Sample records for validation experimentale modele

  1. Etude numerique et experimentale de la reponse vibro-acoustique des structures raidies a des excitations aeriennes et solidiennes

    NASA Astrophysics Data System (ADS)

    Mejdi, Abderrazak

    Les fuselages des avions sont generalement en aluminium ou en composite renforces par des raidisseurs longitudinaux (lisses) et transversaux (cadres). Les raidisseurs peuvent etre metalliques ou en composite. Durant leurs differentes phases de vol, les structures d'avions sont soumises a des excitations aeriennes (couche limite turbulente : TBL, champs diffus : DAF) sur la peau exterieure dont l'energie acoustique produite se transmet a l'interieur de la cabine. Les moteurs, montes sur la structure, produisent une excitation solidienne significative. Ce projet a pour objectifs de developper et de mettre en place des strategies de modelisations des fuselages d'avions soumises a des excitations aeriennes et solidiennes. Tous d'abord, une mise a jour des modeles existants de la TBL apparait dans le deuxieme chapitre afin de mieux les classer. Les proprietes de la reponse vibro-acoustique des structures planes finies et infinies sont analysees. Dans le troisieme chapitre, les hypotheses sur lesquelles sont bases les modeles existants concernant les structures metalliques orthogonalement raidies soumises a des excitations mecaniques, DAF et TBL sont reexamines en premier lieu. Ensuite, une modelisation fine et fiable de ces structures est developpee. Le modele est valide numeriquement a l'aide des methodes des elements finis (FEM) et de frontiere (BEM). Des tests de validations experimentales sont realises sur des panneaux d'avions fournis par des societes aeronautiques. Au quatrieme chapitre, une extension vers les structures composites renforcees par des raidisseurs aussi en composites et de formes complexes est etablie. Un modele analytique simple est egalement implemente et valide numeriquement. Au cinquieme chapitre, la modelisation des structures raidies periodiques en composites est beaucoup plus raffinee par la prise en compte des effets de couplage des deplacements planes et transversaux. L'effet de taille des structures finies periodiques est egalement pris en

  2. Groundwater Model Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed E. Hassan

    2006-01-24

    Models have an inherent uncertainty. The difficulty in fully characterizing the subsurface environment makes uncertainty an integral component of groundwater flow and transport models, which dictates the need for continuous monitoring and improvement. Building and sustaining confidence in closure decisions and monitoring networks based on models of subsurface conditions require developing confidence in the models through an iterative process. The definition of model validation is postulated as a confidence building and long-term iterative process (Hassan, 2004a). Model validation should be viewed as a process not an end result. Following Hassan (2004b), an approach is proposed for the validation process ofmore » stochastic groundwater models. The approach is briefly summarized herein and detailed analyses of acceptance criteria for stochastic realizations and of using validation data to reduce input parameter uncertainty are presented and applied to two case studies. During the validation process for stochastic models, a question arises as to the sufficiency of the number of acceptable model realizations (in terms of conformity with validation data). Using a hierarchical approach to make this determination is proposed. This approach is based on computing five measures or metrics and following a decision tree to determine if a sufficient number of realizations attain satisfactory scores regarding how they represent the field data used for calibration (old) and used for validation (new). The first two of these measures are applied to hypothetical scenarios using the first case study and assuming field data consistent with the model or significantly different from the model results. In both cases it is shown how the two measures would lead to the appropriate decision about the model performance. Standard statistical tests are used to evaluate these measures with the results indicating they are appropriate measures for evaluating model realizations. The use of

  3. Model Validation Status Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.L. Hardin

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified,more » and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural

  4. Power Plant Model Validation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The PPMV is used to validate generator model using disturbance recordings. The PPMV tool contains a collection of power plant models and model validation studies, as well as disturbance recordings from a number of historic grid events. The user can import data from a new disturbance into the database, which converts PMU and SCADA data into GE PSLF format, and then run the tool to validate (or invalidate) the model for a specific power plant against its actual performance. The PNNL PPMV tool enables the automation of the process of power plant model validation using disturbance recordings. The tool usesmore » PMU and SCADA measurements as input information. The tool automatically adjusts all required EPCL scripts and interacts with GE PSLF in the batch mode. The main tool features includes: The tool interacts with GE PSLF; The tool uses GE PSLF Play-In Function for generator model validation; Database of projects (model validation studies); Database of the historic events; Database of the power plant; The tool has advanced visualization capabilities; and The tool automatically generates reports« less

  5. Base Flow Model Validation

    NASA Technical Reports Server (NTRS)

    Sinha, Neeraj; Brinckman, Kevin; Jansen, Bernard; Seiner, John

    2011-01-01

    A method was developed of obtaining propulsive base flow data in both hot and cold jet environments, at Mach numbers and altitude of relevance to NASA launcher designs. The base flow data was used to perform computational fluid dynamics (CFD) turbulence model assessments of base flow predictive capabilities in order to provide increased confidence in base thermal and pressure load predictions obtained from computational modeling efforts. Predictive CFD analyses were used in the design of the experiments, available propulsive models were used to reduce program costs and increase success, and a wind tunnel facility was used. The data obtained allowed assessment of CFD/turbulence models in a complex flow environment, working within a building-block procedure to validation, where cold, non-reacting test data was first used for validation, followed by more complex reacting base flow validation.

  6. Validation of Groundwater Models: Meaningful or Meaningless?

    NASA Astrophysics Data System (ADS)

    Konikow, L. F.

    2003-12-01

    Although numerical simulation models are valuable tools for analyzing groundwater systems, their predictive accuracy is limited. People who apply groundwater flow or solute-transport models, as well as those who make decisions based on model results, naturally want assurance that a model is "valid." To many people, model validation implies some authentication of the truth or accuracy of the model. History matching is often presented as the basis for model validation. Although such model calibration is a necessary modeling step, it is simply insufficient for model validation. Because of parameter uncertainty and solution non-uniqueness, declarations of validation (or verification) of a model are not meaningful. Post-audits represent a useful means to assess the predictive accuracy of a site-specific model, but they require the existence of long-term monitoring data. Model testing may yield invalidation, but that is an opportunity to learn and to improve the conceptual and numerical models. Examples of post-audits and of the application of a solute-transport model to a radioactive waste disposal site illustrate deficiencies in model calibration, prediction, and validation.

