normalized coffin-manson plot in terms of a new life function based on stress relaxation under creep-fatigue conditions

    NASA Astrophysics Data System (ADS)

    Jeong, Chang Yeol; Nam, Soo Woo; Lim, Jong Dae

    2003-04-01

    A new life prediction function based on a model formulated in terms of stress relaxation during hold time under creep-fatigue conditions is proposed. From the idea that reduction in fatigue life with hold is due to the creep effect of stress relaxation that results in additional energy dissipation in the hysteresis loop, it is suggested that the relaxed stress range may be a creep-fatigue damage function. Creep-fatigue data from the present and other investigators are used to check the validity of the proposed life prediction equation. It is shown that the data satisfy the applicability of the life relation model. Accordingly, using this life prediction model, one may realize that all the Coffin-Manson plots at various levels of hold time in strain-controlled creep-fatigue tests can be normalized to make one straight line.

  8. A recursive Bayesian approach for fatigue damage prognosis: An experimental validation at the reliability component level

    NASA Astrophysics Data System (ADS)

    Gobbato, Maurizio; Kosmatka, John B.; Conte, Joel P.

    2014-04-01

    Fatigue-induced damage is one of the most uncertain and highly unpredictable failure mechanisms for a large variety of mechanical and structural systems subjected to cyclic and random loads during their service life. A health monitoring system capable of (i) monitoring the critical components of these systems through non-destructive evaluation (NDE) techniques, (ii) assessing their structural integrity, (iii) recursively predicting their remaining fatigue life (RFL), and (iv) providing a cost-efficient reliability-based inspection and maintenance plan (RBIM) is therefore ultimately needed. In contribution to these objectives, the first part of the paper provides an overview and extension of a comprehensive reliability-based fatigue damage prognosis methodology — previously developed by the authors — for recursively predicting and updating the RFL of critical structural components and/or sub-components in aerospace structures. In the second part of the paper, a set of experimental fatigue test data, available in the literature, is used to provide a numerical verification and an experimental validation of the proposed framework at the reliability component level (i.e., single damage mechanism evolving at a single damage location). The results obtained from this study demonstrate (i) the importance and the benefits of a nearly continuous NDE monitoring system, (ii) the efficiency of the recursive Bayesian updating scheme, and (iii) the robustness of the proposed framework in recursively updating and improving the RFL estimations. This study also demonstrates that the proposed methodology can lead to either an extent of the RFL (with a consequent economical gain without compromising the minimum safety requirements) or an increase of safety by detecting a premature fault and therefore avoiding a very costly catastrophic failure.

  9. Predictors and Trajectories of Morning Fatigue Are Distinct from Evening Fatigue

    PubMed Central

    Wright, Fay; Melkus, Gail D’Eramo; Hammer, Marilyn; Schmidt, Brian L.; Knobf, M. Tish; Paul, Steven M.; Cartwright, Frances; Mastick, Judy; Cooper, Bruce A.; Chen, Lee-May; Melisko, Michelle; Levine, Jon D.; Kober, Kord; Aouizerat, Bradley E.; Miaskowski, Christine

    2015-01-01

    Context Fatigue is the most common symptom in oncology patients during chemotherapy (CTX). Little is known about the predictors of interindividual variability in initial levels and trajectories of morning fatigue severity in these patients. Objectives An evaluation was done to determine which demographic, clinical, and symptom characteristics were associated with initial levels as well as the trajectories of morning fatigue and to compare findings with our companion paper on evening fatigue. Methods A sample of outpatients with breast, gastrointestinal, gynecological, and lung cancer (N=586) completed demographic and symptom questionnaires a total of six times over two cycles of CTX. Fatigue severity was evaluated using the Lee Fatigue Scale. Hierarchical linear modeling (HLM) was used to answer the study objectives. Results A large amount of interindividual variability was found in the morning fatigue trajectories. A piecewise model fit the data best. Patients with higher body mass index (BMI), who did not exercise regularly, with a lower functional status, and who had higher levels of state anxiety, sleep disturbance and depressive symptoms, reported higher levels of morning fatigue at enrollment. Variations in the trajectories of morning fatigue were predicted by the patients’ ethnicity and younger age. Conclusion The modifiable risk factors that were associated with only morning fatigue were BMI, exercise, and state anxiety. Modifiable risk factors that were associated with both morning and evening fatigue included functional status, depressive symptoms, and sleep disturbance. Using this information, clinicians can identify patients at higher risk for more severe morning fatigue and evening fatigue, provide individualized patient education, and tailor interventions to address the modifiable risk factors. PMID:25828559

  10. Investigation of Cumulative Fatigue Damage Through Sequential Low Cycle Fatigue and High Cycle Fatigue Cycling at High Temperature for a Type 316LN Stainless Steel: Life-Prediction Techniques and Associated Mechanisms

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Laha, K.; Okazaki, M.

    2017-03-01

    Cumulative fatigue damage under sequential low cycle fatigue (LCF) and high cycle fatigue (HCF) cycling was investigated at 923 K (650 °C) by conducting HCF tests on specimens subjected to prior LCF cycling at various strain amplitudes. Remnant HCF lives were found to decrease drastically with increase in prior fatigue exposure as a result of strong LCF-HCF interactions. The rate of decrease in remnant lives varied as a function of the applied strain amplitude. A threshold damage in terms of prior LCF life-fraction was found, below which no significant LCF-HCF interaction takes place. Similarly, a critical damage during the LCF pre-cycling marking the highest degree of LCF-HCF interaction was identified which was found to depend on the applied strain amplitude. In view of the non-linear damage accumulation behavior, Miner's linear damage rule proved to be highly non-conservative. Manson's damage curve approach, suitably modified, was found to be a better alternative for predicting the remnant HCF life. The single constant ( β) employed in the model, which reflects the damage accumulation of the material under two/multi-level loading conditions is derived from the regression analysis of the experimental results and validated further.

  11. Markov model of fatigue of a composite material with the poisson process of defect initiation

    NASA Astrophysics Data System (ADS)

    Paramonov, Yu.; Chatys, R.; Andersons, J.; Kleinhofs, M.

    2012-05-01

    As a development of the model where only one weak microvolume (WMV) and only a pulsating cyclic loading are considered, in the current version of the model, we take into account the presence of several weak sites where fatigue damage can accumulate and a loading with an arbitrary (but positive) stress ratio. The Poisson process of initiation of WMVs is considered, whose rate depends on the size of a specimen. The cumulative distribution function (cdf) of the fatigue life of every individual WMV is calculated using the Markov model of fatigue. For the case where this function is approximated by a lognormal distribution, a formula for calculating the cdf of fatigue life of the specimen (modeled as a chain of WMVs) is obtained. Only a pulsating cyclic loading was considered in the previous version of the model. Now, using the modified energy method, a loading cycle with an arbitrary stress ratio is "transformed" into an equivalent cycle with some other stress ratio. In such a way, the entire probabilistic fatigue diagram for any stress ratio with a positive cycle stress can be obtained. Numerical examples are presented.

  12. Minimal clinically important difference of the Modified Fatigue Impact Scale in Parkinson's disease.

    PubMed

    Kluger, Benzi M; Garimella, Sanjana; Garvan, Cynthia

    2017-10-01

    Fatigue is a common and debilitating symptom of Parkinson's disease (PD) with no evidence-based treatments. While several fatigue scales are partially validated in PD the minimal clinically important difference (MCID) is unknown for any scale but is an important psychometric value to design and interpret therapeutic trials. We thus sought to determine the MCID for the Modified Fatigue Impact Scale (MFIS). This is a secondary data analysis from 94 PD participants in an acupuncture trial for PD fatigue. Standard psychometric approaches were used to establish validity and an anchor-based approach was used to determine the MCID. The MFIS demonstrated good concurrent validity with other outcome measures and high internal consistency. MCIDs values were found to be 13.8, 6.8 and 6.2 for the MFIS total, MFIS cognitive, and MFIS physical subscores respectively. The MFIS is a valid multidimensional measure of fatigue in PD with demonstrable MCID. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Detection and Alert of muscle fatigue considering a Surface Electromyography Chaotic Model

    NASA Astrophysics Data System (ADS)

    Herrera, V.; Romero, J. F.; Amestegui, M.

    2011-03-01

    This work propose a detection and alert algorithm for muscle fatigue in paraplegic patients undergoing electro-therapy sessions. The procedure is based on a mathematical chaotic model emulating physiological signals and Continuous Wavelet Transform (CWT). The chaotic model developed is based on a logistic map that provides suitable data accomplishing some physiological signal class patterns. The CWT was applied to signals generated by the model and the resulting vector was obtained through Total Wavelet Entropy (TWE). In this sense, the presented work propose a viable and practical alert and detection algorithm for muscle fatigue.

  14. The development and psychometric analysis of the Chinese HIV-Related Fatigue Scale.

    PubMed

    Li, Su-Yin; Wu, Hua-Shan; Barroso, Julie

    2016-04-01

    To develop a Chinese version of the human immunodeficiency virus-related Fatigue Scale and examine its reliability and validity. Fatigue is found in more than 70% of people infected with human immunodeficiency virus. However, a scale to assess fatigue in human immunodeficiency virus-positive people has not yet been developed for use in Chinese-speaking countries. A methodologic study involving instrument development and psychometric evaluation was used. The human immunodeficiency virus-related Fatigue Scale was examined through a two-step procedure: (1) translation and back translation and (2) psychometric analysis. A sample of 142 human immunodeficiency virus-positive patients was recruited from the Infectious Disease Outpatient Clinic in central Taiwan. Their fatigue data were analysed with Cronbach's α for internal consistency. Two weeks later, the data of a random sample of 28 patients from the original 142 were analysed for test-retest reliability. The correlation between the World Health Organization Quality of Life Assessment-Human Immunodeficiency Virus and the Chinese version of the human immunodeficiency virus-related Fatigue Scale was analysed for concurrent validity. The Chinese version of the human immunodeficiency virus-related Fatigue Scale scores of human immunodeficiency virus-positive patients with highly active antiretroviral therapy and those without were compared to demonstrate construct validity. The internal consistency and test-retest reliability of the Chinese version of the human immunodeficiency virus-related Fatigue Scale were 0·97 and 0·686, respectively. In regard to concurrent validity, a negative correlation was found between the scores of the Chinese version of the human immunodeficiency virus-related Fatigue Scale and the World Health Organization Quality of Life Assessment-Human Immunodeficiency Virus. Additionally, the Chinese version of the human immunodeficiency virus-related Fatigue Scale could be used to effectively

  15. Fatigue in older adults with stable heart failure.

    PubMed

    Stephen, Sharon A

    2008-01-01

    The purpose of this study was to describe fatigue and the relationships among fatigue intensity, self-reported functional status, and quality of life in older adults with stable heart failure. A descriptive, correlational design was used to collect quantitative data with reliable and valid instruments. Fifty-three eligible volunteers completed a questionnaire during an interview. Those with recent changes in their medical regimen, other fatigue-inducing illnesses, and isolated diastolic dysfunction were excluded. Fatigue intensity (Profile of Mood States fatigue subscale) was associated with lower quality of life, perceived health, and satisfaction with life. Fatigue was common, and no relationship was found between fatigue intensity and self-reported functional status. Marital status was the only independent predictor of fatigue. In stable heart failure, fatigue is a persistent symptom. Clinicians need to ask patients about fatigue and assess the impact on quality of life. Self-reported functional status cannot serve as a proxy measure for fatigue.

  16. Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth.

    PubMed

    Ausiello, Pietro; Franciosa, Pasquale; Martorelli, Massimo; Watts, David C

    2011-05-01

    In restored teeth, stresses at the tooth-restoration interface during masticatory processes may fracture the teeth or the restoration and cracks may grow and propagate. The aim was to apply numerical methodologies to simulate the behavior of a restored tooth and to evaluate fatigue lifetimes before crack failure. Using a CAD-FEM procedure and fatigue mechanic laws, the fatigue damage of a restored molar was numerically estimated. Tessellated surfaces of enamel and dentin were extracted by applying segmentation and classification algorithms, to sets of 2D image data. A user-friendly GUI, which enables selection and visualization of 3D tessellated surfaces, was developed in a MatLab(®) environment. The tooth-boundary surfaces of enamel and dentin were then created by sweeping operations through cross-sections. A class II MOD cavity preparation was then added into the 3D model and tetrahedral mesh elements were generated. Fatigue simulation was performed by combining a preliminary static FEA simulation with classical fatigue mechanical laws. Regions with the shortest fatigue-life were located around the fillets of the class II MOD cavity, where the static stress was highest. The described method can be successfully adopted to generate detailed 3D-FE models of molar teeth, with different cavities and restorative materials. This method could be quickly implemented for other dental or biomechanical applications. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Application of Steinberg vibration fatigue model for structural verification of space instruments

    NASA Astrophysics Data System (ADS)

    García, Andrés; Sorribes-Palmer, Félix; Alonso, Gustavo

    2018-01-01

    Electronic components in spaceships are subjected to vibration loads during the ascent phase of the launcher. It is important to verify by tests and analysis that all parts can survive in the most severe load cases. The purpose of this paper is to present the methodology and results of the application of the Steinberg's fatigue model to estimate the life of electronic components of the EPT-HET instrument for the Solar Orbiter space mission. A Nastran finite element model (FEM) of the EPT-HET instrument was created and used for the structural analysis. The methodology is based on the use of the FEM of the entire instrument to calculate the relative displacement RDSD and RMS values of the PCBs from random vibration analysis. These values are used to estimate the fatigue life of the most susceptible electronic components with the Steinberg's fatigue damage equation and the Miner's cumulative fatigue index. The estimations are calculated for two different configurations of the instrument and three different inputs in order to support the redesign process. Finally, these analytical results are contrasted with the inspections and the functional tests made after the vibration tests, concluding that this methodology can adequately predict the fatigue damage or survival of the electronic components.

  18. EEG-based driver fatigue detection using hybrid deep generic model.

    PubMed

    Phyo Phyo San; Sai Ho Ling; Rifai Chai; Tran, Yvonne; Craig, Ashley; Hung Nguyen

    2016-08-01

    Classification of electroencephalography (EEG)-based application is one of the important process for biomedical engineering. Driver fatigue is a major case of traffic accidents worldwide and considered as a significant problem in recent decades. In this paper, a hybrid deep generic model (DGM)-based support vector machine is proposed for accurate detection of driver fatigue. Traditionally, a probabilistic DGM with deep architecture is quite good at learning invariant features, but it is not always optimal for classification due to its trainable parameters are in the middle layer. Alternatively, Support Vector Machine (SVM) itself is unable to learn complicated invariance, but produces good decision surface when applied to well-behaved features. Consolidating unsupervised high-level feature extraction techniques, DGM and SVM classification makes the integrated framework stronger and enhance mutually in feature extraction and classification. The experimental results showed that the proposed DBN-based driver fatigue monitoring system achieves better testing accuracy of 73.29 % with 91.10 % sensitivity and 55.48 % specificity. In short, the proposed hybrid DGM-based SVM is an effective method for the detection of driver fatigue in EEG.

  19. A Geometric Approach to Modeling Microstructurally Small Fatigue Crack Formation. 2; Simulation and Prediction of Crack Nucleation in AA 7075-T651

    NASA Technical Reports Server (NTRS)

    Hochhalter, Jake D.; Littlewood, David J.; Christ, Robert J., Jr.; Veilleux, M. G.; Bozek, J. E.; Ingraffea, A. R.; Maniatty, Antionette M.

    2010-01-01

    The objective of this paper is to develop further a framework for computationally modeling microstructurally small fatigue crack growth in AA 7075-T651 [1]. The focus is on the nucleation event, when a crack extends from within a second-phase particle into a surrounding grain, since this has been observed to be an initiating mechanism for fatigue crack growth in this alloy. It is hypothesized that nucleation can be predicted by computing a non-local nucleation metric near the crack front. The hypothesis is tested by employing a combination of experimentation and nite element modeling in which various slip-based and energy-based nucleation metrics are tested for validity, where each metric is derived from a continuum crystal plasticity formulation. To investigate each metric, a non-local procedure is developed for the calculation of nucleation metrics in the neighborhood of a crack front. Initially, an idealized baseline model consisting of a single grain containing a semi-ellipsoidal surface particle is studied to investigate the dependence of each nucleation metric on lattice orientation, number of load cycles, and non-local regularization method. This is followed by a comparison of experimental observations and computational results for microstructural models constructed by replicating the observed microstructural geometry near second-phase particles in fatigue specimens. It is found that orientation strongly influences the direction of slip localization and, as a result, in uences the nucleation mechanism. Also, the baseline models, replication models, and past experimental observation consistently suggest that a set of particular grain orientations is most likely to nucleate fatigue cracks. It is found that a continuum crystal plasticity model and a non-local nucleation metric can be used to predict the nucleation event in AA 7075-T651. However, nucleation metric threshold values that correspond to various nucleation governing mechanisms must be calibrated.

  20. Fatigue of notched fiber composite laminates. Part 1: Analytical model

    NASA Technical Reports Server (NTRS)

    Mclaughlin, P. V., Jr.; Kulkarni, S. V.; Huang, S. N.; Rosen, B. W.

    1975-01-01

    A description is given of a semi-empirical, deterministic analysis for prediction and correlation of fatigue crack growth, residual strength, and fatigue lifetime for fiber composite laminates containing notches (holes). The failure model used for the analysis is based upon composite heterogeneous behavior and experimentally observed failure modes under both static and fatigue loading. The analysis is consistent with the wearout philosophy. Axial cracking and transverse cracking failure modes are treated together in the analysis. Cracking off-axis is handled by making a modification to the axial cracking analysis. The analysis predicts notched laminate failure from unidirectional material fatique properties using constant strain laminate analysis techniques. For multidirectional laminates, it is necessary to know lamina fatique behavior under axial normal stress, transverse normal stress and axial shear stress. Examples of the analysis method are given.

  1. Evaluation of the psychometric properties of the PROMIS Cancer Fatigue Short Form with cancer patients.

    PubMed

    Cessna, Julie M; Jim, Heather S L; Sutton, Steven K; Asvat, Yasmin; Small, Brent J; Salsman, John M; Zachariah, Babu; Fishman, Mayer; Field, Teresa; Fernandez, Hugo; Perez, Lia; Jacobsen, Paul B

    2016-02-01

    Fatigue is common among cancer patients and adversely impacts quality of life. As such, it is important to measure fatigue accurately in a way that is not burdensome to patients. The 7-item Patient Reported Outcome Measurement Information System (PROMIS) Cancer Fatigue Short Form scale was recently developed using item response theory (IRT). The current study evaluated the psychometric properties of this scale in two samples of cancer patients using classical test theory (CTT). Two samples were used: 121 men with prostate cancer and 136 patients scheduled to undergo hematopoietic cell transplantation (HCT) for hematologic cancer. All participants completed the PROMIS Cancer Fatigue Short Form as well as validated measures of fatigue, vitality, and depression. HCT patients also completed measures of anxiety, perceived stress, and a clinical interview designed to identify cases of cancer-related fatigue. PROMIS Cancer Fatigue Short Form items loaded on a single factor (CFI=0.948) and the scale demonstrated good internal consistency reliability in both samples (Cronbach's alphas>0.86). Correlations with psychosocial measures were significant (p values<.0001) and in the expected direction, offering evidence for convergent and concurrent validity. PROMIS Fatigue scores were significantly higher in patients who met case definition criteria for cancer-related fatigue (p<.0001), demonstrating criterion validity. The current study provides evidence that the PROMIS Cancer Fatigue Short Form is a reliable and valid measure of fatigue in cancer patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Evaluation of the Psychometric Properties of the PROMIS Cancer Fatigue Short Form with Cancer Patients

    PubMed Central

    Cessna, Julie M.; Jim, Heather S.L.; Sutton, Steven K.; Asvat, Yasmin; Small, Brent J.; Salsman, John M.; Zachariah, Babu; Fishman, Mayer; Field, Teresa; Fernandez, Hugo; Perez, Lia; Jacobsen, Paul B.

    2016-01-01

    Objective Fatigue is common among cancer patients and adversely impacts quality of life. As such, it is important to measure fatigue accurately in a way that is not burdensome to patients. The 7-item Patient Reported Outcome Measurement Information System (PROMIS) Cancer Fatigue Short Form scale was recently developed using item response theory (IRT). The current study evaluated the psychometric properties of this scale in two samples of cancer patients using classical test theory (CTT). Methods Two samples were used: 121 men with prostate cancer and 136 patients scheduled to undergo hematopoietic cell transplantation (HCT) for hematologic cancer. All participants completed the PROMIS Cancer Fatigue Short Form as well as validated measures of fatigue, vitality, and depression. HCT patients also completed measures of anxiety, perceived stress, and a clinical interview designed to identify cases of cancer -related fatigue. Results PROMIS Cancer Fatigue Short Form items loaded on a single factor (CFI = 0.948) and the scale demonstrated good internal consistency reliability in both samples (Cronbach’s alphas > 0.86). Correlations with psychosocial measures were significant (p-values < .0001) and in the expected direction, offering evidence for convergent and concurrent validity. PROMIS Fatigue scores were significantly higher in patients who met case definition criteria for cancer-related fatigue (p < .0001), demonstrating criterion validity. Conclusion The current study provides evidence that the PROMIS Cancer Fatigue Short Form is a reliable and valid measure of fatigue in cancer patients. PMID:26800633

  3. Discrete statistical model of fatigue crack growth in a Ni-base superalloy, capable of life prediction

    NASA Astrophysics Data System (ADS)

    Boyd-Lee, Ashley; King, Julia

    1992-07-01

    A discrete statistical model of fatigue crack growth in a nickel base superalloy Waspaloy, which is quantitative from the start of the short crack regime to failure, is presented. Instantaneous crack growth rate distributions and persistence of arrest distributions are used to compute fatigue lives and worst case scenarios without extrapolation. The basis of the model is non-material specific, it provides an improved method of analyzing crack growth rate data. For Waspaloy, the model shows the importance of good bulk fatigue crack growth resistance to resist early short fatigue crack growth and the importance of maximizing crack arrest both by the presence of a proportion of small grains and by maximizing grain boundary corrugation.

  4. Comparison of SF-36 vitality scale and Fatigue Symptom Inventory in assessing cancer-related fatigue.

    PubMed

    Brown, Linda F; Kroenke, Kurt; Theobald, Dale E; Wu, Jingwei

    2011-08-01

    Cancer-related fatigue (CRF) is an important symptom in clinical practice and research. The best way to measure it, however, remains unsettled. The SF-36 vitality scale, a general measure of energy/fatigue, is a frequently cited measure. With only four items, however, its ability to adequately represent multiple CRF facets has been questioned. The 13-item Fatigue Symptom Inventory (FSI) was developed to assess multidimensional aspects of CRF. Our objectives were to assess the convergent validity and to compare the sensitivity to change of the two scales. We administered both scales at 1 month (n = 68) and 6 months (n = 96) to a subset of heterogeneous patients receiving treatment in 16 cancer centers who were enrolled in a clinical trial of pain and depression. Distributions of standardized response means (SRMs) were compared to assess sensitivity to change. Results of both scales were compared to scores on a single fatigue item from the Patient Health Questionnaire (PHQ). Mean scores for both the FSI and the vitality scale demonstrated clinically significant fatigue in the sample. The vitality scale was strongly correlated with all three FSI scales (r = -0.68 to -0.77). The vitality and FSI scales also correlated strongly with the PHQ fatigue item. Moreover, distributions of SRMs for both scales were approximately normal. Both the FSI and the vitality scale are supported as valid measures of CRF. Both demonstrated sensitivity to change across a range of effect sizes. The vitality scale may be an excellent choice when brevity is paramount; the FSI may be more appropriate when tapping specific dimensions is warranted.

  5. Microstructurally-sensitive fatigue crack nucleation in Ni-based single and oligo crystals

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Jiang, Jun; Dunne, Fionn P. E.

    2017-09-01

    An integrated experimental, characterisation and computational crystal plasticity study of cyclic plastic beam loading has been carried out for nickel single crystal (CMSX4) and oligocrystal (MAR002) alloys in order to assess quantitatively the mechanistic drivers for fatigue crack nucleation. The experimentally validated modelling provides knowledge of key microstructural quantities (accumulated slip, stress and GND density) at experimentally observed fatigue crack nucleation sites and it is shown that while each of these quantities is potentially important in crack nucleation, none of them in its own right is sufficient to be predictive. However, the local (elastic) stored energy density, measured over a length scale determined by the density of SSDs and GNDs, has been shown to predict crack nucleation sites in the single and oligocrystals tests. In addition, once primary nucleated cracks develop and are represented in the crystal model using XFEM, the stored energy correctly identifies where secondary fatigue cracks are observed to nucleate in experiments. This (Griffith-Stroh type) quantity also correctly differentiates and explains intergranular and transgranular fatigue crack nucleation.

  6. Experimental and modeling results of creep fatigue life of Inconel 617 and Haynes 230 at 850 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Sokolov, Mikhail A; Sham, Sam

    Creep fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure formore » both materials decreased under creep fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep fatigue life. The linear damage summation could predict the creep fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep fatigue life prediction results for both materials.« less

  7. Usage of Parameterized Fatigue Spectra and Physics-Based Systems Engineering Models for Wind Turbine Component Sizing: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, Taylor; Guo, Yi; Veers, Paul

    Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrummore » is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.« less

  8. The Cognitive Symptom Checklist-Work in cancer patients is related with work functioning, fatigue and depressive symptoms: a validation study.

    PubMed

    Dorland, H F; Abma, F I; Roelen, C A M; Smink, A; Feuerstein, M; Amick, B C; Ranchor, A V; Bültmann, U

    2016-06-01

    The study objectives are to translate the 21-item Cognitive Symptom Checklist-Work (CSC-W21) to Dutch (CSC-W DV) and to validate the CSC-W DV in working cancer patients. The CSC-W21 was cross-culturally translated and adapted to a Dutch version. In this 19-item version, the dichotomous response option was changed to an ordinal five-point scale. A validation study of the CSC-W DV was conducted among cancer patients who had returned to work during or following cancer treatment. Internal consistency (Cronbach's α), structural validity (exploratory factor analysis) and construct validity (hypothesis testing) were evaluated. In a cohort of 364 cancer patients, 341 (94 %) completed the CSC-W DV (aged 50.6 ± 8.6 years, 60 % women). Exploratory factor analysis revealed two subscales 'working memory' and 'executive function'. The internal consistency of the total scale and subscales was high (Cronbach's α = 0.93-0.95). Hypothesis testing showed that self-reported cognitive limitations at work were related to work functioning (P < 0.001), fatigue (P = 0.001) and depressive symptoms (P < 0.001), but not to self-rated health (P = 0.14). The CSC-W DV showed high internal consistency and reasonable construct validity for measuring work-specific cognitive symptoms in cancer patients. The CSC-W DV was associated in expected ways with work functioning, fatigue and depressive symptoms. It is important to enhance knowledge about cognitive symptoms at work in cancer patients, to guide and support cancer patients as good as possible when they are back at work and to improve their work functioning over time.

  9. The role of neuroticism, perfectionism and depression in chronic fatigue syndrome. A structural equation modeling approach.

    PubMed

    Valero, Sergi; Sáez-Francàs, Naia; Calvo, Natalia; Alegre, José; Casas, Miquel

    2013-10-01

    Previous studies have reported consistent associations between Neuroticism, maladaptive perfectionism and depression with severity of fatigue in Chronic Fatigue Syndrome (CFS). Depression has been considered a mediator factor between maladaptive perfectionism and fatigue severity, but no studies have explored the role of neuroticism in a comparable theoretical framework. This study aims to examine for the first time, the role of neuroticism, maladaptive perfectionism and depression on the severity of CFS, analyzing several explanation models. A sample of 229 CFS patients were studied comparing four structural equation models, testing the role of mediation effect of depression severity in the association of Neuroticism and/or Maladaptive perfectionism on fatigue severity. The model considering depression severity as mediator factor between Neuroticism and fatigue severity is the only one of the explored models where all the structural modeling indexes have fitted satisfactorily (Chi square=27.01, p=0.079; RMSE=0.047, CFI=0.994; SRMR=0.033). Neuroticism is associated with CFS by the mediation effect of depression severity. This personality variable constitutes a more consistent factor than maladaptive perfectionism in the conceptualization of CFS severity. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system.

    PubMed

    Min, Jianliang; Wang, Ping; Hu, Jianfeng

    2017-01-01

    Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entropies, i.e., spectral entropy, approximate entropy, sample entropy and fuzzy entropy, as features compared with autoregressive (AR) modeling by four classifiers. Second, we captured four significant channel regions according to weight-based electrodes via a simplified channel selection method. Finally, the evaluation model for detecting driver fatigue was established with four classifiers based on the EEG data from four channel regions. Twelve healthy subjects performed continuous simulated driving for 1-2 hours with EEG monitoring on a static simulator. The leave-one-out cross-validation approach obtained an accuracy of 98.3%, a sensitivity of 98.3% and a specificity of 98.2%. The experimental results verified the effectiveness of the proposed method, indicating that the multiple entropy fusion features are significant factors for inferring the fatigue state of a driver.

  11. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system

    PubMed Central

    Min, Jianliang; Wang, Ping

    2017-01-01

    Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entropies, i.e., spectral entropy, approximate entropy, sample entropy and fuzzy entropy, as features compared with autoregressive (AR) modeling by four classifiers. Second, we captured four significant channel regions according to weight-based electrodes via a simplified channel selection method. Finally, the evaluation model for detecting driver fatigue was established with four classifiers based on the EEG data from four channel regions. Twelve healthy subjects performed continuous simulated driving for 1–2 hours with EEG monitoring on a static simulator. The leave-one-out cross-validation approach obtained an accuracy of 98.3%, a sensitivity of 98.3% and a specificity of 98.2%. The experimental results verified the effectiveness of the proposed method, indicating that the multiple entropy fusion features are significant factors for inferring the fatigue state of a driver. PMID:29220351

  12. FEM Techniques for High Stress Detection in Accelerated Fatigue Simulation

    NASA Astrophysics Data System (ADS)

    Veltri, M.

    2016-09-01

    This work presents the theory and a numerical validation study in support to a novel method for a priori identification of fatigue critical regions, with the aim to accelerate durability design in large FEM problems. The investigation is placed in the context of modern full-body structural durability analysis, where a computationally intensive dynamic solution could be required to identify areas with potential for fatigue damage initiation. The early detection of fatigue critical areas can drive a simplification of the problem size, leading to sensible improvement in solution time and model handling while allowing processing of the critical areas in higher detail. The proposed technique is applied to a real life industrial case in a comparative assessment with established practices. Synthetic damage prediction quantification and visualization techniques allow for a quick and efficient comparison between methods, outlining potential application benefits and boundaries.

  13. Influence of dental restorations and mastication loadings on dentine fatigue behaviour: Image-based modelling approach.

    PubMed

    Vukicevic, Arso M; Zelic, Ksenija; Jovicic, Gordana; Djuric, Marija; Filipovic, Nenad

    2015-05-01

    The aim of this study was to use Finite Element Analysis (FEA) to estimate the influence of various mastication loads and different tooth treatments (composite restoration and endodontic treatment) on dentine fatigue. The analysis of fatigue behaviour of human dentine in intact and composite restored teeth with root-canal-treatment using FEA and fatigue theory was performed. Dentine fatigue behaviour was analysed in three virtual models: intact, composite-restored and endodontically-treated tooth. Volumetric change during the polymerization of composite was modelled by thermal expansion in a heat transfer analysis. Low and high shrinkage stresses were obtained by varying the linear shrinkage of composite. Mastication forces were applied occlusally with the load of 100, 150 and 200N. Assuming one million cycles, Fatigue Failure Index (FFI) was determined using Goodman's criterion while residual fatigue lifetime assessment was performed using Paris-power law. The analysis of the Goodman diagram gave both maximal allowed crack size and maximal number of cycles for the given stress ratio. The size of cracks was measured on virtual models. For the given conditions, fatigue-failure is not likely to happen neither in the intact tooth nor in treated teeth with low shrinkage stress. In the cases of high shrinkage stress, crack length was much larger than the maximal allowed crack and failure occurred with 150 and 200N loads. The maximal allowed crack size was slightly lower in the tooth with root canal treatment which induced somewhat higher FFI than in the case of tooth with only composite restoration. Main factors that lead to dentine fatigue are levels of occlusal load and polymerization stress. However, root canal treatment has small influence on dentine fatigue. The methodology proposed in this study provides a new insight into the fatigue behaviour of teeth after dental treatments. Furthermore, it estimates maximal allowed crack size and maximal number of cycles for a

  14. A New Ductility Exhaustion Model for High Temperature Low Cycle Fatigue Life Prediction of Turbine Disk Alloys

    NASA Astrophysics Data System (ADS)

    Zhu, Shun-Peng; Huang, Hong-Zhong; Li, Haiqing; Sun, Rui; Zuo, Ming J.

    2011-06-01

    Based on ductility exhaustion theory and the generalized energy-based damage parameter, a new viscosity-based life prediction model is introduced to account for the mean strain/stress effects in the low cycle fatigue regime. The loading waveform parameters and cyclic hardening effects are also incorporated within this model. It is assumed that damage accrues by means of viscous flow and ductility consumption is only related to plastic strain and creep strain under high temperature low cycle fatigue conditions. In the developed model, dynamic viscosity is used to describe the flow behavior. This model provides a better prediction of Superalloy GH4133's fatigue behavior when compared to Goswami's ductility model and the generalized damage parameter. Under non-zero mean strain conditions, moreover, the proposed model provides more accurate predictions of Superalloy GH4133's fatigue behavior than that with zero mean strains.

  15. Human performance modeling for system of systems analytics :soldier fatigue.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, Craig R.; Campbell, James E.; Miller, Dwight Peter

    2005-10-01

    The military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives as can be seen in the Department of Defense's (DoD) Defense Modeling and Simulation Office's (DMSO) Master Plan (DoD 5000.59-P 1995). To this goal, the military is currently spending millions of dollars on programs devoted to HPM in various military contexts. Examples include the Human Performance Modeling Integration (HPMI) program within the Air Force Research Laboratory, which focuses on integrating HPMs with constructive models of systems (e.g. cockpit simulations) and the Navy's Human Performance Center (HPC) established in Septembermore » 2003. Nearly all of these initiatives focus on the interface between humans and a single system. This is insufficient in the era of highly complex network centric SoS. This report presents research and development in the area of HPM in a system-of-systems (SoS). Specifically, this report addresses modeling soldier fatigue and the potential impacts soldier fatigue can have on SoS performance.« less

  16. A Self-Adaptive Dynamic Recognition Model for Fatigue Driving Based on Multi-Source Information and Two Levels of Fusion

    PubMed Central

    Sun, Wei; Zhang, Xiaorui; Peeta, Srinivas; He, Xiaozheng; Li, Yongfu; Zhu, Senlai

    2015-01-01

    To improve the effectiveness and robustness of fatigue driving recognition, a self-adaptive dynamic recognition model is proposed that incorporates information from multiple sources and involves two sequential levels of fusion, constructed at the feature level and the decision level. Compared with existing models, the proposed model introduces a dynamic basic probability assignment (BPA) to the decision-level fusion such that the weight of each feature source can change dynamically with the real-time fatigue feature measurements. Further, the proposed model can combine the fatigue state at the previous time step in the decision-level fusion to improve the robustness of the fatigue driving recognition. An improved correction strategy of the BPA is also proposed to accommodate the decision conflict caused by external disturbances. Results from field experiments demonstrate that the effectiveness and robustness of the proposed model are better than those of models based on a single fatigue feature and/or single-source information fusion, especially when the most effective fatigue features are used in the proposed model. PMID:26393615

  17. Groundwater Model Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed E. Hassan

    2006-01-24

    Models have an inherent uncertainty. The difficulty in fully characterizing the subsurface environment makes uncertainty an integral component of groundwater flow and transport models, which dictates the need for continuous monitoring and improvement. Building and sustaining confidence in closure decisions and monitoring networks based on models of subsurface conditions require developing confidence in the models through an iterative process. The definition of model validation is postulated as a confidence building and long-term iterative process (Hassan, 2004a). Model validation should be viewed as a process not an end result. Following Hassan (2004b), an approach is proposed for the validation process ofmore » stochastic groundwater models. The approach is briefly summarized herein and detailed analyses of acceptance criteria for stochastic realizations and of using validation data to reduce input parameter uncertainty are presented and applied to two case studies. During the validation process for stochastic models, a question arises as to the sufficiency of the number of acceptable model realizations (in terms of conformity with validation data). Using a hierarchical approach to make this determination is proposed. This approach is based on computing five measures or metrics and following a decision tree to determine if a sufficient number of realizations attain satisfactory scores regarding how they represent the field data used for calibration (old) and used for validation (new). The first two of these measures are applied to hypothetical scenarios using the first case study and assuming field data consistent with the model or significantly different from the model results. In both cases it is shown how the two measures would lead to the appropriate decision about the model performance. Standard statistical tests are used to evaluate these measures with the results indicating they are appropriate measures for evaluating model realizations. The use of

  18. Quantitative impedance measurements for eddy current model validation

    NASA Astrophysics Data System (ADS)

    Khan, T. A.; Nakagawa, N.

    2000-05-01

    This paper reports on a series of laboratory-based impedance measurement data, collected by the use of a quantitatively accurate, mechanically controlled measurement station. The purpose of the measurement is to validate a BEM-based eddy current model against experiment. We have therefore selected two "validation probes," which are both split-D differential probes. Their internal structures and dimensions are extracted from x-ray CT scan data, and thus known within the measurement tolerance. A series of measurements was carried out, using the validation probes and two Ti-6Al-4V block specimens, one containing two 1-mm long fatigue cracks, and the other containing six EDM notches of a range of sizes. Motor-controlled XY scanner performed raster scans over the cracks, with the probe riding on the surface with a spring-loaded mechanism to maintain the lift off. Both an impedance analyzer and a commercial EC instrument were used in the measurement. The probes were driven in both differential and single-coil modes for the specific purpose of model validation. The differential measurements were done exclusively by the eddyscope, while the single-coil data were taken with both the impedance analyzer and the eddyscope. From the single-coil measurements, we obtained the transfer function to translate the voltage output of the eddyscope into impedance values, and then used it to translate the differential measurement data into impedance results. The presentation will highlight the schematics of the measurement procedure, a representative of raw data, explanation of the post data-processing procedure, and then a series of resulting 2D flaw impedance results. A noise estimation will be given also, in order to quantify the accuracy of these measurements, and to be used in probability-of-detection estimation.—This work was supported by the NSF Industry/University Cooperative Research Program.

  19. Modeling Delamination in Postbuckled Composite Structures Under Static and Fatigue Loads

    NASA Technical Reports Server (NTRS)

    Bisagni, Chiara; Brambilla, Pietro; Bavila, Carlos G.

    2013-01-01

    The ability of the Abaqus progressive Virtual Crack Closure Technique (VCCT) to model delamination in composite structures was investigated for static, postbuckling, and fatigue loads. Preliminary evaluations were performed using simple Double Cantilever Beam (DCB) and Mixed-Mode Bending (MMB) specimens. The nodal release sequences that describe the propagation of the delamination front were investigated. The effect of using a sudden or a gradual nodal release was evaluated by considering meshes aligned with the crack front as well as misaligned meshes. Fatigue simulations were then performed using the Direct Cyclic Fatigue (DCF) algorithm. It was found that in specimens such as the DCB, which are characterized by a nearly linear response and a pure fracture mode, the algorithm correctly predicts the Paris Law rate of propagation. However, the Abaqus DCF algorithm does not consider different fatigue propagation laws in different fracture modes. Finally, skin/stiffener debonding was studied in an aircraft fuselage subcomponent in which debonding occurs deep into post-buckling deformation. VCCT was shown to be a robust tool for estimating the onset propagation. However, difficulties were found with the ability of the current implementation of the Abaqus progressive VCCT to predict delamination propagation within structures subjected to postbuckling deformations or fatigue loads.

  20. A Critical Plane-energy Model for Multiaxial Fatigue Life Prediction of Homogeneous and Heterogeneous Materials

    NASA Astrophysics Data System (ADS)

    Wei, Haoyang

    A new critical plane-energy model is proposed in this thesis for multiaxial fatigue life prediction of homogeneous and heterogeneous materials. Brief review of existing methods, especially on the critical plane-based and energy-based methods, are given first. Special focus is on one critical plane approach which has been shown to work for both brittle and ductile metals. The key idea is to automatically change the critical plane orientation with respect to different materials and stress states. One potential drawback of the developed model is that it needs an empirical calibration parameter for non-proportional multiaxial loadings since only the strain terms are used and the out-of-phase hardening cannot be considered. The energy-based model using the critical plane concept is proposed with help of the Mroz-Garud hardening rule to explicitly include the effect of non-proportional hardening under fatigue cyclic loadings. Thus, the empirical calibration for non-proportional loading is not needed since the out-of-phase hardening is naturally included in the stress calculation. The model predictions are compared with experimental data from open literature and it is shown the proposed model can work for both proportional and non-proportional loadings without the empirical calibration. Next, the model is extended for the fatigue analysis of heterogeneous materials integrating with finite element method. Fatigue crack initiation of representative volume of heterogeneous materials is analyzed using the developed critical plane-energy model and special focus is on the microstructure effect on the multiaxial fatigue life predictions. Several conclusions and future work is drawn based on the proposed study.

