Many PCR-based methods for microbial source tracking (MST) have been developed and validated within individual research laboratories. Inter-laboratory validation of these methods, however, has been minimal, and the effects of protocol standardization regimes have not been thor...
Liu, Jia; Guo, Jinchao; Zhang, Haibo; Li, Ning; Yang, Litao; Zhang, Dabing
2009-11-25
Various polymerase chain reaction (PCR) methods were developed for the execution of genetically modified organism (GMO) labeling policies, of which an event-specific PCR detection method based on the flanking sequence of exogenous integration is the primary trend in GMO detection due to its high specificity. In this study, the 5' and 3' flanking sequences of the exogenous integration of MON89788 soybean were revealed by thermal asymmetric interlaced PCR. The event-specific PCR primers and TaqMan probe were designed based upon the revealed 5' flanking sequence, and the qualitative and quantitative PCR assays were established employing these designed primers and probes. In qualitative PCR, the limit of detection (LOD) was about 0.01 ng of genomic DNA corresponding to 10 copies of haploid soybean genomic DNA. In the quantitative PCR assay, the LOD was as low as two haploid genome copies, and the limit of quantification was five haploid genome copies. Furthermore, the developed PCR methods were in-house validated by five researchers, and the validated results indicated that the developed event-specific PCR methods can be used for identification and quantification of MON89788 soybean and its derivates.
MRPrimer: a MapReduce-based method for the thorough design of valid and ranked primers for PCR
Kim, Hyerin; Kang, NaNa; Chon, Kang-Wook; Kim, Seonho; Lee, NaHye; Koo, JaeHyung; Kim, Min-Soo
2015-01-01
Primer design is a fundamental technique that is widely used for polymerase chain reaction (PCR). Although many methods have been proposed for primer design, they require a great deal of manual effort to generate feasible and valid primers, including homology tests on off-target sequences using BLAST-like tools. That approach is inconvenient for many target sequences of quantitative PCR (qPCR) due to considering the same stringent and allele-invariant constraints. To address this issue, we propose an entirely new method called MRPrimer that can design all feasible and valid primer pairs existing in a DNA database at once, while simultaneously checking a multitude of filtering constraints and validating primer specificity. Furthermore, MRPrimer suggests the best primer pair for each target sequence, based on a ranking method. Through qPCR analysis using 343 primer pairs and the corresponding sequencing and comparative analyses, we showed that the primer pairs designed by MRPrimer are very stable and effective for qPCR. In addition, MRPrimer is computationally efficient and scalable and therefore useful for quickly constructing an entire collection of feasible and valid primers for frequently updated databases like RefSeq. Furthermore, we suggest that MRPrimer can be utilized conveniently for experiments requiring primer design, especially real-time qPCR. PMID:26109350
MRPrimer: a MapReduce-based method for the thorough design of valid and ranked primers for PCR.
Kim, Hyerin; Kang, NaNa; Chon, Kang-Wook; Kim, Seonho; Lee, NaHye; Koo, JaeHyung; Kim, Min-Soo
2015-11-16
Primer design is a fundamental technique that is widely used for polymerase chain reaction (PCR). Although many methods have been proposed for primer design, they require a great deal of manual effort to generate feasible and valid primers, including homology tests on off-target sequences using BLAST-like tools. That approach is inconvenient for many target sequences of quantitative PCR (qPCR) due to considering the same stringent and allele-invariant constraints. To address this issue, we propose an entirely new method called MRPrimer that can design all feasible and valid primer pairs existing in a DNA database at once, while simultaneously checking a multitude of filtering constraints and validating primer specificity. Furthermore, MRPrimer suggests the best primer pair for each target sequence, based on a ranking method. Through qPCR analysis using 343 primer pairs and the corresponding sequencing and comparative analyses, we showed that the primer pairs designed by MRPrimer are very stable and effective for qPCR. In addition, MRPrimer is computationally efficient and scalable and therefore useful for quickly constructing an entire collection of feasible and valid primers for frequently updated databases like RefSeq. Furthermore, we suggest that MRPrimer can be utilized conveniently for experiments requiring primer design, especially real-time qPCR. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Yamaguti, M.; Muller, E.E.; Piffer, A.I.; Kich, J.D.; Klein, C.S.; Kuchiishi, S.S.
2008-01-01
Since Mycoplasma hyopneumoniae isolation in appropriate media is a difficult task and impractical for daily routine diagnostics, Nested-PCR (N-PCR) techniques are currently used to improve the direct diagnostic sensitivity of Swine Enzootic Pneumonia. In a first experiment, this paper describes a N-PCR technique optimization based on three variables: different sampling sites, sample transport media, and DNA extraction methods, using eight pigs. Based on the optimization results, a second experiment was conducted for testing validity using 40 animals. In conclusion, the obtained results of the N-PCR optimization and validation allow us to recommend this test as a routine monitoring diagnostic method for Mycoplasma hyopneumoniae infection in swine herds. PMID:24031248
Jiang, Lingxi; Yang, Litao; Rao, Jun; Guo, Jinchao; Wang, Shu; Liu, Jia; Lee, Seonghun; Zhang, Dabing
2010-02-01
To implement genetically modified organism (GMO) labeling regulations, an event-specific analysis method based on the junction sequence between exogenous integration and host genomic DNA has become the preferential approach for GMO identification and quantification. In this study, specific primers and TaqMan probes based on the revealed 5'-end junction sequence of GM cotton MON15985 were designed, and qualitative and quantitative polymerase chain reaction (PCR) assays were established employing the designed primers and probes. In the qualitative PCR assay, the limit of detection (LOD) was 0.5 g kg(-1) in 100 ng total cotton genomic DNA, corresponding to about 17 copies of haploid cotton genomic DNA, and the LOD and limit of quantification (LOQ) for quantitative PCR assay were 10 and 17 copies of haploid cotton genomic DNA, respectively. Furthermore, the developed quantitative PCR assays were validated in-house by five different researchers. Also, five practical samples with known GM contents were quantified using the developed PCR assay in in-house validation, and the bias between the true and quantification values ranged from 2.06% to 12.59%. This study shows that the developed qualitative and quantitative PCR methods are applicable for the identification and quantification of GM cotton MON15985 and its derivates.
Mano, Junichi; Masubuchi, Tomoko; Hatano, Shuko; Futo, Satoshi; Koiwa, Tomohiro; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Takabatake, Reona; Kitta, Kazumi
2013-01-01
In this article, we report a novel real-time PCR-based analytical method for quantitation of the GM maize event LY038. We designed LY038-specific and maize endogenous reference DNA-specific PCR amplifications. After confirming the specificity and linearity of the LY038-specific PCR amplification, we determined the conversion factor required to calculate the weight-based content of GM organism (GMO) in a multilaboratory evaluation. Finally, in order to validate the developed method, an interlaboratory collaborative trial according to the internationally harmonized guidelines was performed with blind DNA samples containing LY038 at the mixing levels of 0, 0.5, 1.0, 5.0 and 10.0%. The precision of the method was evaluated as the RSD of reproducibility (RSDR), and the values obtained were all less than 25%. The limit of quantitation of the method was judged to be 0.5% based on the definition of ISO 24276 guideline. The results from the collaborative trial suggested that the developed quantitative method would be suitable for practical testing of LY038 maize.
English, Sangeeta B.; Shih, Shou-Ching; Ramoni, Marco F.; Smith, Lois E.; Butte, Atul J.
2014-01-01
Though genome-wide technologies, such as microarrays, are widely used, data from these methods are considered noisy; there is still varied success in downstream biological validation. We report a method that increases the likelihood of successfully validating microarray findings using real time RT-PCR, including genes at low expression levels and with small differences. We use a Bayesian network to identify the most relevant sources of noise based on the successes and failures in validation for an initial set of selected genes, and then improve our subsequent selection of genes for validation based on eliminating these sources of noise. The network displays the significant sources of noise in an experiment, and scores the likelihood of validation for every gene. We show how the method can significantly increase validation success rates. In conclusion, in this study, we have successfully added a new automated step to determine the contributory sources of noise that determine successful or unsuccessful downstream biological validation. PMID:18790084
Trotta, Michele; Schönhuth, Susana; Pepe, Tiziana; Cortesi, M Luisa; Puyet, Antonio; Bautista, José M
2005-03-23
Mitochondrial 16S rRNA sequences from morphological validated grouper (Epinephelus aeneus, E. caninus, E. costae, and E. marginatus; Mycteroperca fusca and M. rubra), Nile perch (Lates niloticus), and wreck fish (Polyprion americanus) were used to develop an analytical system for group diagnosis based on two alternative Polymerase Chain Reaction (PCR) approaches. The first includes conventional multiplex PCR in which electrophoretic migration of different sizes of bands allowed identification of the fish species. The second approach, involving real-time PCR, produced a single amplicon from each species that showed different Tm values allowing the fish groups to be directly identified. Real-time PCR allows the quick differential diagnosis of the three groups of species and high-throughput screening of multiple samples. Neither PCR system cross-reacted with DNA samples from 41 common marketed fish species, thus conforming to standards for species validation. The use of these two PCR-based methods makes it now possible to discriminate grouper from substitute fish species.
De Spiegelaere, Ward; Malatinkova, Eva; Lynch, Lindsay; Van Nieuwerburgh, Filip; Messiaen, Peter; O'Doherty, Una; Vandekerckhove, Linos
2014-06-01
Quantification of integrated proviral HIV DNA by repetitive-sampling Alu-HIV PCR is a candidate virological tool to monitor the HIV reservoir in patients. However, the experimental procedures and data analysis of the assay are complex and hinder its widespread use. Here, we provide an improved and simplified data analysis method by adopting binomial and Poisson statistics. A modified analysis method on the basis of Poisson statistics was used to analyze the binomial data of positive and negative reactions from a 42-replicate Alu-HIV PCR by use of dilutions of an integration standard and on samples of 57 HIV-infected patients. Results were compared with the quantitative output of the previously described Alu-HIV PCR method. Poisson-based quantification of the Alu-HIV PCR was linearly correlated with the standard dilution series, indicating that absolute quantification with the Poisson method is a valid alternative for data analysis of repetitive-sampling Alu-HIV PCR data. Quantitative outputs of patient samples assessed by the Poisson method correlated with the previously described Alu-HIV PCR analysis, indicating that this method is a valid alternative for quantifying integrated HIV DNA. Poisson-based analysis of the Alu-HIV PCR data enables absolute quantification without the need of a standard dilution curve. Implementation of the CI estimation permits improved qualitative analysis of the data and provides a statistical basis for the required minimal number of technical replicates. © 2014 The American Association for Clinical Chemistry.
European validation of Real-Time PCR method for detection of Salmonella spp. in pork meat.
Delibato, Elisabetta; Rodriguez-Lazaro, David; Gianfranceschi, Monica; De Cesare, Alessandra; Comin, Damiano; Gattuso, Antonietta; Hernandez, Marta; Sonnessa, Michele; Pasquali, Frédérique; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Prukner-Radovcic, Estella; Horvatek Tomic, Danijela; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John E; Chemaly, Marianne; Le Gall, Francoise; González-García, Patricia; Lettini, Antonia Anna; Lukac, Maja; Quesne, Segolénè; Zampieron, Claudia; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Proroga, Yolande T R; Capuano, Federico; Manfreda, Gerardo; De Medici, Dario
2014-08-01
The classical microbiological method for detection of Salmonella spp. requires more than five days for final confirmation, and consequently there is a need for an alternative methodology for detection of this pathogen particularly in those food categories with a short shelf-life. This study presents an international (at European level) ISO 16140-based validation study of a non-proprietary Real-Time PCR-based method that can generate final results the day following sample analysis. It is based on an ISO compatible enrichment coupled to an easy and inexpensive DNA extraction and a consolidated Real-Time PCR assay. Thirteen laboratories from seven European Countries participated to this trial, and pork meat was selected as food model. The limit of detection observed was down to 10 CFU per 25 g of sample, showing excellent concordance and accordance values between samples and laboratories (100%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (100%) when the results obtained for the Real-Time PCR-based methods were compared to those of the ISO 6579:2002 standard method. The results of this international trial demonstrate that the evaluated Real-Time PCR-based method represents an excellent alternative to the ISO standard. In fact, it shows an equal and solid performance as well as it reduces dramatically the extent of the analytical process, and can be easily implemented routinely by the Competent Authorities and Food Industry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.
Grelewska-Nowotko, Katarzyna; Żurawska-Zajfert, Magdalena; Żmijewska, Ewelina; Sowa, Sławomir
2018-05-01
In recent years, digital polymerase chain reaction (dPCR), a new molecular biology technique, has been gaining in popularity. Among many other applications, this technique can also be used for the detection and quantification of genetically modified organisms (GMOs) in food and feed. It might replace the currently widely used real-time PCR method (qPCR), by overcoming problems related to the PCR inhibition and the requirement of certified reference materials to be used as a calibrant. In theory, validated qPCR methods can be easily transferred to the dPCR platform. However, optimization of the PCR conditions might be necessary. In this study, we report the transfer of two validated qPCR methods for quantification of maize DAS1507 and NK603 events to the droplet dPCR (ddPCR) platform. After some optimization, both methods have been verified according to the guidance of the European Network of GMO Laboratories (ENGL) on analytical method verification (ENGL working group on "Method Verification." (2011) Verification of Analytical Methods for GMO Testing When Implementing Interlaboratory Validated Methods). Digital PCR methods performed equally or better than the qPCR methods. Optimized ddPCR methods confirm their suitability for GMO determination in food and feed.
Gianfranceschi, Monica Virginia; Rodriguez-Lazaro, David; Hernandez, Marta; González-García, Patricia; Comin, Damiano; Gattuso, Antonietta; Delibato, Elisabetta; Sonnessa, Michele; Pasquali, Frederique; Prencipe, Vincenza; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Kozačinski, Lidija; Tomic, Danijela Horvatek; Zdolec, Nevijo; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John Elmerdahl; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Paiusco, Antonella; De Cesare, Alessandra; Manfreda, Gerardo; De Medici, Dario
2014-08-01
The classical microbiological method for detection of Listeria monocytogenes requires around 7 days for final confirmation, and due to perishable nature of RTE food products, there is a clear need for an alternative methodology for detection of this pathogen. This study presents an international (at European level) ISO 16140-based validation trial of a non-proprietary real-time PCR-based methodology that can generate final results in the following day of the analysis. This methodology is based on an ISO compatible enrichment coupled to a bacterial DNA extraction and a consolidated real-time PCR assay. Twelve laboratories from six European countries participated in this trial, and soft cheese was selected as food model since it can represent a difficult matrix for the bacterial DNA extraction and real-time PCR amplification. The limit of detection observed was down to 10 CFU per 25 of sample, showing excellent concordance and accordance values between samples and laboratories (>75%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (82.75%, 96.70% and 97.62%, respectively) when the results obtained for the real-time PCR-based methods were compared to those of the ISO 11290-1 standard method. An interesting observation was that the L. monocytogenes detection by the real-time PCR method was less affected in the presence of Listeria innocua in the contaminated samples, proving therefore to be more reliable than the reference method. The results of this international trial demonstrate that the evaluated real-time PCR-based method represents an excellent alterative to the ISO standard since it shows a higher performance as well as reduce the extent of the analytical process, and can be easily implemented routinely by the competent authorities and food industry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.
Carloni, Elisa; Amagliani, Giulia; Omiccioli, Enrica; Ceppetelli, Veronica; Del Mastro, Michele; Rotundo, Luca; Brandi, Giorgio; Magnani, Mauro
2017-06-01
Pasta is the Italian product par excellence and it is now popular worldwide. Pasta of a superior quality is made with pure durum wheat. In Italy, addition of Triticum aestivum (common wheat) during manufacturing is not allowed and, without adequate labeling, its presence is considered an adulteration. PCR-related techniques can be employed for the detection of common wheat contaminations. In this work, we demonstrated that a previously published method for the detection of T. aestivum, based on the gliadin gene, is inadequate. Moreover, a new molecular method, based on DNA extraction from semolina and real-time PCR determination of T. aestivum in Triticum spp., was validated. This multiplex real-time PCR, based on the dual-labeled probe strategy, guarantees target detection specificity and sensitivity in a short period of time. Moreover, the molecular analysis of common wheat contamination in commercial wheat and flours is described for the first time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kagkli, Dafni-Maria; Weber, Thomas P.; Van den Bulcke, Marc; Folloni, Silvia; Tozzoli, Rosangela; Morabito, Stefano; Ermolli, Monica; Gribaldo, Laura; Van den Eede, Guy
2011-01-01
European Commission regulation 2073/2005 on the microbiological criteria for food requires that Escherichia coli is monitored as an indicator of hygienic conditions. Since verocytotoxigenic E. coli (VTEC) strains often cause food-borne infections by the consumption of raw food, the Biological Hazards (BIOHAZ) panel of the European Food Safety Authority (EFSA) recommended their monitoring in food as well. In particular, VTEC strains belonging to serogroups such as O26, O103, O111, O145, and O157 are known causative agents of several human outbreaks. Eight real-time PCR methods for the detection of E. coli toxin genes and their variants (stx1, stx2), the intimin gene (eae), and five serogroup-specific genes have been proposed by the European Reference Laboratory for VTEC (EURL-VTEC) as a technical specification to the European Normalization Committee (CEN TC275/WG6). Here we applied a “modular approach” to the in-house validation of these PCR methods. The modular approach subdivides an analytical process into separate parts called “modules,” which are independently validated based on method performance criteria for a limited set of critical parameters. For the VTEC real-time PCR module, the following parameters are being assessed: specificity, dynamic range, PCR efficiency, and limit of detection (LOD). This study describes the modular approach for the validation of PCR methods to be used in food microbiology, using single-target plasmids as positive controls and showing their applicability with food matrices. PMID:21856838
[Detection of KRAS mutation in colorectal cancer patients' cfDNA with droplet digital PCR].
Luo, Yuwen; Li, Yao
2018-03-25
This study aims to develop a new method for the detection of KRAS mutations related to colorectal cancer in cfDNA, and to evaluate the sensitivity and accuracy of the detection. We designed a method of cfDNA based KRAS detection by droplets digital PCR (ddPCR). The theoretical performance of the method is evaluated by reference standard and compared to the ARMS PCR method. Two methods, ddPCR and qPCR, were successfully established to detect KRAS wild type and 7 mutants. Both methods were validated using plasmid standards and actual samples. The results were evaluated by false positive rate, linearity, and limit of detection. Finally, 52 plasma cfDNA samples from patients and 20 samples from healthy people were tested, the clinical sensitivity is 97.64%, clinical specificity is 81.43%. ddPCR method shows higher performance than qPCR. The LOD of ddPCR method reached single digits of cfDNA copies, it can detect as low as 0.01% to 0.04% mutation abundance.
Operational Evaluation of the Rapid Viability PCR Method for ...
Journal Article This research work has a significant impact on the use of the RV-PCR method to analyze post-decontamination environmental samples during an anthrax event. The method has shown 98% agreement with the traditional culture based method. With such a success, this method, upon validation, will significantly increase the laboratory throughput/capacity to analyze a large number of anthrax event samples in a relatively short time.
Grohmann, Lutz; Brünen-Nieweler, Claudia; Nemeth, Anne; Waiblinger, Hans-Ulrich
2009-10-14
Polymerase Chain Reaction (PCR)-based screening methods targeting genetic elements commonly used in genetically modified (GM) plants are important tools for the detection of GM materials in food, feed, and seed samples. To expand and harmonize the screening capability of enforcement laboratories, the German Federal Office of Consumer Protection and Food Safety conducted collaborative trials for interlaboratory validation of real-time PCR methods for detection of the phosphinothricin acetyltransferase (bar) gene from Streptomyces hygroscopicus and a construct containing the 5-enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens sp. strain CP4 (ctp2-cp4epsps), respectively. To assess the limit of detection, precision, and accuracy of the methods, laboratories had to analyze two sets of 18 coded genomic DNA samples of events LLRice62 and MS8 with the bar method and NK603 and GT73 with the ctp2-cp4epsps method at analyte levels of 0, 0.02, and 0.1% GM content, respectively. In addition, standard DNAs were provided to the laboratories to generate calibration curves for copy number quantification of the bar and ctp2-cp4epsps target sequences present in the test samples. The study design and the results obtained are discussed with respect to the difficult issue of developing general guidelines and concepts for the collaborative trial validation of qualitative PCR screening methods.
Real-Time PCR Method for Detection of Salmonella spp. in Environmental Samples.
Kasturi, Kuppuswamy N; Drgon, Tomas
2017-07-15
The methods currently used for detecting Salmonella in environmental samples require 2 days to produce results and have limited sensitivity. Here, we describe the development and validation of a real-time PCR Salmonella screening method that produces results in 18 to 24 h. Primers and probes specific to the gene invA , group D, and Salmonella enterica serovar Enteritidis organisms were designed and evaluated for inclusivity and exclusivity using a panel of 329 Salmonella isolates representing 126 serovars and 22 non- Salmonella organisms. The invA - and group D-specific sets identified all the isolates accurately. The PCR method had 100% inclusivity and detected 1 to 2 copies of Salmonella DNA per reaction. Primers specific for Salmonella -differentiating fragment 1 (Sdf-1) in conjunction with the group D set had 100% inclusivity for 32 S Enteritidis isolates and 100% exclusivity for the 297 non-Enteritidis Salmonella isolates. Single-laboratory validation performed on 1,741 environmental samples demonstrated that the PCR method detected 55% more positives than the V itek i mmuno d iagnostic a ssay s ystem (VIDAS) method. The PCR results correlated well with the culture results, and the method did not report any false-negative results. The receiver operating characteristic (ROC) analysis documented excellent agreement between the results from the culture and PCR methods (area under the curve, 0.90; 95% confidence interval of 0.76 to 1.0) confirming the validity of the PCR method. IMPORTANCE This validated PCR method detects 55% more positives for Salmonella in half the time required for the reference method, VIDAS. The validated PCR method will help to strengthen public health efforts through rapid screening of Salmonella spp. in environmental samples.
Real-Time PCR Method for Detection of Salmonella spp. in Environmental Samples
Drgon, Tomas
2017-01-01
ABSTRACT The methods currently used for detecting Salmonella in environmental samples require 2 days to produce results and have limited sensitivity. Here, we describe the development and validation of a real-time PCR Salmonella screening method that produces results in 18 to 24 h. Primers and probes specific to the gene invA, group D, and Salmonella enterica serovar Enteritidis organisms were designed and evaluated for inclusivity and exclusivity using a panel of 329 Salmonella isolates representing 126 serovars and 22 non-Salmonella organisms. The invA- and group D-specific sets identified all the isolates accurately. The PCR method had 100% inclusivity and detected 1 to 2 copies of Salmonella DNA per reaction. Primers specific for Salmonella-differentiating fragment 1 (Sdf-1) in conjunction with the group D set had 100% inclusivity for 32 S. Enteritidis isolates and 100% exclusivity for the 297 non-Enteritidis Salmonella isolates. Single-laboratory validation performed on 1,741 environmental samples demonstrated that the PCR method detected 55% more positives than the Vitek immunodiagnostic assay system (VIDAS) method. The PCR results correlated well with the culture results, and the method did not report any false-negative results. The receiver operating characteristic (ROC) analysis documented excellent agreement between the results from the culture and PCR methods (area under the curve, 0.90; 95% confidence interval of 0.76 to 1.0) confirming the validity of the PCR method. IMPORTANCE This validated PCR method detects 55% more positives for Salmonella in half the time required for the reference method, VIDAS. The validated PCR method will help to strengthen public health efforts through rapid screening of Salmonella spp. in environmental samples. PMID:28500041
Baume, M; Garrelly, L; Facon, J P; Bouton, S; Fraisse, P O; Yardin, C; Reyrolle, M; Jarraud, S
2013-06-01
The characterization and certification of a Legionella DNA quantitative reference material as a primary measurement standard for Legionella qPCR. Twelve laboratories participated in a collaborative certification campaign. A candidate reference DNA material was analysed through PCR-based limiting dilution assays (LDAs). The validated data were used to statistically assign both a reference value and an associated uncertainty to the reference material. This LDA method allowed for the direct quantification of the amount of Legionella DNA per tube in genomic units (GU) and the determination of the associated uncertainties. This method could be used for the certification of all types of microbiological standards for qPCR. The use of this primary standard will improve the accuracy of Legionella qPCR measurements and the overall consistency of these measurements among different laboratories. The extensive use of this certified reference material (CRM) has been integrated in the French standard NF T90-471 (April 2010) and in the ISO Technical Specification 12 869 (Anon 2012 International Standardisation Organisation) for validating qPCR methods and ensuring the reliability of these methods. © 2013 The Society for Applied Microbiology.
Zhu, Pengyu; Fu, Wei; Wang, Chenguang; Du, Zhixin; Huang, Kunlun; Zhu, Shuifang; Xu, Wentao
2016-04-15
The possibility of the absolute quantitation of GMO events by digital PCR was recently reported. However, most absolute quantitation methods based on the digital PCR required pretreatment steps. Meanwhile, singleplex detection could not meet the demand of the absolute quantitation of GMO events that is based on the ratio of foreign fragments and reference genes. Thus, to promote the absolute quantitative detection of different GMO events by digital PCR, we developed a quantitative detection method based on duplex digital PCR without pretreatment. Moreover, we tested 7 GMO events in our study to evaluate the fitness of our method. The optimized combination of foreign and reference primers, limit of quantitation (LOQ), limit of detection (LOD) and specificity were validated. The results showed that the LOQ of our method for different GMO events was 0.5%, while the LOD is 0.1%. Additionally, we found that duplex digital PCR could achieve the detection results with lower RSD compared with singleplex digital PCR. In summary, the duplex digital PCR detection system is a simple and stable way to achieve the absolute quantitation of different GMO events. Moreover, the LOQ and LOD indicated that this method is suitable for the daily detection and quantitation of GMO events. Copyright © 2016 Elsevier B.V. All rights reserved.
Technical Approach A technology review on the status of MBTs was performed at the beginning of the project to determine MBT use in other industries. The review focused project goals and activities, which included: 1) Comparing qPCR to non-PCR-based enumeration methods to valid...
Fredholm, Daniel V; Coleman, James K; Childress, April L; Wellehan, James F X
2015-03-01
Agamid adenovirus 1 (AgAdv-1) is a significant cause of disease in bearded dragons (Pogona sp.). Clinical manifestations of AgAdv-1 infection are variable and often nonspecific; the manifestations range from lethargy, weight loss, and inappetence, to severe enteritis, hepatitis, and sudden death. Currently, diagnosis of AgAdv-1 infection is achieved through a single published method: standard nested polymerase chain reaction (nPCR) and sequencing. Standard nPCR with sequencing provides reliable sensitivity, specificity, and validation of PCR products. However, this process is comparatively expensive, laborious, and slow. Probe hybridization, as used in a TaqMan assay, represents the best option for validating PCR products aside from the time-consuming process of sequencing. This study developed a real-time PCR (qPCR) assay using a TaqMan probe-based assay, targeting a highly conserved region of the AgAdv-1 genome. Standard curves were generated, detection results were compared with the gold standard conventional PCR and sequencing assay, and limits of detection were determined. Additionally, the qPCR assay was run on samples known to be positive for AgAdv-1 and samples known to be positive for other adenoviruses. Based on the results of these evaluations, this assay allows for a less expensive, rapid, quantitative detection of AgAdv-1 in bearded dragons. © 2015 The Author(s).
Xu, Yuanxin; Theobald, Valerie; Sung, Crystal; DePalma, Kathleen; Atwater, Laura; Seiger, Keirsten; Perricone, Michael A; Richards, Susan M
2008-01-01
Background HLA-A2 tetramer flow cytometry, IFNγ real time RT-PCR and IFNγ ELISPOT assays are commonly used as surrogate immunological endpoints for cancer immunotherapy. While these are often used as research assays to assess patient's immunologic response, assay validation is necessary to ensure reliable and reproducible results and enable more accurate data interpretation. Here we describe a rigorous validation approach for each of these assays prior to their use for clinical sample analysis. Methods Standard operating procedures for each assay were established. HLA-A2 (A*0201) tetramer assay specific for gp100209(210M) and MART-126–35(27L), IFNγ real time RT-PCR and ELISPOT methods were validated using tumor infiltrating lymphocyte cell lines (TIL) isolated from HLA-A2 melanoma patients. TIL cells, specific for gp100 (TIL 1520) or MART-1 (TIL 1143 and TIL1235), were used alone or spiked into cryopreserved HLA-A2 PBMC from healthy subjects. TIL/PBMC were stimulated with peptides (gp100209, gp100pool, MART-127–35, or influenza-M1 and negative control peptide HIV) to further assess assay performance characteristics for real time RT-PCR and ELISPOT methods. Validation parameters included specificity, accuracy, precision, linearity of dilution, limit of detection (LOD) and limit of quantification (LOQ). In addition, distribution was established in normal HLA-A2 PBMC samples. Reference ranges for assay controls were established. Results The validation process demonstrated that the HLA-A2 tetramer, IFNγ real time RT-PCR, and IFNγ ELISPOT were highly specific for each antigen, with minimal cross-reactivity between gp100 and MelanA/MART-1. The assays were sensitive; detection could be achieved at as few as 1/4545–1/6667 cells by tetramer analysis, 1/50,000 cells by real time RT-PCR, and 1/10,000–1/20,000 by ELISPOT. The assays met criteria for precision with %CV < 20% (except ELISPOT using high PBMC numbers with %CV < 25%) although flow cytometric assays and cell based functional assays are known to have high assay variability. Most importantly, assays were demonstrated to be effective for their intended use. A positive IFNγ response (by RT-PCR and ELISPOT) to gp100 was demonstrated in PBMC from 3 melanoma patients. Another patient showed a positive MART-1 response measured by all 3 validated methods. Conclusion Our results demonstrated the tetramer flow cytometry assay, IFNγ real-time RT-PCR, and INFγ ELISPOT met validation criteria. Validation approaches provide a guide for others in the field to validate these and other similar assays for assessment of patient T cell response. These methods can be applied not only to cancer vaccines but to other therapeutic proteins as part of immunogenicity and safety analyses. PMID:18945350
Marino, Anna Maria Fausta; Percipalle, Maurizio; Giunta, Renato Paolo; Salvaggio, Antonio; Caracappa, Giulia; Alfonzetti, Tiziana; Aparo, Alessandra; Reale, Stefano
2017-03-01
We report a rapid and reliable method for the detection of Toxoplasma gondii in meat and animal tissues based on real-time polymerase chain reaction (PCR). Samples were collected from cattle, small ruminants, horses, and pigs raised or imported into Sicily, Italy. All DNA preparations were assayed by real-time PCR tests targeted to a 98-bp long fragment in the AF 529-bp repeat element and to the B1 gene using specific primers. Diagnostic sensitivity (100%), diagnostic specificity (100%), limit of detection (0.01 pg), efficiency (92-109%), and precision (mean coefficient of variation = 0.60%), repeatability (100%), reproducibility (100%), and robustness were evaluated using 240 DNA extracted samples (120 positives and 120 negative as per the OIE nested PCR method) from different matrices. Positive results were confirmed by the repetition of both real-time and nested PCR assays. Our study demonstrates the viability of a reliable, rapid, and specific real-time PCR on a large scale to monitor contamination with Toxoplasma cysts in meat and animal specimens. This validated method can be used for postmortem detection in domestic and wild animals and for food safety purposes.
Khalafalla, Abdelmalik I; Al-Busada, Khalid A; El-Sabagh, Ibrahim M
2015-07-07
Pox and pox-like diseases of camels are a group of exanthematous skin conditions that have become increasingly important economically. Three distinct viruses may cause them: camelpox virus (CMLV), camel parapox virus (CPPV) and camelus dromedary papilloma virus (CdPV). These diseases are often difficult to differentiate based on clinical presentation in disease outbreaks. Molecular methods such as PCR targeting species-specific genes have been developed and used to identify these diseases, but not simultaneously in a single tube. Recently, multiplex PCR has gained reputation as a convenient diagnostic method with cost-and timesaving benefits. In the present communication, we describe the development, optimization and validation of a multiplex PCR assay able to detect simultaneously the genome of the three viruses in one single test allowing for rapid and efficient molecular diagnosis. The assay was developed based on the evaluation and combination of published and new primer sets and was validated with viral genomic DNA extracted from known virus strains (n = 14) and DNA extracted from homogenized clinical skin specimens (n = 86). The assay detects correctly the target pathogens by amplification of targeted genes, even in case of co-infection. The method showed high sensitivity, and the specificity was confirmed by PCR-product sequencing. This assay provide rapid, sensitive and specific method for identifying three important viruses in specimens collected from dromedary camels with varying clinical presentations.
Comprehensive GMO detection using real-time PCR array: single-laboratory validation.
Mano, Junichi; Harada, Mioko; Takabatake, Reona; Furui, Satoshi; Kitta, Kazumi; Nakamura, Kosuke; Akiyama, Hiroshi; Teshima, Reiko; Noritake, Hiromichi; Hatano, Shuko; Futo, Satoshi; Minegishi, Yasutaka; Iizuka, Tayoshi
2012-01-01
We have developed a real-time PCR array method to comprehensively detect genetically modified (GM) organisms. In the method, genomic DNA extracted from an agricultural product is analyzed using various qualitative real-time PCR assays on a 96-well PCR plate, targeting for individual GM events, recombinant DNA (r-DNA) segments, taxon-specific DNAs, and donor organisms of the respective r-DNAs. In this article, we report the single-laboratory validation of both DNA extraction methods and component PCR assays constituting the real-time PCR array. We selected some DNA extraction methods for specified plant matrixes, i.e., maize flour, soybean flour, and ground canola seeds, then evaluated the DNA quantity, DNA fragmentation, and PCR inhibition of the resultant DNA extracts. For the component PCR assays, we evaluated the specificity and LOD. All DNA extraction methods and component PCR assays satisfied the criteria set on the basis of previous reports.
Shimizu, Eri; Kato, Hisashi; Nakagawa, Yuki; Kodama, Takashi; Futo, Satoshi; Minegishi, Yasutaka; Watanabe, Takahiro; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi
2008-07-23
A novel type of quantitative competitive polymerase chain reaction (QC-PCR) system for the detection and quantification of the Roundup Ready soybean (RRS) was developed. This system was designed based on the advantage of a fully validated real-time PCR method used for the quantification of RRS in Japan. A plasmid was constructed as a competitor plasmid for the detection and quantification of genetically modified soy, RRS. The plasmid contained the construct-specific sequence of RRS and the taxon-specific sequence of lectin1 (Le1), and both had 21 bp oligonucleotide insertion in the sequences. The plasmid DNA was used as a reference molecule instead of ground seeds, which enabled us to precisely and stably adjust the copy number of targets. The present study demonstrated that the novel plasmid-based QC-PCR method could be a simple and feasible alternative to the real-time PCR method used for the quantification of genetically modified organism contents.
Mehle, Nataša; Dobnik, David; Ravnikar, Maja; Pompe Novak, Maruša
2018-05-03
RNA viruses have a great potential for high genetic variability and rapid evolution that is generated by mutation and recombination under selection pressure. This is also the case of Potato virus Y (PVY), which comprises a high diversity of different recombinant and non-recombinant strains. Consequently, it is hard to develop reverse transcription real-time quantitative PCR (RT-qPCR) with the same amplification efficiencies for all PVY strains which would enable their equilibrate quantification; this is specially needed in mixed infections and other studies of pathogenesis. To achieve this, we initially transferred the PVY universal RT-qPCR assay to a reverse transcription droplet digital PCR (RT-ddPCR) format. RT-ddPCR is an absolute quantification method, where a calibration curve is not needed, and it is less prone to inhibitors. The RT-ddPCR developed and validated in this study achieved a dynamic range of quantification over five orders of magnitude, and in terms of its sensitivity, it was comparable to, or even better than, RT-qPCR. RT-ddPCR showed lower measurement variability. We have shown that RT-ddPCR can be used as a reference tool for the evaluation of different RT-qPCR assays. In addition, it can be used for quantification of RNA based on in-house reference materials that can then be used as calibrators in diagnostic laboratories.
Eisenberg, Dan T A; Kuzawa, Christopher W; Hayes, M Geoffrey
2015-01-01
Telomere length (TL) is commonly measured using quantitative PCR (qPCR). Although, easier than the southern blot of terminal restriction fragments (TRF) TL measurement method, one drawback of qPCR is that it introduces greater measurement error and thus reduces the statistical power of analyses. To address a potential source of measurement error, we consider the effect of well position on qPCR TL measurements. qPCR TL data from 3,638 people run on a Bio-Rad iCycler iQ are reanalyzed here. To evaluate measurement validity, correspondence with TRF, age, and between mother and offspring are examined. First, we present evidence for systematic variation in qPCR TL measurements in relation to thermocycler well position. Controlling for these well-position effects consistently improves measurement validity and yields estimated improvements in statistical power equivalent to increasing sample sizes by 16%. We additionally evaluated the linearity of the relationships between telomere and single copy gene control amplicons and between qPCR and TRF measures. We find that, unlike some previous reports, our data exhibit linear relationships. We introduce the standard error in percent, a superior method for quantifying measurement error as compared to the commonly used coefficient of variation. Using this measure, we find that excluding samples with high measurement error does not improve measurement validity in our study. Future studies using block-based thermocyclers should consider well position effects. Since additional information can be gleaned from well position corrections, rerunning analyses of previous results with well position correction could serve as an independent test of the validity of these results. © 2015 Wiley Periodicals, Inc.
Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi
2014-01-01
A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize event, MIR162. We first prepared a standard plasmid for MIR162 quantification. The conversion factor (Cf) required to calculate the genetically modified organism (GMO) amount was empirically determined for two real-time PCR instruments, the Applied Biosystems 7900HT (ABI7900) and the Applied Biosystems 7500 (ABI7500) for which the determined Cf values were 0.697 and 0.635, respectively. To validate the developed method, a blind test was carried out in an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr). The determined biases were less than 25% and the RSDr values were less than 20% at all evaluated concentrations. These results suggested that the limit of quantitation of the method was 0.5%, and that the developed method would thus be suitable for practical analyses for the detection and quantification of MIR162.
Increased efficacy for in-house validation of real-time PCR GMO detection methods.
Scholtens, I M J; Kok, E J; Hougs, L; Molenaar, B; Thissen, J T N M; van der Voet, H
2010-03-01
To improve the efficacy of the in-house validation of GMO detection methods (DNA isolation and real-time PCR, polymerase chain reaction), a study was performed to gain insight in the contribution of the different steps of the GMO detection method to the repeatability and in-house reproducibility. In the present study, 19 methods for (GM) soy, maize canola and potato were validated in-house of which 14 on the basis of an 8-day validation scheme using eight different samples and five on the basis of a more concise validation protocol. In this way, data was obtained with respect to the detection limit, accuracy and precision. Also, decision limits were calculated for declaring non-conformance (>0.9%) with 95% reliability. In order to estimate the contribution of the different steps in the GMO analysis to the total variation variance components were estimated using REML (residual maximum likelihood method). From these components, relative standard deviations for repeatability and reproducibility (RSD(r) and RSD(R)) were calculated. The results showed that not only the PCR reaction but also the factors 'DNA isolation' and 'PCR day' are important factors for the total variance and should therefore be included in the in-house validation. It is proposed to use a statistical model to estimate these factors from a large dataset of initial validations so that for similar GMO methods in the future, only the PCR step needs to be validated. The resulting data are discussed in the light of agreed European criteria for qualified GMO detection methods.
Soejima, Mikiko; Tsuchiya, Yuji; Egashira, Kouichi; Kawano, Hiroyuki; Sagawa, Kimitaka; Koda, Yoshiro
2010-06-01
Anhaptoglobinemic patients run the risk of severe anaphylactic transfusion reaction because they produce serum haptoglobin (Hp) antibodies. Being homozygous for the Hp gene deletion (HP(del)) is the only known cause of congenital anhaptoglobinemia, and clinical diagnosis of HP(del) before transfusion is important to prevent anaphylactic shock. We recently developed a 5'-nuclease (TaqMan) real-time polymerase chain reaction (PCR) method. A SYBR Green I-based duplex real-time PCR assay using two forward primers and a common reverse primer followed by melting curve analysis was developed to determine HP(del) zygosity in a single tube. In addition, to obviate initial DNA extraction, we examined serially diluted blood samples as PCR templates. Allelic discrimination of HP(del) yielded optimal results at blood sample dilutions of 1:64 to 1:1024. The results from 2231 blood samples were fully concordant with those obtained by the TaqMan-based real-time PCR method. The detection rate of the HP(del) allele by the SYBR Green I-based method is comparable with that using the TaqMan-based method. This method is readily applicable due to its low initial cost and analyzability using economical real-time PCR machines and is suitable for high-throughput analysis as an alternative method for allelic discrimination of HP(del).
Yamamoto, Hiroyuki; Yamamoto, Kyoko; Yoshida, Katsumi; Shindoh, Chiyohiko; Takeda, Kyoko; Monden, Masami; Izumo, Hiroko; Niinuma, Hiroyuki; Nishi, Yutaro; Niwa, Koichiro; Komatsu, Yasuhiro
2015-11-01
Chronic kidney disease (CKD) is a global public health issue, and strategies for its early detection and intervention are imperative. The latest Japanese CKD guideline recommends that patients without diabetes should be classified using the urine protein-to-creatinine ratio (PCR) instead of the urine albumin-to-creatinine ratio (ACR); however, no validation studies are available. This study aimed to validate the PCR-based CKD risk classification compared with the ACR-based classification and to explore more accurate classification methods. We analyzed two previously reported datasets that included diabetic and/or cardiovascular patients who were classified into early CKD stages. In total, 860 patients (131 diabetic patients and 729 cardiovascular patients, including 193 diabetic patients) were enrolled. We assessed the CKD risk classification of each patient according to the estimated glomerular filtration rate and the ACR-based or PCR-based classification. The use of the cut-off value recommended in the current guideline (PCR 0.15 g/g creatinine) resulted in risk misclassification rates of 26.0% and 16.6% for the two datasets. The misclassification was primarily caused by underestimation. Moderate to substantial agreement between each classification was achieved: Cohen's kappa, 0.56 (95% confidence interval, 0.45-0.69) and 0.72 (0.67-0.76) in each dataset, respectively. To improve the accuracy, we tested various candidate PCR cut-off values, showing that a PCR cut-off value of 0.08-0.10 g/g creatinine resulted in improvement in the misclassification rates and kappa values. Modification of the PCR cut-off value would improve its efficacy to identify high-risk populations who will benefit from early intervention.
Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.
Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro
2010-01-01
The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.
Stulberg, Michael J.; Huang, Qi
2015-01-01
Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regions of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Furthermore, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum. PMID:26426354
Stubbs, Samuel; Oura, Chris A L; Henstock, Mark; Bowden, Timothy R; King, Donald P; Tuppurainen, Eeva S M
2012-02-01
Capripoxviruses, which are endemic in much of Africa and Asia, are the aetiological agents of economically devastating poxviral diseases in cattle, sheep and goats. The aim of this study was to validate a high-throughput real-time PCR assay for routine diagnostic use in a capripoxvirus reference laboratory. The performance of two previously published real-time PCR methods were compared using commercially available reagents including the amplification kits recommended in the original publication. Furthermore, both manual and robotic extraction methods used to prepare template nucleic acid were evaluated using samples collected from experimentally infected animals. The optimised assay had an analytical sensitivity of at least 63 target DNA copies per reaction, displayed a greater diagnostic sensitivity compared to conventional gel-based PCR, detected capripoxviruses isolated from outbreaks around the world and did not amplify DNA from related viruses in the genera Orthopoxvirus or Parapoxvirus. The high-throughput robotic DNA extraction procedure did not adversely affect the sensitivity of the assay compared to manual preparation of PCR templates. This laboratory-based assay provides a rapid and robust method to detect capripoxviruses following suspicion of disease in endemic or disease-free countries. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Absolute quantification of DNA methylation using microfluidic chip-based digital PCR.
Wu, Zhenhua; Bai, Yanan; Cheng, Zule; Liu, Fangming; Wang, Ping; Yang, Dawei; Li, Gang; Jin, Qinghui; Mao, Hongju; Zhao, Jianlong
2017-10-15
Hypermethylation of CpG islands in the promoter region of many tumor suppressor genes downregulates their expression and in a result promotes tumorigenesis. Therefore, detection of DNA methylation status is a convenient diagnostic tool for cancer detection. Here, we reported a novel method for the integrative detection of methylation by the microfluidic chip-based digital PCR. This method relies on methylation-sensitive restriction enzyme HpaII, which cleaves the unmethylated DNA strands while keeping the methylated ones intact. After HpaII treatment, the DNA methylation level is determined quantitatively by the microfluidic chip-based digital PCR with the lower limit of detection equal to 0.52%. To validate the applicability of this method, promoter methylation of two tumor suppressor genes (PCDHGB6 and HOXA9) was tested in 10 samples of early stage lung adenocarcinoma and their adjacent non-tumorous tissues. The consistency was observed in the analysis of these samples using our method and a conventional bisulfite pyrosequencing. Combining high sensitivity and low cost, the microfluidic chip-based digital PCR method might provide a promising alternative for the detection of DNA methylation and early diagnosis of epigenetics-related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Wee, Eugene J.H.; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt
2016-01-01
Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research. PMID:27446486
Wee, Eugene J H; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt
2016-01-01
Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research.
Reference Gene Validation for RT-qPCR, a Note on Different Available Software Packages
De Spiegelaere, Ward; Dern-Wieloch, Jutta; Weigel, Roswitha; Schumacher, Valérie; Schorle, Hubert; Nettersheim, Daniel; Bergmann, Martin; Brehm, Ralph; Kliesch, Sabine; Vandekerckhove, Linos; Fink, Cornelia
2015-01-01
Background An appropriate normalization strategy is crucial for data analysis from real time reverse transcription polymerase chain reactions (RT-qPCR). It is widely supported to identify and validate stable reference genes, since no single biological gene is stably expressed between cell types or within cells under different conditions. Different algorithms exist to validate optimal reference genes for normalization. Applying human cells, we here compare the three main methods to the online available RefFinder tool that integrates these algorithms along with R-based software packages which include the NormFinder and GeNorm algorithms. Results 14 candidate reference genes were assessed by RT-qPCR in two sample sets, i.e. a set of samples of human testicular tissue containing carcinoma in situ (CIS), and a set of samples from the human adult Sertoli cell line (FS1) either cultured alone or in co-culture with the seminoma like cell line (TCam-2) or with equine bone marrow derived mesenchymal stem cells (eBM-MSC). Expression stabilities of the reference genes were evaluated using geNorm, NormFinder, and BestKeeper. Similar results were obtained by the three approaches for the most and least stably expressed genes. The R-based packages NormqPCR, SLqPCR and the NormFinder for R script gave identical gene rankings. Interestingly, different outputs were obtained between the original software packages and the RefFinder tool, which is based on raw Cq values for input. When the raw data were reanalysed assuming 100% efficiency for all genes, then the outputs of the original software packages were similar to the RefFinder software, indicating that RefFinder outputs may be biased because PCR efficiencies are not taken into account. Conclusions This report shows that assay efficiency is an important parameter for reference gene validation. New software tools that incorporate these algorithms should be carefully validated prior to use. PMID:25825906
Reference gene validation for RT-qPCR, a note on different available software packages.
De Spiegelaere, Ward; Dern-Wieloch, Jutta; Weigel, Roswitha; Schumacher, Valérie; Schorle, Hubert; Nettersheim, Daniel; Bergmann, Martin; Brehm, Ralph; Kliesch, Sabine; Vandekerckhove, Linos; Fink, Cornelia
2015-01-01
An appropriate normalization strategy is crucial for data analysis from real time reverse transcription polymerase chain reactions (RT-qPCR). It is widely supported to identify and validate stable reference genes, since no single biological gene is stably expressed between cell types or within cells under different conditions. Different algorithms exist to validate optimal reference genes for normalization. Applying human cells, we here compare the three main methods to the online available RefFinder tool that integrates these algorithms along with R-based software packages which include the NormFinder and GeNorm algorithms. 14 candidate reference genes were assessed by RT-qPCR in two sample sets, i.e. a set of samples of human testicular tissue containing carcinoma in situ (CIS), and a set of samples from the human adult Sertoli cell line (FS1) either cultured alone or in co-culture with the seminoma like cell line (TCam-2) or with equine bone marrow derived mesenchymal stem cells (eBM-MSC). Expression stabilities of the reference genes were evaluated using geNorm, NormFinder, and BestKeeper. Similar results were obtained by the three approaches for the most and least stably expressed genes. The R-based packages NormqPCR, SLqPCR and the NormFinder for R script gave identical gene rankings. Interestingly, different outputs were obtained between the original software packages and the RefFinder tool, which is based on raw Cq values for input. When the raw data were reanalysed assuming 100% efficiency for all genes, then the outputs of the original software packages were similar to the RefFinder software, indicating that RefFinder outputs may be biased because PCR efficiencies are not taken into account. This report shows that assay efficiency is an important parameter for reference gene validation. New software tools that incorporate these algorithms should be carefully validated prior to use.
Molecular differentiation of Russian wild ginseng using mitochondrial nad7 intron 3 region.
Li, Guisheng; Cui, Yan; Wang, Hongtao; Kwon, Woo-Saeng; Yang, Deok-Chun
2017-07-01
Cultivated ginseng is often introduced as a substitute and adulterant of Russian wild ginseng due to its lower cost or misidentification caused by similarity in appearance with wild ginseng. The aim of this study is to develop a simple and reliable method to differentiate Russian wild ginseng from cultivated ginseng. The mitochondrial NADH dehydrogenase subunit 7 ( nad 7) intron 3 regions of Russian wild ginseng and Chinese cultivated ginseng were analyzed. Based on the multiple sequence alignment result, a specific primer for Russian wild ginseng was designed by introducing additional mismatch and allele-specific polymerase chain reaction (PCR) was performed for identification of wild ginseng. Real-time allele-specific PCR with endpoint analysis was used for validation of the developed Russian wild ginseng single nucleotide polymorphism (SNP) marker. An SNP site specific to Russian wild ginseng was exploited by multiple alignments of mitochondrial nad 7 intron 3 regions of different ginseng samples. With the SNP-based specific primer, Russian wild ginseng was successfully discriminated from Chinese and Korean cultivated ginseng samples by allele-specific PCR. The reliability and specificity of the SNP marker was validated by checking 20 individuals of Russian wild ginseng samples with real-time allele-specific PCR assay. An effective DNA method for molecular discrimination of Russian wild ginseng from Chinese and Korean cultivated ginseng was developed. The established real-time allele-specific PCR was simple and reliable, and the present method should be a crucial complement of chemical analysis for authentication of Russian wild ginseng.
Eugster, Albert; Murmann, Petra; Kaenzig, Andre; Breitenmoser, Alda
2014-10-01
In routine analysis screening methods based on real-time PCR (polymerase chain reaction) are most commonly used for the detection of genetically modified (GM) plant material in food and feed. Screening tests are based on sequences frequently used for GM development, allowing the detection of a large number of GMOs (genetically modified organisms). Here, we describe the development and validation of a tetraplex real-time PCR screening assay comprising detection systems for the regulatory genes Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens nos terminator, Cauliflower Mosaic Virus 35S terminator and Figwort Mosaic Virus 34S promoter. Three of the four primer and probe combinations have already been published elsewhere, whereas primers and probe for the 35S terminator have been developed in-house. Adjustment of primer and probe concentrations revealed a high PCR sensitivity with insignificant physical cross-talk between the four detection channels. The sensitivity of each PCR-system is sufficient to detect a GMO concentration as low as 0.05% of the containing respective element. The specificity of the described tetraplex is high when tested on DNA from GM maize, soy, rapeseed and tomato. We also demonstrate the robustness of the system by inter-laboratory tests. In conclusion, this method provides a sensitive and reliable screening procedure for the detection of the most frequently used regulatory elements present in GM crops either authorised or unauthorised for food.
Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A
2017-01-01
Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.
Review of Detection of Brucella sp. by Polymerase Chain Reaction
Yu, Wei Ling; Nielsen, Klaus
2010-01-01
Here we present a review of most of the currently used polymerase chain reaction (PCR)-based methods for identification of Brucella bacteria in biological samples. We focused in particular on methods using single-pair primers, multiplex primers, real-time PCRs, PCRs for marine Brucella, and PCRs for molecular biotyping. These methods are becoming very important tools for the identification of Brucella, at the species level and recently also at the biovar level. These techniques require minimum biological containment and can provide results in a very short time. In addition, genetic fingerprinting of isolates aid in epidemiological studies of the disease and its control. PCR-based methods are more useful and practical than conventional methods used to identify Brucella spp., and new methods for Brucella spp identification and typing are still being developed. However, the sensitivity, specificity, and issues of quality control and quality assurance using these methods must be fully validated on clinical samples before PCR can be used in routine laboratory testing for brucellosis. PMID:20718083
Validation of a Salmonella loop-mediated isothermal amplification assay in animal food.
Domesle, Kelly J; Yang, Qianru; Hammack, Thomas S; Ge, Beilei
2018-01-02
Loop-mediated isothermal amplification (LAMP) has emerged as a promising alternative to PCR for pathogen detection in food testing and clinical diagnostics. This study aimed to validate a Salmonella LAMP method run on both turbidimetry (LAMP I) and fluorescence (LAMP II) platforms in representative animal food commodities. The U.S. Food and Drug Administration (FDA)'s culture-based Bacteriological Analytical Manual (BAM) method was used as the reference method and a real-time quantitative PCR (qPCR) assay was also performed. The method comparison study followed the FDA's microbiological methods validation guidelines, which align well with those from the AOAC International and ISO. Both LAMP assays were 100% specific among 300 strains (247 Salmonella of 185 serovars and 53 non-Salmonella) tested. The detection limits ranged from 1.3 to 28 cells for six Salmonella strains of various serovars. Six commodities consisting of four animal feed items (cattle feed, chicken feed, horse feed, and swine feed) and two pet food items (dry cat food and dry dog food) all yielded satisfactory results. Compared to the BAM method, the relative levels of detection (RLODs) for LAMP I ranged from 0.317 to 1 with a combined value of 0.610, while those for LAMP II ranged from 0.394 to 1.152 with a combined value of 0.783, which all fell within the acceptability limit (2.5) for an unpaired study. This also suggests that LAMP was more sensitive than the BAM method at detecting low-level Salmonella contamination in animal food and results were available 3days sooner. The performance of LAMP on both platforms was comparable to that of qPCR but notably faster, particularly LAMP II. Given the importance of Salmonella in animal food safety, the LAMP assays validated in this study holds great promise as a rapid, reliable, and robust method for routine screening of Salmonella in these commodities. Published by Elsevier B.V.
Balachandran, Priya; Friberg, Maria; Vanlandingham, V; Kozak, K; Manolis, Amanda; Brevnov, Maxim; Crowley, Erin; Bird, Patrick; Goins, David; Furtado, Manohar R; Petrauskene, Olga V; Tebbs, Robert S; Charbonneau, Duane
2012-02-01
Reducing the risk of Salmonella contamination in pet food is critical for both companion animals and humans, and its importance is reflected by the substantial increase in the demand for pathogen testing. Accurate and rapid detection of foodborne pathogens improves food safety, protects the public health, and benefits food producers by assuring product quality while facilitating product release in a timely manner. Traditional culture-based methods for Salmonella screening are laborious and can take 5 to 7 days to obtain definitive results. In this study, we developed two methods for the detection of low levels of Salmonella in pet food using real-time PCR: (i) detection of Salmonella in 25 g of dried pet food in less than 14 h with an automated magnetic bead-based nucleic acid extraction method and (ii) detection of Salmonella in 375 g of composite dry pet food matrix in less than 24 h with a manual centrifugation-based nucleic acid preparation method. Both methods included a preclarification step using a novel protocol that removes food matrix-associated debris and PCR inhibitors and improves the sensitivity of detection. Validation studies revealed no significant differences between the two real-time PCR methods and the standard U.S. Food and Drug Administration Bacteriological Analytical Manual (chapter 5) culture confirmation method.
Practicable group testing method to evaluate weight/weight GMO content in maize grains.
Mano, Junichi; Yanaka, Yuka; Ikezu, Yoko; Onishi, Mari; Futo, Satoshi; Minegishi, Yasutaka; Ninomiya, Kenji; Yotsuyanagi, Yuichi; Spiegelhalter, Frank; Akiyama, Hiroshi; Teshima, Reiko; Hino, Akihiro; Naito, Shigehiro; Koiwa, Tomohiro; Takabatake, Reona; Furui, Satoshi; Kitta, Kazumi
2011-07-13
Because of the increasing use of maize hybrids with genetically modified (GM) stacked events, the established and commonly used bulk sample methods for PCR quantification of GM maize in non-GM maize are prone to overestimate the GM organism (GMO) content, compared to the actual weight/weight percentage of GM maize in the grain sample. As an alternative method, we designed and assessed a group testing strategy in which the GMO content is statistically evaluated based on qualitative analyses of multiple small pools, consisting of 20 maize kernels each. This approach enables the GMO content evaluation on a weight/weight basis, irrespective of the presence of stacked-event kernels. To enhance the method's user-friendliness in routine application, we devised an easy-to-use PCR-based qualitative analytical method comprising a sample preparation step in which 20 maize kernels are ground in a lysis buffer and a subsequent PCR assay in which the lysate is directly used as a DNA template. This method was validated in a multilaboratory collaborative trial.
Huber, Ingrid; Block, Annette; Sebah, Daniela; Debode, Frédéric; Morisset, Dany; Grohmann, Lutz; Berben, Gilbert; Stebih, Dejan; Milavec, Mojca; Zel, Jana; Busch, Ulrich
2013-10-30
Worldwide, qualitative methods based on PCR are most commonly used as screening tools for genetically modified material in food and feed. However, the increasing number and diversity of genetically modified organisms (GMO) require effective methods for simultaneously detecting several genetic elements marking the presence of transgenic events. Herein we describe the development and validation of a pentaplex, as well as complementary triplex and duplex real-time PCR assays, for the detection of the most common screening elements found in commercialized GMOs: P-35S, T-nos, ctp2-cp4-epsps, bar, and pat. The use of these screening assays allows the coverage of many GMO events globally approved for commercialization. Each multiplex real-time PCR assay shows high specificity and sensitivity with an absolute limit of detection below 20 copies for the targeted sequences. We demonstrate by intra- and interlaboratory tests that the assays are robust as well as cost- and time-effective for GMO screening if applied in routine GMO analysis.
Validating internal controls for quantitative plant gene expression studies.
Brunner, Amy M; Yakovlev, Igor A; Strauss, Steven H
2004-08-18
Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed. Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied. Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments.
Rivera, Vanessa; Gaviria, Marcela; Muñoz-Cadavid, Cesar; Cano, Luz; Naranjo, Tonny
2015-01-01
The diagnosis of cryptococcosis is usually performed based on cultures of tissue or body fluids and isolation of the fungus, but this method may require several days. Direct microscopic examination, although rapid, is relatively insensitive. Biochemical and immunodiagnostic rapid tests are also used. However, all of these methods have limitations that may hinder final diagnosis. The increasing incidence of fungal infections has focused attention on tools for rapid and accurate diagnosis using molecular biological techniques. Currently, PCR-based methods, particularly nested, multiplex and real-time PCR, provide both high sensitivity and specificity. In the present study, we evaluated a nested PCR targeting the gene encoding the ITS-1 and ITS-2 regions of rDNA in samples from a cohort of patients diagnosed with cryptococcosis. The results showed that in our hands, this Cryptococcus nested PCR assay has 100% specificity and 100% sensitivity and was able to detect until 2 femtograms of Cryptococcus DNA. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.
Stulberg, Michael J.; Huang, Qi
2015-10-01
Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regionsmore » of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Moreover, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum.« less
Huang, Yanyan; Khan, Mazhar; Măndoiu, Ion I.
2013-01-01
We have previously developed a software package called PrimerHunter to design primers for PCR-based virus subtyping. In this study, 9 pairs of primers were designed with PrimerHunter and successfully used to differentiate the 9 neuraminidase (NA) genes of avian influenza viruses (AIVs) in multiple PCR-based assays. Furthermore, primer pools were designed and successfully used to decrease the number of reactions needed for NA subtyping from 9 to 4. The quadruplicate primer-pool method is cost-saving, and was shown to be suitable for the NA subtyping of both cultured AIVs and uncultured AIV swab samples. The primers selected for this study showed excellent sensitivity and specificity in NA subtyping by RT-PCR, SYBR green-based Real-time PCR and Real-time RT-PCR methods. AIV RNA of 2 to 200 copies (varied by NA subtypes) could be detected by these reactions. No unspecific amplification was displayed when detecting RNAs of other avian infectious viruses such as Infectious bronchitis virus, Infectious bursal disease virus and Newcastle disease virus. In summary, this study introduced several sensitive and specific PCR-based assays for NA subtyping of AIVs and also validated again the effectiveness of the PrimerHunter tool for the design of subtyping primers. PMID:24312367
Johansen, Ilona; Andreassen, Rune
2014-12-23
MicroRNAs (miRNAs) are an abundant class of endogenous small RNA molecules that downregulate gene expression at the post-transcriptional level. They play important roles by regulating genes that control multiple biological processes, and recent years there has been an increased interest in studying miRNA genes and miRNA gene expression. The most common method applied to study gene expression of single genes is quantitative PCR (qPCR). However, before expression of mature miRNAs can be studied robust qPCR methods (miRNA-qPCR) must be developed. This includes identification and validation of suitable reference genes. We are particularly interested in Atlantic salmon (Salmo salar). This is an economically important aquaculture species, but no reference genes dedicated for use in miRNA-qPCR methods has been validated for this species. Our aim was, therefore, to identify suitable reference genes for miRNA-qPCR methods in Salmo salar. We used a systematic approach where we utilized similar studies in other species, some biological criteria, results from deep sequencing of small RNAs and, finally, experimental validation of candidate reference genes by qPCR to identify the most suitable reference genes. Ssa-miR-25-3p was identified as most suitable single reference gene. The best combinations of two reference genes were ssa-miR-25-3p and ssa-miR-455-5p. These two genes were constitutively and stably expressed across many different tissues. Furthermore, infectious salmon anaemia did not seem to affect their expression levels. These genes were amplified with high specificity, good efficiency and the qPCR assays showed a good linearity when applying a simple cybergreen miRNA-PCR method using miRNA gene specific forward primers. We have identified suitable reference genes for miRNA-qPCR in Atlantic salmon. These results will greatly facilitate further studies on miRNA genes in this species. The reference genes identified are conserved genes that are identical in their mature sequence in many aquaculture species. Therefore, they may also be suitable as reference genes in other teleosts. Finally, the systematic approach used in our study successfully identified suitable reference genes, suggesting that this may be a useful strategy to apply in similar validation studies in other aquaculture species.
Yang, Qi; Franco, Christopher M M; Zhang, Wei
2015-10-01
Experiments were designed to validate the two common DNA extraction protocols (CTAB-based method and DNeasy Blood & Tissue Kit) used to effectively recover actinobacterial DNA from sponge samples in order to study the sponge-associated actinobacterial diversity. This was done by artificially spiking sponge samples with actinobacteria (spores, mycelia and a combination of the two). Our results demonstrated that both DNA extraction methods were effective in obtaining DNA from the sponge samples as well as the sponge samples spiked with different amounts of actinobacteria. However, it was noted that in the presence of the sponge, the bacterial 16S rRNA gene could not be amplified unless the combined DNA template was diluted. To test the hypothesis that the extracted sponge DNA contained inhibitors, dilutions of the DNA extracts were tested for six sponge species representing five orders. The results suggested that the inhibitors were co-extracted with the sponge DNA, and a high dilution of this DNA was required for the successful PCR amplification for most of the samples. The optimized PCR conditions, including primer selection, PCR reaction system and program optimization, further improved the PCR performance. However, no single PCR condition was found to be suitable for the diverse sponge samples using various primer sets. These results highlight for the first time that the DNA extraction methods used are effective in obtaining actinobacterial DNA and that the presence of inhibitors in the sponge DNA requires high dilution coupled with fine tuning of the PCR conditions to achieve success in the study of sponge-associated actinobacterial diversity.
Nixon, Gavin J; Svenstrup, Helle F; Donald, Carol E; Carder, Caroline; Stephenson, Judith M; Morris-Jones, Stephen; Huggett, Jim F; Foy, Carole A
2014-12-01
Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR). There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These 'isothermal' methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT), akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP) assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.
A PCR procedure for the detection of Giardia intestinalis cysts and Escherichia coli in lettuce.
Ramirez-Martinez, M L; Olmos-Ortiz, L M; Barajas-Mendiola, M A; Giono Cerezo, S; Avila, E E; Cuellar-Mata, P
2015-06-01
Giardia intestinalis is a pathogen associated with foodborne outbreaks and Escherichia coli is commonly used as a marker of faecal contamination. Implementation of routine identification methods of G. intestinalis is difficult for the analysis of vegetables and the microbiological detection of E. coli requires several days. This study proposes a PCR-based assay for the detection of E. coli and G. intestinalis cysts using crude DNA isolated from artificially contaminated lettuce. The G. intestinalis and E. coli PCR assays targeted the β-giardin and uidA genes, respectively, and were 100% specific. Forty lettuces from local markets were analysed by both PCR and light microscopy and no cysts were detected, the calculated detection limit was 20 cysts per gram of lettuce; however, by PCR, E. coli was detected in eight of ten randomly selected samples of lettuce. These data highlight the need to validate procedures for routine quality assurance. These PCR-based assays can be employed as alternative methods for the detection of G. intestinalis and E. coli and have the potential to allow for the automation and simultaneous detection of protozoa and bacterial pathogens in multiple samples. Significance and impact of the study: There are few studies for Giardia intestinalis detection in food because methods for its identification are difficult for routine implementation. Here, we developed a PCR-based method as an alternative to the direct observation of cysts in lettuce by light microscopy. Additionally, Escherichia coli was detected by PCR and the sanitary quality of lettuce was evaluated using molecular and standard microbiological methods. Using PCR, the detection probability of Giardia cysts inoculated onto samples of lettuce was improved compared to light microscopy, with the advantage of easy automation. These methods may be employed to perform timely and affordable detection of foodborne pathogens. © 2015 The Society for Applied Microbiology.
Real-time PCR (qPCR) primer design using free online software.
Thornton, Brenda; Basu, Chhandak
2011-01-01
Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most commonly used fluorescent chemistries are SYBR® Green dyes and TaqMan®, Molecular Beacon or Scorpion probes. SYBR® Green is very simple to use and cost efficient. As SYBR® Green dye binds to any double-stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green-based qPCR primers. This laboratory exercise is intended for those who have a fundamental background in PCR. It addresses the basic fluorescent chemistries of real-time PCR, the basic rules and pitfalls of primer design, and provides a step-by-step protocol for designing SYBR® Green-based primers with free, online software. Copyright © 2010 Wiley Periodicals, Inc.
Single-Step qPCR and dPCR Detection of Diverse CRISPR-Cas9 Gene Editing Events In Vivo.
Falabella, Micol; Sun, Linqing; Barr, Justin; Pena, Andressa Z; Kershaw, Erin E; Gingras, Sebastien; Goncharova, Elena A; Kaufman, Brett A
2017-10-05
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based technology is currently the most flexible means to create targeted mutations by recombination or indel mutations by nonhomologous end joining. During mouse transgenesis, recombinant and indel alleles are often pursued simultaneously. Multiple alleles can be formed in each animal to create significant genetic complexity that complicates the CRISPR-Cas9 approach and analysis. Currently, there are no rapid methods to measure the extent of on-site editing with broad mutation sensitivity. In this study, we demonstrate the allelic diversity arising from targeted CRISPR editing in founder mice. Using this DNA sample collection, we validated specific quantitative and digital PCR methods (qPCR and dPCR, respectively) for measuring the frequency of on-target editing in founder mice. We found that locked nucleic acid (LNA) probes combined with an internal reference probe (Drop-Off Assay) provide accurate measurements of editing rates. The Drop-Off LNA Assay also detected on-target CRISPR-Cas9 gene editing in blastocysts with a sensitivity comparable to PCR-clone sequencing. Lastly, we demonstrate that the allele-specific LNA probes used in qPCR competitor assays can accurately detect recombinant mutations in founder mice. In summary, we show that LNA-based qPCR and dPCR assays provide a rapid method for quantifying the extent of on-target genome editing in vivo , testing RNA guides, and detecting recombinant mutations. Copyright © 2017 Falabella et al.
Dobnik, David; Demšar, Tina; Huber, Ingrid; Gerdes, Lars; Broeders, Sylvia; Roosens, Nancy; Debode, Frederic; Berben, Gilbert; Žel, Jana
2018-01-01
Digital PCR (dPCR), as a new technology in the field of genetically modified (GM) organism (GMO) testing, enables determination of absolute target copy numbers. The purpose of our study was to test the transferability of methods designed for quantitative PCR (qPCR) to dPCR and to carry out an inter-laboratory comparison of the performance of two different dPCR platforms when determining the absolute GM copy numbers and GM copy number ratio in reference materials certified for GM content in mass fraction. Overall results in terms of measured GM% were within acceptable variation limits for both tested dPCR systems. However, the determined absolute copy numbers for individual genes or events showed higher variability between laboratories in one third of the cases, most possibly due to variability in the technical work, droplet size variability, and analysis of the raw data. GMO quantification with dPCR and qPCR was comparable. As methods originally designed for qPCR performed well in dPCR systems, already validated qPCR assays can most generally be used for dPCR technology with the purpose of GMO detection. Graphical abstract The output of three different PCR-based platforms was assessed in an inter-laboratory comparison.
Jean, Audrey; Tardy, Florence; Allatif, Omran; Grosjean, Isabelle; Blanquier, Bariza
2017-01-01
Mycoplasmas (a generic name for Mollicutes) are a predominant bacterial contaminant of cell culture and cell derived products including viruses. This prokaryote class is characterized by very small size and lack of a cell wall. Consequently, mycoplasmas escape ultrafiltration and visualization under routine microscopic examination, hence the ease with which cells in culture can be contaminated, with routinely more than 10% of cell lines being contaminated. Mycoplasma are a formidable threat both in fundamental research by perverting a whole range of cell properties and functions and in the pharmacological use of cells and cell derived products. Although many methods have been developed, there is still a need for a sensitive, universal assay. Here is reported the development and validation of a quantitative polymerase chain reaction (qPCR) based on the amplification of a 1.5 kb fragment covering the 16S rDNA of the Mollicute class by real-time PCR using universal U1 and U8 degenerate primers. The method includes the addition of a DNA loading probe to each sample to monitor DNA extraction and the absence of PCR inhibitors in the extracted DNA, a positive mycoplasma 16S rDNA traceable reference sample to exclude any accidental contamination of an unknown sample with this reference DNA, an analysis procedure based on the examination of the melting curve and the size of the PCR amplicon, followed by quantification of the number of 16S rDNA copies (with a lower limit of 19 copies) when relevant, and, if useful, the identification of the contaminating prokaryote by sequencing. The method was validated on a collection of mycoplasma strains and by testing over 100 samples of unknown contamination status including stocks of viruses requiring biosafety level 2, 3 or 4 containments. When compared to four established methods, the m16S_qPCR technique exhibits the highest sensitivity in detecting mycoplasma contamination. PMID:28225826
Myers, Michael J; Yancy, Haile F; Araneta, Michael; Armour, Jennifer; Derr, Janice; Hoostelaere, Lawrence A D; Farmer, Doris; Jackson, Falana; Kiessling, William M; Koch, Henry; Lin, Huahua; Liu, Yan; Mowlds, Gabrielle; Pinero, David; Riter, Ken L; Sedwick, John; Shen, Yuelian; Wetherington, June; Younkins, Ronsha
2006-01-01
A method trial was initiated to validate the use of a commercial DNA forensic kit to extract DNA from animal feed as part of a PCR-based method. Four different PCR primer pairs (one bovine pair, one porcine pair, one ovine primer pair, and one multispecies pair) were also evaluated. Each laboratory was required to analyze a total of 120 dairy feed samples either not fortified (control, true negative) or fortified with bovine meat and bone meal, porcine meat and bone meal (PMBM), or lamb meal. Feeds were fortified with the animal meals at a concentration of 0.1% (wt/wt). Ten laboratories participated in this trial, and each laboratory was required to evaluate two different primer pairs, i.e., each PCR primer pair was evaluated by five different laboratories. The method was considered to be validated for a given animal source when three or more laboratories achieved at least 97% accuracy (29 correct of 30 samples for 96.7% accuracy, rounded up to 97%) in detecting the fortified samples for that source. Using this criterion, the method was validated for the bovine primer because three laboratories met the criterion, with an average accuracy of 98.9%. The average false-positive rate was 3.0% in these laboratories. A fourth laboratory was 80% accurate in identifying the samples fortified with bovine meat and bone meal. A fifth laboratory was not able to consistently extract the DNA from the feed samples and did not achieve the criterion for accuracy for either the bovine or multispecies PCR primers. For the porcine primers, the method was validated, with four laboratories meeting the criterion for accuracy with an average accuracy of 99.2%. The fifth laboratory had a 93.3% accuracy outcome for the porcine primer. Collectively, these five laboratories had a 1.3% false-positive rate for the porcine primer. No laboratory was able to meet the criterion for accuracy with the ovine primers, most likely because of problems with the synthesis of the primer pair; none of the positive control DNA samples could be detected with the ovine primers. The multispecies primer pair was validated in three laboratories for use with bovine meat and bone meal and lamb meal but not with PMBM. The three laboratories had an average accuracy of 98.9% for bovine meat and bone meal, 97.8% for lamb meal, and 63.3% for PMBM. When examined on an individual laboratory basis, one of these four laboratories could not identify a single feed sample containing PMBM by using the multispecies primer, whereas the other laboratory identified only one PMBM-fortified sample, suggesting that the limit of detection for PMBM with this primer pair is around 0.1% (wt/wt). The results of this study demonstrated that the DNA forensic kit can be used to extract DNA from animal feed, which can then be used for PCR analysis to detect animal-derived protein present in the feed sample.
Ahlawat, Sonika; Sharma, Rekha; Maitra, A.; Roy, Manoranjan; Tantia, M.S.
2014-01-01
New, quick, and inexpensive methods for genotyping novel caprine Fec gene polymorphisms through tetra-primer ARMS PCR were developed in the present investigation. Single nucleotide polymorphism (SNP) genotyping needs to be attempted to establish association between the identified mutations and traits of economic importance. In the current study, we have successfully genotyped three new SNPs identified in caprine fecundity genes viz. T(-242)C (BMPR1B), G1189A (GDF9) and G735A (BMP15). Tetra-primer ARMS PCR protocol was optimized and validated for these SNPs with short turn-around time and costs. The optimized techniques were tested on 158 random samples of Black Bengal goat breed. Samples with known genotypes for the described genes, previously tested in duplicate using the sequencing methods, were employed for validation of the assay. Upon validation, complete concordance was observed between the tetra-primer ARMS PCR assays and the sequencing results. These results highlight the ability of tetra-primer ARMS PCR in genotyping of mutations in Fec genes. Any associated SNP could be used to accelerate the improvement of goat reproductive traits by identifying high prolific animals at an early stage of life. Our results provide direct evidence that tetra-primer ARMS-PCR is a rapid, reliable, and cost-effective method for SNP genotyping of mutations in caprine Fec genes. PMID:25606428
Real-Time PCR (qPCR) Primer Design Using Free Online Software
ERIC Educational Resources Information Center
Thornton, Brenda; Basu, Chhandak
2011-01-01
Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…
Validating internal controls for quantitative plant gene expression studies
Brunner, Amy M; Yakovlev, Igor A; Strauss, Steven H
2004-01-01
Background Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed. Results Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied. Conclusion Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments. PMID:15317655
Banting, Graham S.; Braithwaite, Shannon; Scott, Candis; Kim, Jinyong; Jeon, Byeonghwa; Ashbolt, Nicholas; Ruecker, Norma; Tymensen, Lisa; Charest, Jollin; Pintar, Katarina; Checkley, Sylvia
2016-01-01
ABSTRACT Campylobacter spp. are the leading cause of bacterial gastroenteritis worldwide, and water is increasingly seen as a risk factor in transmission. Here we describe a most-probable-number (MPN)–quantitative PCR (qPCR) assay in which water samples are centrifuged and aliquoted into microtiter plates and the bacteria are enumerated by qPCR. We observed that commonly used Campylobacter molecular assays produced vastly different detection rates. In irrigation water samples, detection rates varied depending upon the PCR assay and culture method used, as follows: 0% by the de Boer Lv1-16S qPCR assay, 2.5% by the Van Dyke 16S and Jensen glyA qPCR assays, and 75% by the Linton 16S endpoint PCR when cultured at 37°C. Primer/probe specificity was the major confounder, with Arcobacter spp. routinely yielding false-positive results. The primers and PCR conditions described by Van Dyke et al. (M. I. Van Dyke, V. K. Morton, N. L. McLellan, and P. M. Huck, J Appl Microbiol 109:1053–1066, 2010, http://dx.doi.org/10.1111/j.1365-2672.2010.04730.x) proved to be the most sensitive and specific for Campylobacter detection in water. Campylobacter occurrence in irrigation water was found to be very low (<2 MPN/300 ml) when this Campylobacter-specific qPCR was used, with the most commonly detected species being C. jejuni, C. coli, and C. lari. Campylobacters in raw sewage were present at ∼102/100 ml, with incubation at 42°C required for reducing microbial growth competition from arcobacters. Overall, when Campylobacter prevalence and/or concentration in water is reported using molecular methods, considerable validation is recommended when adapting methods largely developed for clinical applications. Furthermore, combining MPN methods with molecular biology-based detection algorithms allows for the detection and quantification of Campylobacter spp. in environmental samples and is potentially suited to quantitative microbial risk assessment for improved public health disease prevention related to food and water exposures. IMPORTANCE The results of this study demonstrate the importance of assay validation upon data interpretation of environmental monitoring for Campylobacter when using molecular biology-based assays. Previous studies describing Campylobacter prevalence in Canada utilized primers that we have determined to be nonspecific due to their cross-amplification of Arcobacter spp. As such, Campylobacter prevalence may have been vastly overestimated in other studies. Additionally, the development of a quantitative assay described in this study will allow accurate determination of Campylobacter concentrations in environmental water samples, allowing more informed decisions to be made about water usage based on quantitative microbial risk assessment. PMID:27235434
Harun, Azian; Blyth, Christopher C; Gilgado, Felix; Middleton, Peter; Chen, Sharon C-A; Meyer, Wieland
2011-04-01
The emergence of Scedosporium infections in diverse groups of individuals, which are often treatment refractory, warrants timely and accurate laboratory diagnosis. Species- or group-specific primers based on internal transcribed spacer (ITS) sequence polymorphisms were designed for Scedosporium aurantiacum, Scedosporium dehoogii, Scedosporium prolificans, Pseudallescheria boydii species complex (former clade 5)/Pseudallescheria apiosperma (formerly classified as S. apiospermum sensu lato) and Pseudallescheria minutispora. Primers for S. aurantiacum, S. prolificans, and P. boydii species complex/P. apiosperma were incorporated into a multiplex PCR assay for the detection and identification of the three major clinically important Scedosporium species and validated using sputum specimens collected from patients seen at a major Australian cystic fibrosis clinic. The multiplex PCR assay showed 100% specificity in identifying the three major clinically relevant Scedosporium species from pure culture. When evaluated using DNA extracts from sputa, sensitivity and specificity of the multiplex PCR assay were 62.1% and 97.2%, respectively. This highly species-specific multiplex PCR assay offers a rapid and simple method of detection of the most clinically important Scedosporium species in respiratory tract specimens.
Bogema, D. R.; Deutscher, A. T.; Fell, S.; Collins, D.; Eamens, G. J.
2015-01-01
Theileria orientalis is an emerging pathogen of cattle in Asia, Australia, and New Zealand. This organism is a vector-borne hemoprotozoan that causes clinical disease characterized by anemia, abortion, and death, as well as persistent subclinical infections. Molecular methods of diagnosis are preferred due to their sensitivity and utility in differentiating between pathogenic and apathogenic genotypes. Conventional PCR (cPCR) assays for T. orientalis detection and typing are laborious and do not provide an estimate of parasite load. Current real-time PCR assays cannot differentiate between clinically relevant and benign genotypes or are only semiquantitative without a defined clinical threshold. Here, we developed and validated a hydrolysis probe quantitative PCR (qPCR) assay which universally detects and quantifies T. orientalis and identifies the clinically associated Ikeda and Chitose genotypes (UIC assay). Comparison of the UIC assay results with previously validated universal and genotype-specific cPCR results demonstrated that qPCR detects and differentiates T. orientalis with high sensitivity and specificiy. Comparison of quantitative results based on percent parasitemia, determined via blood film analysis and packed cell volume (PCV) revealed significant positive and negative correlations, respectively. One-way analysis of variance (ANOVA) indicated that blood samples from animals with clinical signs of disease contained statistically higher concentrations of T. orientalis DNA than animals with subclinical infections. We propose clinical thresholds to assist in classifying high-, moderate-, and low-level infections and describe how parasite load and the presence of the Ikeda and Chitose genotypes relate to disease. PMID:25588653
Aguirre, C; Olivares, N; Luppichini, P; Hinrichsen, P
2015-02-01
A PCR-based method was developed to identify Naupactus cervinus (Boheman) and Naupactus xanthographus (Germar), two curculionids affecting the citrus industry in Chile. The quarantine status of these two species depends on the country to which fruits are exported. This identification method was developed because it is not possible to discriminate between these two species at the egg stage. The method is based on the species-specific amplification of sequences of internal transcribed spacers, for which we cloned and sequenced these genome fragments from each species. We designed an identification system based on two duplex-PCR reactions. Each one contains the species-specific primer set and a second generic primer set that amplify a short 18S region common to coleopterans, to avoid false negatives. The marker system is able to differentiate each Naupactus species at any life stage, and with a diagnostic sensitivity to 0.045 ng of genomic DNA. This PCR kit was validated by samples collected from different citrus production areas throughout Chile and showed 100% accuracy in differentiating the two Naupactus species. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Validation of PCR methods for quantitation of genetically modified plants in food.
Hübner, P; Waiblinger, H U; Pietsch, K; Brodmann, P
2001-01-01
For enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients, quantitative detection methods such as quantitative competitive (QC-PCR) and real-time PCR are applied by official food control laboratories. The experiences of 3 European food control laboratories in validating such methods were compared to describe realistic performance characteristics of quantitative PCR detection methods. The limit of quantitation (LOQ) of GMO-specific, real-time PCR was experimentally determined to reach 30-50 target molecules, which is close to theoretical prediction. Starting PCR with 200 ng genomic plant DNA, the LOQ depends primarily on the genome size of the target plant and ranges from 0.02% for rice to 0.7% for wheat. The precision of quantitative PCR detection methods, expressed as relative standard deviation (RSD), varied from 10 to 30%. Using Bt176 corn containing test samples and applying Bt176 specific QC-PCR, mean values deviated from true values by -7to 18%, with an average of 2+/-10%. Ruggedness of real-time PCR detection methods was assessed in an interlaboratory study analyzing commercial, homogeneous food samples. Roundup Ready soybean DNA contents were determined in the range of 0.3 to 36%, relative to soybean DNA, with RSDs of about 25%. Taking the precision of quantitative PCR detection methods into account, suitable sample plans and sample sizes for GMO analysis are suggested. Because quantitative GMO detection methods measure GMO contents of samples in relation to reference material (calibrants), high priority must be given to international agreements and standardization on certified reference materials.
Houzet, Laurent; Deleage, Claire; Satie, Anne-Pascale; Merlande, Laetitia; Mahe, Dominique; Dejucq-Rainsford, Nathalie
2015-01-01
PCR is the most widely applied technique for large scale screening of bacterial clones, mouse genotypes, virus genomes etc. A drawback of large PCR screening is that amplicon analysis is usually performed using gel electrophoresis, a step that is very labor intensive, tedious and chemical waste generating. Single genome amplification (SGA) is used to characterize the diversity and evolutionary dynamics of virus populations within infected hosts. SGA is based on the isolation of single template molecule using limiting dilution followed by nested PCR amplification and requires the analysis of hundreds of reactions per sample, making large scale SGA studies very challenging. Here we present a novel approach entitled Long Amplicon Melt Profiling (LAMP) based on the analysis of the melting profile of the PCR reactions using SYBR Green and/or EvaGreen fluorescent dyes. The LAMP method represents an attractive alternative to gel electrophoresis and enables the quick discrimination of positive reactions. We validate LAMP for SIV and HIV env-SGA, in 96- and 384-well plate formats. Because the melt profiling allows the screening of several thousands of PCR reactions in a cost-effective, rapid and robust way, we believe it will greatly facilitate any large scale PCR screening. PMID:26053379
Universal DNA-based methods for assessing the diet of grazing livestock and wildlife from feces.