  7. Testing and validating environmental models

    USGS Publications Warehouse

    Kirchner, J.W.; Hooper, R.P.; Kendall, C.; Neal, C.; Leavesley, G.

    1996-01-01

    Generally accepted standards for testing and validating ecosystem models would benefit both modellers and model users. Universally applicable test procedures are difficult to prescribe, given the diversity of modelling approaches and the many uses for models. However, the generally accepted scientific principles of documentation and disclosure provide a useful framework for devising general standards for model evaluation. Adequately documenting model tests requires explicit performance criteria, and explicit benchmarks against which model performance is compared. A model's validity, reliability, and accuracy can be most meaningfully judged by explicit comparison against the available alternatives. In contrast, current practice is often characterized by vague, subjective claims that model predictions show 'acceptable' agreement with data; such claims provide little basis for choosing among alternative models. Strict model tests (those that invalid models are unlikely to pass) are the only ones capable of convincing rational skeptics that a model is probably valid. However, 'false positive' rates as low as 10% can substantially erode the power of validation tests, making them insufficiently strict to convince rational skeptics. Validation tests are often undermined by excessive parameter calibration and overuse of ad hoc model features. Tests are often also divorced from the conditions under which a model will be used, particularly when it is designed to forecast beyond the range of historical experience. In such situations, data from laboratory and field manipulation experiments can provide particularly effective tests, because one can create experimental conditions quite different from historical data, and because experimental data can provide a more precisely defined 'target' for the model to hit. We present a simple demonstration showing that the two most common methods for comparing model predictions to environmental time series (plotting model time series

  8. Ground-water models: Validate or invalidate

    USGS Publications Warehouse

    Bredehoeft, J.D.; Konikow, Leonard F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  9. Mesures experimentales de l'impact des revetements hydrophobeset superhydrophobes sur la trainee et la portance d'un profil aerodynamique propre et glace

    NASA Astrophysics Data System (ADS)

    Villeneuve, Eric

    Ce projet, realise a la demande du Laboratoire International des Materiaux Antigivre, a pour but de mesurer et definir experimentalement l'impact de revetements hydrophobes sur les coefficients de trainee et de portance d'un profil NACA 0012. Pour ce faire, la balance aerodynamique du LIMA devait tout d'abord etre amelioree afin d'offrir une sensibilite suffisante pour realiser le projet. Plusieurs ameliorations ont ete faites, comme le changement des cellules de charge, la diminution du nombre de cellules de charge, le changement du cadre de la balance, etc. Une fois ces ameliorations terminees, la reproductibilite, l'exactitude et la sensibilite ont ete valides afin de s'assurer de la fiabilite des resultats offerts par la balance. Pour les angles d'attaque etudies avec les revetements, soient -6° et 0°, la balance a une reproductibilite de +/-2,06% a 360 000 de nombre de Reynolds. Pour valider la sensibilite, des essais a -6° et 0° d'angle d'attaque et des nombres de Reynolds de 360 000 et 500 000 ont ete faits avec des papiers sables. Les resultats de ces essais ont permis de, tracer des courbes de tendances du coefficient de trainee du NACA 0012 en fonction de la rugosite de surface et d'etablir la valeur de la sensibilite de la balance a +/-8 mu m. Cinq revetements populaires ont ete choisis pour l'experimentation, soient le Wearlon, le Staclean, le Hirec, le Phasebreak ainsi que le Nusil. Les revetements sont soumis aux memes conditions experimentales que les papiers sables, et une rugosite equivalente est trouvee par extrapolation des resultats. Cependant, les rugosites equivalentes de surfaces different entre -6° et 0°. Les essais avec le Staclean et le Hirec donnent des coefficients de trainee equivalent a ceux avec l'aluminium, alors que le Wearlon, le Nusil et le Phasebreak donnent une augmentation du coefficient de trainee de 13%, 17% et 25% respectivement par rapport a l'aluminium. Pour les coefficients de portance, la balance ne detecte pas l

  10. Empirical agreement in model validation.

    PubMed

    Jebeile, Julie; Barberousse, Anouk

    2016-04-01

    Empirical agreement is often used as an important criterion when assessing the validity of scientific models. However, it is by no means a sufficient criterion as a model can be so adjusted as to fit available data even though it is based on hypotheses whose plausibility is known to be questionable. Our aim in this paper is to investigate into the uses of empirical agreement within the process of model validation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Towards policy relevant environmental modeling: contextual validity and pragmatic models

    USGS Publications Warehouse

    Miles, Scott B.

    2000-01-01

    "What makes for a good model?" In various forms, this question is a question that, undoubtedly, many people, businesses, and institutions ponder with regards to their particular domain of modeling. One particular domain that is wrestling with this question is the multidisciplinary field of environmental modeling. Examples of environmental models range from models of contaminated ground water flow to the economic impact of natural disasters, such as earthquakes. One of the distinguishing claims of the field is the relevancy of environmental modeling to policy and environment-related decision-making in general. A pervasive view by both scientists and decision-makers is that a "good" model is one that is an accurate predictor. Thus, determining whether a model is "accurate" or "correct" is done by comparing model output to empirical observations. The expected outcome of this process, usually referred to as "validation" or "ground truthing," is a stamp on the model in question of "valid" or "not valid" that serves to indicate whether or not the model will be reliable before it is put into service in a decision-making context. In this paper, I begin by elaborating on the prevailing view of model validation and why this view must change. Drawing from concepts coming out of the studies of science and technology, I go on to propose a contextual view of validity that can overcome the problems associated with "ground truthing" models as an indicator of model goodness. The problem of how we talk about and determine model validity has much to do about how we perceive the utility of environmental models. In the remainder of the paper, I argue that we should adopt ideas of pragmatism in judging what makes for a good model and, in turn, developing good models. From such a perspective of model goodness, good environmental models should facilitate communication, convey—not bury or "eliminate"—uncertainties, and, thus, afford the active building of consensus decisions, instead

  12. Teaching "Instant Experience" with Graphical Model Validation Techniques

    ERIC Educational Resources Information Center

    Ekstrøm, Claus Thorn

    2014-01-01

    Graphical model validation techniques for linear normal models are often used to check the assumptions underlying a statistical model. We describe an approach to provide "instant experience" in looking at a graphical model validation plot, so it becomes easier to validate if any of the underlying assumptions are violated.