  1. Experimental and modeling results of creep-fatigue life of Inconel 617 and Haynes 230 at 850 °C

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Sokolov, Mikhail A.; Sham, Sam; Erdman, Donald L., III; Busby, Jeremy T.; Mo, Kun; Stubbins, James F.

    2013-01-01

    Creep-fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 °C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep-fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep-fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure for both materials decreased under creep-fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep-fatigue life. The linear damage summation could predict the creep-fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep-fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep-fatigue life prediction results for both materials.

  2. Crystal viscoplasticity model for the creep-fatigue interactions in single-crystal Ni-base superalloy CMSX-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estrada Rodas, Ernesto A.; Neu, Richard W.

    A crystal viscoplasticity (CVP) model for the creep-fatigue interactions of nickel-base superalloy CMSX-8 is proposed. At the microstructure scale of relevance, the superalloys are a composite material comprised of a γ phase and a γ' strengthening phase with unique deformation mechanisms that are highly dependent on temperature. Considering the differences in the deformation of the individual material phases is paramount to predicting the deformation behavior of superalloys at a wide range of temperatures. In this work, we account for the relevant deformation mechanisms that take place in both material phases by utilizing two additive strain rates to model the deformationmore » on each material phase. The model is capable of representing the creep-fatigue interactions in single-crystal superalloys for realistic 3-dimensional components in an Abaqus User Material Subroutine (UMAT). Using a set of material parameters calibrated to superalloy CMSX-8, the model predicts creep-fatigue, fatigue and thermomechanical fatigue behavior of this single-crystal superalloy. In conclusion, a sensitivity study of the material parameters is done to explore the effect on the deformation due to changes in the material parameters relevant to the microstructure.« less

  3. Crystal viscoplasticity model for the creep-fatigue interactions in single-crystal Ni-base superalloy CMSX-8

    DOE PAGES

    Estrada Rodas, Ernesto A.; Neu, Richard W.

    2017-09-11

    A crystal viscoplasticity (CVP) model for the creep-fatigue interactions of nickel-base superalloy CMSX-8 is proposed. At the microstructure scale of relevance, the superalloys are a composite material comprised of a γ phase and a γ' strengthening phase with unique deformation mechanisms that are highly dependent on temperature. Considering the differences in the deformation of the individual material phases is paramount to predicting the deformation behavior of superalloys at a wide range of temperatures. In this work, we account for the relevant deformation mechanisms that take place in both material phases by utilizing two additive strain rates to model the deformationmore » on each material phase. The model is capable of representing the creep-fatigue interactions in single-crystal superalloys for realistic 3-dimensional components in an Abaqus User Material Subroutine (UMAT). Using a set of material parameters calibrated to superalloy CMSX-8, the model predicts creep-fatigue, fatigue and thermomechanical fatigue behavior of this single-crystal superalloy. In conclusion, a sensitivity study of the material parameters is done to explore the effect on the deformation due to changes in the material parameters relevant to the microstructure.« less

  4. Fatigue loading of tendon

    PubMed Central

    Shepherd, Jennifer H; Screen, Hazel R C

    2013-01-01

    Tendon injuries, often called tendinopathies, are debilitating and painful conditions, generally considered to develop as a result of tendon overuse. The aetiology of tendinopathy remains poorly understood, and whilst tendon biopsies have provided some information concerning tendon appearance in late-stage disease, there is still little information concerning the mechanical and cellular events associated with disease initiation and progression. Investigating this in situ is challenging, and numerous models have been developed to investigate how overuse may generate tendon fatigue damage and how this may relate to tendinopathy conditions. This article aims to review these models and our current understanding of tendon fatigue damage. We review the strengths and limitations of different methodologies for characterizing tendon fatigue, considering in vitro methods that adopt both viable and non-viable samples, as well as the range of different in vivo approaches. By comparing data across model systems, we review the current understanding of fatigue damage development. Additionally, we compare these findings with data from tendinopathic tissue biopsies to provide some insights into how these models may relate to the aetiology of tendinopathy. Fatigue-induced damage consistently highlights the same microstructural, biological and mechanical changes to the tendon across all model systems and also correlates well with the findings from tendinopathic biopsy tissue. The multiple testing routes support matrix damage as an important contributor to tendinopathic conditions, but cellular responses to fatigue appear complex and often contradictory. PMID:23837793

  5. Components of Fatigue: Mind and Body.

    PubMed

    Carriker, Colin R

    2017-11-01

    Carriker, CR. Components of fatigue: mind and body. J Strength Cond Res 31(11): 3170-3176, 2017-Maximal intensity exercise requires significant energy demand. Subsequently, prolonged high-intensity effort eventually initiates volitional cessation of the event; often preceeded by a sensation of fatigue. Those examining the basis of fatigue tend to advocate either a peripheral or central model to explain such volitional failure. Practitioners and athletes who understand the tenants of fatigue can tailor their exercise regimens to target areas of potential physical or mental limitation. This review examines the rationale surrounding 2 separate models which postulate the origination of fatigue. Although the peripheral model suggests that fatigue occurs at the muscles, others have suggested a teloanticipatory cognitive component which plays a dominant role. Those familiar with both models may better integrate practice-based evidence into evidence-based practice. The highly individual nature of human performance further highlights the compulsion to comprehend the spectrum of fatigue, such that the identification of insufficiencies should mandate the development of a training purview for peak human performance.

  6. NASA GRC Fatigue Crack Initiation Life Prediction Models

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R.

    2002-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable, more cost effective, and better performing products. In other words, as the envelope is expanded, components are then designed to operate just as close to the newly expanded envelope as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  7. NASA GRC Fatigue Crack Initiation Life Prediction Models

    NASA Astrophysics Data System (ADS)

    Arya, Vinod K.; Halford, Gary R.

    2002-10-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable, more cost effective, and better performing products. In other words, as the envelope is expanded, components are then designed to operate just as close to the newly expanded envelope as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  8. Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law

    PubMed Central

    Toribio, Jesús; Matos, Juan-Carlos; González, Beatriz

    2017-01-01

    In this paper, a Paris law-based model is presented whereby crack propagation occurs under cyclic loading in air (fatigue) and in an aggressive environment (corrosion-fatigue) for the case of corner cracks (with a wide range of aspect ratios in the matter of the initial cracks) in finite-thickness plates of 316L austenitic stainless steel subjected to tension, bending, or combined (tension + bending) loading. Results show that the cracks tend during their growth towards a preferential propagation path, exhibiting aspect ratios slightly lower than unity only for the case of very shallow cracks, and diminishing as the crack grows (increasing the relative crack depth)—more intensely in the case of bending than in the case of tension (the mixed loading tension/bending representing an intermediate case). In addition, the crack aspect ratios during fatigue propagation evolution are lower in fatigue (in air) than in corrosion-fatigue (in aggressive environment). PMID:28772798

  9. Psychometric Properties of the Chinese Version of the Occupational Fatigue Exhaustion/Recovery Scale: A Test in a Nursing Population.

    PubMed

    Fang, Jin-Bo; Zhou, Chun-Fen; Huang, Jing; Qiu, Chang-Jian

    2018-06-01

    The Occupational Fatigue Exhaustion/Recovery Scale (OFER) was designed to assess occupational fatigue in nurses. Although the original English version of this instrument has shown high degrees of reliability and validity, a Chinese version of this scale has yet to be verified. The aim of this study was to evaluate the psychometric properties of the OFER in a population of Chinese nurses. The scale was translated using translation and back-translation. The validities and reliabilities were evaluated on 923 qualified participants using content validity index, concurrent validity, factorial validity, internal consistency reliability, and test-retest reliability. The content validity index for the OFER was .92. The correlation coefficients between the scores of the OFER subscales and the criteria in this study (varying from -.498 to .705) verified that the OFER has acceptable concurrent validity. Principal component analysis and confirmatory factor analysis revealed that three factors correspond to the structure of the original instrument and that recovery mediates the relationship between acute and chronic fatigue. The Cronbach's alpha for the chronic fatigue, acute fatigue, and intershift recovery subscales were .83, .85, and .86, respectively. Test-retest reliabilities with correlation coefficients from .61 to .78 were found in the three subscales. OFER is a reliable and valid instrument for assessing work-related fatigue in Chinese nurses. However, further improvement of the acute fatigue subscale is recommended. The OFER has the potential to elicit information that is useful for assessing fatigue in nurses in China. Furthermore, as it differentiates between acute and chronic fatigue, OFER may be an effective tool for guiding the development and implementation of various, related intervention measures.

  10. Systematic review of the multidimensional fatigue symptom inventory-short form.

    PubMed

    Donovan, Kristine A; Stein, Kevin D; Lee, Morgan; Leach, Corinne R; Ilozumba, Onaedo; Jacobsen, Paul B

    2015-01-01

    Fatigue is a subjective complaint that is believed to be multifactorial in its etiology and multidimensional in its expression. Fatigue may be experienced by individuals in different dimensions as physical, mental, and emotional tiredness. The purposes of this study were to review and characterize the use of the 30-item Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF) in published studies and to evaluate the available evidence for its psychometric properties. A systematic review was conducted to identify published articles reporting results for the MFSI-SF. Data were analyzed to characterize internal consistency reliability of multi-item MFSI-SF scales and test-retest reliability. Correlation coefficients were summarized to characterize concurrent, convergent, and divergent validity. Standardized effect sizes were calculated to characterize the discriminative validity of the MFSI-SF and its sensitivity to change. Seventy articles were identified. Sample sizes reported ranged from 10 to 529 and nearly half consisted exclusively of females. More than half the samples were composed of cancer patients; of those, 59% were breast cancer patients. Mean alpha coefficients for MFSI-SF fatigue subscales ranged from 0.84 for physical fatigue to 0.93 for general fatigue. The MFSI-SF demonstrated moderate test-retest reliability in a small number of studies. Correlations with other fatigue and vitality measures were moderate to large in size and in the expected direction. The MFSI-SF fatigue subscales were positively correlated with measures of distress, depressive, and anxious symptoms. Effect sizes for discriminative validity ranged from medium to large, while effect sizes for sensitivity to change ranged from small to large. Findings demonstrate the positive psychometric properties of the MFSI-SF, provide evidence for its usefulness in medically ill and nonmedically ill individuals, and support its use in future studies.

  11. Developing and evaluating a mobile driver fatigue detection network based on electroencephalograph signals

    PubMed Central

    Yin, Jinghai; Mu, Zhendong

    2016-01-01

    The rapid development of driver fatigue detection technology indicates important significance of traffic safety. The authors’ main goals of this Letter are principally three: (i) A middleware architecture, defined as process unit (PU), which can communicate with personal electroencephalography (EEG) node (PEN) and cloud server (CS). The PU receives EEG signals from PEN, recognises the fatigue state of the driver, and transfer this information to CS. The CS sends notification messages to the surrounding vehicles. (ii) An android application for fatigue detection is built. The application can be used for the driver to detect the state of his/her fatigue based on EEG signals, and warn neighbourhood vehicles. (iii) The detection algorithm for driver fatigue is applied based on fuzzy entropy. The idea of 10-fold cross-validation and support vector machine are used for classified calculation. Experimental results show that the average accurate rate of detecting driver fatigue is about 95%, which implying that the algorithm is validity in detecting state of driver fatigue. PMID:28529761

  12. Developing and evaluating a mobile driver fatigue detection network based on electroencephalograph signals.

    PubMed

    Yin, Jinghai; Hu, Jianfeng; Mu, Zhendong

    2017-02-01

    The rapid development of driver fatigue detection technology indicates important significance of traffic safety. The authors' main goals of this Letter are principally three: (i) A middleware architecture, defined as process unit (PU), which can communicate with personal electroencephalography (EEG) node (PEN) and cloud server (CS). The PU receives EEG signals from PEN, recognises the fatigue state of the driver, and transfer this information to CS. The CS sends notification messages to the surrounding vehicles. (ii) An android application for fatigue detection is built. The application can be used for the driver to detect the state of his/her fatigue based on EEG signals, and warn neighbourhood vehicles. (iii) The detection algorithm for driver fatigue is applied based on fuzzy entropy. The idea of 10-fold cross-validation and support vector machine are used for classified calculation. Experimental results show that the average accurate rate of detecting driver fatigue is about 95%, which implying that the algorithm is validity in detecting state of driver fatigue.

  13. Temporal separation and self-rating of alertness as indicators of driver fatigue in commercial motor vehicle operators.

    PubMed

    Belz, Steven M; Robinson, Gary S; Casali, John G

    2004-01-01

    This on-road field investigation employed, for the first time, a completely automated trigger-based data collection system capable of evaluating driver performance in an extended-duration real-world commercial motor vehicle environment. The study examined the use of self-assessment of fatigue (Karolinska Sleepiness Scale) and temporal separation (minimum time to collision, minimum headway, and mean headway) as indicators of driver fatigue. Without exception, the correlation analyses for both the self-rating of alertness and temporal separation yielded models low in associative ability; neither metric was found to be a valid indicator of driver fatigue. In addition, based upon the data collected for this research, preliminary evidence suggests that driver fatigue onset within a real-world driving environment does not appear to follow the standard progression of events associated with the onset of fatigue within a simulated driving environment. Application of this research includes the development of an on-board driver performance/fatigue monitoring system that could potentially assist drivers in identifying the onset of fatigue.

  14. Substrate Creep on The Fatigue Life of A Model Dental Multilayer Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, J; Huang, M; Niu, X

    In this paper, we investigated the effects of substrate creep on the fatigue behavior of a model dental multilayer structure, in which a top glass layer was bonded to a polycarbonate substrate through a dental adhesive. The top glass layers were ground using 120 grit or 600 grit sand papers before bonding to create different sub-surface crack sizes and morphologies. The multilayer structures were tested under cyclic Hertzian contact loading to study crack growth and obtain fatigue life curves. The experiment results showed that the fatigue lives of the multilayer structures were impaired by increasing crack sizes in the sub-surfaces.more » They were also significantly reduced by the substrate creep when tested at relatively low load levels i.e. P{sub m} < 60 N (Pm is the maximum magnitude of cyclic load). But at relatively high load levels i.e. P{sub m} > 65 N, slow crack growth (SCG) was the major failure mechanisms. A modeling study was then carried out to explore the possible failure mechanisms over a range of load levels. It is found that fatigue life at relatively low load levels can be better estimated by considering the substrate creep effect (SCE).« less

  15. The causal role of fatigue in the stress-perceived health relationship: a MetroNet study.

    PubMed

    Maghout-Juratli, Sham; Janisse, James; Schwartz, Kendra; Arnetz, Bengt B

    2010-01-01

    We conducted a cross-sectional survey of 4 primary care MetroNet centers in metropolitan Detroit. Our objective was to describe the causal role of fatigue in the relationship among stress, stress resiliency, and perceived health in primary care. Fatigue is a public health problem that has been linked to stress and poor health. The causal role of fatigue between stress and perceived health is unknown. Four hundred surveys were distributed to adult patients in 4 primary care centers in metropolitan Detroit between 2006 and 2007. Internal consistency reliabilities and principal factor analyses were calculated for the key psychological scales. Perceived health is the primary outcome. Path models were used to study the relationship among stress, fatigue, and perceived health. We also modeled the impact of select stress resiliency factors including sleep, recovery, and social support. Of the 400 distributed surveys, 315 (78.7%) had a response rate of 70% or more and were included in the analysis. Respondents were predominantly middle aged (median age, 43 years); female (58.7%); and African American (52.0%). The majority worked full time (56.5%); did not have a college degree (77.7%); and were not married (55.2%). Fatigue was reported by 59% of respondents, 42.7% of which was unexplained. The path model supported the causal role of fatigue between stress and perceived health. The positive effects of sleep, recovery, and social support on fatigue, stress, and perceived health were validated. Fatigue was common in this metropolitan primary care environment and completely mediated the relationship between stress and poor perceived health. Therefore, stress, when significant enough to cause fatigue, may lead to poor health.

  16. Model Validation Status Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.L. Hardin

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified,more » and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural

  17. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Astrophysics Data System (ADS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-05-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  18. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Technical Reports Server (NTRS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-01-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  19. Catastrophe models for cognitive workload and fatigue in N-back tasks.

    PubMed

    Guastello, Stephen J; Reiter, Katherine; Malon, Matthew; Timm, Paul; Shircel, Anton; Shaline, James

    2015-04-01

    N-back tasks place a heavy load on working memory, and thus make good candidates for studying cognitive workload and fatigue (CWLF). This study extended previous work on CWLF which separated the two phenomena with two cusp catastrophe models. Participants were 113 undergraduates who completed 2-back and 3-back tasks with both auditory and visual stimuli simultaneously. Task data were complemented by several measures hypothesized to be related to cognitive elasticity and compensatory abilities and the NASA TLX ratings of subjective workload. The adjusted R2 was .980 for the workload model, which indicated a highly accurate prediction with six bifurcation (elasticity versus rigidity) effects: algebra flexibility, TLX performance, effort, and frustration; and psychosocial measures of inflexibility and monitoring. There were also two cognitive load effects (asymmetry): 2 vs. 3-back and TLX temporal demands. The adjusted R2 was .454 for the fatigue model, which contained two bifurcation variables indicating the amount of work done, and algebra flexibility as the compensatory ability variable. Both cusp models were stronger than the next best linear alternative model. The study makes an important step forward by uncovering an apparently complete model for workload, finding the role of subjective workload in the context of performance dynamics, and finding CWLF dynamics in yet another type of memory-intensive task. The results were also consistent with the developing notion that performance deficits induced by workload and deficits induced by fatigue result from the impact of the task on the workspace and executive functions of working memory respectively.

  20. Ecological validity and clinical utility of Patient-Reported Outcomes Measurement Information System (PROMIS®) instruments for detecting premenstrual symptoms of depression, anger, and fatigue.

    PubMed

    Junghaenel, Doerte U; Schneider, Stefan; Stone, Arthur A; Christodoulou, Christopher; Broderick, Joan E

    2014-04-01

    This study examined the ecological validity and clinical utility of NIH Patient Reported-Outcomes Measurement Information System (PROMIS®) instruments for anger, depression, and fatigue in women with premenstrual symptoms. One-hundred women completed daily diaries and weekly PROMIS assessments over 4weeks. Weekly assessments were administered through Computerized Adaptive Testing (CAT). Weekly CATs and corresponding daily scores were compared to evaluate ecological validity. To test clinical utility, we examined if CATs could detect changes in symptom levels, if these changes mirrored those obtained from daily scores, and if CATs could identify clinically meaningful premenstrual symptom change. PROMIS CAT scores were higher in the pre-menstrual than the baseline (ps<.0001) and post-menstrual (ps<.0001) weeks. The correlations between CATs and aggregated daily scores ranged from .73 to .88 supporting ecological validity. Mean CAT scores showed systematic changes in accordance with the menstrual cycle and the magnitudes of the changes were similar to those obtained from the daily scores. Finally, Receiver Operating Characteristic (ROC) analyses demonstrated the ability of the CATs to discriminate between women with and without clinically meaningful premenstrual symptom change. PROMIS CAT instruments for anger, depression, and fatigue demonstrated validity and utility in premenstrual symptom assessment. The results provide encouraging initial evidence of the utility of PROMIS instruments for the measurement of affective premenstrual symptoms. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Ecological Validity and Clinical Utility of Patient-Reported Outcomes Measurement Information System (PROMIS®) instruments for detecting premenstrual symptoms of depression, anger, and fatigue

    PubMed Central

    Junghaenel, Doerte U.; Schneider, Stefan; Stone, Arthur A.; Christodoulou, Christopher; Broderick, Joan E.

    2014-01-01

    Objective This study examined the ecological validity and clinical utility of NIH Patient Reported-Outcomes Measurement Information System (PROMIS®) instruments for anger, depression, and fatigue in women with premenstrual symptoms. Methods One-hundred women completed daily diaries and weekly PROMIS assessments over 4 weeks. Weekly assessments were administered through Computerized Adaptive Testing (CAT). Weekly CATs and corresponding daily scores were compared to evaluate ecological validity. To test clinical utility, we examined if CATs could detect changes in symptom levels, if these changes mirrored those obtained from daily scores, and if CATs could identify clinically meaningful premenstrual symptom change. Results PROMIS CAT scores were higher in the pre-menstrual than the baseline (ps < .0001) and post-menstrual (ps < .0001) weeks. The correlations between CATs and aggregated daily scores ranged from .73 to .88 supporting ecological validity. Mean CAT scores showed systematic changes in accordance with the menstrual cycle and the magnitudes of the changes were similar to those obtained from the daily scores. Finally, Receiver Operating Characteristic (ROC) analyses demonstrated the ability of the CATs to discriminate between women with and without clinically meaningful premenstrual symptom change. Conclusions PROMIS CAT instruments for anger, depression, and fatigue demonstrated validity and utility in premenstrual symptom assessment. The results provide encouraging initial evidence of the utility of PROMIS instruments for the measurement of affective premenstrual symptoms. PMID:24630180

  2. Fatigue in sarcoidosis and idiopathic pulmonary fibrosis: differences in character and severity between diseases.

    PubMed

    Atkins, Christopher Peter; Gilbert, Daniel; Brockwell, Claire; Robinson, Sue; Wilson, Andrew Malcolm

    2016-08-01

    Sarcoidosis and idiopathic pulmonary fibrosis (IPF) are two common forms of interstitial lung disease. Fatigue is a recognised feature of sarcoidosis but an association between IPF and fatigue has not been investigated. To investigate the frequency and severity of fatigue in these groups, and variables affecting fatigue scores. A cross-sectional questionnaire study of patients with sarcoidosis and IPF followed-up at a single hospital was undertaken. Questionnaire data included validated measures of fatigue, anxiety, depression, sleepiness and dyspnoea, plus measures of disease severity including spirometry data. Questionnaires were administered to 232 patients (82 healthy volunteers, 73 sarcoidosis patients and 77 IPF patients). Sarcoidosis patients had statistically higher sleepiness scores but no significant difference was seen between overall measures of fatigue, anxiety or depression. Stratification by severity revealed a non-statistically significant tendency towards more severe fatigue scores in sarcoidosis. Regression analysis failed to identify any significant predictor variables measured in the sarcoidosis cohort, though in the IPF group both dyspnoea and sleepiness scores were significant predictors of fatigue (R2=0.74). Both sarcoidosis and IPF patients suffer with fatigue, although sarcoidosis patients tended towards reporting more severe fatigue scores, suggesting a subgroup with severe fatigue. The fatigue experienced by the two groups appears to be different; sarcoidosis patients report greater frequency of mental fatigue whereas IPF patients appear to suffer exhaustion, potentially related to dyspnoea. Dyspnoea and sleepiness scores modeled the majority of fatigue in the IPF group, whereas no single factor was able to predict fatigue in sarcoidosis.

  3. The role of TRAIL in fatigue induced by repeated stress from radiotherapy.

    PubMed

    Feng, Li Rebekah; Suy, Simeng; Collins, Sean P; Saligan, Leorey N

    2017-08-01

    Fatigue is one of the most common and debilitating side effects of cancer and cancer treatment, and yet its etiology remains elusive. The goal of this study is to understand the role of chronic inflammation in fatigue following repeated stress from radiotherapy. Fatigue and non-fatigue categories were assessed using ≥ 3-point change in Functional Assessment of Cancer Therapy-Fatigue questionnaire (FACT-F) administered to participants at baseline/before radiotherapy and one year post-radiotherapy. Whole genome microarray and cytokine multiplex panel were used to examine fatigue-related transcriptome and serum cytokine changes, respectively. The study included 86 subjects (discovery phase n = 40, validation phase n = 46). The sample in the discovery phase included men with prostate cancer scheduled to receive external-beam radiotherapy. A panel of 48 cytokines were measured and the significantly changed cytokine found in the discovery phase was validated using sera from a separate cohort of men two years after completing radiotherapy for prostate cancer at a different institution. Effects of the significantly changed cytokine on cell viability was quantified using the MTT assay. During the discovery phase, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL decoy receptor, TNFRSF10C (TRAIL-R3), were significantly upregulated in fatigued (≥3-point decrease from baseline to 1yr-post radiotherapy) subjects (n = 15). In the validation phase, TRAIL correlated with fatigue scores 2yrs post-radiotherapy. TRAIL caused selective cytotoxicity in neuronal cells, but not in microglial and muscle cells, in vitro. Late-onset inflammation directed by TRAIL may play a role in fatigue pathogenesis post-repeated stress from irradiation. Published by Elsevier Ltd.

  4. Psychometric Evaluation of the PROMIS Fatigue-Short Form Across Diverse Populations

    PubMed Central

    Ameringer, Suzanne; Elswick, R. K.; Menzies, Victoria; Robins, Jo Lynne; Starkweather, Angela; Walter, Jeanne; Gentry, Amanda Elswick; Jallo, Nancy

    2016-01-01

    Background The need for reliable, valid tools to measure patient-reported outcomes (PROs) is critical for both research and for evaluating treatment effects in practice. The Patient Reported Outcome Measurement Information System (PROMIS) Fatigue-Short Form v1.0 –Fatigue 7a (PROMIS F-SF) has had limited psychometric evaluation in various populations. Objectives The aim of the study is to examine psychometric properties of PROMIS F-SF item responses across various populations. Methods Data from five studies with common data elements were used in this secondary analysis. Samples from patients with fibromyalgia, sickle cell disease, cardiometabolic risk, pregnancy, and healthy controls were used. Reliability was estimated using Cronbach’s alpha. Dimensionality was evaluated with confirmatory factor analysis. Concurrent validity was evaluated by examining Pearson’s correlations between scores from the PROMIS F-SF, the Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF), and the Brief Fatigue Inventory (BFI). Discriminant validity was evaluated by examining Pearson’s correlations between scores on the PROMIS F-SF and measures of stress and depressive symptoms. Known groups validity was assessed by comparing PROMIS F-SH scores in the clinical samples to healthy controls. Results Reliability of PROMIS F-SF scores was adequate across samples, ranging from .72 in the pregnancy sample to .88 in healthy controls. Unidimensionality was supported in each sample. Concurrent validity was strong; across the groups, correlations with scores on the MFSI-SF and BFI ranged from .60–.85. Correlations of the PROMIS-SF with measures of stress and depressive mood were moderate to strong, ranging from .37–.64. PROMIS F-SF scores were significantly higher in clinical samples, compared to healthy controls. Discussion Reliability and validity of the PROMIS F-SF were acceptable. The PROMIS F-SF is a suitable measure of fatigue across the four diverse clinical

  5. Translation and adaptation of the fatigue severity scale for use in Portugal.

    PubMed

    Laranjeira, Carlos António

    2012-08-01

    The Fatigue Severity Scale (FSS) is a widely used instrument to measure the impact of fatigue on specific types of functioning. This study aims to translate and test the reliability and validity of the Portuguese version of the FSS. The questionnaire was administered to a worker sample of 424 nurses. Reliability analysis showed satisfactory results (Cronbach's alpha coefficient = .87). The test-retest reliability was .85. The principal component analysis showed that the FSS was a measure with a one-factor structure. The construct validity of the total FSS score was assessed by correlation with Maslach Burnout Inventory (MBI) score, Depression Anxiety Stress Scale (DASS) score, and Visual Analogue Scale (VAS) score. Each of the corresponding correlation coefficients among the total FSS score and MBI score, DASS score, and perceived fatigue score (VAS) were .55 (p < .01), .62 (p < .01), and .68 (p < .01), respectively, which shows sufficient construct validity. To measure the discriminant validity of FSS, we examined the differences in scores between groups in terms of the number of hours of sleep and overtime. The less nurses slept and the longer they worked, the higher their total FSS score became. This preliminary validation study of the Portuguese version of FSS proved that it is an acceptable, reliable, and valid measure of fatigue in the working population. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. The stretch-shortening cycle : a model to study naturally occurring neuromuscular fatigue.

    PubMed

    Nicol, Caroline; Avela, Janne; Komi, Paavo V

    2006-01-01

    Neuromuscular fatigue has traditionally been examined using isolated forms of either isometric, concentric or eccentric actions. However, none of these actions are naturally occurring in human (or animal) ground locomotion. The basic muscle function is defined as the stretch-shortening cycle (SSC), where the preactivated muscle is first stretched (eccentric action) and then followed by the shortening (concentric) action. As the SSC taxes the skeletal muscles very strongly mechanically, its influence on the reflex activation becomes apparent and very different from the isolated forms of muscle actions mentioned above. The ground contact phases of running, jumping and hopping etc. are examples of the SSC for leg extensor muscles; similar phases can also be found for the upper-body activities. Consequently, it is normal and expected that the fatigue phenomena should be explored during SSC activities. The fatigue responses of repeated SSC actions are very versatile and complex because the fatigue does not depend only on the metabolic loading, which is reportedly different among muscle actions. The complexity of SSC fatigue is well reflected by the recovery patterns of many neuromechanical parameters. The basic pattern of SSC fatigue response (e.g. when using the complete exhaustion model of hopping or jumping) is the bimodality showing an immediate reduction in performance during exercise, quick recovery within 1-2 hours, followed by a secondary reduction, which may often show the lowest values on the second day post-exercise when the symptoms of muscle soreness/damage are also greatest. The full recovery may take 4-8 days depending on the parameter and on the severity of exercise. Each subject may have their own time-dependent bimodality curve. Based on the reviewed literature, it is recommended that the fatigue protocol is 'completely' exhaustive to reduce the important influence of inter-subject variability in the fatigue responses. The bimodality concept is

  7. Final Report for Project 13-4791: New Mechanistic Models of Creep-Fatigue Crack Growth Interactions for Advanced High Temperature Reactor Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruzic, Jamie J; Siegmund, Thomas; Tomar, Vikas

    This project developed and validated a novel, multi-scale, mechanism-based model to quantitatively predict creep-fatigue crack growth and failure for Ni-based Alloy 617 at 800°C. Alloy 617 is a target material for intermediate heat exchangers in Generation IV very high temperature reactor designs, and it is envisioned that this model will aid in the design of safe, long lasting nuclear power plants. The technical effectiveness of the model was shown by demonstrating that experimentally observed crack growth rates can be predicted under both steady state and overload crack growth conditions. Feasibility was considered by incorporating our model into a commercially availablemore » finite element method code, ABAQUS, that is commonly used by design engineers. While the focus of the project was specifically on an alloy targeted for Generation IV nuclear reactors, the benefits to the public are expected to be wide reaching. Indeed, creep-fatigue failure is a design consideration for a wide range of high temperature mechanical systems that rely on Ni-based alloys, including industrial gas power turbines, advanced ultra-super critical steam turbines, and aerospace turbine engines. It is envisioned that this new model can be adapted to a wide range of engineering applications.« less

  8. Fatigue in Parkinson's disease: concepts and clinical approach.

    PubMed

    Nassif, Daniel V; Pereira, João S

    2018-03-01

    Parkinson's disease (PD) is a progressive neurological disorder characterized by a large number of motor and non-motor features. Fatigue is one of the most common and most disabling symptoms among patients with PD, and it has a significant impact on their quality of life. Although fatigue has been recognized for a long time, its pathophysiology remains poorly understood, and there is no evidence to support any therapeutic approach in PD patients. Expert consensus on case definition and diagnostic criteria for PD-related fatigue have been recently published, and although they still need to be adequately validated, they provide a great step forward in the study of fatigue. The goal of this article is to provide relevant information for the identification and management of patients with fatigue. © 2018 Japanese Psychogeriatric Society.

  9. The Fatigue Assessment Scale: quality and availability in sarcoidosis and other diseases.

    PubMed

    Hendriks, Celine; Drent, Marjolein; Elfferich, Marjon; De Vries, Jolanda

    2018-06-07

    Fatigue is a problem experienced by many patients suffering from chronic diseases, including sarcoidosis patients. It has a substantial influence on patients' quality of life (QoL). It is, therefore, important to properly assess fatigue with a valid and reliable measure. The Fatigue Assessment Scale (FAS) is the only validated self-reporting instrument classifying fatigue in sarcoidosis. The aim of this review was to examine the psychometric properties of the FAS and the diseases and languages in which it has been used. Studies among sarcoidosis patients were also reviewed in terms of outcomes. Studies were identified by searching the electronic bibliographic database Pubmed. Search terms used were: FAS and fatigue. Articles were included in the review if the FAS had been used to assess fatigue. Since its introduction, the FAS was used in 26 different diseases or conditions, including stroke, neurologic disorders, rheumatoid arthritis, idiopathic pulmonary fibrosis and sarcoidosis. Its reliability and validity have proved to be good. Unidimensionality has been established. So far, the FAS is available in 20 languages and widely used in sarcoidosis. Digital versions as well as PDFs of various languages are available online (www.wasog.org). The FAS has good psychometric qualities for the diseases in which it has been examined, including sarcoidosis, and can be used in clinical practice. Healthcare workers can use the FAS to assess fatigue in the management, follow-up and clinical care programmes for their patients consistently across countries, as well as in clinical research.

  10. Modeling Quasi-Static and Fatigue-Driven Delamination Migration

    NASA Technical Reports Server (NTRS)

    De Carvalho, N. V.; Ratcliffe, J. G.; Chen, B. Y.; Pinho, S. T.; Baiz, P. M.; Tay, T. E.

    2014-01-01

    An approach was proposed and assessed for the high-fidelity modeling of progressive damage and failure in composite materials. It combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. Delamination, matrix cracking, and migration were captured failure and migration criteria based on fracture mechanics. Quasi-static and fatigue loading were modeled within the same overall framework. The methodology proposed was illustrated by simulating the delamination migration test, showing good agreement with the available experimental data.

  11. On simulating sustained isometric muscle fatigue: a phenomenological model considering different fiber metabolisms.

    PubMed

    Grasa, J; Sierra, M; Muñoz, M J; Soteras, F; Osta, R; Calvo, B; Miana-Mena, F J

    2014-11-01

    The present study shows a new computational FEM technique to simulate the evolution of the mechanical response of 3D muscle models subjected to fatigue. In an attempt to obtain very realistic models, parameters needed to adjust the mathematical formulation were obtained from in vivo experimental tests. The fatigue contractile properties of three different rat muscles (Tibialis Anterior, Extensor Digitorium Longus and Soleus) subjected to sustained maximal isometric contraction were determined. Experiments were conducted on three groups [Formula: see text] of male Wistar rats [Formula: see text] using a protocol previously developed by the authors for short tetanic contractions. The muscles were subjected to an electrical stimulus to achieve tetanic contraction during 10 s. The parameters obtained for each muscle were incorporated into a finite strain formulation for simulating active and passive behavior of muscles with different fiber metabolisms. The results show the potential of the model to predict muscle fatigue under high-frequency stimulation and the 3D distribution of mechanical variables such as stresses and strains.

  12. Software for Statistical Analysis of Weibull Distributions with Application to Gear Fatigue Data: User Manual with Verification

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.

    2002-01-01

    The Weibull distribution has been widely adopted for the statistical description and inference of fatigue data. This document provides user instructions, examples, and verification for software to analyze gear fatigue test data. The software was developed presuming the data are adequately modeled using a two-parameter Weibull distribution. The calculations are based on likelihood methods, and the approach taken is valid for data that include type 1 censoring. The software was verified by reproducing results published by others.

  13. Software for Statistical Analysis of Weibull Distributions with Application to Gear Fatigue Data: User Manual with Verification

    NASA Technical Reports Server (NTRS)

    Kranz, Timothy L.

    2002-01-01

    The Weibull distribution has been widely adopted for the statistical description and inference of fatigue data. This document provides user instructions, examples, and verification for software to analyze gear fatigue test data. The software was developed presuming the data are adequately modeled using a two-parameter Weibull distribution. The calculations are based on likelihood methods, and the approach taken is valid for data that include type I censoring. The software was verified by reproducing results published by others.

  14. Development of a Mouse Model for Assessing Fatigue during Chemotherapy

    PubMed Central

    Ray, Maria A; Trammell, Rita A; Verhulst, Steve; Ran, Sophia; Toth, Linda A

    2011-01-01

    Fatigue and disturbed sleep are common problems for cancer patients and affect both quality of life and compliance with treatment. Fatigue may be associated with cancer itself and with the treatment, particularly for therapies with neurotoxic side effects. To develop a model system for evaluation of chemotherapy-related fatigue, we studied mice treated with either a commonly used formulation of the chemotherapeutic agent paclitaxel (paclitaxel; Taxol), which is known to have neurotoxic properties, or a nanoparticle formulation of paclitaxel (nab-paclitaxel; Abraxane) that is reported to have greater potency and efficacy yet fewer side effects than does paclitaxel. Mice were treated with 1 of these 2 agents (10 mg/kg IV daily for 5 consecutive days) and were monitored from 1 wk before through 4 wk after treatment. Dependent measures included running wheel activity, locomotor activity on the cage floor, core temperature, sleep patterns, CBC count, serum cytokine and chemokine concentrations, and neurologic assessment. For both drugs, mice showed the most severe perturbations of activity during the first recovery week after drug administration. Mice treated with paclitaxel showed greater neutropenia and motor deficits than did mice treated with nab-paclitaxel. However, deficits had largely resolved by 4 wk after administration of either drug. We conclude that these measures provide an assessment of chemotherapy-related fatigue that potentially can distinguish toxicity associated with different formulations of the same agent. PMID:21535922

  15. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

    NASA Astrophysics Data System (ADS)

    Beardsell, Alec; Collier, William; Han, Tao

    2016-09-01

    There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.

  16. Fatigue shifts and scatters heart rate variability in elite endurance athletes.

    PubMed

    Schmitt, Laurent; Regnard, Jacques; Desmarets, Maxime; Mauny, Fréderic; Mourot, Laurent; Fouillot, Jean-Pierre; Coulmy, Nicolas; Millet, Grégoire

    2013-01-01

    This longitudinal study aimed at comparing heart rate variability (HRV) in elite athletes identified either in 'fatigue' or in 'no-fatigue' state in 'real life' conditions. 57 elite Nordic-skiers were surveyed over 4 years. R-R intervals were recorded supine (SU) and standing (ST). A fatigue state was quoted with a validated questionnaire. A multilevel linear regression model was used to analyze relationships between heart rate (HR) and HRV descriptors [total spectral power (TP), power in low (LF) and high frequency (HF) ranges expressed in ms(2) and normalized units (nu)] and the status without and with fatigue. The variables not distributed normally were transformed by taking their common logarithm (log10). 172 trials were identified as in a 'fatigue' and 891 as in 'no-fatigue' state. All supine HR and HRV parameters (Beta±SE) were significantly different (P<0.0001) between 'fatigue' and 'no-fatigue': HRSU (+6.27±0.61 bpm), logTPSU (-0.36±0.04), logLFSU (-0.27±0.04), logHFSU (-0.46±0.05), logLF/HFSU (+0.19±0.03), HFSU(nu) (-9.55±1.33). Differences were also significant (P<0.0001) in standing: HRST (+8.83±0.89), logTPST (-0.28±0.03), logLFST (-0.29±0.03), logHFST (-0.32±0.04). Also, intra-individual variance of HRV parameters was larger (P<0.05) in the 'fatigue' state (logTPSU: 0.26 vs. 0.07, logLFSU: 0.28 vs. 0.11, logHFSU: 0.32 vs. 0.08, logTPST: 0.13 vs. 0.07, logLFST: 0.16 vs. 0.07, logHFST: 0.25 vs. 0.14). HRV was significantly lower in 'fatigue' vs. 'no-fatigue' but accompanied with larger intra-individual variance of HRV parameters in 'fatigue'. The broader intra-individual variance of HRV parameters might encompass different changes from no-fatigue state, possibly reflecting different fatigue-induced alterations of HRV pattern.

  17. Fatigue life prediction of rotor blade composites: Validation of constant amplitude formulations with variable amplitude experiments

    NASA Astrophysics Data System (ADS)

    Westphal, T.; Nijssen, R. P. L.

    2014-12-01

    The effect of Constant Life Diagram (CLD) formulation on the fatigue life prediction under variable amplitude (VA) loading was investigated based on variable amplitude tests using three different load spectra representative for wind turbine loading. Next to the Wisper and WisperX spectra, the recently developed NewWisper2 spectrum was used. Based on these variable amplitude fatigue results the prediction accuracy of 4 CLD formulations is investigated. In the study a piecewise linear CLD based on the S-N curves for 9 load ratios compares favourably in terms of prediction accuracy and conservativeness. For the specific laminate used in this study Boerstra's Multislope model provides a good alternative at reduced test effort.