Pegard, Anthony; Miquel, Christian; Valentini, Alice; Coissac, Eric; Bouvier, Frédéric; François, Dominique; Taberlet, Pierre; Engel, Erwan; Pompanon, François
2009-07-08
Because of the demand for controlling livestock diets, two methods that characterize the DNA of plants present in feces were developed. After DNA extraction from fecal samples, a short fragment of the chloroplastic trnL intron was amplified by PCR using a universal primer pair for plants. The first method generates a signature that is the electrophoretic migration pattern of the PCR product. The second method consists of sequencing several hundred DNA fragments from the PCR product through pyrosequencing. These methods were validated with a blind analysis of feces from concentrate- and pasture-fed lambs. The signature method allowed differentiation of the two diets and confirmed the presence of concentrate in one of them. The pyrosequencing method allowed the identification of up to 25 taxa in a diet. These methods are complementary to the chemical methods already used. They could be applied to the control of diets and the study of food preferences.
van Frankenhuyzen, Jessica K; Trevors, Jack T; Flemming, Cecily A; Lee, Hung; Habash, Marc B
2013-11-01
Biosolids result from treatment of sewage sludge to meet jurisdictional standards, including pathogen reduction. Once government regulations are met, materials can be applied to agricultural lands. Culture-based methods are used to enumerate pathogen indicator microorganisms but may underestimate cell densities, which is partly due to bacteria existing in a viable but non-culturable physiological state. Viable indicators can also be quantified by realtime polymerase chain reaction (qPCR) used with propidium monoazide (PMA), a dye that inhibits amplification of DNA found extracellularly or in dead cells. The objectives of this study were to test an optimized PMA-qPCR method for viable pathogen detection in wastewater solids and to validate it by comparing results to data obtained by conventional plating. Reporter genes from genetically marked Pseudomonas sp. UG14Lr and Agrobacterium tumefaciens 542 cells were spiked into samples of primary sludge, and anaerobically digested and Lystek-treated biosolids as cell-free DNA, dead cells, viable cells, and mixtures of live and dead cells, followed by DNA extraction with and without PMA, and qPCR. The protocol was then used for Escherichia coli quantification in the three matrices, and results compared to plate counts. PMA-qPCR selectively detected viable cells, while inhibiting signals from cell-free DNA and DNA found in membrane-compromised cells. PMA-qPCR detected 0.5-1 log unit more viable E. coli cells in both primary solids and dewatered biosolids than plate counts. No viable E. coli was found in Lystek-treated biosolids. These data suggest PMA-qPCR may more accurately estimate pathogen cell numbers than traditional culture methods.
Principal component reconstruction (PCR) for cine CBCT with motion learning from 2D fluoroscopy.
Gao, Hao; Zhang, Yawei; Ren, Lei; Yin, Fang-Fang
2018-01-01
This work aims to generate cine CT images (i.e., 4D images with high-temporal resolution) based on a novel principal component reconstruction (PCR) technique with motion learning from 2D fluoroscopic training images. In the proposed PCR method, the matrix factorization is utilized as an explicit low-rank regularization of 4D images that are represented as a product of spatial principal components and temporal motion coefficients. The key hypothesis of PCR is that temporal coefficients from 4D images can be reasonably approximated by temporal coefficients learned from 2D fluoroscopic training projections. For this purpose, we can acquire fluoroscopic training projections for a few breathing periods at fixed gantry angles that are free from geometric distortion due to gantry rotation, that is, fluoroscopy-based motion learning. Such training projections can provide an effective characterization of the breathing motion. The temporal coefficients can be extracted from these training projections and used as priors for PCR, even though principal components from training projections are certainly not the same for these 4D images to be reconstructed. For this purpose, training data are synchronized with reconstruction data using identical real-time breathing position intervals for projection binning. In terms of image reconstruction, with a priori temporal coefficients, the data fidelity for PCR changes from nonlinear to linear, and consequently, the PCR method is robust and can be solved efficiently. PCR is formulated as a convex optimization problem with the sum of linear data fidelity with respect to spatial principal components and spatiotemporal total variation regularization imposed on 4D image phases. The solution algorithm of PCR is developed based on alternating direction method of multipliers. The implementation is fully parallelized on GPU with NVIDIA CUDA toolbox and each reconstruction takes about a few minutes. The proposed PCR method is validated and compared with a state-of-art method, that is, PICCS, using both simulation and experimental data with the on-board cone-beam CT setting. The results demonstrated the feasibility of PCR for cine CBCT and significantly improved reconstruction quality of PCR from PICCS for cine CBCT. With a priori estimated temporal motion coefficients using fluoroscopic training projections, the PCR method can accurately reconstruct spatial principal components, and then generate cine CT images as a product of temporal motion coefficients and spatial principal components. © 2017 American Association of Physicists in Medicine.
Dacheux, Laurent; Larrous, Florence; Lavenir, Rachel; Lepelletier, Anthony; Faouzi, Abdellah; Troupin, Cécile; Nourlil, Jalal; Buchy, Philippe; Bourhy, Herve
2016-07-01
The definitive diagnosis of lyssavirus infection (including rabies) in animals and humans is based on laboratory confirmation. The reference techniques for post-mortem rabies diagnosis are still based on direct immunofluorescence and virus isolation, but molecular techniques, such as polymerase chain reaction (PCR) based methods, are increasingly being used and now constitute the principal tools for diagnosing rabies in humans and for epidemiological analyses. However, it remains a key challenge to obtain relevant specificity and sensitivity with these techniques while ensuring that the genetic diversity of lyssaviruses does not compromise detection. We developed a dual combined real-time reverse transcription polymerase chain reaction (combo RT-qPCR) method for pan-lyssavirus detection. This method is based on two complementary technologies: a probe-based (TaqMan) RT-qPCR for detecting the RABV species (pan-RABV RT-qPCR) and a second reaction using an intercalating dye (SYBR Green) to detect other lyssavirus species (pan-lyssa RT-qPCR). The performance parameters of this combined assay were evaluated with a large panel of primary animal samples covering almost all the genetic variability encountered at the viral species level, and they extended to almost all lyssavirus species characterized to date. This method was also evaluated for the diagnosis of human rabies on 211 biological samples (positive n = 76 and negative n = 135) including saliva, skin and brain biopsies. It detected all 41 human cases of rabies tested and confirmed the sensitivity and the interest of skin biopsy (91.5%) and saliva (54%) samples for intra-vitam diagnosis of human rabies. Finally, this method was successfully implemented in two rabies reference laboratories in enzootic countries (Cambodia and Morocco). This combined RT-qPCR method constitutes a relevant, useful, validated tool for the diagnosis of rabies in both humans and animals, and represents a promising tool for lyssavirus surveillance.
Lavenir, Rachel; Lepelletier, Anthony; Faouzi, Abdellah; Troupin, Cécile; Nourlil, Jalal; Buchy, Philippe; Bourhy, Herve
2016-01-01
The definitive diagnosis of lyssavirus infection (including rabies) in animals and humans is based on laboratory confirmation. The reference techniques for post-mortem rabies diagnosis are still based on direct immunofluorescence and virus isolation, but molecular techniques, such as polymerase chain reaction (PCR) based methods, are increasingly being used and now constitute the principal tools for diagnosing rabies in humans and for epidemiological analyses. However, it remains a key challenge to obtain relevant specificity and sensitivity with these techniques while ensuring that the genetic diversity of lyssaviruses does not compromise detection. We developed a dual combined real-time reverse transcription polymerase chain reaction (combo RT-qPCR) method for pan-lyssavirus detection. This method is based on two complementary technologies: a probe-based (TaqMan) RT-qPCR for detecting the RABV species (pan-RABV RT-qPCR) and a second reaction using an intercalating dye (SYBR Green) to detect other lyssavirus species (pan-lyssa RT-qPCR). The performance parameters of this combined assay were evaluated with a large panel of primary animal samples covering almost all the genetic variability encountered at the viral species level, and they extended to almost all lyssavirus species characterized to date. This method was also evaluated for the diagnosis of human rabies on 211 biological samples (positive n = 76 and negative n = 135) including saliva, skin and brain biopsies. It detected all 41 human cases of rabies tested and confirmed the sensitivity and the interest of skin biopsy (91.5%) and saliva (54%) samples for intra-vitam diagnosis of human rabies. Finally, this method was successfully implemented in two rabies reference laboratories in enzootic countries (Cambodia and Morocco). This combined RT-qPCR method constitutes a relevant, useful, validated tool for the diagnosis of rabies in both humans and animals, and represents a promising tool for lyssavirus surveillance. PMID:27380028
Cilia, Giovanni; Cabbri, Riccardo; Maiorana, Giacomo; Cardaio, Ilaria; Dall'Olio, Raffaele; Nanetti, Antonio
2018-04-01
Nosema ceranae is now a widespread honey bee pathogen with high incidence in apiculture. Rapid and reliable detection and quantification methods are a matter of concern for research community, nowadays mainly relying on the use of biomolecular techniques such as PCR, RT-PCR or HRMA. The aim of this technical paper is to provide a new qPCR assay, based on the highly-conserved protein coding gene Hsp70, to detect and quantify the microsporidian Nosema ceranae affecting the western honey bee Apis mellifera. The validation steps to assess efficiency, sensitivity, specificity and robustness of the assay are described also. Copyright © 2018 Elsevier GmbH. All rights reserved.
Adamski, Mateusz G; Gumann, Patryk; Baird, Alison E
2014-01-01
Over the past decade rapid advances have occurred in the understanding of RNA expression and its regulation. Quantitative polymerase chain reactions (qPCR) have become the gold standard for quantifying gene expression. Microfluidic next generation, high throughput qPCR now permits the detection of transcript copy number in thousands of reactions simultaneously, dramatically increasing the sensitivity over standard qPCR. Here we present a gene expression analysis method applicable to both standard polymerase chain reactions (qPCR) and high throughput qPCR. This technique is adjusted to the input sample quantity (e.g., the number of cells) and is independent of control gene expression. It is efficiency-corrected and with the use of a universal reference sample (commercial complementary DNA (cDNA)) permits the normalization of results between different batches and between different instruments--regardless of potential differences in transcript amplification efficiency. Modifications of the input quantity method include (1) the achievement of absolute quantification and (2) a non-efficiency corrected analysis. When compared to other commonly used algorithms the input quantity method proved to be valid. This method is of particular value for clinical studies of whole blood and circulating leukocytes where cell counts are readily available.
Rapid detection of Porcine circovirus 2 by recombinase polymerase amplification.
Wang, Jianchang; Wang, Jinfeng; Liu, Libing; Li, Ruiwen; Yuan, Wanzhe
2016-09-01
Porcine circovirus-associated disease, caused primarily by Porcine circovirus 2 (PCV-2), has become endemic in many pig-producing countries and has resulted in significant economic losses to the swine industry worldwide. Tests for PCV-2 infection include PCR, nested PCR, competitive PCR, and real-time PCR (rtPCR). Recombinase polymerase amplification (RPA) has emerged as an isothermal gene amplification technology for the molecular detection of infectious disease agents. RPA is performed at a constant temperature and therefore can be carried out in a water bath. In addition, RPA is completed in ~30 min, much faster than PCR, which usually takes >60 min. We developed a RPA-based method for the detection of PCV-2. The detection limit of RPA was 10(2) copies of PCV-2 genomic DNA. RPA showed the same sensitivity as rtPCR but was 10 times more sensitive than conventional PCR. Successful amplification of PCV-2 DNA, but not other viral templates, demonstrated high specificity of the RPA assay. This method was also validated using clinical samples. The results showed that the RPA assay had a diagnostic agreement rate of 93.7% with conventional PCR and 100% with rtPCR. These findings suggest that the RPA assay is a simple, rapid, and cost-effective method for PCV-2 detection, which could be potentially applied in clinical diagnosis and field surveillance of PCV-2 infection. © 2016 The Author(s).
Shehata, Hanan R.; Li, Jiping; Redda, Helen; Cheng, Shumei; Tabujara, Nicole; Li, Honghong; Warriner, Keith; Hanner, Robert
2017-01-01
Food adulteration and feed contamination are significant issues in the food/feed industry, especially for meat products. Reliable techniques are needed to monitor these issues. Droplet Digital PCR (ddPCR) assays were developed and evaluated for detection and quantification of bovine, porcine, chicken and turkey DNA in food and feed samples. The ddPCR methods were designed based on mitochondrial DNA sequences and integrated with an artificial recombinant plasmid DNA to control variabilities in PCR procedures. The specificity of the ddPCR assays was confirmed by testing both target species and additional 18 non-target species. Linear regression established a detection range between 79 and 33200 copies of the target molecule from 0.26 to 176 pg of fresh animal tissue DNA with a coefficient of determination (R2) of 0.997–0.999. The quantification ranges of the methods for testing fortified heat-processed food and feed samples were 0.05–3.0% (wt/wt) for the bovine and turkey targets, and 0.01–1.0% (wt/wt) for pork and chicken targets. Our methods demonstrated acceptable repeatability and reproducibility for the analytical process for food and feed samples. Internal validation of the PCR process was monitored using a control chart for 74 consecutive ddPCR runs for quantifying bovine DNA. A matrix effect was observed while establishing calibration curves with the matrix type under testing, and the inclusion of an internal control in DNA extraction provides a useful means to overcome this effect. DNA degradation caused by heating, sonication or Taq I restriction enzyme digestion was found to reduce ddPCR readings by as much as 4.5 fold. The results illustrated the applicability of the methods to quantify meat species in food and feed samples without the need for a standard curve, and to potentially support enforcement activities for food authentication and feed control. Standard reference materials matching typical manufacturing processes are needed for future validation of ddPCR assays for absolute quantification of meat species. PMID:28796824
Shehata, Hanan R; Li, Jiping; Chen, Shu; Redda, Helen; Cheng, Shumei; Tabujara, Nicole; Li, Honghong; Warriner, Keith; Hanner, Robert
2017-01-01
Food adulteration and feed contamination are significant issues in the food/feed industry, especially for meat products. Reliable techniques are needed to monitor these issues. Droplet Digital PCR (ddPCR) assays were developed and evaluated for detection and quantification of bovine, porcine, chicken and turkey DNA in food and feed samples. The ddPCR methods were designed based on mitochondrial DNA sequences and integrated with an artificial recombinant plasmid DNA to control variabilities in PCR procedures. The specificity of the ddPCR assays was confirmed by testing both target species and additional 18 non-target species. Linear regression established a detection range between 79 and 33200 copies of the target molecule from 0.26 to 176 pg of fresh animal tissue DNA with a coefficient of determination (R2) of 0.997-0.999. The quantification ranges of the methods for testing fortified heat-processed food and feed samples were 0.05-3.0% (wt/wt) for the bovine and turkey targets, and 0.01-1.0% (wt/wt) for pork and chicken targets. Our methods demonstrated acceptable repeatability and reproducibility for the analytical process for food and feed samples. Internal validation of the PCR process was monitored using a control chart for 74 consecutive ddPCR runs for quantifying bovine DNA. A matrix effect was observed while establishing calibration curves with the matrix type under testing, and the inclusion of an internal control in DNA extraction provides a useful means to overcome this effect. DNA degradation caused by heating, sonication or Taq I restriction enzyme digestion was found to reduce ddPCR readings by as much as 4.5 fold. The results illustrated the applicability of the methods to quantify meat species in food and feed samples without the need for a standard curve, and to potentially support enforcement activities for food authentication and feed control. Standard reference materials matching typical manufacturing processes are needed for future validation of ddPCR assays for absolute quantification of meat species.
Zelenina, D A; Khrustaleva, A M; Volkov, A A
2006-05-01
Using two types of molecular markers, a comparative analysis of the population structure of sockeye salmon from West Kamchatka as well as population assignment of each individual fish were carried out. The values of a RAPD-PCR-based population assignment test (94-100%) were somewhat higher than those based on microsatellite data (74-84%). However, these results seem quite satisfactory because of high polymorphism of the microsatellite loci examined. The UPGMA dendrograms of genetic similarity of three largest spawning populations, constructed using each of the methods, were highly reliable, which was demonstrated by high bootstrap indices (100% in the case of RAPD-PCR; 84 and 100%, in the case of microsatellite analysis), though the resultant trees differed from one another. The different topology of the trees, in our view, is explained by the fact that the employed methods explored different parts of the genome; hence, the obtained results, albeit valid, may not correlate. Thus, to enhance reliability of the results, several methods of analysis should be used concurrently.
Nolte, Oliver
2012-01-01
Laboratory based diagnosis of infectious diseases usually relies on culture of the disease causing micro-organism, followed by identification and susceptibility testing. Since Borrelia burgdorferi sensu lato, the etiologic agent of Lyme disease or Lyme borreliosis, requires very specific culture conditions (e.g. specific liquid media, long term cul-ture) traditional bacteriology is often not done on a routine basis. Instead, confirmation of the clinical diagnosis needs ei-ther indirect techniques (like serology or measurement of cellular activity in the presence of antigens) or direct but culture independent techniques, like microscopy or nucleic acid amplification techniques (NAT), with polymerase chain reaction (PCR) being the most frequently applied NAT method in routine laboratories. NAT uses nucleic acids of the disease causing micro-organism as template for amplification, isolated from various sources of clinical specimens. Although the underlying principle, adoption of the enzymatic process running during DNA duplication prior to prokaryotic cell division, is comparatively easy, a couple of ‘pitfalls’ is associated with the technique itself as well as with interpretation of the results. At present, no commercial, CE-marked and sufficiently validated PCR assay is available. A number of homebrew assays have been published, which are different in terms of target (i.e. the gene targeted by the amplification primers), method (nested PCR, PCR followed by hybridization, real-time PCR) and validation criteria. Inhibitory compounds may lead to false negative results, if no appropriate internal control is included. Carry-over of amplicons, insufficient handling and workflow and/or insufficiently validated targets/primers may result in false positive results. Different targets may yield different analytical sensitivity, depending, among other factors, of the redundancy of a target gene in the genome. Per-formance characteristics (e.g. analytical sensitivity and specificity, clinical sensitivity and specificity, reproducibility, etc.) are, if available, only applicable to a specific assay, running in a specific laboratory. Finally, not only the NAT/PCR method itself, but also the process of DNA isolation from the specimen, is highly diverse and may have fundamental im-pact on the (expected) PCR result. Of concern are distribution effects of DNA, in particular, if only low numbers of bacte-ria/genomes are present in a sample, as it is the case for instance in cerebrospinal fluids. For the ordering physician and for the patient requesting PCR analysis, these ‘pitfalls’ are usually invisible. As a conse-quence, the reported result (i.e. PCR negative or positive for B. burgdorferi) is hard to interpret, especially, if the reported PCR result is contradictory to the clinical diagnosis or other laboratory findings. Moreover, due to the high number of dif-ferent assays in use, two laboratories, testing the same specimen, might come to different PCR results. The current paper wants to summarize the available PCR/NAT assays for the detection of B. burgdorferi DNA in clinical specimens, with special attention to neurologic disorders, and to discuss the difficulties in PCR analysis and result inter-pretation, associated thereof. In view of growing numbers of patients who are diagnosed of having Lyme disease, and ac-knowledging a substantial growth in knowledge regarding other tick- or vector-borne pathogens, which might be able to induce symptoms comparable to Lyme (neuro-)borreliosis, efforts are urgently needed to standardize and harmonize methods for B. burgdorferi nucleic acid amplification. PMID:23230454
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stulberg, Michael J.; Huang, Qi
Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regionsmore » of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Moreover, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum.« less
Lakshmi, KS; Lakshmi, S
2010-01-01
Two chemometric methods were developed for the simultaneous determination of telmisartan and hydrochlorothiazide. The chemometric methods applied were principal component regression (PCR) and partial least square (PLS-1). These approaches were successfully applied to quantify the two drugs in the mixture using the information included in the UV absorption spectra of appropriate solutions in the range of 200-350 nm with the intervals Δλ = 1 nm. The calibration of PCR and PLS-1 models was evaluated by internal validation (prediction of compounds in its own designed training set of calibration) and by external validation over laboratory prepared mixtures and pharmaceutical preparations. The PCR and PLS-1 methods require neither any separation step, nor any prior graphical treatment of the overlapping spectra of the two drugs in a mixture. The results of PCR and PLS-1 methods were compared with each other and a good agreement was found. PMID:21331198
Lakshmi, Ks; Lakshmi, S
2010-01-01
Two chemometric methods were developed for the simultaneous determination of telmisartan and hydrochlorothiazide. The chemometric methods applied were principal component regression (PCR) and partial least square (PLS-1). These approaches were successfully applied to quantify the two drugs in the mixture using the information included in the UV absorption spectra of appropriate solutions in the range of 200-350 nm with the intervals Δλ = 1 nm. The calibration of PCR and PLS-1 models was evaluated by internal validation (prediction of compounds in its own designed training set of calibration) and by external validation over laboratory prepared mixtures and pharmaceutical preparations. The PCR and PLS-1 methods require neither any separation step, nor any prior graphical treatment of the overlapping spectra of the two drugs in a mixture. The results of PCR and PLS-1 methods were compared with each other and a good agreement was found.
Manonmani, Arulsamy Mary; Mathivanan, Ashok Kumar; Sadanandane, Candassamy; Jambulingam, Purushothaman
2013-01-01
Background: Anopheles culicifacies, a major malarial vector has been recognized as a complex of five sibling species, A, B, C, D and E. These sibling species exhibit varied vectorial capacity, host specificity and susceptibility to malarial parasites/ insecticides. In this study, a PCR assay developed earlier for distinguishing the five individual species was validated on samples of An. culicifacies collected from various parts of India. Methods: The samples were initially screened using the rDNA-ITS2 region based primers which categorised the samples into either A/D group or B/C/E group. A proportion of samples belonging to each group were subjected to the mtDNA-COII PCR assay for identifying individual species. Results: Among the 615 samples analysed by rDNA-ITS2 PCR assay, 303 were found to belong to A/D group and 299 to B/C/E group while 13 turned negative. Among 163 samples belonging to A/D group, only one sample displayed the profile characteristic of species A and among the 176 samples falling in the B/C/E group, 51 were identified as species B, 14 as species C and 41 as species E respectively by the mtDNA-COII PCR assay. Samples exhibiting products diagnostic of B/C/E, when subjected to PCR-RFLP assay identified 15 samples as species E. Conclusion: Validation of the mtDNA-COII PCR assay on large number of samples showed that this technique cannot be used universally to distinguish the 5 members of this species complex, as it has been designed based on minor/single base differences observed in the COII region. PMID:24409441
Novel method to detect microRNAs using chip-based QuantStudio 3D digital PCR.
Conte, Davide; Verri, Carla; Borzi, Cristina; Suatoni, Paola; Pastorino, Ugo; Sozzi, Gabriella; Fortunato, Orazio
2015-10-23
Research efforts for the management of cancer, in particular for lung cancer, are directed to identify new strategies for its early detection. MicroRNAs (miRNAs) are a new promising class of circulating biomarkers for cancer detection, but lack of consensus on data normalization methods has affected the diagnostic potential of circulating miRNAs. There is a growing interest in techniques that allow an absolute quantification of miRNAs which could be useful for early diagnosis. Recently, digital PCR, mainly based on droplets generation, emerged as an affordable technology for precise and absolute quantification of nucleic acids. In this work, we described a new interesting approach for profiling circulating miRNAs in plasma samples using a chip-based platform, the QuantStudio 3D digital PCR. The proposed method was validated using synthethic oligonucleotide at serial dilutions in plasma samples of lung cancer patients and in lung tissues and cell lines. Given its reproducibility and reliability, our approach could be potentially applied for the identification and quantification of miRNAs in other biological samples such as circulating exosomes or protein complexes. As chip-digital PCR becomes more established, it would be a robust tool for quantitative assessment of miRNA copy number for diagnosis of lung cancer and other diseases.
Cheng, Yu-Huei
2014-12-01
Specific primers play an important role in polymerase chain reaction (PCR) experiments, and therefore it is essential to find specific primers of outstanding quality. Unfortunately, many PCR constraints must be simultaneously inspected which makes specific primer selection difficult and time-consuming. This paper introduces a novel computational intelligence-based method, Teaching-Learning-Based Optimisation, to select the specific and feasible primers. The specified PCR product lengths of 150-300 bp and 500-800 bp with three melting temperature formulae of Wallace's formula, Bolton and McCarthy's formula and SantaLucia's formula were performed. The authors calculate optimal frequency to estimate the quality of primer selection based on a total of 500 runs for 50 random nucleotide sequences of 'Homo species' retrieved from the National Center for Biotechnology Information. The method was then fairly compared with the genetic algorithm (GA) and memetic algorithm (MA) for primer selection in the literature. The results show that the method easily found suitable primers corresponding with the setting primer constraints and had preferable performance than the GA and the MA. Furthermore, the method was also compared with the common method Primer3 according to their method type, primers presentation, parameters setting, speed and memory usage. In conclusion, it is an interesting primer selection method and a valuable tool for automatic high-throughput analysis. In the future, the usage of the primers in the wet lab needs to be validated carefully to increase the reliability of the method.
Okamoto, Nobuhiko; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Miyake, Noriko; Saitsu, Hirotomo; Matsumoto, Naomichi
2013-01-01
Next-generation sequencing (NGS) combined with enrichment of target genes enables highly efficient and low-cost sequencing of multiple genes for genetic diseases. The aim of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection in autism spectrum disorder (ASD). We assessed the performance of the bench-top Ion Torrent PGM and Illumina MiSeq platforms as optimized solutions for mutation detection, using microdroplet PCR-based enrichment of 62 ASD associated genes. Ten patients with known mutations were sequenced using NGS to validate the sensitivity of our method. The overall read quality was better with MiSeq, largely because of the increased indel-related error associated with PGM. The sensitivity of SNV detection was similar between the two platforms, suggesting they are both suitable for SNV detection in the human genome. Next, we used these methods to analyze 28 patients with ASD, and identified 22 novel variants in genes associated with ASD, with one mutation detected by MiSeq only. Thus, our results support the combination of target gene enrichment and NGS as a valuable molecular method for investigating rare variants in ASD. PMID:24066114
Shang, Ying; Xu, Wentao; Wang, Yong; Xu, Yuancong; Huang, Kunlun
2017-12-15
This study described a novel multiplex qualitative detection method using pyrosequencing. Based on the principle of the universal primer-multiplex-PCR, only one sequencing primer was employed to realize the detection of the multiple targets. Samples containing three genetically modified (GM) crops in different proportions were used to validate the method. The dNTP dispensing order was designed based on the product sequences. Only 12 rounds (ATCTGATCGACT) of dNTPs addition and, often, as few as three rounds (CAT) under ideal conditions, were required to detect the GM events qualitatively, and sensitivity was as low as 1% of a mixture. However, when considering a mixture, calculating signal values allowed the proportion of each GM to be estimated. Based on these results, we concluded that our novel method not only realized detection but also allowed semi-quantitative detection of individual events. Copyright © 2017. Published by Elsevier Ltd.
Tattiyapong, P; Sirikanchana, K; Surachetpong, W
2018-02-01
Tilapia lake virus (TiLV) is an emerging pathogen associated with high mortalities of wild and farm-raised tilapia in different countries. In this study, a SYBR green-based reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay targeting segment three of the virus was developed to detect and quantify TiLV in clinical samples and experimentally challenged fish. All 30 field samples with clinical signs and history consistent with TiLV infection were positive for TiLV as detected by the developed RT-qPCR method. The RT-qPCR technique provided 100 and 10,000 times more sensitive for virus detection than those offered by the RT-PCR and virus isolation in cell culture methods, respectively. The detection limit of the RT-qPCR method was as low as two viral copies/μl. Moreover, the RT-qPCR technique could be applied for TiLV detection in various fish tissues including gills, liver, brain, heart, anterior kidney and spleen. Significantly, this study delivered an accurate and reliable method for rapid detection of TiLV viruses that facilitates active surveillance programme and disease containment. © 2017 John Wiley & Sons Ltd.
Ramírez, Juan Carlos; Cura, Carolina Inés; Moreira, Otacilio da Cruz; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Guedes, Paulo Marcos da Matta; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Galvão, Lúcia Maria da Cunha; da Câmara, Antonia Cláudia Jácome; Espinoza, Bertha; de Noya, Belkisyole Alarcón; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G.
2015-01-01
An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease. PMID:26320872
Tracking the Invasion of Small Numbers of Cells in Paper-Based Assays with Quantitative PCR.
Truong, Andrew S; Lochbaum, Christian A; Boyce, Matthew W; Lockett, Matthew R
2015-11-17
Paper-based scaffolds are an attractive material for culturing mammalian cells in a three-dimensional environment. There are a number of previously published studies, which utilize these scaffolds to generate models of aortic valves, cardiac ischemia and reperfusion, and solid tumors. These models have largely relied on fluorescence imaging and microscopy to quantify cells in the scaffolds. We present here a polymerase chain reaction (PCR)-based method, capable of quantifying multiple cell types in a single culture with the aid of DNA barcodes: unique sequences of DNA introduced to the genome of individual cells or cell types through lentiviral transduction. PCR-based methods are highly specific and are amenable to high-throughput and multiplexed analyses. To validate this method, we engineered two different breast cancer lines to constitutively express either a green or red fluorescent protein. These cells lines allowed us to directly compare the ability of fluorescence imaging (of the fluorescent proteins) and qPCR (of the unique DNA sequences of the fluorescent proteins) to quantify known numbers of cells in the paper based-scaffolds. We also used both methods to quantify the distribution of these breast cell lines in homotypic and heterotypic invasion assays. In the paper-based invasion assays, a single sheet of paper containing cells suspended in a hydrogel was sandwiched between sheets of paper containing only hydrogel. The stack was incubated, and the cells invaded the adjacent layers. The individual sheets of the invasion assay were then destacked and the number of cells in each layer quantified. Our results show both methods can accurately detect cell populations of greater than 500 cells. The qPCR method can repeatedly and accurately detect as few as 50 cells, allowing small populations of highly invasive cells to be detected and differentiated from other cell types.
Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan
2011-06-01
The present study aimed to establish a fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp. Based on the sequences of the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA, we designed a set of genus-specific primers for the amplification of Fasciola ITS-2, with an estimated size of 140 bp. These primers were labelled by fluorescence dyes, and the PCR products were analyzed by capillary electrophoresis under non-denaturing conditions (F-PCR-SSCP). Capillary electrophoresis analysis of the fluorescence-labelled DNA fragments displayed three different peak profiles that allowed the accurate identification of Fasciola species: one single peak specific for either Fasciola hepatica or Fasciola gigantica and a doublet peak corresponding to the "intermediate" Fasciola. Validation of our novel method was performed using Fasciola specimens from different host animals from China, Spain, Nigeria, and Egypt. This F-PCR-SSCP assay provides a rapid, simple, and robust tool for the identification and differentiation between Fasciola spp.
Harun, Azian; Blyth, Christopher C.; Gilgado, Felix; Middleton, Peter; Chen, Sharon C.-A.; Meyer, Wieland
2011-01-01
The emergence of Scedosporium infections in diverse groups of individuals, which are often treatment refractory, warrants timely and accurate laboratory diagnosis. Species- or group-specific primers based on internal transcribed spacer (ITS) sequence polymorphisms were designed for Scedosporium aurantiacum, Scedosporium dehoogii, Scedosporium prolificans, Pseudallescheria boydii species complex (former clade 5)/Pseudallescheria apiosperma (formerly classified as S. apiospermum sensu lato) and Pseudallescheria minutispora. Primers for S. aurantiacum, S. prolificans, and P. boydii species complex/P. apiosperma were incorporated into a multiplex PCR assay for the detection and identification of the three major clinically important Scedosporium species and validated using sputum specimens collected from patients seen at a major Australian cystic fibrosis clinic. The multiplex PCR assay showed 100% specificity in identifying the three major clinically relevant Scedosporium species from pure culture. When evaluated using DNA extracts from sputa, sensitivity and specificity of the multiplex PCR assay were 62.1% and 97.2%, respectively. This highly species-specific multiplex PCR assay offers a rapid and simple method of detection of the most clinically important Scedosporium species in respiratory tract specimens. PMID:21325557
PCR-based methods for the detection of L1014 kdr mutation in Anopheles culicifacies sensu lato
Singh, Om P; Bali, Prerna; Hemingway, Janet; Subbarao, Sarala K; Dash, Aditya P; Adak, Tridibes
2009-01-01
Background Anopheles culicifacies s.l., a major malaria vector in India, has developed widespread resistance to DDT and is becoming resistant to pyrethroids–the only insecticide class recommended for the impregnation of bed nets. Knock-down resistance due to a point mutation in the voltage gated sodium channel at L1014 residue (kdr) is a common mechanism of resistance to DDT and pyrethroids. The selection of this resistance may pose a serious threat to the success of the pyrethroid-impregnated bed net programme. This study reports the presence of kdr mutation (L1014F) in a field population of An. culicifacies s.l. and three new PCR-based methods for kdr genotyping. Methods The IIS4-IIS5 linker to IIS6 segments of the para type voltage gated sodium channel gene of DDT and pyrethroid resistant An. culicifacies s.l. population from the Surat district of India was sequenced. This revealed the presence of an A-to-T substitution at position 1014 leading to a leucine-phenylalanine mutation (L1014F) in a few individuals. Three molecular methods viz. Allele Specific PCR (AS-PCR), an Amplification Refractory Mutation System (ARMS) and Primer Introduced Restriction Analysis-PCR (PIRA-PCR) were developed and tested for kdr genotyping. The specificity of the three assays was validated following DNA sequencing of the samples genotyped. Results The genotyping of this An. culicifacies s.l. population by the three PCR based assays provided consistent result and were in agreement with DNA sequencing result. A low frequency of the kdr allele mostly in heterozygous condition was observed in the resistant population. Frequencies of the different genotypes were in Hardy-Weinberg equilibrium. Conclusion The Leu-Phe mutation, which generates the kdr phenotype in many insects, was detected in a pyrethroid and DDT resistant An. culicifacies s.l. population. Three PCR-based methods were developed for kdr genotyping. All the three assays were specific. The ARMS method was refractory to non-specific amplification in non-stringent amplification conditions. The PIRA-PCR assay is able to detect both the codons for the phenylalanine mutation at kdr locus, i.e., TTT and TTC, in a single assay, although the latter codon was not found in the population genotyped. PMID:19594947
Purcell, Maureen K.; Powers, Rachel L.; Besijn, Bonnie; Hershberger, Paul K.
2017-01-01
We report the development and validation of two quantitative PCR (qPCR) assays to detect Nanophyetus salmincola DNA in water samples and in fish and snail tissues. Analytical and diagnostic validation demonstrated good sensitivity, specificity, and repeatability of both qPCR assays. The N. salmincola DNA copy number in kidney tissue was significantly correlated with metacercaria counts based on microscopy. Extraction methods were optimized for the sensitive qPCR detection of N. salmincola DNA in settled water samples. Artificially spiked samples suggested that the 1-cercaria/L threshold corresponded to an estimated log10 copies per liter ≥ 6.0. Significant correlation of DNA copy number per liter and microscopic counts indicated that the estimated qPCR copy number was a good predictor of the number of waterborne cercariae. However, the detection of real-world samples below the estimated 1-cercaria/L threshold suggests that the assays may also detect other N. salmincola life stages, nonintact cercariae, or free DNA that settles with the debris. In summary, the qPCR assays reported here are suitable for identifying and quantifying all life stages of N. salmincola that occur in fish tissues, snail tissues, and water.
Blanchard, Philippe; Regnault, Julie; Schurr, Frank; Dubois, Eric; Ribière, Magali
2012-03-01
Chronic bee paralysis virus (CBPV) is responsible for chronic bee paralysis, an infectious and contagious disease in adult honey bees (Apis mellifera L.). A real-time RT-PCR assay to quantitate the CBPV load is now available. To propose this assay as a reference method, it was characterised further in an intra-laboratory study during which the reliability and the repeatability of results and the performance of the assay were confirmed. The qPCR assay alone and the whole quantitation method (from sample RNA extraction to analysis) were both assessed following the ISO/IEC 17025 standard and the recent XP U47-600 standard issued by the French Standards Institute. The performance of the qPCR assay and of the overall CBPV quantitation method were validated over a 6 log range from 10(2) to 10(8) with a detection limit of 50 and 100 CBPV RNA copies, respectively, and the protocol of the real-time RT-qPCR assay for CBPV quantitation was approved by the French Accreditation Committee. Copyright © 2011 Elsevier B.V. All rights reserved.
Peñarrubia, Luis; Alcaraz, Carles; Vaate, Abraham Bij de; Sanz, Nuria; Pla, Carles; Vidal, Oriol; Viñas, Jordi
2016-12-14
The zebra mussel (Dreissena polymorpha Pallas, 1771) and the quagga mussel (D. rostriformis Deshayes, 1838) are successful invasive bivalves with substantial ecological and economic impacts in freshwater systems once they become established. Since their eradication is extremely difficult, their detection at an early stage is crucial to prevent spread. In this study, we optimized and validated a qPCR detection method based on the histone H2B gene to quantify combined infestation levels of zebra and quagga mussels in environmental DNA samples. Our results show specific dreissenid DNA present in filtered water samples for which microscopic diagnostic identification for larvae failed. Monitoring a large number of locations for invasive dreissenid species based on a highly specific environmental DNA qPCR assay may prove to be an essential tool for management and control plans focused on prevention of establishment of dreissenid mussels in new locations.
Peñarrubia, Luis; Alcaraz, Carles; Vaate, Abraham bij de; Sanz, Nuria; Pla, Carles; Vidal, Oriol; Viñas, Jordi
2016-01-01
The zebra mussel (Dreissena polymorpha Pallas, 1771) and the quagga mussel (D. rostriformis Deshayes, 1838) are successful invasive bivalves with substantial ecological and economic impacts in freshwater systems once they become established. Since their eradication is extremely difficult, their detection at an early stage is crucial to prevent spread. In this study, we optimized and validated a qPCR detection method based on the histone H2B gene to quantify combined infestation levels of zebra and quagga mussels in environmental DNA samples. Our results show specific dreissenid DNA present in filtered water samples for which microscopic diagnostic identification for larvae failed. Monitoring a large number of locations for invasive dreissenid species based on a highly specific environmental DNA qPCR assay may prove to be an essential tool for management and control plans focused on prevention of establishment of dreissenid mussels in new locations. PMID:27966602
Abate, Teresa; Cayo, Nelly M.; Parrado, Rudy; Bello, Zoraida Diaz; Velazquez, Elsa; Muñoz-Calderon, Arturo; Juiz, Natalia A.; Basile, Joaquín; Garcia, Lineth; Riarte, Adelina; Nasser, Julio R.; Ocampo, Susana B.; Yadon, Zaida E.; Torrico, Faustino; de Noya, Belkisyole Alarcón; Ribeiro, Isabela; Schijman, Alejandro G.
2013-01-01
Background The analytical validation of sensitive, accurate and standardized Real-Time PCR methods for Trypanosoma cruzi quantification is crucial to provide a reliable laboratory tool for diagnosis of recent infections as well as for monitoring treatment efficacy. Methods/Principal Findings We have standardized and validated a multiplex Real-Time quantitative PCR assay (qPCR) based on TaqMan technology, aiming to quantify T. cruzi satellite DNA as well as an internal amplification control (IAC) in a single-tube reaction. IAC amplification allows rule out false negative PCR results due to inhibitory substances or loss of DNA during sample processing. The assay has a limit of detection (LOD) of 0.70 parasite equivalents/mL and a limit of quantification (LOQ) of 1.53 parasite equivalents/mL starting from non-boiled Guanidine EDTA blood spiked with T. cruzi CL-Brener stock. The method was evaluated with blood samples collected from Chagas disease patients experiencing different clinical stages and epidemiological scenarios: 1- Sixteen Venezuelan patients from an outbreak of oral transmission, 2- Sixty three Bolivian patients suffering chronic Chagas disease, 3- Thirty four Argentinean cases with chronic Chagas disease, 4- Twenty seven newborns to seropositive mothers, 5- A seronegative receptor who got infected after transplantation with a cadaveric kidney explanted from an infected subject. Conclusions/Significance The performing parameters of this assay encourage its application to early assessment of T. cruzi infection in cases in which serological methods are not informative, such as recent infections by oral contamination or congenital transmission or after transplantation with organs from seropositive donors, as well as for monitoring Chagas disease patients under etiological treatment. PMID:23350002
Jaffe, R I; Lane, J D; Albury, S V; Niemeyer, D M
2000-09-01
Methicillin-resistant staphylococci (MRS) are one of the most common causes of nosocomial infections and bacteremia. Standard bacterial identification and susceptibility testing frequently require as long as 72 h to report results, and there may be difficulty in rapidly and accurately identifying methicillin resistance. The use of the PCR is a rapid and simple process for the amplification of target DNA sequences, which can be used to identify and test bacteria for antimicrobial resistance. However, many sample preparation methods are unsuitable for PCR utilization in the clinical laboratory because they either are not cost-effective, take too long to perform, or do not provide a satisfactory DNA template for PCR. Our goal was to provide same-day results to facilitate rapid diagnosis and therapy. In this report, we describe a rapid method for extraction of bacterial DNA directly from blood culture bottles that gave quality DNA for PCR in as little as 20 min. We compared this extraction method to the standard QIAGEN method for turnaround time (TAT), cost, purity, and use of template in PCR. Specific identification of MRS was determined using intragenic primer sets for bacterial and Staphylococcus 16S rRNA and mecA gene sequences. The PCR primer sets were validated with 416 isolates of staphylococci, including methicillin-resistant Staphylococcus aureus (n = 106), methicillin-sensitive S. aureus (n = 134), and coagulase-negative Staphylococcus (n = 176). The total supply cost of our extraction method and PCR was $2.15 per sample with a result TAT of less than 4 h. The methods described herein represent a rapid and accurate DNA extraction and PCR-based identification system, which makes the system an ideal candidate for use under austere field conditions and one that may have utility in the clinical laboratory.
Tramm, Trine; Mohammed, Hayat; Myhre, Simen; Kyndi, Marianne; Alsner, Jan; Børresen-Dale, Anne-Lise; Sørlie, Therese; Frigessi, Arnoldo; Overgaard, Jens
2014-10-15
To identify genes predicting benefit of radiotherapy in patients with high-risk breast cancer treated with systemic therapy and randomized to receive or not receive postmastectomy radiotherapy (PMRT). The study was based on the Danish Breast Cancer Cooperative Group (DBCG82bc) cohort. Gene-expression analysis was performed in a training set of frozen tumor tissue from 191 patients. Genes were identified through the Lasso method with the endpoint being locoregional recurrence (LRR). A weighted gene-expression index (DBCG-RT profile) was calculated and transferred to quantitative real-time PCR (qRT-PCR) in corresponding formalin-fixed, paraffin-embedded (FFPE) samples, before validation in FFPE from 112 additional patients. Seven genes were identified, and the derived DBCG-RT profile divided the 191 patients into "high LRR risk" and "low LRR risk" groups. PMRT significantly reduced risk of LRR in "high LRR risk" patients, whereas "low LRR risk" patients showed no additional reduction in LRR rate. Technical transfer of the DBCG-RT profile to FFPE/qRT-PCR was successful, and the predictive impact was successfully validated in another 112 patients. A DBCG-RT gene profile was identified and validated, identifying patients with very low risk of LRR and no benefit from PMRT. The profile may provide a method to individualize treatment with PMRT. ©2014 American Association for Cancer Research.
Validation of high-throughput single cell analysis methodology.
Devonshire, Alison S; Baradez, Marc-Olivier; Morley, Gary; Marshall, Damian; Foy, Carole A
2014-05-01
High-throughput quantitative polymerase chain reaction (qPCR) approaches enable profiling of multiple genes in single cells, bringing new insights to complex biological processes and offering opportunities for single cell-based monitoring of cancer cells and stem cell-based therapies. However, workflows with well-defined sources of variation are required for clinical diagnostics and testing of tissue-engineered products. In a study of neural stem cell lines, we investigated the performance of lysis, reverse transcription (RT), preamplification (PA), and nanofluidic qPCR steps at the single cell level in terms of efficiency, precision, and limit of detection. We compared protocols using a separate lysis buffer with cell capture directly in RT-PA reagent. The two methods were found to have similar lysis efficiencies, whereas the direct RT-PA approach showed improved precision. Digital PCR was used to relate preamplified template copy numbers to Cq values and reveal where low-quality signals may affect the analysis. We investigated the impact of calibration and data normalization strategies as a means of minimizing the impact of inter-experimental variation on gene expression values and found that both approaches can improve data comparability. This study provides validation and guidance for the application of high-throughput qPCR workflows for gene expression profiling of single cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Validation of a standardized extraction method for formalin-fixed paraffin-embedded tissue samples.
Lagheden, Camilla; Eklund, Carina; Kleppe, Sara Nordqvist; Unger, Elizabeth R; Dillner, Joakim; Sundström, Karin
2016-07-01
Formalin-fixed paraffin-embedded (FFPE) samples can be DNA-extracted and used for human papillomavirus (HPV) genotyping. The xylene-based gold standard for extracting FFPE samples is laborious, suboptimal and involves health hazards for the personnel involved. To compare extraction with the standard xylene method to a xylene-free method used in an HPV LabNet Global Reference Laboratory at the Centers for Disease Control (CDC); based on a commercial method with an extra heating step. Fifty FFPE samples were randomly selected from a national audit of all cervical cancer cases diagnosed in Sweden during 10 years. For each case-block, a blank-block was sectioned, as a control for contamination. For xylene extraction, the standard WHO Laboratory Manual protocol was used. For the CDC method, the manufacturers' protocol was followed except for an extra heating step, 120°C for 20min. Samples were extracted and tested in parallel with β-globin real-time PCR, HPV16 real-time PCR and HPV typing using modified general primers (MGP)-PCR and Luminex assays. For a valid result the blank-block had to be betaglobin-negative in all tests and the case-block positive for beta-globin. Overall, detection was improved with the heating method and the amount of HPV-positive samples increased from 70% to 86% (p=0.039). For all samples where HPV type concordance could be evaluated, there was 100% type concordance. A xylene-free and robust extraction method for HPV-DNA typing in FFPE material is currently in great demand. Our proposed standardized protocol appears to be generally useful. Copyright © 2016. Published by Elsevier B.V.
A PCR primer bank for quantitative gene expression analysis.
Wang, Xiaowei; Seed, Brian
2003-12-15
Although gene expression profiling by microarray analysis is a useful tool for assessing global levels of transcriptional activity, variability associated with the data sets usually requires that observed differences be validated by some other method, such as real-time quantitative polymerase chain reaction (real-time PCR). However, non-specific amplification of non-target genes is frequently observed in the latter, confounding the analysis in approximately 40% of real-time PCR attempts when primer-specific labels are not used. Here we present an experimentally validated algorithm for the identification of transcript-specific PCR primers on a genomic scale that can be applied to real-time PCR with sequence-independent detection methods. An online database, PrimerBank, has been created for researchers to retrieve primer information for their genes of interest. PrimerBank currently contains 147 404 primers encompassing most known human and mouse genes. The primer design algorithm has been tested by conventional and real-time PCR for a subset of 112 primer pairs with a success rate of 98.2%.
Development and Validation of a qRT-PCR Classifier for Lung Cancer Prognosis
Chen, Guoan; Kim, Sinae; Taylor, Jeremy MG; Wang, Zhuwen; Lee, Oliver; Ramnath, Nithya; Reddy, Rishindra M; Lin, Jules; Chang, Andrew C; Orringer, Mark B; Beer, David G
2011-01-01
Purpose This prospective study aimed to develop a robust and clinically-applicable method to identify high-risk early stage lung cancer patients and then to validate this method for use in future translational studies. Patients and Methods Three published Affymetrix microarray data sets representing 680 primary tumors were used in the survival-related gene selection procedure using clustering, Cox model and random survival forest (RSF) analysis. A final set of 91 genes was selected and tested as a predictor of survival using a qRT-PCR-based assay utilizing an independent cohort of 101 lung adenocarcinomas. Results The RSF model built from 91 genes in the training set predicted patient survival in an independent cohort of 101 lung adenocarcinomas, with a prediction error rate of 26.6%. The mortality risk index (MRI) was significantly related to survival (Cox model p < 0.00001) and separated all patients into low, medium, and high-risk groups (HR = 1.00, 2.82, 4.42). The MRI was also related to survival in stage 1 patients (Cox model p = 0.001), separating patients into low, medium, and high-risk groups (HR = 1.00, 3.29, 3.77). Conclusions The development and validation of this robust qRT-PCR platform allows prediction of patient survival with early stage lung cancer. Utilization will now allow investigators to evaluate it prospectively by incorporation into new clinical trials with the goal of personalized treatment of lung cancer patients and improving patient survival. PMID:21792073
Purcell, Maureen K.; Getchell, Rodman G.; McClure, Carol A.; Weber, S.E.; Garver, Kyle A.
2011-01-01
Real-time, or quantitative, polymerase chain reaction (qPCR) is quickly supplanting other molecular methods for detecting the nucleic acids of human and other animal pathogens owing to the speed and robustness of the technology. As the aquatic animal health community moves toward implementing national diagnostic testing schemes, it will need to evaluate how qPCR technology should be employed. This review outlines the basic principles of qPCR technology, considerations for assay development, standards and controls, assay performance, diagnostic validation, implementation in the diagnostic laboratory, and quality assurance and control measures. These factors are fundamental for ensuring the validity of qPCR assay results obtained in the diagnostic laboratory setting.
Complementary techniques: validation of gene expression data by quantitative real time PCR.
Provenzano, Maurizio; Mocellin, Simone
2007-01-01
Microarray technology can be considered the most powerful tool for screening gene expression profiles of biological samples. After data mining, results need to be validated with highly reliable biotechniques allowing for precise quantitation of transcriptional abundance of identified genes. Quantitative real time PCR (qrt-PCR) technology has recently reached a level of sensitivity, accuracy and practical ease that support its use as a routine bioinstrumentation for gene level measurement. Currently, qrt-PCR is considered by most experts the most appropriate method to confirm or confute microarray-generated data. The knowledge of the biochemical principles underlying qrt-PCR as well as some related technical issues must be beard in mind when using this biotechnology.
Marchetti, Antonio; Pace, Maria Vittoria; Di Lorito, Alessia; Canarecci, Sara; Felicioni, Lara; D'Antuono, Tommaso; Liberatore, Marcella; Filice, Giampaolo; Guetti, Luigi; Mucilli, Felice; Buttitta, Fiamma
2016-09-01
Anaplastic Lymphoma Kinase (ALK) gene rearrangements have been described in 3-5% of lung adenocarcinomas (ADC) and their identification is essential to select patients for treatment with ALK tyrosine kinase inhibitors. For several years, fluorescent in situ hybridization (FISH) has been considered as the only validated diagnostic assay. Currently, alternative methods are commercially available as diagnostic tests. A series of 217 ADC comprising 196 consecutive resected tumors and 21 ALK FISH-positive cases from an independent series of 702 ADC were investigated. All specimens were screened by IHC (ALK-D5F3-CDx-Ventana), FISH (Vysis ALK Break-Apart-Abbott) and RT-PCR (ALK RGQ RT-PCR-Qiagen). Results were compared and discordant cases subjected to Next Generation Sequencing. Thirty-nine of 217 samples were positive by the ALK RGQ RT-PCR assay, using a threshold cycle (Ct) cut-off ≤35.9, as recommended. Of these positive samples, 14 were negative by IHC and 12 by FISH. ALK RGQ RT-PCR/FISH discordant cases were analyzed by the NGS assay with results concordant with FISH data. In order to obtain the maximum level of agreement between FISH and ALK RGQ RT-PCR data, we introduced a new scoring algorithm based on the ΔCt value. A ΔCt cut-off level ≤3.5 was used in a pilot series. Then the algorithm was tested on a completely independent validation series. By using the new scoring algorithm and FISH as reference standard, the sensitivity and the specificity of the ALK RGQ RT-PCR(ΔCt) assay were 100% and 100%, respectively. Our results suggest that the ALK RGQ RT-PCR test could be useful in clinical practice as a complementary assay in multi-test diagnostic algorithms or even, if our data will be confirmed in independent studies, as a standalone or screening test for the selection of patients to be treated with ALK inhibitors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kreutz, Jason E; Munson, Todd; Huynh, Toan; Shen, Feng; Du, Wenbin; Ismagilov, Rustem F
2011-11-01
This paper presents a protocol using theoretical methods and free software to design and analyze multivolume digital PCR (MV digital PCR) devices; the theory and software are also applicable to design and analysis of dilution series in digital PCR. MV digital PCR minimizes the total number of wells required for "digital" (single molecule) measurements while maintaining high dynamic range and high resolution. In some examples, multivolume designs with fewer than 200 total wells are predicted to provide dynamic range with 5-fold resolution similar to that of single-volume designs requiring 12,000 wells. Mathematical techniques were utilized and expanded to maximize the information obtained from each experiment and to quantify performance of devices and were experimentally validated using the SlipChip platform. MV digital PCR was demonstrated to perform reliably, and results from wells of different volumes agreed with one another. No artifacts due to different surface-to-volume ratios were observed, and single molecule amplification in volumes ranging from 1 to 125 nL was self-consistent. The device presented here was designed to meet the testing requirements for measuring clinically relevant levels of HIV viral load at the point-of-care (in plasma, <500 molecules/mL to >1,000,000 molecules/mL), and the predicted resolution and dynamic range was experimentally validated using a control sequence of DNA. This approach simplifies digital PCR experiments, saves space, and thus enables multiplexing using separate areas for each sample on one chip, and facilitates the development of new high-performance diagnostic tools for resource-limited applications. The theory and software presented here are general and are applicable to designing and analyzing other digital analytical platforms including digital immunoassays and digital bacterial analysis. It is not limited to SlipChip and could also be useful for the design of systems on platforms including valve-based and droplet-based platforms. In a separate publication by Shen et al. (J. Am. Chem. Soc., 2011, DOI: 10.1021/ja2060116), this approach is used to design and test digital RT-PCR devices for quantifying RNA.
Zhou, Yan; Cao, Hui
2013-01-01
We propose an augmented classical least squares (ACLS) calibration method for quantitative Raman spectral analysis against component information loss. The Raman spectral signals with low analyte concentration correlations were selected and used as the substitutes for unknown quantitative component information during the CLS calibration procedure. The number of selected signals was determined by using the leave-one-out root-mean-square error of cross-validation (RMSECV) curve. An ACLS model was built based on the augmented concentration matrix and the reference spectral signal matrix. The proposed method was compared with partial least squares (PLS) and principal component regression (PCR) using one example: a data set recorded from an experiment of analyte concentration determination using Raman spectroscopy. A 2-fold cross-validation with Venetian blinds strategy was exploited to evaluate the predictive power of the proposed method. The one-way variance analysis (ANOVA) was used to access the predictive power difference between the proposed method and existing methods. Results indicated that the proposed method is effective at increasing the robust predictive power of traditional CLS model against component information loss and its predictive power is comparable to that of PLS or PCR.
RUCS: rapid identification of PCR primers for unique core sequences.
Thomsen, Martin Christen Frølund; Hasman, Henrik; Westh, Henrik; Kaya, Hülya; Lund, Ole
2017-12-15
Designing PCR primers to target a specific selection of whole genome sequenced strains can be a long, arduous and sometimes impractical task. Such tasks would benefit greatly from an automated tool to both identify unique targets, and to validate the vast number of potential primer pairs for the targets in silico. Here we present RUCS, a program that will find PCR primer pairs and probes for the unique core sequences of a positive genome dataset complement to a negative genome dataset. The resulting primer pairs and probes are in addition to simple selection also validated through a complex in silico PCR simulation. We compared our method, which identifies the unique core sequences, against an existing tool called ssGeneFinder, and found that our method was 6.5-20 times more sensitive. We used RUCS to design primer pairs that would target a set of genomes known to contain the mcr-1 colistin resistance gene. Three of the predicted pairs were chosen for experimental validation using PCR and gel electrophoresis. All three pairs successfully produced an amplicon with the target length for the samples containing mcr-1 and no amplification products were produced for the negative samples. The novel methods presented in this manuscript can reduce the time needed to identify target sequences, and provide a quick virtual PCR validation to eliminate time wasted on ambiguously binding primers. Source code is freely available on https://bitbucket.org/genomicepidemiology/rucs. Web service is freely available on https://cge.cbs.dtu.dk/services/RUCS. mcft@cbs.dtu.dk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Ajzenberg, Daniel; Collinet, Frédéric; Mercier, Aurélien; Vignoles, Philippe; Dardé, Marie-Laure
2010-12-01
We developed an easy-to-use method for genotyping Toxoplasma gondii isolates in a single multiplex PCR assay with 15 microsatellite markers. This method was validated by testing 26 reference isolates that had been characterized with other sets of markers.
Validation of a quantitative Eimeria spp. PCR for fresh droppings of broiler chickens.
Peek, H W; Ter Veen, C; Dijkman, R; Landman, W J M
2017-12-01
A quantitative Polymerase Chain Reaction (qPCR) for the seven chicken Eimeria spp. was modified and validated for direct use on fresh droppings. The analytical specificity of the qPCR on droppings was 100%. Its analytical sensitivity (non-sporulated oocysts/g droppings) was 41 for E. acervulina, ≤2900 for E. brunetti, 710 for E. praecox, 1500 for E. necatrix, 190 for E. tenella, 640 for E. maxima, and 1100 for E. mitis. Field validation of the qPCR was done using droppings with non-sporulated oocysts from 19 broiler flocks. To reduce the number of qPCR tests five grams of each pooled sample (consisting of ten fresh droppings) per time point were blended into one mixed sample. Comparison of the oocysts per gram (OPG)-counting method with the qPCR using pooled samples (n = 1180) yielded a Pearson's correlation coefficient of 0.78 (95% CI: 0.76-0.80) and a Pearson's correlation coefficient of 0.76 (95% CI: 0.70-0.81) using mixed samples (n = 236). Comparison of the average of the OPG-counts of the five pooled samples with the mixed sample per time point (n = 236) showed a Pearson's correlation coefficient (R) of 0.94 (95% CI: 0.92-0.95) for the OPG-counting method and 0.87 (95% CI: 0.84-0.90) for the qPCR. This indicates that mixed samples are practically equivalent to the mean of five pooled samples. The good correlation between the OPG-counting method and the qPCR was further confirmed by the visual agreement between the total oocyst/g shedding patterns measured with both techniques in the 19 broiler flocks using the mixed samples.
Barbau-Piednoir, Elodie; Botteldoorn, Nadine; Yde, Marc; Mahillon, Jacques; Roosens, Nancy H
2013-05-01
A combination of four qualitative SYBR®Green qPCR screening assays targeting two levels of discrimination: Listeria genus (except Listeria grayi) and Listeria monocytogenes, is presented. These assays have been developed to be run simultaneously using the same polymerase chain reaction (PCR) programme. The paper also proposes a new validation procedure to specifically validate qPCR assays applied to food microbiology according to two guidelines: the ISO 22118 norm and the "Definition of minimum performance requirements for analytical methods of GMO testing". The developed assays target the iap, prs and hlyA genes that belong to or neighbour the virulence cluster of Listeria spp. The selected primers were designed to amplify short fragments (60 to 103 bp) in order to obtain optimal PCR efficiency (between 97 and 107 % efficiency). The limit of detection of the SYBR®Green qPCR assays is two to five copies of target genes per qPCR reaction. These assays are highly accurate (98.08 and 100 % accuracy for the Listeria spp. and L. monocytogenes assays, respectively).
Yoneda, Noriko; Yoneda, Satoshi; Mori, Masashi; Tabata, Homare; Minami, Hiroshi; Saito, Shigeru; Kitajima, Isao
2015-01-01
Background Intra-amniotic infection has long been recognized as the leading cause of preterm delivery. Microbial culture is the gold standard for the detection of intra-amniotic infection, but several days are required, and many bacterial species in the amniotic fluid are difficult to cultivate. Methods We developed a novel nested-PCR-based assay for detecting Mycoplasma, Ureaplasma, other bacteria and fungi in amniotic fluid samples within three hours of sample collection. To detect prokaryotes, eukaryote-made thermostable DNA polymerase, which is free from bacterial DNA contamination, is used in combination with bacterial universal primers. In contrast, to detect eukaryotes, conventional bacterially-made thermostable DNA polymerase is used in combination with fungal universal primers. To assess the validity of the PCR assay, we compared the PCR and conventional culture results using 300 amniotic fluid samples. Results Based on the detection level (positive and negative), 93.3% (280/300) of Mycoplasma, 94.3% (283/300) of Ureaplasma, 89.3% (268/300) of other bacteria and 99.7% (299/300) of fungi matched the culture results. Meanwhile, concerning the detection of bacteria other than Mycoplasma and Ureaplasma, 228 samples were negative according to the PCR method, 98.2% (224/228) of which were also negative based on the culture method. Employing the devised primer sets, mixed amniotic fluid infections of Mycoplasma, Ureaplasma and/or other bacteria could be clearly distinguished. In addition, we also attempted to compare the relative abundance in 28 amniotic fluid samples with mixed infection, and judged dominance by comparing the Ct values of quantitative real-time PCR. Conclusions We developed a novel PCR assay for the rapid detection of Mycoplasma, Ureaplasma, other bacteria and fungi in amniotic fluid samples. This assay can also be applied to accurately diagnose the absence of bacteria in samples. We believe that this assay will positively contribute to the treatment of intra-amniotic infection and the prevention of preterm delivery. PMID:26042418
Rath, Animesha; Prusty, Manas R; Barik, Sushanta K; Das, Mumani; Tripathy, Hare K; Mahapatra, Namita; Hazra, Rupenangshu K
2017-01-01
Knowledge on prevalence of malaria vector species of a certain area provides important information for implementation of appropriate control strategies. The present study describes a rapid method for screening of major Anopheline vector species and at the same time detection of Plasmodium falciparum sporozoite infection and blood meal preferences/trophic preferences. The study was carried from February 2012 to March 2013 in three seasons, i.e. rainy, winter and summer in Jhumpura PHC of Keonjhar district, Odisha, India. Processing of mosquitoes was carried out in two different methods, viz. mosquito pool (P1) and mosquito DNA pool (P2). Pool size for both the methods was standardized for DNA isolation and multiplex PCR assay. This PCR based assay was employed to screen the major vector com- position in three different seasons of four different ecotypes of Keonjhar district. Pearson's correlation coefficient was determined for a comparative analysis of the morphological identification with the pool prevalence assay for each ecotype. A pool size of 10 was standardized for DNA isolation as well as PCR. PCR assay revealed that the average pool prevalence for all ecotypes was highest for An. annularis in winter and summer whereas for An. culicifacies it was rainy season. Foothill and plain ecotypes contributed to highest and lowest vectorial abundance respectively. The results of the prevalence of vector species in pool from PCR based assay were found to be highly correlated with that of the results of morphological identification. Screening by pool based PCR assay is relatively rapid as compared to conventional identification and can be employed as an important tool in malaria control programmes.
Ajzenberg, Daniel; Collinet, Frédéric; Mercier, Aurélien; Vignoles, Philippe; Dardé, Marie-Laure
2010-01-01
We developed an easy-to-use method for genotyping Toxoplasma gondii isolates in a single multiplex PCR assay with 15 microsatellite markers. This method was validated by testing 26 reference isolates that had been characterized with other sets of markers. PMID:20881166
Validated method for quantification of genetically modified organisms in samples of maize flour.
Kunert, Renate; Gach, Johannes S; Vorauer-Uhl, Karola; Engel, Edwin; Katinger, Hermann
2006-02-08
Sensitive and accurate testing for trace amounts of biotechnology-derived DNA from plant material is the prerequisite for detection of 1% or 0.5% genetically modified ingredients in food products or raw materials thereof. Compared to ELISA detection of expressed proteins, real-time PCR (RT-PCR) amplification has easier sample preparation and detection limits are lower. Of the different methods of DNA preparation CTAB method with high flexibility in starting material and generation of sufficient DNA with relevant quality was chosen. Previous RT-PCR data generated with the SYBR green detection method showed that the method is highly sensitive to sample matrices and genomic DNA content influencing the interpretation of results. Therefore, this paper describes a real-time DNA quantification based on the TaqMan probe method, indicating high accuracy and sensitivity with detection limits of lower than 18 copies per sample applicable and comparable to highly purified plasmid standards as well as complex matrices of genomic DNA samples. The results were evaluated with ValiData for homology of variance, linearity, accuracy of the standard curve, and standard deviation.
2010-01-01
Background The modular approach to analysis of genetically modified organisms (GMOs) relies on the independence of the modules combined (i.e. DNA extraction and GM quantification). The validity of this assumption has to be proved on the basis of specific performance criteria. Results An experiment was conducted using, as a reference, the validated quantitative real-time polymerase chain reaction (PCR) module for detection of glyphosate-tolerant Roundup Ready® GM soybean (RRS). Different DNA extraction modules (CTAB, Wizard and Dellaporta), were used to extract DNA from different food/feed matrices (feed, biscuit and certified reference material [CRM 1%]) containing the target of the real-time PCR module used for validation. Purity and structural integrity (absence of inhibition) were used as basic criteria that a DNA extraction module must satisfy in order to provide suitable template DNA for quantitative real-time (RT) PCR-based GMO analysis. When performance criteria were applied (removal of non-compliant DNA extracts), the independence of GMO quantification from the extraction method and matrix was statistically proved, except in the case of Wizard applied to biscuit. A fuzzy logic-based procedure also confirmed the relatively poor performance of the Wizard/biscuit combination. Conclusions For RRS, this study recognises that modularity can be generally accepted, with the limitation of avoiding combining highly processed material (i.e. biscuit) with a magnetic-beads system (i.e. Wizard). PMID:20687918
Validation of an NGS mutation detection panel for melanoma.
Reiman, Anne; Kikuchi, Hugh; Scocchia, Daniela; Smith, Peter; Tsang, Yee Wah; Snead, David; Cree, Ian A
2017-02-22
Knowledge of the genotype of melanoma is important to guide patient management. Identification of mutations in BRAF and c-KIT lead directly to targeted treatment, but it is also helpful to know if there are driver oncogene mutations in NRAS, GNAQ or GNA11 as these patients may benefit from alternative strategies such as immunotherapy. While polymerase chain reaction (PCR) methods are often used to detect BRAF mutations, next generation sequencing (NGS) is able to determine all of the necessary information on several genes at once, with potential advantages in turnaround time. We describe here an Ampliseq hotspot panel for melanoma for use with the IonTorrent Personal Genome Machine (PGM) which covers the mutations currently of most clinical interest. We have validated this in 151 cases of skin and uveal melanoma from our files, and correlated the data with PCR based assessment of BRAF status. There was excellent agreement, with few discrepancies, though NGS does have greater coverage and picks up some mutations that would be missed by PCR. However, these are often rare and of unknown significance for treatment. PCR methods are rapid, less time-consuming and less expensive than NGS, and could be used as triage for patients requiring more extensive diagnostic workup. The NGS panel described here is suitable for clinical use with formalin-fixed paraffin-embedded (FFPE) samples.
Pinheiro, Leonardo B; O'Brien, Helen; Druce, Julian; Do, Hongdo; Kay, Pippa; Daniels, Marissa; You, Jingjing; Burke, Daniel; Griffiths, Kate; Emslie, Kerry R
2017-11-07
Use of droplet digital PCR technology (ddPCR) is expanding rapidly in the diversity of applications and number of users around the world. Access to relatively simple and affordable commercial ddPCR technology has attracted wide interest in use of this technology as a molecular diagnostic tool. For ddPCR to effectively transition to a molecular diagnostic setting requires processes for method validation and verification and demonstration of reproducible instrument performance. In this study, we describe the development and characterization of a DNA reference material (NMI NA008 High GC reference material) comprising a challenging methylated GC-rich DNA template under a novel 96-well microplate format. A scalable process using high precision acoustic dispensing technology was validated to produce the DNA reference material with a certified reference value expressed in amount of DNA molecules per well. An interlaboratory study, conducted using blinded NA008 High GC reference material to assess reproducibility among seven independent laboratories demonstrated less than 4.5% reproducibility relative standard deviation. With the exclusion of one laboratory, laboratories had appropriate technical competency, fully functional instrumentation, and suitable reagents to perform accurate ddPCR based DNA quantification measurements at the time of the study. The study results confirmed that NA008 High GC reference material is fit for the purpose of being used for quality control of ddPCR systems, consumables, instrumentation, and workflow.
miPrimer: an empirical-based qPCR primer design method for small noncoding microRNA
Kang, Shih-Ting; Hsieh, Yi-Shan; Feng, Chi-Ting; Chen, Yu-Ting; Yang, Pok Eric; Chen, Wei-Ming
2018-01-01
MicroRNAs (miRNAs) are 18–25 nucleotides (nt) of highly conserved, noncoding RNAs involved in gene regulation. Because of miRNAs’ short length, the design of miRNA primers for PCR amplification remains a significant challenge. Adding to the challenge are miRNAs similar in sequence and miRNA family members that often only differ in sequences by 1 nt. Here, we describe a novel empirical-based method, miPrimer, which greatly reduces primer dimerization and increases primer specificity by factoring various intrinsic primer properties and employing four primer design strategies. The resulting primer pairs displayed an acceptable qPCR efficiency of between 90% and 110%. When tested on miRNA families, miPrimer-designed primers are capable of discriminating among members of miRNA families, as validated by qPCR assays using Quark Biosciences’ platform. Of the 120 miRNA primer pairs tested, 95.6% and 93.3% were successful in amplifying specifically non-family and family miRNA members, respectively, after only one design trial. In summary, miPrimer provides a cost-effective and valuable tool for designing miRNA primers. PMID:29208706
Development of an updated PCR assay for detection of African swine fever virus.
Luo, Yuzi; Atim, Stella A; Shao, Lina; Ayebazibwe, Chrisostom; Sun, Yuan; Liu, Yan; Ji, Shengwei; Meng, Xing-Yu; Li, Su; Li, Yongfeng; Masembe, Charles; Ståhl, Karl; Widén, Frederik; Liu, Lihong; Qiu, Hua-Ji
2017-01-01
Due to the current unavailability of vaccines or treatments for African swine fever (ASF), which is caused by African swine fever virus (ASFV), rapid and reliable detection of the virus is essential for timely implementation of emergency control measures and differentiation of ASF from other swine diseases with similar clinical presentations. Here, an improved PCR assay was developed and evaluated for sensitive and universal detection of ASFV. Primers specific for ASFV were designed based on the highly conserved region of the vp72 gene sequences of all ASFV strains available in GenBank, and the PCR assay was established and compared with two OIE-validated PCR tests. The analytic detection limit of the PCR assay was 60 DNA copies per reaction. No amplification signal was observed for several other porcine viruses. The novel PCR assay was more sensitive than two OIE-validated PCR assays when testing 14 strains of ASFV representing four genotypes (I, V, VIII and IX) from diverse geographical areas. A total of 62 clinical swine blood samples collected from Uganda were examined by the novel PCR, giving a high agreement (59/62) with a superior sensitive universal probe library-based real-time PCR. Eight out of 62 samples tested positive, and three samples with higher Ct values (39.15, 38.39 and 37.41) in the real-time PCR were negative for ASFV in the novel PCR. In contrast, one (with a Ct value of 29.75 by the real-time PCR) and two (with Ct values of 29.75 and 33.12) ASFV-positive samples were not identified by the two OIE-validated PCR assays, respectively. Taken together, these data show that the novel PCR assay is specific, sensitive, and applicable for molecular diagnosis and surveillance of ASF.
Gisbert Algaba, Ignacio; Geerts, Manon; Jennes, Malgorzata; Coucke, Wim; Opsteegh, Marieke; Cox, Eric; Dorny, Pierre; Dierick, Katelijne; De Craeye, Stéphane
2017-11-01
Toxoplasma gondii is a globally prevalent, zoonotic parasite of major importance to public health. Various indirect and direct methods can be used for the diagnosis of toxoplasmosis. Whereas serological tests are useful to prove contact with the parasite has occurred, the actual presence of the parasite in the tissues of a seropositive animal is not demonstrated. For this, a bioassay is still the reference method. As an alternative, various PCR methods have been developed, but due to the limited amount of sample that can be tested, combined with a low tissue cyst density, those have proved to be insufficiently sensitive. A major improvement of the sensitivity was achieved with magnetic capture-based DNA extraction. By combining the hybridization of specific, biotinylated probes with the capture of those probes with streptavidin-coated paramagnetic beads, T. gondii DNA can selectively be "fished out" from a large volume of meat lysate. Still, several studies showed an insufficient sensitivity compared with the mouse bioassay. Here we present a method that is more sensitive (99% limit of detection: 65.4 tachyzoites per 100g of meat), economical and reliable (ISO 17025 validated) by adding a non-competitive PCR inhibition control (co-capture of cellular r18S) and making the release of the target DNA from the streptavidin-coated paramagnetic beads UV-dependent. The presented results demonstrate the potential of the modified Magnetic Capture real time PCR as a full alternative to the mouse bioassay for the screening of various types of tissues and meat, with the additional advantage of being quantitative. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Cottenet, Geoffrey; Blancpain, Carine; Sonnard, Véronique; Chuah, Poh Fong
2013-08-01
Considering the increase of the total cultivated land area dedicated to genetically modified organisms (GMO), the consumers' perception toward GMO and the need to comply with various local GMO legislations, efficient and accurate analytical methods are needed for their detection and identification. Considered as the gold standard for GMO analysis, the real-time polymerase chain reaction (RTi-PCR) technology was optimised to produce a high-throughput GMO screening method. Based on simultaneous 24 multiplex RTi-PCR running on a ready-to-use 384-well plate, this new procedure allows the detection and identification of 47 targets on seven samples in duplicate. To comply with GMO analytical quality requirements, a negative and a positive control were analysed in parallel. In addition, an internal positive control was also included in each reaction well for the detection of potential PCR inhibition. Tested on non-GM materials, on different GM events and on proficiency test samples, the method offered high specificity and sensitivity with an absolute limit of detection between 1 and 16 copies depending on the target. Easy to use, fast and cost efficient, this multiplex approach fits the purpose of GMO testing laboratories.
Sekhavati, Mohammad H; Mesgaran, Mohsen Danesh; Nassiri, Mohammad R; Mohammadabadi, Tahereh; Rezaii, Farkhondeh; Fani Maleki, Adham
2009-10-01
This paper describes the use of a quantitative competitive polymerase chain reaction (QC-PCR) assay; using PCR primers to the rRNA locus of rumen fungi and a standard-control DNA including design and validation. In order to test the efficiency of this method for quantifying anaerobic rumen fungi, it has been attempted to evaluate this method in in vitro conditions by comparing with an assay based on measuring cell wall chitin. The changes in fungal growth have been studied when they are grown in in vitro on either untreated (US) or sodium hydroxide treated wheat straw (TS). Results showed that rumen fungi growth was significantly higher in treated samples compared with untreated during the 12d incubation (P<0.05) and plotting the chitin assay's results against the competitive PCR's showed high positive correlation (R(2)> or =0.87). The low mean values of the coefficients of variance in repeatability in the QC-PCR method against the chitin assay demonstrated more reliability of this new approach. And finally, the efficiency of this method was investigated in in vivo conditions. Samples of rumen fluid were collected from four fistulated Holstein steers which were fed four different diets (basal diet, high starch, high sucrose and starch plus sucrose) in rotation. The results of QC-PCR showed that addition of these non-structural carbohydrates to the basal diets caused a significant decrease in rumen anaerobic fungi biomass. The QC-PCR method appears to be a reliable and can be used for rumen samples.
DNA decontamination methods for internal quality management in clinical PCR laboratories.
Wu, Yingping; Wu, Jianyong; Zhang, Zhihui; Cheng, Chen
2018-03-01
The polymerase chain reaction (PCR) technique, one of the most commonly applied methods in diagnostic and molecular biology, has a frustrating downside: the occurrence of false-positive signals due to contamination. In previous research, various DNA decontamination methods have been developed to overcome this limitation. Unfortunately, the use of random or poorly focused sampling methods for monitoring air and/or object surfaces leads to the incomplete elimination during decontamination procedures. We herein attempted to develop a novel DNA decontamination method (environmental surveillance, including surface and air sampling) and quality management program for clinical molecular diagnostic laboratories (or clinical PCR laboratories). Here, we performed a step-by-step evaluation of current DNA decontamination methods and developed an effective procedure for assessing the presence of decontaminating DNA via PCR analysis. Performing targeted environmental surveillance by sampling, which reached optimal performance over 2 weeks, and the decontamination process had been verified as reliable. Additionally, the process was validated to not affect PCR amplification efficiency based on a comparative study. In this study, effective guidelines for DNA decontamination were developed. The method employed ensured that surface DNA contamination could be effectively identified and eliminated. Furthermore, our study highlighted the importance of overall quality assurance and good clinical laboratory practices for preventing contamination, which are key factors for compliance with regulatory or accreditation requirements. Taken together, we provided the evidence that the presented scheme ranged from troubleshooting to the elimination of surface contamination, could serve as critical foundation for developing regular environmental surveillance guidelines for PCR laboratories. © 2017 Wiley Periodicals, Inc.
van Stiphout, Ruud G P M; Valentini, Vincenzo; Buijsen, Jeroen; Lammering, Guido; Meldolesi, Elisa; van Soest, Johan; Leccisotti, Lucia; Giordano, Alessandro; Gambacorta, Maria A; Dekker, Andre; Lambin, Philippe
2014-11-01
To develop and externally validate a predictive model for pathologic complete response (pCR) for locally advanced rectal cancer (LARC) based on clinical features and early sequential (18)F-FDG PETCT imaging. Prospective data (i.a. THUNDER trial) were used to train (N=112, MAASTRO Clinic) and validate (N=78, Università Cattolica del S. Cuore) the model for pCR (ypT0N0). All patients received long-course chemoradiotherapy (CRT) and surgery. Clinical parameters were age, gender, clinical tumour (cT) stage and clinical nodal (cN) stage. PET parameters were SUVmax, SUVmean, metabolic tumour volume (MTV) and maximal tumour diameter, for which response indices between pre-treatment and intermediate scan were calculated. Using multivariate logistic regression, three probability groups for pCR were defined. The pCR rates were 21.4% (training) and 23.1% (validation). The selected predictive features for pCR were cT-stage, cN-stage, response index of SUVmean and maximal tumour diameter during treatment. The models' performances (AUC) were 0.78 (training) and 0.70 (validation). The high probability group for pCR resulted in 100% correct predictions for training and 67% for validation. The model is available on the website www.predictcancer.org. The developed predictive model for pCR is accurate and externally validated. This model may assist in treatment decisions during CRT to select complete responders for a wait-and-see policy, good responders for extra RT boost and bad responders for additional chemotherapy. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Sandeu, Maurice Marcel; Moussiliou, Azizath; Moiroux, Nicolas; Padonou, Gilles G.; Massougbodji, Achille; Corbel, Vincent; Tuikue Ndam, Nicaise
2012-01-01
Background An accurate method for detecting malaria parasites in the mosquito’s vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP) is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus. Methods Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin. Results The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6%) and specificity (98%), compared to ELISA-CSP as the referent standard. The agreement between both methods was “excellent” (κ = 0.8, P<0.05). The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P = 0, 2). All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed. Conclusion This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the utility of employing an accurate molecular diagnostic tool for detecting malaria parasites in field mosquito populations. PMID:23285168
Safari Foroshani, Nargess; Karami, Ali; Pourali, Fatemeh
2013-01-01
Background Salmonella typhi, Bacillus anthracis, and Yersinia pestis are some serious human pathogens, which their early diagnosis is of great importance. Salmonella typhi, Bacillus anthracis, and Yersinia pestis cause typhoid fever, anthrax, and plague respectively. These bacteria can be used to make biologic weapons. Objectives In this study, we designed a new and rapid diagnostic method based on Uniplex and Multiplex PCR method. Materials and Methods Uniplex and multiplex Polymerase Chain Reaction (PCR) were conducted on virulent genes of hp and invA of Salmonella typhimurium, Pa and chr of Bacillus anthracis, and pla of Yersinia pestis. A genome from other bacteria was used to study the specificity of the primer and the PCR test. Results Standard strains used in this study showed that primers were specific. As for sensitivity, it was shown that this method can diagnose 1-10 copies of the genome, or 1-10 Colony Forming Units (CFU) for each of the bacteria. All pieces except anthrax were sequenced in PCR to validate the product. DNA fragment resulted from Bacillus anthracis was confirmed by restriction enzyme digestions. Conclusion The designed methods are accurate, rapid, and inexpensive to find and differentiate these bacteria from similar bacteria. They can be applied for rapid diagnosis of these agents in different specimens, and bioterrorism cases. PMID:24719692
Integrated sample-to-detection chip for nucleic acid test assays.
Prakash, R; Pabbaraju, K; Wong, S; Tellier, R; Kaler, K V I S
2016-06-01
Nucleic acid based diagnostic techniques are routinely used for the detection of infectious agents. Most of these assays rely on nucleic acid extraction platforms for the extraction and purification of nucleic acids and a separate real-time PCR platform for quantitative nucleic acid amplification tests (NATs). Several microfluidic lab on chip (LOC) technologies have been developed, where mechanical and chemical methods are used for the extraction and purification of nucleic acids. Microfluidic technologies have also been effectively utilized for chip based real-time PCR assays. However, there are few examples of microfluidic systems which have successfully integrated these two key processes. In this study, we have implemented an electro-actuation based LOC micro-device that leverages multi-frequency actuation of samples and reagents droplets for chip based nucleic acid extraction and real-time, reverse transcription (RT) PCR (qRT-PCR) amplification from clinical samples. Our prototype micro-device combines chemical lysis with electric field assisted isolation of nucleic acid in a four channel parallel processing scheme. Furthermore, a four channel parallel qRT-PCR amplification and detection assay is integrated to deliver the sample-to-detection NAT chip. The NAT chip combines dielectrophoresis and electrostatic/electrowetting actuation methods with resistive micro-heaters and temperature sensors to perform chip based integrated NATs. The two chip modules have been validated using different panels of clinical samples and their performance compared with standard platforms. This study has established that our integrated NAT chip system has a sensitivity and specificity comparable to that of the standard platforms while providing up to 10 fold reduction in sample/reagent volumes.
Sommer, D; Enderlein, D; Antakli, A; Schönenbrücher, H; Slaghuis, J; Redmann, T; Lierz, M
2012-01-01
The efficiency of two commercial PCR methods based on real-time technology, the foodproof® Salmonella detection system and the BAX® PCR Assay Salmonella system was compared to standardized culture methods (EN ISO 6579:2002 - Annex D) for the detection of Salmonella spp. in poultry samples. Four sample matrices (feed, dust, boot swabs, feces) obtained directly from poultry flocks, as well as artificially spiked samples of the same matrices, were used. All samples were tested for Salmonella spp. using culture methods first as the gold standard. In addition samples spiked with Salmonella Enteridis were tested to evaluate the sensitivity of both PCR methods. Furthermore all methods were evaluated in an annual ring-trial of the National Salmonella Reference Laboratory of Germany. Salmonella detection in the matrices feed, dust and boot swabs were comparable in both PCR systems whereas the results from feces differed markedly. The quality, especially the freshness, of the fecal samples had an influence on the sensitivity of the real-time PCR and the results of the culture methods. In fresh fecal samples an initial spiking level of 100cfu/25g Salmonella Enteritidis was detected. Two-days-dried fecal samples allowed the detection of 14cfu/25g. Both real- time PCR protocols appear to be suitable for the detection of Salmonella spp. in all four matrices. The foodproof® system detected eight samples more to be positive compared to the BAX® system, but had a potential false positive result in one case. In 7-days-dried samples none of the methods was able to detect Salmonella likely through letal cell damage. In general the advantage of PCR analyses over the culture method is the reduction of working time from 4-5 days to only 2 days. However, especially for the analysis of fecal samples official validation should be conducted according to the requirement of EN ISO6579:2002 - Annex D.
Banneheke, H; Fernandopulle, R; Gunasekara, U; Barua, A; Fernando, N; Wickremasinghe, R
2015-06-01
Wet mount microscopy is the most commonly used diagnostic method for trichomoniasis in clinical diagnostic services all over the world including Sri Lanka due to its availability, simplicity and is relatively inexpensive. However, Trichomonas culture and PCR are the gold standard tests. Unfortunately, neither the culture nor PCR is available for the diagnosis of trichomoniasis in Sri Lanka. Thus, it is important to validate the wet mount microscopy as it is the only available diagnostic test and has not been validated to date in Sri Lanka. The objective was to evaluate the validity and reliability of wet mount microscopy against gold standard Trichomonas culture among clinic based population of reproductive age group women in Western province, Sri Lanka. Women attending hospital and institutional based clinics were enrolled. They were interviewed and high vaginal swabs were taken for laboratory diagnosis by culture and wet mount microscopy. There were 601 participants in the age group of 15-45 years. Wet mount microscopy showed 68% sensitivity, 100% specificity, 100% positive (PPV) and 98% negative predictive values (NPV) (P=0.001, kappa=0.803) respectively against the gold standard culture. The area under the ROC curve was 0.840. Sensitivity of wet mount microscopy is low. However it has high validity and reliability as a specific diagnostic test for trichomoniasis. If it is to be used among women of reproductive age group in Western province, Sri Lanka, a culture method could be adopted as a second test to confirm the negative wet mount for symptomatic patients.