  13. Statistical validation of normal tissue complication probability models.

    PubMed

    Xu, Cheng-Jian; van der Schaaf, Arjen; Van't Veld, Aart A; Langendijk, Johannes A; Schilstra, Cornelis

    2012-09-01

    To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Turbine Engine Mathematical Model Validation

    DTIC Science & Technology

    1976-12-01

    AEDC-TR-76-90 ~Ec i ? Z985 TURBINE ENGINE MATHEMATICAL MODEL VALIDATION ENGINE TEST FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE...i f n e c e s e a ~ ~ d i den t i f y by b l ock number) YJI01-GE-100 engine turbine engines mathematical models computations mathematical...report presents and discusses the results of an investigation to develop a rationale and technique for the validation of turbine engine steady-state

  15. Global precipitation measurements for validating climate models

    NASA Astrophysics Data System (ADS)

    Tapiador, F. J.; Navarro, A.; Levizzani, V.; García-Ortega, E.; Huffman, G. J.; Kidd, C.; Kucera, P. A.; Kummerow, C. D.; Masunaga, H.; Petersen, W. A.; Roca, R.; Sánchez, J.-L.; Tao, W.-K.; Turk, F. J.

    2017-11-01

    The advent of global precipitation data sets with increasing temporal span has made it possible to use them for validating climate models. In order to fulfill the requirement of global coverage, existing products integrate satellite-derived retrievals from many sensors with direct ground observations (gauges, disdrometers, radars), which are used as reference for the satellites. While the resulting product can be deemed as the best-available source of quality validation data, awareness of the limitations of such data sets is important to avoid extracting wrong or unsubstantiated conclusions when assessing climate model abilities. This paper provides guidance on the use of precipitation data sets for climate research, including model validation and verification for improving physical parameterizations. The strengths and limitations of the data sets for climate modeling applications are presented, and a protocol for quality assurance of both observational databases and models is discussed. The paper helps elaborating the recent IPCC AR5 acknowledgment of large observational uncertainties in precipitation observations for climate model validation.

  16. Beware of external validation! - A Comparative Study of Several Validation Techniques used in QSAR Modelling.

    PubMed

    Majumdar, Subhabrata; Basak, Subhash C

    2018-04-26

    Proper validation is an important aspect of QSAR modelling. External validation is one of the widely used validation methods in QSAR where the model is built on a subset of the data and validated on the rest of the samples. However, its effectiveness for datasets with a small number of samples but large number of predictors remains suspect. Calculating hundreds or thousands of molecular descriptors using currently available software has become the norm in QSAR research, owing to computational advances in the past few decades. Thus, for n chemical compounds and p descriptors calculated for each molecule, the typical chemometric dataset today has high value of p but small n (i.e. n < p). Motivated by the evidence of inadequacies of external validation in estimating the true predictive capability of a statistical model in recent literature, this paper performs an extensive and comparative study of this method with several other validation techniques. We compared four validation methods: leave-one-out, K-fold, external and multi-split validation, using statistical models built using the LASSO regression, which simultaneously performs variable selection and modelling. We used 300 simulated datasets and one real dataset of 95 congeneric amine mutagens for this evaluation. External validation metrics have high variation among different random splits of the data, hence are not recommended for predictive QSAR models. LOO has the overall best performance among all validation methods applied in our scenario. Results from external validation are too unstable for the datasets we analyzed. Based on our findings, we recommend using the LOO procedure for validating QSAR predictive models built on high-dimensional small-sample data. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Theoretical and Experimental Methods in Hypersonic Flows (Les Methodes Theoriques et Experimentales pour l’Etude Des Ecoulements Hypersoniques)

    DTIC Science & Technology

    1993-04-01

    PROCEEDINGS 514 OELECTE f Theoretical and A U Experimental Methods in A Hypersonic Flows (Les Methodes Th6oriques et Experimentales pour 1’Etude des...nitrogen ent for both equilibrium and non -equilibrium chemistry between the two groups . Both groups state that the boundary makes this mode even more...flowfield on control is also m?,ndatory unstable due to the necessary oblate shape of Hermes. when the experimental rebuilding is clearly poor and

  18. SDG and qualitative trend based model multiple scale validation

    NASA Astrophysics Data System (ADS)

    Gao, Dong; Xu, Xin; Yin, Jianjin; Zhang, Hongyu; Zhang, Beike

    2017-09-01

    Verification, Validation and Accreditation (VV&A) is key technology of simulation and modelling. For the traditional model validation methods, the completeness is weak; it is carried out in one scale; it depends on human experience. The SDG (Signed Directed Graph) and qualitative trend based multiple scale validation is proposed. First the SDG model is built and qualitative trends are added to the model. And then complete testing scenarios are produced by positive inference. The multiple scale validation is carried out by comparing the testing scenarios with outputs of simulation model in different scales. Finally, the effectiveness is proved by carrying out validation for a reactor model.

  19. Validation of 2D flood models with insurance claims

    NASA Astrophysics Data System (ADS)

    Zischg, Andreas Paul; Mosimann, Markus; Bernet, Daniel Benjamin; Röthlisberger, Veronika

    2018-02-01

    Flood impact modelling requires reliable models for the simulation of flood processes. In recent years, flood inundation models have been remarkably improved and widely used for flood hazard simulation, flood exposure and loss analyses. In this study, we validate a 2D inundation model for the purpose of flood exposure analysis at the river reach scale. We validate the BASEMENT simulation model with insurance claims using conventional validation metrics. The flood model is established on the basis of available topographic data in a high spatial resolution for four test cases. The validation metrics were calculated with two different datasets; a dataset of event documentations reporting flooded areas and a dataset of insurance claims. The model fit relating to insurance claims is in three out of four test cases slightly lower than the model fit computed on the basis of the observed inundation areas. This comparison between two independent validation data sets suggests that validation metrics using insurance claims can be compared to conventional validation data, such as the flooded area. However, a validation on the basis of insurance claims might be more conservative in cases where model errors are more pronounced in areas with a high density of values at risk.