  18. Power-duration relationship: Physiology, fatigue, and the limits of human performance.

    PubMed

    Burnley, Mark; Jones, Andrew M

    2018-02-01

    The duration that exercise can be maintained decreases as the power requirements increase. In this review, we describe the power-duration (PD) relationship across the full range of attainable power outputs in humans. We show that a remarkably small range of power outputs is sustainable (power outputs below the critical power, CP). We also show that the origin of neuromuscular fatigue differs considerably depending on the exercise intensity domain in which exercise is performed. In the moderate domain (below the lactate threshold, LT), fatigue develops slowly and is predominantly of central origin (residing in the central nervous system). In the heavy domain (above LT but below CP), both central and peripheral (muscle) fatigue are observed. In this domain, fatigue is frequently correlated with the depletion of muscle glycogen. Severe-intensity exercise (above the CP) is associated with progressive derangements of muscle metabolic homeostasis and consequent peripheral fatigue. To counter these effects, muscle activity increases progressively, as does pulmonary oxygen uptake ([Formula: see text]), with task failure being associated with the attainment of [Formula: see text] max. Although the loss of homeostasis and thus fatigue develop more rapidly the higher the power output is above CP, the metabolic disturbance and the degree of peripheral fatigue reach similar values at task failure. We provide evidence that the failure to continue severe-intensity exercise is a physiological phenomenon involving multiple interacting mechanisms which indicate a mismatch between neuromuscular power demand and instantaneous power supply. Valid integrative models of fatigue must account for the PD relationship and its physiological basis.

  19. Characterization of the temperature evolution during high-cycle fatigue of the ULTIMET superalloy: Experiment and theoretical modeling

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Wang, H.; Liaw, P. K.; Brooks, C. R.; Klarstrom, D. L.

    2001-09-01

    High-speed, high-resolution infrared thermography, as a noncontact, full-field, and nondestructive technique, was used to study the temperature variations of a cobalt-based ULTIMET alloy subjected to high-cycle fatigue. During each fatigue cycle, the temperature oscillations, which were due to the thermal-elastic-plastic effects, were observed and related to stress-strain analyses. A constitutive model was developed for predicting the thermal and mechanical responses of the ULTIMET alloy subjected to cyclic deformation. The model was constructed in light of internal-state variables, which were developed to characterize the inelastic strain of the material during cyclic loading. The predicted stress-strain and temperature responses were found to be in good agreement with the experimental results. In addition, the change of temperature during fatigue was employed to reveal the accumulation of fatigue damage, and the measured temperature was utilized as an index for fatigue-life prediction.

  20. Validation of FAST Model Sleep Estimates with Actigraph Measured Sleep in Locomotive Engineers

    DOT National Transportation Integrated Search

    2012-04-01

    This report presents the results of a study to validate the AutoSleep sleep prediction algorithm, which is a component of the Fatigue Avoidance Scheduling Tool (FAST). Researchers collected work and sleep data from 41 locomotive engineers by using ac...

  1. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    NASA Astrophysics Data System (ADS)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  2. Psychometric properties and Dutch norm data of the PedsQL Multidimensional Fatigue Scale for Young Adults.

    PubMed

    Haverman, Lotte; Limperg, Perrine F; van Oers, Hedy A; van Rossum, Marion A J; Maurice-Stam, Heleen; Grootenhuis, Martha A

    2014-12-01

    The aim of this study was to assess internal consistency and construct validity (known-groups validity) and to provide Dutch norm data for the Dutch Pediatric Quality of Life Inventory Multidimensional Fatigue Scale for Young Adults ages 18-30 years (PedsQL fatigue_YA). A Dutch sample of 649 young adults completed online a sociodemographic questionnaire and the PedsQL fatigue_YA including three subscales: general fatigue, sleep/rest fatigue and cognitive fatigue (0-100: Higher scores indicate less fatigue symptoms). The PedsQL fatigue_YA showed satisfactory to good internal consistency (Cronbach's alpha = .70-.94), except for one scale (.68). The mean scale scores were 68.23 (SD 19.15) for 'general fatigue,' 67.04 (SD 15.54) for 'sleep/rest fatigue' and 74.62 (SD 19.02) for 'cognitive fatigue.' Men reported significantly higher scores on 'general fatigue' and 'sleep/rest fatigue' than women. The PedsQL fatigue_YA distinguished between healthy young adults and young adults with chronic health conditions, with higher scores on all scales in healthy young adults than in those with a chronic health condition. The results demonstrate good psychometric properties of the PedsQL fatigue_YA in a sample of Dutch young adults. With the current norms available, it is possible to evaluate fatigue in the Netherlands from childhood to adulthood with the PedsQL Multidimensional Fatigue Scale.

  3. Recent advances in the modelling of crack growth under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Dekoning, A. U.; Tenhoeve, H. J.; Henriksen, T. K.

    1994-01-01

    Fatigue crack growth associated with cyclic (secondary) plastic flow near a crack front is modelled using an incremental formulation. A new description of threshold behaviour under small load cycles is included. Quasi-static crack extension under high load excursions is described using an incremental formulation of the R-(crack growth resistance)- curve concept. The integration of the equations is discussed. For constant amplitude load cycles the results will be compared with existing crack growth laws. It will be shown that the model also properly describes interaction effects of fatigue crack growth and quasi-static crack extension. To evaluate the more general applicability the model is included in the NASGRO computer code for damage tolerance analysis. For this purpose the NASGRO program was provided with the CORPUS and the STRIP-YIELD models for computation of the crack opening load levels. The implementation is discussed and recent results of the verification are presented.

  4. Validation of Simplified Load Equations Through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana, Scott; Van Dam, Jeroen J; Damiani, Rick R

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, the National Renewable Energy Laboratory (NREL) tested a small horizontal-axis wind turbine in the field at the National Wind Technology Center. The test turbine was a 2.1-kW downwind machine mounted on an 18-m multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the outputmore » of an aeroelastic model of the turbine. In particular, we compared fatigue loads as measured in the field, predicted by the aeroelastic model, and calculated using the simplified design equations. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads and a discussion about the simplified design equations is discussed.« less

  5. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  6. Fatigue 󈨛. Volume 2,

    DTIC Science & Technology

    1987-06-01

    non -propagating cracks should be considered and maximum principal strain amplitude Is the controlling parameter. FATIGUE DAMAGE MAPS The preceding...fatigue is strain- controlled and not stress- controlled . The small effect of R-ratio suggested by Figure 2 may simply reflect the high experimental ...present a model (and its experimental verification) describing non -damaging notches in fatigue. &FFECT OF GRAIN SIZE AND TEMPERATURE In this part we shall

  7. Developing a fatigue questionnaire for Chinese civil aviation pilots.

    PubMed

    Dai, Jing; Luo, Min; Hu, Wendong; Ma, Jin; Wen, Zhihong

    2018-03-23

    To assess the fatigue risk is an important challenge in improving flight safety in aviation industry. The aim of this study was to develop a comprehensive fatigue risk management indicators system and a fatigue questionnaire for Chinese civil aviation pilots. Participants included 74 (all males) civil aviation pilots. They finished the questionnaire in 20 minutes before a flight mission. The estimation of internal consistency with Cronbach's α and Student's t test as well as Pearson's correlation analysis were the main statistical methods. The results revealed that the fatigue questionnaire had acceptable internal consistency reliability and construct validity; there were significant differences on fatigue scores between international and domestic flight pilots. And some international flight pilots, who had taken medications as a sleep aid, had worse sleep quality than those had not. The long-endurance flight across time zones caused significant differences in circadian rhythm. The fatigue questionnaire can be used to measure Chinese civil aviation pilots' fatigue, which provided a reference for fatigue risk management system to civil aviation pilots.

  8. Creep-Fatigue Interaction Testing

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2001-01-01

    Fatigue fives in metals are nominally time independent below 0.5 T(sub Melt). At higher temperatures, fatigue lives are altered due to time-dependent, thermally activated creep. Conversely, creep rates are altered by super. imposed fatigue loading. Creep and fatigue generally interact synergistically to reduce material lifetime. Their interaction, therefore, is of importance to structural durability of high-temperature structures such as nuclear reactors, reusable rocket engines, gas turbine engines, terrestrial steam turbines, pressure vessel and piping components, casting dies, molds for plastics, and pollution control devices. Safety and lifecycle costs force designers to quantify these interactions. Analytical and experimental approaches to creep-fatigue began in the era following World War II. In this article experimental and life prediction approaches are reviewed for assessing creep-fatigue interactions of metallic materials. Mechanistic models are also discussed briefly.

  9. Detection and characterization of fatigue cracks in thin metal plates by low frequency resonant model analysis

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Namkung, M.; Birt, E. A.

    1992-01-01

    Low-frequency resonant model analysis, a technique for the detection and characterization of fatigue cracks in thin metal plates, which could be adapted to rapid scan or large area testing, is considered. Experimental data displaying a direct correlation between fatigue crack geometry and resonance frequency for the second vibrational plate mode are presented. FEM is used to calculate the mechanical behavior of the plates, and provides a comparison basis for the experimentally determined resonance frequency values. The waveform of the acoustic emission generated at the resonant frequency is examined; it provides the basis for a model of the interaction of fatigue crack faces during plate vibration.

  10. Mechanism-Based Modeling for Low Cycle Fatigue of Cast Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; Sloss, Clayton

    2017-09-01

    A mechanism-based approach—the integrated creep-fatigue theory (ICFT)—is used to model low cycle fatigue behavior of 1.4848 cast austenitic steel over the temperature range from room temperature (RT) to 1173 K (900 °C) and the strain rate range from of 2 × 10-4 to 2 × 10-2 s-1. The ICFT formulates the material's constitutive equation based on the physical strain decomposition into mechanism strains, and the associated damage accumulation consisting of crack nucleation and propagation in coalescence with internally distributed damage. At room temperature, the material behavior is controlled by plasticity, resulting in a rate-independent and cyclically stable behavior. The material exhibits significant cyclic hardening at intermediate temperatures, 673 K to 873 K (400 °C to 600 °C), with negative strain rate sensitivity, due to dynamic strain aging. At high temperatures >1073 K (800 °C), time-dependent deformation is manifested with positive rate sensitivity as commonly seen in metallic materials at high temperature. The ICFT quantitatively delineates the contribution of each mechanism in damage accumulation, and predicts the fatigue life as a result of synergistic interaction of the above identified mechanisms. The model descriptions agree well with the experimental and fractographic observations.

  11. Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law

    NASA Astrophysics Data System (ADS)

    Yongyi, Gao; Zhixiao, Su

    In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.

  12. Fatigue crack growth in fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.

    1979-01-01

    Fatigue crack growth in fiber composites occurs by such complex modes as to frustrate efforts at developing comprehensive theories and models. Under certain loading conditions and with certain types of reinforcement, simpler modes of fatigue crack growth are observed. These modes are more amenable to modeling efforts, and the fatigue crack growth rate can be predicted in some cases. Thus, a formula for prediction of ligamented mode fatigue crack growth rate is available.

  13. The Psychometric Properties of an Arabic version of the PedsQL Multidimensional Fatigue Scale Tested for Children with Cancer.

    PubMed

    Al-Gamal, Ekhlas; Long, Tony

    2017-09-01

    Fatigue is considered to be one of the most reported symptoms experienced by children with cancer. A major aim of this study was to develop an Arabic version of the Pediatric Quality of Life (PedsQL) Multidimensional Fatigue Scale (child report) and to test its psychometric proprieties for the assessment of fatigue in Arabic children with cancer. The PedsQL Multidimensional Fatigue Scale (Arabic version) and the PedsQL TM 4.0 Generic Core scale (existing Arabic version) were completed by 70 Jordanian children with cancer. Cronbach's alpha coefficients were found to be 0.90 for the total PedsQL Multidimensional Fatigue Scale (Arabic version), 0.94 for the general fatigue subscale, 0.67 for the sleep/rest fatigue subscale, and 0.87 for the cognitive fatigue subscale. The PedsQL Multidimensional Fatigue Scale scores correlated significantly with the PedsQL TM 4.0 Generic Core scale and demonstrated good construct validity. The results demonstrate excellent reliability and good validity of the PedsQL Multidimensional Fatigue Scale (Arabic version) for children with cancer. This is the first validated scale that assesses fatigue in Arabic children with cancer. The English scale has been used with several pediatric clinical populations, so this Arabic version may be equally useful beyond the field of cancer.

  14. Simulating Fatigue Crack Growth in Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Spievak, Lisa E.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    2000-01-01

    The majority of helicopter transmission systems utilize spiral bevel gears to convert the horizontal power from the engine into vertical power for the rotor. Due to the cyclical loading on a gear's tooth, fatigue crack propagation can occur. In rotorcraft applications, a crack's trajectory determines whether the gear failure will be benign or catastrophic for the aircraft. As a result, the capability to predict crack growth in gears is significant. A spiral bevel gear's complex shape requires a three dimensional model of the geometry and cracks. The boundary element method in conjunction with linear elastic fracture mechanics theories is used to predict arbitrarily shaped three dimensional fatigue crack trajectories in a spiral bevel pinion under moving load conditions. The predictions are validated by comparison to experimental results. The sensitivity of the predictions to variations in loading conditions and crack growth rate model parameters is explored. Critical areas that must be understood in greater detail prior to predicting more accurate crack trajectories and crack growth rates in three dimensions are identified.

  15. Distinguishing patients with chronic fatigue from those with chronic fatigue syndrome: a diagnostic study in UK primary care.

    PubMed

    Darbishire, L; Ridsdale, L; Seed, P T

    2003-06-01

    Chronic fatigue syndrome (CFS) has been defined, but many more patients consult in primary care with chronic fatigue that does not meet the criteria for CFS. General practitioners (GPs) do not generally use the CFS diagnosis, and have some doubt about the validity of CFS as an illness. To describe the proportion of patients consulting their GP for fatigue that met the criteria for CFS, and to describe the social, psychological, and physical differences between patients with CFS and those with non-CFS chronic fatigue in primary care. Baseline data from a trial of complex interventions for fatigue in primary care. Twenty-two general practices located in London and the South Thames region of the United Kingdom recruited patients to the study between 1999 and 2001. One hundred and forty-one patients who presented to their GP with unexplained fatigue lasting six months or more as a main symptom were recruited, and the Centers for Disease Control (CDC) case definition was applied to classify CFS. Approximately two-thirds (69%) of patients had chronic fatigue and not CFS. The duration of fatigue (32 months) and perceived control over fatigue were similar between groups; however, fatigue, functioning, associated symptoms, and psychological distress were more severe in the patients in the CFS group, who also consulted their GP significantly more frequently, were twice as likely to be depressed, and more than twice as likely to be unemployed. About half (CFS = 50%; chronic fatigue = 55%) in each group attributed their fatigue to mainly psychological causes. In primary care, CFS is a more severe illness than chronic fatigue, but non-CFS chronic fatigue is associated with significant fatigue and is reported at least twice as often. That half of patients, irrespective of CFS status, attribute their fatigue to psychological causes, more than is observed in secondary care, indicates an openness to the psychological therapies provided in that setting. More evidence on the natural

  16. Fracture mechanics and corrosion fatigue.

    NASA Technical Reports Server (NTRS)

    Mcevily, A. J.; Wei, R. P.

    1972-01-01

    Review of the current state-of-the-art in fracture mechanics, particularly in relation to the study of problems in environment-enhanced fatigue crack growth. The usefulness of this approach in developing understanding of the mechanisms for environmental embrittlement and its engineering utility are discussed. After a brief review of the evolution of the fracture mechanics approach and the study of environmental effects on the fatigue behavior of materials, a study is made of the response of materials to fatigue and corrosion fatigue, the modeling of the mechanisms of the fatigue process is considered, and the application of knowledge of fatigue crack growth to the prediction of the high cycle life of unnotched specimens is illustrated.

  17. Validation of the role of bulk charging of hydrogen in the corrosion fatigue cracking of a low alloy steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, A.J.; Hutchings, R.B.; Turnbull, A.

    1993-09-01

    The enhanced corrosion fatigue crack growth rates of low alloy steels cathodically protected in marine environments results from absorbed hydrogen atoms. Hydrogen atoms are generated at the crack tip, crack walls and the external surface of the specimen (bulk charging). In previous work, Turnbull and Saenz de Santa Maria developed a model to predict the rate of generation of hydrogen atoms at the tips of fatigue cracks for steels cathodically polarized in marine environments. The main prediction from this work was that the external surface of the specimen can be the dominant source of hydrogen atoms at potentials more negativemore » than about [minus]900 mV (SCE), at a cyclic frequency of 0.1 Hz and a stress ratio of 0.5. The relative importance of bulk charging depends on the specific test conditions and is influenced by the applied potential, bulk chemistry, cyclic frequency, specimen thickness, temperature and use of coatings. Since laboratory test times are usually short in relation to the time required for hydrogen transport measured crack growth rates may be lower than those occurring in practice, for which there is sufficient time for full hydrogen charging. The purpose of this study is to verify experimentally the importance of bulk charging. Since the sensitivity of cracking to variations in hydrogen concentration will be material dependent a high strength steel was selected in this initial study because of its sensitivity to hydrogen. This will enable validation of the basic premise that bulk charging can be important, prior to more extensive studies using lower strength alloys.« less

  18. Tendon fatigue in response to mechanical loading

    PubMed Central

    Andarawis-Puri, N.; Flatow, E. L.

    2015-01-01

    Tendinopathies are commonly attributable to accumulation of sub-rupture fatigue damage from repetitive use. Data is limited to late stage disease from patients undergoing surgery, motivating development of animal models, such as ones utilizing treadmill running or repetitive reaching, to investigate the progression of tendinopathies. We developed an in vivo model using the rat patellar tendon that allows control of the loading directly applied to the tendon. This manuscript discusses the response of tendons to fatigue loading and applications of our model. Briefly, the fatigue life of the tendon was used to define low, moderate and high levels of fatigue loading. Morphological assessment showed a progression from mild kinks to fiber disruption, for low to high level fatigue loading. Collagen expression, 1 and 3 days post loading, showed more modest changes for low and moderate than high level fatigue loading. Protein and mRNA expression of Ineterleukin-1β and MMP-13 were upregulated for moderate but not low level fatigue loading. Moderate level (7200 cycles) and 100 cycles of fatigue loading resulted in a catabolic and anabolic molecular profile respectively, at both 1 and 7 days post loading. Results suggest unique mechanisms for different levels of fatigue loading that are distinct from laceration. PMID:21625047

  19. Fatigue crack modeling in bridge deck connection details

    DOT National Transportation Integrated Search

    1999-12-01

    Many steel bridges built prior to 1960 have bridge deck connections that are subject to high cycle fatigue. These connections may be nearing their fatigue limit and will require increased inspection and repair over the next 10 - 20 years. Current ins...

  20. [Research Progress on the Interaction Effects and Its Neural Mechanisms between Physical Fatigue and Mental Fatigue].

    PubMed

    Zhang, Lixin; Zhang, Chuncui; He, Feng; Zhao, Xin; Qi, Hongzhi; Wan, Baikun; Ming, Dong

    2015-10-01

    Fatigue is an exhaustion state caused by prolonged physical work and mental work, which can reduce working efficiency and even cause industrial accidents. Fatigue is a complex concept involving both physiological and psychological factors. Fatigue can cause a decline of concentration and work performance and induce chronic diseases. Prolonged fatigue may endanger life safety. In most of the scenarios, physical and mental workloads co-lead operator into fatigue state. Thus, it is very important to study the interaction influence and its neural mechanisms between physical and mental fatigues. This paper introduces recent progresses on the interaction effects and discusses some research challenges and future development directions. It is believed that mutual influence between physical fatigue and mental fatigue may occur in the central nervous system. Revealing the basal ganglia function and dopamine release may be important to explore the neural mechanisms between physical fatigue and mental fatigue. Future effort is to optimize fatigue models, to evaluate parameters and to explore the neural mechanisms so as to provide scientific basis and theoretical guidance for complex task designs and fatigue monitoring.

  1. Modelling and Laboratory Studies on the Adhesion Fatigue Performance for Thin-Film Asphalt and Aggregate System

    PubMed Central

    Wang, Dongsheng; Feng, Decheng

    2014-01-01

    Adhesion between asphalt and aggregate plays an important role in the performance of asphalt mixtures. A low-frequency adhesion fatigue test was proposed in this paper to study the effect of environment on the asphalt-aggregate adhesion system. The stress-based fatigue model had been utilized to describe the fatigue behavior of thin-film asphalt and aggregate system. The factors influencing the adhesion fatigue performance were also investigated. Experiment results show that asphalt has more important effect on the adhesion performance comparing with aggregate. Basalt, which is regarded as hydrophobic aggregates with low silica content, has better adhesion performance to asphalt binder when compared with granite. The effects of aging on the adhesion fatigue performance are different for PG64-22 and rubber asphalt. Long-term aging is found to reduce the adhesion fatigue lives for rubber asphalt and aggregate system, while the effect of long-term aging for aggregate and PG64-22 binder system is positive. Generally the increased stress amplitude and test temperature could induce greater damage and lead to less fatigue lives for adhesion test system. PMID:25054187

  2. Modelling and laboratory studies on the adhesion fatigue performance for thin-film asphalt and aggregate system.

    PubMed

    Wang, Dongsheng; Yi, Junyan; Feng, Decheng

    2014-01-01

    Adhesion between asphalt and aggregate plays an important role in the performance of asphalt mixtures. A low-frequency adhesion fatigue test was proposed in this paper to study the effect of environment on the asphalt-aggregate adhesion system. The stress-based fatigue model had been utilized to describe the fatigue behavior of thin-film asphalt and aggregate system. The factors influencing the adhesion fatigue performance were also investigated. Experiment results show that asphalt has more important effect on the adhesion performance comparing with aggregate. Basalt, which is regarded as hydrophobic aggregates with low silica content, has better adhesion performance to asphalt binder when compared with granite. The effects of aging on the adhesion fatigue performance are different for PG64-22 and rubber asphalt. Long-term aging is found to reduce the adhesion fatigue lives for rubber asphalt and aggregate system, while the effect of long-term aging for aggregate and PG64-22 binder system is positive. Generally the increased stress amplitude and test temperature could induce greater damage and lead to less fatigue lives for adhesion test system.

  3. Simplified rotor load models and fatigue damage estimates for offshore wind turbines.

    PubMed

    Muskulus, M

    2015-02-28

    The aim of rotor load models is to characterize and generate the thrust loads acting on an offshore wind turbine. Ideally, the rotor simulation can be replaced by time series from a model with a few parameters and state variables only. Such models are used extensively in control system design and, as a potentially new application area, structural optimization of support structures. Different rotor load models are here evaluated for a jacket support structure in terms of fatigue lifetimes of relevant structural variables. All models were found to be lacking in accuracy, with differences of more than 20% in fatigue load estimates. The most accurate models were the use of an effective thrust coefficient determined from a regression analysis of dynamic thrust loads, and a novel stochastic model in state-space form. The stochastic model explicitly models the quasi-periodic components obtained from rotational sampling of turbulent fluctuations. Its state variables follow a mean-reverting Ornstein-Uhlenbeck process. Although promising, more work is needed on how to determine the parameters of the stochastic model and before accurate lifetime predictions can be obtained without comprehensive rotor simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Chen

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  5. Fatigue life prediction of bonded primary joints

    NASA Technical Reports Server (NTRS)

    Knauss, J. F.

    1979-01-01

    The validation of a proposed fatigue life prediction methodology was sought through the use of aluminum butt and scarf joint and graphite/epoxy butt joint specimens in a constant amplitude fatigue environment. The structural properties of the HYSOL 9313 adhesive system were obtained by mechanical test of molded heat adhesive specimens. Aluminum contoured double cantilever beam specimens were used to generate crack velocity versus stress intensity factor data. The specific objectives were: (1) to ascertain the feasibility of predicting fatigue failure of an adhesive in a primary bonded composite structure by incorporating linear elastic crack growth behavior; and (2) to ascertain if acoustic emission and/or compliance measurement techniques can be used to detect flaws.

  6. Data-Driven Mechanistic Modeling of Influence of Microstructure on High-Cycle Fatigue Life of Nickel Titanium

    NASA Astrophysics Data System (ADS)

    Kafka, Orion L.; Yu, Cheng; Shakoor, Modesar; Liu, Zeliang; Wagner, Gregory J.; Liu, Wing Kam

    2018-04-01

    A data-driven mechanistic modeling technique is applied to a system representative of a broken-up inclusion ("stringer") within drawn nickel-titanium wire or tube, e.g., as used for arterial stents. The approach uses a decomposition of the problem into a training stage and a prediction stage. It is applied to compute the fatigue crack incubation life of a microstructure of interest under high-cycle fatigue. A parametric study of a matrix-inclusion-void microstructure is conducted. The results indicate that, within the range studied, a larger void between halves of the inclusion increases fatigue life, while larger inclusion diameter reduces fatigue life.

  7. Psychometric properties of the Fatigue Severity Scale in obese patients

    PubMed Central

    2013-01-01

    Background The aim of this study was to examine the psychometric properties of the Fatigue Severity Scale (FSS) to verify whether this instrument is a valid tool to measure fatigue in obese patients, and to examine the prevalence of fatigue in obese patients. Methods Before and after a three-week residential multidisciplinary integrated weight reduction program, 220 patients were asked to fill in the questionnaires: FSS, Profile of Mood States (Fatigue-Inertia subscale, POMS-Fatigue, and Vigor-Activity subscale, POMS-Vigor), and the Obesity-Related Well-Being (ORWELL-97). A subsample of 50 patients completed the questionnaire within two days. Results The prevalence of fatigue using a cut-off value of 4 for the FSS score was 59%. Correlations were found between FSS and POMS-Fatigue and -Vigor scores (r = 0.58 and 0.53, respectively). A relation was also found between FSS and ORWELL97 (r = 0.52, 0.42 to 0.61). From the factorial analysis only 1 factor was extracted explaining 63% of variance, with factor loading values ranging from 0.71 (item 7) to 0.87 (item 6). Intraclass Correlation Coefficient was 0.89 (0.82 to 0.94), while the agreement as measured using the Standard Error of Measurement was 0.43 (0.36 to 0.54) corresponding to 13% (11 to 17%). Cronbach’s alpha values ranged from 0.94 to 0.93. The internal responsiveness of FSS was comparable to the ORWELL97 (Standardized Response Mean = 0.50 and 0.44, respectively). Conclusions Fatigue is an important and frequent symptom in obese patients and therefore should be routinely assessed in both research and clinical practice. This can be achieved using the FSS, which is a short, simple, valid and reliable tool for assessing and quantifying fatigue in obese patients. PMID:23496886

  8. Probabilistic fatigue life prediction of metallic and composite materials

    NASA Astrophysics Data System (ADS)

    Xiang, Yibing

    Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.

  9. Modelling of a Francis Turbine Runner Fatigue Failure Process Caused by Fluid-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Lyutov, A.; Kryukov, A.; Cherny, S.; Chirkov, D.; Salienko, A.; Skorospelov, V.; Turuk, P.

    2016-11-01

    In the present paper considered is the problem of the numerical simulation of Francis turbine runner fatigue failure caused by fluid-structure interaction. The unsteady 3D flow is modeled simultaneously in the spiral chamber, each wicket gate and runner channels and in the draft tube using the Euler equations. Based on the unsteady runner loadings at each time step stresses in the whole runner are calculated using the elastic equilibrium equations solved with boundary element method. Set of static stress-strain states provides quasi-dynamics of runner cyclic loading. It is assumed that equivalent stresses in the runner are below the critical value after which irreversible plastic processes happen in the runner material. Therefore runner is subjected to the fatigue damage caused by high-cycle fatigue, in which the loads are generally low compared with the limit stress of the material. As a consequence, the stress state around the crack front can be fully characterized by linear elastic fracture mechanics. The place of runner cracking is determined as a point with maximal amplitude of stress oscillations. Stress pulsations amplitude is used to estimate the number of cycles until the moment of fatigue failure, number of loading cycles and oscillation frequency are used to calculate runner service time. Example of the real Francis runner which has encountered premature fatigue failure as a result of incorrect durability estimation is used to verify the developed numerical model.

  10. Modeling fatigue crack growth in cross ply titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Johnson, W. S.

    1993-01-01

    In this study, the fatigue crack growth behavior of fiber bridging matrix cracks in cross-ply SCS-6/Ti-15-3 and SCS-6/Timetal-21S laminates containing center holes was investigated. Experimental observations revealed that matrix cracking was far more extensive and wide spread in the SCS-6/Ti-15-3 laminates compared to that in the SCS-6/Timetal-21S laminates. In addition, the fatigue life of the SCS-6/Ti-15-3 laminates was significantly longer than that of the SCS-6/Timetal-21S laminates. The matrix cracking observed in both material systems was analyzed using a fiber bridging (FB) model which was formulated using the boundary correction factors and weight functions for center hole specimen configurations. A frictional shear stress is assumed in the FB model and was used as a curve fitting parameter to model matrix crack growth data. The higher frictional shear stresses calculated in the SCS-6/Timetal-21S laminates resulted in lower stress intensity factors in the matrix and higher axial stresses in the fibers compared to those in the SCS-6/Ti-15-3 laminates at the same applied stress levels.

  11. Model Verification and Validation Concepts for a Probabilistic Fracture Assessment Model to Predict Cracking of Knife Edge Seals in the Space Shuttle Main Engine High Pressure Oxidizer

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Riha, David S.

    2013-01-01

    Physics-based models are routinely used to predict the performance of engineered systems to make decisions such as when to retire system components, how to extend the life of an aging system, or if a new design will be safe or available. Model verification and validation (V&V) is a process to establish credibility in model predictions. Ideally, carefully controlled validation experiments will be designed and performed to validate models or submodels. In reality, time and cost constraints limit experiments and even model development. This paper describes elements of model V&V during the development and application of a probabilistic fracture assessment model to predict cracking in space shuttle main engine high-pressure oxidizer turbopump knife-edge seals. The objective of this effort was to assess the probability of initiating and growing a crack to a specified failure length in specific flight units for different usage and inspection scenarios. The probabilistic fracture assessment model developed in this investigation combined a series of submodels describing the usage, temperature history, flutter tendencies, tooth stresses and numbers of cycles, fatigue cracking, nondestructive inspection, and finally the probability of failure. The analysis accounted for unit-to-unit variations in temperature, flutter limit state, flutter stress magnitude, and fatigue life properties. The investigation focused on the calculation of relative risk rather than absolute risk between the usage scenarios. Verification predictions were first performed for three units with known usage and cracking histories to establish credibility in the model predictions. Then, numerous predictions were performed for an assortment of operating units that had flown recently or that were projected for future flights. Calculations were performed using two NASA-developed software tools: NESSUS(Registered Trademark) for the probabilistic analysis, and NASGRO(Registered Trademark) for the fracture

  12. Validation of sleep-2-Peak: A smartphone application that can detect fatigue-related changes in reaction times during sleep deprivation.

    PubMed

    Brunet, Jean-François; Dagenais, Dominique; Therrien, Marc; Gartenberg, Daniel; Forest, Geneviève

    2017-08-01

    Despite its high sensitivity and validity in the context of sleep loss, the Psychomotor Vigilance Test (PVT) could be improved. The aim of the present study was to validate a new smartphone PVT-type application called sleep-2-Peak (s2P) by determining its ability to assess fatigue-related changes in alertness in a context of extended wakefulness. Short 3-min versions of s2P and of the classic PVT were administered at every even hour during a 35-h total sleep deprivation protocol. In addition, subjective measures of sleepiness were collected. The outcomes on these tests were then compared using Pearson product-moment correlations, t tests, and repeated measures within-groups analyses of variance. The results showed that both tests significantly correlated on all outcome variables, that both significantly distinguished between the alert and sleepy states in the same individual, and that both varied similarly through the sleep deprivation protocol as sleep loss accumulated. All outcome variables on both tests also correlated significantly with the subjective measures of sleepiness. These results suggest that a 3-min version of s2P is a valid tool for differentiating alert from sleepy states and is as sensitive as the PVT for tracking fatigue-related changes during extended wakefulness and sleep loss. Unlike the PVT, s2P does not provide feedback to subjects on each trial. We discuss how this feature of s2P raises the possibility that the performance results measured by s2P could be less impacted by motivational confounds, giving this tool added value in particular clinical and/or research settings.

  13. A Continuum Damage Mechanics Model for the Static and Cyclic Fatigue of Cellular Composites

    PubMed Central

    Huber, Otto

    2017-01-01

    The fatigue behavior of a cellular composite with an epoxy matrix and glass foam granules is analyzed and modeled by means of continuum damage mechanics. The investigated cellular composite is a particular type of composite foam, and is very similar to syntactic foams. In contrast to conventional syntactic foams constituted by hollow spherical particles (balloons), cellular glass, mineral, or metal place holders are combined with the matrix material (metal or polymer) in the case of cellular composites. A microstructural investigation of the damage behavior is performed using scanning electron microscopy. For the modeling of the fatigue behavior, the damage is separated into pure static and pure cyclic damage and described in terms of the stiffness loss of the material using damage models for cyclic and creep damage. Both models incorporate nonlinear accumulation and interaction of damage. A cycle jumping procedure is developed, which allows for a fast and accurate calculation of the damage evolution for constant load frequencies. The damage model is applied to examine the mean stress effect for cyclic fatigue and to investigate the frequency effect and the influence of the signal form in the case of static and cyclic damage interaction. The calculated lifetimes are in very good agreement with experimental results. PMID:28809806

  14. Risk factors and visual fatigue of baggage X-ray security screeners: a structural equation modelling analysis.

    PubMed

    Yu, Rui-Feng; Yang, Lin-Dong; Wu, Xin

    2017-05-01

    This study identified the risk factors influencing visual fatigue in baggage X-ray security screeners and estimated the strength of correlations between those factors and visual fatigue using structural equation modelling approach. Two hundred and five X-ray security screeners participated in a questionnaire survey. The result showed that satisfaction with the VDT's physical features and the work environment conditions were negatively correlated with the intensity of visual fatigue, whereas job stress and job burnout had direct positive influences. The path coefficient between the image quality of VDT and visual fatigue was not significant. The total effects of job burnout, job stress, the VDT's physical features and the work environment conditions on visual fatigue were 0.471, 0.469, -0.268 and -0.251 respectively. These findings indicated that both extrinsic factors relating to VDT and workplace environment and psychological factors including job burnout and job stress should be considered in the workplace design and work organisation of security screening tasks to reduce screeners' visual fatigue. Practitioner Summary: This study identified the risk factors influencing visual fatigue in baggage X-ray security screeners and estimated the strength of correlations between those factors and visual fatigue. The findings were of great importance to the workplace design and the work organisation of security screening tasks to reduce screeners' visual fatigue.

  15. A model for predicting high-temperature fatigue failure of a W/Cu composite

    NASA Technical Reports Server (NTRS)

    Verrilli, M. J.; Kim, Y.-S.; Gabb, T. P.

    1991-01-01

    The material studied, a tungsten-fiber-reinforced, copper-matrix composite, is a candidate material for rocket nozzle liner applications. It was shown that at high temperatures, fatigue cracks initiate and propagate inside the copper matrix through a process of initiation, growth, and coalescence of grain boundary cavities. The ductile tungsten fibers neck and rupture locally after the surrounding matrix fails, and complete failure of the composite then ensues. A simple fatigue life prediction model is presented for the tungsten/copper composite system.

  16. Microtexture Analysis and Modeling of Ambient Fatigue and Creep-Fatigue Damages in Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, Jalaj; Singh, A. K.; Raman, S. Ganesh Sundara; Kumar, Vikas

    2017-02-01

    In the present investigation, microtexture analysis using electron back-scattered diffraction technique has been performed to study fatigue- and creep-fatigue damages and associated deformation structures in Ti-6Al-4V alloy. Special emphasis has been given to low-angle grain boundary configuration and its possible application as a damage indicator. Damage is mostly present in the form of voids as investigated through scanning electron microscopy. Stored deformation energies have been evaluated for the strain-controlled fatigue-, the stress-controlled fatigue-, and the creep-fatigue-tested samples. Stored deformation energies have also been analyzed vis-à-vis total damage energies to quantify the contribution of damages to various samples. A relation between the stored deformation energy and the applied strain amplitude has been proposed in this study.

  17. Vibration fatigue using modal decomposition

    NASA Astrophysics Data System (ADS)

    Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha

    2018-01-01

    Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.

  18. A systematic review of the scales used for the measurement of cancer-related fatigue (CRF).

    PubMed

    Minton, O; Stone, P

    2009-01-01

    Fatigue in cancer is very common and can be experienced at all stages of disease and in survivors. There is no accepted definition of cancer-related fatigue (CRF) and no agreement on how it should be measured. A number of scales have been developed to quantify the phenomenon of CRF. These vary in the quality of psychometric properties, ease of administration, dimensions of CRF covered and extent of use in studies of cancer patients. This review seeks to identify the available tools for measuring CRF and to make recommendations for ongoing research into CRF. A systematic review methodology was used to identify scales that have been validated to measure CRF. The inclusion criteria required the scale to have been validated for use in cancer patients and/or widely used in this population. Scales also had to meet a minimum quality score for inclusion. The reviewers identified 14 scales that met the inclusion criteria. The most commonly used scales and best validated were the Functional Assessment of Cancer Therapy Fatigue (FACT F), the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ C30) (fatigue subscale) and the Fatigue Questionnaire (FQ). Unidimensional scales are the easiest to administer and have been most widely used. The authors recommend the use of the EORTC QLQ C30 fatigue subscale or the FACT F. The FQ gives a multidimensional assessment and has also been widely used. A substantial minority of the scales identified have not been used extensively or sufficiently validated in cancer patients and cannot be recommended for routine use without further validation.

  19. Fatigue, Creep-Fatigue, and Thermomechanical Fatigue Life Testing of Alloys

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Lerch, Bradley A.; McGaw, Michael A.

    2000-01-01

    The fatigue crack initiation resistance of an alloy is determined by conducting a series of tests over a range of values of stress amplitude or strain range. The observed number of cycles to failure is plotted against the stress amplitude or strain range to obtain a fatigue curve. The fatigue properties quoted for an alloy are typically the constants used in the equation(s) that describe the fatigue curve. Fatigue lives of interest may be as low as 10(exp 2) or higher than 10(exp 9) cycles. Because of the enormous scatter associated with fatigue, dozens of tests may be needed to confidently establish a fatigue curve, and the cost may run into several thousands of dollars. To further establish the effects on fatigue life of the test temperature, environment, alloy condition, mean stress effects, creep-fatigue effects, thermomechanical cycling, etc. requires an extraordinarily large and usually very costly test matrix. The total effort required to establish the fatigue resistance of an alloy should not be taken lightly. Fatigue crack initiation tests are conducted on relatively small and presumed to be initially crack-free, samples of an alloy that are intended to be representative of the alloy's metallurgical and physical condition. Generally, samples are smooth and have uniformly polished surfaces within the test section. Some may have intentionally machined notches of well-controlled geometry, but the surface at the root of the notch is usually not polished. The purpose of polishing is to attain a reproducible surface finish. This is to eliminate surface finish as an uncontrolled variable. Representative test specimen geometries will be discussed later. Test specimens are cyclically loaded until macroscopically observable cracks initiate and eventually grow to failure. Normally, the fatigue failure life of a specimen is defined as the number of cycles to separation of the specimen into two pieces. Alternative definitions are becoming more common, particularly for

  20. Continuum Fatigue Damage Modeling for Use in Life Extending Control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1994-01-01

    This paper develops a simplified continuum (continuous wrp to time, stress, etc.) fatigue damage model for use in Life Extending Controls (LEC) studies. The work is based on zero mean stress local strain cyclic damage modeling. New nonlinear explicit equation forms of cyclic damage in terms of stress amplitude are derived to facilitate the continuum modeling. Stress based continuum models are derived. Extension to plastic strain-strain rate models are also presented. Application of these models to LEC applications is considered. Progress toward a nonzero mean stress based continuum model is presented. Also, new nonlinear explicit equation forms in terms of stress amplitude are also derived for this case.

  1. Analyses of Fatigue and Fatigue-Crack Growth under Constant- and Variable-Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily crack growth from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using small-crack theory under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta K(sub eff)) under constant-amplitude loading. Modifications to the delta K(sub eff)-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  2. Measures and Models for Estimating and Predicting Cognitive Fatigue

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Kochavi, Rebekah; Kubitz, Karla; Montgomery, Leslie D.; Rosipal, Roman; Matthews, Bryan

    2004-01-01

    We analyzed EEG and ERPs in a fatiguing mental task and created statistical models for single subjects. Seventeen subjects (4 F, 18-38 y) viewed 4-digit problems (e.g., 3+5-2+7=15) on a computer, solved the problems, and pressed keys to respond (intertrial interval = 1 s). Subjects performed until either they felt exhausted or three hours had elapsed. Re- and post-task measures of mood (Activation Deactivation Adjective Checklist, Visual Analogue Mood Scale) confirmed that fatigue increased and energy decreased over time. We tested response times (RT); amplitudes of ERP components N1, P2, P300, readiness potentials; and amplitudes of frontal theta and parietal alpha rhythms for change as a function of time. For subjects who completed 3 h (n=9) we analyzed 12 15-min blocks. For subjects who completed at least 1.5 h (n=17), we analyzed the first-, middle-, and last 100 error-free trials. Mean RT rose from 6.7 s to 8.5 s over time. We found no changes in the amplitudes of ERP components. In both analyses, amplitudes of frontal theta and parietal alpha rose by 30% or more over time. We used 30-channel EEG frequency spectra to model the effects of time in single subjects using a kernel partial least squares classifier. We classified 3.5s EEG segments as being from the first 100 or the last 100 trials, using random sub-samples of each class. Test set accuracies ranged from 63.9% to 99.6% correct. Only 2 of 17 subjects had mean accuracies lower than 80%. The results suggest that EEG accurately classifies periods of cognitive fatigue in 90% of subjects.