A Digital PCR-Based Method for Efficient and Highly Specific Screening of Genome Edited Cells
Berman, Jennifer R.; Postovit, Lynne-Marie
2016-01-01
The rapid adoption of gene editing tools such as CRISPRs and TALENs for research and eventually therapeutics necessitates assays that can rapidly detect and quantitate the desired alterations. Currently, the most commonly used assay employs “mismatch nucleases” T7E1 or “Surveyor” that recognize and cleave heteroduplexed DNA amplicons containing mismatched base-pairs. However, this assay is prone to false positives due to cancer-associated mutations and/or SNPs and requires large amounts of starting material. Here we describe a powerful alternative wherein droplet digital PCR (ddPCR) can be used to decipher homozygous from heterozygous mutations with superior levels of both precision and sensitivity. We use this assay to detect knockout inducing alterations to stem cell associated proteins, NODAL and SFRP1, generated using either TALENs or an “all-in-one” CRISPR/Cas plasmid that we have modified for one-step cloning and blue/white screening of transformants. Moreover, we highlight how ddPCR can be used to assess the efficiency of varying TALEN-based strategies. Collectively, this work highlights how ddPCR-based screening can be paired with CRISPR and TALEN technologies to enable sensitive, specific, and streamlined approaches to gene editing and validation. PMID:27089539
Yutin, Natalya; Suzuki, Marcelino T; Rosenberg, Mira; Rotem, Denisse; Madigan, Michael T; Süling, Jörg; Imhoff, Johannes F; Béjà, Oded
2009-12-01
To detect anoxygenic bacteria containing either type 1 or type 2 photosynthetic reaction centers in a single PCR, we designed a degenerate primer set based on the bchY gene. The new primers were validated in silico using the GenBank nucleotide database as well as by PCR on pure strains and environmental DNA.
Gonzales, J L; Loza, A; Chacon, E
2006-03-15
There are several T. vivax specific primers developed for PCR diagnosis. Most of these primers were validated under different DNA extraction methods and study designs leading to heterogeneity of results. The objective of the present study was to validate PCR as a diagnostic test for T. vivax trypanosomosis by means of determining the test sensitivity of different published specific primers with different sample preparations. Four different DNA extraction methods were used to test the sensitivity of PCR with four different primer sets. DNA was extracted directly from whole blood samples, blood dried on filter papers or blood dried on FTA cards. The results showed that the sensitivity of PCR with each primer set was highly dependant of the sample preparation and DNA extraction method. The highest sensitivities for all the primers tested were determined using DNA extracted from whole blood samples, while the lowest sensitivities were obtained when DNA was extracted from filter paper preparations. To conclude, the obtained results are discussed and a protocol for diagnosis and surveillance for T. vivax trypanosomosis is recommended.
Comparative quantification of human intestinal bacteria based on cPCR and LDR/LCR
Tang, Zhou-Rui; Li, Kai; Zhou, Yu-Xun; Xiao, Zhen-Xian; Xiao, Jun-Hua; Huang, Rui; Gu, Guo-Hao
2012-01-01
AIM: To establish a multiple detection method based on comparative polymerase chain reaction (cPCR) and ligase detection reaction (LDR)/ligase chain reaction (LCR) to quantify the intestinal bacterial components. METHODS: Comparative quantification of 16S rDNAs from different intestinal bacterial components was used to quantify multiple intestinal bacteria. The 16S rDNAs of different bacteria were amplified simultaneously by cPCR. The LDR/LCR was examined to actualize the genotyping and quantification. Two beneficial (Bifidobacterium, Lactobacillus) and three conditionally pathogenic bacteria (Enterococcus, Enterobacterium and Eubacterium) were used in this detection. With cloned standard bacterial 16S rDNAs, standard curves were prepared to validate the quantitative relations between the ratio of original concentrations of two templates and the ratio of the fluorescence signals of their final ligation products. The internal controls were added to monitor the whole detection flow. The quantity ratio between two bacteria was tested. RESULTS: cPCR and LDR revealed obvious linear correlations with standard DNAs, but cPCR and LCR did not. In the sample test, the distributions of the quantity ratio between each two bacterial species were obtained. There were significant differences among these distributions in the total samples. But these distributions of quantity ratio of each two bacteria remained stable among groups divided by age or sex. CONCLUSION: The detection method in this study can be used to conduct multiple intestinal bacteria genotyping and quantification, and to monitor the human intestinal health status as well. PMID:22294830
A tool for design of primers for microRNA-specific quantitative RT-qPCR.
Busk, Peter K
2014-01-28
MicroRNAs are small but biologically important RNA molecules. Although different methods can be used for quantification of microRNAs, quantitative PCR is regarded as the reference that is used to validate other methods. Several commercial qPCR assays are available but they often come at a high price and the sequences of the primers are not disclosed. An alternative to commercial assays is to manually design primers but this work is tedious and, hence, not practical for the design of primers for a larger number of targets. I have developed the software miRprimer for automatic design of primers for the method miR-specific RT-qPCR, which is one of the best performing microRNA qPCR methods available. The algorithm is based on an implementation of the previously published rules for manual design of miR-specific primers with the additional feature of evaluating the propensity of formation of secondary structures and primer dimers. Testing of the primers showed that 76 out of 79 primers (96%) worked for quantification of microRNAs by miR-specific RT-qPCR of mammalian RNA samples. This success rate corresponds to the success rate of manual primer design. Furthermore, primers designed by this method have been distributed to several labs and used successfully in published studies. The software miRprimer is an automatic and easy method for design of functional primers for miR-specific RT-qPCR. The application is available as stand-alone software that will work on the MS Windows platform and in a developer version written in the Ruby programming language.
Development and validation of a real-time PCR assay for the detection of anguillid herpesvirus 1.
van Beurden, S J; Voorbergen-Laarman, M A; Roozenburg, I; van Tellingen, J; Haenen, O L M; Engelsma, M Y
2016-01-01
Anguillid herpesvirus 1 (AngHV1) causes a haemorrhagic disease with increased mortality in wild and farmed European eel, Anguilla anguilla (L.) and Japanese eel Anguilla japonica, Temminck & Schlegel). Detection of AngHV1 is currently based on virus isolation in cell culture, antibody-based typing assays or conventional PCR. We developed, optimized and concisely validated a diagnostic TaqMan probe based real-time PCR assay for the detection of AngHV1. The primers and probe target AngHV1 open reading frame 57, encoding the capsid protease and scaffold protein. Compared to conventional PCR, the developed real-time PCR is faster, less labour-intensive and has a reduced risk of cross-contamination. The real-time PCR assay was shown to be analytically sensitive and specific and has a high repeatability, efficiency and r(2) -value. The diagnostic performance of the assay was determined by testing 10% w/v organ suspensions and virus cultures from wild and farmed European eels from the Netherlands by conventional and real-time PCR. The developed real-time PCR assay is a useful tool for the rapid and sensitive detection of AngHV1 in 10% w/v organ suspensions from wild and farmed European eels. © 2015 John Wiley & Sons Ltd.
Harlé, Alexandre; Dubois, Cindy; Rouyer, Marie; Merlin, Jean-Louis
2013-01-01
Since January 16(th) 2010, the French legislation requires that the medical laboratories must be accredited according to ISO 15189 standards. Thus, all medical laboratories in France must be accredited for at least part of their biological tests before the end of October 2013. Molecular biology tests are also concerned by the accreditation. Validation of molecular biology methods is made difficult, for reasons related to the methods, but also by the type of analytes that are basically rare. This article describes the validation of the qualitative detection of KRAS mutations in metastatic colorectal cancer using TaqMan PCR according to ISO 15189 and to the technical guide for accreditation in Human Health, SH-GTA-04, edited by the COFRAC.
Snelling, A M; Gerner-Smidt, P; Hawkey, P M; Heritage, J; Parnell, P; Porter, C; Bodenham, A R; Inglis, T
1996-01-01
Acinetobacter spp. are being reported with increasing frequency as causes of nosocomial infection. In order to identify reservoirs of infection as quickly as possible, a rapid typing method that can differentiate epidemic strains from environmental and nonepidemic strains is needed. In 1993, a cluster of Acinetobacter baumannii isolates from five patients in the adult intensive therapy unit of our tertiary-care teaching hospital led us to develop and optimize a rapid repetitive extragenic palindromic sequence-based PCR (REP-PCR) typing protocol for members of the Acinetobacter calcoaceticus-A. baumannii complex that uses boiled colonies and consensus primers aimed at repetitive extragenic palindromic sequences. Four of the five patient isolates gave the same REP-PCR typing pattern as isolates of A. baumannii obtained from the temperature probe of a Bennett humidifier; the fifth isolate had a unique profile. Disinfection of the probe with 70% ethanol, as recommended by the manufacturer, proved ineffective, as A. baumannii with the same REP-PCR pattern was isolated from it 10 days after cleaning, necessitating a change in our decontamination procedure. Results obtained with REP-PCR were subsequently confirmed by ribotyping. To evaluate the discriminatory power (D) of REP-PCR for typing members of the A. calcoaceticus-A. baumannii complex, compared with that of ribotyping, we have applied both methods to a collection of 85 strains that included representatives of six DNA groups within the complex. Ribotyping using EcoRI digests yielded 53 patterns (D = 0.98), whereas 68 different REP-PCR patterns were observed (D = 0.99). By computer-assisted analysis of gel images, 74 patterns were observed with REP-PCR (D = 1.0). Overall, REP-PCR typing proved to be slightly more discriminatory than ribotyping. Our results indicate that REP-PCR typing used boiled colonies is a simple, rapid, and effective means of typing members of the A. calcoaceticus-A. baumannii complex. PMID:8727902
Detection of Only Viable Bacterial Spores Using a Live/Dead Indicator in Mixed Populations
NASA Technical Reports Server (NTRS)
Behar, Alberto E.; Stam, Christina N.; Smiley, Ronald
2013-01-01
This method uses a photoaffinity label that recognizes DNA and can be used to distinguish populations of bacterial cells from bacterial spores without the use of heat shocking during conventional culture, and live from dead bacterial spores using molecular-based methods. Biological validation of commercial sterility using traditional and alternative technologies remains challenging. Recovery of viable spores is cumbersome, as the process requires substantial incubation time, and the extended time to results limits the ability to quickly evaluate the efficacy of existing technologies. Nucleic acid amplification approaches such as PCR (polymerase chain reaction) have shown promise for improving time to detection for a wide range of applications. Recent real-time PCR methods are particularly promising, as these methods can be made at least semi-quantitative by correspondence to a standard curve. Nonetheless, PCR-based methods are rarely used for process validation, largely because the DNA from dead bacterial cells is highly stable and hence, DNA-based amplification methods fail to discriminate between live and inactivated microorganisms. Currently, no published method has been shown to effectively distinguish between live and dead bacterial spores. This technology uses a DNA binding photoaffinity label that can be used to distinguish between live and dead bacterial spores with detection limits ranging from 109 to 102 spores/mL. An environmental sample suspected of containing a mixture of live and dead vegetative cells and bacterial endospores is treated with a photoaffinity label. This step will eliminate any vegetative cells (live or dead) and dead endospores present in the sample. To further determine the bacterial spore viability, DNA is extracted from the spores and total population is quantified by real-time PCR. The current NASA standard assay takes 72 hours for results. Part of this procedure requires a heat shock step at 80 degC for 15 minutes before the sample can be plated. Using a photoaffinity label would remove this step from the current assay as the label readily penetrates both live and dead bacterial cells. Secondly, the photoaffinity label can only penetrate dead bacterial spores, leaving behind the viable spore population. This would allow for rapid bacterial spore detection in a matter of hours compared to the several days that it takes for the NASA standard assay.
Wen, Shuxiang; Chen, Xiaoling; Xu, Fuzhou; Sun, Huiling
2016-01-01
Real-time quantitative reverse transcription PCR (qRT-PCR) offers a robust method for measurement of gene expression levels. Selection of reliable reference gene(s) for gene expression study is conducive to reduce variations derived from different amounts of RNA and cDNA, the efficiency of the reverse transcriptase or polymerase enzymes. Until now reference genes identified for other members of the family Pasteurellaceae have not been validated for Avibacterium paragallinarum. The aim of this study was to validate nine reference genes of serovars A, B, and C strains of A. paragallinarum in different growth phase by qRT-PCR. Three of the most widely used statistical algorithms, geNorm, NormFinder and ΔCT method were used to evaluate the expression stability of reference genes. Data analyzed by overall rankings showed that in exponential and stationary phase of serovar A, the most stable reference genes were gyrA and atpD respectively; in exponential and stationary phase of serovar B, the most stable reference genes were atpD and recN respectively; in exponential and stationary phase of serovar C, the most stable reference genes were rpoB and recN respectively. This study provides recommendations for stable endogenous control genes for use in further studies involving measurement of gene expression levels.
Zheng, Qianwang; Mikš-Krajnik, Marta; Yang, Yishan; Xu, Wang; Yuk, Hyun-Gyun
2014-09-01
Conventional culture detection methods are time consuming and labor-intensive. For this reason, an alternative rapid method combining real-time PCR and immunomagnetic separation (IMS) was investigated in this study to detect both healthy and heat-injured Salmonella Typhimurium on raw duck wings. Firstly, the IMS method was optimized by determining the capture efficiency of Dynabeads(®) on Salmonella cells on raw duck wings with different bead incubation (10, 30 and 60 min) and magnetic separation (3, 10 and 30 min) times. Secondly, three Taqman primer sets, Sal, invA and ttr, were evaluated to optimize the real-time PCR protocol by comparing five parameters: inclusivity, exclusivity, PCR efficiency, detection probability and limit of detection (LOD). Thirdly, the optimized real-time PCR, in combination with IMS (PCR-IMS) assay, was compared with a standard ISO and a real-time PCR (PCR) method by analyzing artificially inoculated raw duck wings with healthy and heat-injured Salmonella cells at 10(1) and 10(0) CFU/25 g. Finally, the optimized PCR-IMS assay was validated for Salmonella detection in naturally contaminated raw duck wing samples. Under optimal IMS conditions (30 min bead incubation and 3 min magnetic separation times), approximately 85 and 64% of S. Typhimurium cells were captured by Dynabeads® from pure culture and inoculated raw duck wings, respectively. Although Sal and ttr primers exhibited 100% inclusivity and exclusivity for 16 Salmonella spp. and 36 non-Salmonella strains, the Sal primer showed lower LOD (10(3) CFU/ml) and higher PCR efficiency (94.1%) than the invA and ttr primers. Moreover, for Sal and invA primers, 100% detection probability on raw duck wings suspension was observed at 10(3) and 10(4) CFU/ml with and without IMS, respectively. Thus, the Sal primer was chosen for further experiments. The optimized PCR-IMS method was significantly (P=0.0011) better at detecting healthy Salmonella cells after 7-h enrichment than traditional PCR method. However there was no significant difference between the two methods with longer enrichment time (14 h). The diagnostic accuracy of PCR-IMS was shown to be 98.3% through the validation study. These results indicate that the optimized PCR-IMS method in this study could provide a sensitive, specific and rapid detection method for Salmonella on raw duck wings, enabling 10-h detection. However, a longer enrichment time could be needed for resuscitation and reliable detection of heat-injured cells. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tewari, Jagdish; Strong, Richard; Boulas, Pierre
2017-02-01
This article summarizes the development and validation of a Fourier transform near infrared spectroscopy (FT-NIR) method for the rapid at-line prediction of active pharmaceutical ingredient (API) in a powder blend to optimize small molecule formulations. The method was used to determine the blend uniformity end-point for a pharmaceutical solid dosage formulation containing a range of API concentrations. A set of calibration spectra from samples with concentrations ranging from 1% to 15% of API (w/w) were collected at-line from 4000 to 12,500 cm- 1. The ability of the FT-NIR method to predict API concentration in the blend samples was validated against a reference high performance liquid chromatography (HPLC) method. The prediction efficiency of four different types of multivariate data modeling methods such as partial least-squares 1 (PLS1), partial least-squares 2 (PLS2), principal component regression (PCR) and artificial neural network (ANN), were compared using relevant multivariate figures of merit. The prediction ability of the regression models were cross validated against results generated with the reference HPLC method. PLS1 and ANN showed excellent and superior prediction abilities when compared to PLS2 and PCR. Based upon these results and because of its decreased complexity compared to ANN, PLS1 was selected as the best chemometric method to predict blend uniformity at-line. The FT-NIR measurement and the associated chemometric analysis were implemented in the production environment for rapid at-line determination of the end-point of the small molecule blending operation. FIGURE 1: Correlation coefficient vs Rank plot FIGURE 2: FT-NIR spectra of different steps of Blend and final blend FIGURE 3: Predictions ability of PCR FIGURE 4: Blend uniformity predication ability of PLS2 FIGURE 5: Prediction efficiency of blend uniformity using ANN FIGURE 6: Comparison of prediction efficiency of chemometric models TABLE 1: Order of Addition for Blending Steps
PCR-Based Assessment of Freshwater Zooplankton Feeding on Edible and "Inedible" Prey In Situ.
NASA Astrophysics Data System (ADS)
Nejstgaard, J. C.; Belyaeva, M.; Van den Wyngaert, S.; Berger, S. A.; Grossart, H. P.; Kasprzak, P.
2016-02-01
Microbiota in pelagic ecosystems can affect zooplankton nutrition in several ways that are not readily assessable in situ, using classical approaches. In contrast to classical food web models identifying phytoplankton as the dominant food source for crustacean zooplankton, recent findings increasingly suggest that zooplankton may derive a significant part of the diet from a wide variety of taxa including ciliates, aquatic fungi, bacteria and small metazoan zooplankton (e.g. rotifers), in both marine and freshwaters. Direct quantification of soft-bodied and non-pigmented prey in zooplankton guts as well as symbionts and parasites on the prey and zooplankton itself has so far been impeded by the lack of appropriate methodology. We aim to establish molecular approaches to quantify these yet-understudied interactions in lake food webs. As a first step we have validated the qPCR detection method in laboratory experiments with cladoceran, calanoid and cyclopoid predators and algal prey species (Cryptomonas sp.). We plan to apply the method to study the dietary contribution of aquatic fungi - chytrids, which are parasites on inedible phytoplankton species, thus aiming to provide insights into the Mycoloop - energy transfer from inedible phytoplankton to zooplankton via fungal parasites. The quantitative PCR method, when validated for key zooplankton species and specific prey or parasite groups, has a potential for a broad range of applications in food web research.
Single tube genotyping of sickle cell anaemia using PCR-based SNP analysis.
Waterfall, C M; Cobb, B D
2001-12-01
Allele-specific amplification (ASA) is a generally applicable technique for the detection of known single nucleotide polymorphisms (SNPs), deletions, insertions and other sequence variations. Conventionally, two reactions are required to determine the zygosity of DNA in a two-allele system, along with significant upstream optimisation to define the specific test conditions. Here, we combine single tube bi-directional ASA with a 'matrix-based' optimisation strategy, speeding up the whole process in a reduced reaction set. We use sickle cell anaemia as our model SNP system, a genetic disease that is currently screened using ASA methods. Discriminatory conditions were rapidly optimised enabling the unambiguous identification of DNA from homozygous sickle cell patients (HbS/S), heterozygous carriers (HbA/S) or normal DNA in a single tube. Simple downstream mathematical analyses based on product yield across the optimisation set allow an insight into the important aspects of priming competition and component interactions in this competitive PCR. This strategy can be applied to any polymorphism, defining specific conditions using a multifactorial approach. The inherent simplicity and low cost of this PCR-based method validates bi-directional ASA as an effective tool in future clinical screening and pharmacogenomic research where more expensive fluorescence-based approaches may not be desirable.
Methods for detection of GMOs in food and feed.
Marmiroli, Nelson; Maestri, Elena; Gullì, Mariolina; Malcevschi, Alessio; Peano, Clelia; Bordoni, Roberta; De Bellis, Gianluca
2008-10-01
This paper reviews aspects relevant to detection and quantification of genetically modified (GM) material within the feed/food chain. The GM crop regulatory framework at the international level is evaluated with reference to traceability and labelling. Current analytical methods for the detection, identification, and quantification of transgenic DNA in food and feed are reviewed. These methods include quantitative real-time PCR, multiplex PCR, and multiplex real-time PCR. Particular attention is paid to methods able to identify multiple GM events in a single reaction and to the development of microdevices and microsensors, though they have not been fully validated for application.
Jaroenlak, Pattana; Sanguanrut, Piyachat; Williams, Bryony A. P.; Stentiford, Grant D.; Flegel, Timothy W.; Sritunyalucksana, Kallaya
2016-01-01
Hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP) is an important disease of cultivated shrimp. Heavy infections may lead to retarded growth and unprofitable harvests. Existing PCR detection methods target the EHP small subunit ribosomal RNA (SSU rRNA) gene (SSU-PCR). However, we discovered that they can give false positive test results due to cross reactivity of the SSU-PCR primers with DNA from closely related microsporidia that infect other aquatic organisms. This is problematic for investigating and monitoring EHP infection pathways. To overcome this problem, a sensitive and specific nested PCR method was developed for detection of the spore wall protein (SWP) gene of EHP (SWP-PCR). The new SWP-PCR method did not produce false positive results from closely related microsporidia. The first PCR step of the SWP-PCR method was 100 times (104 plasmid copies per reaction vial) more sensitive than that of the existing SSU-PCR method (106 copies) but sensitivity was equal for both in the nested step (10 copies). Since the hepatopancreas of cultivated shrimp is not currently known to be infected with microsporidia other than EHP, the SSU-PCR methods are still valid for analyzing hepatopancreatic samples despite the lower sensitivity than the SWP-PCR method. However, due to its greater specificity and sensitivity, we recommend that the SWP-PCR method be used to screen for EHP in feces, feed and environmental samples for potential EHP carriers. PMID:27832178
Jaroenlak, Pattana; Sanguanrut, Piyachat; Williams, Bryony A P; Stentiford, Grant D; Flegel, Timothy W; Sritunyalucksana, Kallaya; Itsathitphaisarn, Ornchuma
2016-01-01
Hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP) is an important disease of cultivated shrimp. Heavy infections may lead to retarded growth and unprofitable harvests. Existing PCR detection methods target the EHP small subunit ribosomal RNA (SSU rRNA) gene (SSU-PCR). However, we discovered that they can give false positive test results due to cross reactivity of the SSU-PCR primers with DNA from closely related microsporidia that infect other aquatic organisms. This is problematic for investigating and monitoring EHP infection pathways. To overcome this problem, a sensitive and specific nested PCR method was developed for detection of the spore wall protein (SWP) gene of EHP (SWP-PCR). The new SWP-PCR method did not produce false positive results from closely related microsporidia. The first PCR step of the SWP-PCR method was 100 times (104 plasmid copies per reaction vial) more sensitive than that of the existing SSU-PCR method (106 copies) but sensitivity was equal for both in the nested step (10 copies). Since the hepatopancreas of cultivated shrimp is not currently known to be infected with microsporidia other than EHP, the SSU-PCR methods are still valid for analyzing hepatopancreatic samples despite the lower sensitivity than the SWP-PCR method. However, due to its greater specificity and sensitivity, we recommend that the SWP-PCR method be used to screen for EHP in feces, feed and environmental samples for potential EHP carriers.
Noguchi, Akio; Nakamura, Kosuke; Sakata, Kozue; Sato-Fukuda, Nozomi; Ishigaki, Takumi; Mano, Junichi; Takabatake, Reona; Kitta, Kazumi; Teshima, Reiko; Kondo, Kazunari; Nishimaki-Mogami, Tomoko
2016-04-19
A number of genetically modified (GM) maize events have been developed and approved worldwide for commercial cultivation. A screening method is needed to monitor GM maize approved for commercialization in countries that mandate the labeling of foods containing a specified threshold level of GM crops. In Japan, a screening method has been implemented to monitor approved GM maize since 2001. However, the screening method currently used in Japan is time-consuming and requires generation of a calibration curve and experimental conversion factor (C(f)) value. We developed a simple screening method that avoids the need for a calibration curve and C(f) value. In this method, ΔC(q) values between the target sequences and the endogenous gene are calculated using multiplex real-time PCR, and the ΔΔC(q) value between the analytical and control samples is used as the criterion for determining analytical samples in which the GM organism content is below the threshold level for labeling of GM crops. An interlaboratory study indicated that the method is applicable independently with at least two models of PCR instruments used in this study.
De Monte, Anne; Cannavo, Isabelle; Caramella, Anne; Ollier, Laurence; Giordanengo, Valérie
2016-01-01
Congenital cytomegalovirus (CMV) infection is the leading cause of sensoneurinal disability due to infectious congenital disease. The diagnosis of congenital CMV infection is based on the search of CMV in the urine within the first two weeks of life. Viral culture of urine is the gold standard. However, the PCR is highly sensitive and faster. It is becoming an alternative choice. The objective of this study is the validation of real-time PCR by Abbott RealTime CMV with m2000 for the detection of cytomegalovirus in urine. Repeatability, reproducibility, detection limit and inter-sample contamination were evaluated. Urine samples from patients (n=141) were collected and analyzed simultaneously in culture and PCR in order to assess the correlation of these two methods. The sensitivity and specificity of PCR were also calculated. The Abbott RealTime CMV PCR in urine is an automated and sensitive method (detection limit 200 UI/mL). Fidelity is very good (standard deviation of repeatability: 0.08 to 0.15 LogUI/mL and reproducibility 0.18 LogUI/mL). We can note a good correlation between culture and Abbott RealTime CMV PCR (kappa 96%). When considering rapid culture as reference, real-time PCR was highly sensitive (100%) and specific (98.2%). The real-time PCR by Abbott RealTime CMV with m2000 is optimal for CMV detection in urine.
Croville, Guillaume; Foret, Charlotte; Heuillard, Pauline; Senet, Alexis; Delpont, Mattias; Mouahid, Mohammed; Ducatez, Mariette F; Kichou, Faouzi; Guerin, Jean-Luc
2018-06-01
Respiratory syndromes (RS) are among the most significant pathological conditions in edible birds and are caused by complex coactions of pathogens and environmental factors. In poultry, low pathogenic avian influenza A viruses, metapneumoviruses, infectious bronchitis virus, infectious laryngotracheitis virus, Mycoplasma spp. Escherichia coli and/or Ornithobacterium rhinotracheale in turkeys are considered as key co-infectious agents of RS. Aspergillus sp., Pasteurella multocida, Avibacterium paragallinarum or Chlamydia psittaci may also be involved in respiratory outbreaks. An innovative quantitative PCR method, based on a nanofluidic technology, has the ability to screen up to 96 samples with 96 pathogen-specific PCR primers, at the same time, in one run of real-time quantitative PCR. This platform was used for the screening of avian respiratory pathogens: 15 respiratory agents, including viruses, bacteria and fungi potentially associated with respiratory infections of poultry, were targeted. Primers were designed and validated for SYBR green real-time quantitative PCR and subsequently validated on the Biomark high throughput PCR nanofluidic platform (Fluidigm©, San Francisco, CA, USA). As a clinical assessment, tracheal swabs were sampled from turkeys showing RS and submitted to this panel assay. Beside systematic detection of E. coli, avian metapneumovirus, Mycoplasma gallisepticum and Mycoplasma synoviae were frequently detected, with distinctive co-infection patterns between French and Moroccan flocks. This proof-of-concept study illustrates the potential of such panel assays for unveiling respiratory co-infection profiles in poultry.
Kim, Mi-Ra; Kwon, Kisung; Jung, Yoo-Kyung; Kang, Tae Sun
2018-07-30
Skates and rays are commercially important fish in South Korea, and among them, Beringraja pulchra has the highest economic value. However, the similar morphological traits among skates and rays are often exploited for seafood fraud. Here, we designed both Beringraja pulchra-specific and skate-universal primer sets, capable of detecting short sequences in the cytochrome oxidase subunit I gene, and developed highly sensitive and reliable quantitative real-time PCR (qPCR) assays to differentiate between Beringraja pulchra and other skate and ray species. AΔCq method based on differences in the amplification efficiency was developed, validated, and then used to confirm the presence of Beringraja pulchra in twenty-six commercial skate products. The averageΔCq value obtained for other skate species (18.94 ± 3.46) was significantly higher than that of Beringraja pulchra (1.18 ± 0.15). For on-site applications, we developed an ultra-fast qPCR assay, allowing for completion of the entire analytical procedure within 30 min. Copyright © 2018 Elsevier Ltd. All rights reserved.
El Khattabi, Laïla Allach; Rouillac-Le Sciellour, Christelle; Le Tessier, Dominique; Luscan, Armelle; Coustier, Audrey; Porcher, Raphael; Bhouri, Rakia; Nectoux, Juliette; Sérazin, Valérie; Quibel, Thibaut; Mandelbrot, Laurent; Tsatsaris, Vassilis
2016-01-01
Objective NIPT for fetal aneuploidy by digital PCR has been hampered by the large number of PCR reactions needed to meet statistical requirements, preventing clinical application. Here, we designed an octoplex droplet digital PCR (ddPCR) assay which allows increasing the number of available targets and thus overcomes statistical obstacles. Method After technical optimization of the multiplex PCR on mixtures of trisomic and euploid DNA, we performed a validation study on samples of plasma DNA from 213 pregnant women. Molecular counting of circulating cell-free DNA was performed using a mix of hydrolysis probes targeting chromosome 21 and a reference chromosome. Results The results of our validation experiments showed that ddPCR detected trisomy 21 even when the sample’s trisomic DNA content is as low as 5%. In a validation study of plasma samples from 213 pregnant women, ddPCR discriminated clearly between the trisomy 21 and the euploidy groups. Conclusion Our results demonstrate that digital PCR can meet the requirements for non-invasive prenatal testing of trisomy 21. This approach is technically simple, relatively cheap, easy to implement in a diagnostic setting and compatible with ethical concerns regarding access to nucleotide sequence information. These advantages make it a potential technique of choice for population-wide screening for trisomy 21 in pregnant women. PMID:27167625
Dung, Tran Thi Ngoc; Phat, Voong Vinh; Nga, Tran Vu Thieu; My, Phan Vu Tra; Duy, Pham Thanh; Campbell, James I.; Thuy, Cao Thu; Hoang, Nguyen Van Minh; Van Minh, Pham; Le Phuc, Hoang; Tuyet, Pham Thi Ngoc; Vinh, Ha; Kien, Duong Thi Hue; Huy, Huynh Le Anh; Vinh, Nguyen Thanh; Nga, Tran Thi Thu; Hau, Nguyen Thi Thu; Chinh, Nguyen Tran; Thuong, Tang Chi; Tuan, Ha Manh; Simmons, Cameron; Farrar, Jeremy J.; Baker, Stephen
2013-01-01
Rotavirus (RoV) and Norovirus (NoV) are the main causes of viral gastroenteritis. Currently, there is no validated multiplex real-time PCR that can detect and quantify RoV and NoV simultaneously. The aim of the study was to develop, validate, and internally control a multiplex one-step RT real-time PCR to detect and quantify RoV and NoV in stool samples. PCR sensitivity was assessed by comparing amplification against the current gold standard, enzyme immunoassay (EIA), on stool samples from 94 individuals with diarrhea and 94 individuals without diarrhea. PCR detected 10% more RoV positive samples than EIA in stools samples from patients with diarrhea. PCR detected 23% more NoV genogroup II positive samples from individuals with diarrhea and 9% more from individuals without diarrhea than EIA, respectively. Genotyping of the PCR positive/EIA negative samples suggested the higher rate of PCR positivity, in comparison to EIA, was due to increased sensitivity, rather than nonspecific hybridization. Quantitation demonstrated that the viral loads of RoV and NoV in the stools of diarrheal patients were an order of magnitude greater than in individuals without diarrhea. This internally controlled real-time PCR method is robust, exhibits a high degree of reproducibility, and may have a greater utility and sensitivity than commercial EIA kits. PMID:23046990
A rapid and efficient branched DNA hybridization assay to titer lentiviral vectors.
Nair, Ayyappan; Xie, Jinger; Joshi, Sarasijam; Harden, Paul; Davies, Joan; Hermiston, Terry
2008-11-01
A robust assay to titer lentiviral vectors is imperative to qualifying their use in drug discovery, target validation and clinical applications. In this study, a novel branched DNA based hybridization assay was developed to titer lentiviral vectors by quantifying viral RNA genome copy numbers from viral lysates without having to purify viral RNA, and this approach was compared with other non-functional (p24 protein ELISA and viral RT-qPCR) and a functional method (reporter gene expression) used commonly. The RT-qPCR method requires purification of viral RNA and the accuracy of titration therefore depends on the efficiency of purification; this requirement is ameliorated in the hybridization assay as RNA is measured directly in viral lysates. The present study indicates that the hybridization based titration assay performed on viral lysates was more accurate and has additional advantages of being rapid, robust and not dependent on transduction efficiency in different cell types.
Savazzini, Federica; Longa, Claudia Maria Oliveira; Pertot, Ilaria; Gessler, Cesare
2008-05-01
Trichoderma (Hypocreales, Ascomycota) is a widespread genus in nature and several Trichoderma species are used in industrial processes and as biocontrol agents against crop diseases. It is very important that the persistence and spread of microorganisms released on purpose into the environment are accurately monitored. Real-time PCR methods for genus/species/strain identification of microorganisms are currently being developed to overcome the difficulties of classical microbiological and enzymatic methods for monitoring these populations. The aim of the present study was to develop and validate a specific real-time PCR-based method for detecting Trichoderma atroviride SC1 in soil. We developed a primer and TaqMan probe set constructed on base mutations in an endochitinase gene. This tool is highly specific for the detection and quantification of the SC1 strain. The limits of detection and quantification calculated from the relative standard deviation were 6000 and 20,000 haploid genome copies per gram of soil. Together with the low throughput time associated with this procedure, which allows the evaluation of many soil samples within a short time period, these results suggest that this method could be successfully used to trace the fate of T. atroviride SC1 applied as an open-field biocontrol agent.
Memon, Atta Muhammad; Bhuyan, Anjuman Ara; Chen, Fangzhou; Guo, Xiaozhen; Menghwar, Harish; Zhu, Yinxing; Ku, Xugang; Chen, Shuhua; Li, Zhonghua; He, Qigai
2017-05-01
Porcine rotavirus-A (PoRVA) is one of the common causes of mild to severe dehydrating diarrhea, leading to losses in weaning and postweaning piglets. A rapid, highly specific, and sensitive antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) was developed for detection of PoRVA, by using VP6 (a highly conserved and antigenic protein of group-A rotavirus)-directed rabbit polyclonal antibodies (capture antibody) and murine monoclonal antibodies (detector antibody). The detection limit of AC-ELISA was found to be equal to that of conventional reverse transcription-polymerase chain reaction (RT-PCR; about 10 2.5 TCID 50 /mL). For validation of the in-house AC-ELISA, 295 porcine fecal/diarrhea samples, collected from different provinces of China, were evaluated and compared with conventional RT-PCR and TaqMan RT-quantitative PCR (qPCR). The sensitivity and specificity of this in-house AC-ELISA relative to RT-qPCR were found to be 91.67% and 100%, respectively, with the strong agreement (kappa = 0.972) between these two techniques. Total detection rate with AC-ELISA, conventional RT-PCR, and RT-qPCR were found to be 11.2%, 11.5%, and 12.2%, respectively, without any statistical significant difference. Moreover, AC-ELISA failed to detect any cross-reactivity with porcine epidemic diarrhea virus, transmissible gastroenteritis virus, pseudorabies virus, and porcine circovirus-2. These results suggested that our developed method was rapid, highly specific, and sensitive, which may help in large-scale surveillance, timely detection, and preventive control of rotavirus infection in porcine farms.
Variant Profiling of Candidate Genes in Pancreatic Ductal Adenocarcinoma.
Huang, Jiaqi; Löhr, Johannes-Matthias; Nilsson, Magnus; Segersvärd, Ralf; Matsson, Hans; Verbeke, Caroline; Heuchel, Rainer; Kere, Juha; Iafrate, A John; Zheng, Zongli; Ye, Weimin
2015-11-01
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis. Variant profiling is crucial for developing personalized treatment and elucidating the etiology of this disease. Patients with PDAC undergoing surgery from 2007 to 2012 (n = 73) were followed from diagnosis until death or the end of the study. We applied an anchored multiplex PCR (AMP)-based next-generation sequencing (NGS) method to a panel of 65 selected genes and assessed analytical performance by sequencing a quantitative multiplex DNA reference standard. In clinical PDAC samples, detection of low-level KRAS (Kirsten rat sarcoma viral oncogene homolog) mutations was validated by allele-specific PCR and digital PCR. We compared overall survival of patients according to KRAS mutation status by log-rank test and applied logistic regression to evaluate the association between smoking and tumor variant types. The AMP-based NGS method could detect variants with allele frequencies as low as 1% given sufficient sequencing depth (>1500×). Low-frequency KRAS G12 mutations (allele frequency 1%-5%) were all confirmed by allele-specific PCR and digital PCR. The most prevalent genetic alterations were in KRAS (78% of patients), TP53 (tumor protein p53) (25%), and SMAD4 (SMAD family member 4) (8%). Overall survival in T3-stage PDAC patients differed among KRAS mutation subtypes (P = 0.019). Transversion variants were more common in ever-smokers than in never-smokers (odds ratio 5.7; 95% CI 1.2-27.8). The AMP-based NGS method is applicable for profiling tumor variants. Using this approach, we demonstrated that in PDAC patients, KRAS mutant subtype G12V is associated with poorer survival, and that transversion variants are more common among smokers. © 2015 American Association for Clinical Chemistry.
A whole blood gene expression-based signature for smoking status
2012-01-01
Background Smoking is the leading cause of preventable death worldwide and has been shown to increase the risk of multiple diseases including coronary artery disease (CAD). We sought to identify genes whose levels of expression in whole blood correlate with self-reported smoking status. Methods Microarrays were used to identify gene expression changes in whole blood which correlated with self-reported smoking status; a set of significant genes from the microarray analysis were validated by qRT-PCR in an independent set of subjects. Stepwise forward logistic regression was performed using the qRT-PCR data to create a predictive model whose performance was validated in an independent set of subjects and compared to cotinine, a nicotine metabolite. Results Microarray analysis of whole blood RNA from 209 PREDICT subjects (41 current smokers, 4 quit ≤ 2 months, 64 quit > 2 months, 100 never smoked; NCT00500617) identified 4214 genes significantly correlated with self-reported smoking status. qRT-PCR was performed on 1,071 PREDICT subjects across 256 microarray genes significantly correlated with smoking or CAD. A five gene (CLDND1, LRRN3, MUC1, GOPC, LEF1) predictive model, derived from the qRT-PCR data using stepwise forward logistic regression, had a cross-validated mean AUC of 0.93 (sensitivity=0.78; specificity=0.95), and was validated using 180 independent PREDICT subjects (AUC=0.82, CI 0.69-0.94; sensitivity=0.63; specificity=0.94). Plasma from the 180 validation subjects was used to assess levels of cotinine; a model using a threshold of 10 ng/ml cotinine resulted in an AUC of 0.89 (CI 0.81-0.97; sensitivity=0.81; specificity=0.97; kappa with expression model = 0.53). Conclusion We have constructed and validated a whole blood gene expression score for the evaluation of smoking status, demonstrating that clinical and environmental factors contributing to cardiovascular disease risk can be assessed by gene expression. PMID:23210427
Fernandes-Monteiro, Alice G; Trindade, Gisela F; Yamamura, Anna MY; Moreira, Otacilio C; de Paula, Vanessa S; Duarte, Ana Cláudia M; Britto, Constança; Lima, Sheila Maria B
2015-01-01
The development and production of viral vaccines, in general, involve several steps that need the monitoring of viral load throughout the entire process. Applying a 2-step quantitative reverse transcription real time PCR assay (RT-qPCR), viral load can be measured and monitored in a few hours. In this context, the development, standardization and validation of a RT-qPCR test to quickly and efficiently quantify yellow fever virus (YFV) in all stages of vaccine production are extremely important. To serve this purpose we used a plasmid construction containing the NS5 region from 17DD YFV to generate the standard curve and to evaluate parameters such as linearity, precision and specificity against other flavivirus. Furthermore, we defined the limits of detection as 25 copies/reaction, and quantification as 100 copies/reaction for the test. To ensure the quality of the method, reference controls were established in order to avoid false negative results. The qRT-PCR technique based on the use of TaqMan probes herein standardized proved to be effective for determining yellow fever viral load both in vivo and in vitro, thus becoming a very important tool to assure the quality control for vaccine production and evaluation of viremia after vaccination or YF disease. PMID:26011746
Fernandes-Monteiro, Alice G; Trindade, Gisela F; Yamamura, Anna M Y; Moreira, Otacilio C; de Paula, Vanessa S; Duarte, Ana Cláudia M; Britto, Constança; Lima, Sheila Maria B
2015-01-01
The development and production of viral vaccines, in general, involve several steps that need the monitoring of viral load throughout the entire process. Applying a 2-step quantitative reverse transcription real time PCR assay (RT-qPCR), viral load can be measured and monitored in a few hours. In this context, the development, standardization and validation of a RT-qPCR test to quickly and efficiently quantify yellow fever virus (YFV) in all stages of vaccine production are extremely important. To serve this purpose we used a plasmid construction containing the NS5 region from 17DD YFV to generate the standard curve and to evaluate parameters such as linearity, precision and specificity against other flavivirus. Furthermore, we defined the limits of detection as 25 copies/reaction, and quantification as 100 copies/reaction for the test. To ensure the quality of the method, reference controls were established in order to avoid false negative results. The qRT-PCR technique based on the use of TaqMan probes herein standardized proved to be effective for determining yellow fever viral load both in vivo and in vitro, thus becoming a very important tool to assure the quality control for vaccine production and evaluation of viremia after vaccination or YF disease.
Sun, Chongyun; Li, Chao; Wang, Xiaochen; Liu, Haican; Zhang, Pingping; Zhao, Xiuqin; Wang, Xinrui; Jiang, Yi; Yang, Ruifu; Wan, Kanglin; Zhou, Lei
2015-01-01
Drug-resistant Mycobacterium tuberculosis can be rapidly diagnosed through nucleic acid amplification techniques by analyzing the variations in the associated gene sequences. In the present study, a locked nucleic acid (LNA) probe-based real-time PCR assay was developed to identify the mutations in the rpoB gene associated with rifampin (RFP) resistance in M. tuberculosis. Six LNA probes with the discrimination capability of one-base mismatch were designed to monitor the 23 most frequent rpoB mutations. The target mutations were identified using the probes in a “probe dropout” manner (quantification cycle = 0); thus, the proposed technique exhibited superiority in mutation detection. The LNA probe-based real-time PCR assay was developed in a two-tube format with three LNA probes and one internal amplification control probe in each tube. The assay showed excellent specificity to M. tuberculosis with or without RFP resistance by evaluating 12 strains of common non-tuberculosis mycobacteria. The limit of detection of M. tuberculosis was 10 genomic equivalents (GE)/reaction by further introducing a nested PCR method. In a blind validation of 154 clinical mycobacterium isolates, 142/142 (100%) were correctly detected through the assay. Of these isolates, 88/88 (100%) were determined as RFP susceptible and 52/54 (96.3%) were characterized as RFP resistant. Two unrecognized RFP-resistant strains were sequenced and were found to contain mutations outside the range of the 23 mutation targets. In conclusion, this study established a sensitive, accurate, and low-cost LNA probe-based assay suitable for a four-multiplexing real-time PCR instrument. The proposed method can be used to diagnose RFP-resistant tuberculosis in clinical laboratories. PMID:26599667
Chen, Y. C.; Eisner, J. D.; Kattar, M. M.; Rassoulian-Barrett, S. L.; LaFe, K.; Yarfitz, S. L.; Limaye, A. P.; Cookson, B. T.
2000-01-01
Identification of medically relevant yeasts can be time-consuming and inaccurate with current methods. We evaluated PCR-based detection of sequence polymorphisms in the internal transcribed spacer 2 (ITS2) region of the rRNA genes as a means of fungal identification. Clinical isolates (401), reference strains (6), and type strains (27), representing 34 species of yeasts were examined. The length of PCR-amplified ITS2 region DNA was determined with single-base precision in less than 30 min by using automated capillary electrophoresis. Unique, species-specific PCR products ranging from 237 to 429 bp were obtained from 92% of the clinical isolates. The remaining 8%, divided into groups with ITS2 regions which differed by ≤2 bp in mean length, all contained species-specific DNA sequences easily distinguishable by restriction enzyme analysis. These data, and the specificity of length polymorphisms for identifying yeasts, were confirmed by DNA sequence analysis of the ITS2 region from 93 isolates. Phenotypic and ITS2-based identification was concordant for 427 of 434 yeast isolates examined using sequence identity of ≥99%. Seven clinical isolates contained ITS2 sequences that did not agree with their phenotypic identification, and ITS2-based phylogenetic analyses indicate the possibility of new or clinically unusual species in the Rhodotorula and Candida genera. This work establishes an initial database, validated with over 400 clinical isolates, of ITS2 length and sequence polymorphisms for 34 species of yeasts. We conclude that size and restriction analysis of PCR-amplified ITS2 region DNA is a rapid and reliable method to identify clinically significant yeasts, including potentially new or emerging pathogenic species. PMID:10834993
Salvi, Sergio; D'Orso, Fabio; Morelli, Giorgio
2008-06-25
Many countries have introduced mandatory labeling requirements on foods derived from genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (PCR) based upon the TaqMan probe chemistry has become the method mostly used to support these regulations; moreover, event-specific PCR is the preferred method in GMO detection because of its high specificity based on the flanking sequence of the exogenous integrant. The aim of this study was to evaluate the use of very short (eight-nucleotide long), locked nucleic acid (LNA) TaqMan probes in 5'-nuclease PCR assays for the detection and quantification of GMOs. Classic TaqMan and LNA TaqMan probes were compared for the analysis of the maize MON810 transgene. The performance of the two types of probes was tested on the maize endogenous reference gene hmga, the CaMV 35S promoter, and the hsp70/cryIA(b) construct as well as for the event-specific 5'-integration junction of MON810, using plasmids as standard reference molecules. The results of our study demonstrate that the LNA 5'-nuclease PCR assays represent a valid and reliable analytical system for the detection and quantification of transgenes. Application of very short LNA TaqMan probes to GMO quantification can simplify the design of 5'-nuclease assays.
Ueno, Tomohiro; Niimi, Hideki; Yoneda, Noriko; Yoneda, Satoshi; Mori, Masashi; Tabata, Homare; Minami, Hiroshi; Saito, Shigeru; Kitajima, Isao
2015-01-01
Intra-amniotic infection has long been recognized as the leading cause of preterm delivery. Microbial culture is the gold standard for the detection of intra-amniotic infection, but several days are required, and many bacterial species in the amniotic fluid are difficult to cultivate. We developed a novel nested-PCR-based assay for detecting Mycoplasma, Ureaplasma, other bacteria and fungi in amniotic fluid samples within three hours of sample collection. To detect prokaryotes, eukaryote-made thermostable DNA polymerase, which is free from bacterial DNA contamination, is used in combination with bacterial universal primers. In contrast, to detect eukaryotes, conventional bacterially-made thermostable DNA polymerase is used in combination with fungal universal primers. To assess the validity of the PCR assay, we compared the PCR and conventional culture results using 300 amniotic fluid samples. Based on the detection level (positive and negative), 93.3% (280/300) of Mycoplasma, 94.3% (283/300) of Ureaplasma, 89.3% (268/300) of other bacteria and 99.7% (299/300) of fungi matched the culture results. Meanwhile, concerning the detection of bacteria other than Mycoplasma and Ureaplasma, 228 samples were negative according to the PCR method, 98.2% (224/228) of which were also negative based on the culture method. Employing the devised primer sets, mixed amniotic fluid infections of Mycoplasma, Ureaplasma and/or other bacteria could be clearly distinguished. In addition, we also attempted to compare the relative abundance in 28 amniotic fluid samples with mixed infection, and judged dominance by comparing the Ct values of quantitative real-time PCR. We developed a novel PCR assay for the rapid detection of Mycoplasma, Ureaplasma, other bacteria and fungi in amniotic fluid samples. This assay can also be applied to accurately diagnose the absence of bacteria in samples. We believe that this assay will positively contribute to the treatment of intra-amniotic infection and the prevention of preterm delivery.
Pan, Xiaoming; Zhang, Yanfang; Sha, Xuejiao; Wang, Jing; Li, Jing; Dong, Ping; Liang, Xingguo
2017-03-28
White spot syndrome virus (WSSV) is a major threat to the shrimp farming industry and so far there is no effective therapy for it, and thus early diagnostic of WSSV is of great importance. However, at the early stage of infection, the extremely low-abundance of WSSV DNA challenges the detection sensitivity and accuracy of PCR. To effectively detect low-abundance WSSV, here we developed a pre-amplification PCR (pre-amp PCR) method to amplify trace amounts of WSSV DNA from massive background genomic DNA. Combining with normal specific PCR, 10 copies of target WSSV genes were detected from ~10 10 magnitude of backgrounds. In particular, multiple target genes were able to be balanced amplified with similar efficiency due to the usage of the universal primer. The efficiency of the pre-amp PCR was validated by nested-PCR and quantitative PCR, and pre-amp PCR showed higher efficiency than nested-PCR when multiple targets were detected. The developed method is particularly suitable for the super early diagnosis of WSSV, and has potential to be applied in other low-abundance sample detection cases.
Single tube genotyping of sickle cell anaemia using PCR-based SNP analysis
Waterfall, Christy M.; Cobb, Benjamin D.
2001-01-01
Allele-specific amplification (ASA) is a generally applicable technique for the detection of known single nucleotide polymorphisms (SNPs), deletions, insertions and other sequence variations. Conventionally, two reactions are required to determine the zygosity of DNA in a two-allele system, along with significant upstream optimisation to define the specific test conditions. Here, we combine single tube bi-directional ASA with a ‘matrix-based’ optimisation strategy, speeding up the whole process in a reduced reaction set. We use sickle cell anaemia as our model SNP system, a genetic disease that is currently screened using ASA methods. Discriminatory conditions were rapidly optimised enabling the unambiguous identification of DNA from homozygous sickle cell patients (HbS/S), heterozygous carriers (HbA/S) or normal DNA in a single tube. Simple downstream mathematical analyses based on product yield across the optimisation set allow an insight into the important aspects of priming competition and component interactions in this competitive PCR. This strategy can be applied to any polymorphism, defining specific conditions using a multifactorial approach. The inherent simplicity and low cost of this PCR-based method validates bi-directional ASA as an effective tool in future clinical screening and pharmacogenomic research where more expensive fluorescence-based approaches may not be desirable. PMID:11726702
Real-time PCR assay for the diagnosis of pleural tuberculosis
Cárdenas Bernal, Ana María; Giraldo-Cadavid, Luis Fernando; Prieto Diago, Enrique; Santander, Sandra Paola
2017-01-01
Abstract Introduction: The diagnosis of pleural tuberculosis requires an invasive and time-consuming reference method. Polymerase chain reaction (PCR) is rapid, but validation in pleural tuberculosis is still weak. Objective: To establish the operating characteristics of real-time polymerase chain reaction (RT-PCR) hybridization probes for the diagnosis of pleural tuberculosis. Methods: The validity of the RT-PCR hybridization probes was evaluated compared to a composite reference method by a cross-sectional study at the Hospital Universitario de la Samaritana. 40 adults with lymphocytic pleural effusion were included. Pleural tuberculosis was confirmed (in 9 patients) if the patient had at least one of three tests using the positive reference method: Ziehl-Neelsen or Mycobacterium tuberculosis culture in fluid or pleural tissue, or pleural biopsy with granulomas. Pleural tuberculosis was ruled out (in 31 patients) if all three tests were negative. The operating characteristics of the RT-PCR, using the Mid-P Exact Test, were determined using the OpenEpi 2.3 Software (2009). Results: The RT-PCR hybridization probes showed a sensitivity of 66.7% (95% CI: 33.2%-90.7%) and a specificity of 93.5% (95% CI: 80.3%-98.9%). The PPV was 75.0% (95% CI: 38.8%-95.6%) and a NPV of 90.6% (95% CI: 76.6%-97.6%). Two false positives were found for the test, one with pleural mesothelioma and the other with chronic pleuritis with mesothelial hyperplasia. Conclusions: The RT-PCR hybridization probes had good specificity and acceptable sensitivity, but a negative value cannot rule out pleural tuberculosis. PMID:29021638
Gerdes, Lars; Iwobi, Azuka; Busch, Ulrich; Pecoraro, Sven
2016-01-01
Digital PCR in droplets (ddPCR) is an emerging method for more and more applications in DNA (and RNA) analysis. Special requirements when establishing ddPCR for analysis of genetically modified organisms (GMO) in a laboratory include the choice between validated official qPCR methods and the optimization of these assays for a ddPCR format. Differentiation between droplets with positive reaction and negative droplets, that is setting of an appropriate threshold, can be crucial for a correct measurement. This holds true in particular when independent transgene and plant-specific reference gene copy numbers have to be combined to determine the content of GM material in a sample. Droplets which show fluorescent units ranging between those of explicit positive and negative droplets are called ‘rain’. Signals of such droplets can hinder analysis and the correct setting of a threshold. In this manuscript, a computer-based algorithm has been carefully designed to evaluate assay performance and facilitate objective criteria for assay optimization. Optimized assays in return minimize the impact of rain on ddPCR analysis. We developed an Excel based ‘experience matrix’ that reflects the assay parameters of GMO ddPCR tests performed in our laboratory. Parameters considered include singleplex/duplex ddPCR, assay volume, thermal cycler, probe manufacturer, oligonucleotide concentration, annealing/elongation temperature, and a droplet separation evaluation. We additionally propose an objective droplet separation value which is based on both absolute fluorescence signal distance of positive and negative droplet populations and the variation within these droplet populations. The proposed performance classification in the experience matrix can be used for a rating of different assays for the same GMO target, thus enabling employment of the best suited assay parameters. Main optimization parameters include annealing/extension temperature and oligonucleotide concentrations. The droplet separation value allows for easy and reproducible assay performance evaluation. The combination of separation value with the experience matrix simplifies the choice of adequate assay parameters for a given GMO event. PMID:27077048
Gerdes, Lars; Iwobi, Azuka; Busch, Ulrich; Pecoraro, Sven
2016-03-01
Digital PCR in droplets (ddPCR) is an emerging method for more and more applications in DNA (and RNA) analysis. Special requirements when establishing ddPCR for analysis of genetically modified organisms (GMO) in a laboratory include the choice between validated official qPCR methods and the optimization of these assays for a ddPCR format. Differentiation between droplets with positive reaction and negative droplets, that is setting of an appropriate threshold, can be crucial for a correct measurement. This holds true in particular when independent transgene and plant-specific reference gene copy numbers have to be combined to determine the content of GM material in a sample. Droplets which show fluorescent units ranging between those of explicit positive and negative droplets are called 'rain'. Signals of such droplets can hinder analysis and the correct setting of a threshold. In this manuscript, a computer-based algorithm has been carefully designed to evaluate assay performance and facilitate objective criteria for assay optimization. Optimized assays in return minimize the impact of rain on ddPCR analysis. We developed an Excel based 'experience matrix' that reflects the assay parameters of GMO ddPCR tests performed in our laboratory. Parameters considered include singleplex/duplex ddPCR, assay volume, thermal cycler, probe manufacturer, oligonucleotide concentration, annealing/elongation temperature, and a droplet separation evaluation. We additionally propose an objective droplet separation value which is based on both absolute fluorescence signal distance of positive and negative droplet populations and the variation within these droplet populations. The proposed performance classification in the experience matrix can be used for a rating of different assays for the same GMO target, thus enabling employment of the best suited assay parameters. Main optimization parameters include annealing/extension temperature and oligonucleotide concentrations. The droplet separation value allows for easy and reproducible assay performance evaluation. The combination of separation value with the experience matrix simplifies the choice of adequate assay parameters for a given GMO event.
Franssen, Frits; Deksne, Gunita; Esíte, Zanda; Havelaar, Arie; Swart, Arno; van der Giessen, Joke
2014-11-28
Freezing of fox carcasses to minimize professional hazard of infection with Echinococcus multilocularis is recommended in endemic areas, but this could influence the detection of Trichinella larvae in the same host species. A method based on artificial digestion of frozen fox muscle, combined with larva isolation by a sequential sieving method (SSM), was validated using naturally infected foxes from Latvia. The validated SSM was used to detect dead Trichinella muscle larvae (ML) in frozen muscle samples of 369 red foxes from the Netherlands, of which one fox was positive (0.067 larvae per gram). This result was compared with historical Trichinella findings in Dutch red foxes. Molecular analysis using 5S PCR showed that both T. britovi and T. nativa were present in the Latvian foxes, without mixed infections. Of 96 non-frozen T. britovi ML, 94% was successfully sequenced, whereas this was the case for only 8.3% of 72 frozen T. britovi ML. The single Trichinella sp. larva that was recovered from the positive Dutch fox did not yield PCR product, probably due to severe freeze-damage. In conclusion, the SSM presented in this study is a fast and effective method to detect dead Trichinella larvae in frozen meat. We showed that the Trichinella prevalence in Dutch red fox was 0.27% (95% CI 0.065-1.5%), in contrast to 3.9% in the same study area fifteen years ago. Moreover, this study demonstrated that the efficacy of 5S PCR for identification of Trichinella britovi single larvae from frozen meat is not more than 8.3%.
Aase, Audun; Hajdusek, Ondrej; Øines, Øivind; Quarsten, Hanne; Wilhelmsson, Peter; Herstad, Tove K; Kjelland, Vivian; Sima, Radek; Jalovecka, Marie; Lindgren, Per-Eric; Aaberge, Ingeborg S
2016-01-01
A modified microscopy protocol (the LM-method) was used to demonstrate what was interpreted as Borrelia spirochetes and later also Babesia sp., in peripheral blood from patients. The method gained much publicity, but was not validated prior to publication, which became the purpose of this study using appropriate scientific methodology, including a control group. Blood from 21 patients previously interpreted as positive for Borrelia and/or Babesia infection by the LM-method and 41 healthy controls without known history of tick bite were collected, blinded and analysed for these pathogens by microscopy in two laboratories by the LM-method and conventional method, respectively, by PCR methods in five laboratories and by serology in one laboratory. Microscopy by the LM-method identified structures claimed to be Borrelia- and/or Babesia in 66% of the blood samples of the patient group and in 85% in the healthy control group. Microscopy by the conventional method for Babesia only did not identify Babesia in any samples. PCR analysis detected Borrelia DNA in one sample of the patient group and in eight samples of the control group; whereas Babesia DNA was not detected in any of the blood samples using molecular methods. The structures interpreted as Borrelia and Babesia by the LM-method could not be verified by PCR. The method was, thus, falsified. This study underlines the importance of doing proper test validation before new or modified assays are introduced.
Pandey, Ram Vinay; Pulverer, Walter; Kallmeyer, Rainer; Beikircher, Gabriel; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas
2016-01-01
Bisulfite (BS) conversion-based and methylation-sensitive restriction enzyme (MSRE)-based PCR methods have been the most commonly used techniques for locus-specific DNA methylation analysis. However, both methods have advantages and limitations. Thus, an integrated approach would be extremely useful to quantify the DNA methylation status successfully with great sensitivity and specificity. Designing specific and optimized primers for target regions is the most critical and challenging step in obtaining the adequate DNA methylation results using PCR-based methods. Currently, no integrated, optimized, and high-throughput methylation-specific primer design software methods are available for both BS- and MSRE-based methods. Therefore an integrated, powerful, and easy-to-use methylation-specific primer design pipeline with great accuracy and success rate will be very useful. We have developed a new web-based pipeline, called MSP-HTPrimer, to design primers pairs for MSP, BSP, pyrosequencing, COBRA, and MSRE assays on both genomic strands. First, our pipeline converts all target sequences into bisulfite-treated templates for both forward and reverse strand and designs all possible primer pairs, followed by filtering for single nucleotide polymorphisms (SNPs) and known repeat regions. Next, each primer pairs are annotated with the upstream and downstream RefSeq genes, CpG island, and cut sites (for COBRA and MSRE). Finally, MSP-HTPrimer selects specific primers from both strands based on custom and user-defined hierarchical selection criteria. MSP-HTPrimer produces a primer pair summary output table in TXT and HTML format for display and UCSC custom tracks for resulting primer pairs in GTF format. MSP-HTPrimer is an integrated, web-based, and high-throughput pipeline and has no limitation on the number and size of target sequences and designs MSP, BSP, pyrosequencing, COBRA, and MSRE assays. It is the only pipeline, which automatically designs primers on both genomic strands to increase the success rate. It is a standalone web-based pipeline, which is fully configured within a virtual machine and thus can be readily used without any configuration. We have experimentally validated primer pairs designed by our pipeline and shown a very high success rate of primer pairs: out of 66 BSP primer pairs, 63 were successfully validated without any further optimization step and using the same qPCR conditions. The MSP-HTPrimer pipeline is freely available from http://sourceforge.net/p/msp-htprimer.
2013-01-01
Background Apomixis is a naturally occurring asexual mode of seed reproduction resulting in offspring genetically identical to the maternal plant. Identifying differential gene expression patterns between apomictic and sexual plants is valuable to help deconstruct the trait. Quantitative RT-PCR (qRT-PCR) is a popular method for analyzing gene expression. Normalizing gene expression data using proper reference genes which show stable expression under investigated conditions is critical in qRT-PCR analysis. We used qRT-PCR to validate expression and stability of six potential reference genes (EF1alpha, EIF4A, UBCE, GAPDH, ACT2 and TUBA) in vegetative and reproductive tissues of B-2S and B-12-9 accessions of C. ciliaris. Findings Among tissue types evaluated, EF1alpha showed the highest level of expression while TUBA showed the lowest. When all tissue types were evaluated and compared between genotypes, EIF4A was the most stable reference gene. Gene expression stability for specific ovary stages of B-2S and B-12-9 was also determined. Except for TUBA, all other tested reference genes could be used for any stage-specific ovary tissue normalization, irrespective of the mode of reproduction. Conclusion Our gene expression stability assay using six reference genes, in sexual and apomictic accessions of C. ciliaris, suggests that EIF4A is the most stable gene across all tissue types analyzed. All other tested reference genes, with the exception of TUBA, could be used for gene expression comparison studies between sexual and apomictic ovaries over multiple developmental stages. This reference gene validation data in C. ciliaris will serve as an important base for future apomixis-related transcriptome data validation. PMID:24083672
Genotyping of polyomavirus BK by Real Time PCR for VP1 gene.
Gambarino, Stefano; Costa, Cristina; Astegiano, Sara; Piasentin, Elsa Alessio; Segoloni, Giuseppe P; Cavallo, Rossana; Bergallo, Massimiliano
2011-10-01
Polyomavirus BK latently persist in different sites, including the renourinary tract, and may reactivate causing nephropathy in renal transplant recipients or hemorrhagic cystitis in bone marrow recipients. Based on the sequence of the VP1 gene, four genotypes have been described, corresponding to the four serologically differentiated subtypes I-IV, with different prevalence and geographic distribution. In this study, the development and clinical validation of four different Real-Time PCR assays for the detection and discrimination of BKV genotypes as a substitute of DNA sequencing are described. 379 BK VP1 sequences, belonging to the main four genotypes, were aligned and "hot spots" of mutation specific for all the strains or isolates were identified. Specific primers and probes for the detection and discrimination of each genotype by four Real-Time PCR assays were designed and technically validated. Subsequently, the four Real-Time PCR assays were used to test 20 BK-positive urine specimens from renal transplant patients, and evidenced a prevalence of BK genotype I, as previously reported in Europe. Results were confirmed by sequencing. The availability of a rapid and simple genotyping method could be useful for the evaluation of BK genotypes prevalence and studies on the impact of the infecting genotype on viral biological behavior, pathogenic role, and immune evasion strategies.
Steps to achieve quantitative measurements of microRNA using two step droplet digital PCR.
Stein, Erica V; Duewer, David L; Farkas, Natalia; Romsos, Erica L; Wang, Lili; Cole, Kenneth D
2017-01-01
Droplet digital PCR (ddPCR) is being advocated as a reference method to measure rare genomic targets. It has consistently been proven to be more sensitive and direct at discerning copy numbers of DNA than other quantitative methods. However, one of the largest obstacles to measuring microRNA (miRNA) using ddPCR is that reverse transcription efficiency depends upon the target, meaning small RNA nucleotide composition directly effects primer specificity in a manner that prevents traditional quantitation optimization strategies. Additionally, the use of reagents that are optimized for miRNA measurements using quantitative real-time PCR (qRT-PCR) appear to either cause false positive or false negative detection of certain targets when used with traditional ddPCR quantification methods. False readings are often related to using inadequate enzymes, primers and probes. Given that two-step miRNA quantification using ddPCR relies solely on reverse transcription and uses proprietary reagents previously optimized only for qRT-PCR, these barriers are substantial. Therefore, here we outline essential controls, optimization techniques, and an efficacy model to improve the quality of ddPCR miRNA measurements. We have applied two-step principles used for miRNA qRT-PCR measurements and leveraged the use of synthetic miRNA targets to evaluate ddPCR following cDNA synthesis with four different commercial kits. We have identified inefficiencies and limitations as well as proposed ways to circumvent identified obstacles. Lastly, we show that we can apply these criteria to a model system to confidently quantify miRNA copy number. Our measurement technique is a novel way to quantify specific miRNA copy number in a single sample, without using standard curves for individual experiments. Our methodology can be used for validation and control measurements, as well as a diagnostic technique that allows scientists, technicians, clinicians, and regulators to base miRNA measures on a single unit of measurement rather than a ratio of values.
Steps to achieve quantitative measurements of microRNA using two step droplet digital PCR
Duewer, David L.; Farkas, Natalia; Romsos, Erica L.; Wang, Lili; Cole, Kenneth D.
2017-01-01
Droplet digital PCR (ddPCR) is being advocated as a reference method to measure rare genomic targets. It has consistently been proven to be more sensitive and direct at discerning copy numbers of DNA than other quantitative methods. However, one of the largest obstacles to measuring microRNA (miRNA) using ddPCR is that reverse transcription efficiency depends upon the target, meaning small RNA nucleotide composition directly effects primer specificity in a manner that prevents traditional quantitation optimization strategies. Additionally, the use of reagents that are optimized for miRNA measurements using quantitative real-time PCR (qRT-PCR) appear to either cause false positive or false negative detection of certain targets when used with traditional ddPCR quantification methods. False readings are often related to using inadequate enzymes, primers and probes. Given that two-step miRNA quantification using ddPCR relies solely on reverse transcription and uses proprietary reagents previously optimized only for qRT-PCR, these barriers are substantial. Therefore, here we outline essential controls, optimization techniques, and an efficacy model to improve the quality of ddPCR miRNA measurements. We have applied two-step principles used for miRNA qRT-PCR measurements and leveraged the use of synthetic miRNA targets to evaluate ddPCR following cDNA synthesis with four different commercial kits. We have identified inefficiencies and limitations as well as proposed ways to circumvent identified obstacles. Lastly, we show that we can apply these criteria to a model system to confidently quantify miRNA copy number. Our measurement technique is a novel way to quantify specific miRNA copy number in a single sample, without using standard curves for individual experiments. Our methodology can be used for validation and control measurements, as well as a diagnostic technique that allows scientists, technicians, clinicians, and regulators to base miRNA measures on a single unit of measurement rather than a ratio of values. PMID:29145448
Validity of a PCR assay in CSF for the diagnosis of neurocysticercosis
Campoverde, Alfredo; Romo, Matthew L.; García, Lorena; Piedra, Luis M.; Pacurucu, Mónica; López, Nelson; Aguilar, Jenner; López, Sebastian; Vintimilla, Luis C.; Toral, Ana M.; Peña-Tapia, Pablo
2017-01-01
Objective: To prospectively evaluate the validity of a PCR assay in CSF for the diagnosis of neurocysticercosis (NC). Methods: We conducted a multicenter, prospective case-control study, recruiting participants from 5 hospitals in Cuenca, Ecuador, from January 2015 to February 2016. Cases fulfilled validated diagnostic criteria for NC. For each case, a neurosurgical patient who did not fulfill the diagnostic criteria for NC was selected as a control. CT and MRI, as well as a CSF sample, were collected from both cases and controls. The diagnostic criteria to identify cases were used as a reference standard. Results: Overall, 36 case and 36 control participants were enrolled. PCR had a sensitivity of 72.2% (95% confidence interval [CI] 54.8%–85.8%) and a specificity of 100.0% (95% CI 90.3%–100.0%). For parenchymal NC, PCR had a sensitivity of 42.9% (95% CI 17.7%–71.1%), and for extraparenchymal NC, PCR had a sensitivity of 90.9% (95% CI 70.8%–98.9%). Conclusions: This study demonstrated the usefulness of this PCR assay in CSF for the diagnosis of NC. PCR may be particularly helpful for diagnosing extraparenchymal NC when neuroimaging techniques have failed. Classification of evidence: This study provides Class III evidence that CSF PCR can accurately identify patients with extraparenchymal NC. PMID:28105460
Bacterial reference genes for gene expression studies by RT-qPCR: survey and analysis.
Rocha, Danilo J P; Santos, Carolina S; Pacheco, Luis G C
2015-09-01
The appropriate choice of reference genes is essential for accurate normalization of gene expression data obtained by the method of reverse transcription quantitative real-time PCR (RT-qPCR). In 2009, a guideline called the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) highlighted the importance of the selection and validation of more than one suitable reference gene for obtaining reliable RT-qPCR results. Herein, we searched the recent literature in order to identify the bacterial reference genes that have been most commonly validated in gene expression studies by RT-qPCR (in the first 5 years following publication of the MIQE guidelines). Through a combination of different search parameters with the text mining tool MedlineRanker, we identified 145 unique bacterial genes that were recently tested as candidate reference genes. Of these, 45 genes were experimentally validated and, in most of the cases, their expression stabilities were verified using the software tools geNorm and NormFinder. It is noteworthy that only 10 of these reference genes had been validated in two or more of the studies evaluated. An enrichment analysis using Gene Ontology classifications demonstrated that genes belonging to the functional categories of DNA Replication (GO: 0006260) and Transcription (GO: 0006351) rendered a proportionally higher number of validated reference genes. Three genes in the former functional class were also among the top five most stable genes identified through an analysis of gene expression data obtained from the Pathosystems Resource Integration Center. These results may provide a guideline for the initial selection of candidate reference genes for RT-qPCR studies in several different bacterial species.
Lee, DoKyung; Kim, Eun Jin; Kilgore, Paul E; Kim, Soon Ae; Takahashi, Hideyuki; Ohnishi, Makoto; Anh, Dang Duc; Dong, Bai Qing; Kim, Jung Soo; Tomono, Jun; Miyamoto, Shigehiko; Notomi, Tsugunori; Kim, Dong Wook; Seki, Mitsuko
2015-01-01
Neisseria meningitidis (Nm) is a leading causative agent of bacterial meningitis in humans. Traditionally, meningococcal meningitis has been diagnosed by bacterial culture. However, isolation of bacteria from patients' cerebrospinal fluid (CSF) is time consuming and sometimes yields negative results. Recently, polymerase chain reaction (PCR)-based diagnostic methods of detecting Nm have been considered the gold standard because of their superior sensitivity and specificity compared with culture. In this study, we developed a loop-mediated isothermal amplification (LAMP) method and evaluated its ability to detect Nm in cerebrospinal fluid (CSF). We developed a meningococcal LAMP assay (Nm LAMP) that targets the ctrA gene. The primer specificity was validated using 16 strains of N. meningitidis (serogroup A, B, C, D, 29-E, W-135, X, Y, and Z) and 19 non-N. meningitidis species. Within 60 min, the Nm LAMP detected down to ten copies per reaction with sensitivity 1000-fold more than that of conventional PCR. The LAMP assays were evaluated using a set of 1574 randomly selected CSF specimens from children with suspected meningitis collected between 1998 and 2002 in Vietnam, China, and Korea. The LAMP method was shown to be more sensitive than PCR methods for CSF samples (31 CSF samples were positive by LAMP vs. 25 by PCR). The detection rate of the LAMP method was substantially higher than that of the PCR method. In a comparative analysis of the PCR and LAMP assays, the clinical sensitivity, specificity, positive predictive value, and negative predictive value of the LAMP assay were 100%, 99.6%, 80.6%, and 100%, respectively. Compared to PCR, LAMP detected Nm with higher analytical and clinical sensitivity. This sensitive and specific LAMP method offers significant advantages for screening patients on a population basis and for diagnosis in clinical settings.
Gan, W; Zhou, X; Yang, H; Chen, H; Qiao, J; Khan, S H; Yang, L; Yin, X; Zhao, D
2013-08-03
The infection status of cattle for bovine tuberculosis (bTB) was determined by real-time PCR, comparing the levels of IFN-γ mRNA in blood cultures stimulated with either bovine or avian tuberculin with non-stimulated control (phosphate buffer saline, PBS) blood culture. Totally, 137 cattle were tested to validate the assay, in which 54 were IFN-γ real-time quantitative PCR (RT-qPCR) positive, while the remaining 83 were found negative. Meanwhile, the IFN-γ ELISA test was carried out using the Bovigam IFN-γ detection ELISA kit and these results were used as a standard. The results of the single intradermal tuberculin tests (SIDT) and IFN-γ RT-qPCR tests were compared and revealed that the RT-qPCR correlated better with the ELISA and its accuracy was higher than SIDT. This indicates the RT-qPCR is a useful diagnostic method for bTB in cattle. However, several limitations remain for our approach, such as lack of a TB lesions or postmortem test results as a gold standard. Further improvements should be made in the future to increase accuracy of diagnosis of bTB in cattle.
Development and Validation of a New Reliable Method for the Diagnosis of Avian Botulism.
Le Maréchal, Caroline; Rouxel, Sandra; Ballan, Valentine; Houard, Emmanuelle; Poezevara, Typhaine; Bayon-Auboyer, Marie-Hélène; Souillard, Rozenn; Morvan, Hervé; Baudouard, Marie-Agnès; Woudstra, Cédric; Mazuet, Christelle; Le Bouquin, Sophie; Fach, Patrick; Popoff, Michel; Chemaly, Marianne
2017-01-01
Liver is a reliable matrix for laboratory confirmation of avian botulism using real-time PCR. Here, we developed, optimized, and validated the analytical steps preceding PCR to maximize the detection of Clostridium botulinum group III in avian liver. These pre-PCR steps included enrichment incubation of the whole liver (maximum 25 g) at 37°C for at least 24 h in an anaerobic chamber and DNA extraction using an enzymatic digestion step followed by a DNA purification step. Conditions of sample storage before analysis appear to have a strong effect on the detection of group III C. botulinum strains and our results recommend storage at temperatures below -18°C. Short-term storage at 5°C is possible for up to 24 h, but a decrease in sensitivity was observed at 48 h of storage at this temperature. Analysis of whole livers (maximum 25 g) is required and pooling samples before enrichment culturing must be avoided. Pooling is however possible before or after DNA extraction under certain conditions. Whole livers should be 10-fold diluted in enrichment medium and homogenized using a Pulsifier® blender (Microgen, Surrey, UK) instead of a conventional paddle blender. Spiked liver samples showed a limit of detection of 5 spores/g liver for types C and D and 250 spores/g for type E. Using the method developed here, the analysis of 268 samples from 73 suspected outbreaks showed 100% specificity and 95.35% sensitivity compared with other PCR-based methods considered as reference. The mosaic type C/D was the most common neurotoxin type found in examined samples, which included both wild and domestic birds.
Development and Validation of a New Reliable Method for the Diagnosis of Avian Botulism
Le Maréchal, Caroline; Rouxel, Sandra; Ballan, Valentine; Houard, Emmanuelle; Poezevara, Typhaine; Bayon-Auboyer, Marie-Hélène; Souillard, Rozenn; Morvan, Hervé; Baudouard, Marie-Agnès; Woudstra, Cédric; Mazuet, Christelle; Le Bouquin, Sophie; Fach, Patrick; Popoff, Michel; Chemaly, Marianne
2017-01-01
Liver is a reliable matrix for laboratory confirmation of avian botulism using real-time PCR. Here, we developed, optimized, and validated the analytical steps preceding PCR to maximize the detection of Clostridium botulinum group III in avian liver. These pre-PCR steps included enrichment incubation of the whole liver (maximum 25 g) at 37°C for at least 24 h in an anaerobic chamber and DNA extraction using an enzymatic digestion step followed by a DNA purification step. Conditions of sample storage before analysis appear to have a strong effect on the detection of group III C. botulinum strains and our results recommend storage at temperatures below -18°C. Short-term storage at 5°C is possible for up to 24 h, but a decrease in sensitivity was observed at 48 h of storage at this temperature. Analysis of whole livers (maximum 25 g) is required and pooling samples before enrichment culturing must be avoided. Pooling is however possible before or after DNA extraction under certain conditions. Whole livers should be 10-fold diluted in enrichment medium and homogenized using a Pulsifier® blender (Microgen, Surrey, UK) instead of a conventional paddle blender. Spiked liver samples showed a limit of detection of 5 spores/g liver for types C and D and 250 spores/g for type E. Using the method developed here, the analysis of 268 samples from 73 suspected outbreaks showed 100% specificity and 95.35% sensitivity compared with other PCR-based methods considered as reference. The mosaic type C/D was the most common neurotoxin type found in examined samples, which included both wild and domestic birds. PMID:28076405
Design of primers and probes for quantitative real-time PCR methods.
Rodríguez, Alicia; Rodríguez, Mar; Córdoba, Juan J; Andrade, María J
2015-01-01
Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.
Loop-mediated isothermal PCR (LAMP) for the diagnosis of falciparum malaria.
Paris, Daniel H; Imwong, Mallika; Faiz, Abul M; Hasan, Mahtabuddin; Yunus, Emran Bin; Silamut, Kamolrat; Lee, Sue J; Day, Nicholas P J; Dondorp, Arjen M
2007-11-01
A recently described loop-mediated isothermal polymerase chain reaction (LAMP) for molecular detection of Plasmodium falciparum was compared with microscopy, PfHRP2-based rapid diagnostic test (RDT), and nested polymerase chain reaction (PCR) as the "gold standard" in 115 Bangladeshi in-patients with fever. DNA extraction for LAMP was conducted by conventional methods or simple heating of the sample; test results were either assessed visually or by gel electrophoresis. Conventional DNA extraction followed by gel electrophoresis had the highest agreement with the reference method (81.7%, kappa = 0.64), with a sensitivity (95% CI) of 76.1% (68.3-83.9%), comparable to RDT and microscopy, but a specificity of 89.6% (84.0-95.2%) compared with 100% for RDT and microscopy. DNA extraction by heat treatment deteriorated specificity to unacceptable levels. LAMP enables molecular diagnosis of falciparum malaria in settings with limited technical resources but will need further optimization. The results are in contrast with a higher accuracy reported in an earlier study comparing LAMP with a non-validated PCR method.
Dobhal, Shefali; Olson, Jennifer D; Arif, Mohammad; Garcia Suarez, Johnny A; Ochoa-Corona, Francisco M
2016-06-01
Rose rosette disease is a disorder associated with infection by Rose rosette virus (RRV), a pathogen of roses that causes devastating effects on most garden cultivated varieties, and the wild invasive rose especially Rosa multiflora. Reliable and sensitive detection of this disease in early phases is needed to implement proper control measures. This study assesses a single primer-set based detection method for RRV and demonstrates its application in three different chemistries: Endpoint RT-PCR, TaqMan-quantitative RT-PCR (RT-qPCR) and SYBR Green RT-qPCR with High Resolution Melting analyses. A primer set (RRV2F/2R) was designed from consensus sequences of the nucleocapsid protein gene p3 located in the RNA 3 region of RRV. The specificity of primer set RRV2F/2R was validated in silico against published GenBank sequences and in-vitro against infected plant samples and an exclusivity panel of near-neighbor and other viruses that commonly infect Rosa spp. The developed assay is sensitive with a detection limit of 1fg from infected plant tissue. Thirty rose samples from 8 different states of the United States were tested using the developed methods. The developed methods are sensitive and reliable, and can be used by diagnostic laboratories for routine testing and disease management decisions. Copyright © 2016 Elsevier B.V. All rights reserved.
Dong, Chongmei; Vincent, Kate; Sharp, Peter
2009-12-04
TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful tool for reverse genetics, combining traditional chemical mutagenesis with high-throughput PCR-based mutation detection to discover induced mutations that alter protein function. The most popular mutation detection method for TILLING is a mismatch cleavage assay using the endonuclease CelI. For this method, locus-specific PCR is essential. Most wheat genes are present as three similar sequences with high homology in exons and low homology in introns. Locus-specific primers can usually be designed in introns. However, it is sometimes difficult to design locus-specific PCR primers in a conserved region with high homology among the three homoeologous genes, or in a gene lacking introns, or if information on introns is not available. Here we describe a mutation detection method which combines High Resolution Melting (HRM) analysis of mixed PCR amplicons containing three homoeologous gene fragments and sequence analysis using Mutation Surveyor software, aimed at simultaneous detection of mutations in three homoeologous genes. We demonstrate that High Resolution Melting (HRM) analysis can be used in mutation scans in mixed PCR amplicons containing three homoeologous gene fragments. Combining HRM scanning with sequence analysis using Mutation Surveyor is sensitive enough to detect a single nucleotide mutation in the heterozygous state in a mixed PCR amplicon containing three homoeoloci. The method was tested and validated in an EMS (ethylmethane sulfonate)-treated wheat TILLING population, screening mutations in the carboxyl terminal domain of the Starch Synthase II (SSII) gene. Selected identified mutations of interest can be further analysed by cloning to confirm the mutation and determine the genomic origin of the mutation. Polyploidy is common in plants. Conserved regions of a gene often represent functional domains and have high sequence similarity between homoeologous loci. The method described here is a useful alternative to locus-specific based methods for screening mutations in conserved functional domains of homoeologous genes. This method can also be used for SNP (single nucleotide polymorphism) marker development and eco-TILLING in polyploid species.
Comparative quantification of human intestinal bacteria based on cPCR and LDR/LCR.
Tang, Zhou-Rui; Li, Kai; Zhou, Yu-Xun; Xiao, Zhen-Xian; Xiao, Jun-Hua; Huang, Rui; Gu, Guo-Hao
2012-01-21
To establish a multiple detection method based on comparative polymerase chain reaction (cPCR) and ligase detection reaction (LDR)/ligase chain reaction (LCR) to quantify the intestinal bacterial components. Comparative quantification of 16S rDNAs from different intestinal bacterial components was used to quantify multiple intestinal bacteria. The 16S rDNAs of different bacteria were amplified simultaneously by cPCR. The LDR/LCR was examined to actualize the genotyping and quantification. Two beneficial (Bifidobacterium, Lactobacillus) and three conditionally pathogenic bacteria (Enterococcus, Enterobacterium and Eubacterium) were used in this detection. With cloned standard bacterial 16S rDNAs, standard curves were prepared to validate the quantitative relations between the ratio of original concentrations of two templates and the ratio of the fluorescence signals of their final ligation products. The internal controls were added to monitor the whole detection flow. The quantity ratio between two bacteria was tested. cPCR and LDR revealed obvious linear correlations with standard DNAs, but cPCR and LCR did not. In the sample test, the distributions of the quantity ratio between each two bacterial species were obtained. There were significant differences among these distributions in the total samples. But these distributions of quantity ratio of each two bacteria remained stable among groups divided by age or sex. The detection method in this study can be used to conduct multiple intestinal bacteria genotyping and quantification, and to monitor the human intestinal health status as well.
Brooks, Matthew J.; Rajasimha, Harsha K.; Roger, Jerome E.
2011-01-01
Purpose Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived retinal transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis. Methods Retinal mRNA profiles of 21-day-old wild-type (WT) and neural retina leucine zipper knockout (Nrl−/−) mice were generated by deep sequencing, in triplicate, using Illumina GAIIx. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays. Results Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 16,014 transcripts in the retinas of WT and Nrl−/− mice with BWA workflow and 34,115 transcripts with TopHat workflow. RNA-seq data confirmed stable expression of 25 known housekeeping genes, and 12 of these were validated with qRT–PCR. RNA-seq data had a linear relationship with qRT–PCR for more than four orders of magnitude and a goodness of fit (R2) of 0.8798. Approximately 10% of the transcripts showed differential expression between the WT and Nrl−/− retina, with a fold change ≥1.5 and p value <0.05. Altered expression of 25 genes was confirmed with qRT–PCR, demonstrating the high degree of sensitivity of the RNA-seq method. Hierarchical clustering of differentially expressed genes uncovered several as yet uncharacterized genes that may contribute to retinal function. Data analysis with BWA and TopHat workflows revealed a significant overlap yet provided complementary insights in transcriptome profiling. Conclusions Our study represents the first detailed analysis of retinal transcriptomes, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions. PMID:22162623
USDA-ARS?s Scientific Manuscript database
A collaborative validation study was performed to evaluate the performance of a new U.S. Food and Drug Administration method developed for detection of the protozoan parasite, Cyclospora cayetanensis, on cilantro and raspberries. The method includes a sample preparation step in which oocysts are re...