  20. Validating EHR clinical models using ontology patterns.

    PubMed

    Martínez-Costa, Catalina; Schulz, Stefan

    2017-12-01

    Clinical models are artefacts that specify how information is structured in electronic health records (EHRs). However, the makeup of clinical models is not guided by any formal constraint beyond a semantically vague information model. We address this gap by advocating ontology design patterns as a mechanism that makes the semantics of clinical models explicit. This paper demonstrates how ontology design patterns can validate existing clinical models using SHACL. Based on the Clinical Information Modelling Initiative (CIMI), we show how ontology patterns detect both modeling and terminology binding errors in CIMI models. SHACL, a W3C constraint language for the validation of RDF graphs, builds on the concept of "Shape", a description of data in terms of expected cardinalities, datatypes and other restrictions. SHACL, as opposed to OWL, subscribes to the Closed World Assumption (CWA) and is therefore more suitable for the validation of clinical models. We have demonstrated the feasibility of the approach by manually describing the correspondences between six CIMI clinical models represented in RDF and two SHACL ontology design patterns. Using a Java-based SHACL implementation, we found at least eleven modeling and binding errors within these CIMI models. This demonstrates the usefulness of ontology design patterns not only as a modeling tool but also as a tool for validation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Validation of urban freeway models.

    DOT National Transportation Integrated Search

    2015-01-01

    This report describes the methodology, data, conclusions, and enhanced models regarding the validation of two sets of models developed in the Strategic Highway Research Program 2 (SHRP 2) Reliability Project L03, Analytical Procedures for Determining...

  2. Turbulence Modeling Verification and Validation

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2014-01-01

    Computational fluid dynamics (CFD) software that solves the Reynolds-averaged Navier-Stokes (RANS) equations has been in routine use for more than a quarter of a century. It is currently employed not only for basic research in fluid dynamics, but also for the analysis and design processes in many industries worldwide, including aerospace, automotive, power generation, chemical manufacturing, polymer processing, and petroleum exploration. A key feature of RANS CFD is the turbulence model. Because the RANS equations are unclosed, a model is necessary to describe the effects of the turbulence on the mean flow, through the Reynolds stress terms. The turbulence model is one of the largest sources of uncertainty in RANS CFD, and most models are known to be flawed in one way or another. Alternative methods such as direct numerical simulations (DNS) and large eddy simulations (LES) rely less on modeling and hence include more physics than RANS. In DNS all turbulent scales are resolved, and in LES the large scales are resolved and the effects of the smallest turbulence scales are modeled. However, both DNS and LES are too expensive for most routine industrial usage on today's computers. Hybrid RANS-LES, which blends RANS near walls with LES away from walls, helps to moderate the cost while still retaining some of the scale-resolving capability of LES, but for some applications it can still be too expensive. Even considering its associated uncertainties, RANS turbulence modeling has proved to be very useful for a wide variety of applications. For example, in the aerospace field, many RANS models are considered to be reliable for computing attached flows. However, existing turbulence models are known to be inaccurate for many flows involving separation. Research has been ongoing for decades in an attempt to improve turbulence models for separated and other nonequilibrium flows. When developing or improving turbulence models, both verification and validation are important

  3. Cultural Geography Model Validation

    DTIC Science & Technology

    2010-03-01

    the Cultural Geography Model (CGM), a government owned, open source multi - agent system utilizing Bayesian networks, queuing systems, the Theory of...referent determined either from theory or SME opinion. 4. CGM Overview The CGM is a government-owned, open source, data driven multi - agent social...HSCB, validation, social network analysis ABSTRACT: In the current warfighting environment , the military needs robust modeling and simulation (M&S

  4. Modelling human skull growth: a validated computational model

    PubMed Central

    Marghoub, Arsalan; Johnson, David; Khonsari, Roman H.; Fagan, Michael J.; Moazen, Mehran

    2017-01-01

    During the first year of life, the brain grows rapidly and the neurocranium increases to about 65% of its adult size. Our understanding of the relationship between the biomechanical forces, especially from the growing brain, the craniofacial soft tissue structures and the individual bone plates of the skull vault is still limited. This basic knowledge could help in the future planning of craniofacial surgical operations. The aim of this study was to develop a validated computational model of skull growth, based on the finite-element (FE) method, to help understand the biomechanics of skull growth. To do this, a two-step validation study was carried out. First, an in vitro physical three-dimensional printed model and an in silico FE model were created from the same micro-CT scan of an infant skull and loaded with forces from the growing brain from zero to two months of age. The results from the in vitro model validated the FE model before it was further developed to expand from 0 to 12 months of age. This second FE model was compared directly with in vivo clinical CT scans of infants without craniofacial conditions (n = 56). The various models were compared in terms of predicted skull width, length and circumference, while the overall shape was quantified using three-dimensional distance plots. Statistical analysis yielded no significant differences between the male skull models. All size measurements from the FE model versus the in vitro physical model were within 5%, with one exception showing a 7.6% difference. The FE model and in vivo data also correlated well, with the largest percentage difference in size being 8.3%. Overall, the FE model results matched well with both the in vitro and in vivo data. With further development and model refinement, this modelling method could be used to assist in preoperative planning of craniofacial surgery procedures and could help to reduce reoperation rates. PMID:28566514

  5. Modelling human skull growth: a validated computational model.

    PubMed

    Libby, Joseph; Marghoub, Arsalan; Johnson, David; Khonsari, Roman H; Fagan, Michael J; Moazen, Mehran

    2017-05-01

    During the first year of life, the brain grows rapidly and the neurocranium increases to about 65% of its adult size. Our understanding of the relationship between the biomechanical forces, especially from the growing brain, the craniofacial soft tissue structures and the individual bone plates of the skull vault is still limited. This basic knowledge could help in the future planning of craniofacial surgical operations. The aim of this study was to develop a validated computational model of skull growth, based on the finite-element (FE) method, to help understand the biomechanics of skull growth. To do this, a two-step validation study was carried out. First, an in vitro physical three-dimensional printed model and an in silico FE model were created from the same micro-CT scan of an infant skull and loaded with forces from the growing brain from zero to two months of age. The results from the in vitro model validated the FE model before it was further developed to expand from 0 to 12 months of age. This second FE model was compared directly with in vivo clinical CT scans of infants without craniofacial conditions ( n = 56). The various models were compared in terms of predicted skull width, length and circumference, while the overall shape was quantified using three-dimensional distance plots. Statistical analysis yielded no significant differences between the male skull models. All size measurements from the FE model versus the in vitro physical model were within 5%, with one exception showing a 7.6% difference. The FE model and in vivo data also correlated well, with the largest percentage difference in size being 8.3%. Overall, the FE model results matched well with both the in vitro and in vivo data. With further development and model refinement, this modelling method could be used to assist in preoperative planning of craniofacial surgery procedures and could help to reduce reoperation rates. © 2017 The Author(s).