  3. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades.

    PubMed

    Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan

    2017-05-08

    As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB) and Fatemi-Socie (FS) models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT) model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.

  4. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades

    PubMed Central

    Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan

    2017-01-01

    As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB) and Fatemi-Socie (FS) models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT) model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models. PMID:28772873

  5. Implementation and Validation of the Viscoelastic Continuum Damage Theory for Asphalt Mixture and Pavement Analysis in Brazil

    NASA Astrophysics Data System (ADS)

    Nascimento, Luis Alberto Herrmann do

    This dissertation presents the implementation and validation of the viscoelastic continuum damage (VECD) model for asphalt mixture and pavement analysis in Brazil. It proposes a simulated damage-to-fatigue cracked area transfer function for the layered viscoelastic continuum damage (LVECD) program framework and defines the model framework's fatigue cracking prediction error for asphalt pavement reliability-based design solutions in Brazil. The research is divided into three main steps: (i) implementation of the simplified viscoelastic continuum damage (S-VECD) model in Brazil (Petrobras) for asphalt mixture characterization, (ii) validation of the LVECD model approach for pavement analysis based on field performance observations, and defining a local simulated damage-to-cracked area transfer function for the Fundao Project's pavement test sections in Rio de Janeiro, RJ, and (iii) validation of the Fundao project local transfer function to be used throughout Brazil for asphalt pavement fatigue cracking predictions, based on field performance observations of the National MEPDG Project's pavement test sections, thereby validating the proposed framework's prediction capability. For the first step, the S-VECD test protocol, which uses controlled-on-specimen strain mode-of-loading, was successfully implemented at the Petrobras and used to characterize Brazilian asphalt mixtures that are composed of a wide range of asphalt binders. This research verified that the S-VECD model coupled with the GR failure criterion is accurate for fatigue life predictions of Brazilian asphalt mixtures, even when very different asphalt binders are used. Also, the applicability of the load amplitude sweep (LAS) test for the fatigue characterization of the asphalt binders was checked, and the effects of different asphalt binders on the fatigue damage properties of the asphalt mixtures was investigated. The LAS test results, modeled according to VECD theory, presented a strong correlation with

  6. Gender differences in fatigue: biopsychosocial factors relating to fatigue in men and women.

    PubMed

    Bensing, J M; Hulsman, R L; Schreurs, K M

    1999-10-01

    Fatigue is a common problem, which is found more frequently among women than men. To date, neither the etiology of fatigue nor the factors that explain the gender difference in its incidence are still fully understood. In a sample of men (n = 4,681) and women (n = 4,698) (age range, 15-64 years) in the Dutch National Survey of Morbidity and Interventions in General Practice, the gender differences in the underlying biological, psychological, and social factors of fatigue were analyzed. Both general and gender-specific factors were recognized. Men and women who experience complaints of fatigue appeared to be younger and more highly educated. They had more acute health complaints and more psychosocial problems and also showed a lower level of perceived health. Among women, only gender-specific biological complaints and psychosocial problems were related to fatigue. In addition, relevant sociodemographic variables included taking care of young children and being employed. Among men, fatigue was particularly related to having handicaps and severe chronic complaints. Taking care of young children did not make a difference in the male sample. Fatigue can only be adequately understood in a multicausal model with biomedical and psychosocial factors. Complaints of fatigue are too often ignored in general practice. By adopting a patient-centered style of communication, physicians can acquire a more complete picture of the patients' fatigue.

  7. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    PubMed Central

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (p<0.01). People with fibromyalgia performed equivalently on measures of physical performance and cognitive performance on the physical and cognitive fatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  8. Contact fatigue of human enamel: Experiments, mechanisms and modeling.

    PubMed

    Gao, S S; An, B B; Yahyazadehfar, M; Zhang, D; Arola, D D

    2016-07-01

    Cyclic contact between natural tooth structure and engineered ceramics is increasingly common. Fatigue of the enamel due to cyclic contact is rarely considered. The objectives of this investigation were to evaluate the fatigue behavior of human enamel by cyclic contact, and to assess the extent of damage over clinically relevant conditions. Cyclic contact experiments were conducted using the crowns of caries-free molars obtained from young donors. The cuspal locations were polished flat and subjected to cyclic contact with a spherical indenter of alumina at 2Hz. The progression of damage was monitored through the evolution in contact displacement, changes in the contact hysteresis and characteristics of the fracture pattern. The contact fatigue life diagram exhibited a decrease in cycles to failure with increasing cyclic load magnitude. Two distinct trends were identified, which corresponded to the development and propagation of a combination of cylindrical and radial cracks. Under contact loads of less than 400N, enamel rod decussation resisted the growth of subsurface cracks. However, at greater loads the damage progressed rapidly and accelerated fatigue failure. Overall, cyclic contact between ceramic appliances and natural tooth structure causes fatigue of the enamel. The extent of damage is dependent on the magnitude of cyclic stress and the ability of the decussation to arrest the fatigue damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Microstructure-sensitive Crystal Viscoplasticity for Ni-base Superalloys Targeting Long-term Creep-Fatigue Interaction Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neu, Richard W.

    The aim of this project is to develop a microstructure-sensitive crystal viscoplasticity (CVP) model for single-crystal Ni-base superalloys to model the behavior of the material and components in the hot gas path sections of industrial gas turbines (IGT). Microstructure degradation associated with aging critical to predicting long-term creep-fatigue interactions will be embedded into the model through the γ' precipitate morphology evolution by coupling the coarsening drivers and kinetics into the constitutive equations of the CVP model. Model parameters will be determined using new experimental protocols that involve systematically artificially aging the alloy under different stress conditions to determine the relationshipmore » between the size and morphology g' precipitates on the creep and thermomechanical fatigue response.« less

  10. Microstructure-sensitive Crystal Viscoelasticity for Ni-base Superalloys Targeting Long-term Creep-Fatigue Interaction Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neu, Richard W

    The aim of this project is to develop a microstructure-sensitive crystal viscoplasticity (CVP) model for single-crystal Ni-base superalloys to model the behavior of the material and components in the hot gas path sections of industrial gas turbines (IGT). Microstructure degradation associated with aging critical to predicting long-term creep-fatigue interactions will be embedded into the model through the γ' precipitate morphology evolution by coupling the coarsening drivers and kinetics into the constitutive equations of the CVP model. Model parameters will be determined using new experimental protocols that involve systematically artificially aging the alloy under different stress conditions to determine the relationshipmore » between the size and morphology g' precipitates on the creep and thermomechanical fatigue response.« less

  11. Psychometric properties of the multidimensional fatigue inventory in Brazilian Hodgkin's lymphoma survivors.

    PubMed

    Baptista, Renata Lyrio R; Biasoli, Irene; Scheliga, Adriana; Soares, Andrea; Brabo, Eloa; Morais, José Carlos; Werneck, Guilherme Loureiro; Spector, Nelson

    2012-12-01

    Fatigue is the most common symptom among Hodgkin's lymphoma survivors. To evaluate the psychometric properties of the Brazilian version of the Multidimensional Fatigue Inventory (MFI). The MFI was translated into Brazilian Portuguese using established forward-backward translation procedures, and the psychometric properties were evaluated in a sample of 200 Hodgkin's lymphoma survivors. The psychometric properties evaluated included internal consistency and construct validity. The MFI was administered along with the informed consent form. The overall Cronbach's alpha coefficient for the 20 items was 0.84, ranging from 0.59 to 0.81 for each of the five scales. Correlations between items and scales ranged from 0.32 to 0.72. The factor analysis yielded a five-factor solution that explained 65% of the variance. The first factor merged the original "general fatigue" and "physical fatigue" scales, as has been previously reported. The second factor identified the original "mental fatigue" scale and the fifth factor identified the original "reduced activity" scale. Questions from the original "reduced motivation" scale were represented in both factors three and four. The Brazilian version of the MFI showed satisfactory psychometric properties and can be considered a valid research tool for assessing cancer-related fatigue. Copyright © 2012 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  12. Experimental Study on Fatigue Behaviour of Shot-Peened Open-Hole Steel Plates

    PubMed Central

    Wang, Zhi-Yu; Wang, Qing-Yuan; Cao, Mengqin

    2017-01-01

    This paper presents an experimental study on the fatigue behaviour of shot-peened open-hole plates with Q345 steel. The beneficial effects induced by shot peening on the fatigue life improvement are highlighted. The characteristic fatigue crack initiation and propagation modes of open-hole details under fatigue loading are revealed. The surface hardening effect brought by the shot peening is analyzed from the aspects of in-depth micro-hardness and compressive residual stress. The fatigue life results are evaluated and related design suggestions are made as a comparison with codified detail categories. In particular, a fracture mechanics theory-based method is proposed and demonstrated its validity in predicting the fatigue life of studied shot-peened open-hole details. PMID:28841160

  13. A probabilistic fatigue analysis of multiple site damage

    NASA Technical Reports Server (NTRS)

    Rohrbaugh, S. M.; Ruff, D.; Hillberry, B. M.; Mccabe, G.; Grandt, A. F., Jr.

    1994-01-01

    The variability in initial crack size and fatigue crack growth is incorporated in a probabilistic model that is used to predict the fatigue lives for unstiffened aluminum alloy panels containing multiple site damage (MSD). The uncertainty of the damage in the MSD panel is represented by a distribution of fatigue crack lengths that are analytically derived from equivalent initial flaw sizes. The variability in fatigue crack growth rate is characterized by stochastic descriptions of crack growth parameters for a modified Paris crack growth law. A Monte-Carlo simulation explicitly describes the MSD panel by randomly selecting values from the stochastic variables and then grows the MSD cracks with a deterministic fatigue model until the panel fails. Different simulations investigate the influences of the fatigue variability on the distributions of remaining fatigue lives. Six cases that consider fixed and variable conditions of initial crack size and fatigue crack growth rate are examined. The crack size distribution exhibited a dominant effect on the remaining fatigue life distribution, and the variable crack growth rate exhibited a lesser effect on the distribution. In addition, the probabilistic model predicted that only a small percentage of the life remains after a lead crack develops in the MSD panel.

  14. High fatigue scores among older Dutch nurse anesthetists.

    PubMed

    Meeusen, Vera; Hoekman, Jaap; van Zundert, André

    2014-06-01

    In The Netherlands, hospital care production pressure recently increased substantially, while the number of nurse anesthetists available did not match this rise. The longtime existing norm of no night shifts for nurses beyond the age of 55 years was increased to age 57 to meet the demand for more nurse anesthetists. In this pilot study, we aimed to determine the level of fatigue and its correlation with demographic items among this category of employees. A validated questionnaire was distributed to all Dutch nurse anesthetists above 50 years of age working in Dutch hospitals, which asked for their level of fatigue. The Checklist Individual Strength Questionnaire was used to measure fatigue. Overall, 105 of 115 potential participants completed the questionnaire (response rate, 91%). The mean scores (+/- standard deviation) were as follows: total fatigue, 81.3 +/- 8.3; subjective fatigue, 31.4 +/- 3.2; physical activity, 13.1 +/- 2.2; motivation, 16.8 +/- 2.6; and concentration, 20.0 +/- 3.8. No correlation could be demonstrated between demographic characteristics and fatigue. Dutch nurse anesthetists above the age of 50 years show a high fatigue score and therefore need special attention to prevent them from harmful physical and psychological effects and to sustain maximal patient safety.

  15. Fatigue-Related Countermeasures for Long-Duration Exploration Missions

    NASA Technical Reports Server (NTRS)

    Whitmire, A.; Johnston, S.; Sipes, W.

    2014-01-01

    The NASA Human Research Program's (HRP) Behavioral Health and Performance Element (BHP) supports and conducts research to mitigate deleterious outcomes related to fatigue, sleep loss, circadian desynchronization, and work overload. Objective evidence indicates that within the context of the International Space Station (ISS), sleep is reduced and there is circadian misalignment. Despite chronic sleep loss and high workloads; however, astronauts successfully complete their missions. Contributing to their success is not only the tremendous skills and capabilities of each astronaut, but also the collaborative team efforts amongst the crew, between flight and ground crews, and through real-time care provided by medical personnel. It is anticipated that risks to human health and performance will increase in the context of exploration missions, where crewmembers will venture to deep space for extended durations and in small vehicles with limited communication with home. Hence, fatigue-related countermeasures are being developed and/or validated that include unobtrusive monitoring technologies to detect fatigue-related performance decrements, environmental countermeasures, and sleep education and training for flight and ground crews. Given that fatigue is an issue in current ISS missions, the BHP works collaboratively with Space Medicine operations to collect data in the operational environment, to validate fatigue-related countermeasures, and provide evidence-based mitigations. Our presentation will summarize fatigue-related operational research that is underway through NASA's BHP in partnership with its operational counterparts. Efforts include studies evaluating the effects of hypnotics, lighting protocols as countermeasures for circadian entrainment, and investigations involving education and training. This presentation will further identify, based on flight and terrestrial evidence, additional sleep and circadian countermeasures that may still be needed to support

  16. Fatigue crack growth spectrum simplification: Facilitation of on-board damage prognosis systems

    NASA Astrophysics Data System (ADS)

    Adler, Matthew Adam

    2009-12-01

    monitoring and management of aircraft. A spectrum reduction method was proposed and experimentally validated that reduces a variable-amplitude spectrum to a constant-amplitude equivalent. The reduction from a variable-amplitude (VA) spectrum to a constant-amplitude equivalent (CAE) was proposed as a two-part process. Preliminary spectrum reduction is first performed by elimination of those loading events shown to be too negligible to significantly contribute to fatigue crack growth. This is accomplished by rainflow counting. The next step is to calculate the appropriate, equivalent maximum and minimum loads by means of a root-mean-square average. This reduced spectrum defines the CAE and replaces the original spectrum. The simplified model was experimentally shown to provide the approximately same fatigue crack growth as the original spectrum. Fatigue crack growth experiments for two dissimilar aircraft spectra across a wide-range of stress-intensity levels validated the proposed spectrum reduction procedure. Irrespective of the initial K-level, the constant-amplitude equivalent spectra were always conservative in crack growth rate, and were so by an average of 50% over the full range tested. This corresponds to a maximum 15% overestimation in driving force Delta K. Given other typical sources of scatter that occur during fatigue crack growth, a consistent 50% conservative prediction on crack growth rate is very satisfying. This is especially attractive given the reduction in cost gained by the simplification. We now have a seamless system that gives an acceptably good approximation of damage occurring in the aircraft. This contribution is significant because in a very simple way we now have given a path to bypass the current infrastructure and ground-support requirements. The decision-making is now a lot simpler. In managing an entire fleet we now have a workable system where the strength is in no need for a massive, isolated computational center. The fidelity of the model

  17. Physical activity and fatigue in breast cancer survivors: a panel model examining the role of self-efficacy and depression.

    PubMed

    Phillips, Siobhan M; McAuley, Edward

    2013-05-01

    Physical activity is associated with reductions in fatigue in breast cancer survivors. However, mechanisms underlying this relationship are not well-understood. The purpose of this study was to longitudinally test a model examining the role of self-efficacy and depression as potential mediators of the relationship between physical activity and fatigue in a sample of breast cancer survivors using both self-report and objective measures of physical activity. All participants (N = 1,527) completed self-report measures of physical activity, self-efficacy, depression, and fatigue at baseline and 6 months. A subsample was randomly selected to wear an accelerometer at both time points. It was hypothesized that physical activity indirectly influences fatigue via self-efficacy and depression. Relationships among model constructs were examined over the 6-month period using panel analysis within a covariance modeling framework. The hypothesized model provided a good model-data fit (χ(2) = 599.66, df = 105, P ≤ 0.001; CFI = 0.96; SRMR = 0.02) in the full sample when controlling for covariates. At baseline, physical activity indirectly influenced fatigue via self-efficacy and depression. These relationships were also supported across time. In addition, the majority of the hypothesized relationships were supported in the subsample with accelerometer data (χ(2) = 387.48, df = 147, P ≤ 0.001, CFI = 0.94, SRMR = 0.04). This study provides evidence to suggest the relationship between physical activity and fatigue in breast cancer survivors may be mediated by more proximal, modifiable outcomes of physical activity participation. Recommendations are made relative to future applications and research concerning these relationships.

  18. Prediction of Multidimensional Fatigue After Childhood Brain Injury.

    PubMed

    Crichton, Alison J; Babl, Franz; Oakley, Ed; Greenham, Mardee; Hearps, Stephen; Delzoppo, Carmel; Hutchison, Jamie; Beauchamp, Miriam; Anderson, Vicki A

    To determine (1) the presence of fatigue symptoms and predictors of fatigue after childhood brain injury and examine (2) the feasibility, reliability, and validity of a multidimensional fatigue measure (PedsQL Multidimensional Fatigue Scale [MFS]) obtained from parent and child perspectives. Emergency and intensive care units of a hospital in Melbourne, Australia. Thirty-five families (34 parent-proxies and 32 children) aged 8 to 18 years (mean child age = 13.29 years) with traumatic brain injury (TBI) of all severities (27 mild, 5 moderate, and 3 severe) admitted to the Royal Children's Hospital. Longitudinal prospective study. Fatigue data collected at 6-week follow-up (mean = 6.9 weeks). Postinjury child- and parent-rated fatigue (PedsQL MFS), mood, sleep, and pain based on questionnaire report: TBI severity (mild vs moderate/severe TBI). A score greater than 2 standard deviations below healthy control data indicated the presence of abnormal fatigue, rates of which were higher compared with normative data for both parent and child reports (47% and 29%). Fatigue was predicted by postinjury depression and sleep disturbance for parent, but not child ratings. Fatigue, as rated by children, was not significantly predicted by TBI severity or other symptoms. The PedsQL MFS demonstrated acceptable measurement properties in child TBI participants, evidenced by good feasibility and reliability (Cronbach α values >0.90). Interrater reliability between parent and child reports was poor to moderate. Results underscore the need to assess fatigue and associated sleep-wake disturbance and depression after child TBI from both parent and child perspectives.

  19. A review of typical thermal fatigue failure models for solder joints of electronic components

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Sun, Ruifeng; Wang, Yongdong

    2017-09-01

    For electronic components, cyclic plastic strain makes it easier to accumulate fatigue damage than elastic strain. When the solder joints undertake thermal expansion or cold contraction, different thermal strain of the electronic component and its corresponding substrate is caused by the different coefficient of thermal expansion of the electronic component and its corresponding substrate, leading to the phenomenon of stress concentration. So repeatedly, cracks began to sprout and gradually extend [1]. In this paper, the typical thermal fatigue failure models of solder joints of electronic components are classified and the methods of obtaining the parameters in the model are summarized based on domestic and foreign literature research.

  20. Heterogeneity in chronic fatigue syndrome - empirically defined subgroups from the PACE trial.

    PubMed

    Williams, T E; Chalder, T; Sharpe, M; White, P D

    2017-06-01

    Chronic fatigue syndrome is likely to be a heterogeneous condition. Previous studies have empirically defined subgroups using combinations of clinical and biological variables. We aimed to explore the heterogeneity of chronic fatigue syndrome. We used baseline data from the PACE trial, which included 640 participants with chronic fatigue syndrome. Variable reduction, using a combination of clinical knowledge and principal component analyses, produced a final dataset of 26 variables for 541 patients. Latent class analysis was then used to empirically define subgroups. The most statistically significant and clinically recognizable model comprised five subgroups. The largest, 'core' subgroup (33% of participants), had relatively low scores across all domains and good self-efficacy. A further three subgroups were defined by: the presence of mood disorders (21%); the presence of features of other functional somatic syndromes (such as fibromyalgia or irritable bowel syndrome) (21%); or by many symptoms - a group which combined features of both of the above (14%). The smallest 'avoidant-inactive' subgroup was characterized by physical inactivity, belief that symptoms were entirely physical in nature, and fear that they indicated harm (11%). Differences in the severity of fatigue and disability provided some discriminative validation of the subgroups. In addition to providing further evidence for the heterogeneity of chronic fatigue syndrome, the subgroups identified may aid future research into the important aetiological factors of specific subtypes of chronic fatigue syndrome and the development of more personalized treatment approaches.

  1. Multiscale Fatigue Life Prediction for Composite Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Arnold, Steven M.

    2012-01-01

    Fatigue life prediction capabilities have been incorporated into the HyperSizer Composite Analysis and Structural Sizing Software. The fatigue damage model is introduced at the fiber/matrix constituent scale through HyperSizer s coupling with NASA s MAC/GMC micromechanics software. This enables prediction of the micro scale damage progression throughout stiffened and sandwich panels as a function of cycles leading ultimately to simulated panel failure. The fatigue model implementation uses a cycle jumping technique such that, rather than applying a specified number of additional cycles, a specified local damage increment is specified and the number of additional cycles to reach this damage increment is calculated. In this way, the effect of stress redistribution due to damage-induced stiffness change is captured, but the fatigue simulations remain computationally efficient. The model is compared to experimental fatigue life data for two composite facesheet/foam core sandwich panels, demonstrating very good agreement.

  2. Microstructural modeling of fatigue fracture of shape memory alloys at thermomechanical cyclic loading

    NASA Astrophysics Data System (ADS)

    Belyaev, Fedor S.; Evard, Margarita E.; Volkov, Aleksandr E.

    2018-05-01

    A microstructural model of shape memory alloys (SMA) describing their deformation and fatigue fracture is presented. A new criterion of fracture has been developed which takes into account the effect of hydrostatic pressure, deformation defects and material damage. It is shown that the model can describe the fatigue fracture of SMA under various thermomechanical cycling regimes. Results of calculating the number of cycles to failure at thermocycling under a constant stress, at symmetric two-sided cyclic deformation, at straining-unloading cycles, at cycling in the regime of the thermodynamic cycles of a SMA working body in the hard (strain controlled) and soft (stress controlled) working cycles, is studied. Results of calculating the number of cycles to failure are presented for different parameters of these cycles.

  3. Prevalence and Correlates of Fatigue in CKD and ESRD: Are Sleep Disorders a Key to Understanding Fatigue?

    PubMed Central

    Jhamb, Manisha; Liang, Kelly; Yabes, Jonathan; Steel, Jennifer L; Dew, Mary Amanda; Shah, Nirav; Unruh, Mark

    2014-01-01

    Background Fatigue is an important symptom to patients with advanced CKD. The aim of this study is to examine the prevalence and severity of fatigue among non-dialysis dependent CKD and ESRD patients; examine association of fatigue with subjective and objective sleep quality; identify other modifiable factors associated with fatigue. Methods Cross-sectional survey of 87 non-dialysis dependent CKD (eGFR ≤45 ml/min/1.73 m2) and 86 ESRD patients was done using Functional Assessment of Chronic Illness Therapy – Fatigue (FACIT-F) and SF-36 vitality scale. Higher FACIT-F score denoted less fatigue. Objective sleep was assessed using in-home polysomnography. Predictors of fatigue were determined using linear regression model. Results Mean FACIT-F score among all participants was 34.5±11.0. Mean scores were similar among CKD and ESRD groups (34.25±11.28 versus 34.73±10.86; p=0.73). On univariate analyses, patients with higher levels of fatigue were more likely to have cardiovascular disease, benzodiazepine use, depressive symptoms, slightly lower hemoglobin and serum albumin levels. There was no significant association between severity of sleep apnea and level of fatigue (Apnea Hypopnea Index 20.1±27.6 versus 20.3±22.0; p=0.69). Presence of cardiovascular disease, low serum albumin, depressive symptoms, poor subjective sleep quality, excessive daytime sleepiness and restless legs syndrome (RLS) were independently associated with greater fatigue in multivariable regression models. The FACIT-F score correlated closely with the SF-36 vitality score (r =0.81, p<0.0001). Conclusions Patients with advanced CKD and ESRD experience profound fatigue. Depressive symptoms, RLS, excessive daytime sleepiness, and low albumin levels may provide targets for interventions to improve fatigue in patients with advanced CKD. PMID:24335380

  4. Construction of a survey to assess workload and fatigue among AMT operators in Mexico.

    PubMed

    Hernández Arellano, Juan Luis; Ibarra Mejía, Gabriel; Serratos Pérez, J Nieves; García Alcaraz, Jorge Luis; Brunette, María Julia

    2012-01-01

    Operators of machinery classified as Advanced Manufacturing Technology (AMT) are exposed to high levels of workload and fatigue. However, only few studies have been conducted on this topic in Hispanic-American countries workers. Several instruments be used to assess workload and fatigue; however, only few of them have been adapted to Spanish language. This paper reports on the development and validity testing of a survey instrument in Spanish, aiming to subjectively assess workload and fatigue among AMT operators in Mexico. After an exhaustive literature review in search of already available measurement instruments, they were adapted for content and later translated into Spanish; a pilot test was conducted to evaluate validity and reliability; afterwards appropriate modifications were made to the testing instruments. Final version of the instrument was applied to a group of 121 operators of CNC lathes. Reliability was analyzed using KMO and Cronbach alpha indices. For the assessment of workload, both NASA-TLX and ISTAS 21 methods were incorporated to the survey instrument. As for fatigue assessment tools, these were SOFI-S, FAS and OFER questionnaires. RESULTS show KMO value and Cronbach alpha above 0.6.Conclusions. The survey instrument as designed, allows the collection of reliable and valid data regarding workload and fatigue among AMT operators in Mexico.

  5. Inflammatory fatigue and sickness behaviour - lessons for the diagnosis and management of chronic fatigue syndrome.

    PubMed

    Arnett, S V; Clark, I A

    2012-12-10

    Persistent and severe fatigue is a common part of the presentation of a diverse range of disease processes. There is a growing body of evidence indicating a common inflammatory pathophysiology underlying many conditions where fatigue is a primary patient concern, including chronic fatigue syndrome. This review explores current models of how inflammatory mediators act on the central nervous system to produce fatigue and sickness behaviour, and the commonality of these processes in conditions as diverse as surgical trauma, infection, various cancers, inflammatory bowel disease, connective tissue diseases and autoimmune diseases. We also discuss evidence indicating chronic fatigue syndrome may have important pathophysiological similarities with cytokine mediated sickness behaviour, and what lessons can be applied from sickness behaviour to chronic fatigue syndrome with regards to the diagnosis and management. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Power Plant Model Validation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The PPMV is used to validate generator model using disturbance recordings. The PPMV tool contains a collection of power plant models and model validation studies, as well as disturbance recordings from a number of historic grid events. The user can import data from a new disturbance into the database, which converts PMU and SCADA data into GE PSLF format, and then run the tool to validate (or invalidate) the model for a specific power plant against its actual performance. The PNNL PPMV tool enables the automation of the process of power plant model validation using disturbance recordings. The tool usesmore » PMU and SCADA measurements as input information. The tool automatically adjusts all required EPCL scripts and interacts with GE PSLF in the batch mode. The main tool features includes: The tool interacts with GE PSLF; The tool uses GE PSLF Play-In Function for generator model validation; Database of projects (model validation studies); Database of the historic events; Database of the power plant; The tool has advanced visualization capabilities; and The tool automatically generates reports« less

  7. Development of a Taiwan cancer-related fatigue cognition questionnaire: reliability and validity.

    PubMed

    Lai, Shih-Chiung; Lin, Wei-Chun; Chen, Chien-Hsin; Wu, Szu-Yuan

    2017-04-25

    We prospectively designed a Taiwan cancer-related fatigue cognition questionnaire, version 1.0 (TCRFCQ-V1.0), for Taiwanese patients with cancer and investigated the reliability and validity of this questionnaire. The completion rate of the TCRFCQ-V1.0 was high (97% of the patients completed all items), and the rate of missing data was low (0.2%-1.1% for each item). Moreover, the Cronbach alpha value was 0.889. We eliminated 5 items because their respective Cronbach alpha values were higher than the total mean value of Cronbach's alpha. Overall, the TCRFCQ-V1.0 had adequate Cronbach alpha coefficients (range, from 0.882 to 0.889). In addition, the results of Bartlett's test were significant (chi-squared, 2390.11; p < 0.001), indicating the appropriateness of factor analysis. Sampling adequacy was confirmed by the Kaiser-Meyer-Olkin statistic of 0.868. Through exploratory factor analysis, we identified 6 factors with eigenvalues of > 1, and the scree plot indicated no flattening factors. Overall, 28 items achieved a factor loading of ≥ 0.55. We enrolled patients with cancer who were aged > 18 years, had received a pathological diagnosis of cancer, and had undergone cancer treatments such as surgery, chemotherapy, radiotherapy, or concurrent chemoradiotherapy at a single institute in Taiwan. Of the identified 167 eligible patients, 161 (96.4%) were approached. Of these patients, 6 (7.2%) declined to participate and 155 (92.8%) were interviewed. The initial 43 items in the TCRFCQ-V1.0 were assessed for ceiling and floor effects. The TCRFCQ-V1.0 is a reliable and valid instrument for measuring CRF cognition in Taiwanese patients with cancer.

  8. Psychometric properties of the Polish version of the Multidimensional Fatigue Inventory-20 in cancer patients.

    PubMed

    Buss, Tomasz; Kruk, Agnieszka; Wiśniewski, Piotr; Modlinska, Aleksandra; Janiszewska, Justyna; Lichodziejewska-Niemierko, Monika

    2014-10-01

    Multidimensional questionnaires estimating cancer-related fatigue (CRF) as a symptom cluster or a clinical syndrome primarily have been used and validated in English-speaking populations. However, cultural issues and language peculiarities can affect CRF assessment The main aims of this study were to evaluate the psychometric properties of the Polish version of the Multidimensional Fatigue Inventory-20 (MFI-20) and to deliver to clinicians a multidimensional tool for CRF assessment in Polish-speaking patients with cancer. After forward-backward translation procedures, the Polish version of MFI-20 was administered to 340 cancer patients. The Polish MFI-20 was appraised in terms of acceptability, reliability, and validity. Internal consistency was assessed by calculating Cronbach's alpha coefficients. Structural validity was evaluated with confirmatory factor analysis. The translated MFI-20 was well accepted; 90% of subjects fully completed the questionnaire. The overall Cronbach's alpha coefficient was 0.9, ranging from 0.57 to 0.81. All correlation coefficients among Numeric Rating Scale-fatigue, fatigue-related items from the European Organization for Research and Treatment of Cancer Quality of Life Core-30 questionnaire, and the MFI--20 were statistically significant (P < 0.001). Confirmatory factor analysis demonstrated good structural validity and revealed only three dimensions in the Polish version of the MFI-20-physical and mental fatigue as well as reduced motivation. The Polish version of the MFI-20 is well accepted by patients, reliable, and a valid instrument to assess CRF in Polish cancer patients. Copyright © 2014 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  9. The characterization of widespread fatigue damage in fuselage structure

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.; Miller, Matthew

    1994-01-01

    The characteristics of widespread fatigue damage (WSFD) in fuselage riveted structure were established by detailed nondestructive and destructive examinations of fatigue damage contained in a full size fuselage test article. The objectives of this were to establish an experimental data base for validating emerging WSFD analytical prediction methodology and to identify first order effects that contribute to fatigue crack initiation and growth. Detailed examinations were performed on a test panel containing four bays of a riveted lap splice joint. The panel was removed from a full scale fuselage test article after receiving 60,000 full pressurization cycles. The results of in situ examinations document the progression of fuselage skin fatigue crack growth through crack linkup. Detailed tear down examinations and fractography of the lap splice joint region revealed fatigue crack initiation sites, crack morphology, and crack linkup geometry. From this large data base, distributions of crack size and locations are presented and discussions of operative damage mechanisms are offered.

  10. The characterization of widespread fatigue damage in fuselage structure

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.; Miller, Matthew

    1994-01-01

    The characteristics of widespread fatigue damage (WSFD) in fuselage riveted structure were established by detailed nondestructive and destructive examinations of fatigue damage contained in a full size fuselage test article. The objectives of this work were to establish an experimental data base for validating emerging WSFD analytical prediction methodology and to identify first order effects that contribute to fatigue crack initiation and growth. Detailed examinations were performed on a test panel containing four bays of a riveted lap splice joint. The panel was removed from a full scale fuselage test article after receiving 60,000 full pressurization cycles. The results of in situ examinations document the progression of fuselage skin fatigue crack growth through crack linkup. Detailed tear down examinations and fractography of the lap splice joint region revealed fatigue crack initiation sites, crack morphology and crack linkup geometry. From this large data base, distributions of crack size and locations are presented and discussions of operative damage mechanisms are offered.

  11. A Novel Probabilistic Multi-Scale Modeling and Sensing Framework for Fatigue Life Prediction of Aerospace Structures and Materials: DCT Project

    DTIC Science & Technology

    2012-08-25

    Accel- erated Crystal Plasticity FEM Simulations (submitted). 5. M. Anahid, M. Samal and S. Ghosh, Dwell fatigue crack nucleation model based on using...4] M. Anahid, M. K. Samal , and S. Ghosh. Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of

  12. Metabolomic markers of fatigue: Association between circulating metabolome and fatigue in women with chronic widespread pain.

    PubMed

    Freidin, Maxim B; Wells, Helena R R; Potter, Tilly; Livshits, Gregory; Menni, Cristina; Williams, Frances M K

    2018-02-01

    Fatigue is a sensation of unbearable tiredness that frequently accompanies chronic widespread musculoskeletal pain (CWP) and inflammatory joint disease. Its mechanisms are poorly understood and there is a lack of effective biomarkers for diagnosis and onset prediction. We studied the circulating metabolome in a population sample characterised for CWP to identify biomarkers showing specificity for fatigue. Untargeted metabolomic profiling was conducted on fasting plasma and serum samples of 1106 females with and without CWP from the TwinsUK cohort. Linear mixed-effects models accounting for covariates were used to determine relationships between fatigue and metabolites. Receiver operating curve (ROC)-analysis was used to determine predictive value of metabolites for fatigue. While no association between fatigue and metabolites was identified in twins without CWP (n=711), in participants with CWP (n=395), levels of eicosapentaenoate (EPA) ω-3 fatty acid were significantly reduced in those with fatigue (β=-0.452±0.116; p=1.2×10 -4 ). A significant association between fatigue and two other metabolites also emerged when BMI was excluded from the model: 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF), and C-glycosyltryptophan (p=1.5×10 -4 and p=3.1×10 -4 , respectively). ROC analysis has identified a combination of 15 circulating metabolites with good predictive potential for fatigue in CWP (AUC=75%; 95% CI 69-80%). The results of this agnostic metabolomics screening show that fatigue is metabolically distinct from CWP, and is associated with a decrease in circulating levels of EPA. Our panel of circulating metabolites provides the starting point for a diagnostic test for fatigue in CWP. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Dislocation mechanism based model for stage II fatigue crack propagation rate

    NASA Technical Reports Server (NTRS)

    Mazumdar, P. K.

    1986-01-01

    Repeated plastic deformation, which of course depends on dislocation mechanism, at or near the crack tip leads to the fatigue crack propagation. By involving the theory of thermally activated flow and the cumulative plastic strain criterion, an effort is made here to model the stage II fatigue crack propagation rate in terms of the dislocation mechanism. The model, therefore, provides capability to ascertain: (1) the dislocation mechanism (and hence the near crack tip microstructures) assisting the crack growth, (2) the relative resistance of dislocation mechanisms to the crack growth, and (3) the fracture surface characteristics and its interpretation in terms of the dislocation mechanism. The local microstructure predicted for the room temperature crack growth in copper by this model is in good agreement with the experimental results taken from the literature. With regard to the relative stability of such dislocation mechanisms as the cross-slip and the dislocation intersection, the model suggests an enhancement of crack growth rate with an ease of cross-slip which in general promotes dislocation cell formation and is common in material which has high stacking fault energy (produces wavy slips). Cross-slip apparently enhances crack growth rate by promoting slip irreversibility and fracture surface brittleness to a greater degree.

  14. Validation of Simplified Load Equations through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana, S.; Damiani, R.; vanDam, J.

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, NREL tested a small horizontal axis wind turbine in the field at the National Wind Technology Center (NWTC). The test turbine was a 2.1-kW downwind machine mounted on an 18-meter multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelasticmore » model of the turbine. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads. In this project, we compared fatigue loads as measured in the field, as predicted by the aeroelastic model, and as calculated using the simplified design equations.« less

  15. Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Mach, J. C.; Budrow, C. J.; Pagan, D. C.; Ruff, J. P. C.; Park, J.-S.; Okasinski, J.; Beaudoin, A. J.; Miller, M. P.

    2017-05-01

    Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present work, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to develop significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. The experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.

  16. Fatigue In Continuous-Fiber/Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Johnson, William S.

    1992-01-01

    Report describes experimental approaches to quantification of fatigue damage in metal-matrix composites (MMC's). Discusses number of examples of development of damage and failure along with associated analytical models of behavior of MMC. Objectives of report are twofold. First, present experimental procedures and techniques for conducting meaningful fatigue tests to detect and quantify fatigue damage in MMC's. Second, present examples of how fatigue damage initiated and grows in various MMC's. Report furnishes some insight into what type of fatigue damage occurs and how damage quantified.

  17. Environment enhanced fatigue crack propagation in metals: Inputs to fracture mechanics life prediction models

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Kim, Sang-Shik

    1993-01-01

    This report is a critical review of both environment-enhanced fatigue crack propagation data and the predictive capabilities of crack growth rate models. This information provides the necessary foundation for incorporating environmental effects in NASA FLAGRO and will better enable predictions of aerospace component fatigue lives. The review presents extensive literature data on 'stress corrosion cracking and corrosion fatigue.' The linear elastic fracture mechanics approach, based on stress intensity range (Delta(K)) similitude with microscopic crack propagation threshold and growth rates, provides a basis for these data. Results are presented showing enhanced growth rates for gases (viz., H2 and H2O) and electrolytes (e.g. NaCl and H2O) in aerospace alloys including: C-Mn and heat treated alloy steels, aluminum alloys, nickel-based superalloys, and titanium alloys. Environment causes purely time-dependent accelerated fatigue crack growth above the monotonic load cracking threshold (KIEAC) and promotes cycle-time dependent cracking below (KIEAC). These phenomenon are discussed in terms of hydrogen embrittlement, dissolution, and film rupture crack tip damage mechanisms.