Nageswara-Rao, Madhugiri; Kwit, Charles; Agarwal, Sujata; Patton, Mariah T; Skeen, Jordan A; Yuan, Joshua S; Manshardt, Richard M; Stewart, C Neal
2013-09-01
Genetically engineered (GE) ringspot virus-resistant papaya cultivars 'Rainbow' and 'SunUp' have been grown in Hawai'i for over 10 years. In Hawai'i, the introduction of GE papayas into regions where non-GE cultivars are grown and where feral non-GE papayas exist have been accompanied with concerns associated with transgene flow. Of particular concern is the possibility of transgenic seeds being found in non-GE papaya fruits via cross-pollination. Development of high-throughput methods to reliably detect the adventitious presence of such transgenic material would benefit both the scientific and regulatory communities. We assessed the accuracy of using conventional qualitative polymerase chain reaction (PCR) as well as real-time PCR-based assays to quantify the presence of transgenic DNA from bulk samples of non-GE papaya seeds. In this study, an optimized method of extracting high quality DNA from dry seeds of papaya was standardized. A reliable, sensitive real-time PCR method for detecting and quantifying viral coat protein (cp) transgenes in bulk seed samples utilizing the endogenous papain gene is presented. Quantification range was from 0.01 to 100 ng/μl of GE-papaya DNA template with a detection limit as low as 0.01% (10 pg). To test this system, we simulated transgene flow using known quantities of GE and non-GE DNA and determined that 0.038% (38 pg) GE papaya DNA could be detected using real-time PCR. We also validated this system by extracting DNA from known ratios of GE seeds to non-GE seeds of papaya followed by real-time PCR detection and observed a reliable detection limit of 0.4%. This method for the quick and sensitive detection of transgenes in bulked papaya seed lots using conventional as well as real-time PCR-based methods will benefit numerous stakeholders. In particular, this method could be utilized to screen selected fruits from maternal non-GE papaya trees in Hawai'i for the presence of transgenic seed at typical regulatory threshold levels. Incorporation of subtle differences in primers and probes for variations in cp worldwide should allow this method to be utilized elsewhere when and if deregulation of transgenic papaya occurs.
2013-01-01
Background Genetically engineered (GE) ringspot virus-resistant papaya cultivars ‘Rainbow’ and ‘SunUp’ have been grown in Hawai’i for over 10 years. In Hawai’i, the introduction of GE papayas into regions where non-GE cultivars are grown and where feral non-GE papayas exist have been accompanied with concerns associated with transgene flow. Of particular concern is the possibility of transgenic seeds being found in non-GE papaya fruits via cross-pollination. Development of high-throughput methods to reliably detect the adventitious presence of such transgenic material would benefit both the scientific and regulatory communities. Results We assessed the accuracy of using conventional qualitative polymerase chain reaction (PCR) as well as real-time PCR-based assays to quantify the presence of transgenic DNA from bulk samples of non-GE papaya seeds. In this study, an optimized method of extracting high quality DNA from dry seeds of papaya was standardized. A reliable, sensitive real-time PCR method for detecting and quantifying viral coat protein (cp) transgenes in bulk seed samples utilizing the endogenous papain gene is presented. Quantification range was from 0.01 to 100 ng/μl of GE-papaya DNA template with a detection limit as low as 0.01% (10 pg). To test this system, we simulated transgene flow using known quantities of GE and non-GE DNA and determined that 0.038% (38 pg) GE papaya DNA could be detected using real-time PCR. We also validated this system by extracting DNA from known ratios of GE seeds to non-GE seeds of papaya followed by real-time PCR detection and observed a reliable detection limit of 0.4%. Conclusions This method for the quick and sensitive detection of transgenes in bulked papaya seed lots using conventional as well as real-time PCR-based methods will benefit numerous stakeholders. In particular, this method could be utilized to screen selected fruits from maternal non-GE papaya trees in Hawai’i for the presence of transgenic seed at typical regulatory threshold levels. Incorporation of subtle differences in primers and probes for variations in cp worldwide should allow this method to be utilized elsewhere when and if deregulation of transgenic papaya occurs. PMID:24004548
Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Sager, Martin
2013-08-01
[Actinobacillus] muris represents along with [Pasteurella] pneumotropica the most prevalent Pasteurellaceae species isolated from the laboratory mouse. Despite the biological and economic importance of Pasteurellaceae in relation to experimental animals, no molecular based methods for the identification of [A.] muris are available. The aim of the present investigation was to develop a PCR method allowing detection and identification of [A.] muris. In this assay, a Pasteurellaceae common forward primer based on a conserved region of the 16S rRNA gene was used in conjunction with two different reverse primers specific for [A.] muris, targeting the 16S-23S internal transcribed spacer sequences. The specificity of the assay was tested against 78 reference and clinical isolates of Pasteurellaceae, including 37 strains of [A.] muris. In addition, eight other mice associated bacterial species which could pose a diagnostic problem were included. The assay showed 100% sensitivity and 97.95% specificity. Identification of the clinical isolates was validated by ITS profiling and when necessary by 16S rRNA sequencing. This multiplex PCR represents the first molecular tool able to detect [A.] muris and may become a reliable alternative to the present diagnostic methods. Copyright © 2013 Elsevier B.V. All rights reserved.
Willems, Sander; Fraiture, Marie-Alice; Deforce, Dieter; De Keersmaecker, Sigrid C J; De Loose, Marc; Ruttink, Tom; Herman, Philippe; Van Nieuwerburgh, Filip; Roosens, Nancy
2016-02-01
Because the number and diversity of genetically modified (GM) crops has significantly increased, their analysis based on real-time PCR (qPCR) methods is becoming increasingly complex and laborious. While several pioneers already investigated Next Generation Sequencing (NGS) as an alternative to qPCR, its practical use has not been assessed for routine analysis. In this study a statistical framework was developed to predict the number of NGS reads needed to detect transgene sequences, to prove their integration into the host genome and to identify the specific transgene event in a sample with known composition. This framework was validated by applying it to experimental data from food matrices composed of pure GM rice, processed GM rice (noodles) or a 10% GM/non-GM rice mixture, revealing some influential factors. Finally, feasibility of NGS for routine analysis of GM crops was investigated by applying the framework to samples commonly encountered in routine analysis of GM crops. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Paris, Daniel H; Blacksell, Stuart D; Newton, Paul N; Day, Nicholas P J
2008-12-01
We present a loop-mediated isothermal PCR assay (LAMP) targeting the groEL gene, which encodes the 60kDa heat shock protein of Orientia tsutsugamushi. Evaluation included testing of 63 samples of contemporary in vitro isolates, buffy coats and whole blood samples from patients with fever. Detection limits for LAMP were assessed by serial dilutions and quantitation by real-time PCR assay based on the same target gene: three copies/microl for linearized plasmids, 26 copies/microl for VERO cell culture isolates, 14 copies/microl for full blood samples and 41 copies/microl for clinical buffy coats. Based on a limited sample number, the LAMP assay is comparable in sensitivity with conventional nested PCR (56kDa gene), with limits of detection well below the range of known admission bacterial loads of patients with scrub typhus. This inexpensive method requires no sophisticated equipment or sample preparation, and may prove useful as a diagnostic assay in financially poor settings; however, it requires further prospective validation in the field setting.
Macarthur, Roy; Feinberg, Max; Bertheau, Yves
2010-01-01
A method is presented for estimating the size of uncertainty associated with the measurement of products derived from genetically modified organisms (GMOs). The method is based on the uncertainty profile, which is an extension, for the estimation of uncertainty, of a recent graphical statistical tool called an accuracy profile that was developed for the validation of quantitative analytical methods. The application of uncertainty profiles as an aid to decision making and assessment of fitness for purpose is also presented. Results of the measurement of the quantity of GMOs in flour by PCR-based methods collected through a number of interlaboratory studies followed the log-normal distribution. Uncertainty profiles built using the results generally give an expected range for measurement results of 50-200% of reference concentrations for materials that contain at least 1% GMO. This range is consistent with European Network of GM Laboratories and the European Union (EU) Community Reference Laboratory validation criteria and can be used as a fitness for purpose criterion for measurement methods. The effect on the enforcement of EU labeling regulations is that, in general, an individual analytical result needs to be < 0.45% to demonstrate compliance, and > 1.8% to demonstrate noncompliance with a labeling threshold of 0.9%.
Quantification of Plasmid Copy Number with Single Colour Droplet Digital PCR.
Plotka, Magdalena; Wozniak, Mateusz; Kaczorowski, Tadeusz
2017-01-01
Bacteria can be considered as biological nanofactories that manufacture a cornucopia of bioproducts most notably recombinant proteins. As such, they must perfectly match with appropriate plasmid vectors to ensure successful overexpression of target genes. Among many parameters that correlate positively with protein productivity plasmid copy number plays pivotal role. Therefore, development of new and more accurate methods to assess this critical parameter will result in optimization of expression of plasmid-encoded genes. In this study, we present a simple and highly accurate method for quantifying plasmid copy number utilizing an EvaGreen single colour, droplet digital PCR. We demonstrate the effectiveness of this method by examining the copy number of the pBR322 vector within Escherichia coli DH5α cells. The obtained results were successfully validated by real-time PCR. However, we observed a strong dependency of the plasmid copy number on the method chosen for isolation of the total DNA. We found that application of silica-membrane-based columns for DNA purification or DNA isolation with use of bead-beating, a mechanical cell disruption lead to determination of an average of 20.5 or 7.3 plasmid copies per chromosome, respectively. We found that recovery of the chromosomal DNA from purification columns was less efficient than plasmid DNA (46.5 ± 1.9% and 87.4 ± 5.5%, respectively) which may lead to observed differences in plasmid copy number. Besides, the plasmid copy number variations dependent on DNA template isolation method, we found that droplet digital PCR is a very convenient method for measuring bacterial plasmid content. Careful determination of plasmid copy number is essential for better understanding and optimization of recombinant proteins production process. Droplet digital PCR is a very precise method that allows performing thousands of individual PCR reactions in a single tube. The ddPCR does not depend on running standard curves and is a straightforward and reliable method to quantify the plasmid copy number. Therefore we believe that the ddPCR designed in this study will be widely used for any plasmid copy number calculation in the future.
Quantification of Plasmid Copy Number with Single Colour Droplet Digital PCR
Plotka, Magdalena; Wozniak, Mateusz; Kaczorowski, Tadeusz
2017-01-01
Bacteria can be considered as biological nanofactories that manufacture a cornucopia of bioproducts most notably recombinant proteins. As such, they must perfectly match with appropriate plasmid vectors to ensure successful overexpression of target genes. Among many parameters that correlate positively with protein productivity plasmid copy number plays pivotal role. Therefore, development of new and more accurate methods to assess this critical parameter will result in optimization of expression of plasmid-encoded genes. In this study, we present a simple and highly accurate method for quantifying plasmid copy number utilizing an EvaGreen single colour, droplet digital PCR. We demonstrate the effectiveness of this method by examining the copy number of the pBR322 vector within Escherichia coli DH5α cells. The obtained results were successfully validated by real-time PCR. However, we observed a strong dependency of the plasmid copy number on the method chosen for isolation of the total DNA. We found that application of silica-membrane-based columns for DNA purification or DNA isolation with use of bead-beating, a mechanical cell disruption lead to determination of an average of 20.5 or 7.3 plasmid copies per chromosome, respectively. We found that recovery of the chromosomal DNA from purification columns was less efficient than plasmid DNA (46.5 ± 1.9% and 87.4 ± 5.5%, respectively) which may lead to observed differences in plasmid copy number. Besides, the plasmid copy number variations dependent on DNA template isolation method, we found that droplet digital PCR is a very convenient method for measuring bacterial plasmid content. Careful determination of plasmid copy number is essential for better understanding and optimization of recombinant proteins production process. Droplet digital PCR is a very precise method that allows performing thousands of individual PCR reactions in a single tube. The ddPCR does not depend on running standard curves and is a straightforward and reliable method to quantify the plasmid copy number. Therefore we believe that the ddPCR designed in this study will be widely used for any plasmid copy number calculation in the future. PMID:28085908
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letant, S E; Kane, S R; Murphy, G A
2008-05-30
This note presents a comparison of Most-Probable-Number Rapid Viability (MPN-RV) PCR and traditional culture methods for the quantification of Bacillus anthracis Sterne spores in macrofoam swabs generated by the Centers for Disease Control and Prevention (CDC) for a multi-center validation study aimed at testing environmental swab processing methods for recovery, detection, and quantification of viable B. anthracis spores from surfaces. Results show that spore numbers provided by the MPN RV-PCR method were in statistical agreement with the CDC conventional culture method for all three levels of spores tested (10{sup 4}, 10{sup 2}, and 10 spores) even in the presence ofmore » dirt. In addition to detecting low levels of spores in environmental conditions, the MPN RV-PCR method is specific, and compatible with automated high-throughput sample processing and analysis protocols.« less
Mano, Junichi; Hatano, Shuko; Nagatomi, Yasuaki; Futo, Satoshi; Takabatake, Reona; Kitta, Kazumi
2018-03-01
Current genetically modified organism (GMO) detection methods allow for sensitive detection. However, a further increase in sensitivity will enable more efficient testing for large grain samples and reliable testing for processed foods. In this study, we investigated real-time PCR-based GMO detection methods using a large amount of DNA template. We selected target sequences that are commonly introduced into many kinds of GM crops, i.e., 35S promoter and nopaline synthase (NOS) terminator. This makes the newly developed method applicable to a wide range of GMOs, including some unauthorized ones. The estimated LOD of the new method was 0.005% of GM maize events; to the best of our knowledge, this method is the most sensitive among the GM maize detection methods for which the LOD was evaluated in terms of GMO content. A 10-fold increase in the DNA amount as compared with the amount used under common testing conditions gave an approximately 10-fold reduction in the LOD without PCR inhibition. Our method is applicable to various analytical samples, including processed foods. The use of other primers and fluorescence probes would permit highly sensitive detection of various recombinant DNA sequences besides the 35S promoter and NOS terminator.
Validation of Endogenous Internal Real-Time PCR Controls in Renal Tissues
Cui, Xiangqin; Zhou, Juling; Qiu, Jing; Johnson, Martin R.; Mrug, Michal
2009-01-01
Background Endogenous internal controls (‘reference’ or ‘housekeeping’ genes) are widely used in real-time PCR (RT-PCR) analyses. Their use relies on the premise of consistently stable expression across studied experimental conditions. Unfortunately, none of these controls fulfills this premise across a wide range of experimental conditions; consequently, none of them can be recommended for universal use. Methods To determine which endogenous RT-PCR controls are suitable for analyses of renal tissues altered by kidney disease, we studied the expression of 16 commonly used ‘reference genes’ in 7 mildly and 7 severely affected whole kidney tissues from a well-characterized cystic kidney disease model. Expression levels of these 16 genes, determined by TaqMan® RT-PCR analyses and Affymetrix GeneChip® arrays, were normalized and tested for overall variance and equivalence of the means. Results Both statistical approaches and both TaqMan- and GeneChip-based methods converged on 3 out of the 4 top-ranked genes (Ppia, Gapdh and Pgk1) that had the most constant expression levels across the studied phenotypes. Conclusion A combination of the top-ranked genes will provide a suitable endogenous internal control for similar studies of kidney tissues across a wide range of disease severity. PMID:19729889
Herrero, Beatriz; Vieites, Juan M; Espiñeira, Montserrat
2014-05-15
Food allergy is recognised as an important human health problem. Fish represent one of the most important causes of food hypersensitivity reaction. Small amounts of the allergen can cause severe reactions in sensitive individuals, so correct labelling is essential to ensure the protection of consumers. The objective of the present work was to develop a reliable, sensitive and specific real-time PCR method for the detection of fish and traces of fish in all kind of products included those that have undergone aggressive treatments such as high temperature or pressure. This methodology was validated simulating products likely to contain this allergen and spiking them with fish cooking water. In addition, a comparison between the performance of in-house methodology and a commercial kit, both of them based on real-time PCR, was carried out. This work is relevant because it is the first, rapid real-time PCR method developed to date for the detection of fish in processed food products. The results obtained confirm the present assay is a useful tool in detecting fish and, therefore, minimising exposure and reducing incidences of allergic reaction to fish in contaminated products. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sakai, Shinobu; Adachi, Reiko; Akiyama, Hiroshi; Teshima, Reiko
2013-06-19
A labeling system for food allergenic ingredients was established in Japan in April 2002. To monitor the labeling, the Japanese government announced official methods for detecting allergens in processed foods in November 2002. The official methods consist of quantitative screening tests using enzyme-linked immunosorbent assays (ELISAs) and qualitative confirmation tests using Western blotting or polymerase chain reactions (PCR). In addition, the Japanese government designated 10 μg protein/g food (the corresponding allergenic ingredient soluble protein weight/food weight), determined by ELISA, as the labeling threshold. To standardize the official methods, the criteria for the validation protocol were described in the official guidelines. This paper, which was presented at the Advances in Food Allergen Detection Symposium, ACS National Meeting and Expo, San Diego, CA, Spring 2012, describes the validation protocol outlined in the official Japanese guidelines, the results of interlaboratory studies for the quantitative detection method (ELISA for crustacean proteins) and the qualitative detection method (PCR for shrimp and crab DNAs), and the reliability of the detection methods.
Use of Sequenom Sample ID Plus® SNP Genotyping in Identification of FFPE Tumor Samples
Miller, Jessica K.; Buchner, Nicholas; Timms, Lee; Tam, Shirley; Luo, Xuemei; Brown, Andrew M. K.; Pasternack, Danielle; Bristow, Robert G.; Fraser, Michael; Boutros, Paul C.; McPherson, John D.
2014-01-01
Short tandem repeat (STR) analysis, such as the AmpFlSTR® Identifiler® Plus kit, is a standard, PCR-based human genotyping method used in the field of forensics. Misidentification of cell line and tissue DNA can be costly if not detected early; therefore it is necessary to have quality control measures such as STR profiling in place. A major issue in large-scale research studies involving archival formalin-fixed paraffin embedded (FFPE) tissues is that varying levels of DNA degradation can result in failure to correctly identify samples using STR genotyping. PCR amplification of STRs of several hundred base pairs is not always possible when DNA is degraded. The Sample ID Plus® panel from Sequenom allows for human DNA identification and authentication using SNP genotyping. In comparison to lengthy STR amplicons, this multiplexing PCR assay requires amplification of only 76–139 base pairs, and utilizes 47 SNPs to discriminate between individual samples. In this study, we evaluated both STR and SNP genotyping methods of sample identification, with a focus on paired FFPE tumor/normal DNA samples intended for next-generation sequencing (NGS). The ability to successfully validate the identity of FFPE samples can enable cost savings by reducing rework. PMID:24551080
Use of Sequenom sample ID Plus® SNP genotyping in identification of FFPE tumor samples.
Miller, Jessica K; Buchner, Nicholas; Timms, Lee; Tam, Shirley; Luo, Xuemei; Brown, Andrew M K; Pasternack, Danielle; Bristow, Robert G; Fraser, Michael; Boutros, Paul C; McPherson, John D
2014-01-01
Short tandem repeat (STR) analysis, such as the AmpFlSTR® Identifiler® Plus kit, is a standard, PCR-based human genotyping method used in the field of forensics. Misidentification of cell line and tissue DNA can be costly if not detected early; therefore it is necessary to have quality control measures such as STR profiling in place. A major issue in large-scale research studies involving archival formalin-fixed paraffin embedded (FFPE) tissues is that varying levels of DNA degradation can result in failure to correctly identify samples using STR genotyping. PCR amplification of STRs of several hundred base pairs is not always possible when DNA is degraded. The Sample ID Plus® panel from Sequenom allows for human DNA identification and authentication using SNP genotyping. In comparison to lengthy STR amplicons, this multiplexing PCR assay requires amplification of only 76-139 base pairs, and utilizes 47 SNPs to discriminate between individual samples. In this study, we evaluated both STR and SNP genotyping methods of sample identification, with a focus on paired FFPE tumor/normal DNA samples intended for next-generation sequencing (NGS). The ability to successfully validate the identity of FFPE samples can enable cost savings by reducing rework.
Kim, Jaai; Lim, Juntaek; Lee, Changsoo
2013-12-01
Quantitative real-time PCR (qPCR) has been widely used in recent environmental microbial ecology studies as a tool for detecting and quantifying microorganisms of interest, which aids in better understandings of the complexity of wastewater microbial communities. Although qPCR can be used to provide more specific and accurate quantification than other molecular techniques, it does have limitations that must be considered when applying it in practice. This article reviews the principle of qPCR quantification and its applications to microbial ecology studies in various wastewater treatment environments. Here we also address several limitations of qPCR-based approaches that can affect the validity of quantification data: template nucleic acid quality, nucleic acid extraction efficiency, specificity of group-specific primers and probes, amplification of nonviable DNA, gene copy number variation, and limited number of sequences in the database. Even with such limitations, qPCR is reportedly among the best methods for quantitatively investigating environmental microbial communities. The application of qPCR is and will continue to be increasingly common in studies of wastewater treatment systems. To obtain reliable analyses, however, the limitations that have often been overlooked must be carefully considered when interpreting the results. Copyright © 2013 Elsevier Inc. All rights reserved.
Vandenbussche, Frank; Lefebvre, David J; De Leeuw, Ilse; Van Borm, Steven; De Clercq, Kris
2017-08-01
The 3D and 5UTR real-time RT-PCR assays (RT-qPCR) from Callahan et al. (2002) and Reid et al. (2002) are commonly used reference methods for the detection of foot-and-mouth disease virus (FMDV). For an optimal detection of FMDV in clinical samples, it is advised to use both assays simultaneously (King et al., 2006). Recently, Vandenbussche et al. (2016) showed that the addition of 5'-tails to the FMDV-specific primers enhances the detection of FMDV in both the 3D and the 5UTR RT-qPCR assay. To validate the 3D and 5UTR RT-qPCR assays with 5'-tailed primers for diagnostic purposes, both assays were run in parallel in a triplex one-step RT-qPCR protocol with beta-actin as an internal control and synthetic RNA as an external control. We obtained low limits of detection and high linearity's, high repeatability and reproducibility, near 100% analytical specificity and >99% diagnostic accuracy for both assays. It was concluded that the 3D and 5UTR RT-qPCR assays with 5'-tailed primers are particularly suited for the detection of FMDV as well as to exclude the presence of FMDV. Copyright © 2017 Elsevier B.V. All rights reserved.
A multiplex method for detection of glucose-6-phosphate dehydrogenase (G6PD) gene mutations.
Zhang, L; Yang, Y; Liu, R; Li, Q; Yang, F; Ma, L; Liu, H; Chen, X; Yang, Z; Cui, L; He, Y
2015-12-01
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect caused by G6PD gene mutations. This study aimed to develop a cost-effective, multiplex, genotyping method for detecting common mutations in the G6PD gene. We used a SNaPshot approach to genotype multiple G6PD mutations that are common to human populations in South-East Asia. This assay is based on multiplex PCR coupled with primer extension reactions. Different G6PD gene mutations were determined by peak retention time and colors of the primer extension products. We designed PCR primers for multiplex amplification of the G6PD gene fragments and for primer extension reactions to genotype 11 G6PD mutations. DNA samples from a total of 120 unrelated G6PD-deficient individuals from the China-Myanmar border area were used to establish and validate this method. Direct sequencing of the PCR products demonstrated 100% concordance between the SNaPshot and the sequencing results. The SNaPshot method offers a specific and sensitive alternative for simultaneously interrogating multiple G6PD mutations. © 2015 John Wiley & Sons Ltd.
Collins, S; Jorgensen, F; Willis, C; Walker, J
2015-10-01
Culture remains the gold-standard for the enumeration of environmental Legionella. However, it has several drawbacks including long incubation and poor sensitivity, causing delays in response times to outbreaks of Legionnaires' disease. This study aimed to validate real-time PCR assays to quantify Legionella species (ssrA gene), Legionella pneumophila (mip gene) and Leg. pneumophila serogroup-1 (wzm gene) to support culture-based detection in a frontline public health laboratory. Each qPCR assay had 100% specificity, excellent sensitivity (5 GU/reaction) and reproducibility. Comparison of the assays to culture-based enumeration of Legionella from 200 environmental samples showed that they had a negative predictive value of 100%. Thirty eight samples were positive for Legionella species by culture and qPCR. One hundred samples were negative by both methods, whereas 62 samples were negative by culture but positive by qPCR. The average log10 increase between culture and qPCR for Legionella spp. and Leg. pneumophila was 0·72 (P = 0·0002) and 0·51 (P = 0·006), respectively. The qPCR assays can be conducted on the same 1 l water sample as culture thus can be used as a supplementary technique to screen out negative samples and allow more rapid indication of positive samples. The assay could prove informative in public health investigations to identify or rule out sources of Legionella as well as to specifically identify Leg. pneumophila serogroup 1 in a timely manner not possible with culture. © 2015 The Society for Applied Microbiology.
Jacchia, Sara; Nardini, Elena; Savini, Christian; Petrillo, Mauro; Angers-Loustau, Alexandre; Shim, Jung-Hyun; Trijatmiko, Kurniawan; Kreysa, Joachim; Mazzara, Marco
2015-02-18
In this study, we developed, optimized, and in-house validated a real-time PCR method for the event-specific detection and quantification of Golden Rice 2, a genetically modified rice with provitamin A in the grain. We optimized and evaluated the performance of the taxon (targeting rice Phospholipase D α2 gene)- and event (targeting the 3' insert-to-plant DNA junction)-specific assays that compose the method as independent modules, using haploid genome equivalents as unit of measurement. We verified the specificity of the two real-time PCR assays and determined their dynamic range, limit of quantification, limit of detection, and robustness. We also confirmed that the taxon-specific DNA sequence is present in single copy in the rice genome and verified its stability of amplification across 132 rice varieties. A relative quantification experiment evidenced the correct performance of the two assays when used in combination.
Liao, Chao; Zhao, Yong
2017-01-01
ABSTRACT This study developed RNA-based predictive models describing the survival of Vibrio parahaemolyticus in Eastern oysters (Crassostrea virginica) during storage at 0, 4, and 10°C. Postharvested oysters were inoculated with a cocktail of five V. parahaemolyticus strains and were then stored at 0, 4, and 10°C for 21 or 11 days. A real-time reverse transcription-PCR (RT-PCR) assay targeting expression of the tlh gene was used to evaluate the number of surviving V. parahaemolyticus cells, which was then used to establish primary molecular models (MMs). Before construction of the MMs, consistent expression levels of the tlh gene at 0, 4, and 10°C were confirmed, and this gene was used to monitor the survival of the total V. parahaemolyticus cells. In addition, the tdh and trh genes were used for monitoring the survival of virulent V. parahaemolyticus. Traditional models (TMs) were built based on data collected using a plate counting method. From the MMs, V. parahaemolyticus populations had decreased 0.493, 0.362, and 0.238 log10 CFU/g by the end of storage at 0, 4, and 10°C, respectively. Rates of reduction of V. parahaemolyticus shown in the TMs were 2.109, 1.579, and 0.894 log10 CFU/g for storage at 0, 4, and 10°C, respectively. Bacterial inactivation rates (IRs) estimated with the TMs (−0.245, −0.152, and −0.121 log10 CFU/day, respectively) were higher than those estimated with the MMs (−0.134, −0.0887, and −0.0732 log10 CFU/day, respectively) for storage at 0, 4, and 10°C. Higher viable V. parahaemolyticus numbers were predicted using the MMs than using the TMs. On the basis of this study, RNA-based predictive MMs are the more accurate and reliable models and can prevent false-negative results compared to TMs. IMPORTANCE One important method for validating postharvest techniques and for monitoring the behavior of V. parahaemolyticus is to establish predictive models. Unfortunately, previous predictive models established based on plate counting methods or on DNA-based PCR can underestimate or overestimate the number of surviving cells. This study developed and validated RNA-based molecular predictive models to describe the survival of V. parahaemolyticus in oysters during low-temperature storage (0, 4, and 10°C). The RNA-based predictive models show the advantage of being able to count all of the culturable, nonculturable, and stressed cells. By using primers targeting the tlh gene and pathogenesis-associated genes (tdh and trh), real-time RT-PCR can evaluate the total surviving V. parahaemolyticus population as well as differentiate the pathogenic ones from the total population. Reliable and accurate predictive models are very important for conducting risk assessment and management of pathogens in food. PMID:28087532
Liao, Chao; Zhao, Yong; Wang, Luxin
2017-03-15
This study developed RNA-based predictive models describing the survival of Vibrio parahaemolyticus in Eastern oysters ( Crassostrea virginica ) during storage at 0, 4, and 10°C. Postharvested oysters were inoculated with a cocktail of five V. parahaemolyticus strains and were then stored at 0, 4, and 10°C for 21 or 11 days. A real-time reverse transcription-PCR (RT-PCR) assay targeting expression of the tlh gene was used to evaluate the number of surviving V. parahaemolyticus cells, which was then used to establish primary molecular models (MMs). Before construction of the MMs, consistent expression levels of the tlh gene at 0, 4, and 10°C were confirmed, and this gene was used to monitor the survival of the total V. parahaemolyticus cells. In addition, the tdh and trh genes were used for monitoring the survival of virulent V. parahaemolyticus Traditional models (TMs) were built based on data collected using a plate counting method. From the MMs, V. parahaemolyticus populations had decreased 0.493, 0.362, and 0.238 log 10 CFU/g by the end of storage at 0, 4, and 10°C, respectively. Rates of reduction of V. parahaemolyticus shown in the TMs were 2.109, 1.579, and 0.894 log 10 CFU/g for storage at 0, 4, and 10°C, respectively. Bacterial inactivation rates (IRs) estimated with the TMs (-0.245, -0.152, and -0.121 log 10 CFU/day, respectively) were higher than those estimated with the MMs (-0.134, -0.0887, and -0.0732 log 10 CFU/day, respectively) for storage at 0, 4, and 10°C. Higher viable V. parahaemolyticus numbers were predicted using the MMs than using the TMs. On the basis of this study, RNA-based predictive MMs are the more accurate and reliable models and can prevent false-negative results compared to TMs. IMPORTANCE One important method for validating postharvest techniques and for monitoring the behavior of V. parahaemolyticus is to establish predictive models. Unfortunately, previous predictive models established based on plate counting methods or on DNA-based PCR can underestimate or overestimate the number of surviving cells. This study developed and validated RNA-based molecular predictive models to describe the survival of V. parahaemolyticus in oysters during low-temperature storage (0, 4, and 10°C). The RNA-based predictive models show the advantage of being able to count all of the culturable, nonculturable, and stressed cells. By using primers targeting the tlh gene and pathogenesis-associated genes ( tdh and trh ), real-time RT-PCR can evaluate the total surviving V. parahaemolyticus population as well as differentiate the pathogenic ones from the total population. Reliable and accurate predictive models are very important for conducting risk assessment and management of pathogens in food. Copyright © 2017 American Society for Microbiology.
Evaluation of the reliability of maize reference assays for GMO quantification.
Papazova, Nina; Zhang, David; Gruden, Kristina; Vojvoda, Jana; Yang, Litao; Buh Gasparic, Meti; Blejec, Andrej; Fouilloux, Stephane; De Loose, Marc; Taverniers, Isabel
2010-03-01
A reliable PCR reference assay for relative genetically modified organism (GMO) quantification must be specific for the target taxon and amplify uniformly along the commercialised varieties within the considered taxon. Different reference assays for maize (Zea mays L.) are used in official methods for GMO quantification. In this study, we evaluated the reliability of eight existing maize reference assays, four of which are used in combination with an event-specific polymerase chain reaction (PCR) assay validated and published by the Community Reference Laboratory (CRL). We analysed the nucleotide sequence variation in the target genomic regions in a broad range of transgenic and conventional varieties and lines: MON 810 varieties cultivated in Spain and conventional varieties from various geographical origins and breeding history. In addition, the reliability of the assays was evaluated based on their PCR amplification performance. A single base pair substitution, corresponding to a single nucleotide polymorphism (SNP) reported in an earlier study, was observed in the forward primer of one of the studied alcohol dehydrogenase 1 (Adh1) (70) assays in a large number of varieties. The SNP presence is consistent with a poor PCR performance observed for this assay along the tested varieties. The obtained data show that the Adh1 (70) assay used in the official CRL NK603 assay is unreliable. Based on our results from both the nucleotide stability study and the PCR performance test, we can conclude that the Adh1 (136) reference assay (T25 and Bt11 assays) as well as the tested high mobility group protein gene assay, which also form parts of CRL methods for quantification, are highly reliable. Despite the observed uniformity in the nucleotide sequence of the invertase gene assay, the PCR performance test reveals that this target sequence might occur in more than one copy. Finally, although currently not forming a part of official quantification methods, zein and SSIIb assays are found to be highly reliable in terms of nucleotide stability and PCR performance and are proposed as good alternative targets for a reference assay for maize.
Oh, Yejin; Song, Ik-Chan; Kim, Jimyung; Kwon, Gye Cheol; Koo, Sun Hoe; Kim, Seon Young
2018-05-01
We developed a pyrosequencing-based method for the quantification of CALR mutations and compared the results using Sanger sequencing, fragment length analysis (FLA), digital-droplet PCR (ddPCR), and next-generation sequencing (NGS). Method validation studies were performed using cloned plasmid controls. Samples from 24 patients with myeloproliferative neoplasms were evaluated. Among the 24 patients, 15 had CALR mutations (7 type 1, 2 type 2, and 6 other mutations). The type 1 or type 2 mutation-positive results from pyrosequencing exhibited 100% concordance with the Sanger sequencing results. One novel CALR mutation was not detected by pyrosequencing. The CALR mutation allele burdens measured by pyrosequencing were slightly lower than those measured by FLA but slightly higher than the results obtained using ddPCR. Pyrosequencing exhibited high correlations with both methods. The mutation allele burdens estimated by NGS were significantly lower than those measured by pyrosequencing. An increased CALR mutation allele burden was associated with overt primary myelofibrosis. Patients with >70% mutation allele burdens in myeloid cells had a significantly longer time from diagnosis (P = 0.007), more bone marrow fibrosis (P = 0.010), and lower hemoglobin (P = 0.007). Pyrosequencing was a useful rapid sequencing method to determine the burden of CALR mutations. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Jianchang; Li, Rui; Hu, Lianxia; Sun, Xiaoxia; Wang, Jinfeng; Li, Jing
2016-02-16
Food-borne disease caused by Salmonella has long been, and continues to be, an important global public health problem, necessitating rapid and accurate detection of Salmonella in food. Real time PCR is the most recently developed approach for Salmonella detection. Single primer isothermal amplification (SPIA), a novel gene amplification technique, has emerged as an attractive microbiological testing method. SPIA is performed under a constant temperature, eliminating the need for an expensive thermo-cycler. In addition, SPIA reactions can be accomplished in 30 min, faster than real time PCR that usually takes over 2h. We developed a quantitative fluorescence SPIA-based method for the detection of Salmonella. Using Salmonella Typhimurium genomic DNA as template and a primer targeting Salmonella invA gene, we showed the detection limit of SPIA was 2.0 × 10(1)fg DNA. Its successful amplification of different serotypic Salmonella genomic DNA but not non-Salmonella bacterial DNA demonstrated the specificity of SPIA. Furthermore, this method was validated with artificially contaminated beef. In conclusion, we showed high sensitivity and specificity of SPIA in the detection of Salmonella, comparable to real time PCR. In addition, SPIA is faster and more cost-effective (non-use of expensive cyclers), making it a potential alternative for field detection of Salmonella in resource-limited settings that are commonly encountered in developing countries. Copyright © 2015 Elsevier B.V. All rights reserved.
Determination of butter adulteration with margarine using Raman spectroscopy.
Uysal, Reyhan Selin; Boyaci, Ismail Hakki; Genis, Hüseyin Efe; Tamer, Ugur
2013-12-15
In this study, adulteration of butter with margarine was analysed using Raman spectroscopy combined with chemometric methods (principal component analysis (PCA), principal component regression (PCR), partial least squares (PLS)) and artificial neural networks (ANNs). Different butter and margarine samples were mixed at various concentrations ranging from 0% to 100% w/w. PCA analysis was applied for the classification of butters, margarines and mixtures. PCR, PLS and ANN were used for the detection of adulteration ratios of butter. Models were created using a calibration data set and developed models were evaluated using a validation data set. The coefficient of determination (R(2)) values between actual and predicted values obtained for PCR, PLS and ANN for the validation data set were 0.968, 0.987 and 0.978, respectively. In conclusion, a combination of Raman spectroscopy with chemometrics and ANN methods can be applied for testing butter adulteration. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bu, Minqiang; Perch-Nielsen, Ivan R.; Sørensen, Karen S.; Skov, Julia; Sun, Yi; Duong Bang, Dang; Pedersen, Michael E.; Hansen, Mikkel F.; Wolff, Anders
2013-07-01
We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature-dependent fluorescence signal from Rhodamine B. The method was validated with the PCR amplification of mecA gene (162 bp) from methicillin-resistant Staphylococcus aureus bacterium (MRSA), where the time for 30 cycles was reduced from 50 min (without over- and undershooting) to 20 min.
High-throughput real-time quantitative reverse transcription PCR.
Bookout, Angie L; Cummins, Carolyn L; Mangelsdorf, David J; Pesola, Jean M; Kramer, Martha F
2006-02-01
Extensive detail on the application of the real-time quantitative polymerase chain reaction (QPCR) for the analysis of gene expression is provided in this unit. The protocols are designed for high-throughput, 384-well-format instruments, such as the Applied Biosystems 7900HT, but may be modified to suit any real-time PCR instrument. QPCR primer and probe design and validation are discussed, and three relative quantitation methods are described: the standard curve method, the efficiency-corrected DeltaCt method, and the comparative cycle time, or DeltaDeltaCt method. In addition, a method is provided for absolute quantification of RNA in unknown samples. RNA standards are subjected to RT-PCR in the same manner as the experimental samples, thus accounting for the reaction efficiencies of both procedures. This protocol describes the production and quantitation of synthetic RNA molecules for real-time and non-real-time RT-PCR applications.
Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui
2016-10-01
Eucalyptus dieback disease, caused by Cylindrocladium scoparium , has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium . The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.
Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui
2016-01-01
Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products. PMID:27721691
Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi
2011-01-01
To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize.
Tipton, John; Hooten, Mevin B.; Goring, Simon
2017-01-01
Scientific records of temperature and precipitation have been kept for several hundred years, but for many areas, only a shorter record exists. To understand climate change, there is a need for rigorous statistical reconstructions of the paleoclimate using proxy data. Paleoclimate proxy data are often sparse, noisy, indirect measurements of the climate process of interest, making each proxy uniquely challenging to model statistically. We reconstruct spatially explicit temperature surfaces from sparse and noisy measurements recorded at historical United States military forts and other observer stations from 1820 to 1894. One common method for reconstructing the paleoclimate from proxy data is principal component regression (PCR). With PCR, one learns a statistical relationship between the paleoclimate proxy data and a set of climate observations that are used as patterns for potential reconstruction scenarios. We explore PCR in a Bayesian hierarchical framework, extending classical PCR in a variety of ways. First, we model the latent principal components probabilistically, accounting for measurement error in the observational data. Next, we extend our method to better accommodate outliers that occur in the proxy data. Finally, we explore alternatives to the truncation of lower-order principal components using different regularization techniques. One fundamental challenge in paleoclimate reconstruction efforts is the lack of out-of-sample data for predictive validation. Cross-validation is of potential value, but is computationally expensive and potentially sensitive to outliers in sparse data scenarios. To overcome the limitations that a lack of out-of-sample records presents, we test our methods using a simulation study, applying proper scoring rules including a computationally efficient approximation to leave-one-out cross-validation using the log score to validate model performance. The result of our analysis is a spatially explicit reconstruction of spatio-temporal temperature from a very sparse historical record.
van Soest, Johan; Meldolesi, Elisa; van Stiphout, Ruud; Gatta, Roberto; Damiani, Andrea; Valentini, Vincenzo; Lambin, Philippe; Dekker, Andre
2017-09-01
Multiple models have been developed to predict pathologic complete response (pCR) in locally advanced rectal cancer patients. Unfortunately, validation of these models normally omit the implications of cohort differences on prediction model performance. In this work, we will perform a prospective validation of three pCR models, including information whether this validation will target transferability or reproducibility (cohort differences) of the given models. We applied a novel methodology, the cohort differences model, to predict whether a patient belongs to the training or to the validation cohort. If the cohort differences model performs well, it would suggest a large difference in cohort characteristics meaning we would validate the transferability of the model rather than reproducibility. We tested our method in a prospective validation of three existing models for pCR prediction in 154 patients. Our results showed a large difference between training and validation cohort for one of the three tested models [Area under the Receiver Operating Curve (AUC) cohort differences model: 0.85], signaling the validation leans towards transferability. Two out of three models had a lower AUC for validation (0.66 and 0.58), one model showed a higher AUC in the validation cohort (0.70). We have successfully applied a new methodology in the validation of three prediction models, which allows us to indicate if a validation targeted transferability (large differences between training/validation cohort) or reproducibility (small cohort differences). © 2017 American Association of Physicists in Medicine.
Marín, M-J; Figuero, E; González, I; O'Connor, A; Diz, P; Álvarez, M; Herrera, D; Sanz, M
2016-05-01
The prevalence and amounts of periodontal pathogens detected in bacteraemia samples after tooth brushing-induced by means of four diagnostic technique, three based on culture and one in a molecular-based technique, have been compared in this study. Blood samples were collected from thirty-six subjects with different periodontal status (17 were healthy, 10 with gingivitis and 9 with periodontitis) at baseline and 2 minutes after tooth brushing. Each sample was analyzed by three culture-based methods [direct anaerobic culturing (DAC), hemo-culture (BACTEC), and lysis-centrifugation (LC)] and one molecular-based technique [quantitative polymerase chain reaction (qPCR)]. With culture any bacterial isolate was detected and quantified, while with qPCR only Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were detected and quantified. Descriptive analyses, ANOVA and Chi-squared tests, were performed. Neither BACTEC nor qPCR detected any type of bacteria in the blood samples. Only LC (2.7%) and DAC (8.3%) detected bacteraemia, although not in the same patients. Fusobacterium nucleatum was the most frequently detected bacterial species. The disparity in the results when the same samples were analyzed with four different microbiological detection methods highlights the need for a proper validation of the methodology to detect periodontal pathogens in bacteraemia samples, mainly when the presence of periodontal pathogens in blood samples after tooth brushing was very seldom.
New molecular settings to support in vivo anti-malarial assays.
Bahamontes-Rosa, Noemí; Alejandre, Ane Rodriguez; Gomez, Vanesa; Viera, Sara; Gomez-Lorenzo, María G; Sanz-Alonso, Laura María; Mendoza-Losana, Alfonso
2016-03-08
Quantitative real-time PCR (qPCR) is now commonly used as a method to confirm diagnosis of malaria and to differentiate recrudescence from re-infection, especially in clinical trials and in reference laboratories where precise quantification is critical. Although anti-malarial drug discovery is based on in vivo murine efficacy models, use of molecular analysis has been limited. The aim of this study was to develop qPCR as a valid methodology to support pre-clinical anti-malarial models by using filter papers to maintain material for qPCR and to compare this with traditional methods. FTA technology (Whatman) is a rapid and safe method for extracting nucleic acids from blood. Peripheral blood samples from mice infected with Plasmodium berghei, P. yoelii, or P. falciparum were kept as frozen samples or as spots on FTA cards. The extracted genetic material from both types of samples was assessed for quantification by qPCR using sets of specific primers specifically designed for Plasmodium 18S rRNA, LDH, and CytB genes. The optimal conditions for nucleic acid extraction from FTA cards and qPCR amplification were set up, and were confirmed to be suitable for parasite quantification using DNA as template after storage at room temperature for as long as 26 months in the case of P. berghei samples and 52 months for P. falciparum and P. yoelii. The quality of DNA extracted from the FTA cards for gene sequencing and microsatellite amplification was also assessed. This is the first study to report the suitability of FTA cards and qPCR assay to quantify parasite load in samples from in vivo efficacy models to support the drug discovery process.
Le Bourhis, Anne-Gaëlle; Saunier, Katiana; Doré, Joël; Carlier, Jean-Philippe; Chamba, Jean-François; Popoff, Michel-Robert; Tholozan, Jean-Luc
2005-01-01
A nested-PCR temporal temperature gradient gel electrophoresis (TTGE) approach was developed for the detection of bacteria belonging to phylogenetic cluster I of the genus Clostridium (the largest clostridial group, which represents 25% of the currently cultured clostridial species) in cheese suspected of late blowing. Primers were designed based on the 16S rRNA gene sequence, and the specificity was confirmed in PCRs performed with DNAs from cluster I and non-cluster I species as the templates. TTGE profiles of the PCR products, comprising the V5-V6 region of the 16S rRNA gene, allowed us to distinguish the majority of cluster I species. PCR-TTGE was applied to analyze commercial cheeses with defects. All cheeses gave a signal after nested PCR, and on the basis of band comigration with TTGE profiles of reference strains, all the bands could be assigned to a clostridial species. The direct identification of Clostridium spp. was confirmed by sequencing of excised bands. C. tyrobutyricum and C. beijerinckii contaminated 15 and 14 of the 20 cheese samples tested, respectively, and C. butyricum and C. sporogenes were detected in one cheese sample. Most-probable-number counts and volatile fatty acid were determined for comparison purposes. Results obtained were in agreement, but only two species, C. tyrobutyricum and C. sporogenes, could be isolated by the plating method. In all cheeses with a high amount of butyric acid (>100 mg/100 g), the presence of C. tyrobutyricum DNA was confirmed by PCR-TTGE, suggesting the involvement of this species in butyric acid fermentation. These results demonstrated the efficacy of the PCR-TTGE method to identify Clostridium in cheeses. The sensitivity of the method was estimated to be 100 CFU/g. PMID:15640166
Gordon, Catherine A; Acosta, Luz P; Gobert, Geoffrey N; Olveda, Remigio M; Ross, Allen G; Williams, Gail M; Gray, Darren J; Harn, Donald; Li, Yuesheng; McManus, Donald P
2015-01-01
The Philippines has a population of approximately 103 million people, of which 6.7 million live in schistosomiasis-endemic areas with 1.8 million people being at risk of infection with Schistosoma japonicum. Although the country-wide prevalence of schistosomiasis japonica in the Philippines is relatively low, the prevalence of schistosomiasis can be high, approaching 65% in some endemic areas. Of the currently available microscopy-based diagnostic techniques for detecting schistosome infections in the Philippines and elsewhere, most exhibit varying diagnostic performances, with the Kato-Katz (KK) method having particularly poor sensitivity for detecting low intensity infections. This suggests that the actual prevalence of schistosomiasis japonica may be much higher than previous reports have indicated. Six barangay (villages) were selected to determine the prevalence of S. japonicum in humans in the municipality of Palapag, Northern Samar. Fecal samples were collected from 560 humans and examined by the KK method and a validated real-time PCR (qPCR) assay. A high S. japonicum prevalence (90.2%) was revealed using qPCR whereas the KK method indicated a lower prevalence (22.9%). The geometric mean eggs per gram (GMEPG) determined by the qPCR was 36.5 and 11.5 by the KK. These results, particularly those obtained by the qPCR, indicate that the prevalence of schistosomiasis in this region of the Philippines is much higher than historically reported. Despite being more expensive, qPCR can complement the KK procedure, particularly for surveillance and monitoring of areas where extensive schistosomiasis control has led to low prevalence and intensity infections and where schistosomiasis elimination is on the horizon, as for example in southern China.
Performance of PCR-based and Bioluminescent assays for mycoplasma detection.
Falagan-Lotsch, Priscila; Lopes, Talíria Silva; Ferreira, Nívea; Balthazar, Nathália; Monteiro, Antônio M; Borojevic, Radovan; Granjeiro, José Mauro
2015-11-01
Contaminated eukaryotic cell cultures are frequently responsible for unreliable results. Regulatory entities request that cell cultures must be mycoplasma-free. Mycoplasma contamination remains a significant problem for cell cultures and may have an impact on biological analysis since they affect many cell parameters. The gold standard microbiological assay for mycoplasma detection involves laborious and time-consuming protocols. PCR-based and Bioluminescent assays have been considered for routine cell culture screening in research laboratories since they are fast, easy and sensitive. Thus, the aim of this work is to compare the performance of two popular commercial assays, PCR-based and Bioluminescent assays, by assessing the level of mycoplasma contamination in cell cultures from Rio de Janeiro Cell Bank (RJCB) and also from customers' laboratories. The results obtained by both performed assays were confirmed by scanning electron microscopy. In addition, we evaluated the limit of detection of the PCR kit under our laboratory conditions and the storage effects on mycoplasma detection in frozen cell culture supernatants. The performance of both assays for mycoplasma detection was not significantly different and they showed very good agreement. The Bioluminescent assay for mycoplasma detection was slightly more dependable than PCR-based due to the lack of inconclusive results produced by the first technique, especially considering the ability to detect mycoplasma contamination in frozen cell culture supernatants. However, cell lines should be precultured for four days or more without antibiotics to obtain safe results. On the other hand, a false negative result was obtained by using this biochemical approach. The implementation of fast and reliable mycoplasma testing methods is an important technical and regulatory issue and PCR-based and Bioluminescent assays may be good candidates. However, validation studies are needed. Copyright © 2015 Elsevier B.V. All rights reserved.
Zoutman, Willem H; Nell, Rogier J; Versluis, Mieke; van Steenderen, Debby; Lalai, Rajshri N; Out-Luiting, Jacoba J; de Lange, Mark J; Vermeer, Maarten H; Langerak, Anton W; van der Velden, Pieter A
2017-03-01
Quantifying T cells accurately in a variety of tissues of benign, inflammatory, or malignant origin can be of great importance in a variety of clinical applications. Flow cytometry and immunohistochemistry are considered to be gold-standard methods for T-cell quantification. However, these methods require fresh, frozen, or fixated cells and tissue of a certain quality. In addition, conventional and droplet digital PCR (ddPCR), whether followed by deep sequencing techniques, have been used to elucidate T-cell content by focusing on rearranged T-cell receptor (TCR) genes. These approaches typically target the whole TCR repertoire, thereby supplying additional information about TCR use. We alternatively developed and validated two novel generic single duplex ddPCR assays to quantify T cells accurately by measuring loss of specific germline TCR loci and compared them with flow cytometry-based quantification. These assays target sequences between the Dδ2 and Dδ3 genes (TRD locus) and Dβ1 and Jβ1.1 genes (TRB locus) that become deleted systematically early during lymphoid differentiation. Because these ddPCR assays require small amounts of DNA instead of freshly isolated, frozen, or fixated material, initially unanalyzable (scarce) specimens can be assayed from now on, supplying valuable information about T-cell content. Our ddPCR method provides a novel and sensitive way for quantifying T cells relatively fast, accurate, and independent of the cellular context. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
PMA-PhyloChip DNA Microarray to Elucidate Viable Microbial Community Structure
NASA Technical Reports Server (NTRS)
Venkateswaran, Kasthuri J.; Stam, Christina N.; Andersen, Gary L.; DeSantis, Todd
2011-01-01
Since the Viking missions in the mid-1970s, traditional culture-based methods have been used for microbial enumeration by various NASA programs. Viable microbes are of particular concern for spacecraft cleanliness, for forward contamination of extraterrestrial bodies (proliferation of microbes), and for crew health/safety (viable pathogenic microbes). However, a "true" estimation of viable microbial population and differentiation from their dead cells using the most sensitive molecular methods is a challenge, because of the stability of DNA from dead cells. The goal of this research is to evaluate a rapid and sensitive microbial detection concept that will selectively estimate viable microbes. Nucleic acid amplification approaches such as the polymerase chain reaction (PCR) have shown promise for reducing time to detection for a wide range of applications. The proposed method is based on the use of a fluorescent DNA intercalating agent, propidium monoazide (PMA), which can only penetrate the membrane of dead cells. The PMA-quenched reaction mixtures can be screened, where only the DNA from live cells will be available for subsequent PCR reaction and microarray detection, and be identified as part of the viable microbial community. An additional advantage of the proposed rapid method is that it will detect viable microbes and differentiate from dead cells in only a few hours, as opposed to less comprehensive culture-based assays, which take days to complete. This novel combination approach is called the PMA-Microarray method. DNA intercalating agents such as PMA have previously been used to selectively distinguish between viable and dead bacterial cells. Once in the cell, the dye intercalates with the DNA and, upon photolysis under visible light, produces stable DNA adducts. DNA cross-linked in this way is unavailable for PCR. Environmental samples suspected of containing a mixture of live and dead microbial cells/spores will be treated with PMA, and then incubated in the dark. Thereafter, the sample is exposed to visible light for five minutes, so that the DNA from dead cells will be cross-linked. Following this PMA treatment step, the sample is concentrated by centrifugation and washed (to remove excessive PMA) before DNA is extracted. The 16S rRNA gene fragments will be amplified by PCR to screen the total microbial community using PhyloChip DNA microarray analysis. This approach will detect only the viable microbial community since the PMA intercalated DNA from dead cells would be unavailable for PCR amplification. The total detection time including PCR reaction for low biomass samples will be a few hours. Numerous markets may use this technology. The food industry uses spore detection to validate new alternative food processing technologies, sterility, and quality. Pharmaceutical and medical equipment companies also detect spores as a marker for sterility. This system can be used for validating sterilization processes, water treatment systems, and in various public health and homeland security applications.
USDA-ARS?s Scientific Manuscript database
Optical detection of bacteria has been approached in recent years as a bacteria detection method that can counter time restraints of traditional plating or the high reoccurring cost of real-time polymerase chain reaction (RT-PCR). The goal of optical detection is to identify bacteria with spectral s...
Hoffmann, B.; Freuling, C. M.; Wakeley, P. R.; Rasmussen, T. B.; Leech, S.; Fooks, A. R.; Beer, M.; Müller, T.
2010-01-01
To improve the diagnosis of classical rabies virus with molecular methods, a validated, ready-to-use, real-time reverse transcription-PCR (RT-PCR) assay was developed. In a first step, primers and 6-carboxyfluorescien-labeled TaqMan probes specific for rabies virus were selected from the consensus sequence of the nucleoprotein gene of 203 different rabies virus sequences derived from GenBank. The selected primer-probe combination was highly specific and sensitive. During validation using a sample set of rabies virus strains from the virus archives of the Friedrich-Loeffler-Institut (FLI; Germany), the Veterinary Laboratories Agency (VLA; United Kingdom), and the DTU National Veterinary Institute (Lindholm, Denmark), covering the global diversity of rabies virus lineages, it was shown that both the newly developed assay and a previously described one had some detection failures. This was overcome by a combined assay that detected all samples as positive. In addition, the introduction of labeled positive controls (LPC) increased the diagnostic safety of the single as well as the combined assay. Based on the newly developed, alternative assay for the detection of rabies virus and the application of LPCs, an improved diagnostic sensitivity and reliability can be ascertained for postmortem and intra vitam real-time RT-PCR analyses in rabies reference laboratories. PMID:20739489
Hoffmann, B; Freuling, C M; Wakeley, P R; Rasmussen, T B; Leech, S; Fooks, A R; Beer, M; Müller, T
2010-11-01
To improve the diagnosis of classical rabies virus with molecular methods, a validated, ready-to-use, real-time reverse transcription-PCR (RT-PCR) assay was developed. In a first step, primers and 6-carboxyfluorescien-labeled TaqMan probes specific for rabies virus were selected from the consensus sequence of the nucleoprotein gene of 203 different rabies virus sequences derived from GenBank. The selected primer-probe combination was highly specific and sensitive. During validation using a sample set of rabies virus strains from the virus archives of the Friedrich-Loeffler-Institut (FLI; Germany), the Veterinary Laboratories Agency (VLA; United Kingdom), and the DTU National Veterinary Institute (Lindholm, Denmark), covering the global diversity of rabies virus lineages, it was shown that both the newly developed assay and a previously described one had some detection failures. This was overcome by a combined assay that detected all samples as positive. In addition, the introduction of labeled positive controls (LPC) increased the diagnostic safety of the single as well as the combined assay. Based on the newly developed, alternative assay for the detection of rabies virus and the application of LPCs, an improved diagnostic sensitivity and reliability can be ascertained for postmortem and intra vitam real-time RT-PCR analyses in rabies reference laboratories.
Contagious equine metritis: artificial reproduction changes the epidemiologic paradigm.
Schulman, Martin Lance; May, Catherine Edith; Keys, Bronwyn; Guthrie, Alan John
2013-11-29
Recent CEM outbreak reports reflect a novel epidemiologic manifestation with a markedly different risk association for transmission via artificial reproduction and subsequent to inadvertent importation of unapparent carrier stallions. Artificial breeding has an increased association with horizontal or fomite-associated transmission. Reported risk factors include inadequate biosecurity protocols at centralised breeding facilities associated with stallion management and methods of semen collection, processing and transport. Detection of carriers is based on traditional bacteriology from genital swabs and despite limitations inherent to Taylorella equigenitalis is currently the gold standard applied in all international trade and movement protocols. These limitations are reported to be overcome by PCR assays improving diagnostic sensitivity and specificity, practicality, turn-around times, through-put and cost efficacy. Molecular methods have increased understanding of the Taylorelleae, facilitate epidemiologic surveillance and outbreak control strategies. Validation and international regulatory acceptance of a robust PCR-based assay and the undefined risks in association with cryopreserved semen and embryos are future areas warranting further investigation. Copyright © 2013 Elsevier B.V. All rights reserved.
Joelsson, Adam C; Brown, Ashley S; Puri, Amrita; Keough, Martin P; Gaudioso, Zara E; Siciliano, Nicholas A; Snook, Adam E
2015-01-01
Veriflow® Listeria monocytogenes (LM) is a molecular based assay for the presumptive detection of Listeria monocytogenes from environmental surfaces, dairy, and ready-to-eat (RTE) food matrixes (hot dogs and deli meat). The assay utilizes a PCR detection method coupled with a rapid, visual, flow-based assay that develops in 3 min post PCR amplification and requires only 24 h of enrichment for maximum sensitivity. The Veriflow LM system eliminates the need for sample purification, gel electrophoresis, or fluorophore-based detection of target amplification, and does not require complex data analysis. This Performance Tested Method(SM) validation study demonstrated the ability of the Veriflow LM method to detect low levels of artificially inoculated L. monocytogenes in seven distinct environmental and food matrixes. In each unpaired reference comparison study, probability of detection analysis indicated no significant difference between the Veriflow LM method and the U.S. Department of Agriculture, Food Safety and Inspection Service Microbiology Laboratory Guidebook 8.08 or AOAC 993.12 reference method. Fifty strains of L. monocytogenes were detected in the inclusivity study, while 39 nonspecific organisms were undetected in the exclusivity study. The study results show that Veriflow LM is a sensitive, selective, and robust assay for the presumptive detection of L. monocytogenes sampled from environmental, dairy, or RTE (hot dogs and deli meat) food matrixes.
Farr, Ryan J; Januszewski, Andrzej S; Joglekar, Mugdha V; Liang, Helena; McAulley, Annie K; Hewitt, Alex W; Thomas, Helen E; Loudovaris, Tom; Kay, Thomas W H; Jenkins, Alicia; Hardikar, Anandwardhan A
2015-06-02
MicroRNAs are now increasingly recognized as biomarkers of disease progression. Several quantitative real-time PCR (qPCR) platforms have been developed to determine the relative levels of microRNAs in biological fluids. We systematically compared the detection of cellular and circulating microRNA using a standard 96-well platform, a high-content microfluidics platform and two ultra-high content platforms. We used extensive analytical tools to compute inter- and intra-run variability and concordance measured using fidelity scoring, coefficient of variation and cluster analysis. We carried out unprejudiced next generation sequencing to identify a microRNA signature for Diabetic Retinopathy (DR) and systematically assessed the validation of this signature on clinical samples using each of the above four qPCR platforms. The results indicate that sensitivity to measure low copy number microRNAs is inversely related to qPCR reaction volume and that the choice of platform for microRNA biomarker validation should be made based on the abundance of miRNAs of interest.
An improved method for detecting circulating microRNAs with S-Poly(T) Plus real-time PCR
Niu, Yanqin; Zhang, Limin; Qiu, Huiling; Wu, Yike; Wang, Zhiwei; Zai, Yujia; Liu, Lin; Qu, Junle; Kang, Kang; Gou, Deming
2015-01-01
We herein describe a simple, sensitive and specific method for analysis of circulating microRNAs (miRNA), termed S-Poly(T) Plus real-time PCR assay. This new method is based on our previously developed S-Poly(T) method, in which a unique S-Poly(T) primer is used during reverse-transcription to increase sensitivity and specificity. Further increased sensitivity and simplicity of S-Poly(T) Plus, in comparison with the S-Poly(T) method, were achieved by a single-step, multiple-stage reaction, where RNAs were polyadenylated and reverse-transcribed at the same time. The sensitivity of circulating miRNA detection was further improved by a modified method of total RNA isolation from serum/plasma, S/P miRsol, in which glycogen was used to increase the RNA yield. We validated our methods by quantifying miRNA expression profiles in the sera of the patients with pulmonary arterial hypertension associated with congenital heart disease. In conclusion, we developed a simple, sensitive, and specific method for detecting circulating miRNAs that allows the measurement of 266 miRNAs from 100 μl of serum or plasma. This method presents a promising tool for basic miRNA research and clinical diagnosis of human diseases based on miRNA biomarkers. PMID:26459910
Ruecker, Norma J.; Hoffman, Rebecca M.; Chalmers, Rachel M.; Neumann, Norman F.
2011-01-01
Molecular methods incorporating nested PCR-restriction fragment length polymorphism (RFLP) analysis of the 18S rRNA gene of Cryptosporidium species were validated to assess performance based on limit of detection (LoD) and for detecting and resolving mixtures of species and genotypes within a single sample. The 95% LoD was determined for seven species (Cryptosporidium hominis, C. parvum, C. felis, C. meleagridis, C. ubiquitum, C. muris, and C. andersoni) and ranged from 7 to 11 plasmid template copies with overlapping 95% confidence limits. The LoD values for genomic DNA from oocysts on microscope slides were 7 and 10 template copies for C. andersoni and C. parvum, respectively. The repetitive nested PCR-RFLP slide protocol had an LoD of 4 oocysts per slide. When templates of two species were mixed in equal ratios in the nested PCR-RFLP reaction mixture, there was no amplification bias toward one species over another. At high ratios of template mixtures (>1:10), there was a reduction or loss of detection of the less abundant species by RFLP analysis, most likely due to heteroduplex formation in the later cycles of the PCR. Replicate nested PCR was successful at resolving many mixtures of Cryptosporidium at template concentrations near or below the LoD. The cloning of nested PCR products resulted in 17% of the cloned sequences being recombinants of the two original templates. Limiting-dilution nested PCR followed by the sequencing of PCR products resulted in no sequence anomalies, suggesting that this method is an effective and accurate way to study the species diversity of Cryptosporidium, particularly for environmental water samples, in which mixtures of parasites are common. PMID:21498746
Gyawali, P; Sidhu, J P S; Ahmed, W; Jagals, P; Toze, S
2017-06-01
Accurate quantitative measurement of viable hookworm ova from environmental samples is the key to controlling hookworm re-infections in the endemic regions. In this study, the accuracy of three quantitative detection methods [culture-based, vital stain and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR)] was evaluated by enumerating 1,000 ± 50 Ancylostoma caninum ova in the laboratory. The culture-based method was able to quantify an average of 397 ± 59 viable hookworm ova. Similarly, vital stain and PMA-qPCR methods quantified 644 ± 87 and 587 ± 91 viable ova, respectively. The numbers of viable ova estimated by the culture-based method were significantly (P < 0.05) lower than vital stain and PMA-qPCR methods. Therefore, both PMA-qPCR and vital stain methods appear to be suitable for the quantitative detection of viable hookworm ova. However, PMA-qPCR would be preferable over the vital stain method in scenarios where ova speciation is needed.
Lauerman, Lloyd H
2004-12-01
Since the discovery of the polymerase chain reaction (PCR) 20 years ago, an avalanche of scientific publications have reported major developments and changes in specialized equipment, reagents, sample preparation, computer programs and techniques, generated through business, government and university research. The requirement for genetic sequences for primer selection and validation has been greatly facilitated by the development of new sequencing techniques, machines and computer programs. Genetic libraries, such as GenBank, EMBL and DDBJ continue to accumulate a wealth of genetic sequence information for the development and validation of molecular-based diagnostic procedures concerning human and veterinary disease agents. The mechanization of various aspects of the PCR assay, such as robotics, microfluidics and nanotechnology, has made it possible for the rapid advancement of new procedures. Real-time PCR, DNA microarray and DNA chips utilize these newer techniques in conjunction with computer and computer programs. Instruments for hand-held PCR assays are being developed. The PCR and reverse transcription-PCR (RT-PCR) assays have greatly accelerated the speed and accuracy of diagnoses of human and animal disease, especially of the infectious agents that are difficult to isolate or demonstrate. The PCR has made it possible to genetically characterize a microbial isolate inexpensively and rapidly for identification, typing and epidemiological comparison.
Nicoś, M; Krawczyk, P; Wojas-Krawczyk, K; Bożyk, A; Jarosz, B; Sawicki, M; Trojanowski, T; Milanowski, J
2017-12-01
RT-PCR technique has showed a promising value as pre-screening method for detection of mRNA containing abnormal ALK sequences, but its sensitivity and specificity is still discussable. Previously, we determined the incidence of ALK rearrangement in CNS metastases of NSCLC using IHC and FISH methods. We evaluated ALK gene rearrangement using two-step RT-PCR method with EML4-ALK Fusion Gene Detection Kit (Entrogen, USA). The studied group included 145 patients (45 females, 100 males) with CNS metastases of NSCLC and was heterogeneous in terms of histology and smoking status. 21% of CNS metastases of NSCLC (30/145) showed presence of mRNA containing abnormal ALK sequences. FISH and IHC tests confirmed the presence of ALK gene rearrangement and expression of ALK abnormal protein in seven patients with positive result of RT-PCR analysis (4.8% of all patients, 20% of RT-PCR positive patients). RT-PCR method compared to FISH analysis achieved 100% of sensitivity and only 82.7% of specificity. IHC method compared to FISH method indicated 100% of sensitivity and 97.8% of specificity. In comparison to IHC, RT-PCR showed identical sensitivity with high number of false positive results. Utility of RT-PCR technique in screening of ALK abnormalities and in qualification patients for molecularly targeted therapies needs further validation.
Li, Xiuying; Yang, Qiwei; Bai, Jinping; Xuan, Yali; Wang, Yimin
2015-01-01
Normalization to a reference gene is the method of choice for quantitative reverse transcription-PCR (RT-qPCR) analysis. The stability of reference genes is critical for accurate experimental results and conclusions. We have evaluated the expression stability of eight commonly used reference genes found in four different human mesenchymal stem cells (MSC). Using geNorm, NormFinder and BestKeeper algorithms, we show that beta-2-microglobulin and peptidyl-prolylisomerase A were the optimal reference genes for normalizing RT-qPCR data obtained from MSC, whereas the TATA box binding protein was not suitable due to its extensive variability in expression. Our findings emphasize the significance of validating reference genes for qPCR analyses. We offer a short list of reference genes to use for normalization and recommend some commercially-available software programs as a rapid approach to validate reference genes. We also demonstrate that the two reference genes, β-actin and glyceraldehyde-3-phosphate dehydrogenase, are frequently used are not always successful in many cases.
Gene expression studies of reference genes for quantitative real-time PCR: an overview in insects.
Shakeel, Muhammad; Rodriguez, Alicia; Tahir, Urfa Bin; Jin, Fengliang
2018-02-01
Whenever gene expression is being examined, it is essential that a normalization process is carried out to eliminate non-biological variations. The use of reference genes, such as glyceraldehyde-3-phosphate dehydrogenase, actin, and ribosomal protein genes, is the usual method of choice for normalizing gene expression. Although reference genes are used to normalize target gene expression, a major problem is that the stability of these genes differs among tissues, developmental stages, species, and responses to abiotic factors. Therefore, the use and validation of multiple reference genes are required. This review discusses the reasons that why RT-qPCR has become the preferred method for validating results of gene expression profiles, the use of specific and non-specific dyes and the importance of use of primers and probes for qPCR as well as to discuss several statistical algorithms developed to help the validation of potential reference genes. The conflicts arising in the use of classical reference genes in gene normalization and their replacement with novel references are also discussed by citing the high stability and low stability of classical and novel reference genes under various biotic and abiotic experimental conditions by employing various methods applied for the reference genes amplification.
Caprioara-Buda, M; Meyer, W; Jeynov, B; Corbisier, P; Trapmann, S; Emons, H
2012-07-01
The reliable quantification of genetically modified organisms (GMOs) by real-time PCR requires, besides thoroughly validated quantitative detection methods, sustainable calibration systems. The latter establishes the anchor points for the measured value and the measurement unit, respectively. In this paper, the suitability of two types of DNA calibrants, i.e. plasmid DNA and genomic DNA extracted from plant leaves, for the certification of the GMO content in reference materials as copy number ratio between two targeted DNA sequences was investigated. The PCR efficiencies and coefficients of determination of the calibration curves as well as the measured copy number ratios for three powder certified reference materials (CRMs), namely ERM-BF415e (NK603 maize), ERM-BF425c (356043 soya), and ERM-BF427c (98140 maize), originally certified for their mass fraction of GMO, were compared for both types of calibrants. In all three systems investigated, the PCR efficiencies of plasmid DNA were slightly closer to the PCR efficiencies observed for the genomic DNA extracted from seed powders rather than those of the genomic DNA extracted from leaves. Although the mean DNA copy number ratios for each CRM overlapped within their uncertainties, the DNA copy number ratios were significantly different using the two types of calibrants. Based on these observations, both plasmid and leaf genomic DNA calibrants would be technically suitable as anchor points for the calibration of the real-time PCR methods applied in this study. However, the most suitable approach to establish a sustainable traceability chain is to fix a reference system based on plasmid DNA.
Goldberg, Tony L; Gillespie, Thomas R; Singer, Randall S
2006-09-01
Repetitive-element PCR (rep-PCR) is a method for genotyping bacteria based on the selective amplification of repetitive genetic elements dispersed throughout bacterial chromosomes. The method has great potential for large-scale epidemiological studies because of its speed and simplicity; however, objective guidelines for inferring relationships among bacterial isolates from rep-PCR data are lacking. We used multilocus sequence typing (MLST) as a "gold standard" to optimize the analytical parameters for inferring relationships among Escherichia coli isolates from rep-PCR data. We chose 12 isolates from a large database to represent a wide range of pairwise genetic distances, based on the initial evaluation of their rep-PCR fingerprints. We conducted MLST with these same isolates and systematically varied the analytical parameters to maximize the correspondence between the relationships inferred from rep-PCR and those inferred from MLST. Methods that compared the shapes of densitometric profiles ("curve-based" methods) yielded consistently higher correspondence values between data types than did methods that calculated indices of similarity based on shared and different bands (maximum correspondences of 84.5% and 80.3%, respectively). Curve-based methods were also markedly more robust in accommodating variations in user-specified analytical parameter values than were "band-sharing coefficient" methods, and they enhanced the reproducibility of rep-PCR. Phylogenetic analyses of rep-PCR data yielded trees with high topological correspondence to trees based on MLST and high statistical support for major clades. These results indicate that rep-PCR yields accurate information for inferring relationships among E. coli isolates and that accuracy can be enhanced with the use of analytical methods that consider the shapes of densitometric profiles.
Anitharaj, Velmurugan; Stephen, Selvaraj; Pradeep, Jothimani; Pooja, Pratheesh; Preethi, Sridharan
2017-01-01
Background: In the recent past, scrub typhus (ST) has been reported from different parts of India, based on Weil-Felix/enzyme-linked immunosorbent assay (ELISA)/indirect immunofluorescence assay (IFA). Molecular tests are applied only by a few researchers. Aims: Evaluation of a new commercial real time polymerase chain reaction (PCR) kit for molecular diagnosis of ST by comparing it with the commonly used IgM ELISA is our aim. Settings and Design: ST has been reported all over India including Puducherry and surrounding Tamil Nadu and identified as endemic for ST. This study was designed to correlate antibody detection by IgM ELISA and Orientia tsutsugamushi DNA in real time PCR. Materials and Methods: ST IgM ELISA (InBios Inc., USA) was carried out for 170 consecutive patients who presented with the symptoms of acute ST during 11 months (November, 2015– September, 2016). All 77 of these patients with IgM ELISA positivity and 49 of 93 IgM ELISA negative patients were subjected to real time PCR (Geno-Sen's ST real time PCR, Himachal Pradesh, India). Statistical Analysis: Statistical analysis for clinical and laboratory results was performed using IBM SPSS Statistics 17 for Windows (SPSS Inc., Chicago, USA). Chi-square test with Yates correction (Fisher's test) was employed for a small number of samples. Results and Conclusion: Among 77 suspected cases of acute ST with IgM ELISA positivity and 49 IgM negative patients, 42 and 7 were positive, respectively, for O. tsutsugamushi 56-kDa type-specific gene in real time PCR kit. Until ST IFA, the gold standard diagnostic test, is properly validated in India, diagnosis of acute ST will depend on both ELISA and quantitative PCR. PMID:28878522
Pulverer, Walter; Hofner, Manuela; Preusser, Matthias; Dirnberger, Elisabeth; Hainfellner, Johannes A; Weinhaeusel, Andreas
2014-01-01
MGMT promoter methylation is associated with favorable prognosis and chemosensitivity in glioblastoma multiforme (GBM), especially in elderly patients. We aimed to develop a simple methylation-sensitive restriction enzyme (MSRE)-based quantitative PCR (qPCR) assay, allowing the quantification of MGMT promoter methylation. DNA was extracted from non-neoplastic brain (n = 24) and GBM samples (n = 20) upon 3 different sample conservation conditions (-80 °C, formalin-fixed and paraffin-embedded (FFPE); RCL2-fixed). We evaluated the suitability of each fixation method with respect to the MSRE-coupled qPCR methylation analyses. Methylation data were validated by MALDITOF. qPCR was used for evaluation of alternative tissue conservation procedures. DNA from FFPE tissue failed reliable testing; DNA from both RCL2-fixed and fresh frozen tissues performed equally well and was further used for validation of the quantitative MGMT methylation assay (limit of detection (LOD): 19.58 pg), using individual's undigested sample DNA for calibration. MGMT methylation analysis in non-neoplastic brain identified a background methylation of 0.10 ± 11% which we used for defining a cut-off of 0.32% for patient stratification. Of GBM patients 9 were MGMT methylationpositive (range: 0.56 - 91.95%), and 11 tested negative. MALDI-TOF measurements resulted in a concordant classification of 94% of GBM samples in comparison to qPCR. The presented methodology allows quantitative MGMT promoter methylation analyses. An amount of 200 ng DNA is sufficient for triplicate analyses including control reactions and individual calibration curves, thus excluding any DNA qualityderived bias. The combination of RCL2-fixation and quantitative methylation analyses improves pathological routine examination when histological and molecular analyses on limited amounts of tumor samples are necessary for patient stratification.
Yang, Litao; Quan, Sheng; Zhang, Dabing
2017-01-01
Endogenous reference genes (ERG) and their derivate analytical methods are standard requirements for analysis of genetically modified organisms (GMOs). Development and validation of suitable ERGs is the primary step for establishing assays that monitoring the genetically modified (GM) contents in food/feed samples. Herein, we give a review of the ERGs currently used for GM wheat analysis, such as ACC1, PKABA1, ALMT1, and Waxy-D1, as well as their performances in GM wheat analysis. Also, we discussed one model for developing and validating one ideal RG for one plant species based on our previous research work.
Villa, Caterina; Costa, Joana; Gondar, Cristina; Oliveira, M Beatriz P P; Mafra, Isabel
2018-10-01
Lupine is widely used as an ingredient in diverse food products, but it is also a source of allergens. This work aimed at proposing a method to detect/quantify lupine as an allergen in processed foods based on a normalised real-time PCR assay targeting the Lup a 4 allergen-encoding gene of Lupinus albus. Sensitivities down to 0.0005%, 0.01% and 0.05% (w/w) of lupine in rice flour, wheat flour and bread, respectively, and 1 pg of L. albus DNA were obtained, with adequate real-time PCR performance parameters using the ΔCt method. Both food matrix and processing affected negatively the quantitative performance of the assay. The method was successfully validated with blind samples and applied to processed foods. Lupine was estimated between 4.12 and 22.9% in foods, with some results suggesting the common practice of precautionary labelling. In this work, useful and effective tools were proposed for the detection/quantification of lupine in food products. Copyright © 2018 Elsevier Ltd. All rights reserved.
Herrero, Beatriz; Lago, Fátima C; Vieites, Juan M; Espiñeira, Montserrat
2012-01-01
Judged by quality and taste, the European sole (Solea solea) is considered one of the finest flatfish and is, thus, of considerable commercial value. In the present work, a specific fast real-time PCR was developed for the authentication of S. solea, i.e. to distinguish it from other related species and avoid substitution of this species, either deliberately or unintentionally. The method is based on a species-specific set of primers and MGB Taqman probe which amplifies a 116-bp fragment of the internal transcribed spacer 1 (ITS 1) ribosomal DNA region. This assay combines the high specificity and sensitivity of real-time PCR with the rapidity of the fast mode, allowing the detection of S. solea in a short period of time. The present methodology was validated for application to all types of manufactured products for the presence of S. solea, with successful results. Subsequently, the method was applied to 40 commercial samples to determine whether correct labeling had been employed in the market. It was demonstrated that the assay is a useful tool in monitoring and verifying food labeling regulations.
Oliveira, Flavia C C; Brandão, Christian R R; Ramalho, Hugo F; da Costa, Leonardo A F; Suarez, Paulo A Z; Rubim, Joel C
2007-03-28
In this work it has been shown that the routine ASTM methods (ASTM 4052, ASTM D 445, ASTM D 4737, ASTM D 93, and ASTM D 86) recommended by the ANP (the Brazilian National Agency for Petroleum, Natural Gas and Biofuels) to determine the quality of diesel/biodiesel blends are not suitable to prevent the adulteration of B2 or B5 blends with vegetable oils. Considering the previous and actual problems with fuel adulterations in Brazil, we have investigated the application of vibrational spectroscopy (Fourier transform (FT) near infrared spectrometry and FT-Raman) to identify adulterations of B2 and B5 blends with vegetable oils. Partial least square regression (PLS), principal component regression (PCR), and artificial neural network (ANN) calibration models were designed and their relative performances were evaluated by external validation using the F-test. The PCR, PLS, and ANN calibration models based on the Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy were designed using 120 samples. Other 62 samples were used in the validation and external validation, for a total of 182 samples. The results have shown that among the designed calibration models, the ANN/FT-Raman presented the best accuracy (0.028%, w/w) for samples used in the external validation.
Li, Tao; Wang, Jing; Lu, Miao; Zhang, Tianyi; Qu, Xinyun; Wang, Zhezhi
2017-01-01
Due to its sensitivity and specificity, real-time quantitative PCR (qRT-PCR) is a popular technique for investigating gene expression levels in plants. Based on the Minimum Information for Publication of Real-Time Quantitative PCR Experiments (MIQE) guidelines, it is necessary to select and validate putative appropriate reference genes for qRT-PCR normalization. In the current study, three algorithms, geNorm, NormFinder, and BestKeeper, were applied to assess the expression stability of 10 candidate reference genes across five different tissues and three different abiotic stresses in Isatis indigotica Fort. Additionally, the IiYUC6 gene associated with IAA biosynthesis was applied to validate the candidate reference genes. The analysis results of the geNorm, NormFinder, and BestKeeper algorithms indicated certain differences for the different sample sets and different experiment conditions. Considering all of the algorithms, PP2A-4 and TUB4 were recommended as the most stable reference genes for total and different tissue samples, respectively. Moreover, RPL15 and PP2A-4 were considered to be the most suitable reference genes for abiotic stress treatments. The obtained experimental results might contribute to improved accuracy and credibility for the expression levels of target genes by qRT-PCR normalization in I. indigotica. PMID:28702046
Koo, Bonhan; Lee, Tae Yoon; Lee, Jeong Hoon; Shin, Yong; Lim, Seok-Byung
2017-01-01
Although KRAS mutational status testing is becoming a companion diagnostic tool for managing patients with colorectal cancer (CRC), there are still several difficulties when analyzing KRAS mutations using the existing assays, particularly with regard to low sensitivity, its time-consuming, and the need for large instruments. We developed a rapid, sensitive, and specific mutation detection assay based on the bio-photonic sensor termed ISAD (isothermal solid-phase amplification/detection), and used it to analyze KRAS gene mutations in human clinical samples. To validate the ISAD-KRAS assay for use in clinical diagnostics, we examined for hotspot KRAS mutations (codon 12 and codon 13) in 70 CRC specimens using PCR and direct sequencing methods. In a serial dilution study, ISAD-KRAS could detect mutations in a sample containing only 1% of the mutant allele in a mixture of wild-type DNA, whereas both PCR and direct sequencing methods could detect mutations in a sample containing approximately 30% of mutant cells. The results of the ISAD-KRAS assay from 70 clinical samples matched those from PCR and direct sequencing, except in 5 cases, wherein ISAD-KRAS could detect mutations that were not detected by PCR and direct sequencing. We also found that the sensitivity and specificity of ISAD-KRAS were 100% within 30 min. The ISAD-KRAS assay provides a rapid, highly sensitive, and label-free method for KRAS mutation testing, and can serve as a robust and near patient testing approach for the rapid detection of patients most likely to respond to anti-EGFR drugs. PMID:29137388
Real-time PCR evaluation of Strongylus vulgaris in horses on farms in Denmark and Central Kentucky.
Nielsen, M K; Olsen, S N; Lyons, E T; Monrad, J; Thamsborg, S M
2012-12-21
Strongyle parasites are ubiquitous in grazing horses, and the large strongyle Strongylus vulgaris is considered the most pathogenic helminth parasite of horses. Recent investigations have suggested an association between occurrence of this parasite and usage of selective therapy based on regular fecal egg counts. The established diagnostic method for S. vulgaris involves larval culture and subsequent morphological identification of third stage larvae under the microscope. Recently, a real-time PCR assay was developed and validated for the detection and semi-quantification of S. vulgaris eggs in equine fecal samples. The purposes of the present study were (a) to determine the presence of S. vulgaris by real-time PCR in Danish and American horses on farms using vastly different anthelmintic treatment regimens and (b) to evaluate the association between larval culture results and the PCR. A total of 991 horses representing 53 different horse farms in Denmark and Central Kentucky were studied. Fresh fecal samples were collected from all horses, and strongyle eggs retrieved for DNA extraction and subsequent real-time PCR analysis. Individual larval cultures were performed on the Danish part of the data set (663 horses on 42 farms). On the Danish farms, the S. vulgaris PCR prevalence was found to be 9.2% on farms not basing parasite control on fecal egg counts, and 14.1% on farms using selective therapy. No horses were PCR positive in the American part of the study (328 horses on 11 farms). Kappa-values indicated a moderate agreement between PCR and larval culture results, while McNemar tests revealed no statistical difference between the paired proportions. Significant associations were found between PCR cycle of threshold (Ct) value groups and larval culture counts. Results indicate that both diagnostic methods can be useful for determining the occurrence of S. vulgaris on horse farms, but that they both are affected by potential sources of error. The PCR results confirmed previous findings suggesting that S. vulgaris can reemerge under selective therapy regimens. Copyright © 2012 Elsevier B.V. All rights reserved.
Identifying key genes in glaucoma based on a benchmarked dataset and the gene regulatory network.
Chen, Xi; Wang, Qiao-Ling; Zhang, Meng-Hui
2017-10-01
The current study aimed to identify key genes in glaucoma based on a benchmarked dataset and gene regulatory network (GRN). Local and global noise was added to the gene expression dataset to produce a benchmarked dataset. Differentially-expressed genes (DEGs) between patients with glaucoma and normal controls were identified utilizing the Linear Models for Microarray Data (Limma) package based on benchmarked dataset. A total of 5 GRN inference methods, including Zscore, GeneNet, context likelihood of relatedness (CLR) algorithm, Partial Correlation coefficient with Information Theory (PCIT) and GEne Network Inference with Ensemble of Trees (Genie3) were evaluated using receiver operating characteristic (ROC) and precision and recall (PR) curves. The interference method with the best performance was selected to construct the GRN. Subsequently, topological centrality (degree, closeness and betweenness) was conducted to identify key genes in the GRN of glaucoma. Finally, the key genes were validated by performing reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 176 DEGs were detected from the benchmarked dataset. The ROC and PR curves of the 5 methods were analyzed and it was determined that Genie3 had a clear advantage over the other methods; thus, Genie3 was used to construct the GRN. Following topological centrality analysis, 14 key genes for glaucoma were identified, including IL6 , EPHA2 and GSTT1 and 5 of these 14 key genes were validated by RT-qPCR. Therefore, the current study identified 14 key genes in glaucoma, which may be potential biomarkers to use in the diagnosis of glaucoma and aid in identifying the molecular mechanism of this disease.
Vanni, Irene; Ugolotti, Elisabetta; Raso, Alessandro; Di Marco, Eddi; Melioli, Giovanni; Biassoni, Roberto
2012-07-01
The clinical applications of in vitro manipulated cultured cells and their precursors are often made use of in therapeutic trials. However, tissue cultures can be easily contaminated by the ubiquitous Mollicutes micro-organisms, which can cause various and severe alterations in cellular function. Thus methods able to detect and trace Mollicutes impurities contaminating cell cultures are required before starting any attempt to grow cells under good manufacturing practice (GMP) conditions. We developed a multiplex quantitative polymerase chain reaction (qPCR) assay specific for the 16S-23S rRNA intergenic spacer regions, for the Tuf and P1 cytoadhesin genes, able to detect contaminant Mollicutes species in a single tube reaction. The system was validated by analyzing different cell lines and the positive samples were confirmed by 16S and P1 cytoadhesin gene dideoxy sequencing. Our multiplex qPCR detection system was able to reach a sensitivity, specificity and robustness comparable with the culture and the indicator cell culture method, as required by the European Pharmacopoeia guidelines. We have developed a multiplex qPCR method, validated following International Conference on Harmonization (ICH) guidelines, as a qualitative limit test for impurities, assessing the validation characteristics of limit of detection and specificity. It also follows the European Pharmacopoeia guidelines and Food and Drug Administration (FDA) requirements.