  6. External validation of preexisting first trimester preeclampsia prediction models.

    PubMed

    Allen, Rebecca E; Zamora, Javier; Arroyo-Manzano, David; Velauthar, Luxmilar; Allotey, John; Thangaratinam, Shakila; Aquilina, Joseph

    2017-10-01

    To validate the increasing number of prognostic models being developed for preeclampsia using our own prospective study. A systematic review of literature that assessed biomarkers, uterine artery Doppler and maternal characteristics in the first trimester for the prediction of preeclampsia was performed and models selected based on predefined criteria. Validation was performed by applying the regression coefficients that were published in the different derivation studies to our cohort. We assessed the models discrimination ability and calibration. Twenty models were identified for validation. The discrimination ability observed in derivation studies (Area Under the Curves) ranged from 0.70 to 0.96 when these models were validated against the validation cohort, these AUC varied importantly, ranging from 0.504 to 0.833. Comparing Area Under the Curves obtained in the derivation study to those in the validation cohort we found statistically significant differences in several studies. There currently isn't a definitive prediction model with adequate ability to discriminate for preeclampsia, which performs as well when applied to a different population and can differentiate well between the highest and lowest risk groups within the tested population. The pre-existing large number of models limits the value of further model development and future research should be focussed on further attempts to validate existing models and assessing whether implementation of these improves patient care. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. Calibration and validation of rockfall models

    NASA Astrophysics Data System (ADS)

    Frattini, Paolo; Valagussa, Andrea; Zenoni, Stefania; Crosta, Giovanni B.

    2013-04-01

    Calibrating and validating landslide models is extremely difficult due to the particular characteristic of landslides: limited recurrence in time, relatively low frequency of the events, short durability of post-event traces, poor availability of continuous monitoring data, especially for small landslide and rockfalls. For this reason, most of the rockfall models presented in literature completely lack calibration and validation of the results. In this contribution, we explore different strategies for rockfall model calibration and validation starting from both an historical event and a full-scale field test. The event occurred in 2012 in Courmayeur (Western Alps, Italy), and caused serious damages to quarrying facilities. This event has been studied soon after the occurrence through a field campaign aimed at mapping the blocks arrested along the slope, the shape and location of the detachment area, and the traces of scars associated to impacts of blocks on the slope. The full-scale field test was performed by Geovert Ltd in the Christchurch area (New Zealand) after the 2011 earthquake. During the test, a number of large blocks have been mobilized from the upper part of the slope and filmed with high velocity cameras from different viewpoints. The movies of each released block were analysed to identify the block shape, the propagation path, the location of impacts, the height of the trajectory and the velocity of the block along the path. Both calibration and validation of rockfall models should be based on the optimization of the agreement between the actual trajectories or location of arrested blocks and the simulated ones. A measure that describe this agreement is therefore needed. For calibration purpose, this measure should simple enough to allow trial and error repetitions of the model for parameter optimization. In this contribution we explore different calibration/validation measures: (1) the percentage of simulated blocks arresting within a buffer of the

  8. External validation of a Cox prognostic model: principles and methods

    PubMed Central

    2013-01-01

    Background A prognostic model should not enter clinical practice unless it has been demonstrated that it performs a useful role. External validation denotes evaluation of model performance in a sample independent of that used to develop the model. Unlike for logistic regression models, external validation of Cox models is sparsely treated in the literature. Successful validation of a model means achieving satisfactory discrimination and calibration (prediction accuracy) in the validation sample. Validating Cox models is not straightforward because event probabilities are estimated relative to an unspecified baseline function. Methods We describe statistical approaches to external validation of a published Cox model according to the level of published information, specifically (1) the prognostic index only, (2) the prognostic index together with Kaplan-Meier curves for risk groups, and (3) the first two plus the baseline survival curve (the estimated survival function at the mean prognostic index across the sample). The most challenging task, requiring level 3 information, is assessing calibration, for which we suggest a method of approximating the baseline survival function. Results We apply the methods to two comparable datasets in primary breast cancer, treating one as derivation and the other as validation sample. Results are presented for discrimination and calibration. We demonstrate plots of survival probabilities that can assist model evaluation. Conclusions Our validation methods are applicable to a wide range of prognostic studies and provide researchers with a toolkit for external validation of a published Cox model. PMID:23496923

  9. Applicability Analysis of Validation Evidence for Biomedical Computational Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathmanathan, Pras; Gray, Richard A.; Romero, Vicente J.

    Computational modeling has the potential to revolutionize medicine the way it transformed engineering. However, despite decades of work, there has only been limited progress to successfully translate modeling research to patient care. One major difficulty which often occurs with biomedical computational models is an inability to perform validation in a setting that closely resembles how the model will be used. For example, for a biomedical model that makes in vivo clinically relevant predictions, direct validation of predictions may be impossible for ethical, technological, or financial reasons. Unavoidable limitations inherent to the validation process lead to challenges in evaluating the credibilitymore » of biomedical model predictions. Therefore, when evaluating biomedical models, it is critical to rigorously assess applicability, that is, the relevance of the computational model, and its validation evidence to the proposed context of use (COU). However, there are no well-established methods for assessing applicability. In this paper, we present a novel framework for performing applicability analysis and demonstrate its use with a medical device computational model. The framework provides a systematic, step-by-step method for breaking down the broad question of applicability into a series of focused questions, which may be addressed using supporting evidence and subject matter expertise. The framework can be used for model justification, model assessment, and validation planning. While motivated by biomedical models, it is relevant to a broad range of disciplines and underlying physics. Finally, the proposed applicability framework could help overcome some of the barriers inherent to validation of, and aid clinical implementation of, biomedical models.« less

  10. Applicability Analysis of Validation Evidence for Biomedical Computational Models

    DOE PAGES

    Pathmanathan, Pras; Gray, Richard A.; Romero, Vicente J.; ...