  18. The Representation of Inflammatory Signals in the Brain – A Model for Subjective Fatigue in Multiple Sclerosis

    PubMed Central

    Hanken, Katrin; Eling, Paul; Hildebrandt, Helmut

    2014-01-01

    In multiple sclerosis (MS) patients, fatigue is rated as one of the most common and disabling symptoms. However, the pathophysiology underlying this fatigue is not yet clear. Several lines of evidence suggest that immunological factors, such as elevated levels of pro-inflammatory cytokines, may contribute to subjective fatigue in MS patients. Pro-inflammatory cytokines represent primary mediators of immune-to-brain-communication, modulating changes in the neurophysiology of the central nervous system. Recently, we proposed a model arguing that fatigue in MS patients is a subjective feeling, which is related to inflammation. Moreover, it implies that fatigue can be measured behaviorally only by applying specific cognitive tasks related to alertness and vigilance. In the present review, we focus on the subjective feeling of MS-related fatigue. We examine the hypothesis that the subjective feeling of MS-related fatigue may be a variant of inflammation-induced sickness behavior, resulting from cytokine-mediated activity changes within brain areas involved in interoception and homeostasis including the insula, the anterior cingulate, and the hypothalamus. We first present studies demonstrating a relationship between pro-inflammatory cytokines and subjective fatigue in healthy individuals, in people with inflammatory disorders, and particularly in MS patients. Subsequently, we discuss studies analyzing the impact of anti-inflammatory treatment on fatigue. In the next part of this review, we present studies on the transmission and neural representation of inflammatory signals, with a special focus on possible neural concomitants of inflammation-induced fatigue. We also present two of our studies on the relationship between local gray and white matter atrophy and fatigue in MS patients. Finally, we discuss some implications of our findings and future perspectives. PMID:25566171

  19. Mathematical Modeling of Physical and Cognitive Performance Decrement from Mechanical and Inhalation Insults

    DTIC Science & Technology

    2009-12-01

    INHALATION TOXICOLOGY RESEARCH 2.1.1 Development of a Fatigue Model & Blood Oxygen-based Parameter Corre- lates Liu et al. (2002) introduced a muscle ...and Stuhmiller, J.H. “Generalization of a ‘phenomenological’ muscle fatigue model.” Technical report J0287-10-382 (in preparation). Product 3. Sih...physiologic response to exercise and a model of muscle fatigue which have been developed and validated separately are integrated. Integration occurs through

  20. Effort-Reward Imbalance for Learning Is Associated with Fatigue in School Children

    ERIC Educational Resources Information Center

    Fukuda, Sanae; Yamano, Emi; Joudoi, Takako; Mizuno, Kei; Tanaka, Masaaki; Kawatani, Junko; Takano, Miyuki; Tomoda, Akemi; Imai-Matsumura, Kyoko; Miike, Teruhisa; Watanabe, Yasuyoshi

    2010-01-01

    We examined relationships among fatigue, sleep quality, and effort-reward imbalance for learning in school children. We developed an effort-reward for learning scale in school students and examined its reliability and validity. Self-administered surveys, including the effort reward for leaning scale and fatigue scale, were completed by 1,023…

  1. Compassion fatigue: A meta-narrative review of the healthcare literature.

    PubMed

    Sinclair, Shane; Raffin-Bouchal, Shelley; Venturato, Lorraine; Mijovic-Kondejewski, Jane; Smith-MacDonald, Lorraine

    2017-04-01

    Compassion fatigue describes a work-related stress response in healthcare providers that is considered a 'cost of caring' and a key contributor to the loss of compassion in healthcare. The purpose of this review was to critically examine the construct of compassion fatigue and to determine if it is an accurate descriptor of work-related stress in healthcare providers and a valid target variable for intervention. Meta-narrative review. PubMed, Medline, CINAHL, PsycINFO, and Web of Science databases, Google Scholar, the grey literature, and manual searches of bibliographies. Seminal articles and theoretical and empirical studies on compassion fatigue in the healthcare literature were identified and appraised for their validity and relevance to our review. Sources were mapped according to the following criteria: 1) definitions; 2) conceptual analyses; 3) signs and symptoms; 4) measures; 5) prevalence and associated risk factors; and 6) interventions. A narrative account of included studies that critically examines the concept of compassion fatigue in healthcare was employed, and recommendations for practice, policy and further research were made. 90 studies from the nursing literature and healthcare in general were included in the review. Findings emphasized that the physical, emotional, social and spiritual health of healthcare providers is impaired by cumulative stress related to their work, which can impact the delivery of healthcare services; however, the precise nature of compassion fatigue and that it is predicated on the provision of compassionate care is associated with significant limitations. The conceptualization of compassion fatigue was expropriated from crisis counseling and psychotherapy and focuses on limited facets of compassion. Empirical studies primarily measure compassion fatigue using the Professional Quality of Life Scale, which does not assess any of the elements of compassion. Reported risk factors for compassion fatigue include job

  2. Usefulness of multiple dimensions of fatigue in fibromyalgia.

    PubMed

    Ericsson, Anna; Bremell, Tomas; Mannerkorpi, Kaisa

    2013-07-01

    To explore in which contexts ratings of multiple dimensions of fatigue are useful in fibromyalgia, and to compare multidimensional fatigue between women with fibromyalgia and healthy women. A cross-sectional study. The Multidimensional Fatigue Inventory (MFI-20), comprising 5 subscales of fatigue, was compared with the 1-dimensional subscale of fatigue from the Fibromyalgia Impact Questionnaire (FIQ) in 133 women with fibromyalgia (mean age 46 years; standard deviation 8.6), in association with socio-demographic and health-related aspects and analyses of explanatory variables of severe fatigue. The patients were also compared with 158 healthy women (mean age 45 years; standard deviation 9.1) for scores on MFI-20 and FIQ fatigue. The MFI-20 was associated with employment, physical activity and walking capacity (rs = -0.27 to -0.36), while FIQ fatigue was not. MFI-20 and FIQ fatigue were equally associated with pain, sleep, depression and anxiety (rs = 0.32-0.63). Regression analyses showed that the MFI-20 increased the explained variance (R2) for the models of pain intensity, sleep, depression and anxiety, by between 7 and 29 percentage points, compared with if FIQ fatigue alone was included in the models. Women with fibromyalgia rated their fatigue higher than healthy women for all subscales of the MFI-20 and the FIQ fatigue (p < 0.001). Dimensions of fatigue, assessed by the MFI-20, appear to be valuable in studies of employment, pain intensity, sleep, distress and physical function in women with fibromyalgia. The patients reported higher levels on all fatigue dimensions in comparison with healthy women.

  3. System-Level Heat Transfer Analysis, Thermal- Mechanical Cyclic Stress Analysis, and Environmental Fatigue Modeling of a Two-Loop Pressurized Water Reactor. A Preliminary Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in April 2015 under the work package for environmentally assisted fatigue under DOE's Light Water Reactor Sustainability program. In this report, updates are discussed related to a system level preliminary finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent thermal-mechanical stress analysis were performed for typical design-basis thermal-mechanical fatigue cycles. The in-air fatigue lives of components, such as the hot and cold legs,more » were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described in NUREG-6909. The discussed models and results are very preliminary. Further advancement of the discussed model is required for more accurate life prediction of reactor components. This report only presents the work related to finite element modelling activities. However, in between multiple tensile and fatigue tests were conducted. The related experimental results will be presented in the year-end report.« less

  4. Scatter of fatigue data owing to material microscopic effects

    NASA Astrophysics Data System (ADS)

    Tang, XueSong

    2014-01-01

    A common phenomenon of fatigue test data reported in the open literature such as S-N curves exhibits the scatter of points for a group of same specimens under the same loading condition. The reason is well known that the microstructure is different from specimen to specimen even in the same group. Specifically, a fatigue failure process is a multi-scale problem so that a fatigue failure model should have the ability to take the microscopic effect into account. A physically-based trans-scale crack model is established and the analytical solution is obtained by coupling the micro- and macro-scale. Obtained is the trans-scale stress intensity factor as well as the trans-scale strain energy density (SED) factor. By taking this trans-scale SEDF as a key controlling parameter for the fatigue crack propagation from micro- to macro-scale, a trans-scale fatigue crack growth model is proposed in this work which can reflect the microscopic effect and scale transition in a fatigue process. The fatigue test data of aluminum alloy LY12 plate specimens is chosen to check the model. Two S-N experimental curves for cyclic stress ratio R=0.02 and R=0.6 are selected. The scattering test data points and two S-N curves for both R=0.02 and R=0.6 are exactly re-produced by application of the proposed model. It is demonstrated that the proposed model is able to reflect the multiscaling effect in a fatigue process. The result also shows that the microscopic effect has a pronounced influence on the fatigue life of specimens.

  5. Psychometric Evaluation of the Multidimensional Assessment of Fatigue Scale for Use with Pregnant and Postpartum Women

    ERIC Educational Resources Information Center

    Fairbrother, Nichole; Hutton, Eileen K.; Stoll, Kathrin; Hall, Wendy; Kluka, Sandy

    2008-01-01

    Although fatigue is a common experience for pregnant women and new mothers, few measures of fatigue have been validated for use with this population. To address this gap, the authors assessed psychometric properties of the Multidimensional Assessment of Fatigue (MAF) scale, which was used in 2 independent samples of pregnant women. Results…

  6. Nonlinear ultrasonic fatigue crack detection using a single piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    An, Yun-Kyu; Lee, Dong Jun

    2016-04-01

    This paper proposes a new nonlinear ultrasonic technique for fatigue crack detection using a single piezoelectric transducer (PZT). The proposed technique identifies a fatigue crack using linear (α) and nonlinear (β) parameters obtained from only a single PZT mounted on a target structure. Based on the different physical characteristics of α and β, a fatigue crack-induced feature is able to be effectively isolated from the inherent nonlinearity of a target structure and data acquisition system. The proposed technique requires much simpler test setup and less processing costs than the existing nonlinear ultrasonic techniques, but fast and powerful. To validate the proposed technique, a real fatigue crack is created in an aluminum plate, and then false positive and negative tests are carried out under varying temperature conditions. The experimental results reveal that the fatigue crack is successfully detected, and no positive false alarm is indicated.

  7. Handgrip fatiguing exercise can provide objective assessment of cancer-related fatigue: a pilot study.

    PubMed

    Veni, T; Boyas, S; Beaune, B; Bourgeois, H; Rahmani, A; Landry, S; Bochereau, A; Durand, S; Morel, B

    2018-06-24

    As a subjective symptom, cancer-related fatigue is assessed via patient-reported outcomes. Due to the inherent bias of such evaluation, screening and treatment for cancer-related fatigue remains suboptimal. The purpose is to evaluate whether objective cancer patients' hand muscle mechanical parameters (maximal force, critical force, force variability) extracted from a fatiguing handgrip exercise may be correlated to the different dimensions (physical, emotional, and cognitive) of cancer-related fatigue. Fourteen women with advanced breast cancer, still under or having previously received chemotherapy within the preceding 3 months, and 11 healthy women participated to the present study. Cancer-related fatigue was first assessed through the EORTC QLQ-30 and its fatigue module. Fatigability was then measured during 60 maximal repeated handgrip contractions. The maximum force, critical force (asymptote of the force-time evolution), and force variability (root mean square of the successive differences) were extracted. Multiple regression models were performed to investigate the influence of the force parameters on cancer-related fatigue's dimensions. The multiple linear regression analysis evidenced that physical fatigue was best explained by maximum force and critical force (r = 0.81; p = 0.029). The emotional fatigue was best explained by maximum force, critical force, and force variability (r = 0.83; p = 0.008). The cognitive fatigue was best explained by critical force and force variability (r = 0.62; p = 0.035). The handgrip maximal force, critical force, and force variability may offer objective measures of the different dimensions of cancer-related fatigue and could provide a complementary approach to the patient reported outcomes.

  8. The role of helplessness as mediator between neurological disability, emotional instability, experienced fatigue and depression in patients with multiple sclerosis.

    PubMed

    van der Werf, S P; Evers, A; Jongen, P J H; Bleijenberg, G

    2003-02-01

    The aim of this study was to test, in patients with multiple sclerosis (MS), whether the concept of helplessness might improve the understanding of the relationship between disease severity (neurological impairment) and personality characteristics (emotional instability) on one hand, and depressive mood and fatigue severity on the other hand. Data pertain to 89 patients with a definite diagnosis of MS (Expanded Disability Status Scale [EDSS] ratings: 1-8). Helplessness, fatigue severity, depressive mood and emotional instability were rated with validated questionnaires. Model testing revealed that more neurological impairment and more emotional instability were associated with more helplessness, while higher levels of helplessness were associated with more fatigue and depressive mood. The initially observed direct relationship between EDSS and fatigue disappeared. Emotional instability also had a direct significant relationship with depressive mood, and depressive mood had only a small relationship with fatigue severity. The results indicated that helplessness affected both depressive mood and fatigue severity and that fatigue was not merely a symptom of depressive mood. The correlation between neurological impairment and fatigue severity was largely explained by the mediating effect of helplessness. These findings suggest that MS patients troubled by disabling fatigue might benefit from a psychological intervention targeting unfavourable illness cognitions.

  9. Simulation of Delamination Propagation in Composites Under High-Cycle Fatigue by Means of Cohesive-Zone Models

    NASA Technical Reports Server (NTRS)

    Turon, Albert; Costa, Josep; Camanho, Pedro P.; Davila, Carlos G.

    2006-01-01

    A damage model for the simulation of delamination propagation under high-cycle fatigue loading is proposed. The basis for the formulation is a cohesive law that links fracture and damage mechanics to establish the evolution of the damage variable in terms of the crack growth rate dA/dN. The damage state is obtained as a function of the loading conditions as well as the experimentally-determined coefficients of the Paris Law crack propagation rates for the material. It is shown that by using the constitutive fatigue damage model in a structural analysis, experimental results can be reproduced without the need of additional model-specific curve-fitting parameters.

  10. Evaluating the effectiveness of using electroencephalogram power indices to measure visual fatigue.

    PubMed

    Hsu, Bin-Wei; Wang, Mao-Jiun J

    2013-02-01

    Electroencephalography (EEG) is widely used in cognitive and behavioral research. This study evaluates the effectiveness of using the EEG power index to measure visual fatigue. Three common visual fatigue measures, critical-flicker fusion (CFF), near-point accommodation (NPA), and subjective eye-fatigue rating, were used for comparison. The study participants were 20 men with a mean age of 20.4 yr. (SD = 1.5). The experimental task was a car-racing video game. Results indicated that the EEG power indices were valid as a visual fatigue measure and the sensitivity of the objective measures (CFF and EEG power index) was higher than the subjective measure. The EEG beta and EEG alpha were effective for measuring visual fatigue in short- and long-duration tasks, respectively. EEG beta/alpha were the most effective power indexes for the visual fatigue measure.

  11. Fatigue crack monitoring with coupled piezoelectric film acoustic emission sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang

    Fatigue-induced cracking is a commonly seen problem in civil infrastructures reaching their original design life. A number of high-profile accidents have been reported in the past that involved fatigue damage in structures. Such incidences often happen without prior warnings due to lack of proper crack monitoring technique. In order to detect and monitor the fatigue crack, acoustic emission (AE) technique, has been receiving growing interests recently. AE can provide continuous and real-time monitoring data on damage progression in structures. Piezoelectric film AE sensor measures stress-wave induced strain in ultrasonic frequency range and its feasibility for AE signal monitoring has been demonstrated recently. However, extensive work in AE monitoring system development based on piezoelectric film AE sensor and sensor characterization on full-scale structures with fatigue cracks, have not been done. A lack of theoretical formulations for understanding the AE signals also hinders the use of piezoelectric film AE sensors. Additionally, crack detection and source localization with AE signals is a very important area yet to be explored for this new type of AE sensor. This dissertation presents the results of both analytical and experimental study on the signal characteristics of surface stress-wave induced AE strain signals measured by piezoelectric film AE sensors in near-field and an AE source localization method based on sensor couple theory. Based on moment tensor theory, generalized expression for AE strain signal is formulated. A special case involving the response of piezoelectric film AE sensor to surface load is also studied, which could potentially be used for sensor calibration of this type of sensor. A new concept of sensor couple theory based AE source localization technique is proposed and validated with both simulated and experimental data from fatigue test and field monitoring. Two series of fatigue tests were conducted to perform fatigue crack

  12. Evidence-Based Guidelines for Fatigue Risk Management in EMS: Formulating Research Questions and Selecting Outcomes.

    PubMed

    Patterson, P Daniel; Higgins, J Stephen; Lang, Eddy S; Runyon, Michael S; Barger, Laura K; Studnek, Jonathan R; Moore, Charity G; Robinson, Kathy; Gainor, Dia; Infinger, Allison; Weiss, Patricia M; Sequeira, Denisse J; Martin-Gill, Christian

    2017-01-01

    Greater than half of Emergency Medical Services (EMS) personnel report work-related fatigue, yet there are no guidelines for the management of fatigue in EMS. A novel process has been established for evidence-based guideline (EBG) development germane to clinical EMS questions. This process has not yet been applied to operational EMS questions like fatigue risk management. The objective of this study was to develop content valid research questions in the Population, Intervention, Comparison, and Outcome (PICO) framework, and select outcomes to guide systematic reviews and development of EBGs for EMS fatigue risk management. We adopted the National Prehospital EBG Model Process and Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework for developing, implementing, and evaluating EBGs in the prehospital care setting. In accordance with steps one and two of the Model Process, we searched for existing EBGs, developed a multi-disciplinary expert panel and received external input. Panelists completed an iterative process to formulate research questions. We used the Content Validity Index (CVI) to score relevance and clarity of candidate PICO questions. The panel completed multiple rounds of question editing and used a CVI benchmark of ≥0.78 to indicate acceptable levels of clarity and relevance. Outcomes for each PICO question were rated from 1 = less important to 9 = critical. Panelists formulated 13 candidate PICO questions, of which 6 were eliminated or merged with other questions. Panelists reached consensus on seven PICO questions (n = 1 diagnosis and n = 6 intervention). Final CVI scores of relevance ranged from 0.81 to 1.00. Final CVI scores of clarity ranged from 0.88 to 1.00. The mean number of outcomes rated as critical, important, and less important by PICO question was 0.7 (SD 0.7), 5.4 (SD 1.4), and 3.6 (SD 1.9), respectively. Patient and personnel safety were rated as critical for most PICO questions. PICO questions and

  13. Prediction of the Creep-Fatigue Lifetime of Alloy 617: An Application of Non-destructive Evaluation and Information Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivek Agarwal; Richard Wright; Timothy Roney

    A relatively simple method using the nominal constant average stress information and the creep rupture model is developed to predict the creep-fatigue lifetime of Alloy 617, in terms of time to rupture. The nominal constant average stress is computed using the stress relaxation curve. The predicted time to rupture can be converted to number of cycles to failure using the strain range, the strain rate during each cycle, and the hold time information. The predicted creep-fatigue lifetime is validated against the experimental measurements of the creep-fatigue lifetime collected using conventional laboratory creep-fatigue tests. High temperature creep-fatigue tests of Alloy 617more » were conducted in air at 950°C with a tensile hold period of up to 1800s in a cycle at total strain ranges of 0.3% and 0.6%. It was observed that the proposed method is conservative in that the predicted lifetime is less than the experimentally determined values. The approach would be relevant to calculate the remaining useful life to a component like a steam generator that might fail by the creep-fatigue mechanism.« less

  14. Fluoxetine prevents the development of depressive-like behavior in a mouse model of cancer related fatigue.

    PubMed

    Norden, Diana M; Devine, Raymond; Bicer, Sabahattin; Jing, Runfeng; Reiser, Peter J; Wold, Loren E; Godbout, Jonathan P; McCarthy, Donna O

    2015-03-01

    Cancer patients frequently suffer from fatigue, a complex syndrome associated with tiredness and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, escalates during treatment, and can persist for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. We have previously shown that increased pro-inflammatory cytokine expression in the brain contributes to depressive- and fatigue-like behaviors in a mouse model of CRF. Inflammatory cytokines increase the activity of indoleamine 2,3-dioxygenase (IDO) and kynurenine 3-monooxygenase (KMO), which competitively reduce serotonin synthesis. Reduced serotonin availability in the brain and increased production of alternative neuroactive metabolites of tryptophan are thought to contribute to the development of depression and fatigue. The purpose of this study was to determine the effects of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), on brain cytokines and behavioral measures of fatigue and depression in tumor-bearing mice. Here we show that tumor growth increased brain expression of pro-inflammatory cytokines and KMO. Treatment with fluoxetine had no effect on tumor growth, muscle wasting, fatigue behavior, or cytokine expression in the brain. Fluoxetine, however, reduced depressive-like behaviors in tumor bearing mice. In conclusion, our data confirm that increased brain expression of pro-inflammatory cytokines is associated with tumor-induced fatigue- and depressive-like behaviors. However, it is possible to separate the effects of tumor growth on mood and fatigue-like behaviors using SSRIs such as fluoxetine. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Statistical characterization of the fatigue behavior of composite lamina

    NASA Technical Reports Server (NTRS)

    Yang, J. N.; Jones, D. L.

    1979-01-01

    A theoretical model was developed to predict statistically the effects of constant and variable amplitude fatigue loadings on the residual strength and fatigue life of composite lamina. The parameters in the model were established from the results of a series of static tensile tests and a fatigue scan and a number of verification tests were performed. Abstracts for two other papers on the effect of load sequence on the statistical fatigue of composites are also presented.

  16. Research on driver fatigue detection

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Chen, Zhong; Ouyang, Chao

    2018-03-01

    Driver fatigue is one of the main causes of frequent traffic accidents. In this case, driver fatigue detection system has very important significance in avoiding traffic accidents. This paper presents a real-time method based on fusion of multiple facial features, including eye closure, yawn and head movement. The eye state is classified as being open or closed by a linear SVM classifier trained using HOG features of the detected eye. The mouth state is determined according to the width-height ratio of the mouth. The head movement is detected by head pitch angle calculated by facial landmark. The driver's fatigue state can be reasoned by the model trained by above features. According to experimental results, drive fatigue detection obtains an excellent performance. It indicates that the developed method is valuable for the application of avoiding traffic accidents caused by driver's fatigue.

  17. Relationship between fatigue, perfectionism, and functional dysphonia.

    PubMed

    O'Hara, James; Miller, Tracey; Carding, Paul; Wilson, Janet; Deary, Vincent

    2011-06-01

    Increased levels of fatigue and perfectionism were noted during evaluation of cognitive behavioral therapy for the treatment of functional dysphonia. The investigators thus aimed to explore levels of general fatigue and perfectionism in patients with functional dysphonia and controls. Case-control study. Teaching hospital, United Kingdom. Patients recruited through speech therapy were asked to recruit a friend as a control, of the same sex and within 5 years of their age. An 11-point fatigue questionnaire, previously validated on a normal population, was analyzed using both Likert (0123) and bimodal (0011) systems, with a score greater than 4 on the bimodal system implying substantial fatigue. A 35-point perfectionism questionnaire was also completed and analyzed for "healthy" and "unhealthy" perfectionist traits. There were 75 cases and 62 controls. The mean fatigue score in patients with functional dysphonia was 17.0 and 14.4 for the controls (Likert, P = .009). Under the bimodal scoring system, the mean fatigue scores in functional dysphonia (5.10) and controls (3.01) were also significantly different (P = .003). The mean perfectionism scores were 98.9 for patients with functional dysphonia and 91.2 for controls (P = 0.043). To the investigators' knowledge, this is the first substantial report that fatigue and perfectionism scores are significantly elevated in functional dysphonia. Functional dysphonia is shown to be analogous to other medically unexplained physical symptoms that are also marked by generic somatopsychic distress and for which multiple factors are implicated in their onset and maintenance. This has implications for both research and treatment.

  18. Study the Cyclic Plasticity Behavior of 508 LAS under Constant, Variable and Grid-Load-Following Loading Cycles for Fatigue Evaluation of PWR Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Barua, Bipul; Soppet, William K.

    This report provides an update of an earlier assessment of environmentally assisted fatigue for components in light water reactors. This report is a deliverable in September 2016 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2016 report, we presented a detailed thermal-mechanical stress analysis model for simulating the stress-strain state of a reactor pressure vessel and its nozzles under grid-load-following conditions. In this report, we provide stress-controlled fatigue test data for 508 LAS base metal alloy under different loading amplitudes (constant, variable, and random grid-load-following) and environmental conditions (in airmore » or pressurized water reactor coolant water at 300°C). Also presented is a cyclic plasticity-based analytical model that can simultaneously capture the amplitude and time dependency of the component behavior under fatigue loading. Results related to both amplitude-dependent and amplitude-independent parameters are presented. The validation results for the analytical/mechanistic model are discussed. This report provides guidance for estimating time-dependent, amplitude-independent parameters related to material behavior under different service conditions. The developed mechanistic models and the reported material parameters can be used to conduct more accurate fatigue and ratcheting evaluation of reactor components.« less

  19. Fatigue Crack Prognostics by Optical Quantification of Defect Frequency

    NASA Astrophysics Data System (ADS)

    Chan, K. S.; Buckner, B. D.; Earthman, J. C.

    2018-01-01

    Defect frequency, a fatigue crack prognostics indicator, is defined as the number of microcracks per second detected using a laser beam that is scanned across a surface at a constant predetermined frequency. In the present article, a mechanistic approach was taken to develop a methodology for deducing crack length and crack growth information from defect frequency data generated from laser scanning measurements made on fatigued surfaces. The method was developed by considering a defect frequency vs fatigue cycle curve that comprised three regions: (i) a crack initiation regime of rising defect frequency, (ii) a plateau region of a relatively constant defect frequency, and (iii) a region of rapid rising defect frequency due to crack growth. Relations between defect frequency and fatigue cycle were developed for each of these three regions and utilized to deduce crack depth information from laser scanning data of 7075-T6 notched specimens. The proposed method was validated using experimental data of crack density and crack length data from the literature for a structural steel. The proposed approach was successful in predicting the length or depth of small fatigue cracks in notched 7075-T6 specimens and in smooth fatigue specimens of a structural steel.

  20. Sensitivity Analysis of Fatigue Crack Growth Model for API Steels in Gaseous Hydrogen.

    PubMed

    Amaro, Robert L; Rustagi, Neha; Drexler, Elizabeth S; Slifka, Andrew J

    2014-01-01

    A model to predict fatigue crack growth of API pipeline steels in high pressure gaseous hydrogen has been developed and is presented elsewhere. The model currently has several parameters that must be calibrated for each pipeline steel of interest. This work provides a sensitivity analysis of the model parameters in order to provide (a) insight to the underlying mathematical and mechanistic aspects of the model, and (b) guidance for model calibration of other API steels.

  1. Development of a Taiwan cancer-related fatigue cognition questionnaire: reliability and validity

    PubMed Central

    Chen, Chien-Hsin; Wu, Szu-Yuan

    2017-01-01

    Purpose We prospectively designed a Taiwan cancer-related fatigue cognition questionnaire, version 1.0 (TCRFCQ-V1.0), for Taiwanese patients with cancer and investigated the reliability and validity of this questionnaire. Results The completion rate of the TCRFCQ-V1.0 was high (97% of the patients completed all items), and the rate of missing data was low (0.2%–1.1% for each item). Moreover, the Cronbach alpha value was 0.889. We eliminated 5 items because their respective Cronbach alpha values were higher than the total mean value of Cronbach's alpha. Overall, the TCRFCQ-V1.0 had adequate Cronbach alpha coefficients (range, from 0.882 to 0.889). In addition, the results of Bartlett's test were significant (chi-squared, 2390.11; p < 0.001), indicating the appropriateness of factor analysis. Sampling adequacy was confirmed by the Kaiser–Meyer–Olkin statistic of 0.868. Through exploratory factor analysis, we identified 6 factors with eigenvalues of > 1, and the scree plot indicated no flattening factors. Overall, 28 items achieved a factor loading of ≥ 0.55. Materials and Methods We enrolled patients with cancer who were aged > 18 years, had received a pathological diagnosis of cancer, and had undergone cancer treatments such as surgery, chemotherapy, radiotherapy, or concurrent chemoradiotherapy at a single institute in Taiwan. Of the identified 167 eligible patients, 161 (96.4%) were approached. Of these patients, 6 (7.2%) declined to participate and 155 (92.8%) were interviewed. The initial 43 items in the TCRFCQ-V1.0 were assessed for ceiling and floor effects. Conclusions The TCRFCQ-V1.0 is a reliable and valid instrument for measuring CRF cognition in Taiwanese patients with cancer. PMID:28418869

  2. Predictors and treatment strategies of HIV-related fatigue in the combined antiretroviral therapy era.

    PubMed

    Jong, Eefje; Oudhoff, Lisanne A; Epskamp, Cynthia; Wagener, Marlies N; van Duijn, Miranda; Fischer, Steven; van Gorp, Eric Cm

    2010-06-19

    To assess predictors and reported treatment strategies of HIV-related fatigue in the combined antiretroviral (cART) era. Five databases were searched and reference lists of pertinent articles were checked. Studies published since 1996 on predictors or therapy of HIV-related fatigue measured by a validated instrument were selected. A total of 42 studies met the inclusion criteria. The reported HIV-related fatigue prevalence in the selected studies varied from 33 to 88%. The strongest predictors for sociodemographic variables were unemployment and inadequate income. Concerning HIV-associated factors, the use of cART was the strongest predictor. Comorbidity and sleeping difficulties were important factors when assessing physiological influences. Laboratory parameters were not predictive of fatigue. The strongest and most uniform associations were observed between fatigue and psychological factors such as depression and anxiety. Reported therapeutic interventions for HIV-related fatigue include testosterone, psycho-stimulants (dextroamphetamine, methylphenidate hydrochloride, pemoline, modafinil), dehydroepiandrosterone, fluoxetine and cognitive behavioural or relaxation therapy. HIV-related fatigue has a high prevalence and is strongly associated with psychological factors such as depression and anxiety. A validated instrument should be used to measure intensity and consequences of fatigue in HIV-infected individuals. In the case of fatigue, clinicians should not only search for physical mechanisms, but should question depression and anxiety in detail. There is a need for intervention studies comparing the effect of medication (antidepressants, anxiolytics) and behavioural interventions (cognitive-behavioural therapy, relaxation therapy, graded exercise therapy) to direct the best treatment strategy. Treatment of HIV-related fatigue is important in the care for HIV-infected patients and requires a multidisciplinary approach.

  3. Physical activity, sleep, and fatigue in community dwelling Stroke Survivors.

    PubMed

    Shepherd, Anthony I; Pulsford, Richard; Poltawski, Leon; Forster, Anne; Taylor, Rod S; Spencer, Anne; Hollands, Laura; James, Martin; Allison, Rhoda; Norris, Meriel; Calitri, Raff; Dean, Sarah G

    2018-05-21

    Stroke can lead to physiological and psychological impairments and impact individuals' physical activity (PA), fatigue and sleep patterns. We analysed wrist-worn accelerometry data and the Fatigue Assessment Scale from 41 stroke survivors following a physical rehabilitation programme, to examine relationships between PA levels, fatigue and sleep. Validated acceleration thresholds were used to quantify time spent in each PA intensity/sleep category. Stroke survivors performed less moderate to vigorous PA (MVPA) in 10 minute bouts than the National Stroke guidelines recommend. Regression analysis revealed associations at baseline between light PA and fatigue (p = 0.02) and MVPA and sleep efficiency (p = 0.04). Light PA was positively associated with fatigue at 6 months (p = 0.03), whilst sleep efficiency and fatigue were associated at 9 months (p = 0.02). No other effects were shown at baseline, 6 or 9 months. The magnitude of these associations were small and are unlikely to be clinically meaningful. Larger trials need to examine the efficacy and utility of accelerometry to assess PA and sleep in stroke survivors.

  4. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation

    PubMed Central

    Zhang, Wei; Bao, Zhangmin; Jiang, Shan; He, Jingjing

    2016-01-01

    In the aerospace and aviation sectors, the damage tolerance concept has been applied widely so that the modeling analysis of fatigue crack growth has become more and more significant. Since the process of crack propagation is highly nonlinear and determined by many factors, such as applied stress, plastic zone in the crack tip, length of the crack, etc., it is difficult to build up a general and flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial neural network (ANN) is considered a powerful tool for establishing the nonlinear multivariate projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue crack calculation algorithm based on a radial basis function (RBF)-ANN is proposed to study this relationship from the experimental data. In addition, a parameter called the equivalent stress intensity factor is also employed as training data to account for loading interaction effects. The testing data is then placed under constant amplitude loading with different stress ratios or overloads used for model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with our proposed algorithm. The current investigation shows that the ANN-based approach can deliver a better agreement with the experimental data than the other two models, which supports that the RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it implies that the proposed algorithm is possibly a sophisticated and promising method to compute fatigue crack growth in terms of loading interaction effects. PMID:28773606

  5. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation.

    PubMed

    Zhang, Wei; Bao, Zhangmin; Jiang, Shan; He, Jingjing

    2016-06-17

    In the aerospace and aviation sectors, the damage tolerance concept has been applied widely so that the modeling analysis of fatigue crack growth has become more and more significant. Since the process of crack propagation is highly nonlinear and determined by many factors, such as applied stress, plastic zone in the crack tip, length of the crack, etc. , it is difficult to build up a general and flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial neural network (ANN) is considered a powerful tool for establishing the nonlinear multivariate projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue crack calculation algorithm based on a radial basis function (RBF)-ANN is proposed to study this relationship from the experimental data. In addition, a parameter called the equivalent stress intensity factor is also employed as training data to account for loading interaction effects. The testing data is then placed under constant amplitude loading with different stress ratios or overloads used for model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with our proposed algorithm. The current investigation shows that the ANN-based approach can deliver a better agreement with the experimental data than the other two models, which supports that the RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it implies that the proposed algorithm is possibly a sophisticated and promising method to compute fatigue crack growth in terms of loading interaction effects.

  6. Depression, Fatigue, and Pre-Sleep Arousal: A Mediation Model

    ERIC Educational Resources Information Center

    Karlson, Cynthia W.; Stevens, Natalie R.; Olson, Christy A.; Hamilton, Nancy A.

    2010-01-01

    Fatigue is a common and debilitating symptom of clinical depression; however, the causes are not well understood. The present study was designed to test the hypotheses that subjective sleep, objective sleep, and arousal in the pre-sleep state would mediate the relationship between depression status and fatigue. Sleep, pre-sleep arousal, and…

  7. The Role of Parvalbumin, Sarcoplasmatic Reticulum Calcium Pump Rate, Rates of Cross-Bridge Dynamics, and Ryanodine Receptor Calcium Current on Peripheral Muscle Fatigue: A Simulation Study

    PubMed Central

    Neumann, Verena

    2016-01-01

    A biophysical model of the excitation-contraction pathway, which has previously been validated for slow-twitch and fast-twitch skeletal muscles, is employed to investigate key biophysical processes leading to peripheral muscle fatigue. Special emphasis hereby is on investigating how the model's original parameter sets can be interpolated such that realistic behaviour with respect to contraction time and fatigue progression can be obtained for a continuous distribution of the model's parameters across the muscle units, as found for the functional properties of muscles. The parameters are divided into 5 groups describing (i) the sarcoplasmatic reticulum calcium pump rate, (ii) the cross-bridge dynamics rates, (iii) the ryanodine receptor calcium current, (iv) the rates of binding of magnesium and calcium ions to parvalbumin and corresponding dissociations, and (v) the remaining processes. The simulations reveal that the first two parameter groups are sensitive to contraction time but not fatigue, the third parameter group affects both considered properties, and the fourth parameter group is only sensitive to fatigue progression. Hence, within the scope of the underlying model, further experimental studies should investigate parvalbumin dynamics and the ryanodine receptor calcium current to enhance the understanding of peripheral muscle fatigue. PMID:27980606

  8. Nondestructive Evaluation of Metal Fatigue Using Nonlinear Acoustics

    NASA Technical Reports Server (NTRS)

    Cantrell, John H., Jr.

    2008-01-01

    Safe-life and damage-tolerant design philosophies of high performance structures have driven the development of various methods to evaluate nondestructively the accumulation of damage in such structures resulting from cyclic loading. Although many techniques have proven useful, none has been able to provide an unambiguous, quantitative assessment of damage accumulation at each stage of fatigue from the virgin state to fracture. A method based on nonlinear acoustics is shown to provide such a means to assess the state of metal fatigue. The salient features of an analytical model are presented of the microelastic-plastic nonlinearities resulting from the interaction of an acoustic wave with fatigue-generated dislocation substructures and cracks that predictably evolve during the metal fatigue process. The interaction is quantified by the material (acoustic) nonlinearity parameter extracted from acoustic harmonic generation measurements. The parameters typically increase monotonically by several hundred percent over the fatigue life of the metal, thus providing a unique measure of the state of fatigue. Application of the model to aluminum alloy 2024-T4, 410Cb stainless steel, and IN100 nickel-base superalloy specimens fatigued using different loading conditions yields good agreement between theory and experiment. Application of the model and measurement technique to the on-site inspection of steam turbine blades is discussed.

  9. High temperature fatigue behavior of Haynes 188

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Saltsman, James F.; Kalluri, Sreeramesh

    1988-01-01

    The high temperature, creep-fatigue behavior of Haynes 188 was investigated as an element in a broader thermomechanical fatigue life prediction model development program at the NASA-Lewis. The models are still in the development stage, but the data that were generated possess intrinsic value on their own. Results generated to date is reported. Data were generated to characterize isothermal low cycle fatigue resistance at temperatures of 316, 704, and 927 C with cyclic failure lives ranging from 10 to more than 20,000. These results follow trends that would be predicted from a knowledge of tensile properties, i.e., as the tensile ductility varies with temperature, so varies the cyclic inelastic straining capacity. Likewise, as the tensile strength decreases, so does the high cyclic fatigue resistance. A few two-minute hold-time cycles at peak compressive strain were included in tests at 760 C. These results were obtained in support of a redesign effort for the Orbital Maneuverable System engine. No detrimental effects on cyclic life were noted despite the added exposure time for creep and oxidation. Finally, a series of simulated thermal fatigue tests, referred to as bithermal fatigue tests, were conducted using 316 C as the minimum and 760 C as the maximum temperature. Only out-of-phase bithermal tests were conducted to date. These test results are intended for use as input to a more general thermomechanical fatigue life prediction model based on the concepts of the total strain version of Strainrange Partitioning.

  10. Measurement of Fatigue in Cancer, Stroke, and HIV Using the Functional Assessment of Chronic Illness Therapy – Fatigue (FACIT-F) Scale

    PubMed Central

    Butt, Zeeshan; Lai, Jin-shei; Rao, Deepa; Heinemann, Allen W.; Bill, Alex; Cella, David

    2012-01-01

    Objective Given the importance of fatigue in cancer, stroke and HIV, we sought to assess the measurement properties of a single, well-described fatigue scale in these populations. We hypothesized that the psychometric properties of the Functional Assessment of Chronic Illness Therapy – Fatigue (FACIT-F) subscale would be favorable and that the scale could serve as a useful indicator of fatigue in these populations. Methods Patients were eligible for the study if they were outpatients, aged 18 or older, with a diagnosis of cancer (n=297), stroke (n=51), or HIV/AIDS (n=51). All participants were able to understand and speak English. Patients answered study-related questions, including the FACIT-F using a touch-screen laptop, assisted by the research assistant as necessary. Clinical information was abstracted from patients’ medical records. Results Item-level statistics on the FACIT-F were similar across the groups and internal consistency reliability was uniformly high (α>0.91). Correlations with performance status ratings were statistically significant across the groups (range r=−0.28 to −0.80). Fatigue scores were moderately to highly correlated with general quality of life (range r=0.66–0.80) in patients with cancer, stroke, and HIV. Divergent validity was supported in low correlations with variables not expected to correlate with fatigue. Conclusions Originally developed to assess cancer-related fatigue, the FACIT-F has utility as a measure of fatigue in other populations, such as stroke and HIV. Ongoing research will soon allow for comparison of FACIT-F scores to those obtained using the fatigue measures from the Patient-Reported Outcomes Measurement Information System (PROMIS®; www.nihpromis.org) initiative. PMID:23272990

  11. Real Time Fatigue Damage Growth Assessment of a Composite Three-Stringer Panel Using Passive Thermography

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Bly, James B.

    2015-01-01

    Fatigue testing of advanced composite structures is critical to validate both structural designs and damage prediction models. In-situ inspection methods are necessary to track damage onset and growth as a function of load cycles. Passive thermography is a large area, noncontact inspection technique that is used to detect composite damage onset and growth in real time as a function of fatigue cycles. The thermal images are acquired in synchronicity to the applied compressive load using a dual infrared camera acquisition system for full (front and back) coverage. Image processing algorithms are investigated to increase defect contrast areas. The thermal results are compared to non-immersion ultrasound inspections and acoustic emission data.

  12. Experimental Investigation on the Fatigue Mechanical Properties of Intermittently Jointed Rock Models Under Cyclic Uniaxial Compression with Different Loading Parameters

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng

    2018-01-01

    Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.

  13. Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction

    DOE PAGES

    Mach, J. C.; Budrow, C. J.; Pagan, D. C.; ...

    2017-03-15

    Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present paper, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to developmore » significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. Finally, the experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.« less

  14. Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mach, J. C.; Budrow, C. J.; Pagan, D. C.

    Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present paper, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to developmore » significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. Finally, the experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.« less

  15. A wireless body measurement system to study fatigue in multiple sclerosis.

    PubMed

    Yu, Fei; Bilberg, Arne; Stenager, Egon; Rabotti, Chiara; Zhang, Bin; Mischi, Massimo

    2012-12-01

    Fatigue is reported as the most common symptom by patients with multiple sclerosis (MS). The physiological and functional parameters related to fatigue in MS patients are currently not well established. A new wearable wireless body measurement system, named Fatigue Monitoring System (FAMOS), was developed to study fatigue in MS. It can continuously measure electrocardiogram, body-skin temperature, electromyogram and motions of feet. The goal of this study is to test the ability of distinguishing fatigued MS patients from healthy subjects by the use of FAMOS. This paper presents the realization of the measurement system including the design of both hardware and dedicated signal processing algorithms. Twenty-six participants including 17 MS patients with fatigue and 9 sex- and age-matched healthy controls were included in the study for continuous 24 h monitoring. The preliminary results show significant differences between fatigued MS patients and healthy controls. In conclusion, the FAMOS enables continuous data acquisition and estimation of multiple physiological and functional parameters. It provides a new, flexible and objective approach to study fatigue in MS, which can distinguish between fatigued MS patients and healthy controls. The usability and reliability of the FAMOS should however be further improved and validated through larger clinical trials.

  16. Fatigue

    MedlinePlus

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  17. Individualized Next-Generation Biomathematical Modeling of Fatigue and Performance

    DTIC Science & Technology

    2006-07-10

    the following expression: - lo (Yo;K,?o,p,Vo,y,n0o,1,(p,F) p[Xo;O,k] p[vo;0,r] p[, lo ;0,c] / Lo (yo;K,k,p,r,7,c,,p,a). A numerical algorithm to minimize...Individualized Next-Generation Biomathematical Modeling of Fatigue and Performance Transitions Pulsar Inc. (Daniel Mollicone) Transitioned the Bayesian...forecasting framework developed as part of this grant (Specific Aim 1), so that Pulsar Inc. could initiate the development of a state/trait optimization

  18. Base Flow Model Validation

    NASA Technical Reports Server (NTRS)

    Sinha, Neeraj; Brinckman, Kevin; Jansen, Bernard; Seiner, John

    2011-01-01

    A method was developed of obtaining propulsive base flow data in both hot and cold jet environments, at Mach numbers and altitude of relevance to NASA launcher designs. The base flow data was used to perform computational fluid dynamics (CFD) turbulence model assessments of base flow predictive capabilities in order to provide increased confidence in base thermal and pressure load predictions obtained from computational modeling efforts. Predictive CFD analyses were used in the design of the experiments, available propulsive models were used to reduce program costs and increase success, and a wind tunnel facility was used. The data obtained allowed assessment of CFD/turbulence models in a complex flow environment, working within a building-block procedure to validation, where cold, non-reacting test data was first used for validation, followed by more complex reacting base flow validation.