Lee, Chin Mei; Sieo, Chin Chin; Cheah, Yoke-Kqueen; Abdullah, Norhani; Ho, Yin Wan
2012-02-01
Four repetitive element sequence-based polymerase chain reaction (rep-PCR) methods, namely repetitive extragenic palindromic PCR (REP-PCR), enterobacterial repetitive intergenic consensus PCR (ERIC-PCR), polytrinucleotide (GTG)₅ -PCR and BOX-PCR, were evaluated for the molecular differentiation of 12 probiotic Lactobacillus strains previously isolated from the gastrointestinal tract of chickens and used as a multistrain probiotic. This study represents the first analysis of the comparative efficacy of these four rep-PCR methods and their combination (composite rep-PCR) in the molecular typing of Lactobacillus strains based on a discriminatory index (D). Species-specific and strain-specific profiles were observed from rep-PCR. From the numerical analysis of composite rep-PCR, BOX-PCR, (GTG)₅ -PCR, REP-PCR and ERIC-PCR, D values of 0.9118, 0.9044, 0.8897, 0.8750 and 0.8529 respectively were obtained. Composite rep-PCR analysis was the most discriminative method, with eight Lactobacillus strains, namely L. brevis ATCC 14869(T) , L. reuteri C 10, L. reuteri ATCC 23272(T) , L. gallinarum ATCC 33199(T) , L. salivarius ATCC 11741(T) , L. salivarius I 24, L. panis JCM 11053(T) and L. panis C 17, being differentiated at the strain level. Composite rep-PCR analysis is potentially a useful fingerprinting method to discriminate probiotic Lactobacillus strains isolated from the gastrointestinal tract of chickens. Copyright © 2011 Society of Chemical Industry.
New trends in bioanalytical tools for the detection of genetically modified organisms: an update.
Michelini, Elisa; Simoni, Patrizia; Cevenini, Luca; Mezzanotte, Laura; Roda, Aldo
2008-10-01
Despite the controversies surrounding genetically modified organisms (GMOs), the production of GM crops is increasing, especially in developing countries. Thanks to new technologies involving genetic engineering and unprecedented access to genomic resources, the next decade will certainly see exponential growth in GMO production. Indeed, EU regulations based on the precautionary principle require any food containing more than 0.9% GM content to be labeled as such. The implementation of these regulations necessitates sampling protocols, the availability of certified reference materials and analytical methodologies that allow the accurate determination of the content of GMOs. In order to qualify for the validation process, a method should fulfil some criteria, defined as "acceptance criteria" by the European Network of GMO Laboratories (ENGL). Several methods have recently been developed for GMO detection and quantitation, mostly based on polymerase chain reaction (PCR) technology. PCR (including its different formats, e.g., double competitive PCR and real-time PCR) remains the technique of choice, thanks to its ability to detect even small amounts of transgenes in raw materials and processed foods. Other approaches relying on DNA detection are based on quartz crystal microbalance piezoelectric biosensors, dry reagent dipstick-type sensors and surface plasmon resonance sensors. The application of visible/near-infrared (vis/NIR) spectroscopy or mass spectrometry combined with chemometrics techniques has also been envisaged as a powerful GMO detection tool. Furthermore, in order to cope with the multiplicity of GMOs released onto the market, the new challenge is the development of routine detection systems for the simultaneous detection of numerous GMOs, including unknown GMOs.
Advanced biosensors for detection of pathogens related to livestock and poultry.
Vidic, Jasmina; Manzano, Marisa; Chang, Chung-Ming; Jaffrezic-Renault, Nicole
2017-02-21
Infectious animal diseases caused by pathogenic microorganisms such as bacteria and viruses threaten the health and well-being of wildlife, livestock, and human populations, limit productivity and increase significantly economic losses to each sector. The pathogen detection is an important step for the diagnostics, successful treatment of animal infection diseases and control management in farms and field conditions. Current techniques employed to diagnose pathogens in livestock and poultry include classical plate-based methods and conventional biochemical methods as enzyme-linked immunosorbent assays (ELISA). These methods are time-consuming and frequently incapable to distinguish between low and highly pathogenic strains. Molecular techniques such as polymerase chain reaction (PCR) and real time PCR (RT-PCR) have also been proposed to be used to diagnose and identify relevant infectious disease in animals. However these DNA-based methodologies need isolated genetic materials and sophisticated instruments, being not suitable for in field analysis. Consequently, there is strong interest for developing new swift point-of-care biosensing systems for early detection of animal diseases with high sensitivity and specificity. In this review, we provide an overview of the innovative biosensing systems that can be applied for livestock pathogen detection. Different sensing strategies based on DNA receptors, glycan, aptamers and antibodies are presented. Besides devices still at development level some are validated according to standards of the World Organization for Animal Health and are commercially available. Especially, paper-based platforms proposed as an affordable, rapid and easy to perform sensing systems for implementation in field condition are included in this review.
Jacob, M E; Bai, J; Renter, D G; Rogers, A T; Shi, X; Nagaraja, T G
2014-02-01
Detection of Escherichia coli O157 in cattle feces has traditionally used culture-based methods; PCR-based methods have been suggested as an alternative. We aimed to determine if multiplex real-time (mq) or conventional PCR methods could reliably detect cattle naturally shedding high (≥10(4) CFU/g of feces) and low (∼10(2) CFU/g of feces) concentrations of E. coli O157. Feces were collected from pens of feedlot cattle and evaluated for E. coli O157 by culture methods. Samples were categorized as (i) high shedders, (ii) immunomagnetic separation (IMS) positive after enrichment, or (iii) culture negative. DNA was extracted pre- and postenrichment from 100 fecal samples from each category (high shedder, IMS positive, culture negative) and subjected to mqPCR and conventional PCR assays based on detecting three genes, rfbE, stx1, and stx2. In feces from cattle determined to be E. coli O157 high shedders by culture, 37% were positive by mqPCR prior to enrichment; 85% of samples were positive after enrichment. In IMS-positive samples, 4% were positive by mqPCR prior to enrichment, while 43% were positive after enrichment. In culture-negative feces, 7% were positive by mqPCR prior to enrichment, and 40% were positive after enrichment. The proportion of high shedder-positive and culture-positive (high shedder and IMS) samples were significantly different from mqPCR-positive samples before and after enrichment (P < 0.01). Similar results were observed for conventional PCR. Our data suggest that mqPCR and conventional PCR are most useful in identifying high shedder animals and may not be an appropriate substitute to culture-based methods for detection of E. coli O157 in cattle feces.
Valeriani, Federica; Agodi, Antonella; Casini, Beatrice; Cristina, Maria Luisa; D'Errico, Marcello Mario; Gianfranceschi, Gianluca; Liguori, Giorgio; Liguori, Renato; Mucci, Nicolina; Mura, Ida; Pasquarella, Cesira; Piana, Andrea; Sotgiu, Giovanni; Privitera, Gaetano; Protano, Carmela; Quattrocchi, Annalisa; Ripabelli, Giancarlo; Rossini, Angelo; Spagnolo, Anna Maria; Tamburro, Manuela; Tardivo, Stefano; Veronesi, Licia; Vitali, Matteo; Romano Spica, Vincenzo
2018-02-01
Reprocessing of endoscopes is key to preventing cross-infection after colonoscopy. Culture-based methods are recommended for monitoring, but alternative and rapid approaches are needed to improve surveillance and reduce turnover times. A molecular strategy based on detection of residual traces from gut microbiota was developed and tested using a multicenter survey. A simplified sampling and DNA extraction protocol using nylon-tipped flocked swabs was optimized. A multiplex real-time polymerase chain reaction (PCR) test was developed that targeted 6 bacteria genes that were amplified in 3 mixes. The method was validated by interlaboratory tests involving 5 reference laboratories. Colonoscopy devices (n = 111) were sampled in 10 Italian hospitals. Culture-based microbiology and metagenomic tests were performed to verify PCR data. The sampling method was easily applied in all 10 endoscopy units and the optimized DNA extraction and amplification protocol was successfully performed by all of the involved laboratories. This PCR-based method allowed identification of both contaminated (n = 59) and fully reprocessed endoscopes (n = 52) with high sensibility (98%) and specificity (98%), within 3-4 hours, in contrast to the 24-72 hours needed for a classic microbiology test. Results were confirmed by next-generation sequencing and classic microbiology. A novel approach for monitoring reprocessing of colonoscopy devices was developed and successfully applied in a multicenter survey. The general principle of tracing biological fluids through microflora DNA amplification was successfully applied and may represent a promising approach for hospital hygiene. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Shin, Saeam; Kim, Juwon; Kim, Yoonjung; Cho, Sun-Mi; Lee, Kyung-A
2017-10-26
EGFR mutation is an emerging biomarker for treatment selection in non-small-cell lung cancer (NSCLC) patients. However, optimal mutation detection is hindered by complications associated with the biopsy procedure, tumor heterogeneity and limited sensitivity of test methodology. In this study, we evaluated the diagnostic utility of real-time PCR using malignant pleural effusion samples. A total of 77 pleural fluid samples from 77 NSCLC patients were tested using the cobas EGFR mutation test (Roche Molecular Systems). Pleural fluid was centrifuged, and separated cell pellets and supernatants were tested in parallel. Results were compared with Sanger sequencing and/or peptide nucleic acid (PNA)-mediated PCR clamping of matched tumor tissue or pleural fluid samples. All samples showed valid real-time PCR results in one or more DNA samples extracted from cell pellets and supernatants. Compared with other molecular methods, the sensitivity of real-time PCR method was 100%. Concordance rate of real-time PCR and Sanger sequencing plus PNA-mediated PCR clamping was 98.7%. We have confirmed that real-time PCR using pleural fluid had a high concordance rate compared to conventional methods, with no failed samples. Our data demonstrated that the parallel real-time PCR testing using supernatant and cell pellet could offer reliable and robust surrogate strategy when tissue is not available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iovannisci, D.; Brown, C.; Winn-Deen, E.
1994-09-01
The cloning and sequencing of the gene associated with cystic fibrosis (CF) now provides the opportunity for earlier detection and carrier screening through DNA-based detection schemes. To date, over 300 mutations have been reported to the CF Consortium; however, only 30 mutations have been observed frequently enough world-wide to warrant routine screening. Many of these mutations are not available as cloned material or as established tissue culture cell lines to aid in the development of DNA-based detection assays. We have therefore cloned the 30 most frequently reported mutations, plus the mutation R347H due to its association with male infertility (31more » mutations, total). Two approaches were employed: direct PCR amplification, where mutations were available from patient sources, and site-directed PCR mutagenesis of normal genomic DNA to generate the remaining mutations. After amplification, products were cloned into a sequencing vector, bacterial transformants were screened by a novel method (PCR/oligonucleotide litigation assay/sequence-coded separation), and plamid DNA sequences determined by automated fluorescent methods on the Applied Biosystems 373A. Mixing of the clones allows the construction of artificial genotypes useful as positive control material for assay validation. A second round of mutagenesis, resulting in the construction of plasmids bearing multiple mutations, will be evaluated for their utility as reagent control materials in kit development.« less
Jia, Peng; Purcell, Maureen; Pan, Guang; Wang, Jinjin; Kan, Shifu; Liu, Yin; Zheng, Xiaocong; SHi, Xiujie; He, Junqiang; Yu, Li; Hua, Qunyi; Lu, Tikang; Lan, Wensheng; Winton, James; Jin, Ningyi; Liu, Hong
2017-01-01
Infectious hematopoietic necrosis virus (IHNV) is an important pathogen of salmonid fishes. A validated universal reverse transcriptase quantitative PCR (RT-qPCR) assay that can quantify levels of IHNV in fish tissues has been previously reported. In the present study, we adapted the published set of IHNV primers and probe for use in a reverse-transcriptase droplet digital PCR (RT-ddPCR) assay for quantification of the virus in fish tissue samples. The RT-ddPCR and RT-qPCR assays detected 13 phylogenetically diverse IHNV strains, but neither assay produced detectable amplification when RNA from other fish viruses was used. The RT-ddPCR assay had a limit of detection (LOD) equating to 2.2 plaque forming units (PFU)/μl while the LOD for the RT-qPCR was 0.2 PFU/μl. Good agreement (69.4–100%) between assays was observed when used to detect IHNV RNA in cell culture supernatant and tissues from IHNV infected rainbow trout (Oncorhynchus mykiss) and arctic char (Salvelinus alpinus). Estimates of RNA copy number produced by the two assays were significantly correlated but the RT-qPCR consistently produced higher estimates than the RT-ddPCR. The analytical properties of the N gene RT-ddPCR test indicated that this method may be useful to assess IHNV RNA copy number for research and diagnostic purposes. Future work is needed to establish the within and between laboratory diagnostic performance of the RT-ddPCR assay.
Schijman, Alejandro G.; Bisio, Margarita; Orellana, Liliana; Sued, Mariela; Duffy, Tomás; Mejia Jaramillo, Ana M.; Cura, Carolina; Auter, Frederic; Veron, Vincent; Qvarnstrom, Yvonne; Deborggraeve, Stijn; Hijar, Gisely; Zulantay, Inés; Lucero, Raúl Horacio; Velazquez, Elsa; Tellez, Tatiana; Sanchez Leon, Zunilda; Galvão, Lucia; Nolder, Debbie; Monje Rumi, María; Levi, José E.; Ramirez, Juan D.; Zorrilla, Pilar; Flores, María; Jercic, Maria I.; Crisante, Gladys; Añez, Néstor; De Castro, Ana M.; Gonzalez, Clara I.; Acosta Viana, Karla; Yachelini, Pedro; Torrico, Faustino; Robello, Carlos; Diosque, Patricio; Triana Chavez, Omar; Aznar, Christine; Russomando, Graciela; Büscher, Philippe; Assal, Azzedine; Guhl, Felipe; Sosa Estani, Sergio; DaSilva, Alexandre; Britto, Constança; Luquetti, Alejandro; Ladzins, Janis
2011-01-01
Background A century after its discovery, Chagas disease still represents a major neglected tropical threat. Accurate diagnostics tools as well as surrogate markers of parasitological response to treatment are research priorities in the field. The purpose of this study was to evaluate the performance of PCR methods in detection of Trypanosoma cruzi DNA by an external quality evaluation. Methodology/Findings An international collaborative study was launched by expert PCR laboratories from 16 countries. Currently used strategies were challenged against serial dilutions of purified DNA from stocks representing T. cruzi discrete typing units (DTU) I, IV and VI (set A), human blood spiked with parasite cells (set B) and Guanidine Hidrochloride-EDTA blood samples from 32 seropositive and 10 seronegative patients from Southern Cone countries (set C). Forty eight PCR tests were reported for set A and 44 for sets B and C; 28 targeted minicircle DNA (kDNA), 13 satellite DNA (Sat-DNA) and the remainder low copy number sequences. In set A, commercial master mixes and Sat-DNA Real Time PCR showed better specificity, but kDNA-PCR was more sensitive to detect DTU I DNA. In set B, commercial DNA extraction kits presented better specificity than solvent extraction protocols. Sat-DNA PCR tests had higher specificity, with sensitivities of 0.05–0.5 parasites/mL whereas specific kDNA tests detected 5.10−3 par/mL. Sixteen specific and coherent methods had a Good Performance in both sets A and B (10 fg/µl of DNA from all stocks, 5 par/mL spiked blood). The median values of sensitivities, specificities and accuracies obtained in testing the Set C samples with the 16 tests determined to be good performing by analyzing Sets A and B samples varied considerably. Out of them, four methods depicted the best performing parameters in all three sets of samples, detecting at least 10 fg/µl for each DNA stock, 0.5 par/mL and a sensitivity between 83.3–94.4%, specificity of 85–95%, accuracy of 86.8–89.5% and kappa index of 0.7–0.8 compared to consensus PCR reports of the 16 good performing tests and 63–69%, 100%, 71.4–76.2% and 0.4–0.5, respectively compared to serodiagnosis. Method LbD2 used solvent extraction followed by Sybr-Green based Real time PCR targeted to Sat-DNA; method LbD3 used solvent DNA extraction followed by conventional PCR targeted to Sat-DNA. The third method (LbF1) used glass fiber column based DNA extraction followed by TaqMan Real Time PCR targeted to Sat-DNA (cruzi 1/cruzi 2 and cruzi 3 TaqMan probe) and the fourth method (LbQ) used solvent DNA extraction followed by conventional hot-start PCR targeted to kDNA (primer pairs 121/122). These four methods were further evaluated at the coordinating laboratory in a subset of human blood samples, confirming the performance obtained by the participating laboratories. Conclusion/Significance This study represents a first crucial step towards international validation of PCR procedures for detection of T. cruzi in human blood samples. PMID:21264349
Plagnol, Vincent; Woodhouse, Samuel; Howarth, Karen; Lensing, Stefanie; Smith, Matt; Epstein, Michael; Madi, Mikidache; Smalley, Sarah; Leroy, Catherine; Hinton, Jonathan; de Kievit, Frank; Musgrave-Brown, Esther; Herd, Colin; Baker-Neblett, Katherine; Brennan, Will; Dimitrov, Peter; Campbell, Nathan; Morris, Clive; Rosenfeld, Nitzan; Clark, James; Gale, Davina; Platt, Jamie; Calaway, John; Jones, Greg; Forshew, Tim
2018-01-01
Circulating tumor DNA (ctDNA) analysis is being incorporated into cancer care; notably in profiling patients to guide treatment decisions. Responses to targeted therapies have been observed in patients with actionable mutations detected in plasma DNA at variant allele fractions (VAFs) below 0.5%. Highly sensitive methods are therefore required for optimal clinical use. To enable objective assessment of assay performance, detailed analytical validation is required. We developed the InVisionFirst™ assay, an assay based on enhanced tagged amplicon sequencing (eTAm-Seq™) technology to profile 36 genes commonly mutated in non-small cell lung cancer (NSCLC) and other cancer types for actionable genomic alterations in cell-free DNA. The assay has been developed to detect point mutations, indels, amplifications and gene fusions that commonly occur in NSCLC. For analytical validation, two 10mL blood tubes were collected from NSCLC patients and healthy volunteer donors. In addition, contrived samples were used to represent a wide spectrum of genetic aberrations and VAFs. Samples were analyzed by multiple operators, at different times and using different reagent Lots. Results were compared with digital PCR (dPCR). The InVisionFirst assay demonstrated an excellent limit of detection, with 99.48% sensitivity for SNVs present at VAF range 0.25%-0.33%, 92.46% sensitivity for indels at 0.25% VAF and a high rate of detection at lower frequencies while retaining high specificity (99.9997% per base). The assay also detected ALK and ROS1 gene fusions, and DNA amplifications in ERBB2, FGFR1, MET and EGFR with high sensitivity and specificity. Comparison between the InVisionFirst assay and dPCR in a series of cancer patients showed high concordance. This analytical validation demonstrated that the InVisionFirst assay is highly sensitive, specific and robust, and meets analytical requirements for clinical applications.
Howarth, Karen; Lensing, Stefanie; Smith, Matt; Epstein, Michael; Madi, Mikidache; Smalley, Sarah; Leroy, Catherine; Hinton, Jonathan; de Kievit, Frank; Musgrave-Brown, Esther; Herd, Colin; Baker-Neblett, Katherine; Brennan, Will; Dimitrov, Peter; Campbell, Nathan; Morris, Clive; Rosenfeld, Nitzan; Clark, James; Gale, Davina; Platt, Jamie; Calaway, John; Jones, Greg
2018-01-01
Circulating tumor DNA (ctDNA) analysis is being incorporated into cancer care; notably in profiling patients to guide treatment decisions. Responses to targeted therapies have been observed in patients with actionable mutations detected in plasma DNA at variant allele fractions (VAFs) below 0.5%. Highly sensitive methods are therefore required for optimal clinical use. To enable objective assessment of assay performance, detailed analytical validation is required. We developed the InVisionFirst™ assay, an assay based on enhanced tagged amplicon sequencing (eTAm-Seq™) technology to profile 36 genes commonly mutated in non-small cell lung cancer (NSCLC) and other cancer types for actionable genomic alterations in cell-free DNA. The assay has been developed to detect point mutations, indels, amplifications and gene fusions that commonly occur in NSCLC. For analytical validation, two 10mL blood tubes were collected from NSCLC patients and healthy volunteer donors. In addition, contrived samples were used to represent a wide spectrum of genetic aberrations and VAFs. Samples were analyzed by multiple operators, at different times and using different reagent Lots. Results were compared with digital PCR (dPCR). The InVisionFirst assay demonstrated an excellent limit of detection, with 99.48% sensitivity for SNVs present at VAF range 0.25%-0.33%, 92.46% sensitivity for indels at 0.25% VAF and a high rate of detection at lower frequencies while retaining high specificity (99.9997% per base). The assay also detected ALK and ROS1 gene fusions, and DNA amplifications in ERBB2, FGFR1, MET and EGFR with high sensitivity and specificity. Comparison between the InVisionFirst assay and dPCR in a series of cancer patients showed high concordance. This analytical validation demonstrated that the InVisionFirst assay is highly sensitive, specific and robust, and meets analytical requirements for clinical applications. PMID:29543828
Diagnosis of neonatal group B Streptococcus sepsis by nested-PCR of residual urine samples
Cezarino, Bruno Nicolino; Yamamoto, Lidia; Del Negro, Gilda Maria Barbaro; Rocha, Daisy; Okay, Thelma Suely
2008-01-01
Group B streptococcus (GBS) remains the most common cause of early-onset sepsis in newborns. Laboratory gold-standard, broth culture methods are highly specific, but lack sensitivity. The aim of this study was to validate a nested-PCR and to determine whether residue volumes of urine samples obtained by non invasive, non sterile methods could be used to confirm neonatal GBS sepsis. The nested-PCR was performed with primers of the major GBS surface antigen. Unavailability of biological samples to perform life supporting exams, as well as others to elucidate the etiology of infections is a frequent problem concerning newborn patients. Nevertheless, we decided to include cases according to strict criteria: newborns had to present with signs and symptoms compatible with GBS infection; at least one of the following biological samples had to be sent for culture: blood, urine, or cerebrospinal fluid; availability of residue volumes of the samples sent for cultures, or of others collected on the day of hospitalization, prior to antibiotic therapy prescription, to be analyzed by PCR; favorable outcome after GBS empiric treatment. In only one newborn GBS infection was confirmed by cultures, while infection was only presumptive in the other three patients (they fulfilled inclusion criteria but were GBS-culture negative). From a total of 12 biological samples (5 blood, 3 CSF and 4 urine specimen), eight were tested by culture methods (2/8 were positive), and 8 were tested by PCR (7/8 were positive), and only 4 samples were simultaneously tested by both methods (1 positive by culture and 3 by PCR). In conclusion, although based on a restricted number of neonates and samples, our results suggest that the proposed nested-PCR might be used to diagnose GBS sepsis as it has successfully amplified the three types of biological samples analyzed (blood, urine and cerebrospinal fluid), and was more sensitive than culture methods as PCR in urine confirmed diagnosis in all four patients. Moreover, PCR has enabled us to use residue volumes of urine samples collected by non invasive, non sterile methods, what is technically adequate as GBS is not part of the normal urine flora, thus avoiding invasive procedures such as suprapubic bladder punction or transurethral catheterization. At the same time, the use of urine instead of blood samples could help preventing newborns blood spoliation. PMID:24031170
Zhou, Hao; Chen, Shun; Qi, Yulin; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Chen, Xiaoyue; Cheng, Anchun
2015-10-01
Real time quantitative polymerase chain reaction (RT-qPCR) based on SYBR-Green I binding is a quick, reliable, and easy method for analyzing small amounts of mRNA. Viral pathogens are recognized at the time of infection by pattern recognition receptors; thus, the inflammatory cytokines (IL1β, IL6, and IL18) and antiviral cytokines (IFNα, IFNγ) are secreted by innate immune cells and induced to respond to the pathogens. The objective of this study was to develop an effective and sensitive RT-qPCR assay for the rapid and accurate quantification of goose cytokines: IFNα, IFNγ, IL1β, IL6, and IL18. Subsequently, the established methods were employed to detect the immune response in agonist-stimulated goose spleen cells in vitro. These data indicated that the established RT-qPCR is a reliable method for determining relative gene expression. The results revealed that Imiquimod led to the significant upregulation of goose IFNα (P < 0.01), IFNγ (P < 0.01), IL1β (P < 0.01), IL6 (P < 0.01), and IL18 (P < 0.05). The established methods are important for scientific research and clinical applications, which require rapid and accurate results in a short period of time. The technique can potentially be used in the further research of goose molecular immunology, which will help us understand the interactions between hosts and pathogens. © 2015 Poultry Science Association Inc.
Xiao, Xiao; Wu, Honghong; Zhou, Xinghu; Xu, Sheng; He, Jian; Shen, Wenbiao; Zhou, Guanghong; Huang, Ming
2012-06-01
With the widespread use of Roundup Ready soy (event 40-3-2) (RRS), the comprehensive detection of genetically modified component in foodstuffs is of significant interest, but few protein-based approaches have been found useful in processed foods. In this report, the combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different RRS plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing both meat and plant protein concentrates. The validity of the 2 methods was confirmed first. We also showed that the CP4-EPSPS protein existed in different RRS plant tissues. In certain cases, the results from the western blot and the qPCR were not consistent. To be specific, at least 2 degraded fragments of CP4-EPSPS protein (35.5 and 24.6 kDa) were observed. For dried bean curd crust and deep-fried bean curd, a degraded protein fragment with the size of 24.6 kDa appeared, while cp4-epsps gene could not be traced by qPCR. In contrast, we found a signal of cp4-epsps DNA in 3 foodstuffs, including soy-containing ham cutlet product, meat ball, and sausage by qPCR, while CP4-EPSPS protein could not be detected by western blot in such samples. Our study therefore concluded that the combination of DNA- and protein-based methods would compensate each other, thus resulting in a more comprehensive detection from nucleic acid and protein levels. The combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different Roundup Ready soy (event 40-3-2) plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing a combination of both meat and plant protein concentrates. This study indicated that the combination of DNA- and protein-based methods would supplement each other for genetically modified detection from nucleic acid and protein levels. Accordingly, qPCR and western blot could be used in CP4-EPSPS detection in a wide variety of soy-related foodstuffs. © 2012 Institute of Food Technologists®
Kaisar, Maria M M; Brienen, Eric A T; Djuardi, Yenny; Sartono, Erliyani; Yazdanbakhsh, Maria; Verweij, Jaco J; Supali, Taniawati; VAN Lieshout, Lisette
2017-06-01
For the majority of intestinal parasites, real-time PCR-based diagnosis outperforms microscopy. However, the data for Trichuris trichiura have been less convincing and most comparative studies have been performed in populations with low prevalence. This study aims to improve detection of T. trichuria DNA in human stool by evaluating four sample preparation methods. Faecal samples (n = 60) were collected at Flores island, Indonesia and examined by microscopy. Aliquots were taken and a bead-beating procedure was used both on directly frozen stool and on material preserved with 96% ethanol. PCR on frozen samples showed 40% to be positive for T. trichiura, compared with 45% positive by microscopy. The percentage positive increased when using ethanol preservation (45·0%), bead-beating (51·7%) and a combination (55·0%) and all three methods showed significantly higher DNA loads. The various procedures had a less pronounced effect on the PCR results of nine other parasite targets tested. Most prevalent were Ascaris lumbricoides (≈60%), Necator americanus (≈60%), Dientamoeba fragilis (≈50%) and Giardia lamblia (≈12%). To validate the practicality of the procedure, bead-beating was applied in a population-based survey testing 910 stool samples. Findings confirmed bead-beating before DNA extraction to be a highly efficient procedure for the detection of T. trichiura DNA in stool.
Agidi, Senyo; Vedachalam, Sridhar; Mancl, Karen; Lee, Jiyoung
2013-01-30
Water shortages and the drive to recycle is increasing interest in reuse of reclaimed wastewater. Timely and cost-effective ways to detect fecal pollutants prior to reuse increases confidence of residents and neighbors concerned about reuse of reclaimed wastewater. The on-site wastewater treatment and reuse systems (OWTRS) used in this study include a septic tank, peat bioreactor, ClO(2) disinfection and land spray irrigation system. Bacteroides fragilis, Escherichia coli and Enterococcus spp., were tested with immunomagnetic separation/ATP bioluminescence (IMS/ATP), qPCR and culture-based methods. The results displayed a 2-log reduction in fecal bacteria in the peat bioreactor and a 5-log reduction following chloride dioxide disinfection. The fecal bacteria levels measured by IMS/ATP correlated with qPCR results: HuBac 16S (R(2) = 0.903), Bf-group 16S (R(2) = 0.956), gyrB (R(2) = 0.673), and Ent 23S (R(2) = 0.724). This is the first study in which the newly developed human-specific IMS/ATP and previously developed IMS/ATP were applied for determining OWTRS efficiency. Results of the study revealed that IMS/ATP is a timely and cost-effective way to detect fecal contaminants, and results were validated with qPCR and culture based methods. The new IMS/ATP can also be applied broadly in the detection of human-originated fecal contamination. Copyright © 2012 Elsevier Ltd. All rights reserved.
Regression and multivariate models for predicting particulate matter concentration level.
Nazif, Amina; Mohammed, Nurul Izma; Malakahmad, Amirhossein; Abualqumboz, Motasem S
2018-01-01
The devastating health effects of particulate matter (PM 10 ) exposure by susceptible populace has made it necessary to evaluate PM 10 pollution. Meteorological parameters and seasonal variation increases PM 10 concentration levels, especially in areas that have multiple anthropogenic activities. Hence, stepwise regression (SR), multiple linear regression (MLR) and principal component regression (PCR) analyses were used to analyse daily average PM 10 concentration levels. The analyses were carried out using daily average PM 10 concentration, temperature, humidity, wind speed and wind direction data from 2006 to 2010. The data was from an industrial air quality monitoring station in Malaysia. The SR analysis established that meteorological parameters had less influence on PM 10 concentration levels having coefficient of determination (R 2 ) result from 23 to 29% based on seasoned and unseasoned analysis. While, the result of the prediction analysis showed that PCR models had a better R 2 result than MLR methods. The results for the analyses based on both seasoned and unseasoned data established that MLR models had R 2 result from 0.50 to 0.60. While, PCR models had R 2 result from 0.66 to 0.89. In addition, the validation analysis using 2016 data also recognised that the PCR model outperformed the MLR model, with the PCR model for the seasoned analysis having the best result. These analyses will aid in achieving sustainable air quality management strategies.
Chiu, Yi-Ting; Chen, Yi-Hsuan; Wang, Ting-Shaun; Yen, Hung-Kai; Lin, Tsair-Fuh
2017-05-20
Harmful cyanobacteria have been an important concern for drinking water quality for quite some time, as they may produce cyanotoxins and odorants. Microcystis and Cylindrospermopsis are two common harmful cyanobacterial genera detected in freshwater lakes and reservoirs, with microcystins (MCs) and cylindrospermopsin (CYN) as their important metabolites, respectively. In this study, two sets of duplex qPCR systems were developed, one for quantifying potentially-toxigenic Microcystis and Microcystis , and the other one for cylindrospermopsin-producing cyanobacteria and Cylindrospermopsis . The duplex qPCR systems were developed and validated in the laboratory by using 338 samples collected from 29 reservoirs in Taiwan and her offshore islands. Results show that cell numbers of Microcystis and Cylindorspermopsis enumerated with microscopy, and MCs and CYN concentrations measured with the enzyme-linked immuno-sorbent assay method, correlated well with their corresponding gene copies determined with the qPCR systems (range of coefficients of determination R² = 0.392-0.740). The developed qPCR approach may serve as a useful tool for the water industry to diagnose the presence of harmful cyanobacteria and the potential presence of cyanotoxins in source waters.
Validation of endogenous internal real-time PCR controls in renal tissues.
Cui, Xiangqin; Zhou, Juling; Qiu, Jing; Johnson, Martin R; Mrug, Michal
2009-01-01
Endogenous internal controls ('reference' or 'housekeeping' genes) are widely used in real-time PCR (RT-PCR) analyses. Their use relies on the premise of consistently stable expression across studied experimental conditions. Unfortunately, none of these controls fulfills this premise across a wide range of experimental conditions; consequently, none of them can be recommended for universal use. To determine which endogenous RT-PCR controls are suitable for analyses of renal tissues altered by kidney disease, we studied the expression of 16 commonly used 'reference genes' in 7 mildly and 7 severely affected whole kidney tissues from a well-characterized cystic kidney disease model. Expression levels of these 16 genes, determined by TaqMan RT-PCR analyses and Affymetrix GeneChip arrays, were normalized and tested for overall variance and equivalence of the means. Both statistical approaches and both TaqMan- and GeneChip-based methods converged on 3 out of the 4 top-ranked genes (Ppia, Gapdh and Pgk1) that had the most constant expression levels across the studied phenotypes. A combination of the top-ranked genes will provide a suitable endogenous internal control for similar studies of kidney tissues across a wide range of disease severity. Copyright 2009 S. Karger AG, Basel.
Chiu, Yi-Ting; Chen, Yi-Hsuan; Wang, Ting-Shaun; Yen, Hung-Kai; Lin, Tsair-Fuh
2017-01-01
Harmful cyanobacteria have been an important concern for drinking water quality for quite some time, as they may produce cyanotoxins and odorants. Microcystis and Cylindrospermopsis are two common harmful cyanobacterial genera detected in freshwater lakes and reservoirs, with microcystins (MCs) and cylindrospermopsin (CYN) as their important metabolites, respectively. In this study, two sets of duplex qPCR systems were developed, one for quantifying potentially-toxigenic Microcystis and Microcystis, and the other one for cylindrospermopsin-producing cyanobacteria and Cylindrospermopsis. The duplex qPCR systems were developed and validated in the laboratory by using 338 samples collected from 29 reservoirs in Taiwan and her offshore islands. Results show that cell numbers of Microcystis and Cylindorspermopsis enumerated with microscopy, and MCs and CYN concentrations measured with the enzyme-linked immuno-sorbent assay method, correlated well with their corresponding gene copies determined with the qPCR systems (range of coefficients of determination R2 = 0.392−0.740). The developed qPCR approach may serve as a useful tool for the water industry to diagnose the presence of harmful cyanobacteria and the potential presence of cyanotoxins in source waters. PMID:28531121
Validation of qPCR Methods for the Detection of Mycobacterium in New World Animal Reservoirs.
Housman, Genevieve; Malukiewicz, Joanna; Boere, Vanner; Grativol, Adriana D; Pereira, Luiz Cezar M; Silva, Ita de Oliveira; Ruiz-Miranda, Carlos R; Truman, Richard; Stone, Anne C
2015-11-01
Zoonotic pathogens that cause leprosy (Mycobacterium leprae) and tuberculosis (Mycobacterium tuberculosis complex, MTBC) continue to impact modern human populations. Therefore, methods able to survey mycobacterial infection in potential animal hosts are necessary for proper evaluation of human exposure threats. Here we tested for mycobacterial-specific single- and multi-copy loci using qPCR. In a trial study in which armadillos were artificially infected with M. leprae, these techniques were specific and sensitive to pathogen detection, while more traditional ELISAs were only specific. These assays were then employed in a case study to detect M. leprae as well as MTBC in wild marmosets. All marmosets were negative for M. leprae DNA, but 14 were positive for the mycobacterial rpoB gene assay. Targeted capture and sequencing of rpoB and other MTBC genes validated the presence of mycobacterial DNA in these samples and revealed that qPCR is useful for identifying mycobacterial-infected animal hosts.
Shi, Liang; Khandurina, Julia; Ronai, Zsolt; Li, Bi-Yu; Kwan, Wai King; Wang, Xun; Guttman, András
2003-01-01
A capillary gel electrophoresis based automated DNA fraction collection technique was developed to support a novel DNA fragment-pooling strategy for expressed sequence tag (EST) library construction. The cDNA population is first cleaved by BsaJ I and EcoR I restriction enzymes, and then subpooled by selective ligation with specific adapters followed by polymerase chain reaction (PCR) amplification and labeling. Combination of this cDNA fingerprinting method with high-resolution capillary gel electrophoresis separation and precise fractionation of individual cDNA transcript representatives avoids redundant fragment selection and concomitant repetitive sequencing of abundant transcripts. Using a computer-controlled capillary electrophoresis device the transcript representatives were separated by their size and fractions were automatically collected in every 30 s into 96-well plates. The high resolving power of the sieving matrix ensured sequencing grade separation of the DNA fragments (i.e., single-base resolution) and successful fraction collection. Performance and precision of the fraction collection procedure was validated by PCR amplification of the collected DNA fragments followed by capillary electrophoresis analysis for size and purity verification. The collected and PCR-amplified transcript representatives, ranging up to several hundred base pairs, were then sequenced to create an EST library.
Zhang, D F; Zhang, Q Q; Li, A H
2014-11-01
Species of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus are the most common fish pathogenic bacteria that cause economically devastating losses in aquaculture. A multiplex polymerase chain reaction (mPCR) was developed for the simultaneous detection and differentiation of the four genera of fish pathogenic bacteria. Through the use of genus-specific primers instead of species-specific ones, the current mPCR covered much more target bacterial species compared with previously reported species-specific mPCR methods. The specificity of the four putative genus-specific primers was validated experimentally while used exclusively (uniplex PCR) or combined (mPCR) against bacterial genomic DNA templates of the target bacteria and nontarget bacteria. The PCR amplicons for the following genera were obtained as expected: Aeromonas (875 bp), Vibrio (524 bp), Edwardsiella (302 bp) and Streptococcus (197 bp), and the fragments could be separated clearly on the agarose gel electrophoresis. The mPCR did not produce nonspecific amplification products when used to amplify 21 nontarget species of bacteria. The mPCR detection limits for each target bacterial genera were 50 colony-forming units (CFU) in pure culture and 100 CFU in fish tissue samples. In conclusion, the mPCR assay was proven to be a powerful alternative to the conventional culture-based method, given its rapid, specific, sensitive and reliable detection of target pathogens. The fish pathogenic bacteria of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus frequently cause severe outbreaks of diseases in cultured fish, and the genus-specific multiplex PCR assay developed in this study can detect the bacteria of the four genera when present in the samples either alone or mixed. The mPCR assay is expected to identify the causative agents more efficiently than uniplex PCR or species-specific multiplex PCR for clinical diagnosis, resulting in the earlier implementation of control measures. This mPCR assay provides a rapid, specific and sensitive tool for the detection or identification of common fish pathogenic bacteria in aquaculture practice. © 2014 The Society for Applied Microbiology.
Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang
2017-04-01
Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for the final evaluation. After the second evaluation, the final amplification curves and melting curves have been achieved.
Wang, Dan; Silkie, Sarah S; Nelson, Kara L; Wuertz, Stefan
2010-09-01
Cultivation- and library-independent, quantitative PCR-based methods have become the method of choice in microbial source tracking. However, these qPCR assays are not 100% specific and sensitive for the target sequence in their respective hosts' genome. The factors that can lead to false positive and false negative information in qPCR results are well defined. It is highly desirable to have a way of removing such false information to estimate the true concentration of host-specific genetic markers and help guide the interpretation of environmental monitoring studies. Here we propose a statistical model based on the Law of Total Probability to predict the true concentration of these markers. The distributions of the probabilities of obtaining false information are estimated from representative fecal samples of known origin. Measurement error is derived from the sample precision error of replicated qPCR reactions. Then, the Monte Carlo method is applied to sample from these distributions of probabilities and measurement error. The set of equations given by the Law of Total Probability allows one to calculate the distribution of true concentrations, from which their expected value, confidence interval and other statistical characteristics can be easily evaluated. The output distributions of predicted true concentrations can then be used as input to watershed-wide total maximum daily load determinations, quantitative microbial risk assessment and other environmental models. This model was validated by both statistical simulations and real world samples. It was able to correct the intrinsic false information associated with qPCR assays and output the distribution of true concentrations of Bacteroidales for each animal host group. Model performance was strongly affected by the precision error. It could perform reliably and precisely when the standard deviation of the precision error was small (≤ 0.1). Further improvement on the precision of sample processing and qPCR reaction would greatly improve the performance of the model. This methodology, built upon Bacteroidales assays, is readily transferable to any other microbial source indicator where a universal assay for fecal sources of that indicator exists. Copyright © 2010 Elsevier Ltd. All rights reserved.
Janse, Ingmar; Hamidjaja, Raditijo A; Hendriks, Amber C A; van Rotterdam, Bart J
2013-02-14
Burkholderia mallei and B. pseudomallei are two closely related species of highly virulent bacteria that can be difficult to detect. Pathogenic Burkholderia are endemic in many regions worldwide and cases of infection, sometimes brought by travelers from unsuspected regions, also occur elsewhere. Rapid, sensitive methods for identification of B. mallei and B. pseudomallei are urgently needed in the interests of patient treatment and epidemiological surveillance. Signature sequences for sensitive, specific detection of pathogenic Burkholderia based on published genomes were identified and a qPCR assay was designed and validated. A single-reaction quadruplex qPCR assay for the detection of pathogenic Burkholderia, which includes a marker for internal control of DNA extraction and amplification, was developed. The assay permits differentiation of B. mallei and B. pseudomallei strains, and probit analysis showed a very low detection limit. Use of a multicopy signature sequence permits detection of less than 1 genome equivalent per reaction. The new assay permits rapid detection of pathogenic Burkholderia and combines enhanced sensitivity, species differentiation, and inclusion of an internal control for both DNA extraction and PCR amplification.
Nachappa, Somanna Ajjamada; Neelambike, Sumana M; Amruthavalli, Chokkanna; Ramachandra, Nallur B
2018-05-01
Diagnosis of drug-resistant tuberculosis predominantly relies on culture-based drug susceptibility testing, which take weeks to produce a result and a more time-efficient alternative method is multiplex allele-specific PCR (MAS-PCR). Also, understanding the role of mutations in causing resistance helps better drug designing. To evaluate the ability of MAS-PCR in the detection of drug resistance and to understand the mechanism of interaction of drugs with mutant proteins in Mycobacterium tuberculosis. Detection of drug-resistant mutations using MAS-PCR and validation through DNA sequencing. MAS-PCR targeted five loci on three genes, katG 315 and inhA -15 for the drug isoniazid (INH), and rpoB 516, 526, and 531 for rifampicin (RIF). Furthermore, the sequence data were analyzed to study the effect on interaction of the anti-TB drug molecule with the target protein using in silico docking. We identified drug-resistant mutations in 8 out of 114 isolates with 2 of them as multidrug-resistant TB using MAS-PCR. DNA sequencing confirmed only six of these, recording a sensitivity of 85.7% and specificity of 99.3% for MAS-PCR. Molecular docking showed estimated free energy of binding (ΔG) being higher for RIF binding with RpoB S531L mutant. Codon 315 in KatG does not directly interact with INH but blocks the drug access to active site. We propose DNA sequencing-based drug resistance detection for TB, which is more accurate than MAS-PCR. Understanding the action of resistant mutations in disrupting the normal drug-protein interaction aids in designing effective drug alternatives.
Isaksson, Mats; Hagström, Åsa; Armua-Fernandez, Maria Teresa; Wahlström, Helene; Ågren, Erik Olof; Miller, Andrea; Holmberg, Anders; Lukacs, Morten; Casulli, Adriano; Deplazes, Peter; Juremalm, Mikael
2014-12-19
Following the first finding of Echinococcus multilocularis in Sweden in 2011, 2985 red foxes (Vulpes vulpes) were analysed by the segmental sedimentation and counting technique. This is a labour intensive method and requires handling of the whole carcass of the fox, resulting in a costly analysis. In an effort to reduce the cost of labour and sample handling, an alternative method has been developed. The method is sensitive and partially automated for detection of E. multilocularis in faecal samples. The method has been used in the Swedish E. multilocularis monitoring program for 2012-2013 on more than 2000 faecal samples. We describe a new semi-automated magnetic capture probe DNA extraction method and real time hydrolysis probe polymerase chain reaction assay (MC-PCR) for the detection of E. multilocularis DNA in faecal samples from red fox. The diagnostic sensitivity was determined by validating the new method against the sedimentation and counting technique in fox samples collected in Switzerland where E. multilocularis is highly endemic. Of 177 foxes analysed by the sedimentation and counting technique, E. multilocularis was detected in 93 animals. Eighty-two (88%, 95% C.I 79.8-93.9) of these were positive in the MC-PCR. In foxes with more than 100 worms, the MC-PCR was positive in 44 out of 46 (95.7%) cases. The two MC-PCR negative samples originated from foxes with only immature E. multilocularis worms. In foxes with 100 worms or less, (n = 47), 38 (80.9%) were positive in the MC-PCR. The diagnostic specificity of the MC-PCR was evaluated using fox scats collected within the Swedish screening. Of 2158 samples analysed, two were positive. This implies that the specificity is at least 99.9% (C.I. = 99.7-100). The MC-PCR proved to have a high sensitivity and a very high specificity. The test is partially automated but also possible to perform manually if desired. The test is well suited for nationwide E. multilocularis surveillance programs where sampling of fox scats is done to reduce the costs for sampling and where a test with a high sensitivity and a very high specificity is needed.
Evaluation of (GTG)5-PCR for identification of Enterococcus spp.
Svec, Pavel; Vancanneyt, Marc; Seman, Milan; Snauwaert, Cindy; Lefebvre, Karen; Sedlácek, Ivo; Swings, Jean
2005-06-01
A set of reference strains and a group of previously unidentified enterococci were analysed by rep-PCR with the (GTG)(5) primer to evaluate the discriminatory power and suitability of this method for typing and identification of enterococcal species. A total of 49 strains representing all validly described species were obtained from bacterial collections. For more extensive evaluation of this identification approach 112 well-defined and identified enterococci isolated from bryndza cheese were tested. The (GTG)(5)-PCR fingerprinting assigned all strains into well-differentiated clusters representing individual species. Subsequently, a group including 44 unidentified enterococci isolated from surface waters was analysed to evaluate this method for identification of unknown isolates. Obtained band patterns allowed us to identify all the strains clearly to the species level. This study proved that rep-PCR with (GTG)(5) primer is a reliable and fast method for species identification of enterococci.
Bohórquez, G Alejandro; Luzón, Mónica; Martín-Hernández, Raquel; Meana, Aránzazu
2015-01-15
Although several techniques exist for the detection of equine tapeworms in serum and feces, the differential diagnosis of tapeworm infection is usually based on postmortem findings and the morphological identification of eggs in feces. In this study, a multiplex polymerase chain reaction (PCR)-based method for the simultaneuos detection of Anoplocephala magna, Anoplocephala perfoliata and Anoplocephaloides mamillana has been developed and validated. The method simultaneously amplifies hypervariable SSUrRNA gene regions in the three tapeworm species in a single reaction using three pairs of primers, which exclusively amplify the internal transcribed spacer 2 (ITS-2) in each target gene. The method was tested on three types of sample: (a) 1/10, 1/100, 1/500, 1/1000, 1/2000 and 1/5000 dilutions of 70 ng of genomic DNA of the three tapeworm species, (b) DNA extracted from negative aliquots of sediments of negative control fecal samples spiked with 500, 200, 100, 50 and 10 eggs (only for A. magna and A. perfoliata; no A. mamillana eggs available) and (c) DNA extracted from 80, 50, 40, 30, 10 and 1 egg per 2 μl of PCR reaction mix (only for A. magna and A. perfoliata; no A. mamillana eggs available). No amplification was observed against the DNA of Gasterophilus intestinalis, Parascaris equorum and Strongylus vulgaris. The multiplex PCR method emerged as specific for the three tapeworms and was able to identify as few as 50 eggs per fecal sample and as little as 0.7 ng of control genomic DNA obtained from the three species. The method proposed is able to differentiate infections caused by the two most frequent species A. magna or A. perfoliata when the eggs are present in feces and is also able to detect mixed infections by the three cestode species. Copyright © 2014 Elsevier B.V. All rights reserved.
2017-01-01
Amplicon (targeted) sequencing by massively parallel sequencing (PCR-MPS) is a potential method for use in forensic DNA analyses. In this application, PCR-MPS may supplement or replace other instrumental analysis methods such as capillary electrophoresis and Sanger sequencing for STR and mitochondrial DNA typing, respectively. PCR-MPS also may enable the expansion of forensic DNA analysis methods to include new marker systems such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) that currently are assayable using various instrumental analysis methods including microarray and quantitative PCR. Acceptance of PCR-MPS as a forensic method will depend in part upon developing protocols and criteria that define the limitations of a method, including a defensible analytical threshold or method detection limit. This paper describes an approach to establish objective analytical thresholds suitable for multiplexed PCR-MPS methods. A definition is proposed for PCR-MPS method background noise, and an analytical threshold based on background noise is described. PMID:28542338
Young, Brian; King, Jonathan L; Budowle, Bruce; Armogida, Luigi
2017-01-01
Amplicon (targeted) sequencing by massively parallel sequencing (PCR-MPS) is a potential method for use in forensic DNA analyses. In this application, PCR-MPS may supplement or replace other instrumental analysis methods such as capillary electrophoresis and Sanger sequencing for STR and mitochondrial DNA typing, respectively. PCR-MPS also may enable the expansion of forensic DNA analysis methods to include new marker systems such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) that currently are assayable using various instrumental analysis methods including microarray and quantitative PCR. Acceptance of PCR-MPS as a forensic method will depend in part upon developing protocols and criteria that define the limitations of a method, including a defensible analytical threshold or method detection limit. This paper describes an approach to establish objective analytical thresholds suitable for multiplexed PCR-MPS methods. A definition is proposed for PCR-MPS method background noise, and an analytical threshold based on background noise is described.
[Validation of three screening tests used for early detection of cervical cancer].
Rodriguez-Reyes, Esperanza Rosalba; Cerda-Flores, Ricardo M; Quiñones-Pérez, Juan M; Cortés-Gutiérrez, Elva I
2008-01-01
to evaluate the validity (sensitivity, specificity, and accuracy) of three screening methods used in the early detection of the cervical carcinoma versus the histopathology diagnosis. a selected sample of 107 women attended in the Opportune Detection of Cervicouterine Cancer Program in the Hospital de Zona 46, Instituto Mexicano del Seguro Social in Durango, during the 2003 was included. The application of Papa-nicolaou, acetic acid test, and molecular detection of human papillomavirus, and histopatholgy diagnosis were performed in all the patients at the time of the gynecological exam. The detection and tipification of the human papillomavirus was performed by polymerase chain reaction (PCR) and analysis of polymorphisms of length of restriction fragments (RFLP). Histopathology diagnosis was considered the gold standard. The evaluation of the validity was carried out by the Bayesian method for diagnosis test. the positive cases for acetic acid test, Papanicolaou, and PCR were 47, 22, and 19. The accuracy values were 0.70, 0.80 and 0.99, respectively. since the molecular method showed a greater validity in the early detection of the cervical carcinoma we considered of vital importance its implementation in suitable programs of Opportune Detection of Cervicouterino Cancer Program in Mexico. However, in order to validate this conclusion, cross-sectional studies in different region of country must be carried out.
Farahani, Hamidreza; Ghaznavi-Rad, Ehsanollah; Mondanizadeh, Mahdieh; MirabSamiee, Siamak; Khansarinejad, Behzad
2016-08-01
Accurate and timely diagnosis of acute bacterial meningitis is critical for antimicrobial treatment of patients. Although PCR-based methods have been widely used for the diagnosis of acute meningitis caused by bacterial pathogens, the main disadvantage of these methods is their high cost. This disadvantage has hampered the widespread use of molecular assays in many developing countries. The application of multiplex assays and "in-house" protocols are two main approaches that can reduce the overall cost of a molecular test. In the present study, an internally controlled tetraplex-PCR was developed and validated for the specific detection of Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae in cerebrospinal fluid (CSF) samples. The analysis of a panel of other human pathogens showed no cross-reactivity in the assay. The analytical sensitivity of the in-house assay was 792.3 copies/ml, when all three bacteria were presentin the specimens. This value was calculated as 444.5, 283.7, 127.8 copies/ml when only S. pneumoniae, N. meningitidis and H. influenzae, respectively, were present. To demonstrate the diagnostic performance of the assay, a total of 150 archival CSF samples were tested and compared with a commercial multiplex real-time PCR kit. A diagnostic sensitivity of 92.8% and a specificity of 95.1% were determined for the present tetraplex-PCR assay. The results indicate that the established method is sensitive, specific and cost-effective, and can be used particularly in situations where the high cost of commercial kits prevents the use of molecular methods for the diagnosis of bacterial meningitis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Issa-Nummer, Yasmin; Darb-Esfahani, Silvia; Loibl, Sibylle; Kunz, Georg; Nekljudova, Valentina; Schrader, Iris; Sinn, Bruno Valentin; Ulmer, Hans-Ullrich; Kronenwett, Ralf; Just, Marianne; Kühn, Thorsten; Diebold, Kurt; Untch, Michael; Holms, Frank; Blohmer, Jens-Uwe; Habeck, Jörg-Olaf; Dietel, Manfred; Overkamp, Friedrich; Krabisch, Petra; von Minckwitz, Gunter; Denkert, Carsten
2013-01-01
We have recently described an increased lymphocytic infiltration rate in breast carcinoma tissue is a significant response predictor for anthracycline/taxane-based neoadjuvant chemotherapy (NACT). The aim of this study was to prospectively validate the tumor-associated lymphocyte infiltrate as predictive marker for response to anthracycline/taxane-based NACT. The immunological infiltrate was prospectively evaluated in a total of 313 core biopsies from HER2 negative patients of the multicenter PREDICT study, a substudy of the neoadjuvant GeparQuinto study. Intratumoral lymphocytes (iTuLy), stromal lymphocytes (strLy) as well as lymphocyte-predominant breast cancer (LPBC) were evaluated by histopathological assessment. Pathological complete response (pCR) rates were analyzed and compared between the defined subgroups using the exact test of Fisher. Patients with lymphocyte-predominant breast cancer (LPBC) had a significantly increased pCR rate of 36.6%, compared to non-LPBC patients (14.3%, p<0.001). LPBC and stromal lymphocytes were significantly independent predictors for pCR in multivariate analysis (LPBC: OR 2.7, p = 0.003, strLy: OR 1.2, p = 0.01). The amount of intratumoral lymphocytes was significantly predictive for pCR in univariate (OR 1.2, p = 0.01) but not in multivariate logistic regression analysis (OR 1.2, p = 0.11). Confirming previous investigations of our group, we have prospectively validated in an independent cohort that an increased immunological infiltrate in breast tumor tissue is predictive for response to anthracycline/taxane-based NACT. Patients with LPBC and increased stromal lymphocyte infiltration have significantly increased pCR rates. The lymphocytic infiltrate is a promising additional parameter for histopathological evaluation of breast cancer core biopsies.
Application of COLD-PCR for improved detection of KRAS mutations in clinical samples.
Zuo, Zhuang; Chen, Su S; Chandra, Pranil K; Galbincea, John M; Soape, Matthew; Doan, Steven; Barkoh, Bedia A; Koeppen, Hartmut; Medeiros, L Jeffrey; Luthra, Rajyalakshmi
2009-08-01
KRAS mutations have been detected in approximately 30% of all human tumors, and have been shown to predict response to some targeted therapies. The most common KRAS mutation-detection strategy consists of conventional PCR and direct sequencing. This approach has a 10-20% detection sensitivity depending on whether pyrosequencing or Sanger sequencing is used. To improve detection sensitivity, we compared our conventional method with the recently described co-amplification-at-lower denaturation-temperature PCR (COLD-PCR) method, which selectively amplifies minority alleles. In COLD-PCR, the critical denaturation temperature is lowered to 80 degrees C (vs 94 degrees C in conventional PCR). The sensitivity of COLD-PCR was determined by assessing serial dilutions. Fifty clinical samples were used, including 20 fresh bone-marrow aspirate specimens and the formalin-fixed paraffin-embedded (FFPE) tissue of 30 solid tumors. Implementation of COLD-PCR was straightforward and required no additional cost for reagents or instruments. The method was specific and reproducible. COLD-PCR successfully detected mutations in all samples that were positive by conventional PCR, and enhanced the mutant-to-wild-type ratio by >4.74-fold, increasing the mutation detection sensitivity to 1.5%. The enhancement of mutation detection by COLD-PCR inversely correlated with the tumor-cell percentage in a sample. In conclusion, we validated the utility and superior sensitivity of COLD-PCR for detecting KRAS mutations in a variety of hematopoietic and solid tumors using either fresh or fixed, paraffin-embedded tissue.
Ultrasensitive detection of oncogenic human papillomavirus in oropharyngeal tissue swabs.
Isaac, Andre; Kostiuk, Morris; Zhang, Han; Lindsay, Cameron; Makki, Fawaz; O'Connell, Daniel A; Harris, Jeffrey R; Cote, David W J; Seikaly, Hadi; Biron, Vincent L
2017-01-14
The incidence of oropharyngeal squamous cell carcinoma (OPSCC) caused by oncogenic human papillomavirus (HPV) is rising worldwide. HPV-OPSCC is commonly diagnosed by RT-qPCR of HPV E6 and E7 oncoproteins or by p16 immunohistochemistry (IHC). Droplet digital PCR (ddPCR) has been recently reported as an ultra-sensitive and highly precise method of nucleic acid quantification for biomarker analysis. To validate the use of a minimally invasive assay for detection of oncogenic HPV based on oropharyngeal swabs using ddPCR. Secondary objectives were to compare the accuracy of ddPCR swabs to fresh tissue p16 IHC and RT-qPCR, and to compare the cost of ddPCR with p16 IHC. We prospectively included patients with p16 + oral cavity/oropharyngeal cancer (OC/OPSCC), and two control groups: p16 - OC/OPSCC patients, and healthy controls undergoing tonsillectomy. All underwent an oropharyngeal swab with ddPCR for quantitative detection of E6 and E7 mRNA. Surgical specimens had p16 IHC performed. Agreement between ddPCR and p16 IHC was determined for patients with p16 positive and negative OC/OPSCC as well as for healthy control patients. The sensitivity and specificity of ddPCR of oropharyngeal swabs were calculated against p16 IHC for OPSCC. 122 patients were included: 36 patients with p16 + OPSCC, 16 patients with p16 - OPSCC, 4 patients with p16 + OCSCC, 41 patients with p16 - OCSCC, and 25 healthy controls. The sensitivity and specificity of ddPCR of oropharyngeal swabs against p16 IHC were 92 and 98% respectively, using 20-50 times less RNA than that required for conventional RT-qPCR. Overall agreement between ddPCR of tissue swabs and p16 of tumor tissue was high at ĸ = 0.826 [0.662-0.989]. Oropharyngeal swabs analyzed by ddPCR is a quantitative, rapid, and effective method for minimally invasive oncogenic HPV detection. This assay represents the most sensitive and accurate mode of HPV detection in OPSCC without a tissue biopsy in the available literature.
Thierry, Alain R
2016-01-01
Circulating cell-free DNA (cfDNA) is a valuable source of tumor material available with a simple blood sampling enabling a noninvasive quantitative and qualitative analysis of the tumor genome. cfDNA is released by tumor cells and exhibits the genetic and epigenetic alterations of the tumor of origin. Circulating cell-free DNA (cfDNA) analysis constitutes a hopeful approach to provide a noninvasive tumor molecular test for cancer patients. Based upon basic research on the origin and structure of cfDNA, new information on circulating cell-free DNA (cfDNA) structure, and specific determination of cfDNA fragmentation and size, we revisited Q-PCR-based method and recently developed a the allele-specific-Q-PCR-based method with blocker (termed as Intplex) which is the first multiplexed test for cfDNA. This technique, named Intplex(®) and based on a refined Q-PCR method, derived from critical observations made on the specific structure and size of cfDNA. It enables the simultaneous determination of five parameters: the cfDNA total concentration, the presence of a previously known point mutation, the mutant (tumor) cfDNA concentration (ctDNA), the proportion of mutant cfDNA, and the cfDNA fragmentation index. Intplex(®) has enabled the first clinical validation of ctDNA analysis in oncology by detecting KRAS and BRAF point mutations in mCRC patients and has demonstrated that a blood test could replace tumor section analysis for the detection of KRAS and BRAF mutations. The Intplex(®) test can be adapted to all mutations, genes, or cancers and enables rapid, highly sensitive, cost-effective, and repetitive analysis. As regards to the determination of mutations on cfDNA Intplex(®) is limited to the mutational status of known hotspot mutation; it is a "targeted approach." However, it offers the opportunity in detecting quantitatively and dynamically mutation and could constitute a noninvasive attractive tool potentially allowing diagnosis, prognosis, theranostics, therapeutic monitoring, and follow-up of cancer patients expanding the scope of personalized cancer medicine.
Zheng, Yu-Tao; Li, Hong-Bo; Lu, Ming-Xing; Du, Yu-Zhou
2014-01-01
Quantitative real time PCR (qRT-PCR) has emerged as a reliable and reproducible technique for studying gene expression analysis. For accurate results, the normalization of data with reference genes is particularly essential. Once the transcriptome sequencing of Frankliniella occidentalis was completed, numerous unigenes were identified and annotated. Unfortunately, there are no studies on the stability of reference genes used in F. occidentalis. In this work, seven candidate reference genes, including actin, 18S rRNA, H3, tubulin, GAPDH, EF-1 and RPL32, were evaluated for their suitability as normalization genes under different experimental conditions using the statistical software programs BestKeeper, geNorm, Normfinder and the comparative ΔCt method. Because the rankings of the reference genes provided by each of the four programs were different, we chose a user-friendly web-based comprehensive tool RefFinder to get the final ranking. The result demonstrated that EF-1 and RPL32 displayed the most stable expression in different developmental stages; RPL32 and GAPDH showed the most stable expression at high temperatures, while 18S and EF-1 exhibited the most stable expression at low temperatures. In this study, we validated the suitable reference genes in F. occidentalis for gene expression profiling under different experimental conditions. The choice of internal standard is very important in the normalization of the target gene expression levels, thus validating and selecting the best genes will help improve the quality of gene expression data of F. occidentalis. What is more, these validated reference genes could serve as the basis for the selection of candidate reference genes in other insects. PMID:25356721
Zheng, Yu-Tao; Li, Hong-Bo; Lu, Ming-Xing; Du, Yu-Zhou
2014-01-01
Quantitative real time PCR (qRT-PCR) has emerged as a reliable and reproducible technique for studying gene expression analysis. For accurate results, the normalization of data with reference genes is particularly essential. Once the transcriptome sequencing of Frankliniella occidentalis was completed, numerous unigenes were identified and annotated. Unfortunately, there are no studies on the stability of reference genes used in F. occidentalis. In this work, seven candidate reference genes, including actin, 18S rRNA, H3, tubulin, GAPDH, EF-1 and RPL32, were evaluated for their suitability as normalization genes under different experimental conditions using the statistical software programs BestKeeper, geNorm, Normfinder and the comparative ΔCt method. Because the rankings of the reference genes provided by each of the four programs were different, we chose a user-friendly web-based comprehensive tool RefFinder to get the final ranking. The result demonstrated that EF-1 and RPL32 displayed the most stable expression in different developmental stages; RPL32 and GAPDH showed the most stable expression at high temperatures, while 18S and EF-1 exhibited the most stable expression at low temperatures. In this study, we validated the suitable reference genes in F. occidentalis for gene expression profiling under different experimental conditions. The choice of internal standard is very important in the normalization of the target gene expression levels, thus validating and selecting the best genes will help improve the quality of gene expression data of F. occidentalis. What is more, these validated reference genes could serve as the basis for the selection of candidate reference genes in other insects.
Maas, Miriam; van Roon, Annika; Dam-Deisz, Cecile; Opsteegh, Marieke; Massolo, Alessandro; Deksne, Gunita; Teunis, Peter; van der Giessen, Joke
2016-10-30
A new method, based on a magnetic capture based DNA extraction followed by qPCR, was developed for the detection of the zoonotic parasite Echinococcus multilocularis in definitive hosts. Latent class analysis was used to compare this new method with the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. In total, 60 red foxes and coyotes from three different locations were tested with both molecular methods and the sedimentation and counting technique (SCT) or intestinal scraping technique (IST). Though based on a limited number of samples, it could be established that the magnetic capture based DNA extraction followed by qPCR showed similar sensitivity and specificity as the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. All methods have a high specificity as shown by Bayesian latent class analysis. Both molecular assays have higher sensitivities than the combined SCT and IST, though the uncertainties in sensitivity estimates were wide for all assays tested. The magnetic capture based DNA extraction followed by qPCR has the advantage of not requiring hazardous chemicals like the phenol-chloroform DNA extraction followed by single tube nested PCR. This supports the replacement of the phenol-chloroform DNA extraction followed by single tube nested PCR by the magnetic capture based DNA extraction followed by qPCR for molecular detection of E. multilocularis in definitive hosts. Copyright © 2016 Elsevier B.V. All rights reserved.
Cloke, Jonathan; Arizanova, Julia; Crabtree, David; Simpson, Helen; Evans, Katharine; Vaahtoranta, Laura; Palomäki, Jukka-Pekka; Artimo, Paulus; Huang, Feng; Liikanen, Maria; Koskela, Suvi; Chen, Yi
2016-01-01
The Thermo Scientific™ SureTect™ Listeria species Real-Time PCR Assay was certified during 2013 by the AOAC Research Institute (RI) Performance Tested Methods(SM) program as a rapid method for the detection of Listeria species from a wide range of food matrixes and surface samples. A method modification study was conducted in 2015 to extend the matrix claims of the product to a wider range of food matrixes. This report details the method modification study undertaken to extend the use of this PCR kit to the Applied Biosystems™ 7500 Fast PCR Instrument and Applied Biosystems RapidFinder™ Express 2.0 software allowing use of the assay on a 96-well format PCR cycler in addition to the current workflow, using the 24-well Thermo Scientific PikoReal™ PCR Instrument and Thermo Scientific SureTect software. The method modification study presented in this report was assessed by the AOAC-RI as being a level 2 method modification study, necessitating a method developer study on a representative range of food matrixes covering raw ground turkey, 2% fat pasteurized milk, and bagged lettuce as well as stainless steel surface samples. All testing was conducted in comparison to the reference method detailed in International Organization for Standardization (ISO) 6579:2002. No significant difference by probability of detection statistical analysis was found between the SureTect Listeria species PCR Assay or the ISO reference method methods for any of the three food matrixes and the surface samples analyzed during the study.
Wang, Li-Ping; Lei, Kun
2016-12-01
Since 2009, Aureococcus anophagefferens has caused brown tide to occur recurrently in Qinhuangdao coastal area, China. Because the algal cells of A. anophagefferens are so tiny (~3 µm) that it is very hard to identify exactly under a microscope for natural water samples, it is very urgent to develop a method for efficient and continuous monitoring. Here specific primers and Taqman probe are designed to develop a real-time quantitative PCR (qPCR) method for identification and quantification continually. The algal community and cell abundance of A. anophagefferens in the study area (E 119°20'-119°50' and N 39°30'-39°50') from April to October in 2013 are detected by pyrosequencing, and are used to validate the specification and precision of qPCR method for natural samples. Both pyrosequencing and qPCR shows that the targeted cells are present only in May, June and July, and the cell abundance are July > June > May. Although there are various algal species including dinoflagellata, diatom, Cryptomonadales, Chrysophyceae and Chlorophyta living in the natural seawater simultaneously, no disturbance happens to qPCR method. This qPCR method could detect as few as 10 targeted cells, indicating it is able to detect the algal cells at pre-bloom levels. Therefore, qPCR with Taqman probe provides a powerful and sensitive method to monitor the brown tide continually in Qinhuangdao coastal area, China. The results provide a necessary technology support for forecasting the brown tide initiation, in China.
A comparison of ARMS-Plus and droplet digital PCR for detecting EGFR activating mutations in plasma
Zhang, Xinxin; Chang, Ning; Yang, Guohua; Zhang, Yong; Ye, Mingxiang; Cao, Jing; Xiong, Jie; Han, Zhiping; Wu, Shuo; Shang, Lei; Zhang, Jian
2017-01-01
In this study, we introduce a novel amplification refractory mutation system (ARMS)-based assay, namely ARMS-Plus, for the detection of epidermal growth factor receptor (EGFR) mutations in plasma samples. We evaluated the performance of ARMS-Plus in comparison with droplet digital PCR (ddPCR) and assessed the significance of plasma EGFR mutations in predicting efficacy of EGFR-tyrosine kinase inhibitor (TKI) regimen. A total of 122 advanced non-small cell lung cancer (NSCLC) patients were enrolled in this study. The tumor tissue samples from these patients were evaluated by conventional ARMS PCR method to confirm their EGFR mutation status. For the 116 plasma samples analyzed by ARMS-Plus, the sensitivity, specificity, and concordance rate were 77.27% (34/44), 97.22% (70/72), and 89.66% (104/116; κ=0.77, P<0.0001), respectively. Among the 71 plasma samples analyzed by both ARMS-Plus and ddPCR, ARMS-Plus showed a higher sensitivity than ddPCR (83.33% versus 70.83%). The presence of EGFR activating mutations in plasma was not associated with the response to EGFR-TKI, although further validation with a larger cohort is required to confirm the correlation. Collectively, the performance of ARMS-Plus and ddPCR are comparable. ARMS-Plus could be a potential alternative to tissue genotyping for the detection of plasma EGFR mutations in NSCLC patients. PMID:29340107
Raith, M R; Ebentier, D L; Cao, Y; Griffith, J F; Weisberg, S B
2014-03-01
To determine the extent to which discrepancies between qPCR and culture-based results in beach water quality monitoring can be attributed to: (i) within-method variability, (ii) between-method difference within each method class (qPCR or culture) and (iii) between-class difference. We analysed 306 samples using two culture-based (EPA1600 and Enterolert) and two qPCR (Taqman and Scorpion) methods, each in duplicate. Both qPCR methods correlated with EPA1600, but regression analyses indicated approximately 0·8 log10 unit overestimation by qPCR compared to culture methods. Differences between methods within a class were less than half of this and were minimal for between-replicate within a method. Using the 104 Enterococcus per 100 ml management decision threshold, Taqman qPCR indicated the same decisions as EPA1600 for 87% of the samples, but indicated beach posting for unhealthful water when EPA1600 did not for 12% of the samples. After accounting for within-method and within-class variability, 8% of the samples exhibited true between-class discrepancy where both qPCR methods indicated beach posting while both culture methods did not. Measurement target difference (DNA vs growth) accounted for the majority of the qPCR-vs-culture discrepancy, but its influence on monitoring application is outweighed by frequent incorrect posting with culture methods due to incubation time delay. This is the first study to quantify the frequency with which culture-vs-qPCR discrepancies can be attributed to target difference - vs - method variability. © 2013 The Society for Applied Microbiology.
Tan, Thean Yen; Zou, Hao; Ong, Danny Chee Tiong; Ker, Khor Jia; Chio, Martin Tze Wei; Teo, Rachael Yu Lin; Koh, Mark Jean Aan
2013-12-01
Herpes simplex virus (HSV) and varicella zoster virus (VZV) are related members of the Herpesviridae family and are well-documented human pathogens causing a spectrum of diseases, from mucocutaneous disease to infections of the central nervous system. This study was carried out to evaluate and validate the performance of a multiplex real-time polymerase chain reaction (PCR) assay in detecting and differentiating HSV1, HSV2, and VZV from clinical samples. Consensus PCR primers for HSV were designed from the UL30 component of the DNA polymerase gene of HSV, with 2 separate hydrolysis probes designed to differentiate HSV1 and HSV2. Separate primers and a probe were also designed against the DNA polymerase gene of VZV. A total of 104 clinical samples were available for testing by real-time PCR, conventional PCR, and viral culture. The sensitivity and specificity of the real-time assay was calculated by comparing the multiplex PCR result with that of a combined standard of virus culture and conventional PCR. The sensitivity of the real-time assay was 100%, with specificity ranging from 98% to 100% depending on the target gene. Both PCR methods detected more positive samples for HSV or VZV, compared with conventional virus culture. This multiplex PCR assay provides accurate and rapid diagnostic capabilities for the diagnosis and differentiation of HSV1, HSV2, and VZV infections, with the presence of an internal control to monitor for inhibition of the PCR reaction.
Paternò, Annalisa; Marchesi, Ugo; Gatto, Francesco; Verginelli, Daniela; Quarchioni, Cinzia; Fusco, Cristiana; Zepparoni, Alessia; Amaddeo, Demetrio; Ciabatti, Ilaria
2009-12-09
The comparison of five real-time polymerase chain reaction (PCR) methods targeted at maize ( Zea mays ) endogenous sequences is reported. PCR targets were the alcohol dehydrogenase (adh) gene for three methods and high-mobility group (hmg) gene for the other two. The five real-time PCR methods have been checked under repeatability conditions at several dilution levels on both pooled DNA template from several genetically modified (GM) maize certified reference materials (CRMs) and single CRM DNA extracts. Slopes and R(2) coefficients of all of the curves obtained from the adopted regression model were compared within the same method and among all of the five methods, and the limit of detection and limit of quantitation were analyzed for each PCR system. Furthermore, method equivalency was evaluated on the basis of the ability to estimate the target haploid genome copy number at each concentration level. Results indicated that, among the five methods tested, one of the hmg-targeted PCR systems can be considered equivalent to the others but shows the best regression parameters and a higher repeteability along the dilution range. Thereby, it is proposed as a valid module to be coupled to different event-specific real-time PCR for maize genetically modified organism (GMO) quantitation. The resulting practicability improvement on the analytical control of GMOs is discussed.
Tignon, Marylène; Gallardo, Carmina; Iscaro, Carmen; Hutet, Evelyne; Van der Stede, Yves; Kolbasov, Denis; De Mia, Gian Mario; Le Potier, Marie-Frédérique; Bishop, Richard P; Arias, Marisa; Koenen, Frank
2011-12-01
A real-time polymerase chain reaction (PCR) assay for the rapid detection of African swine fever virus (ASFV), multiplexed for simultaneous detection of swine beta-actin as an endogenous control, has been developed and validated by four National Reference Laboratories of the European Union for African swine fever (ASF) including the European Union Reference Laboratory. Primers and a TaqMan(®) probe specific for ASFV were selected from conserved regions of the p72 gene. The limit of detection of the new real-time PCR assay is 5.7-57 copies of the ASFV genome. High accuracy, reproducibility and robustness of the PCR assay (CV ranging from 0.7 to 5.4%) were demonstrated both within and between laboratories using different real-time PCR equipments. The specificity of virus detection was validated using a panel of 44 isolates collected over many years in various geographical locations in Europe, Africa and America, including recent isolates from the Caucasus region, Sardinia, East and West Africa. Compared to the OIE-prescribed conventional and real-time PCR assays, the sensitivity of the new assay with internal control was improved, as demonstrated by testing 281 field samples collected in recent outbreaks and surveillance areas in Europe and Africa (170 samples) together with samples obtained through experimental infections (111 samples). This is particularly evident in the early days following experimental infection and during the course of the disease in pigs sub-clinically infected with strains of low virulence (from 35 up to 70dpi). The specificity of the assay was also confirmed on 150 samples from uninfected pigs and wild boar from ASF-free areas. Measured on the total of 431 tested samples, the positive deviation of the new assay reaches 21% or 26% compared to PCR and real-time PCR methods recommended by OIE. This improved and rigorously validated real-time PCR assay with internal control will provide a rapid, sensitive and reliable molecular tool for ASFV detection in pigs in newly infected areas, control in endemic areas and surveillance in ASF-free areas. Copyright © 2011 Elsevier B.V. All rights reserved.
Ganger, Michael T; Dietz, Geoffrey D; Ewing, Sarah J
2017-12-01
qPCR has established itself as the technique of choice for the quantification of gene expression. Procedures for conducting qPCR have received significant attention; however, more rigorous approaches to the statistical analysis of qPCR data are needed. Here we develop a mathematical model, termed the Common Base Method, for analysis of qPCR data based on threshold cycle values (C q ) and efficiencies of reactions (E). The Common Base Method keeps all calculations in the logscale as long as possible by working with log 10 (E) ∙ C q , which we call the efficiency-weighted C q value; subsequent statistical analyses are then applied in the logscale. We show how efficiency-weighted C q values may be analyzed using a simple paired or unpaired experimental design and develop blocking methods to help reduce unexplained variation. The Common Base Method has several advantages. It allows for the incorporation of well-specific efficiencies and multiple reference genes. The method does not necessitate the pairing of samples that must be performed using traditional analysis methods in order to calculate relative expression ratios. Our method is also simple enough to be implemented in any spreadsheet or statistical software without additional scripts or proprietary components.
Scantlebury, C E; Pinchbeck, G L; Loughnane, P; Aklilu, N; Ashine, T; Stringer, A P; Gordon, L; Marshall, M; Christley, R M; McCarthy, A J
2016-12-01
Histoplasma capsulatum var. farciminosum, the causative agent of epizootic lymphangitis (EZL), is endemic in parts of Africa. Diagnosis based on clinical signs and microscopy lacks specificity and is a barrier to further understanding this neglected disease. Here, a nested PCR method targeting the internal transcribed spacer (ITS) region of the rRNA operon was validated for application to equine clinical samples. Twenty-nine horses with signs of EZL from different climatic regions of Ethiopia were clinically examined. Blood samples and aspirates of pus from cutaneous nodules were taken, along with blood from a further 20 horses with no cutaneous EZL lesions. Among the 29 horses with suspected cases of EZL, H. capsulatum var. farciminosum was confirmed by extraction of DNA from pus and blood samples from 25 and 17 horses, respectively. Positive PCR results were also obtained with heat-inactivated pus (24 horses) and blood (23 horses) spotted onto Whatman FTA cards. Two positive results were obtained among blood samples from 20 horses that did not exhibit clinical signs of EZL. These are the first reports of the direct detection of H. capsulatum var. farciminosum in equine blood and at high frequency among horses exhibiting cutaneous lesions. The nested PCR outperformed conventional microscopic diagnosis, as characteristic yeast cells could be observed only in 14 pus samples. The presence of H. capsulatum var. farciminosum DNA was confirmed by sequencing the cloned PCR products, and while alignment of the ITS amplicons showed very little sequence variation, there was preliminary single nucleotide polymorphism-based evidence for the existence of two subgroups of H. capsulatum var. farciminosum This molecular diagnostic method now permits investigation of the epidemiology of EZL. Copyright © 2016 Scantlebury et al.
Pinchbeck, G. L.; Loughnane, P.; Aklilu, N.; Ashine, T.; Stringer, A. P.; Gordon, L.; Marshall, M.; Christley, R. M.
2016-01-01
Histoplasma capsulatum var. farciminosum, the causative agent of epizootic lymphangitis (EZL), is endemic in parts of Africa. Diagnosis based on clinical signs and microscopy lacks specificity and is a barrier to further understanding this neglected disease. Here, a nested PCR method targeting the internal transcribed spacer (ITS) region of the rRNA operon was validated for application to equine clinical samples. Twenty-nine horses with signs of EZL from different climatic regions of Ethiopia were clinically examined. Blood samples and aspirates of pus from cutaneous nodules were taken, along with blood from a further 20 horses with no cutaneous EZL lesions. Among the 29 horses with suspected cases of EZL, H. capsulatum var. farciminosum was confirmed by extraction of DNA from pus and blood samples from 25 and 17 horses, respectively. Positive PCR results were also obtained with heat-inactivated pus (24 horses) and blood (23 horses) spotted onto Whatman FTA cards. Two positive results were obtained among blood samples from 20 horses that did not exhibit clinical signs of EZL. These are the first reports of the direct detection of H. capsulatum var. farciminosum in equine blood and at high frequency among horses exhibiting cutaneous lesions. The nested PCR outperformed conventional microscopic diagnosis, as characteristic yeast cells could be observed only in 14 pus samples. The presence of H. capsulatum var. farciminosum DNA was confirmed by sequencing the cloned PCR products, and while alignment of the ITS amplicons showed very little sequence variation, there was preliminary single nucleotide polymorphism-based evidence for the existence of two subgroups of H. capsulatum var. farciminosum. This molecular diagnostic method now permits investigation of the epidemiology of EZL. PMID:27707938
Bièche, I; Olivi, M; Champème, M H; Vidaud, D; Lidereau, R; Vidaud, M
1998-11-23
Gene amplification is a common event in the progression of human cancers, and amplified oncogenes have been shown to have diagnostic, prognostic and therapeutic relevance. A kinetic quantitative polymerase-chain-reaction (PCR) method, based on fluorescent TaqMan methodology and a new instrument (ABI Prism 7700 Sequence Detection System) capable of measuring fluorescence in real-time, was used to quantify gene amplification in tumor DNA. Reactions are characterized by the point during cycling when PCR amplification is still in the exponential phase, rather than the amount of PCR product accumulated after a fixed number of cycles. None of the reaction components is limited during the exponential phase, meaning that values are highly reproducible in reactions starting with the same copy number. This greatly improves the precision of DNA quantification. Moreover, real-time PCR does not require post-PCR sample handling, thereby preventing potential PCR-product carry-over contamination; it possesses a wide dynamic range of quantification and results in much faster and higher sample throughput. The real-time PCR method, was used to develop and validate a simple and rapid assay for the detection and quantification of the 3 most frequently amplified genes (myc, ccndl and erbB2) in breast tumors. Extra copies of myc, ccndl and erbB2 were observed in 10, 23 and 15%, respectively, of 108 breast-tumor DNA; the largest observed numbers of gene copies were 4.6, 18.6 and 15.1, respectively. These results correlated well with those of Southern blotting. The use of this new semi-automated technique will make molecular analysis of human cancers simpler and more reliable, and should find broad applications in clinical and research settings.
Beissner, Marcus; Phillips, Richard Odame; Battke, Florian; Bauer, Malkin; Badziklou, Kossi; Sarfo, Fred Stephen; Maman, Issaka; Rhomberg, Agata; Piten, Ebekalisai; Frimpong, Michael; Huber, Kristina Lydia; Symank, Dominik; Jansson, Moritz; Wiedemann, Franz Xaver; Banla Kere, Abiba; Herbinger, Karl-Heinz; Löscher, Thomas; Bretzel, Gisela
2015-01-01
Background As the major burden of Buruli ulcer disease (BUD) occurs in remote rural areas, development of point-of-care (POC) tests is considered a research priority to bring diagnostic services closer to the patients. Loop-mediated isothermal amplification (LAMP), a simple, robust and cost-effective technology, has been selected as a promising POC test candidate. Three BUD-specific LAMP assays are available to date, but various technical challenges still hamper decentralized application. To overcome the requirement of cold-chains for transport and storage of reagents, the aim of this study was to establish a dry-reagent-based LAMP assay (DRB-LAMP) employing lyophilized reagents. Methodology/Principal Findings Following the design of an IS2404 based conventional LAMP (cLAMP) assay suitable to apply lyophilized reagents, a lyophylization protocol for the DRB-LAMP format was developed. Clinical performance of cLAMP was validated through testing of 140 clinical samples from 91 suspected BUD cases by routine assays, i.e. IS2404 dry-reagent-based (DRB) PCR, conventional IS2404 PCR (cPCR), IS2404 qPCR, compared to cLAMP. Whereas qPCR rendered an additional 10% of confirmed cases and samples respectively, case confirmation and positivity rates of DRB-PCR or cPCR (64.84% and 56.43%; 100% concordant results in both assays) and cLAMP (62.64% and 52.86%) were comparable and there was no significant difference between the sensitivity of the assays (DRB PCR and cPCR, 86.76%; cLAMP, 83.82%). Likewise, sensitivity of cLAMP (95.83%) and DRB-LAMP (91.67%) were comparable as determined on a set of 24 samples tested positive in all routine assays. Conclusions/Significance Both LAMP formats constitute equivalent alternatives to conventional PCR techniques. Provided the envisaged availability of field friendly DNA extraction formats, both assays are suitable for decentralized laboratory confirmation of BUD, whereby DRB-LAMP scores with the additional advantage of not requiring cold-chains. As validation of the assays was conducted in a third-level laboratory environment, field based evaluation trials are necessary to determine the clinical performance at peripheral health care level. PMID:26566026
Beknazarova, Meruyert; Millsteed, Shelby; Robertson, Gemma; Whiley, Harriet; Ross, Kirstin
2017-06-09
Strongyloides stercoralis is a gastrointestinal parasitic nematode with a life cycle that includes free-living and parasitic forms. For both clinical (diagnostic) and environmental evaluation, it is important that we can detect Strongyloides spp. in both human and non-human fecal samples. Real-time PCR is the most feasible method for detecting the parasite in both clinical and environmental samples that have been preserved. However, one of the biggest challenges with PCR detection is DNA degradation during the postage time from rural and remote areas to the laboratory. This study included a laboratory assessment and field validation of DESS (dimethyl sulfoxide, disodium EDTA, and saturated NaCl) preservation of Strongyloides spp. DNA in fecal samples. The laboratory study investigated the capacity of 1:1 and 1:3 sample to DESS ratios to preserve Strongyloides ratti in spike canine feces. It was found that both ratios of DESS significantly prevented DNA degradation compared to the untreated sample. This method was then validated by applying it to the field-collected canine feces and detecting Strongyloides DNA using PCR. A total of 37 canine feces samples were collected and preserved in the 1:3 ratio (sample: DESS) and of these, 17 were positive for Strongyloides spp. The study shows that both 1:1 and 1:3 sample to DESS ratios were able to preserve the Strongyloides spp. DNA in canine feces samples stored at room temperature for up to 56 days. This DESS preservation method presents the most applicable and feasible method for the Strongyloides DNA preservation in field-collected feces.