    2017-09-07

    Computational modeling has the potential to revolutionize medicine the way it transformed engineering. However, despite decades of work, there has only been limited progress to successfully translate modeling research to patient care. One major difficulty which often occurs with biomedical computational models is an inability to perform validation in a setting that closely resembles how the model will be used. For example, for a biomedical model that makes in vivo clinically relevant predictions, direct validation of predictions may be impossible for ethical, technological, or financial reasons. Unavoidable limitations inherent to the validation process lead to challenges in evaluating the credibilitymore » of biomedical model predictions. Therefore, when evaluating biomedical models, it is critical to rigorously assess applicability, that is, the relevance of the computational model, and its validation evidence to the proposed context of use (COU). However, there are no well-established methods for assessing applicability. In this paper, we present a novel framework for performing applicability analysis and demonstrate its use with a medical device computational model. The framework provides a systematic, step-by-step method for breaking down the broad question of applicability into a series of focused questions, which may be addressed using supporting evidence and subject matter expertise. The framework can be used for model justification, model assessment, and validation planning. While motivated by biomedical models, it is relevant to a broad range of disciplines and underlying physics. Finally, the proposed applicability framework could help overcome some of the barriers inherent to validation of, and aid clinical implementation of, biomedical models.« less

  11. Cross-validation to select Bayesian hierarchical models in phylogenetics.

    PubMed

    Duchêne, Sebastián; Duchêne, David A; Di Giallonardo, Francesca; Eden, John-Sebastian; Geoghegan, Jemma L; Holt, Kathryn E; Ho, Simon Y W; Holmes, Edward C

    2016-05-26

    Recent developments in Bayesian phylogenetic models have increased the range of inferences that can be drawn from molecular sequence data. Accordingly, model selection has become an important component of phylogenetic analysis. Methods of model selection generally consider the likelihood of the data under the model in question. In the context of Bayesian phylogenetics, the most common approach involves estimating the marginal likelihood, which is typically done by integrating the likelihood across model parameters, weighted by the prior. Although this method is accurate, it is sensitive to the presence of improper priors. We explored an alternative approach based on cross-validation that is widely used in evolutionary analysis. This involves comparing models according to their predictive performance. We analysed simulated data and a range of viral and bacterial data sets using a cross-validation approach to compare a variety of molecular clock and demographic models. Our results show that cross-validation can be effective in distinguishing between strict- and relaxed-clock models and in identifying demographic models that allow growth in population size over time. In most of our empirical data analyses, the model selected using cross-validation was able to match that selected using marginal-likelihood estimation. The accuracy of cross-validation appears to improve with longer sequence data, particularly when distinguishing between relaxed-clock models. Cross-validation is a useful method for Bayesian phylogenetic model selection. This method can be readily implemented even when considering complex models where selecting an appropriate prior for all parameters may be difficult.

  12. Model Validation Against The Modelers’ Data Archive

    DTIC Science & Technology

    2014-08-01

    completion of the planned Jack Rabbit 2 field trials. The relevant task for the effort addressed here is Task 4 of the current Interagency Agreement, as...readily simulates the Prairie Grass sulfur dioxide plumes. Also, Jack Rabbit II field trials are set to be completed during FY16. Once these data are...available, they will also be used to validate the combined models. This validation may prove to be more useful, as the Jack Rabbit II will release

  13. Modeling complex treatment strategies: construction and validation of a discrete event simulation model for glaucoma.

    PubMed

    van Gestel, Aukje; Severens, Johan L; Webers, Carroll A B; Beckers, Henny J M; Jansonius, Nomdo M; Schouten, Jan S A G

    2010-01-01

    Discrete event simulation (DES) modeling has several advantages over simpler modeling techniques in health economics, such as increased flexibility and the ability to model complex systems. Nevertheless, these benefits may come at the cost of reduced transparency, which may compromise the model's face validity and credibility. We aimed to produce a transparent report on the construction and validation of a DES model using a recently developed model of ocular hypertension and glaucoma. Current evidence of associations between prognostic factors and disease progression in ocular hypertension and glaucoma was translated into DES model elements. The model was extended to simulate treatment decisions and effects. Utility and costs were linked to disease status and treatment, and clinical and health economic outcomes were defined. The model was validated at several levels. The soundness of design and the plausibility of input estimates were evaluated in interdisciplinary meetings (face validity). Individual patients were traced throughout the simulation under a multitude of model settings to debug the model, and the model was run with a variety of extreme scenarios to compare the outcomes with prior expectations (internal validity). Finally, several intermediate (clinical) outcomes of the model were compared with those observed in experimental or observational studies (external validity) and the feasibility of evaluating hypothetical treatment strategies was tested. The model performed well in all validity tests. Analyses of hypothetical treatment strategies took about 30 minutes per cohort and lead to plausible health-economic outcomes. There is added value of DES models in complex treatment strategies such as glaucoma. Achieving transparency in model structure and outcomes may require some effort in reporting and validating the model, but it is feasible.

  14. External model validation of binary clinical risk prediction models in cardiovascular and thoracic surgery.

    PubMed

    Hickey, Graeme L; Blackstone, Eugene H

    2016-08-01

    Clinical risk-prediction models serve an important role in healthcare. They are used for clinical decision-making and measuring the performance of healthcare providers. To establish confidence in a model, external model validation is imperative. When designing such an external model validation study, thought must be given to patient selection, risk factor and outcome definitions, missing data, and the transparent reporting of the analysis. In addition, there are a number of statistical methods available for external model validation. Execution of a rigorous external validation study rests in proper study design, application of suitable statistical methods, and transparent reporting. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  15. Development of a Conservative Model Validation Approach for Reliable Analysis

    DTIC Science & Technology

    2015-01-01

    CIE 2015 August 2-5, 2015, Boston, Massachusetts, USA [DRAFT] DETC2015-46982 DEVELOPMENT OF A CONSERVATIVE MODEL VALIDATION APPROACH FOR RELIABLE...obtain a conservative simulation model for reliable design even with limited experimental data. Very little research has taken into account the...3, the proposed conservative model validation is briefly compared to the conventional model validation approach. Section 4 describes how to account

  16. Applicability of Monte Carlo cross validation technique for model development and validation using generalised least squares regression

    NASA Astrophysics Data System (ADS)

    Haddad, Khaled; Rahman, Ataur; A Zaman, Mohammad; Shrestha, Surendra

    2013-03-01

    SummaryIn regional hydrologic regression analysis, model selection and validation are regarded as important steps. Here, the model selection is usually based on some measurements of goodness-of-fit between the model prediction and observed data. In Regional Flood Frequency Analysis (RFFA), leave-one-out (LOO) validation or a fixed percentage leave out validation (e.g., 10%) is commonly adopted to assess the predictive ability of regression-based prediction equations. This paper develops a Monte Carlo Cross Validation (MCCV) technique (which has widely been adopted in Chemometrics and Econometrics) in RFFA using Generalised Least Squares Regression (GLSR) and compares it with the most commonly adopted LOO validation approach. The study uses simulated and regional flood data from the state of New South Wales in Australia. It is found that when developing hydrologic regression models, application of the MCCV is likely to result in a more parsimonious model than the LOO. It has also been found that the MCCV can provide a more realistic estimate of a model's predictive ability when compared with the LOO.