  19. Association of resident fatigue and distress with perceived medical errors.

    PubMed

    West, Colin P; Tan, Angelina D; Habermann, Thomas M; Sloan, Jeff A; Shanafelt, Tait D

    2009-09-23

    Fatigue and distress have been separately shown to be associated with medical errors. The contribution of each factor when assessed simultaneously is unknown. To determine the association of fatigue and distress with self-perceived major medical errors among resident physicians using validated metrics. Prospective longitudinal cohort study of categorical and preliminary internal medicine residents at Mayo Clinic, Rochester, Minnesota. Data were provided by 380 of 430 eligible residents (88.3%). Participants began training from 2003 to 2008 and completed surveys quarterly through February 2009. Surveys included self-assessment of medical errors, linear analog self-assessment of overall quality of life (QOL) and fatigue, the Maslach Burnout Inventory, the PRIME-MD depression screening instrument, and the Epworth Sleepiness Scale. Frequency of self-perceived, self-defined major medical errors was recorded. Associations of fatigue, QOL, burnout, and symptoms of depression with a subsequently reported major medical error were determined using generalized estimating equations for repeated measures. The mean response rate to individual surveys was 67.5%. Of the 356 participants providing error data (93.7%), 139 (39%) reported making at least 1 major medical error during the study period. In univariate analyses, there was an association of subsequent self-reported error with the Epworth Sleepiness Scale score (odds ratio [OR], 1.10 per unit increase; 95% confidence interval [CI], 1.03-1.16; P = .002) and fatigue score (OR, 1.14 per unit increase; 95% CI, 1.08-1.21; P < .001). Subsequent error was also associated with burnout (ORs per 1-unit change: depersonalization OR, 1.09; 95% CI, 1.05-1.12; P < .001; emotional exhaustion OR, 1.06; 95% CI, 1.04-1.08; P < .001; lower personal accomplishment OR, 0.94; 95% CI, 0.92-0.97; P < .001), a positive depression screen (OR, 2.56; 95% CI, 1.76-3.72; P < .001), and overall QOL (OR, 0.84 per unit increase; 95% CI, 0.79-0.91; P < .001

  20. Visual simulation of fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Wang, Shuanzhu; Margolin, Harold; Lin, Fengbao

    1998-07-01

    An attempt has been made to visually simulate fatigue crack propagation from a precrack. An integrated program was developed for this purpose. The crack-tip shape was determined at four load positions in the first load cycle. The final shape was a blunt front with an “ear” profile at the precrack tip. A more general model, schematically illustrating the mechanism of fatigue crack growth and striation formation in a ductile material, was proposed based on this simulation. According to the present model, fatigue crack growth is an intermittent process; cyclic plastic shear strain is the driving force applied to both state I and II crack growth. No fracture mode transition occurs between the two stages in the present study. The crack growth direction alternates, moving up and down successively, producing fatigue striations. A brief examination has been made of the crack growth path in a ductile two-phase material.

  1. A systems approach to solder joint fatigue in spacecraft electronic packaging

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1991-01-01

    Differential expansion induced fatigue resulting from temperature cycling is a leading cause of solder joint failures in spacecraft. Achieving high reliability flight hardware requires that each element of the fatigue issue be addressed carefully. This includes defining the complete thermal-cycle environment to be experienced by the hardware, developing electronic packaging concepts that are consistent with the defined environments, and validating the completed designs with a thorough qualification and acceptance test program. This paper describes a useful systems approach to solder fatigue based principally on the fundamental log-strain versus log-cycles-to-failure behavior of fatigue. This fundamental behavior has been useful to integrate diverse ground test and flight operational thermal-cycle environments into a unified electronics design approach. Each element of the approach reflects both the mechanism physics that control solder fatigue, as well as the practical realities of the hardware build, test, delivery, and application cycle.

  2. A proposed USAF fatigue evaluation program based upon recent systems experience

    NASA Technical Reports Server (NTRS)

    Haviland, G. P.; Purkey, G. F.

    1972-01-01

    The United States Air Force has published a document entitled Aircraft Structural Integrity Program. One phase of the program is concerned with the fatigue life certification of all types of military aircraft. The document describes the criteria, analyses, and tests that are necessary in order to satisfy the USAF fatigue life requirement. Some recent and valid criticism has been directed toward the document, particularly the fatigue-life requirements contained in it. Some changes are proposed based on surveys conducted in the United States and abroad as well as some recent systems' experience. The surveys covered both military and civilian organizations. The fatigue certification case histories of selected military and commercial aircraft are presented. The design development element tests, preproduction design verification tests, and full-scale fatigue tests of each are described. A brief status report on the revisions to the MIL-A-008860 series specifications is included.

  3. A Novel Creep-Fatigue Life Prediction Model for P92 Steel on the Basis of Cyclic Strain Energy Density

    NASA Astrophysics Data System (ADS)

    Ji, Dongmei; Ren, Jianxing; Zhang, Lai-Chang

    2016-11-01

    A novel creep-fatigue life prediction model was deduced based on an expression of the strain energy density in this study. In order to obtain the expression of the strain energy density, the load-controlled creep-fatigue (CF) tests of P92 steel at 873 K were carried out. Cyclic strain of P92 steel under CF load was divided into elastic strain, applying and unloading plastic strain, creep strain, and anelastic strain. Analysis of cyclic strain indicates that the damage process of P92 steel under CF load consists of three stages, similar to pure creep. According to the characteristics of the strains above, an expression was defined to describe the strain energy density for each cycle. The strain energy density at stable stage is inversely proportional to the total strain energy density dissipated by P92 steel. However, the total strain energy densities under different test conditions are proportional to the fatigue life. Therefore, the expression of the strain energy density at stable stage was chosen to predict the fatigue life. The CF experimental data on P92 steel were employed to verify the rationality of the novel model. The model obtained from the load-controlled CF test of P92 steel with short holding time could predict the fatigue life of P92 steel with long holding time.

  4. Psychometric evaluation of the Multidimensional Assessment of Fatigue scale for use with pregnant and postpartum women.

    PubMed

    Fairbrother, Nichole; Hutton, Eileen K; Stoll, Kathrin; Hall, Wendy; Kluka, Sandy

    2008-06-01

    Although fatigue is a common experience for pregnant women and new mothers, few measures of fatigue have been validated for use with this population. To address this gap, the authors assessed psychometric properties of the Multidimensional Assessment of Fatigue (MAF) scale, which was used in 2 independent samples of pregnant women. Results indicated that the psychometric properties of the scale were very similar across samples and time points. The scale possesses a high level of internal consistency, has good convergent validity with measures of sleep quality and depression, and discriminates well from a measure of social support. Contrary to previous evaluations of the MAF, data strongly suggest that the scale represents a unidimensional construct best represented by a single factor. Results indicate that the MAF is a useful measure of fatigue among pregnant and postpartum women.

  5. Fatigue crack modeling in bridge deck connection details : final report.

    DOT National Transportation Integrated Search

    1999-12-01

    Many steel bridges built prior to 1960 have bridge deck connections that are subject to high cycle fatigue. These connections may be nearing their fatigue limit and will require increased inspection and repair over the next 10 - 20 years. Current ins...

  6. Roughness Effects on Fretting Fatigue

    NASA Astrophysics Data System (ADS)

    Yue, Tongyan; Abdel Wahab, Magd

    2017-05-01

    Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.

  7. Fatigue in isometric contraction in a single muscle fibre: a compartmental calcium ion flow model.

    PubMed

    Kothiyal, K P; Ibramsha, M

    1986-01-01

    Fatigue in muscle is a complex biological phenomenon which has so far eluded a definite explanation. Many biochemical and physiological models have been suggested in the literature to account for the decrement in the ability of muscle to sustain a given level of force for a long time. Some of these models have been critically analysed in this paper and are shown to be not able to explain all the experimental observations. A new compartmental model based on the intracellular calcium ion movement in muscle is proposed to study the mechanical responses of a muscle fibre. Computer simulation is performed to obtain model responses in isometric contraction to an impulse and a train of stimuli of long duration. The simulated curves have been compared with experimentally observed mechanical responses of the semitendinosus muscle fibre of Rana pipiens. The comparison of computed and observed responses indicates that the proposed calcium ion model indeed accounts very well for the muscle fatigue.

  8. High cycle fatigue crack modeling and analysis for deck truss flooring connection details : appendices.

    DOT National Transportation Integrated Search

    1997-07-01

    The appendix belongs to "High cycle fatigue crack modeling and analysis for deck truss flooring connection details : final report". : The Oregon Department of Transportation is responsible for many steel deck truss bridges containing connection detai...

  9. Cyclic plasticity models and application in fatigue analysis

    NASA Technical Reports Server (NTRS)

    Kalev, I.

    1981-01-01

    An analytical procedure for prediction of the cyclic plasticity effects on both the structural fatigue life to crack initiation and the rate of crack growth is presented. The crack initiation criterion is based on the Coffin-Manson formulae extended for multiaxial stress state and for inclusion of the mean stress effect. This criterion is also applied for the accumulated damage ahead of the existing crack tip which is assumed to be related to the crack growth rate. Three cyclic plasticity models, based on the concept of combination of several yield surfaces, are employed for computing the crack growth rate of a crack plane stress panel under several cyclic loading conditions.

  10. Model Determined for Predicting Fatigue Lives of Metal Matrix Composites Under Mean Stresses

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley

    1997-01-01

    Aircraft engine components invariably are subjected to mean stresses over and above the cyclic loads. In monolithic materials, it has been observed that tensile mean stresses are detrimental and compressive mean stresses are beneficial to fatigue life in comparison to a base of zero mean stress. Several mean stress models exist for monolithic metals, but each differ quantitatively in the extent to which detrimental or beneficial effects are ascribed. There have been limited attempts to apply these models to metal matrix composites. At the NASA Lewis Research Center, several mean stress models--the Smith-Watson- Topper, Walker, Normalized Goodman, and Soderberg models--were examined for applicability to this class of composite materials. The Soderberg approach, which normalizes the mean stress to a 0.02-percent yield strength, was shown to best represent the effect of mean stresses over the range covered. The other models varied significantly in their predictability and often failed to predict the composite behavior at very high tensile mean stresses. This work is the first to systematically demonstrate the influence of mean stresses on metal matrix composites and model their effects. Attention also was given to fatigue-cracking mechanisms in the Ti-15-3 matrix and to micromechanics analyses of mean stress effects.

  11. Brief summary of the evolution of high-temperature creep-fatigue life prediction models for crack initiation

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    1993-01-01

    The evolution of high-temperature, creep-fatigue, life-prediction methods used for cyclic crack initiation is traced from inception in the late 1940's. The methods reviewed are material models as opposed to structural life prediction models. Material life models are used by both structural durability analysts and by material scientists. The latter use micromechanistic models as guidance to improve a material's crack initiation resistance. Nearly one hundred approaches and their variations have been proposed to date. This proliferation poses a problem in deciding which method is most appropriate for a given application. Approaches were identified as being combinations of thirteen different classifications. This review is intended to aid both developers and users of high-temperature fatigue life prediction methods by providing a background from which choices can be made. The need for high-temperature, fatigue-life prediction methods followed immediately on the heels of the development of large, costly, high-technology industrial and aerospace equipment immediately following the second world war. Major advances were made in the design and manufacture of high-temperature, high-pressure boilers and steam turbines, nuclear reactors, high-temperature forming dies, high-performance poppet valves, aeronautical gas turbine engines, reusable rocket engines, etc. These advances could no longer be accomplished simply by trial and error using the 'build-em and bust-em' approach. Development lead times were too great and costs too prohibitive to retain such an approach. Analytic assessments of anticipated performance, cost, and durability were introduced to cut costs and shorten lead times. The analytic tools were quite primitive at first and out of necessity evolved in parallel with hardware development. After forty years more descriptive, more accurate, and more efficient analytic tools are being developed. These include thermal-structural finite element and boundary element

  12. Brief summary of the evolution of high-temperature creep-fatigue life prediction models for crack initiation

    NASA Astrophysics Data System (ADS)

    Halford, Gary R.

    1993-10-01

    The evolution of high-temperature, creep-fatigue, life-prediction methods used for cyclic crack initiation is traced from inception in the late 1940's. The methods reviewed are material models as opposed to structural life prediction models. Material life models are used by both structural durability analysts and by material scientists. The latter use micromechanistic models as guidance to improve a material's crack initiation resistance. Nearly one hundred approaches and their variations have been proposed to date. This proliferation poses a problem in deciding which method is most appropriate for a given application. Approaches were identified as being combinations of thirteen different classifications. This review is intended to aid both developers and users of high-temperature fatigue life prediction methods by providing a background from which choices can be made. The need for high-temperature, fatigue-life prediction methods followed immediately on the heels of the development of large, costly, high-technology industrial and aerospace equipment immediately following the second world war. Major advances were made in the design and manufacture of high-temperature, high-pressure boilers and steam turbines, nuclear reactors, high-temperature forming dies, high-performance poppet valves, aeronautical gas turbine engines, reusable rocket engines, etc. These advances could no longer be accomplished simply by trial and error using the 'build-em and bust-em' approach. Development lead times were too great and costs too prohibitive to retain such an approach. Analytic assessments of anticipated performance, cost, and durability were introduced to cut costs and shorten lead times. The analytic tools were quite primitive at first and out of necessity evolved in parallel with hardware development. After forty years more descriptive, more accurate, and more efficient analytic tools are being developed. These include thermal-structural finite element and boundary element

  13. The Nature of Fatigue in Chronic Fatigue Syndrome.

    PubMed

    Olson, Karin; Zimka, Oksana; Stein, Eleanor

    2015-10-01

    In this article, we report the findings of our study on the nature of fatigue in patients diagnosed with chronic fatigue syndrome. Using ethnoscience as a design, we conducted a series of unstructured interviews and card sorts to learn more about how people with chronic fatigue syndrome describe fatigue. Participants (N = 14) described three distinct domains: tiredness, fatigue, and exhaustion. Most participants experienced tiredness prior to diagnosis, fatigue during daily life, and exhaustion after overexertion. We also discuss participants' ability to adapt to a variety of stressors and prevent shifts to exhaustion, and relate our findings to stress theory and other current research. Primary strategies that promoted adaptation to stressors included pacing and extended rest periods. These findings can aid health care professionals in detecting impending shifts between tiredness, fatigue, and exhaustion and in improving adaptive strategies, thereby improving quality of life. © The Author(s) 2015.

  14. A population-based study of associations between current posttraumatic stress symptoms and current fatigue.

    PubMed

    Lerdal, Anners; Lee, Kathryn A; Rokne, Berit; Knudsen, Øistein; Wahl, Astrid K; Dahl, Alv A

    2010-10-01

    This study explores current experience with posttraumatic stress disorder (PTSD) symptoms and other variables (sociodemographic, mental distress, somatic morbidity, self-rated health, and quality of life [QoL]) in relation to fatigue. A representative sample of the Norwegian population (N = 3,944) was invited to participate in a mailed survey, and 1,857 (47%) returned valid responses on the questionnaire that included the Fatigue Severity Scale and the Posttraumatic Symptom Scale-10. Posttraumatic stress disorder symptoms showed a strong association with fatigue in univariate (β = .41) and multivariate analyses (β = .33). Associations between psychosocial health variables, QoL, and fatigue were confirmed. However, PTSD symptoms showed the strongest association with fatigue in the analyses. Findings need to be replicated in other population samples and in clinical samples with PTSD and fatigue.

  15. Thermomechanical fatigue life prediction for several solders

    NASA Astrophysics Data System (ADS)

    Wen, Shengmin

    Since solder connections operate at high homologous temperature, solders are high temperature materials. This feature makes their mechanical behavior and fatigue phenomena unique. Based on experimental findings, a physical damage mechanism is introduced for solders. The mechanism views the damage process as a series of independent local damage events characterized by the failure of individual grains, while the structural damage is the eventual percolation result of such local events. Fine's dislocation energy density concept and Mura's microcrack initiation theory are adopted to derive the fatigue formula for an individual grain. A physical damage metric is introduced to describe the material with damage. A unified creep and plasticity constitutive model is adopted to simulate the mechanical behavior of solders. The model is cast into a continuum damage mechanics framework to simulate material with damage. The model gives good agreement with the experimental results of 96.5Pb-3.5Sn and 96.5Sn-3.5Ag solders under uniaxial strain-controlled cyclic loading. The model is convenient for implementation into commercial computational packages. Also presented is a fatigue theory with its failure criterion for solders based on physical damage mechanism. By introducing grain orientation into the fatigue formula, an m-N curve (m is Schmid factor) at constant loading condition is suggested for fatigue of grains with different orientations. A solder structure is defined as fatigued when the damage metric reaches a critical threshold, since at this threshold the failed grains may form a cluster and percolate through the structure according to percolation theory. Fatigue data of 96.5Pb-3.5Sn solder bulk specimens under various uniaxial tension tests were analyzed. Results show that the theory gives consistent predictions under broad conditions, while inelastic strain theory does not. The theory is anisotropic with no size limitation to its application, which could be suitable for

  16. A study on the influence of microstructure on small fatigue cracks

    NASA Astrophysics Data System (ADS)

    Castelluccio, Gustavo M.

    In spite of its significance in industrial applications, the prediction of the influence of microstructure on the early stages of crack formation and growth in engineering alloys remains underdeveloped. The formation and early growth of fatigue cracks in the high cycle fatigue regime lasts for much of the fatigue life, and it is strongly influenced by microstructural features such as grain size, twins and morphological and crystallographic texture. However, most fatigue models do not predict the in uence of the microstructure on early stages of crack formation, or they employ parameters that should be calibrated with experimental data from specimens with microstructures of interest. These post facto strategies are adequate to characterize materials, but they are not fully appropriate to aid in the design of fatigue-resistant engineering alloys. This thesis considers finite element computational models that explicitly render the microstructure of selected FCC metallic systems and introduces a fatigue methodology that estimates transgranular and intergranular fatigue growth for microstructurally small cracks. The driving forces for both failure modes are assessed by means of fatigue indicators, which are used along with life correlations to estimate the fatigue life. Furthermore, cracks with meandering paths are modeled by considering crack growth on a grain-by-grain basis with a damage model embedded analytically to account for stress and strain redistribution as the cracks extend. The methodology is implemented using a crystal plasticity constitutive model calibrated for studying the effect of microstructure on early fatigue life of a powder processed Ni-base RR1000 superalloy at elevated temperature under high cycle fatigue conditions. This alloy is employed for aircraft turbine engine disks, which undergo a thermomechanical production process to produce a controlled bimodal grain size distribution. The prediction of the fatigue life for this complex

  17. Fatigue crack growth and life prediction under mixed-mode loading

    NASA Astrophysics Data System (ADS)

    Sajith, S.; Murthy, K. S. R. K.; Robi, P. S.

    2018-04-01

    Fatigue crack growth life as a function of crack length is essential for the prevention of catastrophic failures from damage tolerance perspective. In damage tolerance design approach, principles of fracture mechanics are usually applied to predict the fatigue life of structural components. Numerical prediction of crack growth versus number of cycles is essential in damage tolerance design. For cracks under mixed mode I/II loading, modified Paris law (d/a d N =C (ΔKe q ) m ) along with different equivalent stress intensity factor (ΔKeq) model is used for fatigue crack growth rate prediction. There are a large number of ΔKeq models available for the mixed mode I/II loading, the selection of proper ΔKeq model has significant impact on fatigue life prediction. In the present investigation, the performance of ΔKeq models in fatigue life prediction is compared with respect to the experimental findings as there are no guidelines/suggestions available on the selection of these models for accurate and/or conservative predictions of fatigue life. Within the limitations of availability of experimental data and currently available numerical simulation techniques, the results of present study attempt to outline models that would provide accurate and conservative life predictions. Such a study aid the numerical analysts or engineers in the proper selection of the model for numerical simulation of the fatigue life. Moreover, the present investigation also suggests a procedure to enhance the accuracy of life prediction using Paris law.

  18. Evaluation of a threshold-based model of fatigue in gamma titanium aluminide following impact damage

    NASA Astrophysics Data System (ADS)

    Harding, Trevor Scott

    2000-10-01

    Recent interest in gamma titanium aluminide (gamma-TiAl) for use in gas turbine engine applications has centered on the low density and good elevated temperature strength retention of gamma-TiAl compared to current materials. However, the relatively low ductility and fracture toughness of gamma-TiAl leads to serious concerns regarding its ability to resist impact damage. Furthermore, the limited fatigue crack growth resistance of gamma-TiAl means that the potential for fatigue failures resulting from impact damage is real if a damage tolerant design approach is used. A threshold-based design approach may be required if fatigue crack growth from potential impact sites is to be avoided. The objective of the present research is to examine the feasibility of a threshold-based approach for the design of a gamma-TiAl low-pressure turbine blade subjected to both assembly-related impact damage and foreign object damage. Specimens of three different gamma-TiAl alloys were damaged in such a way as to simulate anticipated impact damage for a turbine blade. Step-loading fatigue tests were conducted at both room temperature and 600°C. In terms of the assembly-related impact damage, the results indicate that there is reasonably good agreement between the threshold-based predictions of the fatigue strength of damaged specimens and the measured data. However, some discrepancies do exist. In the case of very lightly damaged specimens, prediction of the resulting fatigue strength requires that a very conservative small-crack fatigue threshold be used. Consequently, the allowable design conditions are significantly reduced. For severely damaged specimens, an analytical approach found that the potential effects of residual stresses may be related to the discrepancies observed between the threshold-based model and measured fatigue strength data. In the case of foreign object damage, a good correlation was observed between impacts resulting in large cracks and a long-crack threshold

  19. Numerical model validation using experimental data: Application of the area metric on a Francis runner

    NASA Astrophysics Data System (ADS)

    Chatenet, Q.; Tahan, A.; Gagnon, M.; Chamberland-Lauzon, J.

    2016-11-01

    Nowadays, engineers are able to solve complex equations thanks to the increase of computing capacity. Thus, finite elements software is widely used, especially in the field of mechanics to predict part behavior such as strain, stress and natural frequency. However, it can be difficult to determine how a model might be right or wrong, or whether a model is better than another one. Nevertheless, during the design phase, it is very important to estimate how the hydroelectric turbine blades will behave according to the stress to which it is subjected. Indeed, the static and dynamic stress levels will influence the blade's fatigue resistance and thus its lifetime, which is a significant feature. In the industry, engineers generally use either graphic representation, hypothesis tests such as the Student test, or linear regressions in order to compare experimental to estimated data from the numerical model. Due to the variability in personal interpretation (reproducibility), graphical validation is not considered objective. For an objective assessment, it is essential to use a robust validation metric to measure the conformity of predictions against data. We propose to use the area metric in the case of a turbine blade that meets the key points of the ASME Standards and produces a quantitative measure of agreement between simulations and empirical data. This validation metric excludes any belief and criterion of accepting a model which increases robustness. The present work is aimed at applying a validation method, according to ASME V&V 10 recommendations. Firstly, the area metric is applied on the case of a real Francis runner whose geometry and boundaries conditions are complex. Secondly, the area metric will be compared to classical regression methods to evaluate the performance of the method. Finally, we will discuss the use of the area metric as a tool to correct simulations.

  20. Real-time EEG-based detection of fatigue driving danger for accident prediction.

    PubMed

    Wang, Hong; Zhang, Chi; Shi, Tianwei; Wang, Fuwang; Ma, Shujun

    2015-03-01

    This paper proposes a real-time electroencephalogram (EEG)-based detection method of the potential danger during fatigue driving. To determine driver fatigue in real time, wavelet entropy with a sliding window and pulse coupled neural network (PCNN) were used to process the EEG signals in the visual area (the main information input route). To detect the fatigue danger, the neural mechanism of driver fatigue was analyzed. The functional brain networks were employed to track the fatigue impact on processing capacity of brain. The results show the overall functional connectivity of the subjects is weakened after long time driving tasks. The regularity is summarized as the fatigue convergence phenomenon. Based on the fatigue convergence phenomenon, we combined both the input and global synchronizations of brain together to calculate the residual amount of the information processing capacity of brain to obtain the dangerous points in real time. Finally, the danger detection system of the driver fatigue based on the neural mechanism was validated using accident EEG. The time distributions of the output danger points of the system have a good agreement with those of the real accident points.

  1. Central fatigue in multiple sclerosis: a review of the literature

    PubMed Central

    Newland, Pamela; Starkweather, Angela; Sorenson, Matthew

    2016-01-01

    Concept Fatigue is a major concern for patients with multiple sclerosis (MS). A clear definition of MS-related fatigue is a prerequisite for appropriate instruments for fatigue assessment. In turn, accurate assessment of fatigue in MS will enhance exploration of plausible mechanisms underlying this common and distressing symptom. Content/Objectives To provide an integrative review of the current literature on theoretical models used to study fatigue in MS, instruments used to assess fatigue and other factors that impact fatigue during the various phases of MS. Methods Data sources: PUBMED, OVID, Ovid Health Star, Ovid MEDINE, CINAHL, Health and Psychosocial Instruments (HaPI), and PsycINFO. Seventeen articles fit the inclusion criteria and were included in the review. Results Definitions of MS-related fatigue are reviewed. Several studies found a link with neurotransmitter dysfunction, circadian rhythm, and the timing of fatigue. Central fatigue in MS is associated with neurotransmitters disruptions as well as circadian rhythm disorders, but the evidence is not strong. Perceptions of fatigue or fatigability may arise as either a primary or secondary manifestation of disease. Based on findings from the literature review, a theoretical model of fatigue in MS is proposed. Conclusion Future research on MS-related fatigue may consider a longitudinal design with a carefully selected self-report instrument to advance understanding of the underlying pathological mechanisms. PMID:27146427

  2. Bithermal fatigue: A simplified alternative to thermomechanical fatigue

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.

    1988-01-01

    A bithermal fatigue test technique was proposed as a simplified alternative to the thermomechanical fatigue test. Both the thermomechanical cycle and the bithermal technique can be used to study nonisothermal fatigue behavior. The difference between the two cycles is that in a conventional thermomechanical fatigue cycle the temperature is continuously varied concurrently with the applied mechanical strains, but in the bithermal fatigue cycle the specimen is held at zero load during the temperature excursions and all the loads are applied at the two extreme temperatures of the cycle. Experimentally, the bithermal fatigue test technique offers advantages such as ease in synchronizing the temperature and mechanical strain waveforms, in minimizing temperature gradients in the specimen gauge length, and in reducing and interpreting thermal fatigue such as the influence of alternate high and low temperatures on the cyclic stress-strain response characteristics, the effects of thermal state, and the possibility of introducing high- and low-temperature deformation mechanisms within the same cycle. The bithermal technique was used to study nonisothermal fatigue behavior of alloys such as single-crystal PWA 1480, single-crystal Rene N4, cast B1900+Hf, and wrought Haynes 188.

  3. Validation of Groundwater Models: Meaningful or Meaningless?

    NASA Astrophysics Data System (ADS)

    Konikow, L. F.

    2003-12-01

    Although numerical simulation models are valuable tools for analyzing groundwater systems, their predictive accuracy is limited. People who apply groundwater flow or solute-transport models, as well as those who make decisions based on model results, naturally want assurance that a model is "valid." To many people, model validation implies some authentication of the truth or accuracy of the model. History matching is often presented as the basis for model validation. Although such model calibration is a necessary modeling step, it is simply insufficient for model validation. Because of parameter uncertainty and solution non-uniqueness, declarations of validation (or verification) of a model are not meaningful. Post-audits represent a useful means to assess the predictive accuracy of a site-specific model, but they require the existence of long-term monitoring data. Model testing may yield invalidation, but that is an opportunity to learn and to improve the conceptual and numerical models. Examples of post-audits and of the application of a solute-transport model to a radioactive waste disposal site illustrate deficiencies in model calibration, prediction, and validation.

  4. Low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)

    1988-01-01

    The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.

  5. Fatigue and durability of Nitinol stents.

    PubMed

    Pelton, A R; Schroeder, V; Mitchell, M R; Gong, Xiao-Yan; Barney, M; Robertson, S W

    2008-04-01

    Nitinol self-expanding stents are effective in treating peripheral artery disease, including the superficial femoral, carotid, and renal arteries. However, fracture occurrences of up to 50% have been reported in some stents after one year. These stent fractures are likely due to in vivo cyclic displacements. As such, the cyclic fatigue and durability properties of Nitinol-based endovascular stents are discussed in terms of an engineering-based experimental testing program. In this paper, the combined effects of cardiac pulsatile fatigue and stent-vessel oversizing are evaluated for application to both stents and stent subcomponents. In particular, displacement-controlled fatigue tests were performed on stent-like specimens processed from Nitinol microtubing. Fatigue data were collected with combinations of simulated oversizing conditions and pulsatile cycles that were identified by computer modeling of the stent that mimic in vivo deformation conditions. These data are analyzed with non-linear finite element computations and are illustrated with strain-life and strain-based constant-life diagrams. The utility of this approach is demonstrated in conjunction with 10 million cycle pulsatile fatigue tests of Cordis SMART Control((R)) Nitinol self-expanding stents to calculate fatigue safety factors and thereby predict in vivo fatigue resistance. These results demonstrate the non-linear constant fatigue-life response of Nitinol stents, whereby, contrary to conventional engineering materials, the fatigue life of Nitinol is observed to increase with increasing mean strain.

  6. Cognitive and affective mechanisms of pain and fatigue in multiple sclerosis.

    PubMed

    Arewasikporn, Anne; Turner, Aaron P; Alschuler, Kevin N; Hughes, Abbey J; Ehde, Dawn M

    2018-06-01

    To examine the extent to which pain catastrophizing, fatigue catastrophizing, positive affect, and negative affect simultaneously mediated the associations between common symptoms of multiple sclerosis (MS; i.e., pain, fatigue) and impact on daily life, depressive symptoms, and resilience. Participants were community-dwelling adults with MS (N = 163) reporting chronic pain, fatigue, and/or moderate depressive symptoms. Multiple mediation path analysis was used to model potential mediators of pain and fatigue separately, using baseline data from a randomized controlled trial comparing two symptom self-management interventions. In the pain model, pain catastrophizing was a mediator of pain intensity with pain interference and depression. Negative affect was a mediator of pain intensity with depression and resilience. In the fatigue model, fatigue catastrophizing was a mediator of fatigue intensity with fatigue impact and depression. Positive affect was a mediator of fatigue intensity with depression and resilience. These findings provide preliminary support for the presence of differential effects of cognitive-affective mediators and suggest potential targets for psychological interventions based on an individual's clinical presentation. The differential mediating effects also support the inclusion of both positive and negative aspects of psychological health in models of pain and fatigue, which would not be otherwise apparent if negative constructs were examined in isolation. To our knowledge, this is the first study to utilize a multivariate path analysis approach to examine cognitive-affective mediators of pain and fatigue in MS, while also examining positive and negative constructs concurrently. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Fatigue lifetime prediction of a reduced-diameter dental implant system: Numerical and experimental study.

    PubMed

    Duan, Yuanyuan; Gonzalez, Jorge A; Kulkarni, Pratim A; Nagy, William W; Griggs, Jason A

    2018-06-16

    To validate the fatigue lifetime of a reduced-diameter dental implant system predicted by three-dimensional finite element analysis (FEA) by testing physical implant specimens using an accelerated lifetime testing (ALT) strategy with the apparatus specified by ISO 14801. A commercially-available reduced-diameter titanium dental implant system (Straumann Standard Plus NN) was digitized using a micro-CT scanner. Axial slices were processed using an interactive medical image processing software (Mimics) to create 3D models. FEA analysis was performed in ABAQUS, and fatigue lifetime was predicted using fe-safe ® software. The same implant specimens (n=15) were tested at a frequency of 2Hz on load frames using apparatus specified by ISO 14801 and ALT. Multiple step-stress load profiles with various aggressiveness were used to improve testing efficiency. Fatigue lifetime statistics of physical specimens were estimated in a reliability analysis software (ALTA PRO). Fractured specimens were examined using SEM with fractographic technique to determine the failure mode. FEA predicted lifetime was within the 95% confidence interval of lifetime estimated by experimental results, which suggested that FEA prediction was accurate for this implant system. The highest probability of failure was located at the root of the implant body screw thread adjacent to the simulated bone level, which also agreed with the failure origin in physical specimens. Fatigue lifetime predictions based on finite element modeling could yield similar results in lieu of physical testing, allowing the use of virtual testing in the early stages of future research projects on implant fatigue. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  8. Patient-reported outcome measures for systemic lupus erythematosus clinical trials: a review of content validity, face validity and psychometric performance

    PubMed Central

    2014-01-01

    Background Despite overall progress in treatment of autoimmune diseases, patients with systemic lupus erythematosus (SLE) experience many inflammatory symptoms representing an unmet medical need. This study aimed to create a conceptual model of the humanistic and economic burden of SLE, and review the patient-reported outcomes (PROs) used to measure such concepts in SLE clinical trials. Methods A conceptual model for SLE was developed from structured review of published articles from 2007 to August 2013 identified from literature databases (MEDLINE, EMBASE, PsycINFO, EconLit) plus other sources (PROLabels, FDA/EMA websites, Clinicaltrials.gov). PROs targeting key symptoms/impacts were identified from the literature. They were reviewed in the context of available guidance and assessed for face and content validity and psychometric properties to determine appropriateness for use in SLE trials. Results The conceptual model identified fatigue, pain, cognition, daily activities, emotional well-being, physical/social functioning and work productivity as key SLE concepts. Of the 68 articles reviewed, 38 reported PRO data. From these and the other sources, 15 PROs were selected for review, including SLE-specific health-related quality of life (HRQoL) measures (n = 5), work productivity (n = 1), and generic measures of fatigue (n = 3), pain (n = 2), depression (n = 2) and HRQoL (n = 2). The Functional Assessment of Chronic Illness Therapy - Fatigue Scale (FACIT-Fatigue), Brief Pain Inventory (BPI-SF) and LupusQoL demonstrated the strongest face validity, conceptual coverage and psychometric properties measuring key concepts in the conceptual model. All PROs reviewed, except for three Lupus-specific measures, lacked qualitative SLE patient involvement during development. The Hospital Anxiety and Depression Scale (HADS), Short Form [36 item] Health Survey version 2 (SF-36v2), EuroQoL 5-dimensions (EQ-5D-3L and EQ-5D-5L) and Work Productivity and

  9. Patient-reported outcome measures for systemic lupus erythematosus clinical trials: a review of content validity, face validity and psychometric performance.

    PubMed

    Holloway, Laura; Humphrey, Louise; Heron, Louise; Pilling, Claire; Kitchen, Helen; Højbjerre, Lise; Strandberg-Larsen, Martin; Hansen, Brian Bekker

    2014-07-22

    Despite overall progress in treatment of autoimmune diseases, patients with systemic lupus erythematosus (SLE) experience many inflammatory symptoms representing an unmet medical need. This study aimed to create a conceptual model of the humanistic and economic burden of SLE, and review the patient-reported outcomes (PROs) used to measure such concepts in SLE clinical trials. A conceptual model for SLE was developed from structured review of published articles from 2007 to August 2013 identified from literature databases (MEDLINE, EMBASE, PsycINFO, EconLit) plus other sources (PROLabels, FDA/EMA websites, Clinicaltrials.gov). PROs targeting key symptoms/impacts were identified from the literature. They were reviewed in the context of available guidance and assessed for face and content validity and psychometric properties to determine appropriateness for use in SLE trials. The conceptual model identified fatigue, pain, cognition, daily activities, emotional well-being, physical/social functioning and work productivity as key SLE concepts. Of the 68 articles reviewed, 38 reported PRO data. From these and the other sources, 15 PROs were selected for review, including SLE-specific health-related quality of life (HRQoL) measures (n = 5), work productivity (n = 1), and generic measures of fatigue (n = 3), pain (n = 2), depression (n = 2) and HRQoL (n = 2). The Functional Assessment of Chronic Illness Therapy - Fatigue Scale (FACIT-Fatigue), Brief Pain Inventory (BPI-SF) and LupusQoL demonstrated the strongest face validity, conceptual coverage and psychometric properties measuring key concepts in the conceptual model. All PROs reviewed, except for three Lupus-specific measures, lacked qualitative SLE patient involvement during development. The Hospital Anxiety and Depression Scale (HADS), Short Form [36 item] Health Survey version 2 (SF-36v2), EuroQoL 5-dimensions (EQ-5D-3L and EQ-5D-5L) and Work Productivity and Activity Impairment Questionnaire: Lupus (WPAI

  10. Probabilistic analysis for fatigue strength degradation of materials

    NASA Technical Reports Server (NTRS)

    Royce, Lola

    1989-01-01

    This report presents the results of the first year of a research program conducted for NASA-LeRC by the University of Texas at San Antonio. The research included development of methodology that provides a probabilistic treatment of lifetime prediction of structural components of aerospace propulsion systems subjected to fatigue. Material strength degradation models, based on primitive variables, include both a fatigue strength reduction model and a fatigue crack growth model. Linear elastic fracture mechanics is utilized in the latter model. Probabilistic analysis is based on simulation, and both maximum entropy and maximum penalized likelihood methods are used for the generation of probability density functions. The resulting constitutive relationships are included in several computer programs, RANDOM2, RANDOM3, and RANDOM4. These programs determine the random lifetime of an engine component, in mechanical load cycles, to reach a critical fatigue strength or crack size. The material considered was a cast nickel base superalloy, one typical of those used in the Space Shuttle Main Engine.

  11. Environmental fatigue in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.

    1992-01-01

    Aluminum-lithium alloys exhibit similar environmental fatigue crack growth characteristics compared to conventional 2000 series alloys and are more resistant to environmental fatigue compared to 7000 series alloys. The superior fatigue crack growth behavior of Al-Li alloys 2090, 2091, 8090, and 8091 is due to crack closure caused by tortuous crack path morphology and crack surface corrosion products. At high R and reduced closure, chemical environment effects are pronounced resulting in accelerated near threshold da/dN. The beneficial effects of crack closure are minimized for small cracks resulting in rapid growth rates. Limited data suggest that the 'chemically small crack' effect, observed in other alloy system, is not pronounced in Al-Li alloys. Modeling of environmental fatigue in Al-Li-Cu alloys related accelerated fatigue crack growth in moist air and salt water to hydrogen embrittlement.

  12. Non-linear dynamics in muscle fatigue and strength model during maximal self-perceived elbow extensors training.

    PubMed

    Gacesa, Jelena Popadic; Ivancevic, Tijana; Ivancevic, Nik; Paljic, Feodora Popic; Grujic, Nikola

    2010-08-26

    Our aim was to determine the dynamics in muscle strength increase and fatigue development during repetitive maximal contraction in specific maximal self-perceived elbow extensors training program. We will derive our functional model for m. triceps brachii in spirit of traditional Hill's two-component muscular model and after fitting our data, develop a prediction tool for this specific training system. Thirty-six healthy young men (21 +/- 1.0 y, BMI 25.4 +/- 7.2 kg/m(2)), who did not take part in any formal resistance exercise regime, volunteered for this study. The training protocol was performed on the isoacceleration dynamometer, lasted for 12 weeks, with a frequency of five sessions per week. Each training session included five sets of 10 maximal contractions (elbow extensions) with a 1 min resting period between each set. The non-linear dynamic system model was used for fitting our data in conjunction with the Levenberg-Marquardt regression algorithm. As a proper dynamical system, our functional model of m. triceps brachii can be used for prediction and control. The model can be used for the predictions of muscular fatigue in a single series, the cumulative daily muscular fatigue and the muscular growth throughout the training process. In conclusion, the application of non-linear dynamics in this particular training model allows us to mathematically explain some functional changes in the skeletal muscle as a result of its adaptation to programmed physical activity-training. 2010 Elsevier Ltd. All rights reserved.

  13. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    NASA Astrophysics Data System (ADS)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  14. Environmental fatigue of an Al-Li-Cu alloy. Part 3: Modeling of crack tip hydrogen damage

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Environmental fatigue crack propagation rates and microscopic damage modes in Al-Li-Cu alloy 2090 (Parts 1 and 2) are described by a crack tip process zone model based on hydrogen embrittlement. Da/dN sub ENV equates to discontinuous crack advance over a distance, delta a, determined by dislocation transport of dissolved hydrogen at plastic strains above a critical value; and to the number of load cycles, delta N, required to hydrogenate process zone trap sites that fracture according to a local hydrogen concentration-tensile stress criterion. Transgranular (100) cracking occurs for process zones smaller than the subgrain size, and due to lattice decohesion or hydride formation. Intersubgranular cracking dominates when the process zone encompasses one or more subgrains so that dislocation transport provides hydrogen to strong boundary trapping sites. Multi-sloped log da/dN-log delta K behavior is produced by process zone plastic strain-hydrogen-microstructure interactions, and is determined by the DK dependent rates and proportions of each parallel cracking mode. Absolute values of the exponents and the preexponential coefficients are not predictable; however, fractographic measurements theta sub i coupled with fatigue crack propagation data for alloy 2090 established that the process zone model correctly describes fatigue crack propagation kinetics. Crack surface films hinder hydrogen uptake and reduce da/dN and alter the proportions of each fatigue crack propagation mode.