Fang, Xin-Yu; Li, Wen-Bo; Zhang, Chao-Fan; Huang, Zi-da; Zeng, Hui-Yi; Dong, Zheng; Zhang, Wen-Ming
2018-02-01
To explore the diagnostic efficiency of DNA-based and RNA-based quantitative polymerase chain reaction (qPCR) analyses for periprosthetic joint infection (PJI). To determine the detection limit of DNA-based and RNA-based qPCR in vitro, Staphylococcus aureus and Escherichia coli strains were added to sterile synovial fluid obtained from a patient with knee osteoarthritis. Serial dilutions of samples were analyzed by DNA-based and RNA-based qPCR. Clinically, patients who were suspected of having PJI and eventually underwent revision arthroplasty in our hospital from July 2014 to December 2016 were screened. Preoperative puncture or intraoperative collection was performed on patients who met the inclusion and exclusion criteria to obtain synovial fluid. DNA-based and RNA-based PCR analyses and culture were performed on each synovial fluid sample. The patients' demographic characteristics, medical history, and laboratory test results were recorded. The diagnostic efficiency of both PCR assays was compared with culture methods. The in vitro analysis demonstrated that DNA-based qPCR assay was highly sensitive, with the detection limit being 1200 colony forming units (CFU)/mL of S. aureus and 3200 CFU/mL of E. coli. Meanwhile, The RNA-based qPCR assay could detect 2300 CFU/mL of S. aureus and 11 000 CFU/mL of E. coli. Clinically, the sensitivity, specificity, and accuracy were 65.7%, 100%, and 81.6%, respectively, for the culture method; 81.5%, 84.8%, and 83.1%, respectively, for DNA-based qPCR; and 73.6%, 100%, and 85.9%, respectively, for RNA-based qPCR. DNA-based qPCR could detect suspected PJI with high sensitivity after antibiotic therapy. RNA-based qPCR could reduce the false positive rates of DNA-based assays. qPCR-based methods could improve the efficiency of PJI diagnosis. © 2018 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Gerstel-Thompson, Jacalyn L; Wilkey, Jonathan F; Baptiste, Jennifer C; Navas, Jennifer S; Pai, Sung-Yun; Pass, Kenneth A; Eaton, Roger B; Comeau, Anne Marie
2010-09-01
Real-time quantitative PCR (qPCR) targeting a specific marker of functional T cells, the T-cell-receptor excision circle (TREC), detects the absence of functional T cells and has a demonstrated clinical validity for detecting severe combined immunodeficiency (SCID) in infants. There is need for a qPCR TREC assay with an internal control to monitor DNA quality and the relative cellular content of the particular dried blood spot punch sampled in each reaction. The utility of the qPCR TREC assay would also be far improved if more tests could be performed on the same newborn screening sample. We approached the multiplexing of qPCR for TREC by attenuating the reaction for the reference gene, with focus on maintaining tight quality assurance for reproducible slopes and for prevention of sample-to-sample cross contamination. Statewide newborn screening for SCID using the multiplexed assay was implemented, and quality-assurance data were recorded. The multiplex qPCR TREC assay showed nearly 100% amplification efficiency for each of the TREC and reference sequences, clinical validity for multiple forms of SCID, and an analytic limit of detection consistent with prevention of contamination. The eluate and residual ghost from a 3.2-mm dried blood spot could be used as source material for multiplexed immunoassays and multiplexed DNA tests (Multiplex Plus), with no disruption to the multiplex TREC qPCR. Population-based SCID newborn screening programs should consider multiplexing for quality assurance purposes. Potential benefits of using Multiplex Plus include the ability to perform multianalyte profiling.
Designing and Validation of One-Step T-ARMS-PCR for Genotyping the eNOS rs1799983 SNP
Heidar, Mohammad Mehdi; Khatami, Mehri
2017-01-01
Background: The transversion of G to T (G894T) in human endothelial nitric oxide synthase (eNOS) gene has profound effects such as male infertility, recurrent miscarriage, multiple sclerosis and cardiovascular diseases. Objectives: Development of a new Multiplex Tetra-Primer Amplification Refractory Mutation System - Polymerase Chain Reaction (T-ARMS-PCR) for detection of rs1799983 (G894T) in the human eNOS was sought. Materials and Methods: A T-ARMS-PCR for rs1799983 polymorphism in a single-step PCR was carried out, and the results were confirmed by PCR-RFLP technique in 82 infertile men with varicocele. Results: The results showed that GG (varicocele infertile men), GT and TT genotypes appear to be 53.65%, 34.14%, and 12.19%, respectively. Full accordance between PCR-RFLP and T-ARMS-PCR methods for genotyping of rs1799983 polymorphism was found. Conclusions: This is the first work that describes a rapid, relatively cheap, high throughput detection of G894T polymorphism in eNOS that can be used in large scale clinical studies. PMID:29845071
Designing and Validation of One-Step T-ARMS-PCR for Genotyping the eNOS rs1799983 SNP.
Heidar, Mohammad Mehdi; Khatami, Mehri
2017-01-01
Background: The transversion of G to T (G894T) in human endothelial nitric oxide synthase ( eNOS ) gene has profound effects such as male infertility, recurrent miscarriage, multiple sclerosis and cardiovascular diseases. Objectives: Development of a new Multiplex Tetra-Primer Amplification Refractory Mutation System - Polymerase Chain Reaction (T-ARMS-PCR) for detection of rs1799983 (G894T) in the human eNOS was sought. Materials and Methods: A T-ARMS-PCR for rs1799983 polymorphism in a single-step PCR was carried out, and the results were confirmed by PCR-RFLP technique in 82 infertile men with varicocele. Results: The results showed that GG (varicocele infertile men), GT and TT genotypes appear to be 53.65%, 34.14%, and 12.19%, respectively. Full accordance between PCR-RFLP and T-ARMS-PCR methods for genotyping of rs1799983 polymorphism was found. Conclusions: This is the first work that describes a rapid, relatively cheap, high throughput detection of G894T polymorphism in eNOS that can be used in large scale clinical studies.
Acharya, Kamal R.; Dhand, Navneet K.; Whittington, Richard J.; Plain, Karren M.
2017-01-01
Johne’s disease is a chronic debilitating enteropathy of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Current abattoir surveillance programs detect disease via examination of gross lesions and confirmation by histopathological and/or tissue culture, which is time-consuming and has relatively low sensitivity. This study aimed to investigate whether a high-throughput quantitative PCR (qPCR) test is a viable alternative for tissue testing. Intestine and mesenteric lymph nodes were sourced from sheep experimentally infected with MAP and the DNA extracted using a protocol developed for tissues, comprised enzymatic digestion of the tissue homogenate, chemical and mechanical lysis, and magnetic bead-based DNA purification. The extracted DNA was tested by adapting a previously validated qPCR for fecal samples, and the results were compared with culture and histopathology results of the corresponding tissues. The MAP tissue qPCR confirmed infection in the majority of sheep with gross lesions on postmortem (37/38). Likewise, almost all tissue culture (61/64) or histopathology (52/58) positives were detected with good to moderate agreement (Cohen’s kappa statistic) and no significant difference to the reference tests (McNemar’s Chi-square test). Higher MAP DNA quantities corresponded to animals with more severe histopathology (odds ratio: 1.82; 95% confidence interval: 1.60, 2.07). Culture-independent strain typing on tissue DNA was successfully performed. This MAP tissue qPCR method had a sensitivity equivalent to the reference tests and is thus a viable replacement for gross- and histopathological examination of tissue samples in abattoirs. In addition, the test could be validated for testing tissue samples intended for human consumption. PMID:29312970
Acharya, Kamal R; Dhand, Navneet K; Whittington, Richard J; Plain, Karren M
2017-01-01
Johne's disease is a chronic debilitating enteropathy of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Current abattoir surveillance programs detect disease via examination of gross lesions and confirmation by histopathological and/or tissue culture, which is time-consuming and has relatively low sensitivity. This study aimed to investigate whether a high-throughput quantitative PCR (qPCR) test is a viable alternative for tissue testing. Intestine and mesenteric lymph nodes were sourced from sheep experimentally infected with MAP and the DNA extracted using a protocol developed for tissues, comprised enzymatic digestion of the tissue homogenate, chemical and mechanical lysis, and magnetic bead-based DNA purification. The extracted DNA was tested by adapting a previously validated qPCR for fecal samples, and the results were compared with culture and histopathology results of the corresponding tissues. The MAP tissue qPCR confirmed infection in the majority of sheep with gross lesions on postmortem (37/38). Likewise, almost all tissue culture (61/64) or histopathology (52/58) positives were detected with good to moderate agreement (Cohen's kappa statistic) and no significant difference to the reference tests (McNemar's Chi-square test). Higher MAP DNA quantities corresponded to animals with more severe histopathology (odds ratio: 1.82; 95% confidence interval: 1.60, 2.07). Culture-independent strain typing on tissue DNA was successfully performed. This MAP tissue qPCR method had a sensitivity equivalent to the reference tests and is thus a viable replacement for gross- and histopathological examination of tissue samples in abattoirs. In addition, the test could be validated for testing tissue samples intended for human consumption.
White, Helen E; Hedges, John; Bendit, Israel; Branford, Susan; Colomer, Dolors; Hochhaus, Andreas; Hughes, Timothy; Kamel-Reid, Suzanne; Kim, Dong-Wook; Modur, Vijay; Müller, Martin C; Pagnano, Katia B; Pane, Fabrizio; Radich, Jerry; Cross, Nicholas C P; Labourier, Emmanuel
2013-06-01
Current guidelines for managing Philadelphia-positive chronic myeloid leukemia include monitoring the expression of the BCR-ABL1 (breakpoint cluster region/c-abl oncogene 1, non-receptor tyrosine kinase) fusion gene by quantitative reverse-transcription PCR (RT-qPCR). Our goal was to establish and validate reference panels to mitigate the interlaboratory imprecision of quantitative BCR-ABL1 measurements and to facilitate global standardization on the international scale (IS). Four-level secondary reference panels were manufactured under controlled and validated processes with synthetic Armored RNA Quant molecules (Asuragen) calibrated to reference standards from the WHO and the NIST. Performance was evaluated in IS reference laboratories and with non-IS-standardized RT-qPCR methods. For most methods, percent ratios for BCR-ABL1 e13a2 and e14a2 relative to ABL1 or BCR were robust at 4 different levels and linear over 3 logarithms, from 10% to 0.01% on the IS. The intraassay and interassay imprecision was <2-fold overall. Performance was stable across 3 consecutive lots, in multiple laboratories, and over a period of 18 months to date. International field trials demonstrated the commutability of the reagents and their accurate alignment to the IS within the intra- and interlaboratory imprecision of IS-standardized methods. The synthetic calibrator panels are robust, reproducibly manufactured, analytically calibrated to the WHO primary standards, and compatible with most BCR-ABL1 RT-qPCR assay designs. The broad availability of secondary reference reagents will further facilitate interlaboratory comparative studies and independent quality assessment programs, which are of paramount importance for worldwide standardization of BCR-ABL1 monitoring results and the optimization of current and new therapeutic approaches for chronic myeloid leukemia. © 2013 American Association for Clinical Chemistry.
Joelsson, Adam C; Terkhorn, Shawn P; Brown, Ashley S; Puri, Amrita; Pascal, Benjamin J; Gaudioso, Zara E; Siciliano, Nicholas A
2017-09-01
Veriflow® Listeria species (Veriflow LS) is a molecular-based assay for the presumptive detection of Listeria spp. from environmental surfaces (stainless steel, sealed concrete, plastic, and ceramic tile) and ready-to-eat (RTE) food matrixes (hot dogs and deli meat). The assay utilizes a PCR detection method coupled with a rapid, visual, flow-based assay that develops in 3 min post-PCR amplification and requires only a 24 h enrichment for maximum sensitivity. The Veriflow LS system eliminates the need for sample purification, gel electrophoresis, or fluorophore-based detection of target amplification and does not require complex data analysis. This Performance Tested MethodSM validation study demonstrated the ability of the Veriflow LS assay to detect low levels of artificially inoculated Listeria spp. in six distinct environmental and food matrixes. In each unpaired reference comparison study, probability of detection analysis indicated that there was no significant difference between the Veriflow LS method and the U.S. Department of Agriculture Food Safety and Inspection Service Microbiology Laboratory Guide Chapter 8.08 reference method. Fifty-one strains of various Listeria spp. were detected in the inclusivity study, and 35 nonspecific organisms went undetected in the exclusivity study. The study results show that the Veriflow LS is a sensitive, selective, and robust assay for the presumptive detection of Listeria spp. sampled from environmental surfaces (stainless steel, sealed concrete, plastic, and ceramic tile) and RTE food matrixes (hot dogs and deli meat).
Whitman, Richard L.; Ge, Zhongfu; Nevers, Meredith B.; Boehm, Alexandria B.; Chern, Eunice C.; Haugland, Richard A.; Lukasik, Ashley M.; Molina, Marirosa; Przybyla-Kelly, Kasia; Shively, Dawn A.; White, Emily M.; Zepp, Richard G.; Byappanahalli, Muruleedhara N.
2010-01-01
The quantitative polymerase chain reaction (qPCR) method provides rapid estimates of fecal indicator bacteria densities that have been indicated to be useful in the assessment of water quality. Primarily because this method provides faster results than standard culture-based methods, the U.S. Environmental Protection Agency is currently considering its use as a basis for revised ambient water quality criteria. In anticipation of this possibility, we sought to examine the relationship between qPCR-based and culture-based estimates of enterococci in surface waters. Using data from several research groups, we compared enterococci estimates by the two methods in water samples collected from 37 sites across the United States. A consistent linear pattern in the relationship between cell equivalents (CCE), based on the qPCR method, and colony-forming units (CFU), based on the traditional culturable method, was significant (P 10CFU > 2.0/100 mL) while uncertainty increases at lower CFU values. It was further noted that the relative error in replicated qPCR estimates was generally higher than that in replicated culture counts even at relatively high target levels, suggesting a greater need for replicated analyses in the qPCR method to reduce relative error. Further studies evaluating the relationship between culture and qPCR should take into account analytical uncertainty as well as potential differences in results of these methods that may arise from sample variability, different sources of pollution, and environmental factors.
Zimmer-Faust, Amity G.; Thulsiraj, Vanessa; Ferguson, Donna
2014-01-01
The performance and specificity of the covalently linked immunomagnetic separation-ATP (Cov-IMS/ATP) method for the detection and enumeration of enterococci was evaluated in recreational waters. Cov-IMS/ATP performance was compared with standard methods: defined substrate technology (Enterolert; IDEXX Laboratories), membrane filtration (EPA Method 1600), and an Enterococcus-specific quantitative PCR (qPCR) assay (EPA Method A). We extend previous studies by (i) analyzing the stability of the relationship between the Cov-IMS/ATP method and culture-based methods at different field sites, (ii) evaluating specificity of the assay for seven ATCC Enterococcus species, (iii) identifying cross-reacting organisms binding the antibody-bead complexes with 16S rRNA gene sequencing and evaluating specificity of the assay to five nonenterococcus species, and (iv) conducting preliminary tests of preabsorption as a means of improving the assay. Cov-IMS/ATP was found to perform consistently and with strong agreement rates (based on exceedance/compliance with regulatory limits) of between 83% and 100% compared to the culture-based Enterolert method at a variety of sites with complex inputs. The Cov-IMS/ATP method is specific to five of seven different Enterococcus spp. tested. However, there is potential for nontarget bacteria to bind the antibody, which may be reduced by purification of the IgG serum with preabsorption at problematic sites. The findings of this study help to validate the Cov-IMS/ATP method, suggesting a predictable relationship between the Cov-IMS/ATP method and traditional culture-based methods, which will allow for more widespread application of this rapid and field-portable method for coastal water quality assessment. PMID:24561583
Shipitsyna, E; Zolotoverkhaya, E; Hjelmevoll, S O; Maximova, A; Savicheva, A; Sokolovsky, E; Skogen, V; Domeika, M; Unemo, M
2009-11-01
In Russia, laboratory diagnosis of gonorrhoea has been mainly based on microscopy only and, in some settings, relatively rare suboptimal culturing. In recent years, Russian developed and manufactured nucleic acid amplification tests (NAAT) have been implemented for routine diagnosis of Neisseria gonorrhoeae. However, these NAATs have never been validated to any international well-recognized diagnostic NAAT. This study aims to evaluate the performance characteristics of six Russian NAATs for N. gonorrhoeae diagnostics. In total, 496 symptomatic patients were included. Five polymerase chain reaction (PCR) assays and one real-time nucleic acid sequence based amplification (NASBA) assay, developed by three Russian companies, were evaluated on urogenital samples, i.e. cervical and first voided urine (FVU) samples from females (n = 319), urethral and FVU samples from males (n = 127), and extragenital samples, i.e. rectal and pharyngeal samples, from 50 additional female patients with suspicion of gonorrhoea. As reference method, an international strictly validated real-time porA pseudogene PCR was applied. The prevalence of N. gonorrhoeae was 2.7% and 16% among the patients providing urogenital and extragenital samples, respectively. The Russian NAATs and the reference method displayed high level of concordance (99.4-100%). The sensitivities, specificities, positive predictive values and negative predictive values of the Russian tests in different specimens were 66.7-100%, 100%, 100%, and 99.4-100%, respectively. Russian N. gonorrhoeae diagnostic NAATs comprise relatively good performance characteristics. However, larger studies are crucial and, beneficially, the Russian assays should also be evaluated to other international highly sensitive and specific, and ideally Food and Drug Administration approved, NAATs such as Aptima Combo 2 (Gen-Probe).
Ashraf, Aqeela; Imran, Muhammad; Yaqub, Tahir; Tayyab, Muhammad; Shehzad, Wasim; Thomson, Peter C
2017-06-01
For rapid and simultaneous detection of nine bovine mastitic pathogens, a sensitive and specific multiplex PCR assay was developed. The assay was standardized using reference strains and validated on mastitic milk cultures which were identified to species level based on 16S rRNA sequencing. Multiplex PCR assay also efficiently detected the target bacterial strains directly from milk. The detection limit of the assay was up to 50 pg for DNA isolated from pure cultures and 10 4 CFU/ml for spiked milk samples. As estimated by latent class analysis, the assay was sensitive up to 88% and specific up to 98% for targeted mastitic pathogens, compared with the bacterial culture method and the 16S rRNA sequence analysis. This novel molecular assay could be useful for monitoring and maintaining the bovine udder health, ensuring the bacteriological safety of milk, and conducting epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Elkins, Kelly M; Perez, Anjelica C U; Quinn, Alicia A
2017-05-01
The international prevalence of "legal high" drugs necessitates the development of a method for their detection and identification. Herein, we describe the development and validation of a tetraplex multiplex real-time polymerase chain reaction (PCR) assay used to simultaneously identify morning glory, jimson weed, Hawaiian woodrose, and marijuana detected by high-resolution melt using LCGreen Plus ® . The PCR assay was evaluated based on the following: (i) specificity and selectivity-primers were tested on DNA extracted from 30 species and simulated forensic samples, (ii) sensitivity-serial dilutions of the target DNA were prepared, and (iii) reproducibility and reliability-sample replicates were tested and remelted on different days. The assay is ideal for cases in which inexpensive assays are needed to quickly detect and identify trace biological material present on drug paraphernalia that is too compromised for botanical microscopic identification and for which analysts are unfamiliar with the morphology of the emerging "legal high" species. © 2016 American Academy of Forensic Sciences.
Moreira, Otacilio C; Yadon, Zaida E; Cupolillo, Elisa
2017-09-29
Cutaneous leishmaniasis (CL) is spread worldwide and is the most common manifestation of leishmaniasis. Diagnosis is performed by combining clinical and epidemiological features, and through the detection of Leishmania parasites (or DNA) in tissue specimens or trough parasite isolation in culture medium. Diagnosis of CL is challenging, reflecting the pleomorphic clinical manifestations of this disease. Skin lesions vary in severity, clinical appearance, and duration, and in some cases, they can be indistinguishable from lesions related to other diseases. Over the past few decades, PCR-based methods, including real-time PCR assays, have been developed for Leishmania detection, quantification and species identification, improving the molecular diagnosis of CL. This review provides an overview of many real-time PCR methods reported for the diagnostic evaluation of CL and some recommendations for the application of these methods for quantification purposes for clinical management and epidemiological studies. Furthermore, the use of real-time PCR for Leishmania species identification is also presented. The advantages of real-time PCR protocols are numerous, including increased sensitivity and specificity and simpler standardization of diagnostic procedures. However, despite the numerous assays described, there is still no consensus regarding the methods employed. Furthermore, the analytical and clinical validation of CL molecular diagnosis has not followed international guidelines so far. A consensus methodology comprising a DNA extraction protocol with an exogenous quality control and an internal reference to normalize parasite load is still needed. In addition, the analytical and clinical performance of any consensus methodology must be accurately assessed. This review shows that a standardization initiative is essential to guide researchers and clinical laboratories towards the achievement of a robust and reproducible methodology, which will permit further evaluation of parasite load as a surrogate marker of prognosis and monitoring of aetiological treatment, particularly in multi-centric observational studies and clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.
Microfluidics-based digital quantitative PCR for single-cell small RNA quantification.
Yu, Tian; Tang, Chong; Zhang, Ying; Zhang, Ruirui; Yan, Wei
2017-09-01
Quantitative analyses of small RNAs at the single-cell level have been challenging because of limited sensitivity and specificity of conventional real-time quantitative PCR methods. A digital quantitative PCR (dqPCR) method for miRNA quantification has been developed, but it requires the use of proprietary stem-loop primers and only applies to miRNA quantification. Here, we report a microfluidics-based dqPCR (mdqPCR) method, which takes advantage of the Fluidigm BioMark HD system for both template partition and the subsequent high-throughput dqPCR. Our mdqPCR method demonstrated excellent sensitivity and reproducibility suitable for quantitative analyses of not only miRNAs but also all other small RNA species at the single-cell level. Using this method, we discovered that each sperm has a unique miRNA profile. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dinon, Andréia Z; Prins, Theo W; van Dijk, Jeroen P; Arisi, Ana Carolina M; Scholtens, Ingrid M J; Kok, Esther J
2011-05-01
Primers and probes were developed for the element-specific detection of cry1A.105 and cry2Ab2 genes, based on their DNA sequence as present in GM maize MON89034. Cry genes are present in many genetically modified (GM) plants and they are important targets for developing GMO element-specific detection methods. Element-specific methods can be of use to screen for the presence of GMOs in food and feed supply chains. Moreover, a combination of GMO elements may indicate the potential presence of unapproved GMOs (UGMs). Primer-probe combinations were evaluated in terms of specificity, efficiency and limit of detection. Except for specificity, the complete experiment was performed in 9 PCR runs, on 9 different days and by testing 8 DNA concentrations. The results showed a high specificity and efficiency for cry1A.105 and cry2Ab2 detection. The limit of detection was between 0.05 and 0.01 ng DNA per PCR reaction for both assays. These data confirm the applicability of these new primer-probe combinations for element detection that can contribute to the screening for GM and UGM crops in food and feed samples.
One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX
Nitsche, Andreas; Kurth, Andreas; Dunkhorst, Anna; Pänke, Oliver; Sielaff, Hendrik; Junge, Wolfgang; Muth, Doreen; Scheller, Frieder; Stöcklein, Walter; Dahmen, Claudia; Pauli, Georg; Kage, Andreas
2007-01-01
Background As a new class of therapeutic and diagnostic reagents, more than fifteen years ago RNA and DNA aptamers were identified as binding molecules to numerous small compounds, proteins and rarely even to complete pathogen particles. Most aptamers were isolated from complex libraries of synthetic nucleic acids by a process termed SELEX based on several selection and amplification steps. Here we report the application of a new one-step selection method (MonoLEX) to acquire high-affinity DNA aptamers binding Vaccinia virus used as a model organism for complex target structures. Results The selection against complete Vaccinia virus particles resulted in a 64-base DNA aptamer specifically binding to orthopoxviruses as validated by dot blot analysis, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy and real-time PCR, following an aptamer blotting assay. The same oligonucleotide showed the ability to inhibit in vitro infection of Vaccinia virus and other orthopoxviruses in a concentration-dependent manner. Conclusion The MonoLEX method is a straightforward procedure as demonstrated here for the identification of a high-affinity DNA aptamer binding Vaccinia virus. MonoLEX comprises a single affinity chromatography step, followed by subsequent physical segmentation of the affinity resin and a single final PCR amplification step of bound aptamers. Therefore, this procedure improves the selection of high affinity aptamers by reducing the competition between aptamers of different affinities during the PCR step, indicating an advantage for the single-round MonoLEX method. PMID:17697378
Chavada, Ruchir; Maley, Michael
2015-01-01
Introduction: Community and healthcare associated infections caused by multi-drug resistant gram negative organisms (MDR GN) represent a worldwide threat. Nucleic Acid Detection tests are becoming more common for their detection; however they can be expensive requiring specialised equipment and local expertise. This study was done to evaluate the utility of a commercial multiplex tandem (MT) PCR for detection of MDR GN. Methods: The study was done on stored laboratory MDR GN isolates from sterile and non-sterile specimens (n=126, out of stored 567 organisms). Laboratory validation of the MT PCR was done to evaluate sensitivity, specificity and agreement with the current phenotypic methods used in the laboratory. Amplicon sequencing was also done on selected isolates for assessing performance characteristics. Workflow and cost implications of the MT PCR were evaluated. Results: The sensitivity and specificity of the MT PCR were calculated to be 95% and 96.7% respectively. Agreement with the phenotypic methods was 80%. Major lack of agreement was seen in detection of AmpC beta lactamase in enterobacteriaceae and carbapenemase in non-fermenters. Agreement of the MT PCR with another multiplex PCR was found to be 87%. Amplicon sequencing confirmed the genotype detected by MT PCR in 94.2 % of cases tested. Time to result was faster for the MT PCR but cost per test was higher. Conclusion: This study shows that with carefully chosen targets for detection of resistance genes in MDR GN, rapid and efficient identification is possible. MT PCR was sensitive and specific and likely more accurate than phenotypic methods. PMID:26464612
JRC GMO-Matrix: a web application to support Genetically Modified Organisms detection strategies.
Angers-Loustau, Alexandre; Petrillo, Mauro; Bonfini, Laura; Gatto, Francesco; Rosa, Sabrina; Patak, Alexandre; Kreysa, Joachim
2014-12-30
The polymerase chain reaction (PCR) is the current state of the art technique for DNA-based detection of Genetically Modified Organisms (GMOs). A typical control strategy starts by analyzing a sample for the presence of target sequences (GM-elements) known to be present in many GMOs. Positive findings from this "screening" are then confirmed with GM (event) specific test methods. A reliable knowledge of which GMOs are detected by combinations of GM-detection methods is thus crucial to minimize the verification efforts. In this article, we describe a novel platform that links the information of two unique databases built and maintained by the European Union Reference Laboratory for Genetically Modified Food and Feed (EU-RL GMFF) at the Joint Research Centre (JRC) of the European Commission, one containing the sequence information of known GM-events and the other validated PCR-based detection and identification methods. The new platform compiles in silico determinations of the detection of a wide range of GMOs by the available detection methods using existing scripts that simulate PCR amplification and, when present, probe binding. The correctness of the information has been verified by comparing the in silico conclusions to experimental results for a subset of forty-nine GM events and six methods. The JRC GMO-Matrix is unique for its reliance on DNA sequence data and its flexibility in integrating novel GMOs and new detection methods. Users can mine the database using a set of web interfaces that thus provide a valuable support to GMO control laboratories in planning and evaluating their GMO screening strategies. The platform is accessible at http://gmo-crl.jrc.ec.europa.eu/jrcgmomatrix/ .
Environmental Validation of Legionella Control in a VHA Facility Water System.
Jinadatha, Chetan; Stock, Eileen M; Miller, Steve E; McCoy, William F
2018-03-01
OBJECTIVES We conducted this study to determine what sample volume, concentration, and limit of detection (LOD) are adequate for environmental validation of Legionella control. We also sought to determine whether time required to obtain culture results can be reduced compared to spread-plate culture method. We also assessed whether polymerase chain reaction (PCR) and in-field total heterotrophic aerobic bacteria (THAB) counts are reliable indicators of Legionella in water samples from buildings. DESIGN Comparative Legionella screening and diagnostics study for environmental validation of a healthcare building water system. SETTING Veterans Health Administration (VHA) facility water system in central Texas. METHODS We analyzed 50 water samples (26 hot, 24 cold) from 40 sinks and 10 showers using spread-plate cultures (International Standards Organization [ISO] 11731) on samples shipped overnight to the analytical lab. In-field, on-site cultures were obtained using the PVT (Phigenics Validation Test) culture dipslide-format sampler. A PCR assay for genus-level Legionella was performed on every sample. RESULTS No practical differences regardless of sample volume filtered were observed. Larger sample volumes yielded more detections of Legionella. No statistically significant differences at the 1 colony-forming unit (CFU)/mL or 10 CFU/mL LOD were observed. Approximately 75% less time was required when cultures were started in the field. The PCR results provided an early warning, which was confirmed by spread-plate cultures. The THAB results did not correlate with Legionella status. CONCLUSIONS For environmental validation at this facility, we confirmed that (1) 100 mL sample volumes were adequate, (2) 10× concentrations were adequate, (3) 10 CFU/mL LOD was adequate, (4) in-field cultures reliably reduced time to get results by 75%, (5) PCR provided a reliable early warning, and (6) THAB was not predictive of Legionella results. Infect Control Hosp Epidemiol 2018;39:259-266.
Martino, Amanda J.; Rhodes, Matthew E.; Biddle, Jennifer F.; Brandt, Leah D.; Tomsho, Lynn P.; House, Christopher H.
2011-01-01
A degenerate polymerase chain reaction (PCR)-based method of whole-genome amplification, designed to work fluidly with 454 sequencing technology, was developed and tested for use on deep marine subsurface DNA samples. While optimized here for use with Roche 454 technology, the general framework presented may be applicable to other next generation sequencing systems as well (e.g., Illumina, Ion Torrent). The method, which we have called random amplification metagenomic PCR (RAMP), involves the use of specific primers from Roche 454 amplicon sequencing, modified by the addition of a degenerate region at the 3′ end. It utilizes a PCR reaction, which resulted in no amplification from blanks, even after 50 cycles of PCR. After efforts to optimize experimental conditions, the method was tested with DNA extracted from cultured E. coli cells, and genome coverage was estimated after sequencing on three different occasions. Coverage did not vary greatly with the different experimental conditions tested, and was around 62% with a sequencing effort equivalent to a theoretical genome coverage of 14.10×. The GC content of the sequenced amplification product was within 2% of the predicted values for this strain of E. coli. The method was also applied to DNA extracted from marine subsurface samples from ODP Leg 201 site 1229 (Peru Margin), and results of a taxonomic analysis revealed microbial communities dominated by Proteobacteria, Chloroflexi, Firmicutes, Euryarchaeota, and Crenarchaeota, among others. These results were similar to those obtained previously for those samples; however, variations in the proportions of taxa identified illustrates well the generally accepted view that community analysis is sensitive to both the amplification technique used and the method of assigning sequences to taxonomic groups. Overall, we find that RAMP represents a valid methodology for amplifying metagenomes from low-biomass samples. PMID:22319519
Digital PCR: A Sensitive and Precise Method for KIT D816V Quantification in Mastocytosis.
Greiner, Georg; Gurbisz, Michael; Ratzinger, Franz; Witzeneder, Nadine; Simonitsch-Klupp, Ingrid; Mitterbauer-Hohendanner, Gerlinde; Mayerhofer, Matthias; Müllauer, Leonhard; Sperr, Wolfgang R; Valent, Peter; Hoermann, Gregor
2018-03-01
The analytically sensitive detection of KIT D816V in blood and bone marrow is important for diagnosing systemic mastocytosis (SM). Additionally, precise quantification of the KIT D816V variant allele fraction (VAF) is relevant clinically because it helps to predict multilineage involvement and prognosis in cases of advanced SM. Digital PCR (dPCR) is a promising new method for sensitive detection and accurate quantification of somatic mutations. We performed a validation study of dPCR for KIT D816V on 302 peripheral blood and bone marrow samples from 156 patients with mastocytosis for comparison with melting curve analysis after peptide nucleic acid-mediated PCR clamping (clamp-PCR) and allele-specific quantitative real-time PCR (qPCR). dPCR showed a limit of detection of 0.01% VAF with a mean CV of 8.5% and identified the mutation in 90% of patients compared with 70% for clamp-PCR ( P < 0.001). Moreover, dPCR for KIT D816V was highly concordant with qPCR without systematic deviation of results, and confirmed the clinical value of KIT D816V VAF measurements. Thus, patients with advanced SM showed a significantly higher KIT D816V VAF (median, 2.43%) compared with patients with indolent SM (median, 0.14%; P < 0.001). Moreover, dPCR confirmed the prognostic significance of a high KIT D816V VAF regarding survival ( P < 0.001). dPCR for KIT D816V provides a high degree of precision and sensitivity combined with the potential for interlaboratory standardization, which is crucial for the implementation of KIT D816V allele burden measurement. Thus, dPCR is suitable as a new method for KIT D816V testing in patients with mastocytosis. © 2017 American Association for Clinical Chemistry.
Sulaiman, Irshad M; Torres, Patricia; Simpson, Steven; Kerdahi, Khalil; Ortega, Ynes
2013-04-01
We have described the development of a 2-step nested PCR protocol based on the characterization of the 70-kDa heat shock protein (HSP70) gene for rapid detection of the human-pathogenic Cyclospora cayetanensis parasite. We tested and validated these newly designed primer sets by PCR amplification followed by nucleotide sequencing of PCR-amplified HSP70 fragments belonging to 16 human C. cayetanensis isolates from 3 different endemic regions that include Nepal, Mexico, and Peru. No genetic polymorphism was observed among the isolates at the characterized regions of the HSP70 locus. This newly developed HSP70 gene-based nested PCR protocol provides another useful genetic marker for the rapid detection of C. cayetanensis in the future.
Loop-Mediated Isothermal Amplification Targeting Actin DNA of Trichomonas vaginalis.
Goo, Youn-Kyoung; Shin, Won-Sik; Yang, Hye-Won; Joo, So-Young; Song, Su-Min; Ryu, Jae-Sook; Kong, Hyun-Hee; Lee, Won-Ki; Chung, Dong-Il; Hong, Yeonchul
2016-06-01
Trichomoniasis caused by Trichomonas vaginalis is a common sexually transmitted disease. Its association with several health problems, including preterm birth, pelvic inflammatory disease, cervical cancer, and transmission of human immunodeficiency virus, emphasizes the importance of improved access to early and accurate detection of T. vaginalis. In this study, a rapid and efficient loop-mediated isothermal amplification-based method for the detection of T. vaginalis was developed and validated, using vaginal swab specimens from subjects suspected to have trichomoniasis. The LAMP assay targeting the actin gene was highly sensitive with detection limits of 1 trichomonad and 1 pg of T. vaginalis DNA per reaction, and specifically amplified the target gene only from T. vaginalis. Validation of this assay showed that it had the highest sensitivity and better agreement with PCR (used as the gold standard) compared to microscopy and multiplex PCR. This study showed that the LAMP assay, targeting the actin gene, could be used to diagnose early infections of T. vaginalis. Thus, we have provided an alternative molecular diagnostic tool and a point-of-care test that may help to prevent trichomoniasis transmission and associated complications.
Bai, Jianfa; Trinetta, Valentina; Shi, Xiaorong; Noll, Lance W; Magossi, Gabriela; Zheng, Wanglong; Porter, Elizabeth P; Cernicchiaro, Natalia; Renter, David G; Nagaraja, Tiruvoor G
2018-05-01
Cattle lymph nodes can harbor Salmonella and potentially contaminate beef products. We have developed and validated a new real-time PCR (qPCR) assay for the detection and quantification of Salmonella enterica in cattle lymph nodes. The assay targets both the invA and pagC genes, the most conserved molecular targets in Salmonella enterica. An 18S rRNA gene assay that amplifies from cattle and other animal species was also included as an internal control. Available DNA sequences for invA, pagC and 18S rRNA genes were used for primer and probe selections. Three Salmonella serotypes, S. Typhimurium, S. Anatum, and S. Montevideo, were used to assess the assay's analytical sensitivity. Correlation coefficients of standard curves generated for each target and for all three serotypes were >99% and qPCR amplification efficiencies were between 93% and 110%. Assay sensitivity was also determined using standard curve data generated from Salmonella-negative cattle lymph nodes spiked with 10-fold dilutions of the three Salmonella serotypes. Assay specificity was determined using Salmonella culture method, and qPCR testing on 36 Salmonella strains representing 33 serotypes, 38 Salmonella strains of unknown serotypes, 252 E. coli strains representing 40 serogroups, and 31 other bacterial strains representing 18 different species. A collection of 647 cattle lymph node samples from steers procured from the Midwest region of the US were tested by the qPCR, and compared to culture-method of detection. Salmonella prevalence by qPCR for pre-enriched and enriched lymph nodes was 19.8% (128/647) and 94.9% (614/647), respectively. A majority of qPCR positive pre-enriched samples (105/128) were at concentrations between 10 4 and 10 5 CFU/mL. Culture method detected Salmonella in 7.7% (50/647) and 80.7% (522/647) of pre- and post-enriched samples, respectively; 96.0% (48/50) of pre-enriched and 99.4% (519/522) of post-enriched culture-positive samples were also positive by qPCR. More samples tested positive by qPCR than by culture method, indicating that the real-time PCR assay was more sensitive. Our data indicate that this triplex qPCR can be used to accurately detect and quantify Salmonella enterica strains from cattle lymph node samples. The assay may serve as a useful tool to monitor the prevalence of Salmonella in beef production systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Braem, G; De Vliegher, S; Supré, K; Haesebrouck, F; Leroy, F; De Vuyst, L
2011-01-10
Due to significant financial losses in the dairy cattle farming industry caused by mastitis and the possible influence of coagulase-negative staphylococci (CNS) in the development of this disease, accurate identification methods are needed that untangle the different species of the diverse CNS group. In this study, 39 Staphylococcus type strains and 253 field isolates were subjected to (GTG)(5)-PCR fingerprinting to construct a reference framework for the classification and identification of different CNS from (sub)clinical milk samples and teat apices swabs. Validation of the reference framework was performed by dividing the field isolates in two separate groups and testing whether one group of field isolates, in combination with type strains, could be used for a correct classification and identification of a second group of field isolates. (GTG)(5)-PCR fingerprinting achieved a typeability of 94.7% and an accuracy of 94.3% compared to identifications based on gene sequencing. The study shows the usefulness of the method to determine the identity of bovine Staphylococcus species, provided an identification framework updated with field isolates is available. Copyright © 2010 Elsevier B.V. All rights reserved.
[Oligonucleotide microarray for subtyping avian influenza virus].
Xueqing, Han; Xiangmei, Lin; Yihong, Hou; Shaoqiang, Wu; Jian, Liu; Lin, Mei; Guangle, Jia; Zexiao, Yang
2008-09-01
Avian influenza viruses are important human and animal respiratory pathogens and rapid diagnosis of novel emerging avian influenza viruses is vital for effective global influenza surveillance. We developed an oligonucleotide microarray-based method for subtyping all avian influenza virus (16 HA and 9 NA subtypes). In total 25 pairs of primers specific for different subtypes and 1 pair of universal primers were carefully designed based on the genomic sequences of influenza A viruses retrieved from GenBank database. Several multiplex RT-PCR methods were then developed, and the target cDNAs of 25 subtype viruses were amplified by RT-PCR or overlapping PCR for evaluating the microarray. Further 52 oligonucleotide probes specific for all 25 subtype viruses were designed according to published gene sequences of avian influenza viruses in amplified target cDNAs domains, and a microarray for subtyping influenza A virus was developed. Then its specificity and sensitivity were validated by using different subtype strains and 2653 samples from 49 different areas. The results showed that all the subtypes of influenza virus could be identified simultaneously on this microarray with high sensitivity, which could reach to 2.47 pfu/mL virus or 2.5 ng target DNA. Furthermore, there was no cross reaction with other avian respiratory virus. An oligonucleotide microarray-based strategy for detection of avian influenza viruses has been developed. Such a diagnostic microarray will be useful in discovering and identifying all subtypes of avian influenza virus.
NASA Astrophysics Data System (ADS)
Zhao, Hong; Li, Changjun; Li, Hongping; Lv, Kebo; Zhao, Qinghui
2016-06-01
The sea surface salinity (SSS) is a key parameter in monitoring ocean states. Observing SSS can promote the understanding of global water cycle. This paper provides a new approach for retrieving sea surface salinity from Soil Moisture and Ocean Salinity (SMOS) satellite data. Based on the principal component regression (PCR) model, SSS can also be retrieved from the brightness temperature data of SMOS L2 measurements and Auxiliary data. 26 pair matchup data is used in model validation for the South China Sea (in the area of 4°-25°N, 105°-125°E). The RMSE value of PCR model retrieved SSS reaches 0.37 psu (practical salinity units) and the RMSE of SMOS SSS1 is 1.65 psu when compared with in-situ SSS. The corresponding Argo daily salinity data during April to June 2013 is also used in our validation with RMSE value 0.46 psu compared to 1.82 psu for daily averaged SMOS L2 products. This indicates that the PCR model is valid and may provide us with a good approach for retrieving SSS from SMOS satellite data.
Molecular analysis of single oocyst of Eimeria by whole genome amplification (WGA) based nested PCR.
Wang, Yunzhou; Tao, Geru; Cui, Yujuan; Lv, Qiyao; Xie, Li; Li, Yuan; Suo, Xun; Qin, Yinghe; Xiao, Lihua; Liu, Xianyong
2014-09-01
PCR-based molecular tools are widely used for the identification and characterization of protozoa. Here we report the molecular analysis of Eimeria species using combined methods of whole genome amplification (WGA) and nested PCR. Single oocyst of Eimeria stiedai or Eimeriamedia was directly used for random amplification of the genomic DNA with either primer extension preamplification (PEP) or multiple displacement amplification (MDA), and then the WGA product was used as template in nested PCR with species-specific primers for ITS-1, 18S rDNA and 23S rDNA of E. stiedai and E. media. WGA-based PCR was successful for the amplification of these genes from single oocyst. For the species identification of single oocyst isolated from mixed E. stiedai or E. media, the results from WGA-based PCR were exactly in accordance with those from morphological identification, suggesting the availability of this method in molecular analysis of eimerian parasites at the single oocyst level. WGA-based PCR method can also be applied for the identification and genetic characterization of other protists. Copyright © 2014 Elsevier Inc. All rights reserved.
Alhassan, Andy; Govind, Yadav; Tam, Nguyen Thanh; Thekisoe, Oriel M M; Yokoyama, Naoaki; Inoue, Noboru; Igarashi, Ikuo
2007-04-01
The sensitivity of LAMP, PCR and in vitro culture methods for the detection of Theileria equi and Babesia caballi was evaluated using tenfold serially diluted culture parasites. On day 1 post-culture, both T. equi and B. caballi parasites could only be observed at 1% parasite dilution from the in vitro culture method, whereas LAMP could detect up to 1 x 10(-3)% of both T. equi and B. caballi parasite dilutions, whilst PCR could detect 1 x 10(-3)% T. equi and 1 x 10(-1)% B. caballi parasite dilutions. On day 7 post-culture, the detection limit for T. equi and B. caballi in the in vitro culture increased up to 1 x 10(-6)%, whereas LAMP detection limit increased to 1 x 10(-10)% for both parasites, whilst the PCR detection limit increased to 1 x 10(-10)% and 1 x 10(-6)% for T. equi and B. caballi, respectively. Furthermore, LAMP and PCR amplified the T. equi DNA extracted from the organs of an experimentally infected horse. This study further validates LAMP as an alternative molecular diagnostic tool, which can be used in the diagnosis of early infections of equine piroplasmosis and together with PCR can also be used as supplementary methods during post-mortems.
Azzi, Salah; Steunou, Virginie; Rousseau, Alexandra; Rossignol, Sylvie; Thibaud, Nathalie; Danton, Fabienne; Le Jule, Marilyne; Gicquel, Christine; Le Bouc, Yves; Netchine, Irène
2011-02-01
Many human syndromes involve a loss of imprinting (LOI) due to a loss (LOM) or a gain of DNA methylation (GOM). Most LOI occur as mosaics and can therefore be difficult to detect with conventional methods. The human imprinted 11p15 region is crucial for the control of fetal growth, and LOI at this locus is associated with two clinical disorders with opposite phenotypes: Beckwith-Wiedemann syndrome (BWS), characterized by fetal overgrowth and a high risk of tumors, and Russell-Silver syndrome (RSS), characterized by intrauterine and postnatal growth restriction. Until recently, we have been using Southern blotting for the diagnosis of RSS and BWS. We describe here a powerful quantitative technique, allele-specific methylated multiplex real-time quantitative PCR (ASMM RTQ-PCR), for the diagnosis of these two complex disorders. We first checked the specificity of the probes and primers used for ASMM RTQ-PCR. We then carried out statistical validation for this method, on both retrospective and prospective populations of patients. This analysis demonstrated that ASMM RTQ-PCR is more sensitive than Southern blotting for detecting low degree of LOI. Moreover, ASMM RTQ-PCR is a very rapid, reliable, simple, safe, and cost effective method. © 2011 Wiley-Liss, Inc.
Lungu, Bwalya; Waltman, W Douglas; Berghaus, Roy D; Hofacre, Charles L
2012-04-01
Conventional culture methods have traditionally been considered the "gold standard" for the isolation and identification of foodborne bacterial pathogens. However, culture methods are labor-intensive and time-consuming. A Salmonella enterica serotype Enteritidis-specific real-time PCR assay that recently received interim approval by the National Poultry Improvement Plan for the detection of Salmonella Enteritidis was evaluated against a culture method that had also received interim National Poultry Improvement Plan approval for the analysis of environmental samples from integrated poultry houses. The method was validated with 422 field samples collected by either the boot sock or drag swab method. The samples were cultured by selective enrichment in tetrathionate broth followed by transfer onto a modified semisolid Rappaport-Vassiliadis medium and then plating onto brilliant green with novobiocin and xylose lysine brilliant Tergitol 4 plates. One-milliliter aliquots of the selective enrichment broths from each sample were collected for DNA extraction by the commercial PrepSEQ nucleic acid extraction assay and analysis by the Salmonella Enteritidis-specific real-time PCR assay. The real-time PCR assay detected no significant differences between the boot sock and drag swab samples. In contrast, the culture method detected a significantly higher number of positive samples from boot socks. The diagnostic sensitivity of the real-time PCR assay for the field samples was significantly higher than that of the culture method. The kappa value obtained was 0.46, indicating moderate agreement between the real-time PCR assay and the culture method. In addition, the real-time PCR method had a turnaround time of 2 days compared with 4 to 8 days for the culture method. The higher sensitivity as well as the reduction in time and labor makes this real-time PCR assay an excellent alternative to conventional culture methods for diagnostic purposes, surveillance, and research studies to improve food safety.
Church, Deirdre L; Ambasta, Anshula; Wilmer, Amanda; Williscroft, Holly; Ritchie, Gordon; Pillai, Dylan R; Champagne, Sylvie; Gregson, Daniel G
2015-01-01
BACKGROUND: Pneumocystis jirovecii (PJ), a pathogenic fungus, causes severe interstitial Pneumocystis pneumonia (PCP) among immunocompromised patients. A laboratory-developed real-time polyermase chain reaction (PCR) assay was validated for PJ detection to improve diagnosis of PCP. METHODS: Forty stored bronchoalveolar lavage (BAL) samples (20 known PJ positive [PJ+] and 20 known PJ negative [PJ−]) were initially tested using the molecular assay. Ninety-two sequentially collected BAL samples were then analyzed using an immunofluorescence assay (IFA) and secondarily tested using the PJ real-time PCR assay. Discrepant results were resolved by retesting BAL samples using another real-time PCR assay with a different target. PJ real-time PCR assay performance was compared with the existing gold standard (ie, IFA) and a modified gold standard, in which a true positive was defined as a sample that tested positive in two of three methods in a patient suspected to have PCP. RESULTS: Ninety of 132 (68%) BAL fluid samples were collected from immunocompromised patients. Thirteen of 92 (14%) BALs collected were PJ+ when tested using IFA. A total of 40 BAL samples were PJ+ in the present study including: all IFA positive samples (n=13); all referred PJ+ BAL samples (n=20); and seven additional BAL samples that were IFA negative, but positive using the modified gold standard. Compared with IFA, the PJ real-time PCR had sensitivity, specificity, and positive and negative predictive values of 100%, 91%, 65% and 100%, respectively. Compared with the modified gold standard, PJ real-time PCR had a sensitivity, specificity, and positive and negative predictive values of 100%. CONCLUSION: PJ real-time PCR improved detection of PJ in immunocompromised patients. PMID:26600815
Ragheb, Suzan M; Yassin, Aymen S; Amin, Magdy A
2012-01-01
Notable progress has been made in methods that encourage the use of polymerase chain reaction (PCR) as a rapid and accurate tool in microbiological testing of pharmaceuticals. In this study, the detection of the four main specified microorganisms according to the pharmacopeial recommendations, Salmonella spp, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, was optimized in different pharmaceutical dosage forms and raw materials. Uniplex PCR was performed for the detection of each microorganism individually targeting the conserved region in each bacterial genome. Further optimizations were done to perform duplex and multiplex PCR assays considering relative concentrations of competitor primers used in the reaction. The uniplex PCR amplicons were successfully sequenced, confirming the conservation of used primers. Other validation parameters such as specificity, sensitivity, and robustness were examined closely. The method provides a high-throughput screening method to test different pharmaceutical preparations for specified microorganisms for the detection of microbiological contamination. Strict regulations govern the production of pharmaceutical products whether they are sterile or nonsterile. Certain official tests are carried out in microbiology testing laboratory in any pharmaceutical production facility to ensure the pharmaceuticals microbiological quality according to the standard pharmacopeial recommendations. Nonsterile products must be free of specified microorganisms that are used as a check for their quality. Topical preparations must be free of Pseudomonas aeruginosa and Staphylococcus aureus, and oral preparations must be free of Salmonella spp and Escherichia coli. Conventional microbiological methods are time-consuming, labor-intensive, and require long incubation times, resulting in delaying the release of the products. In this study, we tested and validated a polymerase chain reaction identification approach to detect indicator bacteria in pharmaceutical preparations. The method depends on amplification of certain conserved genes located in the four specified bacteria. The method is optimized to be carried out individually or collectively to detect all indicator bacteria in a single reaction in different forms of pharmaceutical products.
TipMT: Identification of PCR-based taxon-specific markers.
Rodrigues-Luiz, Gabriela F; Cardoso, Mariana S; Valdivia, Hugo O; Ayala, Edward V; Gontijo, Célia M F; Rodrigues, Thiago de S; Fujiwara, Ricardo T; Lopes, Robson S; Bartholomeu, Daniella C
2017-02-11
Molecular genetic markers are one of the most informative and widely used genome features in clinical and environmental diagnostic studies. A polymerase chain reaction (PCR)-based molecular marker is very attractive because it is suitable to high throughput automation and confers high specificity. However, the design of taxon-specific primers may be difficult and time consuming due to the need to identify appropriate genomic regions for annealing primers and to evaluate primer specificity. Here, we report the development of a Tool for Identification of Primers for Multiple Taxa (TipMT), which is a web application to search and design primers for genotyping based on genomic data. The tool identifies and targets single sequence repeats (SSR) or orthologous/taxa-specific genes for genotyping using Multiplex PCR. This pipeline was applied to the genomes of four species of Leishmania (L. amazonensis, L. braziliensis, L. infantum and L. major) and validated by PCR using artificial genomic DNA mixtures of the Leishmania species as templates. This experimental validation demonstrates the reliability of TipMT because amplification profiles showed discrimination of genomic DNA samples from Leishmania species. The TipMT web tool allows for large-scale identification and design of taxon-specific primers and is freely available to the scientific community at http://200.131.37.155/tipMT/ .
Specific and sensitive detection of the conifer pathogen Gremmeniella abietina by nested PCR
Zeng, Qing-Yin; Hansson, Per; Wang, Xiao-Ru
2005-01-01
Background Gremmeniella abietina (Lagerb.) Morelet is an ascomycete fungus that causes stem canker and shoot dieback in many conifer species. The fungus is widespread and causes severe damage to forest plantations in Europe, North America and Asia. To facilitate early diagnosis and improve measures to control the spread of the disease, rapid, specific and sensitive detection methods for G. abietina in conifer hosts are needed. Results We designed two pairs of specific primers for G. abietina based on the 18S rDNA sequence variation pattern. These primers were validated against a wide range of fungi and 14 potential conifer hosts. Based on these specific primers, two nested PCR systems were developed. The first system employed universal fungal primers to enrich the fungal DNA targets in the first round, followed by a second round selective amplification of the pathogen. The other system employed G. abietina-specific primers in both PCR steps. Both approaches can detect the presence of G. abietina in composite samples with high sensitivity, as little as 7.5 fg G. abietina DNA in the host genomic background. Conclusion The methods described here are rapid and can be applied directly to a wide range of conifer species, without the need for fungal isolation and cultivation. Therefore, it represents a promising alternative to disease inspection in forest nurseries, plantations and quarantine control facilities. PMID:16280082
2004-01-01
of RNA From Peripheral Blood Cells: A Validation Study for Molecular Diagnostics by Microarray and Kinetic RT-PCR Assays Application in...VALIDATION STUDY FOR MOLECULAR DIAGNOSTICS BY MICROARRAY AND KINETIC RT-PCR ASSAYS APPLICATION IN AEROSPACE MEDICINE INTRODUCTION Extraction of cellular
How-Kit, Alexandre; Tost, Jörg
2015-01-01
A number of molecular diagnostic assays have been developed in the last years for mutation detection. Although these methods have become increasingly sensitive, most of them are incompatible with a sequencing-based readout and require prior knowledge of the mutation present in the sample. Consequently, coamplification at low denaturation (COLD)-PCR-based methods have been developed and combine a high analytical sensitivity due to mutation enrichment in the sample with the identification of known or unknown mutations by downstream sequencing experiments. Among these methods, the recently developed Enhanced-ice-COLD-PCR appeared as the most powerful method as it outperformed the other COLD-PCR-based methods in terms of the mutation enrichment and due to the simplicity of the experimental setup of the assay. Indeed, E-ice-COLD-PCR is very versatile as it can be used on all types of PCR platforms and is applicable to different types of samples including fresh frozen, FFPE, and plasma samples. The technique relies on the incorporation of an LNA containing blocker probe in the PCR reaction followed by selective heteroduplex denaturation enabling amplification of the mutant allele while amplification of the wild-type allele is prevented. Combined with Pyrosequencing(®), which is a very quantitative high-resolution sequencing technology, E-ice-COLD-PCR can detect and identify mutations with a limit of detection down to 0.01 %.
Kim, S A; Park, S H; Lee, S I; Ricke, S C
2017-12-01
The aim of this research was to optimize two multiplex polymerase chain reaction (PCR) assays that could simultaneously detect six non-O157 Shiga toxin-producing Escherichia coli (STEC) as well as the three virulence genes. We also investigated the potential of combining the FTA™ card-based DNA extraction with the multiplex PCR assays. Two multiplex PCR assays were optimized using six primer pairs for each non-O157 STEC serogroup and three primer pairs for virulence genes respectively. Each STEC strain specific primer pair only amplified 155, 238, 321, 438, 587 and 750 bp product for O26, O45, O103, O111, O121 and O145 respectively. Three virulence genes were successfully multiplexed: 375 bp for eae, 655 bp for stx1 and 477 bp for stx2. When two multiplex PCR assays were validated with ground beef samples, distinctive bands were also successfully produced. Since the two multiplex PCR examined here can be conducted under the same PCR conditions, the six non-O157 STEC and their virulence genes could be concurrently detected with one run on the thermocycler. In addition, all bands clearly appeared to be amplified by FTA card DNA extraction in the multiplex PCR assay from the ground beef sample, suggesting that an FTA card could be a viable sampling approach for rapid and simple DNA extraction to reduce time and labour and therefore may have practical use for the food industry. Two multiplex polymerase chain reaction (PCR) assays were optimized for discrimination of six non-O157 Shiga toxin-producing Escherichia coli (STEC) and identification of their major virulence genes within a single reaction, simultaneously. This study also determined the successful ability of the FTA™ card as an alternative to commercial DNA extraction method for conducting multiplex STEC PCR assays. The FTA™ card combined with multiplex PCR holds promise for the food industry by offering a simple and rapid DNA sample method for reducing time, cost and labour for detection of STEC in food and environmental samples. © 2017 The Society for Applied Microbiology.
Minguzzi, Stefano; Terlizzi, Federica; Lanzoni, Chiara; Poggi Pollini, Carlo; Ratti, Claudio
2016-01-01
Many efforts have been made to develop a rapid and sensitive method for phytoplasma and virus detection. Taking our cue from previous works, different rapid sample preparation methods have been tested and applied to Candidatus Phytoplasma prunorum (‘Ca. P. prunorum’) detection by RT-qPCR. A duplex RT-qPCR has been optimized using the crude sap as a template to simultaneously amplify a fragment of 16S rRNA of the pathogen and 18S rRNA of the host plant. The specific plant 18S rRNA internal control allows comparison and relative quantification of samples. A comparison between DNA and RNA contribution to qPCR detection is provided, showing higher contribution of the latter. The method presented here has been validated on more than a hundred samples of apricot, plum and peach trees. Since 2013, this method has been successfully applied to monitor ‘Ca. P. prunorum’ infections in field and nursery. A triplex RT-qPCR assay has also been optimized to simultaneously detect ‘Ca. P. prunorum’ and Plum pox virus (PPV) in Prunus. PMID:26742106
Imran, Muhammad; Zafar, Nazir Ahmad
2012-01-01
Maintaining inter-actor connectivity is extremely crucial in mission-critical applications of Wireless Sensor and Actor Networks (WSANs), as actors have to quickly plan optimal coordinated responses to detected events. Failure of a critical actor partitions the inter-actor network into disjoint segments besides leaving a coverage hole, and thus hinders the network operation. This paper presents a Partitioning detection and Connectivity Restoration (PCR) algorithm to tolerate critical actor failure. As part of pre-failure planning, PCR determines critical/non-critical actors based on localized information and designates each critical node with an appropriate backup (preferably non-critical). The pre-designated backup detects the failure of its primary actor and initiates a post-failure recovery process that may involve coordinated multi-actor relocation. To prove the correctness, we construct a formal specification of PCR using Z notation. We model WSAN topology as a dynamic graph and transform PCR to corresponding formal specification using Z notation. Formal specification is analyzed and validated using the Z Eves tool. Moreover, we simulate the specification to quantitatively analyze the efficiency of PCR. Simulation results confirm the effectiveness of PCR and the results shown that it outperforms contemporary schemes found in the literature.
Discrimination of SHV β-Lactamase Genes by Restriction Site Insertion-PCR
Chanawong, Aroonwadee; M'Zali, Fatima Hannachi; Heritage, John; Lulitanond, Aroonlug; Hawkey, Peter Michael
2001-01-01
Restriction site insertion-PCR (RSI-PCR) is a simple, rapid technique for detection of point mutations. This technique exploits primers with one to three base mismatches near the 3′ end to modulate a restriction site. We have developed this technique to identify described mutations of the blaSHV genes for differentiation of SHV variants that cannot be distinguished easily by other techniques. To validate this method, eight standard strains were used, each producing a different SHV β-lactamase: SHV-1, SHV-2, SHV-3, SHV-4, SHV-5, SHV-6, SHV-8, and SHV-18. Mismatch primers were designed to detect mutations affecting amino acids at positions 8 (SspI), 179 (HinfI), 205 (PstI), 238 (Gly→Ala) (BsrI), and 240 (NruI) of blaSHV genes. All amplimers of the blaSHV genes used in this study yielded the predicted restriction endonuclease digestion products. In addition, this study also makes theoretical identification of blaSHV-6, blaSHV-8, and 12 novel blaSHV variants using the PCR-restriction fragment length polymorphism (RFLP) technique possible. By using a combination of PCR-RFLP and RSI-PCR techniques, up to 27 SHV variants can now be distinguished rapidly and reliably. These simple techniques are readily applied to epidemiological studies of the SHV β-lactamases and may be extended to the characterisation of other resistance determinants. PMID:11408231
Woo, Nain; Kim, Su-Kang; Sun, Yucheng; Kang, Seong Ho
2018-01-01
Human apolipoprotein E (ApoE) is associated with high cholesterol levels, coronary artery disease, and especially Alzheimer's disease. In this study, we developed an ApoE genotyping and one-step multiplex polymerase chain reaction (PCR) based-capillary electrophoresis (CE) method for the enhanced diagnosis of Alzheimer's. The primer mixture of ApoE genes enabled the performance of direct one-step multiplex PCR from whole blood without DNA purification. The combination of direct ApoE genotyping and one-step multiplex PCR minimized the risk of DNA loss or contamination due to the process of DNA purification. All amplified PCR products with different DNA lengths (112-, 253-, 308-, 444-, and 514-bp DNA) of the ApoE genes were analyzed within 2min by an extended voltage programming (VP)-based CE under the optimal conditions. The extended VP-based CE method was at least 120-180 times faster than conventional slab gel electrophoresis methods In particular, all amplified DNA fragments were detected in less than 10 PCR cycles using a laser-induced fluorescence detector. The detection limits of the ApoE genes were 6.4-62.0pM, which were approximately 100-100,000 times more sensitive than previous Alzheimer's diagnosis methods In addition, the combined one-step multiplex PCR and extended VP-based CE method was also successfully applied to the analysis of ApoE genotypes in Alzheimer's patients and normal samples and confirmed the distribution probability of allele frequencies. This combination of direct one-step multiplex PCR and an extended VP-based CE method should increase the diagnostic reliability of Alzheimer's with high sensitivity and short analysis time even with direct use of whole blood. Copyright © 2017 Elsevier B.V. All rights reserved.
Malapelle, Umberto; Pisapia, Pasquale; Rocco, Danilo; Smeraglio, Riccardo; di Spirito, Maria; Bellevicine, Claudio; Troncone, Giancarlo
2016-10-01
The advent of genomic based personalized medicine has led to multiple advances in the molecular characterization of many tumor types, such as non-small cell lung cancer (NSCLC). NSCLC is diagnosed in most cases on small tissue samples that may be not always sufficient for EGFR mutational assessment to select patients for first and second generations' tyrosine kinase inhibitors (TKIs) therapy. In patients without tissue availability at presentation, the analysis of cell free DNA (cfDNA) derived from liquid biopsy samples, in particular from plasma, represent an established alternative to provide EGFR mutational testing for treatment decision making. In addition, a new paradigm for TKIs resistance management was recently approved by Food and Drug Administration, supporting the liquid biopsy based genotyping prior to tissue based genotyping for the detection of T790M mutation to select patients for third generation TKIs. In these settings, real time PCR (RT-PCR) and digital PCR 'targeted' methods, which detect known mutations by specific probes, have extensively been adopted. Taking into account the restricted reference range and the limited multiplexing power of these targeted methods, the performance of liquid biopsy analyses may be further improved by next generation sequencing (NGS). While most tissue based NGS genotyping is well established, liquid biopsy NGS application is challenging, requiring a careful validation of the whole process, from blood collection to variant calling. Here we review this evolving field, highlighting those methodological points that are crucial to accurately select NSCLC patients for TKIs treatment administration by NGS on cfDNA.
Hu, Qin; Zhu, Dekang; Ma, Guangpeng; Cheng, Anchun; Wang, Mingshu; Chen, Shun; Jia, Renyong; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue
2016-10-01
Duck hepatitis A virus (DHAV) is a highly infectious pathogen that causes significant bleeding lesions in the viscera of ducklings less than 3 weeks old. There are three serotypes of DHAV: serotype 1 (DHAV-1), serotype 2 (DHAV-2) and serotype 3 (DHAV-3). These serotypes have no cross-antigenicity with each other. To establish an rRT-PCR assay for the rapid detection of a mixed infection of DHAV-1 and DHAV-3, two pairs of primers and a pair of matching TaqMan probes were designed based on conserved regions of DHAV-1 VP0 and DHAV-3 VP3. Finally, we established a one-step duplex rRT-PCR assay with high specificity and sensitivity for the simultaneous detection of DHAV-1 and DHAV-3. This method showed no cross-antigenicity with the other pathogens tested, including duck plague virus, Muscovy duck parvovirus, Riemerella anatipestifer, and pathogenic E. coli from ducks. Sensitivity tests identified the minimum detection limits of this method as 98 (DHAV-1) and 10 (DHAV-3) copies/reaction. To validate the method, thirty-eight clinical samples and thirty artificially infected samples collected from dead duck embryos were studied. Thirty-seven samples were positive for DHAV-1, seventeen samples were positive for DHAV-3, and fourteen samples were positive for a mixed infection using the duplex rRT-PCR method. The method established in this study is specific, sensitive, convenient and timesaving and is a powerful tool for detecting DHAV-1, DHAV-3, and their mixed infection and for conducting surveys of pandemic virus strains. Copyright © 2016. Published by Elsevier B.V.
Santos, Camila Gurgel Dos; Sabidó, Meritxell; Leturiondo, André Luiz; Ferreira, Cynthia de Oliveira; da Cruz, Thielle Pereira; Benzaken, Adele Schwartz
2017-03-01
To improve the screening of Chlamydia trachomatis(C. trachomatis) in Brazil, an accurate and affordable method is needed. The objective of this study was to develop and assess the performance and costs of a new in-house real-time PCR (qPCR) assay for the diagnosis of C. trachomatis infection. Asymptomatic women aged 14-25 years who attended primary health services in Manaus, Brazil, were screened for C. trachomatis using the Digene Hybrid Capture II CT-ID (HCII CT-ID) DNA test. A subset of cervical specimens were tested using an in-house qPCR and a commercial qPCR, ArtusC. trachomatis Plus RG PCR 96 CE (Artus qPCR) kit, as a reference test. A primer/probe based on the sequence of cryptic plasmid (CP) was designed. An economic evaluation was conducted from the provider's perspective. The primers were considered specific for C. trachomatis because they did not amplify any product from non-sexually transmitted bacterial species tested. Overall, 292 specimens were tested by both the commercial kit (Artus qPCR) and the in-house qPCR. Of those, one resulted in no amplification and was excluded from the analysis. The sensitivity, specificity, and positive and negative predictive values of the in-house qPCR were 99.5 % [95 % confidence interval (CI): 97.1-100], 95.1 % (95 % CI: 89-98.4), 97.4 % (95 % CI: 94-99.1) and 99.0 % (95 % CI: 94.5-100), respectively. The cost per case of C. trachomatis was £0.44 ($0.55) for HCII CT-ID, £1.16 ($1.45) for Artus qPCR and £1.06 ($1.33) for in-house qPCR. We have standardized an in-house qPCR to detect cervical C. trachomatis targeting CP. The in-house qPCR showed excellent accuracy and was more affordable than the commercial qPCR kit.
Waldron, Anna M.; Galea, Francesca; Whittington, Ann-Michele; Saunders, Vanessa F.; Begg, Douglas J.; de Silva, Kumudika; Purdie, Auriol C.; Whittington, Richard J.
2014-01-01
Johne's disease (JD) is a chronic enteric disease caused by Mycobacterium avium subsp. paratuberculosis that affects ruminants. Transmission occurs by the fecal-oral route. A commonly used antemortem diagnostic test for the detection of M. avium subsp. paratuberculosis in feces is liquid culture; however, a major constraint is the 2- to 3-month incubation period needed for this method. Rapid methods for the detection of M. avium subsp. paratuberculosis based on PCR have been reported, but comprehensive validation data are lacking. We describe here a new test, the high-throughput-Johnes (HT-J), to detect M. avium subsp. paratuberculosis in feces. Its diagnostic accuracy was compared with that of liquid radiometric (Bactec) fecal culture using samples from cattle (1,330 samples from 23 herds) and sheep (596 samples from 16 flocks). The multistage protocol involves the recovery of M. avium subsp. paratuberculosis cells from a fecal suspension, cell rupture by bead beating, extraction of DNA using magnetic beads, and IS900 quantitative PCR. The limit of detection of the assay was 0.0005 pg, and the limit of quantification was 0.005 pg M. avium subsp. paratuberculosis genomic DNA. Only M. avium subsp. paratuberculosis was detected from a panel of 51 mycobacterial isolates, including 10 with IS900-like sequences. Of the 549 culture-negative fecal samples from unexposed herds and flocks, 99% were negative in the HT-J test, while 60% of the bovine- and 84% of the ovine-culture-positive samples were positive in the HT-J test. As similar total numbers of samples from M. avium subsp. paratuberculosis-exposed animals were positive in culture and HT-J tests in both species, and as the results of a McNemar's test were not significant, these methods probably have similar sensitivities, but the true diagnostic sensitivities of these tests are unknown. These validation data meet the consensus-based reporting standards for diagnostic test accuracy studies for paratuberculosis and the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines (S. A. Bustin et al., Clin. Chem. 55:611–622, 2009, doi:10.1373/clinchem.2008.112797). The HT-J assay has been approved for use in JD control programs in Australia and New Zealand. PMID:24352996
Onions, David; Egan, William; Jarrett, Ruth; Novicki, Deborah; Gregersen, Jens-Peter
2010-09-01
Cell culture-based production methods may assist in meeting increasing demand for seasonal influenza vaccines and developing production flexibility required for addressing influenza pandemics. MDCK-33016PF cells are used in propagation of a cell-based seasonal influenza vaccine (Optaflu); but, like most continuous cell lines, can grow in immunocompromised mice to produce tumors. It is, therefore, essential that no residual cells remain within the vaccine, that cell lysates or DNA are not oncogenic, and that the cell substrate does not contain oncogenic viruses or oncogenic DNA. Multiple, redundant processes ensure the safety of influenza vaccines produced in MDCK-33016PF cells. The probability of a residual cell being present in a dose of vaccine is approximately 1 in 10(34). Residual MDCK-DNA is < or =10 ng per dose and the ss-propiolactone used to inactivate influenza virus results in reduction of detectable DNA to less than 200 base pairs (bp). Degenerate PCR and specific PCR confirm exclusion of oncogenic viruses. The manufacturing process has been validated for its capacity to remove and inactivate viruses. We conclude that the theoretical risks arising from manufacturing seasonal influenza vaccine using MDCK-33016PF cells are reduced to levels that are effectively zero by the multiple, orthogonal processes used during production. Copyright 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Droplet Digital PCR-Based Chimerism Analysis for Primary Immunodeficiency Diseases.
Okano, Tsubasa; Tsujita, Yuki; Kanegane, Hirokazu; Mitsui-Sekinaka, Kanako; Tanita, Kay; Miyamoto, Satoshi; Yeh, Tzu-Wen; Yamashita, Motoi; Terada, Naomi; Ogura, Yumi; Takagi, Masatoshi; Imai, Kohsuke; Nonoyama, Shigeaki; Morio, Tomohiro
2018-04-01
In the current study, we aimed to accurately evaluate donor/recipient or male/female chimerism in samples from patients who underwent hematopoietic stem cell transplantation (HSCT). We designed the droplet digital polymerase chain reaction (ddPCR) for SRY and RPP30 to detect the male/female chimerism. We also developed mutation-specific ddPCR for four primary immunodeficiency diseases. The accuracy of the male/female chimerism analysis using ddPCR was confirmed by comparing the results with those of conventional methods (fluorescence in situ hybridization and short tandem repeat-PCR) and evaluating dilution assays. In particular, we found that this method was useful for analyzing small samples. Thus, this method could be used with patient samples, especially to sorted leukocyte subpopulations, during the early post-transplant period. Four mutation-specific ddPCR accurately detected post-transplant chimerism. ddPCR-based male/female chimerism analysis and mutation-specific ddPCR were useful for all HSCT, and these simple methods contribute to following the post-transplant chimerism, especially in disease-specific small leukocyte fractions.
Oueslati, Amel; Ollitrault, Frederique; Baraket, Ghada; Salhi-Hannachi, Amel; Navarro, Luis; Ollitrault, Patrick
2016-08-18
Chloroplast DNA is a primary source of molecular variations for phylogenetic analysis of photosynthetic eukaryotes. However, the sequencing and analysis of multiple chloroplastic regions is difficult to apply to large collections or large samples of natural populations. The objective of our work was to demonstrate that a molecular taxonomic key based on easy, scalable and low-cost genotyping method should be developed from a set of Single Nucleotide Polymorphisms (SNPs) diagnostic of well-established clades. It was applied to the Aurantioideae subfamily, the largest group of the Rutaceae family that includes the cultivated citrus species. The publicly available nucleotide sequences of eight plastid genomic regions were compared for 79 accessions of the Aurantioideae subfamily to search for SNPs revealing taxonomic differentiation at the inter-tribe, inter-subtribe, inter-genus and interspecific levels. Diagnostic SNPs (DSNPs) were found for 46 of the 54 clade levels analysed. Forty DSNPs were selected to develop KASPar markers and their taxonomic value was tested by genotyping 108 accessions of the Aurantioideae subfamily. Twenty-seven markers diagnostic of 24 clades were validated and they displayed a very high rate of transferability in the Aurantioideae subfamily (only 1.2 % of missing data on average). The UPGMA from the validated markers produced a cladistic organisation that was highly coherent with the previous phylogenetic analysis based on the sequence data of the eight plasmid regions. In particular, the monophyletic origin of the "true citrus" genera plus Oxanthera was validated. However, some clarification remains necessary regarding the organisation of the other wild species of the Citreae tribe. We validated the concept that with well-established clades, DSNPs can be selected and efficiently transformed into competitive allele-specific PCR markers (KASPar method) allowing cost-effective highly efficient cladistic analysis in large collections at subfamily level. The robustness of this genotyping method is an additional decisive advantage for network collaborative research. The availability of WGS data for the main "true citrus" species should soon make it possible to develop a set of DSNP markers allowing very fine resolution of this very important horticultural group.
Naddaf, S R; Kishdehi, M; Siavashi, Mr
2011-01-01
The mainstay of diagnosis of relapsing fever (RF) is demonstration of the spirochetes in Giemsa-stained thick blood smears, but during non fever periods the bacteria are very scanty and rarely detected in blood smears by microscopy. This study is aimed to evaluate the sensitivity of different methods developed for detection of low-grade spirochetemia. Animal blood samples with low degrees of spirochetemia were tested with two PCRs and a nested PCR targeting flaB, GlpQ, and rrs genes. Also, a centrifuged-based enrichment method and Giemsa staining were performed on blood samples with various degrees of spirochetemia. The flaB-PCR and nested rrs-PCR turned positive with various degrees of spirochetemia including the blood samples that turned negative with dark-field microscopy. The GlpQ-PCR was positive as far as at least one spirochete was seen in 5-10 microscopic fields. The sensitivity of GlpQ-PCR increased when DNA from Buffy Coat Layer (BCL) was used as template. The centrifuged-based enrichment method turned positive with as low concentration as 50 bacteria/ml blood, while Giemsa thick staining detected bacteria with concentrations ≥ 25000 bacteria/ml. Centrifuged-based enrichment method appeared as much as 500-fold more sensitive than thick smears, which makes it even superior to some PCR assays. Due to simplicity and minimal laboratory requirements, this method can be considered a valuable tool for diagnosis of RF in rural health centers.
Kim, Hyerin; Kang, NaNa; An, KyuHyeon; Koo, JaeHyung; Kim, Min-Soo
2016-01-01
Design of high-quality primers for multiple target sequences is essential for qPCR experiments, but is challenging due to the need to consider both homology tests on off-target sequences and the same stringent filtering constraints on the primers. Existing web servers for primer design have major drawbacks, including requiring the use of BLAST-like tools for homology tests, lack of support for ranking of primers, TaqMan probes and simultaneous design of primers against multiple targets. Due to the large-scale computational overhead, the few web servers supporting homology tests use heuristic approaches or perform homology tests within a limited scope. Here, we describe the MRPrimerW, which performs complete homology testing, supports batch design of primers for multi-target qPCR experiments, supports design of TaqMan probes and ranks the resulting primers to return the top-1 best primers to the user. To ensure high accuracy, we adopted the core algorithm of a previously reported MapReduce-based method, MRPrimer, but completely redesigned it to allow users to receive query results quickly in a web interface, without requiring a MapReduce cluster or a long computation. MRPrimerW provides primer design services and a complete set of 341 963 135 in silico validated primers covering 99% of human and mouse genes. Free access: http://MRPrimerW.com. PMID:27154272
Duarte, Margarida Dias; Barros, Sílvia Carla; Henriques, Ana Margarida; Fagulha, Maria Teresa; Ramos, Fernanda; Luís, Tiago; Fevereiro, Miguel
2014-02-01
The myxoma virus (MYXV) causes severe infections in European rabbits that may reach mortality rates up to 100% depending on the viral strain. The typical symptoms and lesions induced by the virus are usually enough to permit the correct clinical diagnosis. However, in peracute forms the infection may be accompanied by unspecific symptoms. Sudden death may also occur without evident clinical signs of myxomatosis. Likewise, a clinical diagnosis of atypical forms of myxomatosis (amyxomatous) is often complicated and delayed due to the scarceness of skin lesions. As the disease control often depends on an early and unequivocal diagnosis of MYXV, laboratorial methods play a relevant role in the confirmation of MYXV infection. This study describes the development and validation of a novel, high accurate real time polymerase chain reaction assay (rtPCR) for the detection of MYXV. Primers were designed to amplify a 125-bp within the gene M000.5L/R, which is duplicated in the termini of the genome and is unique among Leporipoxvirus. The assay was negative for SFV and other poxviruses and was able to detect 2.6 copies of MYXV DNA proving the effectiveness, specificity and sensitivity of this diagnosis tool. The rtPCR has been applied successfully in INIAV laboratory for routine diagnosis of myxomatosis since 2005. Copyright © 2013 Elsevier B.V. All rights reserved.
De Vuyst, Luc; Camu, Nicholas; De Winter, Tom; Vandemeulebroecke, Katrien; Van de Perre, Vincent; Vancanneyt, Marc; De Vos, Paul; Cleenwerck, Ilse
2008-06-30
Amplification of repetitive bacterial DNA elements through the polymerase chain reaction (rep-PCR fingerprinting) using the (GTG)(5) primer, referred to as (GTG)(5)-PCR fingerprinting, was found a promising genotypic tool for rapid and reliable speciation of acetic acid bacteria (AAB). The method was evaluated with 64 AAB reference strains, including 31 type strains, and 132 isolates from Ghanaian, fermented cocoa beans, and was validated with DNA:DNA hybridization data. Most reference strains, except for example all Acetobacter indonesiensis strains and Gluconacetobacter liquefaciens LMG 1509, grouped according to their species designation, indicating the usefulness of this technique for identification to the species level. Moreover, exclusive patterns were obtained for most strains, suggesting that the technique can also be used for characterization below species level or typing of AAB strains. The (GTG)(5)-PCR fingerprinting allowed us to differentiate four major clusters among the fermented cocoa bean isolates, namely A. pasteurianus (cluster I, 100 isolates), A. syzygii- or A. lovaniensis-like (cluster II, 23 isolates), and A. tropicalis-like (clusters III and IV containing 4 and 5 isolates, respectively). A. syzygii-like and A. tropicalis-like strains from cocoa bean fermentations were reported for the first time. Validation of the method and indications for reclassifications of AAB species and existence of new Acetobacter species were obtained through 16S rRNA sequencing analyses and DNA:DNA hybridizations. Reclassifications refer to A. aceti LMG 1531, Ga. xylinus LMG 1518, and Ga. xylinus subsp. sucrofermentans LMG 18788(T).
Gaviria, Marcela; Rivera, Vanessa; Muñoz-Cadavid, Cesar; Cano, Luz Elena; Naranjo, Tonny Williams
2015-01-01
Paracoccidioidomycosis is a systemic and endemic mycosis, restricted to tropical and subtropical areas of Latin America. The infection is caused by the thermal dimorphic fungus Paracoccidioides brasiliensis and Paracoccidioides lutzii. The diagnosis of paracoccidioidomycosis is usually performed by microscopic examination, culture and immunodiagnostic tests to respiratory specimens, body fluids and/or biopsies; however these methods require laboratory personnel with experience and several days to produce a result. In the present study, we have validated and evaluated a nested PCR assay targeting the gene encoding the Paracoccidioides gp43 membrane protein in 191 clinical samples: 115 samples from patients with proven infections other than paracoccidioidomycosis, 51 samples as negative controls, and 25 samples from patients diagnosed with paracoccidioidomycosis. Additionally, the specificity of the nested PCR assay was also evaluated using purified DNA isolated from cultures of different microorganisms (n=35) previously identified by culture and/or sequencing. The results showed that in our hands, this nested PCR assay for gp43 protein showed specificity and sensitivity rates of 100%. The optimized nested PCR conditions in our laboratory allowed detection down to 1fg of P. brasiliensis DNA. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.
Wang, Yonghong; Yang, Xukui; Yang, Yuanyuan; Wang, Wenjun; Zhao, Meiling; Liu, Huiqiang; Li, Dongyan; Hao, Min
2016-01-01
Objective: To identify the specific microRNA (miRNA) biomarkers of preeclampsia (PE), the miRNA profiles analysis were performed. Study Design: The blood samples were obtained from five PE patients and five normal healthy pregnant women. The small RNA profiles were analyzed to identify miRNA expression levels and find out miRNAs that may associate with PE. The quantitative reverse transcriptase–PCR (qRT-PCR) assay was used to validate differentially expressed peripheral leucocyte miRNAs in a new cohort. Result: The data analysis showed that 10 peripheral leucocyte miRNAs were significantly differently expressed in severe PE patients. Four differently expressed miRNAs were successfully validated using qRT-PCR method. Conclusion: We successfully constructed a model with high accuracy to predict PE. A combination of four peripheral leucocyte miRNAs has great potential to serve as diagnostic biomarkers of PE. PMID:26675000
Jarvi, Susan I.; Schultz, Jeffrey J.; Atkinson, Carter T.
2002-01-01
Several polymerase chain reaction (PCR)-based methods have recently been developed for diagnosing malarial infections in both birds and reptiles, but a critical evaluation of their sensitivity in experimentally-infected hosts has not been done. This study compares the sensitivity of several PCR-based methods for diagnosing avian malaria (Plasmodium relictum) in captive Hawaiian honeycreepers using microscopy and a recently developed immunoblotting technique. Sequential blood samples were collected over periods of up to 4.4 yr after experimental infection and rechallenge to determine both the duration and detectability of chronic infections. Two new nested PCR approaches for detecting circulating parasites based on P. relictum 18S rRNA genes and the thrombospondin-related anonymous protein (TRAP) gene are described. The blood smear and the PCR tests were less sensitive than serological methods for detecting chronic malarial infections. Individually, none of the diagnostic methods was 100% accurate in detecting subpatent infections, although serological methods were significantly more sensitive (97%) than either nested PCR (61–84%) or microscopy (27%). Circulating parasites in chronically infected birds either disappear completely from circulation or to drop to intensities below detectability by nested PCR. Thus, the use of PCR as a sole means of detection of circulating parasites may significantly underestimate true prevalence.
Alfaro-Núñez, Alonzo; Gilbert, M Thomas P
2014-09-01
The Chelonid fibropapilloma-associated herpesvirus (CFPHV) is hypothesized to be the causative agent of fibropapillomatosis, a neoplastic disease in sea turtles, given its consistent detection by PCR in fibropapilloma tumours. CFPHV has also been detected recently by PCR in tissue samples from clinically healthy (non exhibiting fibropapilloma tumours) turtles, thus representing presumably latent infections of the pathogen. Given that template copy numbers of viruses in latent infections can be very low, extremely sensitive PCR assays are needed to optimize detection efficiency. In this study, efficiency of several PCR assays designed for CFPHV detection is explored and compared to a method published previously. The results show that adoption of a triplet set of singleplex PCR assays outperforms other methods, with an approximately 3-fold increase in detection success in comparison to the standard assay. Thus, a new assay for the detection of CFPHV DNA markers is presented, and adoption of its methodology is recommended in future CFPHV screens among sea turtles. Copyright © 2014 Elsevier B.V. All rights reserved.
A new rapid methodological strategy to assess BRCA mutational status.
Vuttariello, Emilia; Borra, Marco; Calise, Celeste; Mauriello, Elvira; Greggi, Stefano; Vecchione, Aldo; Biffali, Elio; Chiappetta, Gennaro
2013-07-01
Hereditary cancers account for approximately 10 % of breast and ovarian cancers. Mutations of the BRCA1 and BRCA2 genes, encoding two proteins involved in DNA repair, underlie most cases of such hereditary cancers. Women with BRCA mutations develop breast cancer in 50-80 % of cases and ovarian cancer in 10-40 % of cases. Assessing BRCA mutational status is needed to direct the clinical management of women with predisposition to these hereditary cancers. However, BRCA screening constitutes a bottleneck in terms of costs and time to deliver results. We developed a PCR-based assay using 73 primer pairs covering the entire coding regions of BRCA1 and BRCA2. PCR primers, containing at the 5' end the universal M13 primer sequences, were pre-spotted in 96-well plates. Following PCR, direct sequencing was performed using M13 primers, allowing to standardize the conditions. PCR amplification and sequencing were successful for each amplicon. We tested and validated the assay on 10 known gDNAs from patients with Hereditary breast and ovarian cancer (HBOC). Our strategy is a promising time and cost-effective method to detect BRCA mutations in the clinical setting, which is essential to formulate a personalized therapy for patients with HBOC.