  17. Model Validation | Center for Cancer Research

    Cancer.gov

    Research Investigation and Animal Model Validation This activity is also under development and thus far has included increasing pathology resources, delivering pathology services, as well as using imaging and surgical methods to develop and refine animal models in collaboration with other CCR investigators.

  18. Quantitative model validation of manipulative robot systems

    NASA Astrophysics Data System (ADS)

    Kartowisastro, Iman Herwidiana

    This thesis is concerned with applying the distortion quantitative validation technique to a robot manipulative system with revolute joints. Using the distortion technique to validate a model quantitatively, the model parameter uncertainties are taken into account in assessing the faithfulness of the model and this approach is relatively more objective than the commonly visual comparison method. The industrial robot is represented by the TQ MA2000 robot arm. Details of the mathematical derivation of the distortion technique are given which explains the required distortion of the constant parameters within the model and the assessment of model adequacy. Due to the complexity of a robot model, only the first three degrees of freedom are considered where all links are assumed rigid. The modelling involves the Newton-Euler approach to obtain the dynamics model, and the Denavit-Hartenberg convention is used throughout the work. The conventional feedback control system is used in developing the model. The system behavior to parameter changes is investigated as some parameters are redundant. This work is important so that the most important parameters to be distorted can be selected and this leads to a new term called the fundamental parameters. The transfer function approach has been chosen to validate an industrial robot quantitatively against the measured data due to its practicality. Initially, the assessment of the model fidelity criterion indicated that the model was not capable of explaining the transient record in term of the model parameter uncertainties. Further investigations led to significant improvements of the model and better understanding of the model properties. After several improvements in the model, the fidelity criterion obtained was almost satisfied. Although the fidelity criterion is slightly less than unity, it has been shown that the distortion technique can be applied in a robot manipulative system. Using the validated model, the importance of

  19. Economic analysis of model validation for a challenge problem

    DOE PAGES

    Paez, Paul J.; Paez, Thomas L.; Hasselman, Timothy K.

    2016-02-19

    It is now commonplace for engineers to build mathematical models of the systems they are designing, building, or testing. And, it is nearly universally accepted that phenomenological models of physical systems must be validated prior to use for prediction in consequential scenarios. Yet, there are certain situations in which testing only or no testing and no modeling may be economically viable alternatives to modeling and its associated testing. This paper develops an economic framework within which benefit–cost can be evaluated for modeling and model validation relative to other options. The development is presented in terms of a challenge problem. Asmore » a result, we provide a numerical example that quantifies when modeling, calibration, and validation yield higher benefit–cost than a testing only or no modeling and no testing option.« less

  20. Model-Based Verification and Validation of Spacecraft Avionics

    NASA Technical Reports Server (NTRS)

    Khan, M. Omair; Sievers, Michael; Standley, Shaun

    2012-01-01

    Verification and Validation (V&V) at JPL is traditionally performed on flight or flight-like hardware running flight software. For some time, the complexity of avionics has increased exponentially while the time allocated for system integration and associated V&V testing has remained fixed. There is an increasing need to perform comprehensive system level V&V using modeling and simulation, and to use scarce hardware testing time to validate models; the norm for thermal and structural V&V for some time. Our approach extends model-based V&V to electronics and software through functional and structural models implemented in SysML. We develop component models of electronics and software that are validated by comparison with test results from actual equipment. The models are then simulated enabling a more complete set of test cases than possible on flight hardware. SysML simulations provide access and control of internal nodes that may not be available in physical systems. This is particularly helpful in testing fault protection behaviors when injecting faults is either not possible or potentially damaging to the hardware. We can also model both hardware and software behaviors in SysML, which allows us to simulate hardware and software interactions. With an integrated model and simulation capability we can evaluate the hardware and software interactions and identify problems sooner. The primary missing piece is validating SysML model correctness against hardware; this experiment demonstrated such an approach is possible.

  1. Real-time remote scientific model validation

    NASA Technical Reports Server (NTRS)

    Frainier, Richard; Groleau, Nicolas

    1994-01-01

    This paper describes flight results from the use of a CLIPS-based validation facility to compare analyzed data from a space life sciences (SLS) experiment to an investigator's preflight model. The comparison, performed in real-time, either confirms or refutes the model and its predictions. This result then becomes the basis for continuing or modifying the investigator's experiment protocol. Typically, neither the astronaut crew in Spacelab nor the ground-based investigator team are able to react to their experiment data in real time. This facility, part of a larger science advisor system called Principal Investigator in a Box, was flown on the space shuttle in October, 1993. The software system aided the conduct of a human vestibular physiology experiment and was able to outperform humans in the tasks of data integrity assurance, data analysis, and scientific model validation. Of twelve preflight hypotheses associated with investigator's model, seven were confirmed and five were rejected or compromised.

  2. Validation of Computational Models in Biomechanics

    PubMed Central

    Henninger, Heath B.; Reese, Shawn P.; Anderson, Andrew E.; Weiss, Jeffrey A.

    2010-01-01

    The topics of verification and validation (V&V) have increasingly been discussed in the field of computational biomechanics, and many recent articles have applied these concepts in an attempt to build credibility for models of complex biological systems. V&V are evolving techniques that, if used improperly, can lead to false conclusions about a system under study. In basic science these erroneous conclusions may lead to failure of a subsequent hypothesis, but they can have more profound effects if the model is designed to predict patient outcomes. While several authors have reviewed V&V as they pertain to traditional solid and fluid mechanics, it is the intent of this manuscript to present them in the context of computational biomechanics. Specifically, the task of model validation will be discussed with a focus on current techniques. It is hoped that this review will encourage investigators to engage and adopt the V&V process in an effort to increase peer acceptance of computational biomechanics models. PMID:20839648

  3. Validation of Model Forecasts of the Ambient Solar Wind

    NASA Technical Reports Server (NTRS)

    Macneice, P. J.; Hesse, M.; Kuznetsova, M. M.; Rastaetter, L.; Taktakishvili, A.