  15. Multidimensional Predictors of Fatigue among Octogenarians and Centenarians

    PubMed Central

    Cho, Jinmyoung; Martin, Peter; Margrett, Jennifer; MacDonald, Maurice; Johnson, Mary Ann; Poon, Leonard W.

    2012-01-01

    Background Fatigue is a common and frequently observed complaint among older adults. However, knowledge about the nature and correlates of fatigue in old age is very limited. Objective: This study examined the relationship of functional indicators, psychological and situational factors and fatigue for 210 octogenarians and centenarians from the Georgia Centenarian Study. Methods Three indicators of functional capacity (self-rated health, instrumental activities of daily living, physical activities of daily living), two indicators of psychological well-being (positive and negative affect), two indicators of situational factors (social network and social support), and a multidimensional fatigue scale were used. Blocked multiple regression analyses were computed to examine significant factors related to fatigue. In addition, multi-group analysis in structural equation modeling was used to investigate residential differences (i.e., long-term care facilities vs. private homes) in the relationship between significant factors and fatigue. Results Blocked multiple regression analyses indicated that two indicators of functional capacity, self-rated health and instrumental activities of daily living, both positive and negative affect, and social support were significant predictors of fatigue among oldest-old adults. The multiple group analysis in structural equation modeling revealed a significant difference among oldest-old adults based on residential status. Conclusion The results suggest that we should not consider fatigue as merely an unpleasant physical symptom, but rather adopt a perspective that different factors such as psychosocial aspects can influence fatigue in advanced later life. PMID:22094445

  16. Multidimensional predictors of fatigue among octogenarians and centenarians.

    PubMed

    Cho, Jinmyoung; Martin, Peter; Margrett, Jennifer; MacDonald, Maurice; Johnson, Mary Ann; Poon, Leonard W; Jazwinski, S M; Green, R C; Gearing, M; Woodard, J L; Tenover, J S; Siegler, I C; Rott, C; Rodgers, W L; Hausman, D; Arnold, J; Davey, A

    2012-01-01

    Fatigue is a common and frequently observed complaint among older adults. However, knowledge about the nature and correlates of fatigue in old age is very limited. This study examined the relationship of functional indicators, psychological and situational factors and fatigue for 210 octogenarians and centenarians from the Georgia Centenarian Study. Three indicators of functional capacity (self-rated health, instrumental activities of daily living, physical activities of daily living), two indicators of psychological well-being (positive and negative affect), two indicators of situational factors (social network and social support), and a multidimensional fatigue scale were used. Blocked multiple regression analyses were computed to examine significant factors related to fatigue. In addition, multi-group analysis in structural equation modeling was used to investigate residential differences (i.e., long-term care facilities vs. private homes) in the relationship between significant factors and fatigue. Blocked multiple regression analyses indicated that two indicators of functional capacity, self-rated health and instrumental activities of daily living, both positive and negative affect, and social support were significant predictors of fatigue among oldest-old adults. The multiple group analysis in structural equation modeling revealed a significant difference among oldest-old adults based on residential status. The results suggest that we should not consider fatigue as merely an unpleasant physical symptom, but rather adopt a perspective that different factors such as psychosocial aspects can influence fatigue in advanced later life. Copyright © 2011 S. Karger AG, Basel.

  17. Peripheral and Central Mechanisms of Fatigue in Inflammatory and Non-Inflammatory Rheumatic Diseases

    PubMed Central

    Staud, Roland

    2013-01-01

    Fatigue is a common symptom in a large number of medical and psychological disorders including many rheumatologic illnesses. A frequent question for health care providers is related to whether reported fatigue is “in the mind” or “in the body” i.e. central or peripheral. If fatigue occurs at rest without any exertion this suggests psychological or central origins. If patients relate their fatigue mostly to physical activities including exercise then their symptoms can be considered peripheral. However, most fatiguing syndromes seem to depend on both peripheral and central mechanisms. Sometimes muscle biopsy with histochemistry may be necessary for the appropriate tissue diagnosis whereas serological tests generally provide little reliable information about the origin of muscle fatigue. Muscle function and peripheral fatigue can be quantified by contractile force and action potential measurements whereas validated questionnaires are frequently used for assessment of mental fatigue. Fatigue is a hallmark of many rheumatologic conditions including fibromyalgia, myalgic encephalitis/chronic fatigue syndrome, rheumatoid arthritis, systemic lupus, Sjogren’s syndrome and ankylosing spondylitis. Whereas many studies have focused on disease activity as a correlate to these patients’ fatigue it has become apparent that other factors including negative affect and pain are some of the most powerful predictors for fatigue. Conversely sleep problems, including insomnia seem to be less important for fatigue. There are several effective treatment strategies available for fatigued patients with rheumatologic disorders including pharmacological and non-pharmacological therapies PMID:22802155

  18. Fatigue impact on Mod-1 wind turbine design

    NASA Technical Reports Server (NTRS)

    Stahle, C. V., Jr.

    1978-01-01

    Fatigue is a key consideration in the design of a long-life Wind Turbine Generator (WTG) system. This paper discusses the fatigue aspects of the large Mod-1 horizontal-axis WTG design starting with the characterization of the environment and proceeding through the design. Major sources of fatigue loading are discussed and methods of limiting fatigue loading are described. NASTRAN finite element models are used to determine dynamic loading and internal cyclic stresses. Recent developments in determining the allowable fatigue stress consistent with present construction codes are discussed relative to their application to WTG structural design.

  19. Fatigue Behavior of a Third Generation PM Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gayda, John; Gabb, Timothy P.

    2008-01-01

    The fatigue behavior of a 3rd generation PM disk alloy, LSHR, was studied at 1300 F. Tensile, creep, and fatigue tests were run on smooth and notched (Kt = 2) bars under a variety of conditions. Analysis of smooth bar fatigue data, run under strain and load control with R ratios of 0 and -1, showed that a stress based Smith-Watson-Topper approach could collapse the data set. While the tensile and creep data showed substantial notch strengthening at 1300 F, the fatigue data showed a life deficit for the notch specimens. A viscoplastic finite element model, which accounted for stress relaxation at the notch tip, provided the best correlation between the notched and smooth bar behavior, although the fatigue data was not fully rationalized based on this simplified viscoplastic model of the stresses at the notch tip.Inclusion of a 90 sec dwell at peak load was found to dramatically decrease notch fatigue life. This result was shown to be consistent with a simple linear creep-fatigue damage rule, where creep damage dominated at low stresses and fatigue damage was more prevalent at higher stresses.

  20. A Micromechanics-Based Method for Multiscale Fatigue Prediction

    NASA Astrophysics Data System (ADS)

    Moore, John Allan

    An estimated 80% of all structural failures are due to mechanical fatigue, often resulting in catastrophic, dangerous and costly failure events. However, an accurate model to predict fatigue remains an elusive goal. One of the major challenges is that fatigue is intrinsically a multiscale process, which is dependent on a structure's geometric design as well as its material's microscale morphology. The following work begins with a microscale study of fatigue nucleation around non- metallic inclusions. Based on this analysis, a novel multiscale method for fatigue predictions is developed. This method simulates macroscale geometries explicitly while concurrently calculating the simplified response of microscale inclusions. Thus, providing adequate detail on multiple scales for accurate fatigue life predictions. The methods herein provide insight into the multiscale nature of fatigue, while also developing a tool to aid in geometric design and material optimization for fatigue critical devices such as biomedical stents and artificial heart valves.

  1. Testing and validating environmental models

    USGS Publications Warehouse

    Kirchner, J.W.; Hooper, R.P.; Kendall, C.; Neal, C.; Leavesley, G.

    1996-01-01

    Generally accepted standards for testing and validating ecosystem models would benefit both modellers and model users. Universally applicable test procedures are difficult to prescribe, given the diversity of modelling approaches and the many uses for models. However, the generally accepted scientific principles of documentation and disclosure provide a useful framework for devising general standards for model evaluation. Adequately documenting model tests requires explicit performance criteria, and explicit benchmarks against which model performance is compared. A model's validity, reliability, and accuracy can be most meaningfully judged by explicit comparison against the available alternatives. In contrast, current practice is often characterized by vague, subjective claims that model predictions show 'acceptable' agreement with data; such claims provide little basis for choosing among alternative models. Strict model tests (those that invalid models are unlikely to pass) are the only ones capable of convincing rational skeptics that a model is probably valid. However, 'false positive' rates as low as 10% can substantially erode the power of validation tests, making them insufficiently strict to convince rational skeptics. Validation tests are often undermined by excessive parameter calibration and overuse of ad hoc model features. Tests are often also divorced from the conditions under which a model will be used, particularly when it is designed to forecast beyond the range of historical experience. In such situations, data from laboratory and field manipulation experiments can provide particularly effective tests, because one can create experimental conditions quite different from historical data, and because experimental data can provide a more precisely defined 'target' for the model to hit. We present a simple demonstration showing that the two most common methods for comparing model predictions to environmental time series (plotting model time series

  2. Inflammatory biomarkers for persistent fatigue in breast cancer survivors.

    PubMed

    Collado-Hidalgo, Alicia; Bower, Julienne E; Ganz, Patricia A; Cole, Steve W; Irwin, Michael R

    2006-05-01

    This study seeks to define immunologic and inflammatory variables associated with persistent post-treatment fatigue in breast cancer survivors. Leukocyte subsets, plasma inflammatory markers, and ex vivo proinflammatory cytokine production were assessed in 50 fatigued and nonfatigued breast cancer survivors recruited > or = 2 years after successful primary therapy. Multivariate statistical analyses were used to define a composite immunologic biomarker of fatigue risk. Fatigued breast cancer survivors were distinguished from nonfatigued survivors by increased ex vivo monocyte production of interleukin (IL)-6 and tumor necrosis factor-alpha following lipopolysaccharide stimulation, elevated plasma IL-1ra and soluble IL-6 receptor (sIL-6R/CD126), decreased monocyte cell-surface IL-6R, and decreased frequencies of activated T lymphocytes and myeloid dendritic cells in peripheral blood (all P < 0.05). An inverse correlation between sIL-6R and cell-surface IL-6R was consistent with inflammation-mediated shedding of IL-6R, and in vitro studies confirmed that proinflammatory cytokines induced such shedding. Multivariate linear discriminant function analysis identified two immunologic markers, the ratio of sIL-6R to monocyte-associated IL-6R and decreased circulating CD69+ T lymphocytes, as highly diagnostic of fatigue (P = 0.0005), with cross-validation estimates indicating 87% classification accuracy (sensitivity = 0.83; specificity = 0.83). These results extend links between fatigue and inflammatory markers to show a functional alteration in proinflammatory cytokine response to lipopolysaccharide and define a prognostic biomarker of behavioral fatigue.

  3. High rates of fatigue and sleep disturbances in dystonia.

    PubMed

    Wagle Shukla, A; Brown, R; Heese, K; Jones, J; Rodriguez, R L; Malaty, I M; Okun, M S; Kluger, B M

    2016-10-01

    Nonmotor symptoms in dystonia are increasingly recognized to impair the quality of life. The primary objective of this study was to determine the prevalence of fatigue and sleep disturbances in dystonia and to ascertain their impact on quality of life using standardized questionnaires. Dystonia patients presenting to a Botulinum toxin clinic were prospectively administered Fatigue Severity Scale (FSS), Multidimensional Fatigue Inventory (MFI), Epworth Sleepiness Scale (ESS) and Parkinson's Disease Sleep Scale (PDSS) for assessment of fatigue and sleep disturbances. Health-related Quality of life (HRQOL) was determined using MOS SF-36 scale and depressive symptoms were assessed using the Beck Depression Inventory II. Ninety-one patients with dystonia participated (66 women, 25 men, mean age 60 ± 17 years). Nine subjects had generalized dystonia, 18 segmental dystonia and 64 had focal dystonia. Moderate to severe fatigue was present in 43% of the cohort (FSS), excessive daytime somnolence in 27% (ESS) and other sleep disturbances in 26% (PDSS). FSS and MFI scores correlated significantly with HRQOL even when controlled for depression and sleep disturbances. Excessive daytime somnolence and nocturnal sleep disturbances correlated significantly with the HRQOL; however, these effects were not seen for daytime somnolence when controlled for depression. Psychometric testing found adequate reliabilities and convergent validities for both fatigue and sleep scales. Fatigue and sleep disturbances revealed high prevalence rates in this large, first of its dystonia study. They negatively impacted the quality of life even when controlled for comorbid depression.

  4. Predictors of cognitive and physical fatigue in post-acute mild-moderate traumatic brain injury.

    PubMed

    Schiehser, Dawn M; Delano-Wood, Lisa; Jak, Amy J; Hanson, Karen L; Sorg, Scott F; Orff, Henry; Clark, Alexandra L

    2017-10-01

    Post-traumatic fatigue (PTF) is a common, disabling, and often chronic symptom following traumatic brain injury (TBI). Yet, the impact of chronic cognitive and physical fatigue and their associations with psychiatric, sleep, cognitive, and psychosocial sequelae in mild-moderate TBI remain poorly understood. Sixty Veterans with a history of mild-moderate TBI and 40 Veteran controls (VC) were administered the Modified Fatigue Impact Scale, a validated measure of TBI-related cognitive and physical fatigue as well as measures of neuropsychiatric, psychosocial, sleep, and objective cognitive functioning. Compared to VC, TBI Veterans endorsed significantly greater levels of cognitive and physical fatigue. In TBI, psychiatric symptoms, sleep disturbance, and post-traumatic amnesia (PTA) were associated with both cognitive and physical fatigue, while loss of consciousness (LOC) and poor attention/processing speed were related to elevations in cognitive fatigue only. In regression analyses, anxiety, sleep disturbance, and LOC significantly predicted cognitive fatigue, while only post-traumatic stress symptoms and PTA contributed to physical fatigue. Cognitive and physical fatigue are problematic symptoms following mild-moderate TBI that are differentially associated with specific injury and psychiatric sequelae. Findings provide potential symptom targets for interventions aimed at ameliorating fatigue, and further underscore the importance of assessing and treating fatigue as a multi-dimensional symptom following TBI.

  5. A Probabilistic Approach to Predict Thermal Fatigue Life for Ball Grid Array Solder Joints

    NASA Astrophysics Data System (ADS)

    Wei, Helin; Wang, Kuisheng

    2011-11-01

    Numerous studies of the reliability of solder joints have been performed. Most life prediction models are limited to a deterministic approach. However, manufacturing induces uncertainty in the geometry parameters of solder joints, and the environmental temperature varies widely due to end-user diversity, creating uncertainties in the reliability of solder joints. In this study, a methodology for accounting for variation in the lifetime prediction for lead-free solder joints of ball grid array packages (PBGA) is demonstrated. The key aspects of the solder joint parameters and the cyclic temperature range related to reliability are involved. Probabilistic solutions of the inelastic strain range and thermal fatigue life based on the Engelmaier model are developed to determine the probability of solder joint failure. The results indicate that the standard deviation increases significantly when more random variations are involved. Using the probabilistic method, the influence of each variable on the thermal fatigue life is quantified. This information can be used to optimize product design and process validation acceptance criteria. The probabilistic approach creates the opportunity to identify the root causes of failed samples from product fatigue tests and field returns. The method can be applied to better understand how variation affects parameters of interest in an electronic package design with area array interconnections.

  6. A Fatigue Life Prediction Method Based on Strain Intensity Factor

    PubMed Central

    Zhang, Wei; Liu, Huili; Wang, Qiang; He, Jingjing

    2017-01-01

    In this paper, a strain-intensity-factor-based method is proposed to calculate the fatigue crack growth under the fully reversed loading condition. A theoretical analysis is conducted in detail to demonstrate that the strain intensity factor is likely to be a better driving parameter correlated with the fatigue crack growth rate than the stress intensity factor (SIF), especially for some metallic materials (such as 316 austenitic stainless steel) in the low cycle fatigue region with negative stress ratios R (typically R = −1). For fully reversed cyclic loading, the constitutive relation between stress and strain should follow the cyclic stress-strain curve rather than the monotonic one (it is a nonlinear function even within the elastic region). Based on that, a transformation algorithm between the SIF and the strain intensity factor is developed, and the fatigue crack growth rate testing data of 316 austenitic stainless steel and AZ31 magnesium alloy are employed to validate the proposed model. It is clearly observed that the scatter band width of crack growth rate vs. strain intensity factor is narrower than that vs. the SIF for different load ranges (which indicates that the strain intensity factor is a better parameter than the stress intensity factor under the fully reversed load condition). It is also shown that the crack growth rate is not uniquely determined by the SIF range even under the same R, but is also influenced by the maximum loading. Additionally, the fatigue life data (strain-life curve) of smooth cylindrical specimens are also used for further comparison, where a modified Paris equation and the equivalent initial flaw size (EIFS) are involved. The results of the proposed method have a better agreement with the experimental data compared to the stress intensity factor based method. Overall, the strain intensity factor method shows a fairly good ability in calculating the fatigue crack propagation, especially for the fully reversed cyclic

  7. Modeling of thermo-mechanical fatigue and damage in shape memory alloy axial actuators

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert W.; Hartl, Darren J.; Chemisky, Yves; Lagoudas, Dimitris C.

    2015-04-01

    The aerospace, automotive, and energy industries have seen the potential benefits of using shape memory alloys (SMAs) as solid state actuators. Thus far, however, these actuators are generally limited to non-critical components or over-designed due to a lack of understanding regarding how SMAs undergo thermomechanical or actuation fatigue and the inability to accurately predict failure in an actuator during use. The purpose of this study was to characterize the actuation fatigue response of Nickel-Titanium-Hafnium (NiTiHf) axial actuators and, in turn, use this characterization to predict failure and monitor damage in dogbone actuators undergoing various thermomechanical loading paths. Calibration data was collected from constant load, full cycle tests ranging from 200-600MPa. Subsequently, actuator lifetimes were predicted for four additional loading paths. These loading paths consisted of linearly varying load with full transformation (300-500MPa) and step loads which transition from zero stress to 300-400MPa at various martensitic volume fractions. Thermal cycling was achieved via resistive heating and convective cooling and was controlled via a state machine developed in LabVIEW. A previously developed fatigue damage model, which is formulated such that the damage accumulation rate is general in terms of its dependence on current and local stress and actuation strain states, was utilized. This form allows the model to be utilized for specimens undergoing complex loading paths. Agreement between experiments and simulations is discussed.

  8. Differentiating maternal fatigue and depressive symptoms at six months and four years post partum: Considerations for assessment, diagnosis and intervention.

    PubMed

    Giallo, Rebecca; Gartland, Deirdre; Woolhouse, Hannah; Brown, Stephanie

    2015-02-01

    fatigue and depressive symptoms are common among women in the postpartum period, and it has been proposed that fatigue is a risk factor for later depression. To progress this research, there is a need to clarify the conceptual and measurement issue of whether these two sets of symptoms are distinct constructs. There is also a need to determine whether they are distinct constructs beyond the postnatal period. The aim of the study was to assess the construct and discriminant validity of fatigue and depressive symptoms as measured by the SF-36 Vitality subscale (SF-36) and the Edinburgh Postnatal Depression Scale (EPDS) at six months and at four years post partum. data from over 1000 women participating in the Maternal Health Study, a longitudinal study of women׳s physical and psychological health and recovery after childbirth were used. confirmatory factor analysis revealed a two-factor model of fatigue and depressive symptoms represented as distinct but related constructs was a better fit to the data than a one-factor model of fatigue and depression sharing the same underlying construct at both six months and four years post partum. this study provides empirical evidence that maternal fatigue and depression in the first year after having a baby and at four years post partum are best understood as separate psychological constructs or experiences. The findings have important implications for clinical practice, in particular underlining the importance of differentiating tiredness from depression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Fatigue in Advanced Cancer Patients: Congruence Between Patients and Their Informal Caregivers About Patients' Fatigue Severity During Cancer Treatment With Palliative Intent and Predictors of Agreement.

    PubMed

    Poort, Hanneke; Peters, Marlies E W J; Gielissen, Marieke F M; Verhagen, Constans A H H V M; Bleijenberg, Gijs; van der Graaf, Winette T A; Wearden, Alison J; Knoop, Hans

    2016-09-01

    Informal caregivers (ICs) are increasingly involved in the monitoring of symptoms during advanced cancer patients' treatment with palliative intent. A common but subjective symptom during this extended treatment phase is fatigue. This exploratory longitudinal study aimed to determine agreement between patients and ICs about patients' fatigue severity. In addition, predictors of agreement over time were studied. A sample of 107 patients with advanced cancer (life expectancy ≥ six months) and their ICs completed the subscale fatigue severity of the Checklist Individual Strength based on the patient's status at baseline and six months later. This eight-item subscale has a validated cutoff to determine the presence of clinically relevant levels of fatigue. ICs' own fatigue severity, strain, self-esteem, and relationship satisfaction were examined as predictors of agreement. A total of 107 dyads completed measures at baseline and 69 dyads six months later. At baseline, ICs' significantly overestimated patients' fatigue severity (P < 0.001) with a moderate amount of bias (Cohen's d = 0.48). In 81 of the 107 dyads (76%), there was congruence about the presence or absence of severe fatigue. On a group level, congruence did not significantly change over time. On a dyad level, there was a tendency to either remain congruent or reach congruence. Next to baseline congruence, ICs' fatigue severity and strain predicted ICs' fatigue ratings (R(2) = 0.22). Most ICs accurately predict presence or absence of clinically relevant levels of patients' fatigue. ICs' own fatigue severity and strain should be taken into account as they influence agreement. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  10. Real-Time Assessment of Fatigue in Patients With Multiple Sclerosis: How Does It Relate to Commonly Used Self-Report Fatigue Questionnaires?

    PubMed

    Heine, Martin; van den Akker, Lizanne Eva; Blikman, Lyan; Hoekstra, Trynke; van Munster, Erik; Verschuren, Olaf; Visser-Meily, Anne; Kwakkel, Gert

    2016-11-01

    (1) To assess real-time patterns of fatigue; (2) to assess the association between a real-time fatigue score and 3 commonly used questionnaires (Checklist Individual Strength [CIS] fatigue subscale, Modified Fatigue Impact Scale (MFIS), and Fatigue Severity Scale [FSS]); and (3) to establish factors that confound the association between the real-time fatigue score and the conventional fatigue questionnaires in patients with multiple sclerosis (MS). Cross-sectional study. MS-specialized outpatient facility. Ambulant patients with MS (N=165) experiencing severe self-reported fatigue. Not applicable. A real-time fatigue score was assessed by sending participants 4 text messages on a particular day (How fatigued do you feel at this moment?; score range, 0-10). Latent class growth mixed modeling was used to determine diurnal patterns of fatigue. Regression analyses were used to assess the association between the mean real-time fatigue score and the CIS fatigue subscale, MFIS, and FSS. Significant associations were tested for candidate confounders (eg, disease severity, work status, sleepiness). Four significantly different fatigue profiles were identified by the real-time fatigue score, namely a stable high (n=79), increasing (n=57), stable low (n=16), and decreasing (n=13). The conventional questionnaires correlated poorly (r<.300) with the real-time fatigue score. The Epworth Sleepiness Scale significantly reduced the regression coefficient between the real-time fatigue score and conventional questionnaires, ranging from 15.4% to 35%. Perceived fatigue showed 4 different diurnal patterns in patients with MS. Severity of sleepiness is an important confounder to take into account in the assessment of fatigue. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Computational inverse methods of heat source in fatigue damage problems

    NASA Astrophysics Data System (ADS)

    Chen, Aizhou; Li, Yuan; Yan, Bo

    2018-04-01

    Fatigue dissipation energy is the research focus in field of fatigue damage at present. It is a new idea to solve the problem of calculating fatigue dissipation energy by introducing inverse method of heat source into parameter identification of fatigue dissipation energy model. This paper introduces the research advances on computational inverse method of heat source and regularization technique to solve inverse problem, as well as the existing heat source solution method in fatigue process, prospects inverse method of heat source applying in fatigue damage field, lays the foundation for further improving the effectiveness of fatigue dissipation energy rapid prediction.

  12. Measuring Fatigue in Persons with Spinal Cord Injury

    PubMed Central

    Anton, Hubert A.; Miller, William C.; Townson, Andrea F.

    2013-01-01

    Objective To evaluate the psychometric properties of the Fatigue Severity Scale (FSS) in persons with spinal cord injury (SCI). Design A two week methodological study was conducted to assess the internal consistency, reliability and the construct validity of the FSS. Setting A tertiary spinal cord rehabilitation facility. Participants 48 community living individuals at least one year post SCI with ASIA A or B SCI and no medical conditions causing fatigue. Main Outcome Measures The ASIA Impairment Scale; the FSS; a Visual Analogue Scale for Fatigue (VAS-F), the SF-36 vitality scale, and the Centre for Epidemiological Studies Depression – Scale (CES-D) Results Our sample was predominantly male (n=31, 65%) with tetraplegia (n=26, 54%) and ASIA A injuries (n=30, 63%). The mean FSS score at baseline was 4.4 (SD=1.4) with 54% (N=26) scoring greater than 4. The internal consistency of the FSS was Cronbach’s alpha = 0.89. Two-week test-retest reliability was ICC=0.84 (95% CI 0.74 – 0.90). The magnitude of the relationship was as hypothesized for the VAS-F(r=.67) and CES-D (r=.58) and lower than hypothesized for the vitality subscore (r=−.48) of the SF-36. Conclusions The FSS has acceptable reliability with regard to internal consistency, test-retest reliability, and validity in persons with motor complete SCI. PMID:18295634

  13. Statistical summaries of fatigue data for design purposes

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.

    1983-01-01

    Two methods are discussed for constructing a design curve on the safe side of fatigue data. Both the tolerance interval and equivalent prediction interval (EPI) concepts provide such a curve while accounting for both the distribution of the estimators in small samples and the data scatter. The EPI is also useful as a mechanism for providing necessary statistics on S-N data for a full reliability analysis which includes uncertainty in all fatigue design factors. Examples of statistical analyses of the general strain life relationship are presented. The tolerance limit and EPI techniques for defining a design curve are demonstrated. Examples usng WASPALOY B and RQC-100 data demonstrate that a reliability model could be constructed by considering the fatigue strength and fatigue ductility coefficients as two independent random variables. A technique given for establishing the fatigue strength for high cycle lives relies on an extrapolation technique and also accounts for "runners." A reliability model or design value can be specified.

  14. Trajectories of Evening Fatigue in Oncology Outpatients Receiving Chemotherapy

    PubMed Central

    Wright, Fay; Melkus, Gail D’Eramo; Hammer, Marilyn; Schmidt, Brian L.; Knobf, M. Tish; Paul, Steven M.; Cartwright, Frances; Mastick, Judy; Cooper, Bruce A.; Chen, Lee-May; Melisko, Michelle; Levine, Jon D.; Kober, Kord; Aouizerat, Bradley E.; Miaskowski, Christine

    2015-01-01

    Context Fatigue is a distressing, persistent sense of physical tiredness that is not proportional to a person’s recent activity. Fatigue impacts patients’ treatment decisions and can limit their self-care activities. While significant interindividual variability in fatigue severity has been noted, little is known about predictors of interindividual variability in initial levels and trajectories of evening fatigue severity in oncology patients receiving chemotherapy (CTX). Objectives To determine whether demographic, clinical, and symptom characteristics were associated with initial levels as well as the trajectories of evening fatigue. Methods A sample of outpatients with breast, gastrointestinal, gynecological, and lung cancer (N=586) completed demographic and symptom questionnaires a total of six times over two cycles of CTX. Fatigue severity was evaluated using the Lee Fatigue Scale. Hierarchical linear modeling (HLM) was used to answer the study objectives. Results A large amount of interindividual variability was found in the evening fatigue trajectories. A piecewise model fit the data best. Patients who were White, diagnosed with breast, gynecological, or lung cancer, and who had more years of education, child care responsibilities, lower functional status, and higher levels of sleep disturbance and depression reported higher levels of evening fatigue at enrollment. Conclusion This study identified both non-modifiable (e.g., ethnicity) and modifiable (e.g., child care responsibilities, depressive symptoms, sleep disturbance) risk factors for more severe evening fatigue. Using this information, clinicians can identify patients at higher risk for more severe evening fatigue, provide individualized patient education, and tailor interventions to address the modifiable risk factors. PMID:25828560

  15. Meta-analysis of the predictive factors of postpartum fatigue.

    PubMed

    Badr, Hanan A; Zauszniewski, Jaclene A

    2017-08-01

    Nearly 64% of new mothers are affected by fatigue during the postpartum period, making it the most common problem that a woman faces as she adapts to motherhood. Postpartum fatigue can lead to serious negative effects on the mother's health and the newborn's development and interfere with mother-infant interaction. The aim of this meta-analysis was to identify predictive factors of postpartum fatigue and to document the magnitude of their effects using effect sizes. We used two search engines, PubMed and Google Scholar, to identify studies that met three inclusion criteria: (a) the article was written in English, (b) the article studied the predictive factors of postpartum fatigue, and (c) the article included information about the validity and reliability of the instruments used in the research. Nine articles met these inclusion criteria. The direction and strength of correlation coefficients between predictive factors and postpartum fatigue were examined across the studies to determine their effect sizes. Measurement of predictor variables occurred from 3days to 6months postpartum. Correlations reported between predictive factors and postpartum fatigue were as follows: small effect size (r range =0.10 to 0.29) for education level, age, postpartum hemorrhage, infection, and child care difficulties; medium effect size (r range =0.30 to 0.49) for physiological illness, low ferritin level, low hemoglobin level, sleeping problems, stress and anxiety, and breastfeeding problems; and large effect size (r range =0.50+) for depression. Postpartum fatigue is a common condition that can lead to serious health problems for a new mother and her newborn. Therefore, increased knowledge concerning factors that influence the onset of postpartum fatigue is needed for early identification of new mothers who may be at risk. Appropriate treatments, interventions, information, and support can then be initiated to prevent or minimize the postpartum fatigue. Copyright © 2017 Elsevier

  16. Fatigue life and crack growth prediction methodology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1993-01-01

    The capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials are reviewed. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta(K(sub eff))) under constant-amplitude loading. Some modifications to the delta(K(sub eff))-rate relations were needed in the near threshold regime to fit small-crack growth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.

  17. The multiaxial fatigue response of cylindrical geometry under proportional loading subject to fluctuating tractions

    NASA Astrophysics Data System (ADS)

    Martinez, Rudy D.

    A multiaxial fatigue model is proposed, as it would apply to cylindrical geometry in the form of industrial sized pressure vessels. The main focus of the multiaxial fatigue model will be based on using energy methods with the loading states confined to fluctuating tractions under proportional loading. The proposed fatigue model is an effort to support and enhance existing fatigue life predicting methods for pressure vessel design, beyond the ASME Boiler and Pressure Vessel codes, ASME Section VIII Division 2 and 3, which is currently used in industrial engineering practice for pressure vessel design. Both uniaxial and biaxial low alloy pearlittic-ferritic steel cylindrical cyclic test data are utilized to substantiate the proposed fatigue model. Approximate material hardening and softening aspects from applied load cycling states and the Bauschinger effect are accounted for by adjusting strain control generated hysteresis loops and the cyclic stress strain curve. The proposed fatigue energy model and the current ASME fatigue model are then compared with regards to the accuracy of predicting fatigue life cycle consistencies.

  18. In vitro fatigue behavior of restorative composites and glass ionomers.

    PubMed

    Braem, M J; Lambrechts, P; Gladys, S; Vanherle, G

    1995-03-01

    This in vitro study was conducted to investigate the fatigue behavior of several dental restoratives, including composites, glass ionomers and a resin-reinforced glass ionomer. Fatigue was imposed under a reverse stress-controlled regimen, following a staircase approach. Samples were stored and tested under both dry and wet conditions. The following parameters were measured and analyzed: Young's modulus, restrained fracture strength, and flexural fatigue limit. As a general trend, all products showed a decrease in Young's modulus following water sorption. For all products except the resin-reinforced glass ionomer, the same trend was seen in the restrained fracture strength. This is, however, no longer valid for the flexural fatigue limit: the trend is steady-state for the glass ionomers, status quo for the resin-reinforced glass ionomer, and all composites tested show a decrease. The diversity in structure of both composites and glass ionomers does not allow findings for one product to be extrapolated to other similar products.

  19. A Systematic Review of Studies Using the Multidimensional Assessment of Fatigue Scale.

    PubMed

    Belza, Basia; Miyawaki, Christina E; Liu, Minhui; Aree-Ue, Suparb; Fessel, Melissa; Minott, Kenya R; Zhang, Xi

    2018-04-01

    To review how the Multidimensional Assessment of Fatigue (MAF) has been used and evaluate its psychometric properties. We conducted a database search using "multidimensional assessment of fatigue" or "MAF" as key terms from 1993 to 2015, and located 102 studies. Eighty-three were empirical studies and 19 were reviews/evaluations. Research was conducted in 17 countries; 32 diseases were represented. Nine language versions of the MAF were used. The mean of the Global Fatigue Index ranged from 10.9 to 49.4. The MAF was reported to be easy-to-use, had strong reliability and validity, and was used in populations who spoke languages other than English. The MAF is an acceptable assessment tool to measure fatigue and intervention effectiveness in various languages, diseases, and settings across the world.

  20. Adrenal Fatigue

    MedlinePlus

    ... unlikely to cover the costs. What is the theory behind adrenal fatigue? Supporters of adrenal fatigue believe ... by producing hormones like cortisol. According to the theory of adrenal fatigue, when people are faced with ...

  1. Clinical assessment of the physical activity pattern of chronic fatigue syndrome patients: a validation of three methods.

    PubMed

    Scheeres, Korine; Knoop, Hans; Meer, van der Jos; Bleijenberg, Gijs

    2009-04-01

    Effective treatment of chronic fatigue syndrome (CFS) with cognitive behavioural therapy (CBT) relies on a correct classification of so called 'fluctuating active' versus 'passive' patients. For successful treatment with CBT is it especially important to recognise the passive patients and give them a tailored treatment protocol. In the present study it was evaluated whether CFS patient's physical activity pattern can be assessed most accurately with the 'Activity Pattern Interview' (API), the International Physical Activity Questionnaire (IPAQ) or the CFS-Activity Questionnaire (CFS-AQ). The three instruments were validated compared to actometers. Actometers are until now the best and most objective instrument to measure physical activity, but they are too expensive and time consuming for most clinical practice settings. In total 226 CFS patients enrolled for CBT therapy answered the API at intake and filled in the two questionnaires. Directly after intake they wore the actometer for two weeks. Based on receiver operating characteristic (ROC) curves the validity of the three methods were assessed and compared. Both the API and the two questionnaires had an acceptable validity (0.64 to 0.71). None of the three instruments was significantly better than the others. The proportion of false predictions was rather high for all three instrument. The IPAQ had the highest proportion of correct passive predictions (sensitivity 70.1%). The validity of all three instruments appeared to be fair, and all showed rather high proportions of false classifications. Hence in fact none of the tested instruments could really be called satisfactory. Because the IPAQ showed to be the best in correctly predicting 'passive' CFS patients, which is most essentially related to treatment results, it was concluded that the IPAQ is the preferable alternative for an actometer when treating CFS patients in clinical practice.

  2. The process of cognitive behaviour therapy for chronic fatigue syndrome: which changes in perpetuating cognitions and behaviour are related to a reduction in fatigue?

    PubMed

    Heins, Marianne J; Knoop, Hans; Burk, William J; Bleijenberg, Gijs

    2013-09-01

    Cognitive behaviour therapy (CBT) can significantly reduce fatigue in chronic fatigue syndrome (CFS), but little is known about the process of change taking place during CBT. Based on a recent treatment model (Wiborg et al. J Psych Res 2012), we examined how (changes in) cognitions and behaviour are related to the decrease in fatigue. We included 183 patients meeting the US Centers for Disease Control criteria for CFS, aged 18 to 65 years, starting CBT. We measured fatigue and possible process variables before treatment; after 6, 12 and 18 weeks; and after treatment. Possible process variables were sense of control over fatigue, focusing on symptoms, self-reported physical functioning, perceived physical activity and objective (actigraphic) physical activity. We built multiple regression models, explaining levels of fatigue during therapy by (changes in) proposed process variables. We observed large individual variation in the patterns of change in fatigue and process variables during CBT for CFS. Increases in the sense of control over fatigue, perceived activity and self-reported physical functioning, and decreases in focusing on symptoms explained 20 to 46% of the variance in fatigue. An increase in objective activity was not a process variable. A change in cognitive factors seems to be related to the decrease in fatigue during CBT for CFS. The pattern of change varies considerably between patients, but changes in process variables and fatigue occur mostly in the same period. © 2013.

  3. Fatigue strength reduction model: RANDOM3 and RANDOM4 user manual. Appendix 2: Development of advanced methodologies for probabilistic constitutive relationships of material strength models

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Lovelace, Thomas B.

    1989-01-01

    FORTRAN programs RANDOM3 and RANDOM4 are documented in the form of a user's manual. Both programs are based on fatigue strength reduction, using a probabilistic constitutive model. The programs predict the random lifetime of an engine component to reach a given fatigue strength. The theoretical backgrounds, input data instructions, and sample problems illustrating the use of the programs are included.

  4. Computational micromechanics of fatigue of microstructures in the HCF–VHCF regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelluccio, Gustavo M.; Musinski, William D.; McDowell, David L.

    Advances in higher resolution experimental techniques have shown that metallic materials can develop fatigue cracks under cyclic loading levels significantly below the yield stress. Indeed, the traditional notion of a fatigue limit can be recast in terms of limits associated with nucleation and arrest of fatigue cracks at the microstructural scale. Though fatigue damage characteristically emerges from irreversible dislocation processes at sub-grain scales, the specific microstructure attributes, environment, and loading conditions can strongly affect the apparent failure mode and surface to subsurface transitions. This paper discusses multiple mechanisms that occur during fatigue loading in the high cycle fatigue (HCF) tomore » very high cycle fatigue (VHCF) regimes. We compare these regimes, focusing on strategies to bridge experimental and modeling approaches exercised at multiple length scales and discussing particular challenges to modeling and simulation regarding microstructure-sensitive fatigue driving forces and thresholds. Finally, we discuss some of the challenges in predicting the transition of failure mechanisms at different stress and strain amplitudes.« less

  5. Computational micromechanics of fatigue of microstructures in the HCF–VHCF regimes

    DOE PAGES

    Castelluccio, Gustavo M.; Musinski, William D.; McDowell, David L.

    2016-05-19

    Advances in higher resolution experimental techniques have shown that metallic materials can develop fatigue cracks under cyclic loading levels significantly below the yield stress. Indeed, the traditional notion of a fatigue limit can be recast in terms of limits associated with nucleation and arrest of fatigue cracks at the microstructural scale. Though fatigue damage characteristically emerges from irreversible dislocation processes at sub-grain scales, the specific microstructure attributes, environment, and loading conditions can strongly affect the apparent failure mode and surface to subsurface transitions. This paper discusses multiple mechanisms that occur during fatigue loading in the high cycle fatigue (HCF) tomore » very high cycle fatigue (VHCF) regimes. We compare these regimes, focusing on strategies to bridge experimental and modeling approaches exercised at multiple length scales and discussing particular challenges to modeling and simulation regarding microstructure-sensitive fatigue driving forces and thresholds. Finally, we discuss some of the challenges in predicting the transition of failure mechanisms at different stress and strain amplitudes.« less

  6. Biomarkers of Fatigue: Ranking Mental Fatigue Susceptibility

    DTIC Science & Technology

    2010-12-10

    expected declines in performance during the 36-hour, 15-minute period of sleep deprivation without caffeine. The simple change from baseline results...rankings for fatigue resistance were then determined via a percent- change rule similar to that used in Chaiken, Harville, Harrison, Fischer, Fisher...and Whitmore (2008). This rule ranks subjects on percent change of cognitive performance from a baseline performance (before fatigue) to a fatigue

  7. The Influence of Roughness on Gear Surface Fatigue

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy

    2005-01-01

    Gear working surfaces are subjected to repeated rolling and sliding contacts, and often designs require loads sufficient to cause eventual fatigue of the surface. This research provides experimental data and analytical tools to further the understanding of the causal relationship of gear surface roughness to surface fatigue. The research included evaluations and developments of statistical tools for gear fatigue data, experimental evaluation of the surface fatigue lives of superfinished gears with a near-mirror quality, and evaluations of the experiments by analytical methods and surface inspections. Alternative statistical methods were evaluated using Monte Carlo studies leading to a final recommendation to describe gear fatigue data using a Weibull distribution, maximum likelihood estimates of shape and scale parameters, and a presumed zero-valued location parameter. A new method was developed for comparing two datasets by extending the current methods of likelihood-ratio based statistics. The surface fatigue lives of superfinished gears were evaluated by carefully controlled experiments, and it is shown conclusively that superfinishing of gears can provide for significantly greater lives relative to ground gears. The measured life improvement was approximately a factor of five. To assist with application of this finding to products, the experimental condition was evaluated. The fatigue life results were expressed in terms of specific film thickness and shown to be consistent with bearing data. Elastohydrodynamic and stress analyses were completed to relate the stress condition to fatigue. Smooth-surface models do not adequately explain the improved fatigue lives. Based on analyses using a rough surface model, it is concluded that the improved fatigue lives of superfinished gears is due to a reduced rate of near-surface micropitting fatigue processes, not due to any reduced rate of spalling (sub-surface) fatigue processes. To complete the evaluations, surface

  8. In vitro fatigue tests and in silico finite element analysis of dental implants with different fixture/abutment joint types using computer-aided design models.