Fu, Wei; Xie, Wen; Zhang, Zhuo; Wang, Shaoli; Wu, Qingjun; Liu, Yong; Zhou, Xiaomao; Zhou, Xuguo; Zhang, Youjun
2013-01-01
Abstract: Quantitative real-time PCR (qRT-PCR), a primary tool in gene expression analysis, requires an appropriate normalization strategy to control for variation among samples. The best option is to compare the mRNA level of a target gene with that of reference gene(s) whose expression level is stable across various experimental conditions. In this study, expression profiles of eight candidate reference genes from the diamondback moth, Plutella xylostella, were evaluated under diverse experimental conditions. RefFinder, a web-based analysis tool, integrates four major computational programs including geNorm, Normfinder, BestKeeper, and the comparative ΔCt method to comprehensively rank the tested candidate genes. Elongation factor 1 (EF1) was the most suited reference gene for the biotic factors (development stage, tissue, and strain). In contrast, although appropriate reference gene(s) do exist for several abiotic factors (temperature, photoperiod, insecticide, and mechanical injury), we were not able to identify a single universal reference gene. Nevertheless, a suite of candidate reference genes were specifically recommended for selected experimental conditions. Our finding is the first step toward establishing a standardized qRT-PCR analysis of this agriculturally important insect pest. PMID:23983612
New Highly Sensitive Real-Time PCR Assay for HIV-2 Group A and Group B DNA Quantification.
Bertine, Mélanie; Gueudin, Marie; Mélard, Adeline; Damond, Florence; Descamps, Diane; Matheron, Sophie; Collin, Fidéline; Rouzioux, Christine; Plantier, Jean-Christophe; Avettand-Fenoel, Véronique
2017-09-01
HIV-2 infection is characterized by a very low replication rate in most cases and low progression. This necessitates an approach to patient monitoring that differs from that for HIV-1 infection. Here, a new highly specific and sensitive method for HIV-2 DNA quantification was developed. The new test is based on quantitative real-time PCR targeting the long terminal repeat (LTR) and gag regions and using an internal control. Analytical performance was determined in three laboratories, and clinical performance was determined on blood samples from 63 patients infected with HIV-2 group A ( n = 35) or group B ( n = 28). The specificity was 100%. The 95% limit of detection was three copies/PCR and the limit of quantification was six copies/PCR. The within-run coefficients of variation were between 1.03% at 3.78 log 10 copies/PCR and 27.02% at 0.78 log 10 copies/PCR. The between-run coefficient of variation was 5.10%. Both manual and automated nucleic acid extraction methods were validated. HIV-2 DNA loads were detectable in blood cells from all 63 patients. When HIV-2 DNA was quantifiable, median loads were significantly higher in antiretroviral-treated than in naive patients and were similar for groups A and B. HIV-2 DNA load was correlated with HIV-2 RNA load ( r = 0.68; 95% confidence interval [CI], 0.4 to 0.8; P < 0.0001). Our data show that this new assay is highly sensitive and quantifies the two main HIV-2 groups, making it useful for the diagnosis of HIV-2 infection and for pathogenesis studies on HIV-2 reservoirs. Copyright © 2017 American Society for Microbiology.
Zonta, Eleonora; Garlan, Fanny; Pécuchet, Nicolas; Perez-Toralla, Karla; Caen, Ouriel; Milbury, Coren; Didelot, Audrey; Fabre, Elizabeth; Blons, Hélène; Laurent-Puig, Pierre; Taly, Valérie
2016-01-01
In cancer research, the accuracy of the technology used for biomarkers detection is remarkably important. In this context, digital PCR represents a highly sensitive and reproducible method that could serve as an appropriate tool for tumor mutational status analysis. In particular, droplet-based digital PCR approaches have been developed for detection of tumor-specific mutated alleles within plasmatic circulating DNA. Such an approach calls for the development and validation of a very significant quantity of assays, which can be extremely costly and time consuming. Herein, we evaluated assays for the detection and quantification of various mutations occurring in three genes often misregulated in cancers: the epidermal growth factor receptor (EGFR), the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and the Tumoral Protein p53 (TP53) genes. In particular, commercial competitive allele-specific TaqMan® PCR (castPCR™) technology, as well as TaqMan® and ZEN™ assays, have been evaluated for EGFR p.L858R, p.T790M, p.L861Q point mutations and in-frame deletions Del19. Specificity and sensitivity have been determined on cell lines DNA, plasmatic circulating DNA of lung cancer patients or Horizon Diagnostics Reference Standards. To show the multiplexing capabilities of this technology, several multiplex panels for EGFR (several three- and four-plexes) have been developed, offering new "ready-to-use" tests for lung cancer patients.
Hartnell, R E; Stockley, L; Keay, W; Rosec, J-P; Hervio-Heath, D; Van den Berg, H; Leoni, F; Ottaviani, D; Henigman, U; Denayer, S; Serbruyns, B; Georgsson, F; Krumova-Valcheva, G; Gyurova, E; Blanco, C; Copin, S; Strauch, E; Wieczorek, K; Lopatek, M; Britova, A; Hardouin, G; Lombard, B; In't Veld, P; Leclercq, A; Baker-Austin, C
2018-02-10
Globally, vibrios represent an important and well-established group of bacterial foodborne pathogens. The European Commission (EC) mandated the Comite de European Normalisation (CEN) to undertake work to provide validation data for 15 methods in microbiology to support EC legislation. As part of this mandated work programme, merging of ISO/TS 21872-1:2007, which specifies a horizontal method for the detection of V. parahaemolyticus and V. cholerae, and ISO/TS 21872-2:2007, a similar horizontal method for the detection of potentially pathogenic vibrios other than V. cholerae and V. parahaemolyticus was proposed. Both parts of ISO/TS 21872 utilized classical culture-based isolation techniques coupled with biochemical confirmation steps. The work also considered simplification of the biochemical confirmation steps. In addition, because of advances in molecular based methods for identification of human pathogenic Vibrio spp. classical and real-time PCR options were also included within the scope of the validation. These considerations formed the basis of a multi-laboratory validation study with the aim of improving the precision of this ISO technical specification and providing a single ISO standard method to enable detection of these important foodborne Vibrio spp.. To achieve this aim, an international validation study involving 13 laboratories from 9 countries in Europe was conducted in 2013. The results of this validation have enabled integration of the two existing technical specifications targeting the detection of the major foodborne Vibrio spp., simplification of the suite of recommended biochemical identification tests and the introduction of molecular procedures that provide both species level identification and discrimination of putatively pathogenic strains of V. parahaemolyticus by the determination of the presence of theromostable direct and direct related haemolysins. The method performance characteristics generated in this have been included in revised international standard, ISO 21872:2017, published in July 2017. Copyright © 2018. Published by Elsevier B.V.
Stangegaard, Michael; Frøslev, Tobias G; Frank-Hansen, Rune; Hansen, Anders J; Morling, Niels
2011-04-01
We have implemented and validated automated protocols for DNA extraction and PCR setup using a Tecan Freedom EVO liquid handler mounted with the Te-MagS magnetic separation device (Tecan, Männedorf, Switzerland). The protocols were validated for accredited forensic genetic work according to ISO 17025 using the Qiagen MagAttract DNA Mini M48 kit (Qiagen GmbH, Hilden, Germany) from fresh whole blood and blood from deceased individuals. The workflow was simplified by returning the DNA extracts to the original tubes minimizing the risk of misplacing samples. The tubes that originally contained the samples were washed with MilliQ water before the return of the DNA extracts. The PCR was setup in 96-well microtiter plates. The methods were validated for the kits: AmpFℓSTR Identifiler, SGM Plus and Yfiler (Applied Biosystems, Foster City, CA), GenePrint FFFL and PowerPlex Y (Promega, Madison, WI). The automated protocols allowed for extraction and addition of PCR master mix of 96 samples within 3.5h. In conclusion, we demonstrated that (1) DNA extraction with magnetic beads and (2) PCR setup for accredited, forensic genetic short tandem repeat typing can be implemented on a simple automated liquid handler leading to the reduction of manual work, and increased quality and throughput. Copyright © 2011 Society for Laboratory Automation and Screening. Published by Elsevier Inc. All rights reserved.
Validation of endogenous reference genes for qRT-PCR analysis of human visceral adipose samples
2010-01-01
Background Given the epidemic proportions of obesity worldwide and the concurrent prevalence of metabolic syndrome, there is an urgent need for better understanding the underlying mechanisms of metabolic syndrome, in particular, the gene expression differences which may participate in obesity, insulin resistance and the associated series of chronic liver conditions. Real-time PCR (qRT-PCR) is the standard method for studying changes in relative gene expression in different tissues and experimental conditions. However, variations in amount of starting material, enzymatic efficiency and presence of inhibitors can lead to quantification errors. Hence the need for accurate data normalization is vital. Among several known strategies for data normalization, the use of reference genes as an internal control is the most common approach. Recent studies have shown that both obesity and presence of insulin resistance influence an expression of commonly used reference genes in omental fat. In this study we validated candidate reference genes suitable for qRT-PCR profiling experiments using visceral adipose samples from obese and lean individuals. Results Cross-validation of expression stability of eight selected reference genes using three popular algorithms, GeNorm, NormFinder and BestKeeper found ACTB and RPII as most stable reference genes. Conclusions We recommend ACTB and RPII as stable reference genes most suitable for gene expression studies of human visceral adipose tissue. The use of these genes as a reference pair may further enhance the robustness of qRT-PCR in this model system. PMID:20492695
Validation of endogenous reference genes for qRT-PCR analysis of human visceral adipose samples.
Mehta, Rohini; Birerdinc, Aybike; Hossain, Noreen; Afendy, Arian; Chandhoke, Vikas; Younossi, Zobair; Baranova, Ancha
2010-05-21
Given the epidemic proportions of obesity worldwide and the concurrent prevalence of metabolic syndrome, there is an urgent need for better understanding the underlying mechanisms of metabolic syndrome, in particular, the gene expression differences which may participate in obesity, insulin resistance and the associated series of chronic liver conditions. Real-time PCR (qRT-PCR) is the standard method for studying changes in relative gene expression in different tissues and experimental conditions. However, variations in amount of starting material, enzymatic efficiency and presence of inhibitors can lead to quantification errors. Hence the need for accurate data normalization is vital. Among several known strategies for data normalization, the use of reference genes as an internal control is the most common approach. Recent studies have shown that both obesity and presence of insulin resistance influence an expression of commonly used reference genes in omental fat. In this study we validated candidate reference genes suitable for qRT-PCR profiling experiments using visceral adipose samples from obese and lean individuals. Cross-validation of expression stability of eight selected reference genes using three popular algorithms, GeNorm, NormFinder and BestKeeper found ACTB and RPII as most stable reference genes. We recommend ACTB and RPII as stable reference genes most suitable for gene expression studies of human visceral adipose tissue. The use of these genes as a reference pair may further enhance the robustness of qRT-PCR in this model system.
Geng, J; Liu, C; Zhou, X C; Ma, J; Du, L; Lu, J; Zhou, W N; Hu, T T; Lyu, L J; Yin, A H
2017-02-25
Objective: To develop a new method based on droplet digital PCR (DD-PCR) for detection and quantification of maternal cell contamination in prenatal diagnosis. Methods: Invasive prenatal samples from 40 couples of β(IVS-Ⅱ-654)/β(N) thalassemia gene carriers who accepted prenatal diagnosis in Affiliated Women and Children's Hospital of Guangzhou Medical University from October 2015 to December 2016 were analyzed retrospectively. Specific primers and probes were designed. The concentration gradient were 50%, 25%, 12.5%, 6.25%, 3.125%, 1.562 5%. There were 40 groups of prenatal diagnostic samples. Comparing DD-PCR with quantitative fluorescent-PCR (QF-PCR) based on the short tandem repeats for assement of the sensitivity and accuracy of maternal cell contamination, respectively. Results: DD-PCR could quantify the maternal cell contamination as low as 1.562 5%. The result was proportional to the dilution titers. In the 40 prenatal samples, 6 cases (15%, 6/40) of maternal cell contamination were detected by DD-PCR, while the QF-PCR based on short tandem repeat showed 3 cases (7.5%, 3/40) with maternal cell contamination, DD-PCR was more accurate ( P= 0.002) . Conclusion: DD-PCR is a precise and sensitive method in the detection of maternal cell contamintation. It could be useful in clinical application.
Li, Xiaofang; Cui, Jinghua; Du, Xiaoli; Cui, Zhigang; Huang, Yibing; Kan, Biao
2017-01-01
Cronobacter sakazakii and Cronobacter malonaticus are the most common species of Cronobacter , so it is necessary to detect the two species as soon as possible in surveillance programs. We developed a real-time PCR method for identifying C. sakazakii and C. malonaticus from the genus Cronobacter . In this study, the two pairs of primers and probes were designed, targeting 16S rRNA and fusA, respectively. The specificity of the real-time PCR assay was validated with 112 strains of Cronobacter , including 56 C. sakazakii , 32 C. malonaticus , 16 Cronobacter dublinensis , 6 Cronobacter turicensis , and 2 Cronobacter muytjensii . The results showed that C. sakazakii and C. malonaticus were all correctly identified, consistent with the results of another method by analyzing the clustering of the fusA sequence. The detection limit for pure culture was 10 2 CFU/ml and 10 3 CFU/g for artificially contaminated rehydrated powdered infant formula. Therefore, the developed real-time PCR was a rapid, sensitive, and reliable method for the identification of C. sakazakii and C. malonaticus .
de Filippis, Ivano; de Andrade, Claudia Ferreira; Caldeira, Nathalia; de Azevedo, Aline Carvalho; de Almeida, Antonio Eugenio
2016-01-01
Several in-house PCR-based assays have been described for the detection of bacterial meningitis caused by Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae from clinical samples. PCR-based methods targeting different bacterial genes are frequently used by different laboratories worldwide, but no standard method has ever been established. The aim of our study was to compare different in-house and a commercial PCR-based tests for the detection of bacterial pathogens causing meningitis and invasive disease in humans. A total of 110 isolates and 134 clinical samples (99 cerebrospinal fluid and 35 blood samples) collected from suspected cases of invasive disease were analyzed. Specific sets of primers frequently used for PCR-diagnosis of the three pathogens were used and compared with the results achieved using the multiplex approach described here. Several different gene targets were used for each microorganism, namely ctrA, crgA and nspA for N. meningitidis, ply for S. pneumoniae, P6 and bexA for H. influenzae. All used methods were fast, specific and sensitive, while some of the targets used for the in-house PCR assay detected lower concentrations of genomic DNA than the commercial method. An additional PCR reaction is described for the differentiation of capsulated and non-capsulated H. influenzae strains, the while commercial method only detects capsulated strains. The in-house PCR methods here compared showed to be rapid, sensitive, highly specific, and cheaper than commercial methods. The in-house PCR methods could be easily adopted by public laboratories of developing countries for diagnostic purposes. The best results were achieved using primers targeting the genes nspA, ply, and P6 which were able to detect the lowest DNA concentrations for each specific target. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.
Stevenson, Jeffery; Hymas, Weston; Hillyard, David
2005-01-01
Herpes simplex virus (HSV) is the most common cause of acquired, sporadic encephalitis in the United States. PCR identification of HSV in spinal fluid has become the diagnostic gold standard due to its sensitivity and potential for speed, replacing other methods such as culture. We developed a real-time PCR assay to detect HSV, using a new type of hybridization probe, the Eclipse probe. In this study, we ran 323 samples (171 positives and 152 negatives) with the Eclipse real-time PCR assay and compared these results with another PCR assay using gel detection. The real-time assay agreed with our reference method for 319 out of the 323 samples tested (99%). Using two different real-time PCR platforms, we discovered that SNPs within the amplicon's probe binding region that are used to distinguish HSV-1 from HSV-2 can decrease assay sensitivity. This problem is potentially a general one for assays using fluorescent probes to detect target amplification in a real-time format. While real-time PCR can be a powerful tool in the field of infectious disease, careful sequence evaluation and clinical validation are essential in creating an effective assay. PMID:15872272
Maluping, R P; Ravelo, C; Lavilla-Pitogo, C R; Krovacek, K; Romalde, J L
2005-01-01
The main aim of the present study was to use three PCR-based techniques for the analysis of genetic variability among Vibrio parahaemolyticus strains isolated from the Philippines. Seventeen strains of V. parahaemolyticus isolated from shrimps (Penaeus monodon) and from the environments where these shrimps are being cultivated were analysed by random amplified polymorphic DNA PCR (RAPD-PCR), enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR) and repetitive extragenic palindromic PCR (REP-PCR). The results of this work have demonstrated genetic variability within the V. parahaemolyticus strains that were isolated from the Philippines. In addition, RAPD, ERIC and REP-PCR are suitable rapid typing methods for V. parahaemolyticus. All three methods have good discriminative ability and can be used as a rapid means of comparing V. parahaemolyticus strains for epidemiological investigation. Based on the results of this study, we could say that REP-PCR is inferior to RAPD and ERIC-PCR owing to the fact that it is less reproducible. Moreover, the REP-PCR analysis yielded a relatively small number of products. This may suggests that the REP sequences may not be widely distributed in the V. parahaemolyticus genome. Genetic variability within V. parahaemolyticus strains isolated in the Philippines has been demonstrated. The presence of ERIC and REP sequences in the genome of this bacterial species was confirmed. The RAPD, ERIC and REP-PCR techniques are useful methods for molecular typing of V. parahaemolyticus strains. To our knowledge this is the first study of this kind carried out on V. parahaemolyticus strains isolated from the Philippines.
Ng-Nguyen, Dinh; Stevenson, Mark A; Dorny, Pierre; Gabriël, Sarah; Vo, Tinh Van; Nguyen, Van-Anh Thi; Phan, Trong Van; Hii, Sze Fui; Traub, Rebecca J
2017-07-01
Taenia solium, the cause of neurocysticercosis (NCC), has significant socioeconomic impacts on communities in developing countries. This disease, along with taeniasis is estimated to infect 2.5 to 5 million people globally. Control of T. solium NCC necessitates accurate diagnosis and treatment of T. solium taeniasis carriers. In areas where all three species of Taenia tapeworms (T. solium, Taenia saginata and Taenia asiatica) occur sympatrically, conventional microscope- and copro-antigen based diagnostic methods are unable to distinguish between these three Taenia species. Molecular diagnostic tools have been developed to overcome this limitation; however, conventional PCR-based techniques remain unsuitable for large-scale deployment in community-based surveys. Moreover, a real-time PCR (qPCR) for the discrimination of all three species of Taenia in human stool does not exist. This study describes the development and validation of a new triplex Taq-Man probe-based qPCR for the detection and discrimination of all three Taenia human tapeworms in human stools collected from communities in the Central Highlands of Vietnam. The diagnostic characteristics of the test are compared with conventional Kato Katz (KK) thick smear and copro-antigen ELISA (cAgELISA) method utilizing fecal samples from a community based cross-sectional study. Using this new multiplex real-time PCR we provide an estimate of the true prevalence of taeniasis in the source population for the community based cross-sectional study. Primers and TaqMan probes for the specific amplification of T. solium, T. saginata and T. asiatica were designed and successfully optimized to target the internal transcribed spacer I (ITS-1) gene of T. solium and the cytochrome oxidase subunit I (COX-1) gene of T. saginata and T. asiatica. The newly designed triplex qPCR (T3qPCR) was compared to KK and cAgELISA for the detection of Taenia eggs in stool samples collected from 342 individuals in Dak Lak province, Central Highlands of Vietnam. The overall apparent prevalence of taeniasis in Dak Lak province was 6.72% (95% confidence interval (CI) [3.94-9.50]) in which T. solium accounted for 1.17% (95% CI [0.37-3.17]), according to the T3qPCR. There was sympatric presence of T. solium, T. saginata and T. asiatica. The T3qPCR proved superior to KK and cAgELISA for the detection and differentiation of Taenia species in human feces. Diagnostic sensitivities of 0.94 (95% credible interval (CrI) [0.88-0.98]), 0.82 (95% CrI [0.58-0.95]) and 0.52 (95% CrI [0.07-0.94]), and diagnostic specificities of 0.98 (95% CrI [0.94-1.00]), 0.91 (95% CrI [0.85-0.96]) and 0.99 (95% CrI [0.96-1.00]) were estimated for the diagnosis of taeniasis for the T3qPCR, cAgELISA and KK thick smear in this study, respectively. T3qPCR is not only superior to the KK thick smear and cAgELISA in terms of diagnostic sensitivity and specificity, but it also has the advantage of discriminating between species of Taenia eggs in stools. Application of this newly developed T3qPCR has identified the existence of all three human Taenia tapeworms in Dak Lak province and proves for the first time, the existence of T. asiatica in the Central Highlands and the south of Vietnam.
Diagnostic validation of three test methods for detection of cyprinid herpesvirus 3 (CyHV-3).
Clouthier, Sharon C; McClure, Carol; Schroeder, Tamara; Desai, Megan; Hawley, Laura; Khatkar, Sunita; Lindsay, Melissa; Lowe, Geoff; Richard, Jon; Anderson, Eric D
2017-03-06
Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of koi herpesvirus disease in koi and common carp. The disease is notifiable to the World Organisation for Animal Health. Three tests-quantitative polymerase chain reaction (qPCR), conventional PCR (cPCR) and virus isolation by cell culture (VI)-were validated to assess their fitness as diagnostic tools for detection of CyHV-3. Test performance metrics of diagnostic accuracy were sensitivity (DSe) and specificity (DSp). Repeatability and reproducibility were measured to assess diagnostic precision. Estimates of test accuracy, in the absence of a gold standard reference test, were generated using latent class models. Test samples originated from wild common carp naturally exposed to CyHV-3 or domesticated koi either virus free or experimentally infected with the virus. Three laboratories in Canada participated in the precision study. Moderate to high repeatability (81 to 99%) and reproducibility (72 to 97%) were observed for the qPCR and cPCR tests. The lack of agreement observed between some of the PCR test pair results was attributed to cross-contamination of samples with CyHV-3 nucleic acid. Accuracy estimates for the PCR tests were 99% for DSe and 93% for DSp. Poor precision was observed for the VI test (4 to 95%). Accuracy estimates for VI/qPCR were 90% for DSe and 88% for DSp. Collectively, the results show that the CyHV-3 qPCR test is a suitable tool for surveillance, presumptive diagnosis and certification of individuals or populations as CyHV-3 free.
Real-time water quality monitoring at a Great Lakes National Park
Byappanahalli, Muruleedhara; Nevers, Meredith; Shively, Dawn; Spoljaric, Ashley; Otto, Christopher
2018-01-01
Quantitative polymerase chain reaction (qPCR) was used by the USEPA to establish new recreational water quality criteria in 2012 using the indicator bacteria enterococci. The application of this method has been limited, but resource managers are interested in more timely monitoring results. In this study, we evaluated the efficacy of qPCR as a rapid, alternative method to the time-consuming membrane filtration (MF) method for monitoring water at select beaches and rivers of Sleeping Bear Dunes National Lakeshore in Empire, MI. Water samples were collected from four locations (Esch Road Beach, Otter Creek, Platte Point Bay, and Platte River outlet) in 2014 and analyzed for culture-based (MF) and non-culture-based (i.e., qPCR) endpoints using Escherichia coli and enterococci bacteria. The MF and qPCR enterococci results were significantly, positively correlated overall (r = 0.686, p < 0.0001, n = 98) and at individual locations as well, except at the Platte River outlet location: Esch Road Beach (r = 0.441, p = 0.031, n = 24), Otter Creek (r = 0.592, p = 0.002, n = 24), and Platte Point Bay (r = 0.571, p = 0.004, n = 24). Similarly, E. coli MF and qPCR results were significantly, positively correlated (r = 0.469, p < 0.0001, n = 95), overall but not at individual locations. Water quality standard exceedances based on enterococci levels by qPCR were lower than by MF method: 3 and 16, respectively. Based on our findings, we conclude that qPCR may be a viable alternative to the culture-based method for monitoring water quality on public lands. Rapid, same-day results are achievable by the qPCR method, which greatly improves protection of the public from water-related illnesses.
Mauger, Florence; Kernaleguen, Magali; Lallemand, Céline; Kristensen, Vessela N; Deleuze, Jean-François; Tost, Jörg
2018-05-01
The detection of specific DNA methylation patterns bears great promise as biomarker for personalized management of cancer patients. Co-amplification at lower denaturation temperature-PCR (COLD-PCR) assays are sensitive methods, but have previously only been able to analyze loss of DNA methylation. Enhanced (E)-ice-COLD-PCR reactions starting from 2 ng of bisulfite-converted DNA were developed to analyze methylation patterns in two promoters with locked nucleic acid (LNA) probes blocking amplification of unmethylated CpGs. The enrichment of methylated molecules was compared to quantitative (q)PCR and quantified using serial dilutions. E-ice-COLD-PCR allowed the multiplexed enrichment and quantification of methylated DNA. Assays were validated in primary breast cancer specimens and circulating cell-free DNA from cancer patients. E-ice-COLD-PCR could prove a useful tool in the context of DNA methylation analysis for personalized medicine.
Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi
2016-01-01
A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize, 3272. We first attempted to obtain genome DNA from this maize using a DNeasy Plant Maxi kit and a DNeasy Plant Mini kit, which have been widely utilized in our previous studies, but DNA extraction yields from 3272 were markedly lower than those from non-GM maize seeds. However, lowering of DNA extraction yields was not observed with GM quicker or Genomic-tip 20/G. We chose GM quicker for evaluation of the quantitative method. We prepared a standard plasmid for 3272 quantification. The conversion factor (Cf), which is required to calculate the amount of a genetically modified organism (GMO), was experimentally determined for two real-time PCR instruments, the Applied Biosystems 7900HT (the ABI 7900) and the Applied Biosystems 7500 (the ABI7500). The determined Cf values were 0.60 and 0.59 for the ABI 7900 and the ABI 7500, respectively. To evaluate the developed method, a blind test was conducted as part of an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSDr). The determined values were similar to those in our previous validation studies. The limit of quantitation for the method was estimated to be 0.5% or less, and we concluded that the developed method would be suitable and practical for detection and quantification of 3272.
Dobhal, S; Zhang, G; Rohla, C; Smith, M W; Ma, L M
2014-10-01
PCR is widely used in the routine detection of foodborne human pathogens; however, challenges remain in overcoming PCR inhibitors present in some sample matrices. The objective of this study was to develop a simple, sensitive, cost-effective and rapid method for processing large numbers of environmental and pecan samples for Salmonella detection. This study was also aimed at validation of a new protocol for the detection of Salmonella from in-shell pecans. Different DNA template preparation methods, including direct boiling, prespin, multiple washing and commercial DNA extraction kits, were evaluated with pure cultures of Salmonella Typhimurium and with enriched soil, cattle feces and in-shell pecan each spiked individually with Salmonella Typhimurium. PCR detection of Salmonella was conducted using invA and 16S rRNA gene (internal amplification control) specific primers. The effect of amplification facilitators, including bovine serum albumin (BSA), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and gelatin on PCR sensitivity, was also evaluated. Conducting a prespin of sample matrices in combination with the addition of 0·4% (w/v) BSA and 1% (w/v) PVP in PCR mix was the simplest, most rapid, cost-effective and sensitive method for PCR detection of Salmonella, with up to 40 CFU Salmonella per reaction detectable in the presence of over 10(9 ) CFU ml(-1) of background micro-organisms from enriched feces soil or pecan samples. The developed method is rapid, cost-effective and sensitive for detection of Salmonella from different matrices. This study provides a method with broad applicability for PCR detection of Salmonella in complex sample matrices. This method has a potential for its application in different research arenas and diagnostic laboratories. © 2014 The Society for Applied Microbiology.
Chemidlin Prévost-Bouré, Nicolas; Christen, Richard; Dequiedt, Samuel; Mougel, Christophe; Lelièvre, Mélanie; Jolivet, Claudy; Shahbazkia, Hamid Reza; Guillou, Laure; Arrouays, Dominique; Ranjard, Lionel
2011-01-01
Fungi constitute an important group in soil biological diversity and functioning. However, characterization and knowledge of fungal communities is hampered because few primer sets are available to quantify fungal abundance by real-time quantitative PCR (real-time Q-PCR). The aim in this study was to quantify fungal abundance in soils by incorporating, into a real-time Q-PCR using the SYBRGreen® method, a primer set already used to study the genetic structure of soil fungal communities. To satisfy the real-time Q-PCR requirements to enhance the accuracy and reproducibility of the detection technique, this study focused on the 18S rRNA gene conserved regions. These regions are little affected by length polymorphism and may provide sufficiently small targets, a crucial criterion for enhancing accuracy and reproducibility of the detection technique. An in silico analysis of 33 primer sets targeting the 18S rRNA gene was performed to select the primer set with the best potential for real-time Q-PCR: short amplicon length; good fungal specificity and coverage. The best consensus between specificity, coverage and amplicon length among the 33 sets tested was the primer set FR1 / FF390. This in silico analysis of the specificity of FR1 / FF390 also provided additional information to the previously published analysis on this primer set. The specificity of the primer set FR1 / FF390 for Fungi was validated in vitro by cloning - sequencing the amplicons obtained from a real time Q-PCR assay performed on five independent soil samples. This assay was also used to evaluate the sensitivity and reproducibility of the method. Finally, fungal abundance in samples from 24 soils with contrasting physico-chemical and environmental characteristics was examined and ranked to determine the importance of soil texture, organic carbon content, C∶N ratio and land use in determining fungal abundance in soils. PMID:21931659
Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview.
Deshmukh, Rehan A; Joshi, Kopal; Bhand, Sunil; Roy, Utpal
2016-12-01
Waterborne diseases have emerged as global health problems and their rapid and sensitive detection in environmental water samples is of great importance. Bacterial identification and enumeration in water samples is significant as it helps to maintain safe drinking water for public consumption. Culture-based methods are laborious, time-consuming, and yield false-positive results, whereas viable but nonculturable (VBNCs) microorganisms cannot be recovered. Hence, numerous methods have been developed for rapid detection and quantification of waterborne pathogenic bacteria in water. These rapid methods can be classified into nucleic acid-based, immunology-based, and biosensor-based detection methods. This review summarizes the principle and current state of rapid methods for the monitoring and detection of waterborne bacterial pathogens. Rapid methods outlined are polymerase chain reaction (PCR), digital droplet PCR, real-time PCR, multiplex PCR, DNA microarray, Next-generation sequencing (pyrosequencing, Illumina technology and genomics), and fluorescence in situ hybridization that are categorized as nucleic acid-based methods. Enzyme-linked immunosorbent assay (ELISA) and immunofluorescence are classified into immunology-based methods. Optical, electrochemical, and mass-based biosensors are grouped into biosensor-based methods. Overall, these methods are sensitive, specific, time-effective, and important in prevention and diagnosis of waterborne bacterial diseases. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
PCR Methods for Rapid Identification and Characterization of Actinobacillus seminis Strains
Appuhamy, S.; Coote, J. G.; Low, J. C.; Parton, R.
1998-01-01
Twenty-four isolates of Actinobacillus seminis were typed by PCR ribotyping, repetitive extragenic palindromic element (REP)-based PCR, and enterobacterial repetitive intergenic consensus (ERIC)-based PCR. Five types were distinguished by REP-PCR, and nine types were distinguished by ERIC-PCR. PCR ribotyping produced the simplest pattern and could be useful for identification of A. seminis and for its differentiation from related species. REP- and ERIC-PCR could be used for strain differentiation in epidemiological studies of A. seminis. PMID:9508320
Guinney, Justin; Wang, Tao; Laajala, Teemu D; Winner, Kimberly Kanigel; Bare, J Christopher; Neto, Elias Chaibub; Khan, Suleiman A; Peddinti, Gopal; Airola, Antti; Pahikkala, Tapio; Mirtti, Tuomas; Yu, Thomas; Bot, Brian M; Shen, Liji; Abdallah, Kald; Norman, Thea; Friend, Stephen; Stolovitzky, Gustavo; Soule, Howard; Sweeney, Christopher J; Ryan, Charles J; Scher, Howard I; Sartor, Oliver; Xie, Yang; Aittokallio, Tero; Zhou, Fang Liz; Costello, James C
2016-01-01
Summary Background Improvements to prognostic models in metastatic castration-resistant prostate cancer have the potential to augment clinical trial design and guide treatment strategies. In partnership with Project Data Sphere, a not-for-profit initiative allowing data from cancer clinical trials to be shared broadly with researchers, we designed an open-data, crowdsourced, DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge to not only identify a better prognostic model for prediction of survival in patients with metastatic castration-resistant prostate cancer but also engage a community of international data scientists to study this disease. Methods Data from the comparator arms of four phase 3 clinical trials in first-line metastatic castration-resistant prostate cancer were obtained from Project Data Sphere, comprising 476 patients treated with docetaxel and prednisone from the ASCENT2 trial, 526 patients treated with docetaxel, prednisone, and placebo in the MAINSAIL trial, 598 patients treated with docetaxel, prednisone or prednisolone, and placebo in the VENICE trial, and 470 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Datasets consisting of more than 150 clinical variables were curated centrally, including demographics, laboratory values, medical history, lesion sites, and previous treatments. Data from ASCENT2, MAINSAIL, and VENICE were released publicly to be used as training data to predict the outcome of interest—namely, overall survival. Clinical data were also released for ENTHUSE 33, but data for outcome variables (overall survival and event status) were hidden from the challenge participants so that ENTHUSE 33 could be used for independent validation. Methods were evaluated using the integrated time-dependent area under the curve (iAUC). The reference model, based on eight clinical variables and a penalised Cox proportional-hazards model, was used to compare method performance. Further validation was done using data from a fifth trial—ENTHUSE M1—in which 266 patients with metastatic castration-resistant prostate cancer were treated with placebo alone. Findings 50 independent methods were developed to predict overall survival and were evaluated through the DREAM challenge. The top performer was based on an ensemble of penalised Cox regression models (ePCR), which uniquely identified predictive interaction effects with immune biomarkers and markers of hepatic and renal function. Overall, ePCR outperformed all other methods (iAUC 0·791; Bayes factor >5) and surpassed the reference model (iAUC 0·743; Bayes factor >20). Both the ePCR model and reference models stratified patients in the ENTHUSE 33 trial into high-risk and low-risk groups with significantly different overall survival (ePCR: hazard ratio 3·32, 95% CI 2·39–4·62, p<0·0001; reference model: 2·56, 1·85–3·53, p<0·0001). The new model was validated further on the ENTHUSE M1 cohort with similarly high performance (iAUC 0·768). Meta-analysis across all methods confirmed previously identified predictive clinical variables and revealed aspartate aminotransferase as an important, albeit previously under-reported, prognostic biomarker. Interpretation Novel prognostic factors were delineated, and the assessment of 50 methods developed by independent international teams establishes a benchmark for development of methods in the future. The results of this effort show that data-sharing, when combined with a crowdsourced challenge, is a robust and powerful framework to develop new prognostic models in advanced prostate cancer. Funding Sanofi US Services, Project Data Sphere. PMID:27864015
Molecular Quantification of Zooplankton Gut Content: The Case For qPCR
NASA Astrophysics Data System (ADS)
Frischer, M. E.; Walters, T. L.; Gibson, D. M.; Nejstgaard, J. C.; Troedsson, C.
2016-02-01
The ability to obtain information about feeding selectivity and rates in situ for zooplankton is vital for understanding the mechanisms structuring marine ecosystems. However, directly estimating feeding selection and rates of zooplankton, without bias, associated with culturing conditions has been notoriously difficult. A potential approach for addressing this problem is to target prey-specific DNA as a marker for prey ingestion and selection. In this study we report the development of a differential length amplification quantitative PCR (dla-qPCR) assay targeting the 18S rRNA gene to validate the use of a DNA-based approach to quantify consumption of specific plankton prey by the pelagic tunicate (doliolid) Dolioletta gegenbauri. Compared to copepods and other marine animals, the digestion of prey genomic DNA inside the gut of doliolids is low. This method minimizes potential underestimations, and therefore allows prey DNA to be used as an effective indicator of prey consumption. We also present an initial application of a qPCR-assay to estimate consumption of specific prey species on the southeastern continental shelf of the U.S., where doliolids stochastically bloom in response to upwelling events. Estimated feeding rates, based on qPCR, were in the same range as those estimated from clearance rates in laboratory feeding studies. In the field, consumption of specific prey, including the centric diatom Thalassiosira spp. was detected in the gut of wild caught D. gegenbauri at the levels consistent with their abundance in the water column at the time of collection. Thus, both experimental and field investigations support the hypothesis that a qPCR approach will be useful for the quantitative investigation of the in situ diet of D. gegenbauri without introduced bias' associated with cultivation.
Nadal, Anna; Coll, Anna; La Paz, Jose-Luis; Esteve, Teresa; Pla, Maria
2006-10-01
We present a novel multiplex PCR assay for simultaneous detection of multiple transgenic events in maize. Initially, five PCR primers pairs specific to events Bt11, GA21, MON810, and NK603, and Zea mays L. (alcohol dehydrogenase) were included. The event specificity was based on amplification of transgene/plant genome flanking regions, i.e., the same targets as for validated real-time PCR assays. These short and similarly sized amplicons were selected to achieve high and similar amplification efficiency for all targets; however, its unambiguous identification was a technical challenge. We achieved a clear distinction by a novel CGE approach that combined the identification by size and color (CGE-SC). In one single step, all five targets were amplified and specifically labeled with three different fluorescent dyes. The assay was specific and displayed an LOD of 0.1% of each genetically modified organism (GMO). Therefore, it was adequate to fulfill legal thresholds established, e.g., in the European Union. Our CGE-SC based strategy in combination with an adequate labeling design has the potential to simultaneously detect higher numbers of targets. As an example, we present the detection of up to eight targets in a single run. Multiplex PCR-CGE-SC only requires a conventional sequencer device and enables automation and high throughput. In addition, it proved to be transferable to a different laboratory. The number of authorized GMO events is rapidly growing; and the acreage of genetically modified (GM) varieties cultivated and commercialized worldwide is rapidly increasing. In this context, our multiplex PCR-CGE-SC can be suitable for screening GM contents in food.
Stojowska, Karolina; Krawczyk, Beata
2014-01-01
We have designed a new ddLMS PCR (double digestion Ligation Mediated Suppression PCR) method based on restriction site polymorphism upstream from the specific target sequence for the simultaneous identification and differentiation of bacterial strains. The ddLMS PCR combines a simple PCR used for species or genus identification and the LM PCR strategy for strain differentiation. The bacterial identification is confirmed in the form of the PCR product(s), while the length of the PCR product makes it possible to differentiate between bacterial strains. If there is a single copy of the target sequence within genomic DNA, one specific PCR product is created (simplex ddLMS PCR), whereas for multiple copies of the gene the fingerprinting patterns can be obtained (multiplex ddLMS PCR). The described ddLMS PCR method is designed for rapid and specific strain differentiation in medical and microbiological studies. In comparison to other LM PCR it has substantial advantages: enables specific species' DNA-typing without the need for pure bacterial culture selection, is not sensitive to contamination with other cells or genomic DNA, and gives univocal "band-based" results, which are easy to interpret. The utility of ddLMS PCR was shown for Acinetobacter calcoaceticus-baumannii (Acb) complex, the genetically closely related and phenotypically similar species and also important nosocomial pathogens, for which currently, there are no recommended methods for screening, typing and identification. In this article two models are proposed: 3' recA-ddLMS PCR-MaeII/RsaI for Acb complex interspecific typing and 5' rrn-ddLMS PCR-HindIII/ApaI for Acinetobacter baumannii intraspecific typing. ddLMS PCR allows not only for DNA-typing but also for confirmation of species in one reaction. Also, practical guidelines for designing a diagnostic test based on ddLMS PCR for genotyping different species of bacteria are provided.
Validate a panel of tissue-based biomarkers to determine the presence of or progression to clinically relevant prostate cancer at the time of diagnosis. Utilize a novel, biopsy based multi-gene quantitative RT-PCR assay developed by Genomic Health, Oncotype DX Prostate Cancer Assay, which discriminates aggressive from indolent cancer on multivariate modeling of PCa patients.
Common rs5918 (PlA1/A2) polymorphism in the ITGB3 gene and risk of coronary artery disease
Heidari, Mohammad Mehdi; Soheilyfar, Sorour
2016-01-01
Introduction The T to C transition at nucleotide 1565 of the human glycoprotein IIIa (ITGB3) gene represents a genetic polymorphism (PlA1/A2) that can influence both platelet activation and aggregation and that has been associated with many types of disease. Here, we present a newly designed multiplex tetra-primer amplification refractory mutation system – polymerase chain reaction (T-ARMS-PCR) for genotyping a single nucleotide polymorphism (SNP) (dbSNP ID: rs5918) in the human ITGB3 gene. Material and methods We set up T-ARMS-PCR for the rs5918 SNP in a single-step PCR and the results were validated by the PCR-RFLP method in 132 coronary artery disease (CAD) patients and 122 unrelated healthy individuals. Results Full accordance was found for genotype determination by the PCR-RFLP method. The multiple logistic regression analysis showed a significant association of the rs5918 polymorphism and CAD according to dominant and recessive models (dominant model OR: 2.40, 95% CI: 1.33–4.35; p = 0.003, recessive model OR: 4.71, 95% CI: 1.32–16.80; p = 0.0067). Conclusions Our T-ARMS-PCR in comparison with RFLP and allele-specific PCR is more advantageous because this PCR method allows the evaluation of both the wild type and the mutant allele in the same tube. Our results suggest that the rs5918 (PlA1/A2) polymorphism in the ITGB3 gene may contribute to the susceptibility of sporadic Iranian coronary artery disease (CAD) patients. PMID:28905013
Parra, Macarena; Jung, Jimmy; Boone, Travis D; Tran, Luan; Blaber, Elizabeth A; Brown, Mark; Chin, Matthew; Chinn, Tori; Cohen, Jacob; Doebler, Robert; Hoang, Dzung; Hyde, Elizabeth; Lera, Matthew; Luzod, Louie T; Mallinson, Mark; Marcu, Oana; Mohamedaly, Youssef; Ricco, Antonio J; Rubins, Kathleen; Sgarlato, Gregory D; Talavera, Rafael O; Tong, Peter; Uribe, Eddie; Williams, Jeffrey; Wu, Diana; Yousuf, Rukhsana; Richey, Charles S; Schonfeld, Julie; Almeida, Eduardo A C
2017-01-01
The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and demonstrates the feasibility of more complex wet bench experiments in the ISS National Lab environment.
Boone, Travis D.; Tran, Luan; Blaber, Elizabeth A.; Brown, Mark; Chin, Matthew; Chinn, Tori; Cohen, Jacob; Doebler, Robert; Hoang, Dzung; Hyde, Elizabeth; Lera, Matthew; Luzod, Louie T.; Mallinson, Mark; Marcu, Oana; Mohamedaly, Youssef; Ricco, Antonio J.; Rubins, Kathleen; Sgarlato, Gregory D.; Talavera, Rafael O.; Tong, Peter; Uribe, Eddie; Williams, Jeffrey; Wu, Diana; Yousuf, Rukhsana; Richey, Charles S.; Schonfeld, Julie
2017-01-01
The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and demonstrates the feasibility of more complex wet bench experiments in the ISS National Lab environment. PMID:28877184
Halpern, Micah D.; Molins, Claudia R.; Schriefer, Martin
2014-01-01
A serology-based tiered approach has, to date, provided the most effective means of laboratory confirmation of clinically suspected cases of Lyme disease, but it lacks sensitivity in the early stages of disease and is often dependent on subjectively scored immunoblots. We recently demonstrated the use of immuno-PCR (iPCR) for detecting Borrelia burgdorferi antibodies in patient serum samples that were positive for Lyme disease. To better understand the performance of the Lyme disease iPCR assay, the repeatability and variability of the background of the assay across samples from a healthy population (n = 36) were analyzed. Both of these parameters were found to have coefficients of variation of <3%. Using eight antigen-specific iPCR assays and positive call thresholds established for each assay, iPCR IgM and/or IgG diagnosis from Lyme disease patient serum samples (n = 12) demonstrated a strong correlation with that of 2-tier testing. Furthermore, a simplified iPCR approach using a single hybrid antigen and detecting only IgG antibodies confirmed the 2-tier diagnosis in the Lyme disease patient serum samples (n = 12). Validation of the hybrid antigen IgG iPCR assay using a blinded panel of Lyme disease and non-Lyme disease patient serum samples (n = 92) resulted in a sensitivity of 69% (95% confidence interval [CI], 50% to 84%), compared to that of the 2-tier analysis at 59% (95% CI, 41% to 76%), and a specificity of 98% (95% CI, 91% to 100%) compared to that of the 2-tier analysis at 97% (95% CI, 88% to 100%). A single-tier hybrid antigen iPCR assay has the potential to be an improved method for detecting host-generated antibodies against B. burgdorferi. PMID:24899074
Smiljanic, M; Kaase, M; Ahmad-Nejad, P; Ghebremedhin, B
2017-07-10
Carbapenemase-producing gram-negative bacteria are increasing globally and have been associated with outbreaks in hospital settings. Thus, the accurate detection of these bacteria in infections is mandatory for administering the adequate therapy and infection control measures. This study aimed to establish and evaluate a multiplex real-time PCR assay for the simultaneous detection of carbapenemase gene variants in gram-negative rods and to compare the performance with a commercial RT-PCR assay (Check-Direct CPE). 116 carbapenem-resistant Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii isolates were genotyped for carbapenemase genes by PCR and sequencing. The defined isolates were used for the validation of the in-house RT-PCR by use of designed primer pairs and probes. Among the carbapenem-resistant isolates the genes bla KPC , bla VIM , bla NDM or bla OXA were detected. Both RT-PCR assays detected all bla KPC , bla VIM and bla NDM in the isolates. The in-house RT-PCR detected 53 of 67 (79.0%) whereas the commercial assay detected only 29 (43.3%) of the OXA genes. The in-house sufficiently distinguished the most prevalent OXA types (23-like and 48-like) in the melting curve analysis and direct detection of the genes from positive blood culture vials. The Check-Direct CPE and the in-house RT-PCR assay detected the carbapenem resistance from solid culture isolates. Moreover, the in-house assay enabled the identification of carbapenemase genes directly from positive blood-culture vials. However, we observed insufficient detection of various OXA genes in both assays. Nevertheless, the in-house RT-PCR detected the majority of the OXA type genes in Enterobacteriaceae and A. baumannii.
Molecular identification of house dust mites and storage mites.
Wong, Shew Fung; Chong, Ai Ling; Mak, Joon Wah; Tan, Jessie; Ling, Suk Jiun; Ho, Tze Ming
2011-10-01
Mites are known causes of allergic diseases. Currently, identification of mites based on morphology is difficult if only one mite is isolated from a (dust) sample, or when only one gender is found, or when the specimen is not intact especially with the loss of the legs. The purpose of this study was to use polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of the ITS2 gene, to complement the morphological data for the identification of mites to the species level. For this, six species were cultured: Dermatophagoides pteronyssinus, D. farinae, Blomia tropicalis, Tyrophagus putrescentiae, Aleuroglyphus ovatus and Glycycometus malaysiensis. Genomic DNA of the mites was extracted, quantified, amplified and digested individually with restriction enzymes. Hinf I and Ple I differentiated the restriction patterns of D. pteronyssinus and D. farinae. Bfa I and Alu I enzymes differentiated B. tropicalis and G. malaysiensis. Ple I enzyme was useful for the differentiation between T. putrescentiae and A. ovatus. Bfa I was useful for the differentiation of G. malaysiensis from the rest of the species. In conclusion, different species of mites can be differentiated using PCR-RFLP of ITS2 region. With the established PCR-RFLP method in this study, identification of these mites to the species level is possible even if complete and intact adult specimens of both sexes are not available. As no study to date has reported PCR-RFLP method for the identification of domestic mites, the established method should be validated for the identification of other species of mites that were not included in this study.
Zhang, Shutao; Chen, Chun; Xie, Tingna; Ye, Sudan
2017-01-01
The selection of stable reference genes is a critical step for the accurate quantification of gene expression. To identify and validate the reference genes in Pandora neoaphidis-an obligate aphid pathogenic fungus-the expression of 13classical candidate reference genes were evaluated by quantitative real-time reverse transcriptase polymerase chain reaction(qPCR) at four developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae). Four statistical algorithms, including geNorm, NormFinder, BestKeeper and Delta Ct method were used to rank putative reference genes according to their expression stability and indicate the best reference gene or combination of reference genes for accurate normalization. The analysis of comprehensive ranking revealed that ACT1and 18Swas the most stably expressed genes throughout the developmental stages. To further validate the suitability of the reference genes identified in this study, the expression of cell division control protein 25 (CDC25) and Chitinase 1(CHI1) genes were used to further confirm the validated candidate reference genes. Our study presented the first systematic study of reference gene(s) selection for P. neoaphidis study and provided guidelines to obtain more accurate qPCR results for future developmental efforts.
Puri, Amrita; Joelsson, Adam C; Terkhorn, Shawn P; Brown, Ashley S; Gaudioso, Zara E; Siciliano, Nicholas A
2017-09-01
Veriflow® Salmonella species (Veriflow SS) is a molecular-based assay for the presumptive detection of Salmonella spp. from environmental surfaces (stainless steel, sealed concrete, plastic, and ceramic tile), dairy (2% milk), raw meat (20% fat ground beef), chicken carcasses, and ready-to-eat (RTE) food (hot dogs). The assay utilizes a PCR detection method coupled with a rapid, visual, flow-based assay that develops in 3 min post-PCR amplification and requires only an 18 h enrichment for maximum sensitivity. The Veriflow SS system eliminates the need for sample purification, gel electrophoresis, or fluorophore-based detection of target amplification and does not require complex data analysis. This Performance Tested MethodSM validation study demonstrated the ability of the Veriflow SS method to detect low levels of artificially inoculated or naturally occurring Salmonella spp. in eight distinct environmental and food matrixes. In each reference comparison study, probability of detection analysis indicated that there was no significant difference between the Veriflow SS method and the U.S. Department of Agriculture Food Safety and Inspection Service Microbiology Laboratory Guidebook Chapter 4.06 and the U.S. Food and Drug Administration Bacteriological Analytical Manual Chapter 5 reference methods. A total of 104 Salmonella strains were detected in the inclusivity study, and 35 nonspecific organisms went undetected in the exclusivity study. The study results show that the Veriflow SS method is a sensitive, selective, and robust assay for the presumptive detection of Salmonella spp. sampled from environmental surfaces (stainless steel, sealed concrete, plastic, and ceramic tile), dairy (2% milk), raw meat (20% fat ground beef), chicken carcasses, and RTE food (hot dogs).
Hafsa, Ahmed Ben; Nabi, Nesrine; Zellama, Mohamed Salem; Said, Khaled; Chaouachi, Maher
2016-01-01
Genetic transformation of fish is mainly oriented towards the improvement of growth for the benefit of the aquaculture. Actually, Atlantic salmon (Salmo salar) is the species most transformed to achieve growth rates quite large compared to the wild. To anticipate the presence of contaminations with GM salmon in fish markets and the lack of labeling regulations with a mandatory threshold, the proper methods are needed to test the authenticity of the ingredients. A quantitative real-time polymerase chain reaction (QRT-PCR) method was used in this study. Ct values were obtained and validated using 15 processed food containing salmon. The relative and absolute limits of detection were 0.01% and 0.01 ng/μl of genomic DNA, respectively. Results demonstrate that the developed QRT-PCR method is suitable specifically for identification of S. salar in food ingredients based on the salmon growth hormone gene 1 (GH1). The processes used to develop the specific salmon reference gene case study are intended to serve as a model for performing quantification of Aquadvantage® GM salmon on future genetically modified (GM) fish to be commercialized. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Joo-Hwan; Kim, Jin Ho; Wang, Pengbin; Park, Bum Soo; Han, Myung-Soo
2016-01-01
The identification and quantification of Heterosigma akashiwo cysts in sediments by light microscopy can be difficult due to the small size and morphology of the cysts, which are often indistinguishable from those of other types of algae. Quantitative real-time PCR (qPCR) based assays represent a potentially efficient method for quantifying the abundance of H. akashiwo cysts, although standard curves must be based on cyst DNA rather than on vegetative cell DNA due to differences in gene copy number and DNA extraction yield between these two cell types. Furthermore, qPCR on sediment samples can be complicated by the presence of extracellular DNA debris. To solve these problems, we constructed a cyst-based standard curve and developed a simple method for removing DNA debris from sediment samples. This cyst-based standard curve was compared with a standard curve based on vegetative cells, as vegetative cells may have twice the gene copy number of cysts. To remove DNA debris from the sediment, we developed a simple method involving dilution with distilled water and heating at 75°C. A total of 18 sediment samples were used to evaluate this method. Cyst abundance determined using the qPCR assay without DNA debris removal yielded results up to 51-fold greater than with direct counting. By contrast, a highly significant correlation was observed between cyst abundance determined by direct counting and the qPCR assay in conjunction with DNA debris removal (r2 = 0.72, slope = 1.07, p < 0.001). Therefore, this improved qPCR method should be a powerful tool for the accurate quantification of H. akashiwo cysts in sediment samples.
Development of an Efficient Genome Editing Method by CRISPR/Cas9 in a Fish Cell Line.
Dehler, Carola E; Boudinot, Pierre; Martin, Samuel A M; Collet, Bertrand
2016-08-01
CRISPR/Cas9 system has been used widely in animals and plants to direct mutagenesis. To date, no such method exists for fish somatic cell lines. We describe an efficient procedure for genome editing in the Chinook salmon Oncorhynchus tshawytscha CHSE. This cell line was genetically modified to firstly overexpress a monomeric form of EGFP (cell line CHSE-E Geneticin resistant) and additionally to overexpress nCas9n, a nuclear version of Cas9 (cell line CHSE-EC, Hygromycin and Geneticin resistant). A pre-validated sgRNA was produced in vitro and used to transfect CHSE-EC cells. The EGFP gene was disrupted in 34.6 % of cells, as estimated by FACS and microscopy. The targeted locus was characterised by PCR amplification, cloning and sequencing of PCR products; inactivation of the EGFP gene by deletions in the expected site was validated in 25 % of clones. This method opens perspectives for functional genomic studies compatible with high-throughput screening.
Lanza, Ian R.; Bhagra, Sumit; Nair, K. Sreekumaran; Port, John D.
2011-01-01
Purpose To cross-validate skeletal muscle oxidative capacity measured by 31P-MRS with in vitro measurements of oxidative capacityin mitochondria isolated from muscle biopsies of the same muscle group in 18 healthy adults. Materials and Methods Oxidative capacity in vivo was determined from PCr recovery kinetics following a 30s maximal isometric knee extension. State 3 respiration was measured in isolated mitochondria using high-resolution respirometry. A second cohort of 10 individuals underwent two 31P-MRS testing sessions to assess the test-retest reproducibility of the method. Results Overall, the in vivo and in vitro methods were well-correlated (r = 0.66 –0.72) and showed good agreement by Bland Altman plots. Excellent reproducibility was observed for the PCr recovery rate constant (CV = 4.6%, ICC = 0.85) and calculated oxidative capacity (CV = 3.4%, ICC = 0.83). Conclusion These results indicate that 31P-MRS corresponds well with gold-standard in vitro measurements and is highly reproducible. PMID:22006551
Cankar, Katarina; Štebih, Dejan; Dreo, Tanja; Žel, Jana; Gruden, Kristina
2006-01-01
Background Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs) quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Results Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was chosen as the primary criterion by which to evaluate the quality and performance on different matrixes and extraction techniques. The effect of PCR efficiency on the resulting GMO content is demonstrated. Conclusion The crucial influence of extraction technique and sample matrix properties on the results of GMO quantification is demonstrated. Appropriate extraction techniques for each matrix need to be determined to achieve accurate DNA quantification. Nevertheless, as it is shown that in the area of food and feed testing matrix with certain specificities is impossible to define strict quality controls need to be introduced to monitor PCR. The results of our study are also applicable to other fields of quantitative testing by real-time PCR. PMID:16907967
Developmental validation of a Cannabis sativa STR multiplex system for forensic analysis.
Howard, Christopher; Gilmore, Simon; Robertson, James; Peakall, Rod
2008-09-01
A developmental validation study based on recommendations of the Scientific Working Group on DNA Analysis Methods (SWGDAM) was conducted on a multiplex system of 10 Cannabis sativa short tandem repeat loci. Amplification of the loci in four multiplex reactions was tested across DNA from dried root, stem, and leaf sources, and DNA from fresh, frozen, and dried leaf tissue with a template DNA range of 10.0-0.01 ng. The loci were amplified and scored consistently for all DNA sources when DNA template was in the range of 10.0-1.0 ng. Some allelic dropout and PCR failure occurred in reactions with lower template DNA amounts. Overall, amplification was best using 10.0 ng of template DNA from dried leaf tissue indicating that this is the optimal source material. Cross species amplification was observed in Humulus lupulus for three loci but there was no allelic overlap. This is the first study following SWGDAM validation guidelines to validate short tandem repeat markers for forensic use in plants.
van Pelt, Cindy; Verduin, Cees M.; Goessens, Wil H. F.; Vos, Margreet C.; Tümmler, Burkhard; Segonds, Christine; Reubsaet, Frans; Verbrugh, Henri; van Belkum, Alex
1999-01-01
Cystic fibrosis (CF) predisposes patients to bacterial colonization and infection of the lower airways. Several species belonging to the genus Burkholderia are potential CF-related pathogens, but microbiological identification may be complicated. This situation is not in the least due to the poorly defined taxonomic status of these bacteria, and further validation of the available diagnostic assays is required. A total of 114 geographically diverse bacterial isolates, previously identified in reference laboratories as Burkholderia cepacia (n = 51), B. gladioli (n = 14), Ralstonia pickettii (n = 6), B. multivorans (n = 2), Stenotrophomonas maltophilia (n = 3), and Pseudomonas aeruginosa (n = 11), were collected from environmental, clinical, and reference sources. In addition, 27 clinical isolates putatively identified as Burkholderia spp. were recovered from the sputum of Dutch CF patients. All isolates were used to evaluate the accuracy of two selective growth media, four systems for biochemical identification (API 20NE, Vitek GNI, Vitek NFC, and MicroScan), and three different PCR-based assays. The PCR assays amplify different parts of the ribosomal DNA operon, either alone or in combination with cleavage by various restriction enzymes (PCR-restriction fragment length polymorphism [RFLP] analysis). The best system for the biochemical identification of B. cepacia appeared to be the API 20NE test. None of the biochemical assays successfully grouped the B. gladioli strains. The PCR-RFLP method appeared to be the optimal method for accurate nucleic acid-mediated identification of the different Burkholderia spp. With this method, B. gladioli was also reliably classified in a separate group. For the laboratory diagnosis of B. cepacia, we recommend parallel cultures on blood agar medium and selective agar plates. Further identification of colonies with a Burkholderia phenotype should be performed with the API 20NE test. For final confirmation of species identities, PCR amplification of the small-subunit rRNA gene followed by RFLP analysis with various enzymes is recommended. PMID:10364579
Viability qPCR, a new tool for Legionella risk management.
Lizana, X; López, A; Benito, S; Agustí, G; Ríos, M; Piqué, N; Marqués, A M; Codony, F
2017-11-01
Viability quantitative Polymerase Chain Reaction (v-qPCR) is a recent analytical approach for only detecting live microorganisms by DNA amplification-based methods This approach is based on the use of a reagent that irreversibly fixes dead cells DNA. In this study, we evaluate the utility of v-qPCR versus culture method for Legionellosis risk management. The present study was performed using 116 real samples. Water samples were simultaneously analysed by culture, v-qPCR and qPCR methods. Results were compared by means of a non-parametric test. In 11.6% of samples using both methods (culture method and v-qPCR) results were positive, in 50.0% of samples both methods gave rise to negative results. As expected, equivalence between methods was not observed in all cases, as in 32.1% of samples positive results were obtained by v-qPCR and all of them gave rise to negative results by culture. Only in 6.3% of samples, with very low Legionella levels, was culture positive and v-qPCR negative. In 3.5% of samples, overgrowth of other bacteria did not allow performing the culture. When comparing both methods, significant differences between culture and v-qPCR were in the samples belonging to the cooling towers-evaporative condensers group. The v-qPCR method detected greater presence and obtained higher concentrations of Legionella spp. (p<0.001). Otherwise, no significant differences between methods were found in the rest of the groups. The v-qPCR method can be used as a quick tool to evaluate Legionellosis risk, especially in cooling towers-evaporative condensers, where this technique can detect higher levels than culture. The combined interpretation of PCR results along with the ratio of live cells is proposed as a tool for understanding the sample context and estimating the Legionellosis risk potential according to 4 levels of hierarchy. Copyright © 2017 Elsevier GmbH. All rights reserved.
Fletcher, Jacqueline; Melcher, Ulrich; Ochoa Corona, Francisco Manuel
2013-01-01
A reliable, accurate and rapid multigene-based assay combining real time quantitative PCR (qPCR) and a Razor Ex BioDetection System (Razor Ex) was validated for detection of Xylella fastidiosa subsp. pauca (Xfp, a xylem-limited bacterium that causes citrus variegated chlorosis [CVC]). CVC, which is exotic to the United States, has spread through South and Central America and could significantly impact U.S. citrus if it arrives. A method for early, accurate and sensitive detection of Xfp in plant tissues is needed by plant health officials for inspection of products from quarantined locations, and by extension specialists for detection, identification and management of disease outbreaks and reservoir hosts. Two sets of specific PCR primers and probes, targeting Xfp genes for fimbrillin and the periplasmic iron-binding protein were designed. A third pair of primers targeting the conserved cobalamin synthesis protein gene was designed to detect all possible X. fastidiosa (Xf) strains. All three primer sets detected as little as 1 fg of plasmid DNA carrying X. fastidiosa target sequences and genomic DNA of Xfp at as little as 1 - 10 fg. The use of Razor Ex facilitates a rapid (about 30 min) in-field assay capability for detection of all Xf strains, and for specific detection of Xfp. Combined use of three primer sets targeting different genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a field-deployable rapid and reliable bioforensic detection and discrimination method for a bacterial phytopathogen based on multigene targets. PMID:24312333
Hasanuzzaman, Md; Malaker, Roly; Islam, Maksuda; Baqui, Abdullah H; Darmstadt, Gary L; Whitney, Cynthia G; Saha, Samir K
2017-03-01
In recent years, an increasing prevalence of macrolide resistance among pneumococci in Bangladesh has been observed. However, the scenario remains incomplete, as few isolates (<1%) are available from pneumonia cases and most pneumococcal meningitis cases (>80%) are culture-negative. This study optimised a triplex PCR method to detect macrolide resistance genes (MRGs) (mefA and ermB) and cpsA from culture-negative pneumococcal cases to predict the prevalence and level of macrolide resistance. The presence of MRGs among pneumococcal strains (n=153) with a wide range of erythromycin MICs (<0.5 to ≥256mg/L) was determined by PCR. Triplex PCR was validated by simultaneous detection of MRG(s) and cpsA in culture-negative clinical specimens and corresponding isolates. The known impact of the presence of specific MRG(s) on MICs of strains was used to predict the MICs of non-culturable strains based on the presence/absence of MRG(s) in the specimens. None of the erythromycin-susceptible isolates possessed any of the MRGs, and all non-susceptible strains had ≥1 MRG. MICs were 2-16mg/L and ≥256mg/L for 93% of strains with mefA and ermB, respectively, whereas 100% of isolates with both genes had MICs≥256mg/L. PCR for body fluids showed 100% concordance with corresponding isolates when tested for MRG(s) in parallel. Erythromycin MICs can be predicted for non-culturable strains with 93-100% precision based on detection of ermB and/or mefA. This method will be useful for establishing comprehensive surveillance for macrolide resistance among pneumococci, specifically in the population with prior antibiotic use. Copyright © 2017. Published by Elsevier Ltd.
Ouyang, Ping; Arif, Mohammad; Fletcher, Jacqueline; Melcher, Ulrich; Ochoa Corona, Francisco Manuel
2013-01-01
A reliable, accurate and rapid multigene-based assay combining real time quantitative PCR (qPCR) and a Razor Ex BioDetection System (Razor Ex) was validated for detection of Xylella fastidiosa subsp. pauca (Xfp, a xylem-limited bacterium that causes citrus variegated chlorosis [CVC]). CVC, which is exotic to the United States, has spread through South and Central America and could significantly impact U.S. citrus if it arrives. A method for early, accurate and sensitive detection of Xfp in plant tissues is needed by plant health officials for inspection of products from quarantined locations, and by extension specialists for detection, identification and management of disease outbreaks and reservoir hosts. Two sets of specific PCR primers and probes, targeting Xfp genes for fimbrillin and the periplasmic iron-binding protein were designed. A third pair of primers targeting the conserved cobalamin synthesis protein gene was designed to detect all possible X. fastidiosa (Xf) strains. All three primer sets detected as little as 1 fg of plasmid DNA carrying X. fastidiosa target sequences and genomic DNA of Xfp at as little as 1 - 10 fg. The use of Razor Ex facilitates a rapid (about 30 min) in-field assay capability for detection of all Xf strains, and for specific detection of Xfp. Combined use of three primer sets targeting different genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a field-deployable rapid and reliable bioforensic detection and discrimination method for a bacterial phytopathogen based on multigene targets.
Kobayashi, Naomi; Bauer, Thomas W; Togawa, Daisuke; Lieberman, Isador H; Sakai, Hiroshige; Fujishiro, Takaaki; Tuohy, Marion J; Procop, Gary W
2005-06-01
The bacteria associated with orthopaedic infections are usually common gram-positive and gram-negative bacteria. This fundamental grouping of bacteria is a necessary first step in the selection of appropriate antibiotics. Since polymerase chain reaction (PCR) is more rapid and may be more sensitive than culture, we developed a postamplification pyrosequencing method to subcategorize bacteria based on a few nucleotide polymorphisms in the 16S rRNA gene. We validated this method using well-characterized strains of bacteria and applied it to specimens from spinal surgery cases with suspected infections. Lysates of 114 bacteria including 75 species were created following standard cultivation to obtain DNA. The DNA was amplified by a broad-range real-time PCR. The amplicons were evaluated by pyrosequencing and were classified as gram-positive, gram-negative, or acid-fast bacilli based on the first three to five nucleotides sequenced. In addition, clinical cases of suspected infection were obtained from spinal surgery. The results of the "molecular Gram stain" were compared with the results of traditional Gram stain and culture. The lysates of 107 (93.9%) of the bacteria extracts tested were appropriately categorized as gram-positive and gram-negative or as acid-fast bacilli on the basis of this assay. The sensitivity and specificity of this assay were 100% and 97.4% for gram-positive and 88.3% and 100% for gram-negative isolates. All of the five clinical samples were appropriately categorized as containing gram-positive or gram-negative bacteria with this assay. This study demonstrates that high sensitivity and specificity of a molecular gram stain may be achieved using broad-range real-time PCR and pyrosequencing.
The BEACH Act of 2000 directed the U.S. EPA to establish more expeditious methods for the detection of pathogen indicators in coastal waters, as well as new water quality criteria based on these methods. Progress has been made in developing a quantitative PCR (qPCR) method for en...
Pau, Chou-Pong; Wells, Susan K; Granade, Timothy C
2012-01-01
This chapter describes a real-time PCR method for the detection of HIV-1 proviral DNA in whole blood samples using a novel double-stranded primer system. The assay utilizes a simple commercially available DNA extraction method and a rapid and easy-to-perform real-time PCR protocol to consistently detect a minimum of four copies of HIV-1 group M proviral DNA in as little as 90 min after sample (whole blood) collection. Co-amplification of the human RNase P gene serves as an internal control to monitor the efficiency of both the DNA extraction and amplification. Once the assay is validated properly, it may be suitable as an alternative confirmation test for HIV-1 infections in a variety of HIV testing venues including the mother-to-child transmission testing sites, clinics, and diagnostic testing centers.
Gao, Lingyun; Zhao, Shuang; Jiang, Wei; Huang, Yuan; Bie, Zhilong
2014-01-01
Watermelon is one of the major Cucurbitaceae crops and the recent availability of genome sequence greatly facilitates the fundamental researches on it. Quantitative real-time reverse transcriptase PCR (qRT–PCR) is the preferred method for gene expression analyses, and using validated reference genes for normalization is crucial to ensure the accuracy of this method. However, a systematic validation of reference genes has not been conducted on watermelon. In this study, transcripts of 15 candidate reference genes were quantified in watermelon using qRT–PCR, and the stability of these genes was compared using geNorm and NormFinder. geNorm identified ClTUA and ClACT, ClEF1α and ClACT, and ClCAC and ClTUA as the best pairs of reference genes in watermelon organs and tissues under normal growth conditions, abiotic stress, and biotic stress, respectively. NormFinder identified ClYLS8, ClUBCP, and ClCAC as the best single reference genes under the above experimental conditions, respectively. ClYLS8 and ClPP2A were identified as the best reference genes across all samples. Two to nine reference genes were required for more reliable normalization depending on the experimental conditions. The widely used watermelon reference gene 18SrRNA was less stable than the other reference genes under the experimental conditions. Catalase family genes were identified in watermelon genome, and used to validate the reliability of the identified reference genes. ClCAT1and ClCAT2 were induced and upregulated in the first 24 h, whereas ClCAT3 was downregulated in the leaves under low temperature stress. However, the expression levels of these genes were significantly overestimated and misinterpreted when 18SrRNA was used as a reference gene. These results provide a good starting point for reference gene selection in qRT–PCR analyses involving watermelon. PMID:24587403
Kong, Qiusheng; Yuan, Jingxian; Gao, Lingyun; Zhao, Shuang; Jiang, Wei; Huang, Yuan; Bie, Zhilong
2014-01-01
Watermelon is one of the major Cucurbitaceae crops and the recent availability of genome sequence greatly facilitates the fundamental researches on it. Quantitative real-time reverse transcriptase PCR (qRT-PCR) is the preferred method for gene expression analyses, and using validated reference genes for normalization is crucial to ensure the accuracy of this method. However, a systematic validation of reference genes has not been conducted on watermelon. In this study, transcripts of 15 candidate reference genes were quantified in watermelon using qRT-PCR, and the stability of these genes was compared using geNorm and NormFinder. geNorm identified ClTUA and ClACT, ClEF1α and ClACT, and ClCAC and ClTUA as the best pairs of reference genes in watermelon organs and tissues under normal growth conditions, abiotic stress, and biotic stress, respectively. NormFinder identified ClYLS8, ClUBCP, and ClCAC as the best single reference genes under the above experimental conditions, respectively. ClYLS8 and ClPP2A were identified as the best reference genes across all samples. Two to nine reference genes were required for more reliable normalization depending on the experimental conditions. The widely used watermelon reference gene 18SrRNA was less stable than the other reference genes under the experimental conditions. Catalase family genes were identified in watermelon genome, and used to validate the reliability of the identified reference genes. ClCAT1and ClCAT2 were induced and upregulated in the first 24 h, whereas ClCAT3 was downregulated in the leaves under low temperature stress. However, the expression levels of these genes were significantly overestimated and misinterpreted when 18SrRNA was used as a reference gene. These results provide a good starting point for reference gene selection in qRT-PCR analyses involving watermelon.
Tice, George; Andaloro, Bridget; White, H Kirk; Bolton, Lance; Wang, Siqun; Davis, Eugene; Wallace, Morgan
2009-01-01
In 2006, DuPont Qualicon introduced the BAX system Q7 instrument for use with its assays. To demonstrate the equivalence of the new and old instruments, a validation study was conducted using the BAX system PCR Assay for Salmonella, AOAC Official Method 2003.09, on three food types. The foods were simultaneously analyzed with the BAX system Q7 instrument and either the U.S. Food and Drug Administration Bacteriological Analytical Manual or the U.S. Department of Agriculture-Food Safety and Inspection Service Microbiology Laboratory Guidebook reference method for detecting Salmonella. Comparable performance between the BAX system and the reference methods was observed. Of the 75 paired samples analyzed, 39 samples were positive by both the BAX system and reference methods, and 36 samples were negative by both the BAX system and reference methods, demonstrating 100% correlation. Inclusivity and exclusivity for the BAX system Q7 instrument were also established by testing 50 Salmonella strains and 20 non-Salmonella isolates. All Salmonella strains returned positive results, and all non-Salmonella isolates returned a negative response.
Talarico, Sarah; Safaeian, Mahboobeh; Gonzalez, Paula; Hildesheim, Allan; Herrero, Rolando; Porras, Carolina; Cortes, Bernal; Larson, Ann; Fang, Ferric C; Salama, Nina R
2016-08-01
Epidemiologic studies of the carcinogenic stomach bacterium Helicobacter pylori have been limited by the lack of noninvasive detection and genotyping methods. We developed a new stool-based method for detection, quantification, and partial genotyping of H. pylori using droplet digital PCR (ddPCR), which allows for increased sensitivity and absolute quantification by PCR partitioning. Stool-based ddPCR assays for H. pylori 16S gene detection and cagA virulence gene typing were tested using a collection of 50 matched stool and serum samples from Costa Rican volunteers and 29 H. pylori stool antigen-tested stool samples collected at a US hospital. The stool-based H. pylori 16S ddPCR assay had a sensitivity of 84% and 100% and a specificity of 100% and 71% compared to serology and stool antigen tests, respectively. The stool-based cagA genotyping assay detected cagA in 22 (88%) of 25 stools from CagA antibody-positive individuals and four (16%) of 25 stools from CagA antibody-negative individuals from Costa Rica. All 26 of these samples had a Western-type cagA allele. Presence of serum CagA antibodies was correlated with a significantly higher load of H. pylori in the stool. The stool-based ddPCR assays are a sensitive, noninvasive method for detection, quantification, and partial genotyping of H. pylori. The quantitative nature of ddPCR-based H. pylori detection revealed significant variation in bacterial load among individuals that correlates with presence of the cagA virulence gene. These stool-based ddPCR assays will facilitate future population-based epidemiologic studies of this important human pathogen. © 2015 John Wiley & Sons Ltd.
Guinney, Justin; Wang, Tao; Laajala, Teemu D; Winner, Kimberly Kanigel; Bare, J Christopher; Neto, Elias Chaibub; Khan, Suleiman A; Peddinti, Gopal; Airola, Antti; Pahikkala, Tapio; Mirtti, Tuomas; Yu, Thomas; Bot, Brian M; Shen, Liji; Abdallah, Kald; Norman, Thea; Friend, Stephen; Stolovitzky, Gustavo; Soule, Howard; Sweeney, Christopher J; Ryan, Charles J; Scher, Howard I; Sartor, Oliver; Xie, Yang; Aittokallio, Tero; Zhou, Fang Liz; Costello, James C
2017-01-01
Improvements to prognostic models in metastatic castration-resistant prostate cancer have the potential to augment clinical trial design and guide treatment strategies. In partnership with Project Data Sphere, a not-for-profit initiative allowing data from cancer clinical trials to be shared broadly with researchers, we designed an open-data, crowdsourced, DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge to not only identify a better prognostic model for prediction of survival in patients with metastatic castration-resistant prostate cancer but also engage a community of international data scientists to study this disease. Data from the comparator arms of four phase 3 clinical trials in first-line metastatic castration-resistant prostate cancer were obtained from Project Data Sphere, comprising 476 patients treated with docetaxel and prednisone from the ASCENT2 trial, 526 patients treated with docetaxel, prednisone, and placebo in the MAINSAIL trial, 598 patients treated with docetaxel, prednisone or prednisolone, and placebo in the VENICE trial, and 470 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Datasets consisting of more than 150 clinical variables were curated centrally, including demographics, laboratory values, medical history, lesion sites, and previous treatments. Data from ASCENT2, MAINSAIL, and VENICE were released publicly to be used as training data to predict the outcome of interest-namely, overall survival. Clinical data were also released for ENTHUSE 33, but data for outcome variables (overall survival and event status) were hidden from the challenge participants so that ENTHUSE 33 could be used for independent validation. Methods were evaluated using the integrated time-dependent area under the curve (iAUC). The reference model, based on eight clinical variables and a penalised Cox proportional-hazards model, was used to compare method performance. Further validation was done using data from a fifth trial-ENTHUSE M1-in which 266 patients with metastatic castration-resistant prostate cancer were treated with placebo alone. 50 independent methods were developed to predict overall survival and were evaluated through the DREAM challenge. The top performer was based on an ensemble of penalised Cox regression models (ePCR), which uniquely identified predictive interaction effects with immune biomarkers and markers of hepatic and renal function. Overall, ePCR outperformed all other methods (iAUC 0·791; Bayes factor >5) and surpassed the reference model (iAUC 0·743; Bayes factor >20). Both the ePCR model and reference models stratified patients in the ENTHUSE 33 trial into high-risk and low-risk groups with significantly different overall survival (ePCR: hazard ratio 3·32, 95% CI 2·39-4·62, p<0·0001; reference model: 2·56, 1·85-3·53, p<0·0001). The new model was validated further on the ENTHUSE M1 cohort with similarly high performance (iAUC 0·768). Meta-analysis across all methods confirmed previously identified predictive clinical variables and revealed aspartate aminotransferase as an important, albeit previously under-reported, prognostic biomarker. Novel prognostic factors were delineated, and the assessment of 50 methods developed by independent international teams establishes a benchmark for development of methods in the future. The results of this effort show that data-sharing, when combined with a crowdsourced challenge, is a robust and powerful framework to develop new prognostic models in advanced prostate cancer. Sanofi US Services, Project Data Sphere. Copyright © 2017 Elsevier Ltd. All rights reserved.
Design and Validation of Real-Time PCR: Quantitative Diagnosis of Common Leishmania Species in Iran.
Fekri Soofi Abadi, Maryam; Dabiri, Shahriar; Fotouhi Ardakani, Reza; Fani Malaki, Lina; Amirpoor Rostami, Sahar; Ziasistani, Mahsa; Dabiri, Donya
2016-07-01
Design and validation of Real-time PCR on the protected gene region ITS2 to quantify the parasite load in common leishmania (L) species. Probe and primer were designed from the ITS2 region between the rRNA genes with minimum gene variation in three common leishmania species followed by a Real-time PCR using the Taq man probe method in the form of absolute quantification. A series of different concentrations of leishmania were analyzed. After the purified PCR product was successfully placed in a PTG19-T plasmid vector, specialized ITS2 region was cloned in this plasmid. In the last phase, the cloned gene was transferred to the Ecoli.Top10F bacteria. The standard plasmid was provided in 10(7) to 10(1) copies/rxn concentrations. The specification and clinical sensitivity of the data was analyzed using inter and intra scales. The probe and primer were designed using three species, including L. infantum, L. major, and L.tropica. Seven concentrations of purified parasite in culture media showed that the selected region for quantifying the parasite is suitable. Clinical and analytical specificity and sensitivity were both 100%, respectively. The Taq man method for the ITS2 region in leishmania is one the most sensitive diagnostic test for identifying the parasite load and is suggested as a tool for fast identification and quantification of species.
NASA Astrophysics Data System (ADS)
Barrett, Hannah G.; Jones, Julie M.; Bigg, Grant R.
2018-02-01
The meteorological information found within ships' logbooks is a unique and fascinating source of data for historical climatology. This study uses wind observations from logbooks covering the period 1815 to 1854 to reconstruct an index of El Niño Southern Oscillation (ENSO) for boreal winter (DJF). Statistically-based reconstructions of the Southern Oscillation Index (SOI) are obtained using two methods: principal component regression (PCR) and composite-plus-scale (CPS). Calibration and validation are carried out over the modern period 1979-2014, assessing the relationship between re-gridded seasonal ERA-Interim reanalysis wind data and the instrumental SOI. The reconstruction skill of both the PCR and CPS methods is found to be high with reduction of error skill scores of 0.80 and 0.75, respectively. The relationships derived during the fitting period are then applied to the logbook wind data to reconstruct the historical SOI. We develop a new method to assess the sensitivity of the reconstructions to using a limited number of observations per season and find that the CPS method performs better than PCR with a limited number of observations. A difference in the distribution of wind force terms used by British and Dutch ships is found, and its impact on the reconstruction assessed. The logbook reconstructions agree well with a previous SOI reconstructed from Jakarta rain day counts, 1830-1850, adding robustness to our reconstructions. Comparisons to additional documentary and proxy data sources are provided in a companion paper.
Sinicropi, Dominick; Qu, Kunbin; Collin, Francois; Crager, Michael; Liu, Mei-Lan; Pelham, Robert J; Pho, Mylan; Dei Rossi, Andrew; Jeong, Jennie; Scott, Aaron; Ambannavar, Ranjana; Zheng, Christina; Mena, Raul; Esteban, Jose; Stephans, James; Morlan, John; Baker, Joffre
2012-01-01
RNA biomarkers discovered by RT-PCR-based gene expression profiling of archival formalin-fixed paraffin-embedded (FFPE) tissue form the basis for widely used clinical diagnostic tests; however, RT-PCR is practically constrained in the number of transcripts that can be interrogated. We have developed and optimized RNA-Seq library chemistry as well as bioinformatics and biostatistical methods for whole transcriptome profiling from FFPE tissue. The chemistry accommodates low RNA inputs and sample multiplexing. These methods both enable rediscovery of RNA biomarkers for disease recurrence risk that were previously identified by RT-PCR analysis of a cohort of 136 patients, and also identify a high percentage of recurrence risk markers that were previously discovered using DNA microarrays in a separate cohort of patients, evidence that this RNA-Seq technology has sufficient precision and sensitivity for biomarker discovery. More than two thousand RNAs are strongly associated with breast cancer recurrence risk in the 136 patient cohort (FDR <10%). Many of these are intronic RNAs for which corresponding exons are not also associated with disease recurrence. A number of the RNAs associated with recurrence risk belong to novel RNA networks. It will be important to test the validity of these novel associations in whole transcriptome RNA-Seq screens of other breast cancer cohorts.
Sinicropi, Dominick; Qu, Kunbin; Collin, Francois; Crager, Michael; Liu, Mei-Lan; Pelham, Robert J.; Pho, Mylan; Rossi, Andrew Dei; Jeong, Jennie; Scott, Aaron; Ambannavar, Ranjana; Zheng, Christina; Mena, Raul; Esteban, Jose; Stephans, James; Morlan, John; Baker, Joffre
2012-01-01
RNA biomarkers discovered by RT-PCR-based gene expression profiling of archival formalin-fixed paraffin-embedded (FFPE) tissue form the basis for widely used clinical diagnostic tests; however, RT-PCR is practically constrained in the number of transcripts that can be interrogated. We have developed and optimized RNA-Seq library chemistry as well as bioinformatics and biostatistical methods for whole transcriptome profiling from FFPE tissue. The chemistry accommodates low RNA inputs and sample multiplexing. These methods both enable rediscovery of RNA biomarkers for disease recurrence risk that were previously identified by RT-PCR analysis of a cohort of 136 patients, and also identify a high percentage of recurrence risk markers that were previously discovered using DNA microarrays in a separate cohort of patients, evidence that this RNA-Seq technology has sufficient precision and sensitivity for biomarker discovery. More than two thousand RNAs are strongly associated with breast cancer recurrence risk in the 136 patient cohort (FDR <10%). Many of these are intronic RNAs for which corresponding exons are not also associated with disease recurrence. A number of the RNAs associated with recurrence risk belong to novel RNA networks. It will be important to test the validity of these novel associations in whole transcriptome RNA-Seq screens of other breast cancer cohorts. PMID:22808097
Leach, L.; Zhu, Y.
2017-01-01
ABSTRACT Candida auris is an emerging multidrug-resistant yeast causing invasive health care-associated infection with high mortality worldwide. Rapid identification of C. auris is of primary importance for the implementation of public health measures to control the spread of infection. To achieve these goals, we developed and validated a TaqMan-based real-time PCR assay targeting the internal transcribed spacer 2 (ITS2) region of the ribosomal gene. The assay was highly specific, reproducible, and sensitive, with the detection limit of 1 C. auris CFU/PCR. The performance of the C. auris real-time PCR assay was evaluated by using 623 surveillance samples, including 365 patient swabs and 258 environmental sponges. Real-time PCR yielded positive results from 49 swab and 58 sponge samples, with 89% and 100% clinical sensitivity with regard to their respective culture-positive results. The real-time PCR also detected C. auris DNA from 1% and 12% of swab and sponge samples with culture-negative results, indicating the presence of dead or culture-impaired C. auris. The real-time PCR yielded results within 4 h of sample processing, compared to 4 to 14 days for culture, reducing turnaround time significantly. The new real-time PCR assay allows for accurate and rapid screening of C. auris and can increase effective control and prevention of this emerging multidrug-resistant fungal pathogen in health care facilities. PMID:29187562
Leach, L; Zhu, Y; Chaturvedi, S
2018-02-01
Candida auris is an emerging multidrug-resistant yeast causing invasive health care-associated infection with high mortality worldwide. Rapid identification of C. auris is of primary importance for the implementation of public health measures to control the spread of infection. To achieve these goals, we developed and validated a TaqMan-based real-time PCR assay targeting the internal transcribed spacer 2 ( ITS 2) region of the ribosomal gene. The assay was highly specific, reproducible, and sensitive, with the detection limit of 1 C. auris CFU/PCR. The performance of the C. auris real-time PCR assay was evaluated by using 623 surveillance samples, including 365 patient swabs and 258 environmental sponges. Real-time PCR yielded positive results from 49 swab and 58 sponge samples, with 89% and 100% clinical sensitivity with regard to their respective culture-positive results. The real-time PCR also detected C. auris DNA from 1% and 12% of swab and sponge samples with culture-negative results, indicating the presence of dead or culture-impaired C. auris The real-time PCR yielded results within 4 h of sample processing, compared to 4 to 14 days for culture, reducing turnaround time significantly. The new real-time PCR assay allows for accurate and rapid screening of C. auris and can increase effective control and prevention of this emerging multidrug-resistant fungal pathogen in health care facilities. Copyright © 2018 Leach et al.