    PubMed

    Yamaguchi, Satoshi; Yamanishi, Yasufumi; Machado, Lucas S; Matsumoto, Shuji; Tovar, Nick; Coelho, Paulo G; Thompson, Van P; Imazato, Satoshi

    2018-01-01

    The aim of this study was to evaluate fatigue resistance of dental fixtures with two different fixture-abutment connections by in vitro fatigue testing and in silico three-dimensional finite element analysis (3D FEA) using original computer-aided design (CAD) models. Dental implant fixtures with external connection (EX) or internal connection (IN) abutments were fabricated from original CAD models using grade IV titanium and step-stress accelerated life testing was performed. Fatigue cycles and loads were assessed by Weibull analysis, and fatigue cracking was observed by micro-computed tomography and a stereomicroscope with high dynamic range software. Using the same CAD models, displacement vectors of implant components were also analyzed by 3D FEA. Angles of the fractured line occurring at fixture platforms in vitro and of displacement vectors corresponding to the fractured line in silico were compared by two-way ANOVA. Fatigue testing showed significantly greater reliability for IN than EX (p<0.001). Fatigue crack initiation was primarily observed at implant fixture platforms. FEA demonstrated that crack lines of both implant systems in vitro were observed in the same direction as displacement vectors of the implant fixtures in silico. In silico displacement vectors in the implant fixture are insightful for geometric development of dental implants to reduce complex interactions leading to fatigue failure. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  9. Fatigue crack tip deformation and fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Kang, T. S.; Liu, H. W.

    1972-01-01

    The effects of stress ratio, prestress cycling and plate thickness on the fatigue crack propagation rate are studied on 2024-T351 aluminum alloy. Fatigue crack propagation rate increases with the plate thickness and the stress ratio. Prestress cycling below the static yield strength has no noticeable effect on the fatigue crack propagation rate. However, prestress cycling above the static yield strength causes the material to strain harden and increases the fatigue crack propagation rate. Crack tip deformation is used to study the fatigue crack propagation. The crack tip strains and the crack opening displacements were measured from moire fringe patterns. The moire fringe patterns were obtained by a double exposure technique, using a very high density master grille (13,400 lines per inch).

  10. Pictorial Representation of Self and Illness Measure (PRISM): a graphic instrument to assess suffering in fatigued cancer survivors.

    PubMed

    Gielissen, Marieke F M; Prins, Judith B; Knoop, Hans; Verhagen, Stans; Bleijenberg, Gijs

    2013-06-01

    The Pictorial Representation of Self and Illness Measure (PRISM) measures in a simple, graphic way the burden of suffering due to illness. The question addressed in this study is whether the PRISM is a valid instrument to measure suffering in cancer survivors experiencing severe fatigue. Quantitative and qualitative data of a previous randomized controlled trial demonstrating the efficacy of cognitive behavior therapy (CBT) especially designed for postcancer fatigue was used to assess convergent validity and sensitivity to change in a sample of 83 cancer survivors. The PRISM, yielding self-illness separation (SIS-fatigue = suffering due to fatigue; SIS-cancer = suffering due to cancer), fatigue severity (Checklist Individual Strength; CIS-fatigue), functional impairment, psychological well-being, quality of life, and coping with the experience of cancer (Impact of Event Scale; IES). Moderate significant correlations were found with the PRISM and the above-mentioned measures. On the basis of SIS scores, the sample was divided into two separate groups: cancer survivors who suffered more because of fatigue and cancer survivors who suffered more because they had cancer in the past. The two groups had different scores on CIS-fatigue and IES, in line with that aspect that caused them the most suffering. The qualitative data confirmed this finding. Participants in the CBT condition demonstrated a significant difference between SIS-fatigue at baseline versus 6 months later compared with those in the waiting list condition. No change of SIS-cancer was found. The PRISM seems to be a valuable tool in fatigue research and clinical practice. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  11. Parkinson's disease-related fatigue: A case definition and recommendations for clinical research.

    PubMed

    Kluger, Benzi M; Herlofson, Karen; Chou, Kelvin L; Lou, Jau-Shin; Goetz, Christopher G; Lang, Anthony E; Weintraub, Daniel; Friedman, Joseph

    2016-05-01

    Fatigue is one of the most common and disabling symptoms in Parkinson's disease (PD). Since fatigue was first described as a common feature of PD 20 years ago, little progress has been made in understanding its causes or treatment. Importantly, PD patients attending the 2013 World Parkinson Congress voted fatigue as the leading symptom in need of further research. In response, the Parkinson Disease Foundation and ProjectSpark assembled an international team of experts to create recommendations for clinical research to advance this field. The working group identified several areas in which shared standards would improve research quality and foster progress including terminology, diagnostic criteria, and measurement. Terminology needs to (1) clearly distinguish fatigue from related phenomena (eg, sleepiness, apathy, depression); (2) differentiate subjective fatigue complaints from objective performance fatigability; and (3) specify domains affected by fatigue and causal factors. We propose diagnostic criteria for PD-related fatigue to guide participant selection for clinical trials and add rigor to mechanistic studies. Recommendations are made for measurement of subjective fatigue complaints, performance fatigability, and neurophysiologic changes. We also suggest areas in which future research is needed to address methodological issues and validate or optimize current practices. Many limitations in current PD-related fatigue research may be addressed by improving methodological standards, many of which are already being successfully applied in clinical fatigue research in other medical conditions (eg, cancer, multiple sclerosis). © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  12. Perceived Fatigue Interference and Depressed Mood: Comparison of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients with Fatigued Breast Cancer Survivors.

    PubMed

    Hall, Daniel L; Antoni, Michael H; Lattie, Emily G; Jutagir, Devika R; Czaja, Sara J; Perdomo, Dolores; Lechner, Suzanne C; Stagl, Jamie M; Bouchard, Laura C; Gudenkauf, Lisa M; Traeger, Lara; Fletcher, MaryAnn; Klimas, Nancy G

    Persistent fatigue and depressive symptoms are both highly prevalent among patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) as well as breast cancer survivors. This study aimed to assess and directly compare perceptions of fatigue as highly interfering in one's daily functioning in both patient populations to better understand their relationships with depressed mood. Participants were 95 female CFS/ME patients and 67 females who were approximately 5 years post-treatment for stage 0-III breast cancer presenting with clinically elevated fatigue severity. Self-report measures were obtained on participants' fatigue-related interference in daily functioning and fatigue severity as well as depressed mood. Hierarchical regression was used to test effects controlling for relevant demographic, psychosocial, and medical covariates. CFS/ME patients endorsed greater depressed mood and fatigue interference than did fatigued breast cancer survivors, p's <.001. These factors were significantly positively correlated among CFS/ME patients (β=.36, p <.001), but not the fatigued breast cancer survivors (β=.18, p =.19). CFS/ME patients reported elevated fatigue symptoms and depression relative to fatigued breast cancer survivors. In the former group, greater depressed mood was highly and significantly associated with greater fatigue-related inference in daily activities. Potential targets for cognitive behavioral interventions are discussed.

  13. Perceived Fatigue Interference and Depressed Mood: Comparison of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients with Fatigued Breast Cancer Survivors

    PubMed Central

    Hall, Daniel L.; Antoni, Michael H.; Lattie, Emily G.; Jutagir, Devika R.; Czaja, Sara J.; Perdomo, Dolores; Lechner, Suzanne C.; Stagl, Jamie M.; Bouchard, Laura C.; Gudenkauf, Lisa M.; Traeger, Lara; Fletcher, MaryAnn; Klimas, Nancy G.

    2015-01-01

    Objective Persistent fatigue and depressive symptoms are both highly prevalent among patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) as well as breast cancer survivors. This study aimed to assess and directly compare perceptions of fatigue as highly interfering in one’s daily functioning in both patient populations to better understand their relationships with depressed mood. Methods Participants were 95 female CFS/ME patients and 67 females who were approximately 5 years post-treatment for stage 0-III breast cancer presenting with clinically elevated fatigue severity. Self-report measures were obtained on participants’ fatigue-related interference in daily functioning and fatigue severity as well as depressed mood. Hierarchical regression was used to test effects controlling for relevant demographic, psychosocial, and medical covariates. Results CFS/ME patients endorsed greater depressed mood and fatigue interference than did fatigued breast cancer survivors, p’s<.001. These factors were significantly positively correlated among CFS/ME patients (β=.36, p<.001), but not the fatigued breast cancer survivors (β=.18, p=.19). Conclusions CFS/ME patients reported elevated fatigue symptoms and depression relative to fatigued breast cancer survivors. In the former group, greater depressed mood was highly and significantly associated with greater fatigue-related inference in daily activities. Potential targets for cognitive behavioral interventions are discussed. PMID:26180660

  14. Application of an Energy-Based Life Prediction Model to Bithermal and Thermomechanical Fatigue

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, V. M.; Kalluri, Sreeramesh; Halford, Gary R.

    1994-01-01

    The inelastic hysteresis energy applied to the material in a cycle is used as the basis for predicting nonisothermal fatigue life of a wrought cobalt-base superalloy, Haynes 188, from isothermal fatigue data. Damage functions that account for hold-time effects and time-dependent environmental phenomena such as oxidation and hot corrosion are proposed in terms of the inelastic hysteresis energy per cycle. The proposed damage functions are used to predict the bithermal and thermomechanical fatigue lives of Haynes 188 between 316 and 760 C from isothermal fatigue data. Predicted fatigue lives of all but two of the nonisothermal tests are within a factor of 1.5 of the experimentally observed lives.

  15. Grain boundary oxidation and fatigue crack growth at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Y.

    1986-01-01

    Fatigue crack growth rate at elevated temperatures can be accelerated by grain boundary oxidation. Grain boundary oxidation kinetics and the statistical distribution of grain boundary oxide penetration depth were studied. At a constant delta K-level and at a constant test temperature, fatigue crack growth rate, da/dN, is a function of cyclic frequency, nu. A fatigue crack growth model of intermittent micro-ruptures of grain boundary oxide is constructed. The model is consistent with the experimental observations that, in the low frequency region, da/dN is inversely proportional to nu, and fatigue crack growth is intergranular.

  16. Reduced Radial Displacement of the Gastrocnemius Medialis Muscle After Electrically Elicited Fatigue.

    PubMed

    Macgregor, Lewis J; Ditroilo, Massimiliano; Smith, Iain J; Fairweather, Malcolm M; Hunter, Angus M

    2016-08-01

    Assessments of skeletal-muscle functional capacity often necessitate maximal contractile effort, which exacerbates muscle fatigue or injury. Tensiomyography (TMG) has been investigated as a means to assess muscle contractile function after fatigue; however, observations have not been contextualized by concurrent physiological measures. To measure peripheral-fatigue-induced alterations in mechanical and contractile properties of the plantar-flexor muscles through noninvasive TMG concurrently with maximal voluntary contraction (MVC) and passive muscle tension (PMT) to validate TMG as a gauge of peripheral fatigue. Pre- and posttest intervention with control. University laboratory. 21 healthy male volunteers. Subjects' plantar flexors were tested for TMG parameters, along with MVC and PMT, before and after either a 5-min rest period (control) or a 5-min electrical-stimulation intervention (fatigue). Temporal (contraction velocity) and spatial (radial displacement) contractile parameters of the gastrocnemius medialis were recorded through TMG. MVC was measured as an indicator of muscle fatigue, and PMT was measured to assess muscle stiffness. Radial displacement demonstrated a fatigue-associated reduction (3.3 ± 1.2 vs 4.0 ± 1.4 mm, P = .031), while contraction velocity remained unaltered. In addition, MVC significantly declined by 122.6 ± 104 N (P < .001) after stimulation (fatigue). PMT was significantly increased after fatigue (139.8 ± 54.3 vs 111.3 ± 44.6 N, P = .007). TMG successfully detected fatigue, evident from reduced MVC, by displaying impaired muscle displacement accompanied by elevated PMT. TMG could be useful in establishing skeletal-muscle fatigue status without exacerbating the functional decrement of the muscle.

  17. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance.

    PubMed

    Noakes, T D

    2000-06-01

    A popular concept in the exercise sciences holds that fatigue develops during exercise of moderate to high intensity, when the capacity of the cardiorespiratory system to provide oxygen to the exercising muscles falls behind their demand inducing "anaerobic" metabolism. But this cardiovascular/anaerobic model is unsatisfactory because (i) a more rigorous analysis indicates that the first organ to be affected by anaerobiosis during maximal exercise would likely be the heart, not the skeletal muscles. This probability was fully appreciated by the pioneering exercise physiologists, A. V Hill, A. Bock and D. B. Dill, but has been systematically ignored by modern exercise physiologists; (ii) no study has yet definitely established the presence of either anaerobiosis, hypoxia or ischaemia in skeletal muscle during maximal exercise; (iii) the model is unable to explain why exercise terminates in a variety of conditions including prolonged exercise, exercise in the heat and at altitude, and in those with chronic diseases of the heart and lungs, without any evidence for skeletal muscle anaerobiosis, hypoxia or ischaemia, and before there is full activation of the total skeletal muscle mass, and (iv) cardiovascular and other measures believed to relate to skeletal muscle anaerobiosis, including the maximum oxygen consumption (VO2 max) and the "anaerobic threshold", are indifferent predictors of exercise capacity in athletes with similar abilities. This review considers four additional models that need to be considered when factors limiting either short duration, maximal or prolonged submaximal exercise are evaluated. These additional models are: (i) the energy supply/energy depletion model; (ii) the muscle power/muscle recruitment model; (iii) the biomechanical model and (iv) the psychological model. By reviewing features of these models, this review provides a broad overview of the physiological, metabolic and biomechanical factors that may limit exercise performance under

  18. Job stress, fatigue, and job dissatisfaction in Dutch lorry drivers: towards an occupation specific model of job demands and control

    PubMed Central

    de Croon, E M; Blonk, R; de Zwart, B C H; Frings-Dresen, M; Broersen, J

    2002-01-01

    Objectives: Building on Karasek's model of job demands and control (JD-C model), this study examined the effects of job control, quantitative workload, and two occupation specific job demands (physical demands and supervisor demands) on fatigue and job dissatisfaction in Dutch lorry drivers. Methods: From 1181 lorry drivers (adjusted response 63%) self reported information was gathered by questionnaire on the independent variables (job control, quantitative workload, physical demands, and supervisor demands) and the dependent variables (fatigue and job dissatisfaction). Stepwise multiple regression analyses were performed to examine the main effects of job demands and job control and the interaction effect between job control and job demands on fatigue and job dissatisfaction. Results: The inclusion of physical and supervisor demands in the JD-C model explained a significant amount of variance in fatigue (3%) and job dissatisfaction (7%) over and above job control and quantitative workload. Moreover, in accordance with Karasek's interaction hypothesis, job control buffered the positive relation between quantitative workload and job dissatisfaction. Conclusions: Despite methodological limitations, the results suggest that the inclusion of (occupation) specific job control and job demand measures is a fruitful elaboration of the JD-C model. The occupation specific JD-C model gives occupational stress researchers better insight into the relation between the psychosocial work environment and wellbeing. Moreover, the occupation specific JD-C model may give practitioners more concrete and useful information about risk factors in the psychosocial work environment. Therefore, this model may provide points of departure for effective stress reducing interventions at work. PMID:12040108

  19. Job stress, fatigue, and job dissatisfaction in Dutch lorry drivers: towards an occupation specific model of job demands and control.

    PubMed

    de Croon, E M; Blonk, R W B; de Zwart, B C H; Frings-Dresen, M H W; Broersen, J P J

    2002-06-01

    Building on Karasek's model of job demands and control (JD-C model), this study examined the effects of job control, quantitative workload, and two occupation specific job demands (physical demands and supervisor demands) on fatigue and job dissatisfaction in Dutch lorry drivers. From 1181 lorry drivers (adjusted response 63%) self reported information was gathered by questionnaire on the independent variables (job control, quantitative workload, physical demands, and supervisor demands) and the dependent variables (fatigue and job dissatisfaction). Stepwise multiple regression analyses were performed to examine the main effects of job demands and job control and the interaction effect between job control and job demands on fatigue and job dissatisfaction. The inclusion of physical and supervisor demands in the JD-C model explained a significant amount of variance in fatigue (3%) and job dissatisfaction (7%) over and above job control and quantitative workload. Moreover, in accordance with Karasek's interaction hypothesis, job control buffered the positive relation between quantitative workload and job dissatisfaction. Despite methodological limitations, the results suggest that the inclusion of (occupation) specific job control and job demand measures is a fruitful elaboration of the JD-C model. The occupation specific JD-C model gives occupational stress researchers better insight into the relation between the psychosocial work environment and wellbeing. Moreover, the occupation specific JD-C model may give practitioners more concrete and useful information about risk factors in the psychosocial work environment. Therefore, this model may provide points of departure for effective stress reducing interventions at work.

  20. Assessing fatigue in inflammatory bowel disease: comparison of three fatigue scales.

    PubMed

    Norton, C; Czuber-Dochan, W; Bassett, P; Berliner, S; Bredin, F; Darvell, M; Forbes, A; Gay, M; Ream, E; Terry, H

    2015-07-01

    Fatigue is commonly reported by patients with inflammatory bowel disease (IBD), both in quiescent and active disease. Few fatigue scales have been tested in IBD. To assess three fatigue assessment scales in IBD and to determine correlates of fatigue. Potential participants (n = 2131) were randomly selected from an IBD organisation's members' database; 605 volunteered and were posted three fatigue scales: Inflammatory Bowel Disease Fatigue scale, Multidimensional Fatigue Inventory and Multidimensional Assessment Fatigue scale and questionnaires assessing anxiety, depression, quality of life (QoL) and IBD activity. The questionnaires were tested for stability over time with another group (n = 70) of invited participants. Internal consistency was measured by Cronbach's alpha and test-retest reliability by the intraclass correlation coefficient (ICC). Four hundred and sixty-five of 605 (77%) questionnaires were returned; of 70 invited, 48/70 returned test (68.6%) and 41/70 (58.6%) returned retest. The three scales are highly correlated (P < 0.001). Test-retest suggests reasonable agreement with ICC values between 0.65 and 0.84. Lower age, female gender, IBD diagnosis, anxiety, depression and QoL were associated with fatigue (P < 0.001) on univariable analysis. However, on multivariable analysis only depression and low QoL were consistently associated with fatigue, while female gender was associated on most scales. IBD diagnosis, age and other factors were not consistently associated with severity or impact of fatigue once other variables were controlled for. All three fatigue scales are likely to measure IBD fatigue adequately. Responsiveness to change has not been tested. Depression, poorer QoL and probably female gender are the major associations of fatigue in IBD. © 2015 John Wiley & Sons Ltd.

  1. Nonlinear ultrasonic pulsed measurements and applications to metal processing and fatigue

    NASA Astrophysics Data System (ADS)

    Yost, William T.; Cantrell, John H.; Na, Jeong K.

    2001-04-01

    Nonlinear ultrasonics research at NASA-Langley Research Center emphasizes development of experimental techniques and modeling, with applications to metal fatigue and metals processing. This review work includes a summary of results from our recent efforts in technique refinement, modeling of fatigue related microstructure contributions, and measurements on fatigued turbine blades. Also presented are data on 17-4PH and 410-Cb stainless steels. The results are in good agreement with the models.

  2. Self-critical perfectionism and its relationship to fatigue and pain in the daily flow of life in patients with chronic fatigue syndrome.

    PubMed

    Kempke, S; Luyten, P; Claes, S; Goossens, L; Bekaert, P; Van Wambeke, P; Van Houdenhove, B

    2013-05-01

    Research suggests that the personality factor of self-critical or maladaptive perfectionism may be implicated in chronic fatigue syndrome (CFS). However, it is not clear whether self-critical perfectionism (SCP) also predicts daily symptoms in CFS. Method In the present study we investigated whether SCP predicted fatigue and pain over a 14-day period in a sample of 90 CFS patients using a diary method approach. After completing the Depressive Experiences Questionnaire (DEQ) as a measure of SCP, patients were asked each day for 14 days to complete Visual Analogue Scales (VAS) of fatigue, pain and severity of depression. Data were analysed using multilevel analysis. The results from unconditional models revealed considerable fluctuations in fatigue over the 14 days, suggesting strong temporal variability in fatigue. By contrast, pain was relatively stable over time but showed significant inter-individual differences. Congruent with expectations, fixed-effect models showed that SCP was prospectively associated with higher daily fatigue and pain levels over the 14-day period, even after controlling for levels of depression. This is the first study to show that SCP predicts both fatigue and pain symptoms in CFS in the daily course of life. Hence, therapeutic interventions aimed at targeting SCP should be considered in the treatment of CFS patients with such features.

  3. Crystal Plasticity Model Validation Using Combined High-Energy Diffraction Microscopy Data for a Ti-7Al Specimen

    DOE PAGES

    Turner, Todd J.; Shade, Paul A.; Bernier, Joel V.; ...

    2016-11-18

    High-Energy Diffraction Microscopy (HEDM) is a 3-d x-ray characterization method that is uniquely suited to measuring the evolving micromechanical state and microstructure of polycrystalline materials during in situ processing. The near-field and far-field configurations provide complementary information; orientation maps computed from the near-field measurements provide grain morphologies, while the high angular resolution of the far-field measurements provide intergranular strain tensors. The ability to measure these data during deformation in situ makes HEDM an ideal tool for validating micro-mechanical deformation models that make their predictions at the scale of individual grains. Crystal Plasticity Finite Element Models (CPFEM) are one such classmore » of micro-mechanical models. While there have been extensive studies validating homogenized CPFEM response at a macroscopic level, a lack of detailed data measured at the level of the microstructure has hindered more stringent model validation efforts. We utilize an HEDM dataset from an alphatitanium alloy (Ti-7Al), collected at the Advanced Photon Source, Argonne National Laboratory, under in situ tensile deformation. The initial microstructure of the central slab of the gage section, measured via near-field HEDM, is used to inform a CPFEM model. The predicted intergranular stresses for 39 internal grains are then directly compared to data from 4 far-field measurements taken between ~4% and ~80% of the macroscopic yield strength. In conclusion, the intergranular stresses from the CPFEM model and far-field HEDM measurements up to incipient yield are shown to be in good agreement, and implications for application of such an integrated computational/experimental approach to phenomena such as fatigue and crack propagation is discussed.« less

  4. Ground-water models: Validate or invalidate

    USGS Publications Warehouse

    Bredehoeft, J.D.; Konikow, Leonard F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  5. Design of Fatigue Resistant Heusler-strengthened PdTi-based Shape Memory Alloys for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Frankel, Dana J.

    The development of non-surgical transcatheter aortic valve implantation (TAVI) techniques, which utilize collapsible artificial heart valves with shape memory alloy (SMA)-based frames, pushes performance requirements for biomedical SMAs beyond those for well-established vascular stent applications. Fatigue life for these devices must extend into the ultra-high cycle fatigue (UHCF) regime (>600M cycles) with zero probability of failure predicted at applied strain levels. High rates of Ni-hypersensitivity raise biocompatibility concerns, driving the development of low-Ni and Ni-free SMAs. This work focuses on the development of biocompatible, precipitation-strengthened, fatigue-resistant PdTi-based SMAs for biomedical applications. Functional and structural fatigue are both manifestations of cyclic instability resulting in accumulation of slip and eventual structural damage. While functional fatigue is easily experimentally evaluated, structural fatigue is more difficult to measure without the proper equipment. Therefore, in this work a theoretical approach using a model well validated in steels is utilized to investigate structural fatigue behavior in NiTi in the UHCF regime, while low cycle functional fatigue is evaluated in order to monitor the core phenomena of the cyclic instability. Results from fatigue simulations modeling crack nucleation at non-metallic inclusions in commercial NiTi underscore the importance of increasing yield strength for UHCF performance. Controlled precipitation of nanoscale, low-misfit, L21 Heusler aluminides can provide effective strengthening. Phase relations, precipitation kinetics, transformation temperature, transformation strain, cyclic stability, and mechanical properties are characterized in both Ni-free (Pd,Fe)(Ti,Al) and low-Ni high-strength "hybrid" (Pd,Ni)(Ti,Zr,Al) systems. Atom probe tomography is employed to measure phase compositions and particle sizes used to calibrate LSW models for coarsening kinetics and Gibbs

  6. Fatigue and Fracture Characterization of GlasGridRTM Reinforced Asphalt Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Safavizadeh, Seyed Amirshayan

    tests were conducted at 15°C, 20°C, and 23°C, with the main focus being to find the characteristics at 20°C. The results obtained from the tests at the different temperatures were used to investigate the effects of temperature on the reflective cracking performance of the gridreinforced beam specimens. The temperature tests were also used to investigate the validity of the time-temperature superposition (t-TS) principle in shear and the beam fatigue performance of the grid-reinforced specimens. The NBFT results suggest that different interlayer conditions do not reflect a unique failure mechanism, and thus, in order to predict and model the performance of grid-reinforced pavement, all the mechanisms involved in weakening its structural integrity, including damage within the asphalt layers and along the interface, must be considered. The shear and beam fatigue test results suggest that the grid opening size, interfacial bond quality, and mixture type play important roles in the reflective cracking performance of GlasGrid-reinforced asphalt pavements. According to the NBTF results, GlasGrid reinforcement retards reflective crack growth by stiffening the composite system and introducing a joint stiffness parameter. The results also show that the higher the bond strength and interlayer stiffness values, the higher the joint stiffness and retardation effects. The t-TS studies proved the validity of this principle in terms of the reflective crack growth of the grid-reinforced beam specimens and the shear modulus and shear strength of the grid-reinforced interfaces.

  7. Empirical agreement in model validation.

    PubMed

    Jebeile, Julie; Barberousse, Anouk

    2016-04-01

    Empirical agreement is often used as an important criterion when assessing the validity of scientific models. However, it is by no means a sufficient criterion as a model can be so adjusted as to fit available data even though it is based on hypotheses whose plausibility is known to be questionable. Our aim in this paper is to investigate into the uses of empirical agreement within the process of model validation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mechanisms of change underlying the efficacy of cognitive behaviour therapy for chronic fatigue syndrome in a specialist clinic: a mediation analysis.

    PubMed

    Stahl, D; Rimes, K A; Chalder, T

    2014-04-01

    Several randomized controlled trials (RCTs) have shown that cognitive behavioural psychotherapy (CBT) is an efficacious treatment for chronic fatigue syndrome (CFS). However, little is known about the mechanisms by which the treatment has its effect. The aim of this study was to investigate potential mechanisms of change underlying the efficacy of CBT for CFS. We applied path analysis and introduce novel model comparison approaches to assess a theoretical CBT model that suggests that fearful cognitions will mediate the relationship between avoidance behaviour and illness outcomes (fatigue and social adjustment). Data from 389 patients with CFS who received CBT in a specialist service in the UK were collected at baseline, at discharge from treatment, and at 3-, 6- and 12-month follow-ups. Path analyses were used to assess possible mediating effects. Model selection using information criteria was used to compare support for competing mediational models. Path analyses were consistent with the hypothesized model in which fear avoidance beliefs at the 3-month follow-up partially mediate the relationship between avoidance behaviour at discharge and fatigue and social adjustment respectively at 6 months. The results strengthen the validity of a theoretical model of CBT by confirming the role of cognitive and behavioural factors in CFS.

  9. Attention, effort, and fatigue: Neuropsychological perspectives

    NASA Technical Reports Server (NTRS)

    Cohen, Ronald A.; Odonnell, Brian F.

    1988-01-01

    Models of attention, effort, and fatigue are reviewed. Methods are discussed for measuring these phenomena from a neuropsychological and psychophysiological perspective. The following methodologies are included: (1) the autonomic measurement of cognitive effort and quality of encoding; (2) serial assessment approaches to neurophysiological assessment; and (3) the assessment of subjective reports of fatigue using multidimensional ratings and their relationship to neurobehavioral measures.

  10. Multiaxial Creep-Fatigue and Creep-Ratcheting Failures of Grade 91 and Haynes 230 Alloys Toward Addressing Design Issues of Gen IV Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Tasnim; Lissenden, Cliff; Carroll, Laura

    The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can bemore » used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.« less

  11. Microstructural evaluation of cumulative fatigue damage below the fatigue limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuoka, C.; Nakagawa, Y.G.

    1996-05-01

    The objective of this work is to evaluate the microstructural changes induced near and below the fatigue limit in a pressure vessel steel plate, SA508. Dislocation cell to cell misorientation differences, {theta}, which increase with fatigue damage accumulation, are measured by the Selected Area Diffraction (SAD) method. The misorientation difference, {theta}, of the sample failed just above the fatigue limit is about 4.0 degrees on the average, which is about the same as that for the failure conditions of low cycle fatigue at higher stresses. The {theta} value increases even below the fatigue limit, but it does not increase atmore » stresses which are lower than 50% of the fatigue limit.« less

  12. Subjective Measurements of In-Flight Sleep, Circadian Variation, and Their Relationship with Fatigue.

    PubMed

    van den Berg, Margo J; Wu, Lora J; Gander, Philippa H

    This study examined whether subjective measurements of in-flight sleep could be a reliable alternative to actigraphic measurements for monitoring pilot fatigue in a large-scale survey. Pilots (3-pilot crews) completed a 1-page survey on outbound and inbound long-haul flights crossing 1-7 time zones (N = 586 surveys) between 53 city pairs with 1-d layovers. Across each flight, pilots documented flight start and end times, break times, and in-flight sleep duration and quality if they attempted sleep. They also rated their fatigue (Samn-Perelli Crew Status Check) and sleepiness (Karolinska Sleepiness Scale) at top of descent (TOD). Mixed model ANCOVA was used to identify independent factors associated with sleep duration, quality, and TOD measures. Domicile time was used as a surrogate measure of circadian phase. Sleep duration increased by 10.2 min for every 1-h increase in flight duration. Sleep duration and quality varied by break start time, with significantly more sleep obtained during breaks starting between (domicile) 22:00-01:59 and 02:00-05:59 compared to earlier breaks. Pilots were more fatigued and sleepy at TOD on flights arriving between 02:00-05:59 and 06:00-09:59 domicile time compared to other flights. With every 1-h increase in sleep duration, sleepiness ratings at TOD decreased by 0.6 points and fatigue ratings decreased by 0.4 points. The present findings are consistent with previous actigraphic studies, suggesting that self-reported sleep duration is a reliable alternative to actigraphic sleep in this type of study, with use of validated measures, sufficiently large sample sizes, and where fatigue risk is expected to be low. van den Berg MJ, Wu LJ, Gander PH. Subjective measurements of in-flight sleep, circadian variation, and their relationship with fatigue. Aerosp Med Hum Perform. 2016; 87(10):869-875.

  13. Intraoperative Noise Increases Perceived Task Load and Fatigue in Anesthesiology Residents: A Simulation-Based Study.

    PubMed

    McNeer, Richard R; Bennett, Christopher L; Dudaryk, Roman

    2016-02-01

    Operating rooms are identified as being one of the noisiest of clinical environments, and intraoperative noise is associated with adverse effects on staff and patient safety. Simulation-based experiments would offer controllable and safe venues for investigating this noise problem. However, realistic simulation of the clinical auditory environment is rare in current simulators. Therefore, we retrofitted our operating room simulator to be able to produce immersive auditory simulations with the use of typical sound sources encountered during surgeries. Then, we tested the hypothesis that anesthesia residents would perceive greater task load and fatigue while being given simulated lunch breaks in noisy environments rather than in quiet ones. As a secondary objective, we proposed and tested the plausibility of a novel psychometric instrument for the assessment of stress. In this simulation-based, randomized, repeated-measures, crossover study, 2 validated psychometric survey instruments, the NASA Task Load Index (NASA-TLX), composed of 6 items, and the Swedish Occupational Fatigue Inventory (SOFI), composed of 5 items, were used to assess perceived task load and fatigue, respectively, in first-year anesthesia residents. Residents completed the psychometric instruments after being given lunch breaks in quiet and noisy intraoperative environments (soundscapes). The effects of soundscape grouping on the psychometric instruments and their comprising items were analyzed with a split-plot analysis. A model for a new psychometric instrument for measuring stress that combines the NASA-TLX and SOFI instruments was proposed, and a factor analysis was performed on the collected data to determine the model's plausibility. Twenty residents participated in this study. Multivariate analysis of variance showed an effect of soundscape grouping on the combined NASA-TLX and SOFI instrument items (P = 0.003) and the comparisons of univariate item reached significance for the NASA Temporal

  14. Understanding and Counteracting Fatigue in Flight Crews

    NASA Technical Reports Server (NTRS)

    Mallis, Melissa; Neri, David; Rosekind, Mark; Gander, Philippa; Caldwell, John; Graeber, Curtis

    2007-01-01

    The materials included in the collection of documents describe the research of the NASA Ames Fatigue Countermeasures Group (FCG), which examines the extent to which fatigue, sleep loss, and circadian disruption affect flight-crew performance. The group was formed in 1980 in response to a Congressional request to examine a possible safety problem of uncertain magnitude due to transmeridian flying and a potential problem due to fatigue in association with various factors found in air-transport operations and was originally called the Fatigue/Jet Lag Program. The goals of the FCG are: (1) the development and evaluation of strategies for mitigating the effects of sleepiness and circadian disruption on pilot performance levels; (2) the identification and evaluation of objective approaches for the prediction of alertness changes in flight crews; and (3) the transfer and application of research results to the operational field via classes, workshops, and safety briefings. Some of the countermeasure approaches that have been identified to be scientifically valid and operationally relevant are brief naps (less than 40 min) in the cockpit seat and 7-min activity breaks, which include postural changes and ambulation. Although a video-based alertness monitor based on slow eyelid closure shows promise in other operational environments, research by the FCG has demonstrated that in its current form at the time of this reporting, it is not feasible to implement it in the cockpit. Efforts also focus on documenting the impact of untreated fatigue on various types of flight operations. For example, the FCG recently completed a major investigation into the effects of ultra-long-range flights (20 continuous hours in duration) on the alertness and performance of pilots in order to establish a baseline set of parameters against which the effectiveness of new ultra-long-range fatigue remedies can be judged.

  15. The effect of notches and pits on corrosion fatigue strength

    NASA Astrophysics Data System (ADS)

    Tatner, Ian

    An investigation has been undertaken to examine the fatigue behaviour of two martensitic steels in air and aggressive environments. The steels studied are, 18% Ni marageing steel and FV520B, the later being a stainless steel turbine blade material and the former being a marageing steel that suffers general corrosion in mild environments. Both steels were heat treated to give similar tensile strength.The design and manufacture of an autoclave allowed push-pull fatigue tests to be conducted in aggressive environments at elevated temperatures.Corrosion potential was monitored using a three electrode cell and was controlled during testing. Base-line fatigue tests were conducted with a range of constant corrosion potentials, using both notched and plain FV520B specimens. In addition fatigue tests with pulsed corrosion potential were performed to asses the effect of transient corrosion conditions on the corrosion fatigue strength. The pulsed tests were designed to simulate service transients in the oxygen content and general chemical hostility in the condensing steam environment during start-up and shut down of the steam turbine.Post test examination of fractured samples was performed using Scanning Electron Microscopy (SEM) and optical microscope techniques. The fractography results were used to quantify microstructural and fracture features of the steels.A model based on the size and geometry of the initial corrosion pitting has been proposed to asses the fatigue life of FV520B in an aggressive environment.The effect of pitting on the corrosion fatigue strength of FV520B has been modelled using linear elastic fracture mechanics (LEFM) type approach. The model has shown a good correlation between predicted fatigue lives with experimental results.The results suggest that the fatigue life is governed by the mechanical stress concentrating effect of the pits rather than the electrochemical damage caused by the environment.Finite Element Analysis (FEA) of the notch allowed

  16. Anti-fatigue activity of sea cucumber peptides prepared from Stichopus japonicus in an endurance swimming rat model.

    PubMed

    Ye, Jing; Shen, Caihong; Huang, Yayan; Zhang, Xueqin; Xiao, Meitian

    2017-10-01

    Sea cucumber (Stichopus japonicus) is a well-known nutritious and luxurious seafood in Asia which has attracted increasing attention because of its nutrition and bioactivities in recent years. In this study, the anti-fatigue activity of sea cucumber peptides (SCP) prepared from S. japonicus was evaluated in a load-induced endurance swimming model. The SCP prepared in this study was mainly made up of low-molecular-weight peptides (<2 kDa). The analysis result of amino acid composition revealed that SCP was rich in glycine, glutamic acid and proline. The endurance capability of rats to fatigue was significantly improved by SCP treatment. Meanwhile, the remarkable alterations of energy metabolic markers, antioxidant enzymes, antioxidant capacity and oxidative stress biomarkers were normalized. Moreover, administration of SCP could modulate alterations of inflammatory cytokines and downregulate the overexpression of TRL4 and NF-κB. SCP has anti-fatigue activity and it exerted its anti-fatigue effect probably through normalizing energy metabolism as well as alleviating oxidative damage and inflammatory responses. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Fatigue Analysis of Notched Laminates: A Time-Efficient Macro-Mechanical Approach

    NASA Technical Reports Server (NTRS)

    Naghipour, P.; Pineda, E. J.; Bednarcyk, B. A.; Arnold, S. M.; Waas, A. M.

    2016-01-01

    A coupled transversely isotropic deformation and damage fatigue model is implemented within the finite element method and was utilized along with a static progressive damage model to predict the fatigue life, stiffness degradation as a function of number of cycles, and post-fatigue tension and compression response of notched, multidirectional laminates. Initially, the material parameters for the fatigue model were obtained utilizing micromechanics simulations and the provided [0], [90] and [plus or minus 45] experimental composite laminate S-N (stress-cycle) data. Within the fatigue damage model, the transverse and shear properties of the plies were degraded with an isotropic scalar damage variable. The damage in the longitudinal (fiber) ply direction was suppressed, and only the strength of the fiber was degraded as a function of fatigue cycles. A maximum strain criterion was used to capture the failure in each element, and once this criterion was satisfied, the longitudinal stiffness of the element was decreased by a factor of 10 (sup 4). The resulting, degraded properties were then used to calculate the new stress state. This procedure was repeated until final failure of the composite laminate was achieved or a specified number of cycles reached. For post-fatigue tension and compression behavior, four internal state variables were used to control the damage and failure. The predictive capability of the above-mentioned approach was assessed by performing blind predictions of the notched multidirectional IM7/977-3 composite laminates response under fatigue and post-fatigue tensile and compressive loading, followed by a recalibration phase. Although three different multidirectional laminates were analyzed in the course of this study, only detailed results (i.e., stiffness degradation and post-fatigue stress-train curves as well as damage evolution states for a single laminate ([30/60/90/minus 30/minus 60] (sub 2s)) are discussed in detail here.

  18. Prediction of Fatigue Crack Growth in Rail Steels.

    DOT National Transportation Integrated Search

    1981-10-01

    Measures to prevent derailments due to fatigue failures of rails require adequate knowledge of the rate of propagation of fatigue cracks under service loading. The report presents a computational model for the prediction of crack growth in rails. The...

  19. Fatigue in the Presence of Corrosion (Fatigue sous corrosion)

    DTIC Science & Technology

    1999-03-01

    Fatigue Crack Growth Propagation of Aluminum Lithium cycle managers to safely delay repairs to a more appropriate Alloys " described the effect of... effects of service corrosion on fatigue lab tests with 2024 -T3, because 7178 life , if any, can be established in this was not available. However, we did not... life and the fatigue crack growth behavior of the cases where a structural member is the 2024 alloy was studied as well. stressed or fatigued

  20. External anal sphincter fatigue is not improved by N-acetylcysteine in an animal model.

    PubMed

    Healy, C F; McMorrow, C; O'Herlihy, C; O'Connell, P R; Jones, J F X

    2008-06-01

    Oxidative stress is associated with skeletal muscle fatigue. This study tests the hypotheses that N-acetylcysteine (NAC) reduces fatigue and accelerates recovery of the rat external anal sphincter (EAS). Fifteen female Wistar rats were killed humanely. The EAS was mounted as a ring preparation and electrically stimulated with 50 Hz trains of 200 ms in duration every 4 s for three and a half minutes. Three groups were analysed: a control group (n = 5), a group pretreated with NAC (10(-4) mol L(-1); n = 5) and a group pretreated with NAC (10(-3) mol L(-1); n = 5). A novel fatigue index was formulated and was compared to a conventional method of expressing fatigue. There was no significant difference at concentrations of NAC (10(-4) mol L(-1); P > 0.05). At high concentrations of NAC (10(-3) mol L(-1)) there was a significant depression in peak twitch amplitude before fatigue (P = 0.04). N-acetylcysteine in both concentrations used, did not alter fatigue or recovery of the rat EAS. There was a significant positive correlation between the two methods of expressing fatigue but the conventional method produced a higher fatigue index (22.4% on average). N-acetylcysteine does not ameliorate fatigue or accelerate recovery of the EAS and may not be a useful medical therapy for faecal incontinence.