The Indicating FTA Elute Cartridge
de Bie, Roosmarie P.; Schmeink, Channa E.; Bakkers, Judith M.J.E.; Snijders, Peter J.F.; Quint, Wim G.V.; Massuger, Leon F.A.G.; Bekkers, Ruud L.M.; Melchers, Willem J.G.
2011-01-01
The clinically validated high-risk human papillomavirus (hrHPV) Hybrid Capture 2 (HC2) and GP5+/6+-PCR assays were analyzed on an Indicating FTA Elute cartridge (FTA cartridge). The FTA cartridge is a solid dry carrier that allows safe transport of cervical samples. FTA cartridge samples were compared with liquid-based samples for hrHPV and high-grade cervical intraepithelial neoplasia (CIN) detection. One cervical sample was collected in a liquid-based medium, and one was applied to the FTA cartridge. DNA was eluted directly from the FTA cartridge by a simple elution step. HC2 and GP5+/6+-PCR assays were performed on both the liquid-based and the FTA-eluted DNA of 88 women. Overall agreement between FTA and liquid-based samples for the presence of hrHPV was 90.9% with GP5+/6+-PCR and 77.3% with HC2. The sensitivity for high-grade CIN of hrHPV testing on the FTA cartridges was 84.6% with GP5+/6+-PCR and only 53.8% with HC2. By comparison, these sensitivities on liquid-based samples were 92.3% and 100% for GP5+/6+-PCR and HC2, respectively. Therefore, the FTA cartridge shows reasonably good overall agreement for hrHPV detection with liquid-based media when using GP5+/6+-PCR but not HC2 testing. Even with GP5+/6+-PCR, the FTA cartridge is not yet capable of detecting all high-grade CIN lesions. PMID:21704269
Meena, Ram Prasnna; Baranwal, V K
2016-09-01
Citrus trees harbor a large number of viral and bacterial pathogens. Citrus yellow vein clearing virus (CYVCV), Indian citrus ringspot virus (ICRSV), Citrus yellow mosaic virus (CYMV), Citrus tristeza virus (CTV) and a bacterium, Candidatus Liberibacter asiaticus (CLa) associated with huanglongbing (HLB) disease, the most prevalent pathogens in citrus orchards of different regions in India and are responsible for debilitating citriculture. For detection of these viral and bacterial pathogens a quick, sensitive and cost effective detection method is required. With this objective a multiplex polymerase chain reaction (mPCR) assay was developed for simultaneous detection of four viruses and a bacterium in citrus. Several sets of primers were designed for each virus based on the retrieved reference sequences from the GenBank. A primer pair published previously was used for greening bacterium. Each pair of primers was evaluated for their sensitivity and differentiation by simplex and mPCR. The constant amplified products were identified on the basis of molecular size in mPCR and were compared with standard PCR. The amplicons were cloned and results were confirmed with sequencing analysis. The mPCR assay was validated using naturally infected field samples for one or more citrus viruses and the huanglongbing bacterium. The mPCR assay developed here will aid in the production of virus free planting materials and rapid indexing for certification of citrus budwood programme. Copyright © 2016 Elsevier B.V. All rights reserved.
Hu, Shuangfang; Yu, Yigang; Li, Rong; Wu, Xinwei; Xiao, Xinglong; Wu, Hui
2016-03-01
Cronobacter sakazakii is a severe virulent strain that is frequently detected in powdered infant formula (PIF). Therefore, it is necessary to develop a fast and specific detection method. The specificity of our newly developed quantitative real-time PCR (qRT-PCR) was validated with DNA from 46 strains. Among them, 12 C. sakazakii strains were correctly amplified, whereas no positive florescent signal was observed from 34 nontarget controls. The detection limit of C. sakazakii was about 110 CFU/mL in broth and 1100 CFU/g in PIF. After enrichment in buffered peptone water for 6 h, our developed qRT-PCR assay could reliably detect C. sakazakii when the inoculation level was as low as 2 CFU/25 g (0.08 CFU/g) in PIF. The growth of C. sakazakii could be inhibited by the presence of Lactobacillus pentosus and Bacillus cereus, which used a longer enrichment period before the isolation was accomplished. However, at 5 and 50 CFU/25 g inoculation levels of C. sakazakii in the presence of 4 × 10(6) CFU L. pentosus/25 g or of 2 × 10(4) CFU B. cereus/25 g, the qRT-PCR assay could detect the presence of Cronobacter even though these artificially spiked samples were negative in culture. Therefore, our results indicated that the qRT-PCR assay could detect samples containing inhibitors and could avoid false negatives by using an internal amplification control.
Puzon, Geoffrey J; Lancaster, James A; Wylie, Jason T; Plumb, Iason J
2009-09-01
Rapid detection of pathogenic Naegleria fowler in water distribution networks is critical for water utilities. Current detection methods rely on sampling drinking water followed by culturing and molecular identification of purified strains. This culture-based method takes an extended amount of time (days), detects both nonpathogenic and pathogenic species, and does not account for N. fowleri cells associated with pipe wall biofilms. In this study, a total DNA extraction technique coupled with a real-time PCR method using primers specific for N. fowleri was developed and validated. The method readily detected N. fowleri without preculturing with the lowest detection limit for N. fowleri cells spiked in biofilm being one cell (66% detection rate) and five cells (100% detection rate). For drinking water, the detection limit was five cells (66% detection rate) and 10 cells (100% detection rate). By comparison, culture-based methods were less sensitive for detection of cells spiked into both biofilm (66% detection for <10 cells) and drinking water (0% detection for <10 cells). In mixed cultures of N. fowleri and nonpathogenic Naegleria, the method identified N. fowleri in 100% of all replicates, whereastests with the current consensus primers detected N. fowleri in only 5% of all replicates. Application of the new method to drinking water and pipe wall biofilm samples obtained from a distribution network enabled the detection of N. fowleri in under 6 h, versus 3+ daysforthe culture based method. Further, comparison of the real-time PCR data from the field samples and the standard curves enabled an approximation of N. fowleri cells in the biofilm and drinking water. The use of such a method will further aid water utilities in detecting and managing the persistence of N. fowleri in water distribution networks.
Jiang, Lingxi; Yang, Litao; Zhang, Haibo; Guo, Jinchao; Mazzara, Marco; Van den Eede, Guy; Zhang, Dabing
2009-05-13
One rice ( Oryza sativa ) gene, sucrose phosphate synthase (SPS), has been proven to be a suitable endogenous reference gene for genetically modified (GM) rice detection in a previous study. Herein are the reported results of an international collaborative ring trial for validation of the SPS gene as an endogenous reference gene and its optimized qualitative and quantitative polymerase chain reaction (PCR) systems. A total of 12 genetically modified organism (GMO) detection laboratories from seven countries participated in the ring trial and returned their results. The validated results confirmed the species specificity of the method through testing 10 plant genomic DNAs, low heterogeneity, and a stable single-copy number of the rice SPS gene among 7 indica varieties and 5 japonica varieties. The SPS qualitative PCR assay was validated with a limit of detection (LOD) of 0.1%, which corresponded to about 230 copies of haploid rice genomic DNA, while the limit of quantification (LOQ) for the quantitative PCR system was about 23 copies of haploid rice genomic DNA, with acceptable PCR efficiency and linearity. Furthermore, the bias between the test and true values of eight blind samples ranged from 5.22 to 26.53%. Thus, we believe that the SPS gene is suitable for use as an endogenous reference gene for the identification and quantification of GM rice and its derivates.
Wang, Hye-Young; Ahn, Sungwoo; Park, Sunyoung; Kim, SeungIl; Lee, Hyeyoung
2017-01-01
Currently, the two main methods used to analyze human epidermal growth factor receptor 2 (HER2) amplification or overexpression have a limited accuracy and high costs. These limitations can be overcome by the development of complementary quantitative methods. In this study, we analyzed HER2 mRNA expression in clinical formalin-fixed and paraffin-embedded (FFPE) samples using a one-tube nested reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay. We measured expression relative to 3 reference genes and compared the results to those obtained by conventional immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) assays with 226 FFPE breast cancer tissue samples. The one-tube nested RT-qPCR assay proved to be highly sensitive and specific based on comparisons with IHC (96.9 and 97.7%, respectively) and FISH (92.4 and 92.9%, respectively) obtained with the validation set. Comparisons with clinicopathological data revealed significant associations between HER2 overexpression and TNM stage (p < 0.01), histological type (p < 0.01), ER status (p < 0.001), PR status (p < 0.05), HER2 status (p < 0.001), and molecular subtypes (p < 0.001). Based on these findings, our one-tube nested RT-qPCR assay is a potentially useful and complementary screening tool for the detection of HER2 mRNA overexpression. © 2016 S. Karger AG, Basel.
Drandi, Daniela; Genuardi, Elisa; Dogliotti, Irene; Ferrante, Martina; Jiménez, Cristina; Guerrini, Francesca; Lo Schirico, Mariella; Mantoan, Barbara; Muccio, Vittorio; Lia, Giuseppe; Zaccaria, Gian Maria; Omedè, Paola; Passera, Roberto; Orsucci, Lorella; Benevolo, Giulia; Cavallo, Federica; Galimberti, Sara; García-Sanz, Ramón; Boccadoro, Mario; Ladetto, Marco; Ferrero, Simone
2018-03-22
We here describe a novel method for MYD88 L265P mutation detection and minimal residual disease monitoring in Waldenström Macroglobulinemia, by droplet digital PCR, in bone marrow and peripheral blood cells, as well as in circulating cell free DNA. Our method shows a sensitivity of 5.00E-05, by far superior to the widely used allele-specific polymerase chain reaction (1.00E-03). Overall, 291 unsorted samples from 148 patients (133 Waldenstrom 11 IgG-lymphoplasmacytic lymphoma and 4 IgM-monoclonal gammopathy of undetermined significance), 194 baseline and 97 follow-up, were analyzed. 122/128 (95.3%) bone marrow and 47/66 (71.2%) baseline peripheral blood samples scored positive for MYD88 L265P Moreover, to investigate whether MYD88 L265P by droplet digital PCR could be used for minimal residual disease monitoring, mutation levels were compared with IGH-based minimal residual disease analysis in 10 patients, showing to be as informative as to the classical, standardized but not yet validated in Waldenström Macroglobulinemia, IGH-based minimal residual disease assay (r 2 =0.64). Finally, MYD88 L265P detection performed by droplet digital PCR on plasmatic circulating tumor DNA from 60 patients showed a good correlation with bone marrow (bone marrow median mutational value 1.92E-02, plasmatic circulating tumor DNA value: 1.4E-02, peripheral blood value: 1.03E-03). This study indicates that droplet digital PCR MYD88 L265P assay is a feasible and sensitive tool for mutational screening and minimal residual disease monitoring in Waldenström Macroglobulinemia. Both unsorted bone marrow and peripheral blood samples can be reliably tested, as well as circulating tumor DNA, that represents an attractive, less invasive alternative to bone marrow for MYD88 L265P detection. Copyright © 2018, Ferrata Storti Foundation.
A number of PCR-based methods for detecting human fecal material in environmental waters have been developed over the past decade, but these methods have rarely received independent comparative testing. Here, we evaluated ten of these methods (BacH, BacHum-UCD, B. thetaiotaomic...
Preliminary characterization of the oral microbiota of Chinese adults with and without gingivitis
2011-01-01
Background Microbial communities inhabiting human mouth are associated with oral health and disease. Previous studies have indicated the general prevalence of adult gingivitis in China to be high. The aim of this study was to characterize in depth the oral microbiota of Chinese adults with or without gingivitis, by defining the microbial phylogenetic diversity and community-structure using highly paralleled pyrosequencing. Methods Six non-smoking Chinese, three with and three without gingivitis (age range 21-39 years, 4 females and 2 males) were enrolled in the present cross-sectional study. Gingival parameters of inflammation and bleeding on probing were characterized by a clinician using the Mazza Gingival Index (MGI). Plaque (sampled separately from four different oral sites) and salivary samples were obtained from each subject. Sequences and relative abundance of the bacterial 16 S rDNA PCR-amplicons were determined via pyrosequencing that produced 400 bp-long reads. The sequence data were analyzed via a computational pipeline customized for human oral microbiome analyses. Furthermore, the relative abundances of selected microbial groups were validated using quantitative PCR. Results The oral microbiomes from gingivitis and healthy subjects could be distinguished based on the distinct community structures of plaque microbiomes, but not the salivary microbiomes. Contributions of community members to community structure divergence were statistically accessed at the phylum, genus and species-like levels. Eight predominant taxa were found associated with gingivitis: TM7, Leptotrichia, Selenomonas, Streptococcus, Veillonella, Prevotella, Lautropia, and Haemophilus. Furthermore, 98 species-level OTUs were identified to be gingivitis-associated, which provided microbial features of gingivitis at a species resolution. Finally, for the two selected genera Streptococcus and Fusobacterium, Real-Time PCR based quantification of relative bacterial abundance validated the pyrosequencing-based results. Conclusions This methods study suggests that oral samples from this patient population of gingivitis can be characterized via plaque microbiome by pyrosequencing the 16 S rDNA genes. Further studies that characterize serial samples from subjects (longitudinal study design) with a larger population size may provide insight into the temporal and ecological features of oral microbial communities in clinically-defined states of gingivitis. PMID:22152152
Enumeration of verocytotoxigenic Escherichia coli (VTEC) O157 and O26 in milk by quantitative PCR.
Mancusi, Rocco; Trevisani, Marcello
2014-08-01
Quantitative real-time polymerase chain reaction (qPCR) can be a convenient alternative to the Most Probable Number (MPN) methods to count VTEC in milk. The number of VTEC is normally very low in milk; therefore with the aim of increasing the method sensitivity a qPCR protocol that relies on preliminary enrichment was developed. The growth pattern of six VTEC strains (serogroups O157 and O26) was studied using enrichment in Buffered Peptone Water (BPW) with or without acriflavine for 4-24h. Milk samples were inoculated with these strains over a five Log concentration range between 0.24-0.50 and 4.24-4.50 Log CFU/ml. DNA was extracted from the enriched samples in duplicate and each extract was analysed in duplicate by qPCR using pairs of primers specific for the serogroups O157 and O26. When samples were pre-enriched in BPW at 37°C for 8h, the relationship between threshold cycles (CT values) and VTEC Log numbers was linear over a five Log concentration range. The regression of PCR threshold cycle numbers on VTEC Log CFU/ml had a slope coefficient equal to -3.10 (R(2)=0.96) which is indicative of a 10-fold difference of the gene copy numbers between samples (with a 100 ± 10% PCR efficiency). The same 10-fold proportion used for inoculating the milk samples with VTEC was observed, therefore, also in the enriched samples at 8h. A comparison of the CT values of milk samples and controls revealed that the strains inoculated in milk grew with 3 Log increments in the 8h enrichment period. Regression lines that fitted the qPCR and MPN data revealed that the error of the qPCR estimates is lower than the error of the estimated MPN (r=0.982, R(2)=0.965 vs. r=0.967, R(2)=0.935). The growth rates of VTEC strains isolated from milk should be comparatively assessed before qPCR estimates based on the regression model are considered valid. Comparative assessment of the growth rates can be done using spectrophotometric measurements of standardized cultures of isolates and reference strains cultured in BPW at 37°C for 8h. The method developed for the serogroups O157 and O26 can be easily adapted to the other VTEC serogroups that are relevant for human health. The qPCR method is less laborious and faster than the standard MPN method and has been shown to be a good technique for quantifying VTEC in milk. Copyright © 2014 Elsevier B.V. All rights reserved.
Torriani, Sandra; Zapparoli, Giacomo; Dellaglio, Franco
1999-01-01
Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412T, which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains. PMID:10508059
Torriani, S; Zapparoli, G; Dellaglio, F
1999-10-01
Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412(T), which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains.
Rapid quantification of plant-powdery mildew interactions by qPCR and conidiospore counts.
Weßling, Ralf; Panstruga, Ralph
2012-08-31
The powdery mildew disease represents a valuable patho-system to study the interaction between plant hosts and obligate biotrophic fungal pathogens. Numerous discoveries have been made on the basis of the quantitative evaluation of plant-powdery mildew interactions, especially in the context of hyper-susceptible and/or resistant plant mutants. However, the presently available methods to score the pathogenic success of powdery mildew fungi are laborious and thus not well suited for medium- to high-throughput analysis. Here we present two new protocols that allow the rapid quantitative assessment of powdery mildew disease development. One procedure depends on quantitative polymerase chain reaction (qPCR)-based evaluation of fungal biomass, while the other relies on the quantification of fungal conidiospores. We validated both techniques using the powdery mildew pathogen Golovinomyces orontii on a set of hyper-susceptible and resistant Arabidopsis thaliana mutants and found that both cover a wide dynamic range of one to two (qPCR) and four to five (quantification of conidia) orders of magnitude, respectively. The two approaches yield reproducible results and are easy to perform without specialized equipment. The qPCR and spore count assays rapidly and reproducibly quantify powdery mildew pathogenesis. Our methods are performed at later stages of infection and discern mutant phenotypes accurately. The assays therefore complement currently used procedures of powdery mildew quantification and can overcome some of their limitations. In addition, they can easily be adapted to other plant-powdery mildew patho-systems.
Reddy, Palakolanu Sudhakar; Sri Cindhuri, Katamreddy; Sivaji Ganesh, Adusumalli; Sharma, Kiran Kumar
2016-01-01
Quantitative Real-Time PCR (qPCR) is a preferred and reliable method for accurate quantification of gene expression to understand precise gene functions. A total of 25 candidate reference genes including traditional and new generation reference genes were selected and evaluated in a diverse set of chickpea samples. The samples used in this study included nine chickpea genotypes (Cicer spp.) comprising of cultivated and wild species, six abiotic stress treatments (drought, salinity, high vapor pressure deficit, abscisic acid, cold and heat shock), and five diverse tissues (leaf, root, flower, seedlings and seed). The geNorm, NormFinder and RefFinder algorithms used to identify stably expressed genes in four sample sets revealed stable expression of UCP and G6PD genes across genotypes, while TIP41 and CAC were highly stable under abiotic stress conditions. While PP2A and ABCT genes were ranked as best for different tissues, ABCT, UCP and CAC were most stable across all samples. This study demonstrated the usefulness of new generation reference genes for more accurate qPCR based gene expression quantification in cultivated as well as wild chickpea species. Validation of the best reference genes was carried out by studying their impact on normalization of aquaporin genes PIP1;4 and TIP3;1, in three contrasting chickpea genotypes under high vapor pressure deficit (VPD) treatment. The chickpea TIP3;1 gene got significantly up regulated under high VPD conditions with higher relative expression in the drought susceptible genotype, confirming the suitability of the selected reference genes for expression analysis. This is the first comprehensive study on the stability of the new generation reference genes for qPCR studies in chickpea across species, different tissues and abiotic stresses. PMID:26863232
Reddy, Dumbala Srinivas; Bhatnagar-Mathur, Pooja; Reddy, Palakolanu Sudhakar; Sri Cindhuri, Katamreddy; Sivaji Ganesh, Adusumalli; Sharma, Kiran Kumar
2016-01-01
Quantitative Real-Time PCR (qPCR) is a preferred and reliable method for accurate quantification of gene expression to understand precise gene functions. A total of 25 candidate reference genes including traditional and new generation reference genes were selected and evaluated in a diverse set of chickpea samples. The samples used in this study included nine chickpea genotypes (Cicer spp.) comprising of cultivated and wild species, six abiotic stress treatments (drought, salinity, high vapor pressure deficit, abscisic acid, cold and heat shock), and five diverse tissues (leaf, root, flower, seedlings and seed). The geNorm, NormFinder and RefFinder algorithms used to identify stably expressed genes in four sample sets revealed stable expression of UCP and G6PD genes across genotypes, while TIP41 and CAC were highly stable under abiotic stress conditions. While PP2A and ABCT genes were ranked as best for different tissues, ABCT, UCP and CAC were most stable across all samples. This study demonstrated the usefulness of new generation reference genes for more accurate qPCR based gene expression quantification in cultivated as well as wild chickpea species. Validation of the best reference genes was carried out by studying their impact on normalization of aquaporin genes PIP1;4 and TIP3;1, in three contrasting chickpea genotypes under high vapor pressure deficit (VPD) treatment. The chickpea TIP3;1 gene got significantly up regulated under high VPD conditions with higher relative expression in the drought susceptible genotype, confirming the suitability of the selected reference genes for expression analysis. This is the first comprehensive study on the stability of the new generation reference genes for qPCR studies in chickpea across species, different tissues and abiotic stresses.
Triheptanoin improves brain energy metabolism in patients with Huntington disease
Adanyeguh, Isaac Mawusi; Rinaldi, Daisy; Henry, Pierre-Gilles; Caillet, Samantha; Valabregue, Romain; Durr, Alexandra
2015-01-01
Objective: Based on our previous work in Huntington disease (HD) showing improved energy metabolism in muscle by providing substrates to the Krebs cycle, we wished to obtain a proof-of-concept of the therapeutic benefit of triheptanoin using a functional biomarker of brain energy metabolism validated in HD. Methods: We performed an open-label study using 31P brain magnetic resonance spectroscopy (MRS) to measure the levels of phosphocreatine (PCr) and inorganic phosphate (Pi) before (rest), during (activation), and after (recovery) a visual stimulus. We performed 31P brain MRS in 10 patients at an early stage of HD and 13 controls. Patients with HD were then treated for 1 month with triheptanoin after which they returned for follow-up including 31P brain MRS scan. Results: At baseline, we confirmed an increase in Pi/PCr ratio during brain activation in controls—reflecting increased adenosine triphosphate synthesis—followed by a return to baseline levels during recovery (p = 0.013). In patients with HD, we validated the existence of an abnormal brain energy profile as previously reported. After 1 month, this profile remained abnormal in patients with HD who did not receive treatment. Conversely, the MRS profile was improved in patients with HD treated with triheptanoin for 1 month with the restoration of an increased Pi/PCr ratio during visual stimulation (p = 0.005). Conclusion: This study suggests that triheptanoin is able to correct the bioenergetic profile in the brain of patients with HD at an early stage of the disease. Classification of evidence: This study provides Class III evidence that, for patients with HD, treatment with triheptanoin for 1 month restores an increased MRS Pi/PCr ratio during visual stimulation. PMID:25568297
The adherent cell differentiation and cytotoxicity (ACDC) assay was used to profile the effects of the ECVAM EST validation chemical library (19 compounds) on J1 mouse embryonic stem cells (mESC). PCR-based TaqMan Low Density Arrays (TLDA) provided a high-content assessment of al...
PCR on yeast colonies: an improved method for glyco-engineered Saccharomyces cerevisiae
2013-01-01
Background Saccharomyces cerevisiae is extensively used in bio-industries. However, its genetic engineering to introduce new metabolism pathways can cause unexpected phenotypic alterations. For example, humanisation of the glycosylation pathways is a high priority pharmaceutical industry goal for production of therapeutic glycoproteins in yeast. Genomic modifications can lead to several described physiological changes: biomass yields decrease, temperature sensitivity or cell wall structure modifications. We have observed that deletion of several N-mannosyltransferases in Saccharomyces cerevisiae, results in strains that can no longer be analyzed by classical PCR on yeast colonies. Findings In order to validate our glyco-engineered Saccharomyces cerevisiae strains, we developed a new protocol to carry out PCR directly on genetically modified yeast colonies. A liquid culture phase, combined with the use of a Hot Start DNA polymerase, allows a 3-fold improvement of PCR efficiency. The results obtained are repeatable and independent of the targeted sequence; as such the protocol is well adapted for intensive screening applications. Conclusions The developed protocol enables by-passing of many of the difficulties associated with PCR caused by phenotypic modifications brought about by humanisation of the glycosylation in yeast and allows rapid validation of glyco-engineered Saccharomyces cerevisiae cells. It has the potential to be extended to other yeast strains presenting cell wall structure modifications. PMID:23688076
Krych, Łukasz; Kot, Witold; Bendtsen, Katja M B; Hansen, Axel K; Vogensen, Finn K; Nielsen, Dennis S
2018-01-01
The Dextran Sulfate Sodium (DSS) induced colitis mouse model is commonly used to investigate human inflammatory bowel disease (IBD). Nucleic acid extracts originating from these animals are often contaminated with DSS, which is a strong inhibitor of many enzymatic based molecular biology reactions including PCR and reverse-transcription (RT). Methods for removing DSS from nucleic acids extracts exist for RNA, but no effective protocol for DNA or cDNA is currently available. However, spermine has previously been shown to be an effective agent for counteracting DSS inhibition of polynucleotide kinase, which led to the hypothesis, that spermine could be used to counteract DSS inhibition of PCR and RT. We investigated the means of adding spermine in an adequate concentration to PCR based protocols (including qPCR, two-step RT-qPCR, and amplicon sequencing library preparation) to remove DSS inhibition. Within the range up to 0.01g/L, spermine can be added to PCR/qPCR or RT prophylactically without a significant reduction of reaction efficiency. Addition of spermine at the concentration of 0.08g/L can be used to recover qualitative PCR signal inhibited by DSS in concentrations up to 0.32g/L. For optimal quantitative analysis, the concentration of spermine requires fine adjustment. Hence, we present here a simple fluorometric based method for adjusting the concentration of spermine ensuring an optimal efficiency of the reaction exposed to an unknown concentration of DSS. In conclusion, we demonstrate a cost effective and easy method to counteract DSS inhibition in PCR and two-step RT-qPCR. Fixed or fine-tuned concentrations of spermine can be administered depending on the qualitative or quantitative character of the analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Lin, L-H; Tsai, C-Y; Hung, M-H; Fang, Y-T; Ling, Q-D
2011-09-01
Although routine bacterial culture is the traditional reference standard method for the detection of Salmonella infection in children with diarrhoea, it is a time-consuming procedure that usually only gives results after 3-4 days. Some molecular detection methods can improve the turn-around time to within 24 h, but these methods are not applied directly from stool or rectal swab specimens as routine diagnostic methods for the detection of gastrointestinal pathogens. In this study, we tested the feasibility of a bacterial enrichment culture-based real-time PCR assay method for detecting and screening for diarrhoea in children caused by Salmonella. Our results showed that the minimum real-time PCR assay time required to detect enriched bacterial culture from a swab was 3 h. In all children with suspected Salmonella diarrhoea, the enrichment culture-based real-time PCR achieved 85.4% sensitivity and 98.1% specificity, as compared with the 53.7% sensitivity and 100% specificity of detection with the routine bacterial culture method. We suggest that rectal swab sampling followed by enrichment culture-based real-time PCR is suitable as a rapid method for detecting and screening for Salmonella in paediatric patients. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.
Further interest of miniexon multiplex PCR for a rapid typing of Trypanosoma cruzi DTU groups.
Aliaga, Claudia; Brenière, Simone Frédérique; Barnabé, Christian
2011-07-01
In order to validate a rapid typing of Trypanosoma cruzi DTUs, the miniexon multiplex PCR was tested for the first time, on a large and diversified sample of 70 strains belonging to all current DTUs (TcI to TcVI). Three DTU groups have been distinguished by specific PCR molecular weight, TcI (200bp), TcII, V, VI (250bp) and TcIII and IV (150bp) with no incorrect grouping. These groups are epidemiologically and genetically relevant; moreover the method is easy and cheap and allows direct identification of parasites from triatomine faeces. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoyama, Yoko; Shimizu, Akira; Okada, Etsuko
Highlights: Black-Right-Pointing-Pointer We developed new method to rapidly identify COL1A1-PDGFB fusion in DFSP. Black-Right-Pointing-Pointer New PCR method using a single primer pair detected COL1A1-PDGFB fusion in DFSP. Black-Right-Pointing-Pointer This is the first report of DFSP with a novel COL1A1 breakpoint in exon 5. -- Abstract: The detection of fusion transcripts of the collagen type 1{alpha}1 (COL1A1) and platelet-derived growth factor-BB (PDGFB) genes by genetic analysis has recognized as a reliable and valuable molecular tool for the diagnosis of dermatofibrosarcoma protuberans (DFSP). To detect the COL1A1-PDGFB fusion, almost previous reports performed reverse transcription polymerase chain reaction (RT-PCR) using multiplex forward primersmore » from COL1A1. However, it has possible technical difficulties with respect to the handling of multiple primers and reagents in the procedure. The objective of this study is to establish a rapid, easy, and efficient one-step method of PCR using only a single primer pair to detect the fusion transcripts of the COL1A1 and PDGFB in DFSP. To validate new method, we compared the results of RT-PCR in five patients of DFSP between the previous method using multiplex primers and our established one-step RT-PCR using a single primer pair. In all cases of DFSP, the COL1A1-PDGFB fusion was detected by both previous method and newly established one-step PCR. Importantly, we detected a novel COL1A1 breakpoint in exon 5. The newly developed method is valuable to rapidly identify COL1A1-PDGFB fusion transcripts in DFSP.« less
On-Site Molecular Detection of Soil-Borne Phytopathogens Using a Portable Real-Time PCR System
DeShields, Joseph B.; Bomberger, Rachel A.; Woodhall, James W.; Wheeler, David L.; Moroz, Natalia; Johnson, Dennis A.; Tanaka, Kiwamu
2018-01-01
On-site diagnosis of plant diseases can be a useful tool for growers for timely decisions enabling the earlier implementation of disease management strategies that reduce the impact of the disease. Presently in many diagnostic laboratories, the polymerase chain reaction (PCR), particularly real-time PCR, is considered the most sensitive and accurate method for plant pathogen detection. However, laboratory-based PCRs typically require expensive laboratory equipment and skilled personnel. In this study, soil-borne pathogens of potato are used to demonstrate the potential for on-site molecular detection. This was achieved using a rapid and simple protocol comprising of magnetic bead-based nucleic acid extraction, portable real-time PCR (fluorogenic probe-based assay). The portable real-time PCR approach compared favorably with a laboratory-based system, detecting as few as 100 copies of DNA from Spongospora subterranea. The portable real-time PCR method developed here can serve as an alternative to laboratory-based approaches and a useful on-site tool for pathogen diagnosis. PMID:29553557
Sacristán, Carlos; Carballo, Matilde; Muñoz, María Jesús; Bellière, Edwige Nina; Neves, Elena; Nogal, Verónica; Esperón, Fernando
2015-12-15
Cetacean morbillivirus (CeMV) (family Paramyxoviridae, genus Morbillivirus) is considered the most pathogenic virus of cetaceans. It was first implicated in the bottlenose dolphin (Tursiops truncatus) mass stranding episode along the Northwestern Atlantic coast in the late 1980s, and in several more recent worldwide epizootics in different Odontoceti species. This study describes a new one step real-time reverse transcription fast polymerase chain reaction (real-time RT-fast PCR) method based on SYBR(®) Green to detect a fragment of the CeMV fusion protein gene. This primer set also works for conventional RT-PCR diagnosis. This method detected and identified all three well-characterized strains of CeMV: porpoise morbillivirus (PMV), dolphin morbillivirus (DMV) and pilot whale morbillivirus (PWMV). Relative sensitivity was measured by comparing the results obtained from 10-fold dilution series of PMV and DMV positive controls and a PWMV field sample, to those obtained by the previously described conventional phosphoprotein gene based RT-PCR method. Both the conventional and real-time RT-PCR methods involving the fusion protein gene were 100- to 1000-fold more sensitive than the previously described conventional RT-PCR method. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Qiming; Melnikov, Alexander; Wang, Jing; Mandelis, Andreas
2018-04-01
A rigorous treatment of the nonlinear behavior of photocarrier radiometric (PCR) signals is presented theoretically and experimentally for the quantitative characterization of semiconductor photocarrier recombination and transport properties. A frequency-domain model based on the carrier rate equation and the classical carrier radiative recombination theory was developed. The derived concise expression reveals different functionalities of the PCR amplitude and phase channels: the phase bears direct quantitative correlation with the carrier effective lifetime, while the amplitude versus the estimated photocarrier density dependence can be used to extract the equilibrium majority carrier density and thus, resistivity. An experimental ‘ripple’ optical excitation mode (small modulation depth compared to the dc level) was introduced to bypass the complicated ‘modulated lifetime’ problem so as to simplify theoretical interpretation and guarantee measurement self-consistency and reliability. Two Si wafers with known resistivity values were tested to validate the method.
Lock, Martin; Alvira, Mauricio R; Chen, Shu-Jen; Wilson, James M
2014-04-01
Accurate titration of adeno-associated viral (AAV) vector genome copies is critical for ensuring correct and reproducible dosing in both preclinical and clinical settings. Quantitative PCR (qPCR) is the current method of choice for titrating AAV genomes because of the simplicity, accuracy, and robustness of the assay. However, issues with qPCR-based determination of self-complementary AAV vector genome titers, due to primer-probe exclusion through genome self-annealing or through packaging of prematurely terminated defective interfering (DI) genomes, have been reported. Alternative qPCR, gel-based, or Southern blotting titering methods have been designed to overcome these issues but may represent a backward step from standard qPCR methods in terms of simplicity, robustness, and precision. Droplet digital PCR (ddPCR) is a new PCR technique that directly quantifies DNA copies with an unparalleled degree of precision and without the need for a standard curve or for a high degree of amplification efficiency; all properties that lend themselves to the accurate quantification of both single-stranded and self-complementary AAV genomes. Here we compare a ddPCR-based AAV genome titer assay with a standard and an optimized qPCR assay for the titration of both single-stranded and self-complementary AAV genomes. We demonstrate absolute quantification of single-stranded AAV vector genomes by ddPCR with up to 4-fold increases in titer over a standard qPCR titration but with equivalent readout to an optimized qPCR assay. In the case of self-complementary vectors, ddPCR titers were on average 5-, 1.9-, and 2.3-fold higher than those determined by standard qPCR, optimized qPCR, and agarose gel assays, respectively. Droplet digital PCR-based genome titering was superior to qPCR in terms of both intra- and interassay precision and is more resistant to PCR inhibitors, a desirable feature for in-process monitoring of early-stage vector production and for vector genome biodistribution analysis in inhibitory tissues.
2012-01-01
Background Traditional PCR methods for forensic STR genotyping require approximately 2.5 to 4 hours to complete, contributing a significant portion of the time required to process forensic DNA samples. The purpose of this study was to develop and validate a fast PCR protocol that enabled amplification of the 16 loci targeted by the AmpFℓSTR® Identifiler® primer set, allowing decreased cycling times. Methods Fast PCR conditions were achieved by substituting the traditional Taq polymerase for SpeedSTAR™ HS DNA polymerase which is designed for fast PCR, by upgrading to a thermal cycler with faster temperature ramping rates and by modifying cycling parameters (less time at each temperature) and adopting a two-step PCR approach. Results The total time required for the optimized protocol is 26 min. A total of 147 forensically relevant DNA samples were amplified using the fast PCR protocol for Identifiler. Heterozygote peak height ratios were not affected by fast PCR conditions, and full profiles were generated for single-source DNA amounts between 0.125 ng and 2.0 ng. Individual loci in profiles produced with the fast PCR protocol exhibited average n-4 stutter percentages ranging from 2.5 ± 0.9% (THO1) to 9.9 ± 2.7% (D2S1338). No increase in non-adenylation or other amplification artefacts was observed. Minor contributor alleles in two-person DNA mixtures were reliably discerned. Low level cross-reactivity (monomorphic peaks) was observed with some domestic animal DNA. Conclusions The fast PCR protocol presented offers a feasible alternative to current amplification methods and could aid in reducing the overall time in STR profile production or could be incorporated into a fast STR genotyping procedure for time-sensitive situations. PMID:22394458
Prediction of valid acidity in intact apples with Fourier transform near infrared spectroscopy.
Liu, Yan-De; Ying, Yi-Bin; Fu, Xia-Ping
2005-03-01
To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibration techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way.
Prediction of valid acidity in intact apples with Fourier transform near infrared spectroscopy*
Liu, Yan-de; Ying, Yi-bin; Fu, Xia-ping
2005-01-01
To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibration techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r 2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way. PMID:15682498
Molla Kazemiha, Vahid; Bonakdar, Shahin; Amanzadeh, Amir; Azari, Shahram; Memarnejadian, Arash; Shahbazi, Shirin; Shokrgozar, Mohammad Ali; Mahdian, Reza
2016-08-01
Mycoplasmas are the most important contaminants of cell cultures throughout the world. They are considered as a major problem in biological studies and biopharmaceutical economic issues. In this study, our aim was to find the best standard technique as a rapid method with high sensitivity, specificity and accuracy for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran. Thirty cell lines suspected to mycoplasma contamination were evaluated by five different techniques including microbial culture, indirect DNA DAPI staining, enzymatic mycoalert(®) assay, conventional PCR and real-time PCR. Five mycoplasma-contaminated cell lines were assigned as positive controls and five mycoplasma-free cell lines as negative controls. The enzymatic method was performed using the mycoalert(®) mycoplasma detection kit. Real-time PCR technique was conducted by PromoKine diagnostic kits. In the conventional PCR method, mycoplasma genus-specific primers were designed to analyze the sequences based on a fixed and common region on 16S ribosomal RNA with PCR product size of 425 bp. Mycoplasma contamination was observed in 60, 56.66, 53.33, 46.66 and 33.33 % of 30 different cell cultures by real-time PCR, PCR, enzymatic mycoalert(®), indirect DNA DAPI staining and microbial culture methods, respectively. The analysis of the results of the different methods showed that the real-time PCR assay was superior the other methods with the sensitivity, specificity, accuracy, predictive value of positive and negative results of 100 %. These values were 94.44, 100, 96.77, 100 and 92.85 % for the conventional PCR method, respectively. Therefore, this study showed that real-time PCR and PCR assays based on the common sequences in the 16S ribosomal RNA are reliable methods with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products.
Martin, Brigitte E.; Jia, Kun; Sun, Hailiang; Ye, Jianqiang; Hall, Crystal; Ware, Daphne; Wan, Xiu-Feng
2016-01-01
Identification of antigenic variants is the key to a successful influenza vaccination program. The empirical serological methods to determine influenza antigenic properties require viral propagation. Here a novel quantitative PCR-based antigenic characterization method using polyclonal antibody and proximity ligation assays, or so-called polyPLA, was developed and validated. This method can detect a viral titer that is less than 1000 TCID50/mL. Not only can this method differentiate between different HA subtypes of influenza viruses but also effectively identify antigenic drift events within the same HA subtype of influenza viruses. Applications in H3N2 seasonal influenza data showed that the results from this novel method are consistent with those from the conventional serological assays. This method is not limited to the detection of antigenic variants in influenza but also other pathogens. It has the potential to be applied through a large-scale platform in disease surveillance requiring minimal biosafety and directly using clinical samples. PMID:25546251
Borgmästars, Emmy; Jazi, Mehrdad Mousavi; Persson, Sofia; Jansson, Linda; Rådström, Peter; Simonsson, Magnus; Hedman, Johannes; Eriksson, Ronnie
2017-12-01
Quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) detection of waterborne RNA viruses generally requires concentration of large water volumes due to low virus levels. A common approach is to use dead-end ultrafiltration followed by precipitation with polyethylene glycol. However, this procedure often leads to the co-concentration of PCR inhibitors that impairs the limit of detection and causes false-negative results. Here, we applied the concept of pre-PCR processing to optimize RT-qPCR detection of norovirus genogroup I (GI), genogroup II (GII), and hepatitis A virus (HAV) in challenging water matrices. The RT-qPCR assay was improved by screening for an inhibitor-tolerant master mix and modifying the primers with twisted intercalating nucleic acid molecules. Additionally, a modified protocol based on chaotropic lysis buffer and magnetic silica bead nucleic acid extraction was developed for complex water matrices. A validation of the modified extraction protocol on surface and drinking waters was performed. At least a 26-fold improvement was seen in the most complex surface water studied. The modified protocol resulted in average recoveries of 33, 13, 8, and 4% for mengovirus, norovirus GI, GII, and HAV, respectively. The modified protocol also improved the limit of detection for norovirus GI and HAV. RT-qPCR inhibition with C q shifts of 1.6, 2.8, and 3.5 for norovirus GI, GII, and HAV, respectively, obtained for the standard nucleic acid extraction were completely eliminated by the modified protocol. The standard nucleic acid extraction method worked well on drinking water with no RT-qPCR inhibition observed and average recoveries of 80, 124, 89, and 32% for mengovirus, norovirus GI, GII, and HAV, respectively.
URPD: a specific product primer design tool
2012-01-01
Background Polymerase chain reaction (PCR) plays an important role in molecular biology. Primer design fundamentally determines its results. Here, we present a currently available software that is not located in analyzing large sequence but used for a rather straight-forward way of visualizing the primer design process for infrequent users. Findings URPD (yoUR Primer Design), a web-based specific product primer design tool, combines the NCBI Reference Sequences (RefSeq), UCSC In-Silico PCR, memetic algorithm (MA) and genetic algorithm (GA) primer design methods to obtain specific primer sets. A friendly user interface is accomplished by built-in parameter settings. The incorporated smooth pipeline operations effectively guide both occasional and advanced users. URPD contains an automated process, which produces feasible primer pairs that satisfy the specific needs of the experimental design with practical PCR amplifications. Visual virtual gel electrophoresis and in silico PCR provide a simulated PCR environment. The comparison of Practical gel electrophoresis comparison to virtual gel electrophoresis facilitates and verifies the PCR experiment. Wet-laboratory validation proved that the system provides feasible primers. Conclusions URPD is a user-friendly tool that provides specific primer design results. The pipeline design path makes it easy to operate for beginners. URPD also provides a high throughput primer design function. Moreover, the advanced parameter settings assist sophisticated researchers in performing experiential PCR. Several novel functions, such as a nucleotide accession number template sequence input, local and global specificity estimation, primer pair redesign, user-interactive sequence scale selection, and virtual and practical PCR gel electrophoresis discrepancies have been developed and integrated into URPD. The URPD program is implemented in JAVA and freely available at http://bio.kuas.edu.tw/urpd/. PMID:22713312
URPD: a specific product primer design tool.
Chuang, Li-Yeh; Cheng, Yu-Huei; Yang, Cheng-Hong
2012-06-19
Polymerase chain reaction (PCR) plays an important role in molecular biology. Primer design fundamentally determines its results. Here, we present a currently available software that is not located in analyzing large sequence but used for a rather straight-forward way of visualizing the primer design process for infrequent users. URPD (yoUR Primer Design), a web-based specific product primer design tool, combines the NCBI Reference Sequences (RefSeq), UCSC In-Silico PCR, memetic algorithm (MA) and genetic algorithm (GA) primer design methods to obtain specific primer sets. A friendly user interface is accomplished by built-in parameter settings. The incorporated smooth pipeline operations effectively guide both occasional and advanced users. URPD contains an automated process, which produces feasible primer pairs that satisfy the specific needs of the experimental design with practical PCR amplifications. Visual virtual gel electrophoresis and in silico PCR provide a simulated PCR environment. The comparison of Practical gel electrophoresis comparison to virtual gel electrophoresis facilitates and verifies the PCR experiment. Wet-laboratory validation proved that the system provides feasible primers. URPD is a user-friendly tool that provides specific primer design results. The pipeline design path makes it easy to operate for beginners. URPD also provides a high throughput primer design function. Moreover, the advanced parameter settings assist sophisticated researchers in performing experiential PCR. Several novel functions, such as a nucleotide accession number template sequence input, local and global specificity estimation, primer pair redesign, user-interactive sequence scale selection, and virtual and practical PCR gel electrophoresis discrepancies have been developed and integrated into URPD. The URPD program is implemented in JAVA and freely available at http://bio.kuas.edu.tw/urpd/.
Geue, Lutz; Stieber, Bettina; Monecke, Stefan; Engelmann, Ines; Gunzer, Florian; Slickers, Peter; Braun, Sascha D; Ehricht, Ralf
2014-08-01
In this study, we developed a new rapid, economic, and automated microarray-based genotyping test for the standardized subtyping of Shiga toxins 1 and 2 of Escherichia coli. The microarrays from Alere Technologies can be used in two different formats, the ArrayTube and the ArrayStrip (which enables high-throughput testing in a 96-well format). One microarray chip harbors all the gene sequences necessary to distinguish between all Stx subtypes, facilitating the identification of single and multiple subtypes within a single isolate in one experiment. Specific software was developed to automatically analyze all data obtained from the microarray. The assay was validated with 21 Shiga toxin-producing E. coli (STEC) reference strains that were previously tested by the complete set of conventional subtyping PCRs. The microarray results showed 100% concordance with the PCR results. Essentially identical results were detected when the standard DNA extraction method was replaced by a time-saving heat lysis protocol. For further validation of the microarray, we identified the Stx subtypes or combinations of the subtypes in 446 STEC field isolates of human and animal origin. In summary, this oligonucleotide array represents an excellent diagnostic tool that provides some advantages over standard PCR-based subtyping. The number of the spotted probes on the microarrays can be increased by additional probes, such as for novel alleles, species markers, or resistance genes, should the need arise. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Detection of 22 common leukemic fusion genes using a single-step multiplex qRT-PCR-based assay.
Lyu, Xiaodong; Wang, Xianwei; Zhang, Lina; Chen, Zhenzhu; Zhao, Yu; Hu, Jieying; Fan, Ruihua; Song, Yongping
2017-07-25
Fusion genes generated from chromosomal translocation play an important role in hematological malignancies. Detection of fusion genes currently employ use of either conventional RT-PCR methods or fluorescent in situ hybridization (FISH), where both methods involve tedious methodologies and require prior characterization of chromosomal translocation events as determined by cytogenetic analysis. In this study, we describe a real-time quantitative reverse transcription PCR (qRT-PCR)-based multi-fusion gene screening method with the capacity to detect 22 fusion genes commonly found in leukemia. This method does not require pre-characterization of gene translocation events, thereby facilitating immediate diagnosis and therapeutic management. We performed fluorescent qRT-PCR (F-qRT-PCR) using a commercially-available multi-fusion gene detection kit on a patient cohort of 345 individuals comprising 108 cases diagnosed with acute myeloid leukemia (AML) for initial evaluation; remaining patients within the cohort were assayed for confirmatory diagnosis. Results obtained by F-qRT-PCR were compared alongside patient analysis by cytogenetic characterization. Gene translocations detected by F-qRT-PCR in AML cases were diagnosed in 69.4% of the patient cohort, which was comparatively similar to 68.5% as diagnosed by cytogenetic analysis, thereby demonstrating 99.1% concordance. Overall gene fusion was detected in 53.7% of the overall patient population by F-qRT-PCR, 52.9% by cytogenetic prediction in leukemia, and 9.1% in non-leukemia patients by both methods. The overall concordance rate was calculated to be 99.0%. Fusion genes were detected by F-qRT-PCR in 97.3% of patients with CML, followed by 69.4% with AML, 33.3% with acute lymphoblastic leukemia (ALL), 9.1% with myelodysplastic syndromes (MDS), and 0% with chronic lymphocytic leukemia (CLL). We describe the use of a F-qRT-PCR-based multi-fusion gene screening method as an efficient one-step diagnostic procedure as an effective alternative to lengthy conventional diagnostic procedures requiring both cytogenetic analysis followed by targeted quantitative reverse transcription (qRT-PCR) methods, thus allowing timely patient management.
Kim, Hyerin; Kang, NaNa; An, KyuHyeon; Koo, JaeHyung; Kim, Min-Soo
2016-07-08
Design of high-quality primers for multiple target sequences is essential for qPCR experiments, but is challenging due to the need to consider both homology tests on off-target sequences and the same stringent filtering constraints on the primers. Existing web servers for primer design have major drawbacks, including requiring the use of BLAST-like tools for homology tests, lack of support for ranking of primers, TaqMan probes and simultaneous design of primers against multiple targets. Due to the large-scale computational overhead, the few web servers supporting homology tests use heuristic approaches or perform homology tests within a limited scope. Here, we describe the MRPrimerW, which performs complete homology testing, supports batch design of primers for multi-target qPCR experiments, supports design of TaqMan probes and ranks the resulting primers to return the top-1 best primers to the user. To ensure high accuracy, we adopted the core algorithm of a previously reported MapReduce-based method, MRPrimer, but completely redesigned it to allow users to receive query results quickly in a web interface, without requiring a MapReduce cluster or a long computation. MRPrimerW provides primer design services and a complete set of 341 963 135 in silico validated primers covering 99% of human and mouse genes. Free access: http://MRPrimerW.com. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
RNA-based determination of ESR1 and HER2 expression and response to neoadjuvant chemotherapy.
Denkert, C; Loibl, S; Kronenwett, R; Budczies, J; von Törne, C; Nekljudova, V; Darb-Esfahani, S; Solbach, C; Sinn, B V; Petry, C; Müller, B M; Hilfrich, J; Altmann, G; Staebler, A; Roth, C; Ataseven, B; Kirchner, T; Dietel, M; Untch, M; von Minckwitz, G
2013-03-01
Hormone and human epidermal growth factor receptor 2 (HER2) receptors are the most important breast cancer biomarkers, and additional objective and quantitative test methods such as messenger RNA (mRNA)-based quantitative analysis are urgently needed. In this study, we investigated the clinical validity of RT-PCR-based evaluation of estrogen receptor (ESR1) and HER2 mRNA expression. A total of 1050 core biopsies from two retrospective (GeparTrio, GeparQuattro) and one prospective (PREDICT) neoadjuvant studies were evaluated by quantitative RT-PCR for ESR1 and HER2. ESR1 mRNA was significantly predictive for reduced response to neoadjuvant chemotherapy in univariate and multivariate analysis in all three cohorts. The complete pathologically documented response (pathological complete response, pCR) rate for ESR1+/HER2- tumors was 7.3%, 8.0% and 8.6%; for ESR1-/HER2- tumors it was 34.4%, 33.7% and 37.3% in GeparTrio, GeparQuattro and PREDICT, respectively (P < 0.001 in each cohort). In the Kaplan-Meier analysis in GeparTrio patients with ESR1+/HER2- tumors had the best prognosis, compared with ESR1-/HER2- and ESR1-/HER2+ tumors [disease-free survival (DFS): P < 0.0005, overall survival (OS): P < 0.0005]. Our results suggest that mRNA levels of ESR1 and HER2 predict response to neoadjuvant chemotherapy and are significantly associated with long-term outcome. As an additional option to standard immunohistochemistry and gene-array-based analysis, quantitative RT-PCR analysis might be useful for determination of the receptor status in breast cancer.
Pruvost, Mélanie; Bennett, E. Andrew; Grange, Thierry; Geigl, Eva-Maria
2010-01-01
Background PCR amplification of minute quantities of degraded DNA for ancient DNA research, forensic analyses, wildlife studies and ultrasensitive diagnostics is often hampered by contamination problems. The extent of these problems is inversely related to DNA concentration and target fragment size and concern (i) sample contamination, (ii) laboratory surface contamination, (iii) carry-over contamination, and (iv) contamination of reagents. Methodology/Principal Findings Here we performed a quantitative evaluation of current decontamination methods for these last three sources of contamination, and developed a new procedure to eliminate contaminating DNA contained in PCR reagents. We observed that most current decontamination methods are either not efficient enough to degrade short contaminating DNA molecules, rendered inefficient by the reagents themselves, or interfere with the PCR when used at doses high enough to eliminate these molecules. We also show that efficient reagent decontamination can be achieved by using a combination of treatments adapted to different reagent categories. Our procedure involves γ- and UV-irradiation and treatment with a mutant recombinant heat-labile double-strand specific DNase from the Antarctic shrimp Pandalus borealis. Optimal performance of these treatments is achieved in narrow experimental conditions that have been precisely analyzed and defined herein. Conclusions/Significance There is not a single decontamination method valid for all possible contamination sources occurring in PCR reagents and in the molecular biology laboratory and most common decontamination methods are not efficient enough to decontaminate short DNA fragments of low concentration. We developed a versatile multistrategy decontamination procedure for PCR reagents. We demonstrate that this procedure allows efficient reagent decontamination while preserving the efficiency of PCR amplification of minute quantities of DNA. PMID:20927390
Wu, Miaoli; Rao, Dan; Zhu, Yujun; Wang, Jing; Yuan, Wen; Zhang, Yu; Huang, Ren; Guo, Pengju
2017-04-01
Enterohepatic Helicobacter species (EHS) are widespread in rodent species around the world. Several studies have demonstrated that infection with EHS can interfere with the outcomes of animal experiments in cancer research and significantly influence the study results. Therefore, it is essential to establish a rapid detection and identification of EHS for biomedical research using laboratory rodents. Our study aimed to develop a rapid and sensitive method to detect and distinguish five enterohepatic Helicobacter species. Nested PCR followed by high-resolution melting curve analysis (HRM) was developed for identification of H. bilis, H. rodentium, H. muridarum, H. typhlonius, as well as H. hepaticus. To validate the accuracy of nested PCR-HRM analysis, quantitative real-time PCR methods for five different enterohepatic Helicobacter species were developed. A total of 50 cecal samples were tested using both nested PCR-HRM analysis and qPCR method. The nested PCR-HRM method could distinguish five enterohepatic Helicobacter species by different melting temperatures. The melting curve were characterized by peaks of 78.7 ± 0.12°C for H. rodentium, 80.51 ± 0.09°C for H. bilis, 81.6 ± 0.1°C for H. typhlonius, 82.11 ± 0.18°C for H. muridarum, and 82.95 ± 0.09°C for H. hepaticus. The nested PCR-HRM assay is a simple, rapid, and cost-effective assay. This assay could be a useful tool for molecular epidemiology study of enterohepatic Helicobacter infection and an attractive alternative for genotyping of enterohepatic Helicobacter species. © 2016 John Wiley & Sons Ltd.
A Droplet Digital PCR Method for Severe Combined Immunodeficiency Newborn Screening.
Vidal-Folch, Noemi; Milosevic, Dragana; Majumdar, Ramanath; Gavrilov, Dimitar; Matern, Dietrich; Raymond, Kimiyo; Rinaldo, Piero; Tortorelli, Silvia; Abraham, Roshini S; Oglesbee, Devin
2017-09-01
Severe combined immunodeficiency (SCID) benefits from early intervention via hematopoietic cell transplantation to reverse T-cell lymphopenia (TCL). Newborn screening (NBS) programs use T-cell receptor excision circle (TREC) levels to detect SCID. Real-time quantitative PCR is often performed to quantify TRECs in dried blood spots (DBSs) for NBS. Yet, real-time quantitative PCR has inefficiencies necessitating normalization, repeat analyses, or standard curves. To address these issues, we developed a multiplex, droplet digital PCR (ddPCR) method for measuring absolute TREC amounts in one DBS punch. TREC and RPP30 levels were simultaneously measured with a Bio-Rad AutoDG and QX200 ddPCR system. DBSs from 610 presumed-normal, 29 lymphocyte-profiled, and 10 clinically diagnosed infants (1 X-linked SCID, 1 RAG1 Omenn syndrome, and other conditions) were tested. Control infants showed 14 to 474 TREC copies/μL blood. SCID infants, and other TCL conditions, had ≤15 TREC copies/μL. The ddPCR lower limit of quantitation was 14 TREC copies/μL, and the limit of detection was 4 TREC copies/μL. Intra-assay and interassay imprecision was <20% CV for DBSs at 54 to 60 TREC copies/μL. Testing 29 infants with known lymphocyte profiles resulted in a sensitivity of 88.9% and a specificity of 100% at TRECs <20 copies/μL. We developed a multiplex ddPCR method for the absolute quantitation of DBS TRECs that can detect SCID and other TCL conditions associated with absent or low TRECs and validated this method for NBS. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Yáñez, M Adela; Nocker, Andreas; Soria-Soria, Elena; Múrtula, Raquel; Martínez, Lorena; Catalán, Vicente
2011-05-01
One of the greatest challenges of implementing fast molecular detection methods as part of Legionella surveillance systems is to limit detection to live cells. In this work, a protocol for sample treatment with propidium monoazide (PMA) in combination with quantitative PCR (qPCR) has been optimized and validated for L. pneumophila as an alternative of the currently used time-consuming culture method. Results from PMA-qPCR were compared with culture isolation and traditional qPCR. Under the conditions used, sample treatment with 50 μM PMA followed by 5 min of light exposure were assumed optimal resulting in an average reduction of 4.45 log units of the qPCR signal from heat-killed cells. When applied to environmental samples (including water from cooling water towers, hospitals, spas, hot water systems in hotels, and tap water), different degrees of correlations between the three methods were obtained which might be explained by different matrix properties, but also varying degrees of non-culturable cells. It was furthermore shown that PMA displayed substantially lower cytotoxicity with Legionella than the alternative dye ethidium monoazide (EMA) when exposing live cells to the dye followed by plate counting. This result confirmed the findings with other species that PMA is less membrane-permeant and more selective for the intact cells. In conclusion, PMA-qPCR is a promising technique for limiting detection to intact cells and makes Legionella surveillance data substantially more relevant in comparison with qPCR alone. For future research it would be desirable to increase the method's capacity to exclude signals from dead cells in difficult matrices or samples containing high numbers of dead cells. Copyright © 2011 Elsevier B.V. All rights reserved.
Lanyon, J.M.; Sneath, H.L.; Ovenden, J.R.; Broderick, D.; Bonde, R.K.
2009-01-01
Sexing wild marine mammals that show little to no sexual dimorphism is challenging. For sirenians that are difficult to catch or approach closely, molecular sexing from tissue biopsies offers an alternative method to visual discrimination. This paper reports the results of a field study to validate the use of two sexing methods: (1) visual discrimination of sex vs (2) molecular sexing based on a multiplex PCR assay which amplifies the male-specific SRY gene and differentiates ZFX and ZFY gametologues. Skin samples from 628 dugongs (Dugong dugon) and 100 Florida manatees (Trichechus manatus latirostris) were analysed and assigned as male or female based on molecular sex. These individuals were also assigned a sex based on either direct observation of the genitalia and/or the association of the individual with a calf. Individuals of both species showed 93 to 96% congruence between visual and molecular sexing. For the remaining 4 to 7%, the discrepancies could be explained by human error. To mitigate this error rate, we recommend using both of these robust techniques, with routine inclusion of sex primers into microsatellite panels employed for identity, along with trained field observers and stringent sample handling.
Flanking sequence determination and event-specific detection of genetically modified wheat B73-6-1.
Xu, Junyi; Cao, Jijuan; Cao, Dongmei; Zhao, Tongtong; Huang, Xin; Zhang, Piqiao; Luan, Fengxia
2013-05-01
In order to establish a specific identification method for genetically modified (GM) wheat, exogenous insert DNA and flanking sequence between exogenous fragment and recombinant chromosome of GM wheat B73-6-1 were successfully acquired by means of conventional polymerase chain reaction (PCR) and thermal asymmetric interlaced (TAIL)-PCR strategies. Newly acquired exogenous fragment covered the full-length sequence of transformed genes such as transformed plasmid and corresponding functional genes including marker uidA, herbicide-resistant bar, ubiquitin promoter, and high-molecular-weight gluten subunit. The flanking sequence between insert DNA revealed high similarity with Triticum turgidum A gene (GenBank: AY494981.1). A specific PCR detection method for GM wheat B73-6-1 was established on the basis of primers designed according to the flanking sequence. This specific PCR method was validated by GM wheat, GM corn, GM soybean, GM rice, and non-GM wheat. The specifically amplified target band was observed only in GM wheat B73-6-1. This method is of high specificity, high reproducibility, rapid identification, and excellent accuracy for the identification of GM wheat B73-6-1.
The U.S. EPA is currently evaluating rapid, real-time quantitative PCR (qPCR) methods for determining recreational water quality based on measurements of fecal indicator bacteria DNA sequences. In order to potentially use qPCR for other Clean Water Act needs, such as updating cri...
Munkácsy, Gyöngyi; Sztupinszki, Zsófia; Herman, Péter; Bán, Bence; Pénzváltó, Zsófia; Szarvas, Nóra; Győrffy, Balázs
2016-09-27
No independent cross-validation of success rate for studies utilizing small interfering RNA (siRNA) for gene silencing has been completed before. To assess the influence of experimental parameters like cell line, transfection technique, validation method, and type of control, we have to validate these in a large set of studies. We utilized gene chip data published for siRNA experiments to assess success rate and to compare methods used in these experiments. We searched NCBI GEO for samples with whole transcriptome analysis before and after gene silencing and evaluated the efficiency for the target and off-target genes using the array-based expression data. Wilcoxon signed-rank test was used to assess silencing efficacy and Kruskal-Wallis tests and Spearman rank correlation were used to evaluate study parameters. All together 1,643 samples representing 429 experiments published in 207 studies were evaluated. The fold change (FC) of down-regulation of the target gene was above 0.7 in 18.5% and was above 0.5 in 38.7% of experiments. Silencing efficiency was lowest in MCF7 and highest in SW480 cells (FC = 0.59 and FC = 0.30, respectively, P = 9.3E-06). Studies utilizing Western blot for validation performed better than those with quantitative polymerase chain reaction (qPCR) or microarray (FC = 0.43, FC = 0.47, and FC = 0.55, respectively, P = 2.8E-04). There was no correlation between type of control, transfection method, publication year, and silencing efficiency. Although gene silencing is a robust feature successfully cross-validated in the majority of experiments, efficiency remained insufficient in a significant proportion of studies. Selection of cell line model and validation method had the highest influence on silencing proficiency.
Opota, Onya; Brouillet, René; Greub, Gilbert; Jaton, Katia
2017-01-01
The advances in molecular biology of the last decades have dramatically improved the field of diagnostic bacteriology. In particular, PCR-based technologies have impacted the diagnosis of infections caused by obligate intracellular bacteria such as pathogens from the Chlamydiacae family. Here, we describe a real-time PCR-based method using the Taqman technology for the diagnosis of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia abortus infection. The method presented here can be applied to various clinical samples and can be adapted on opened molecular diagnostic platforms.
Zonta, Eleonora; Garlan, Fanny; Pécuchet, Nicolas; Perez-Toralla, Karla; Caen, Ouriel; Milbury, Coren; Didelot, Audrey; Fabre, Elizabeth; Blons, Hélène; Laurent-Puig, Pierre; Taly, Valérie
2016-01-01
In cancer research, the accuracy of the technology used for biomarkers detection is remarkably important. In this context, digital PCR represents a highly sensitive and reproducible method that could serve as an appropriate tool for tumor mutational status analysis. In particular, droplet-based digital PCR approaches have been developed for detection of tumor-specific mutated alleles within plasmatic circulating DNA. Such an approach calls for the development and validation of a very significant quantity of assays, which can be extremely costly and time consuming. Herein, we evaluated assays for the detection and quantification of various mutations occurring in three genes often misregulated in cancers: the epidermal growth factor receptor (EGFR), the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and the Tumoral Protein p53 (TP53) genes. In particular, commercial competitive allele-specific TaqMan® PCR (castPCR™) technology, as well as TaqMan® and ZEN™ assays, have been evaluated for EGFR p.L858R, p.T790M, p.L861Q point mutations and in-frame deletions Del19. Specificity and sensitivity have been determined on cell lines DNA, plasmatic circulating DNA of lung cancer patients or Horizon Diagnostics Reference Standards. To show the multiplexing capabilities of this technology, several multiplex panels for EGFR (several three- and four-plexes) have been developed, offering new "ready-to-use" tests for lung cancer patients. PMID:27416070
Real-time PCR using SYBR Green for the detection of Shigella spp. in food and stool samples.
Mokhtari, W; Nsaibia, S; Gharbi, A; Aouni, M
2013-02-01
Shigella spp are exquisitely fastidious Gram negative organisms that frequently get missed in the detection by traditional culture methods. For this reason, this work has adapted a classical PCR for detection of Shigella in food and stool specimens to real-time PCR using the SYBR Green format. This method follows a melting curve analysis to be more rapid and provide both qualitative and quantitative data about the targeted pathogen. A total of 117 stool samples with diarrhea and 102 food samples were analyzed in Public Health Regional Laboratory of Nabeul by traditional culture methods and real-time PCR. To validate the real-time PCR assay, an experiment was conducted with both spiked and naturally contaminated stool samples. All Shigella strains tested were ipaH positive and all non-Shigella strains yielded no amplification products. The melting temperature (T(m) = 81.5 ± 0.5 °C) was consistently specific for the amplicon. Correlation coefficients of standard curves constructed using the quantification cycle (C(q)) versus copy numbers of Shigella showed good linearity (R² = 0.995; slope = 2.952) and the minimum level of detection was 1.5 × 10³ CFU/g feces. All food samples analyzed were negative for Shigella by standard culture methods, whereas ipaH was detected in 8.8% culture negative food products. Moreover, the ipaH specific PCR system increased the detection rate over that by culture alone from 1.7% to 11.1% among patients with diarrhea. The data presented here shows that the SYBR Green I was suitable for use in the real-time PCR assay, which provided a specific, sensitive and efficient method for the detection and quantification of Shigella spp in food and stool samples. Copyright © 2012 Elsevier Ltd. All rights reserved.
Conrad, Cheyenne C; Gilroyed, Brandon H; McAllister, Tim A; Reuter, Tim
2012-10-01
Non-O157 Shiga toxin producing Escherichia coli (STEC) are gaining recognition as human pathogens, but no standardized method exists to identify them. Sequence analysis revealed that STEC can be classified on the base of variable O antigen regions into different O serotypes. Polymerase chain reaction is a powerful technique for thorough screening and complex diagnosis for these pathogens, but requires a positive control to verify qualitative and/or quantitative DNA-fragment amplification. Due to the pathogenic nature of STEC, controls are not readily available and cell culturing of STEC reference strains requires biosafety conditions of level 2 or higher. In order to bypass this limitation, controls of stacked O-type specific DNA-fragments coding for primer recognition sites were designed to screen for nine STEC serotypes frequently associated with human infection. The synthetic controls were amplified by PCR, cloned into a plasmid vector and transferred into bacteria host cells. Plasmids amplified by bacterial expression were purified, serially diluted and tested as standards for real-time PCR using SYBR Green and TaqMan assays. Utility of synthetic DNA controls was demonstrated in conventional and real-time PCR assays and validated with DNA from natural STEC strains. Copyright © 2012 Elsevier B.V. All rights reserved.
A Pentaplex PCR Assay for the Detection and Differentiation of Shigella Species
Ojha, Suvash Chandra; Yean Yean, Chan; Ismail, Asma; Banga Singh, Kirnpal-Kaur
2013-01-01
The magnitude of shigellosis in developing countries is largely unknown because an affordable detection method is not available. Current laboratory diagnosis of Shigella spp. is laborious and time consuming and has low sensitivity. Hence, in the present study, a molecular-based diagnostic assay which amplifies simultaneously four specific genes to identify invC for Shigella genus, rfc for S. flexneri, wbgZ for S. sonnei, and rfpB for S. dysenteriae, as well as one internal control (ompA) gene, was developed in a single reaction to detect and differentiate Shigella spp. Validation with 120 Shigella strains and 37 non-Shigella strains yielded 100% specificity. The sensitivity of the PCR was 100 pg of genomic DNA, 5.4 × 104 CFU/ml, or approximately 120 CFU per reaction mixture of bacteria. The sensitivity of the pentaplex PCR assay was further improved following preincubation of the stool samples in Gram-negative broth. A preliminary study with 30 diarrhoeal specimens resulted in no cross-reaction with other non-Shigella strains tested. We conclude that the developed pentaplex PCR assay is robust and can provide information about the four target genes that are essential for the identification of the Shigella genus and the three Shigella species responsible for the majority of shigellosis cases. PMID:23509722
Hata, Akihiko; Katayama, Hiroyuki; Kitajima, Masaaki; Visvanathan, Chettiyappan; Nol, Chea; Furumai, Hiroaki
2011-07-01
Inhibitors that reduce viral nucleic acid extraction efficiency and interfere with cDNA synthesis and/or polymerase activity affect the molecular detection of viruses in aquatic environments. To overcome these significant problems, we developed a methodology for assessing nucleic acid yields and DNA amplification efficiencies for environmental water samples. This involved adding particles of adenovirus type 5 and murine norovirus and newly developed primer-sharing controls, which are amplified with the same primer pairs and result in the same amplicon sizes as the targets, to these samples. We found that nucleic acid loss during the extraction process, rather than reverse transcription-PCR (RT-PCR) inhibition, more significantly attributed to underestimation of the presence of viral genomes in the environmental water samples tested in this study. Our success rate for satisfactorily amplifying viral RNAs and DNAs by RT-PCR was higher than that for obtaining adequate nucleic acid preparations. We found that inhibitory properties were greatest when we used larger sample volumes. A magnetic silica bead-based RNA extraction method effectively removed inhibitors that interfere with viral nucleic acid extraction and RT-PCR. To our knowledge, this is the first study to assess the inhibitory properties of environmental water samples by using both control virus particles and primer-sharing controls.
Development of a molecular method for testing the effectiveness of UV systems on-site.
Nizri, Limor; Vaizel-Ohayon, Dalit; Ben-Amram, Hila; Sharaby, Yehonatan; Halpern, Malka; Mamane, Hadas
2017-12-15
We established a molecular method for quantifying ultraviolet (UV) disinfection efficacy using total bacterial DNA in a water sample. To evaluate UV damage to the DNA, we developed the "DNA damage" factor, which is a novel cultivation-independent approach that reveals UV-exposure efficiency by applying a simple PCR amplification method. The study's goal was to prove the feasibility of this method for demonstrating the efficiency of UV systems in the field using flow-through UV reactors. In laboratory-based experiments using seeded bacteria, the DNA damage tests demonstrated a good correlation between PCR products and UV dose. In the field, natural groundwater sampled before and after being subjected to the full-scale UV reactors was filtered, and the DNA extracted from the filtrate was subjected to PCR amplification for a 900-bp fragment of the 16S rRNA gene with initial DNA concentrations of 0.1 and 1 ng/μL. In both cases, the UV dose predicted and explained a significant proportion of the variance in the log inactivation ratio and DNA damage factor. Log inactivation ratio was very low, as expected in groundwater due to low initial bacterial counts, whereas the DNA damage factor was within the range of values obtained in the laboratory-based experiments. Consequently, the DNA damage factor reflected the true performance of the full-scale UV system during operational water flow by using the indigenous bacterial array present in a water sample. By applying this method, we were able to predict with high confidence, the UV reactor inactivation potential. For method validation, laboratory and field iterations are required to create a practical field calibration curve that can be used to determine the expected efficiency of the full-scale UV system in the field under actual operation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Codner, Gemma F; Lindner, Loic; Caulder, Adam; Wattenhofer-Donzé, Marie; Radage, Adam; Mertz, Annelyse; Eisenmann, Benjamin; Mianné, Joffrey; Evans, Edward P; Beechey, Colin V; Fray, Martin D; Birling, Marie-Christine; Hérault, Yann; Pavlovic, Guillaume; Teboul, Lydia
2016-08-05
Karyotypic integrity is essential for the successful germline transmission of alleles mutated in embryonic stem (ES) cells. Classical methods for the identification of aneuploidy involve cytological analyses that are both time consuming and require rare expertise to identify mouse chromosomes. As part of the International Mouse Phenotyping Consortium, we gathered data from over 1,500 ES cell clones and found that the germline transmission (GLT) efficiency of clones is compromised when over 50 % of cells harbour chromosome number abnormalities. In JM8 cells, chromosomes 1, 8, 11 or Y displayed copy number variation most frequently, whilst the remainder generally remain unchanged. We developed protocols employing droplet digital polymerase chain reaction (ddPCR) to accurately quantify the copy number of these four chromosomes, allowing efficient triage of ES clones prior to microinjection. We verified that assessments of aneuploidy, and thus decisions regarding the suitability of clones for microinjection, were concordant between classical cytological and ddPCR-based methods. Finally, we improved the method to include assay multiplexing so that two unstable chromosomes are counted simultaneously (and independently) in one reaction, to enhance throughput and further reduce the cost. We validated a PCR-based method as an alternative to classical karyotype analysis. This technique enables laboratories that are non-specialist, or work with large numbers of clones, to precisely screen ES cells for the most common aneuploidies prior to microinjection to ensure the highest level of germline transmission potential. The application of this method allows early exclusion of aneuploid ES cell clones in the ES cell to mouse conversion process, thus improving the chances of obtaining germline transmission and reducing the number of animals used in failed microinjection attempts. This method can be applied to any other experiments that require accurate analysis of the genome for copy number variation (CNV).
Greenspoon, S A; Sykes, K L V; Ban, J D; Pollard, A; Baisden, M; Farr, M; Graham, N; Collins, B L; Green, M M; Christenson, C C
2006-12-20
Human genome, pharmaceutical and research laboratories have long enjoyed the application of robotics to performing repetitive laboratory tasks. However, the utilization of robotics in forensic laboratories for processing casework samples is relatively new and poses particular challenges. Since the quantity and quality (a mixture versus a single source sample, the level of degradation, the presence of PCR inhibitors) of the DNA contained within a casework sample is unknown, particular attention must be paid to procedural susceptibility to contamination, as well as DNA yield, especially as it pertains to samples with little biological material. The Virginia Department of Forensic Science (VDFS) has successfully automated forensic casework DNA extraction utilizing the DNA IQ(trade mark) System in conjunction with the Biomek 2000 Automation Workstation. Human DNA quantitation is also performed in a near complete automated fashion utilizing the AluQuant Human DNA Quantitation System and the Biomek 2000 Automation Workstation. Recently, the PCR setup for casework samples has been automated, employing the Biomek 2000 Automation Workstation and Normalization Wizard, Genetic Identity version, which utilizes the quantitation data, imported into the software, to create a customized automated method for DNA dilution, unique to that plate of DNA samples. The PCR Setup software method, used in conjunction with the Normalization Wizard method and written for the Biomek 2000, functions to mix the diluted DNA samples, transfer the PCR master mix, and transfer the diluted DNA samples to PCR amplification tubes. Once the process is complete, the DNA extracts, still on the deck of the robot in PCR amplification strip tubes, are transferred to pre-labeled 1.5 mL tubes for long-term storage using an automated method. The automation of these steps in the process of forensic DNA casework analysis has been accomplished by performing extensive optimization, validation and testing of the software methods.
Peng, Cheng; Wang, Hua; Xu, Xiaoli; Wang, Xiaofu; Chen, Xiaoyun; Wei, Wei; Lai, Yongmin; Liu, Guoquan; Godwin, Ian Douglas; Li, Jieqin; Zhang, Ling; Xu, Junfeng
2018-05-15
Gene editing techniques are becoming powerful tools for modifying target genes in organisms. Although several methods have been developed to detect gene-edited organisms, these techniques are time and labour intensive. Meanwhile, few studies have investigated high-throughput detection and screening strategies for plants modified by gene editing. In this study, we developed a simple, sensitive and high-throughput quantitative real-time (qPCR)-based method. The qPCR-based method exploits two differently labelled probes that are placed within one amplicon at the gene editing target site to simultaneously detect the wild-type and a gene-edited mutant. We showed that the qPCR-based method can accurately distinguish CRISPR/Cas9-induced mutants from the wild-type in several different plant species, such as Oryza sativa, Arabidopsis thaliana, Sorghum bicolor, and Zea mays. Moreover, the method can subsequently determine the mutation type by direct sequencing of the qPCR products of mutations due to gene editing. The qPCR-based method is also sufficiently sensitive to distinguish between heterozygous and homozygous mutations in T 0 transgenic plants. In a 384-well plate format, the method enabled the simultaneous analysis of up to 128 samples in three replicates without handling the post-polymerase chain reaction (PCR) products. Thus, we propose that our method is an ideal choice for screening plants modified by gene editing from many candidates in T 0 transgenic plants, which will be widely used in the area of plant gene editing. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
Hout, David R; Schweitzer, Brock L; Lawrence, Kasey; Morris, Stephan W; Tucker, Tracy; Mazzola, Rosetta; Skelton, Rachel; McMahon, Frank; Handshoe, John; Lesperance, Mary; Karsan, Aly; Saltman, David L
2017-08-01
Patients with lung cancers harboring an activating anaplastic lymphoma kinase ( ALK ) rearrangement respond favorably to ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) are validated and widely used screening tests for ALK rearrangements but both methods have limitations. The ALK RGQ RT-PCR Kit (RT-PCR) is a single tube quantitative real-time PCR assay for high throughput and automated interpretation of ALK expression. In this study, we performed a direct comparison of formalin-fixed paraffin-embedded (FFPE) lung cancer specimens using all three ALK detection methods. The RT-PCR test (diagnostic cut-off Δ C t of ≤8) was shown to be highly sensitive (100%) when compared to FISH and IHC. Sequencing of RNA detected full-length ALK transcripts or EML4-ALK and KIF5B-ALK fusion variants in discordant cases in which ALK expression was detected by the ALK RT-PCR test but negative by FISH and IHC. The overall specificity of the RT-PCR test for the detection of ALK in cases without full-length ALK expression was 94% in comparison to FISH and sequencing. These data support the ALK RT-PCR test as a highly efficient and reliable diagnostic screening approach to identify patients with non-small cell lung cancer whose tumors are driven by oncogenic ALK.
Hout, David R.; Lawrence, Kasey; Morris, Stephan W.; Tucker, Tracy; Mazzola, Rosetta; Skelton, Rachel; McMahon, Frank; Handshoe, John; Lesperance, Mary; Karsan, Aly
2017-01-01
Patients with lung cancers harboring an activating anaplastic lymphoma kinase (ALK) rearrangement respond favorably to ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) are validated and widely used screening tests for ALK rearrangements but both methods have limitations. The ALK RGQ RT-PCR Kit (RT-PCR) is a single tube quantitative real-time PCR assay for high throughput and automated interpretation of ALK expression. In this study, we performed a direct comparison of formalin-fixed paraffin-embedded (FFPE) lung cancer specimens using all three ALK detection methods. The RT-PCR test (diagnostic cut-off ΔCt of ≤8) was shown to be highly sensitive (100%) when compared to FISH and IHC. Sequencing of RNA detected full-length ALK transcripts or EML4-ALK and KIF5B-ALK fusion variants in discordant cases in which ALK expression was detected by the ALK RT-PCR test but negative by FISH and IHC. The overall specificity of the RT-PCR test for the detection of ALK in cases without full-length ALK expression was 94% in comparison to FISH and sequencing. These data support the ALK RT-PCR test as a highly efficient and reliable diagnostic screening approach to identify patients with non-small cell lung cancer whose tumors are driven by oncogenic ALK. PMID:28763012
Prendergast, Deirdre M; Hand, Darren; Nί Ghallchóir, Eadaoin; McCabe, Evonne; Fanning, Seamus; Griffin, Margaret; Egan, John; Gutierrez, Montserrat
2013-08-16
Salmonella enterica subsp. enterica serovar 4,[5],12:i:- is considered to be a monophasic variant of Salmonella Typhimurium and is increasingly associated with human infections. The use of PCR for the unequivocal identification of strains identified by conventional serotyping as 4,[5],12:i:- has been recommended by the European Food Safety Authority (EFSA), in particular the conventional multiplex PCR developed by Tennant et al. (2010). An alternative protocol for the identification and differentiation of S. Typhimurium and S. Typhimurium-like strains, including its monophasic variants, based on a multiplex real-time PCR assay was developed in our laboratory. A panel of 206 Salmonella strains was used to validate our multiplex real-time PCR against the conventional multiplex PCR recommended by EFSA, i.e. 43 Salmonella strains of serovars other than Typhimurium and 163 routine isolates determined by slide agglutination serotyping to have an incomplete antigenic formula compatible with the S. Typhimurium formula 4,[5],12:i:1,2. Both methods correctly identified the 43 Salmonella strains as non S. Typhimurium. Among the 163 isolates of undetermined serovar by conventional serotyping, both PCR protocols identified 54 isolates as S. Typhimurium, 101 as monophasic S. Typhimurium and 8 as non-S. Typhimurium. Twenty isolates phenotypically lacking the phase-2 H antigen were positive for the fljB.1,2 gene. These strains have been recently described in the literature by other workers and have been referred to as "inconsistent" variants of S. Typhimurium. Antimicrobial resistance and phage typing were also performed on the S. Typhimurium isolates, including monophasic variants, and approximately half of the isolates identified as monophasic S. Typhimurium by our multiplex real-time PCR protocol were DT193 with the resistance pattern ASSuT. There was 100% concordance between the conventional PCR and the multiplex real-time PCR method developed in this study which proved that our protocol is equivalent to the one recommended by EFSA. In comparison to the conventional PCR, this new protocol is faster and is currently being applied routinely in our laboratory to all isolates that could potentially be S. Typhimurium. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing
2005-11-30
Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.
Murphy, Helen R; Lee, Seulgi; da Silva, Alexandre J
2017-07-01
Cyclospora cayetanensis is a protozoan parasite that causes human diarrheal disease associated with the consumption of fresh produce or water contaminated with C. cayetanensis oocysts. In the United States, foodborne outbreaks of cyclosporiasis have been linked to various types of imported fresh produce, including cilantro and raspberries. An improved method was developed for identification of C. cayetanensis in produce at the U.S. Food and Drug Administration. The method relies on a 0.1% Alconox produce wash solution for efficient recovery of oocysts, a commercial kit for DNA template preparation, and an optimized TaqMan real-time PCR assay with an internal amplification control for molecular detection of the parasite. A single laboratory validation study was performed to assess the method's performance and compare the optimized TaqMan real-time PCR assay and a reference nested PCR assay by examining 128 samples. The samples consisted of 25 g of cilantro or 50 g of raspberries seeded with 0, 5, 10, or 200 C. cayetanensis oocysts. Detection rates for cilantro seeded with 5 and 10 oocysts were 50.0 and 87.5%, respectively, with the real-time PCR assay and 43.7 and 94.8%, respectively, with the nested PCR assay. Detection rates for raspberries seeded with 5 and 10 oocysts were 25.0 and 75.0%, respectively, with the real-time PCR assay and 18.8 and 68.8%, respectively, with the nested PCR assay. All unseeded samples were negative, and all samples seeded with 200 oocysts were positive. Detection rates using the two PCR methods were statistically similar, but the real-time PCR assay is less laborious and less prone to amplicon contamination and allows monitoring of amplification and analysis of results, making it more attractive to diagnostic testing laboratories. The improved sample preparation steps and the TaqMan real-time PCR assay provide a robust, streamlined, and rapid analytical procedure for surveillance, outbreak response, and regulatory testing of foods for detection of C. cayetanensis.
Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang
2018-05-01
Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2 > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.
Several library independent Microbial Source Tracking methods have been developed to rapidly determine the source of fecal contamination. Thus far, none of these methods have been tested in tropical marine waters. In this study, we used a Bacteroides 16S rDNA PCR-based...
Nested PCR and RFLP analysis based on the 16S rRNA gene
USDA-ARS?s Scientific Manuscript database
Current phytoplasma detection and identification method is primarily based on nested PCR followed by restriction fragment length polymorphism analysis and gel electrophoresis. This method can potentially detect and differentiate all phytoplasmas including those previously not described. The present ...
2012-01-01
Background Ovine footrot is a contagious disease with worldwide occurrence in sheep. The main causative agent is the fastidious bacterium Dichelobacter nodosus. In Scandinavia, footrot was first diagnosed in Sweden in 2004 and later also in Norway and Denmark. Clinical examination of sheep feet is fundamental to diagnosis of footrot, but D. nodosus should also be detected to confirm the diagnosis. PCR-based detection using conventional PCR has been used at our institutes, but the method was laborious and there was a need for a faster, easier-to-interpret method. The aim of this study was to develop a TaqMan-based real-time PCR assay for detection of D. nodosus and to compare its performance with culturing and conventional PCR. Methods A D. nodosus-specific TaqMan based real-time PCR assay targeting the 16S rRNA gene was designed. The inclusivity and exclusivity (specificity) of the assay was tested using 55 bacterial and two fungal strains. To evaluate the sensitivity and harmonisation of results between different laboratories, aliquots of a single DNA preparation were analysed at three Scandinavian laboratories. The developed real-time PCR assay was compared to culturing by analysing 126 samples, and to a conventional PCR method by analysing 224 samples. A selection of PCR-products was cloned and sequenced in order to verify that they had been identified correctly. Results The developed assay had a detection limit of 3.9 fg of D. nodosus genomic DNA. This result was obtained at all three laboratories and corresponds to approximately three copies of the D. nodosus genome per reaction. The assay showed 100% inclusivity and 100% exclusivity for the strains tested. The real-time PCR assay found 54.8% more positive samples than by culturing and 8% more than conventional PCR. Conclusions The developed real-time PCR assay has good specificity and sensitivity for detection of D. nodosus, and the results are easy to interpret. The method is less time-consuming than either culturing or conventional PCR. PMID:22293440