    2009-01-01

    Independent and automated validation is a vital step in the progression of models from the research community into operational forecasting use. In this paper we describe a program in development at the CCMC to provide just such a comprehensive validation for models of the ambient solar wind in the inner heliosphere. We have built upon previous efforts published in the community, sharpened their definitions, and completed a baseline study. We also provide first results from this program of the comparative performance of the MHD models available at the CCMC against that of the Wang-Sheeley-Arge (WSA) model. An important goal of this effort is to provide a consistent validation to all available models. Clearly exposing the relative strengths and weaknesses of the different models will enable forecasters to craft more reliable ensemble forecasting strategies. Models of the ambient solar wind are developing rapidly as a result of improvements in data supply, numerical techniques, and computing resources. It is anticipated that in the next five to ten years, the MHD based models will supplant semi-empirical potential based models such as the WSA model, as the best available forecast models. We anticipate that this validation effort will track this evolution and so assist policy makers in gauging the value of past and future investment in modeling support.

  4. Prospective validation of pathologic complete response models in rectal cancer: Transferability and reproducibility.

    PubMed

    van Soest, Johan; Meldolesi, Elisa; van Stiphout, Ruud; Gatta, Roberto; Damiani, Andrea; Valentini, Vincenzo; Lambin, Philippe; Dekker, Andre

    2017-09-01

    Multiple models have been developed to predict pathologic complete response (pCR) in locally advanced rectal cancer patients. Unfortunately, validation of these models normally omit the implications of cohort differences on prediction model performance. In this work, we will perform a prospective validation of three pCR models, including information whether this validation will target transferability or reproducibility (cohort differences) of the given models. We applied a novel methodology, the cohort differences model, to predict whether a patient belongs to the training or to the validation cohort. If the cohort differences model performs well, it would suggest a large difference in cohort characteristics meaning we would validate the transferability of the model rather than reproducibility. We tested our method in a prospective validation of three existing models for pCR prediction in 154 patients. Our results showed a large difference between training and validation cohort for one of the three tested models [Area under the Receiver Operating Curve (AUC) cohort differences model: 0.85], signaling the validation leans towards transferability. Two out of three models had a lower AUC for validation (0.66 and 0.58), one model showed a higher AUC in the validation cohort (0.70). We have successfully applied a new methodology in the validation of three prediction models, which allows us to indicate if a validation targeted transferability (large differences between training/validation cohort) or reproducibility (small cohort differences). © 2017 American Association of Physicists in Medicine.

  5. Assessing Discriminative Performance at External Validation of Clinical Prediction Models

    PubMed Central

    Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W.

    2016-01-01

    Introduction External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. Methods We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. Results The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. Conclusion The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect

  6. Assessing Discriminative Performance at External Validation of Clinical Prediction Models.

    PubMed

    Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W

    2016-01-01

    External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients.

  7. Cross-validation pitfalls when selecting and assessing regression and classification models.

    PubMed

    Krstajic, Damjan; Buturovic, Ljubomir J; Leahy, David E; Thomas, Simon

    2014-03-29

    We address the problem of selecting and assessing classification and regression models using cross-validation. Current state-of-the-art methods can yield models with high variance, rendering them unsuitable for a number of practical applications including QSAR. In this paper we describe and evaluate best practices which improve reliability and increase confidence in selected models. A key operational component of the proposed methods is cloud computing which enables routine use of previously infeasible approaches. We describe in detail an algorithm for repeated grid-search V-fold cross-validation for parameter tuning in classification and regression, and we define a repeated nested cross-validation algorithm for model assessment. As regards variable selection and parameter tuning we define two algorithms (repeated grid-search cross-validation and double cross-validation), and provide arguments for using the repeated grid-search in the general case. We show results of our algorithms on seven QSAR datasets. The variation of the prediction performance, which is the result of choosing different splits of the dataset in V-fold cross-validation, needs to be taken into account when selecting and assessing classification and regression models. We demonstrate the importance of repeating cross-validation when selecting an optimal model, as well as the importance of repeating nested cross-validation when assessing a prediction error.

  8. Validation of Magnetospheric Magnetohydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Curtis, Brian

    Magnetospheric magnetohydrodynamic (MHD) models are commonly used for both prediction and modeling of Earth's magnetosphere. To date, very little validation has been performed to determine their limits, uncertainties, and differences. In this work, we performed a comprehensive analysis using several commonly used validation techniques in the atmospheric sciences to MHD-based models of Earth's magnetosphere for the first time. The validation techniques of parameter variability/sensitivity analysis and comparison to other models were used on the OpenGGCM, BATS-R-US, and SWMF magnetospheric MHD models to answer several questions about how these models compare. The questions include: (1) the difference between the model's predictions prior to and following to a reversal of Bz in the upstream interplanetary field (IMF) from positive to negative, (2) the influence of the preconditioning duration, and (3) the differences between models under extreme solar wind conditions. A differencing visualization tool was developed and used to address these three questions. We find: (1) For a reversal in IMF Bz from positive to negative, the OpenGGCM magnetopause is closest to Earth as it has the weakest magnetic pressure near-Earth. The differences in magnetopause positions between BATS-R-US and SWMF are explained by the influence of the ring current, which is included in SWMF. Densities are highest for SWMF and lowest for OpenGGCM. The OpenGGCM tail currents differ significantly from BATS-R-US and SWMF; (2) A longer preconditioning time allowed the magnetosphere to relax more, giving different positions for the magnetopause with all three models before the IMF Bz reversal. There were differences greater than 100% for all three models before the IMF Bz reversal. The differences in the current sheet region for the OpenGGCM were small after the IMF Bz reversal. The BATS-R-US and SWMF differences decreased after the IMF Bz reversal to near zero; (3) For extreme conditions in the solar

  9. Solar Sail Models and Test Measurements Correspondence for Validation Requirements Definition

    NASA Technical Reports Server (NTRS)

    Ewing, Anthony; Adams, Charles

    2004-01-01

    Solar sails are being developed as a mission-enabling technology in support of future NASA science missions. Current efforts have advanced solar sail technology sufficient to justify a flight validation program. A primary objective of this activity is to test and validate solar sail models that are currently under development so that they may be used with confidence in future science mission development (e.g., scalable to larger sails). Both system and model validation requirements must be defined early in the program to guide design cycles and to ensure that relevant and sufficient test data will be obtained to conduct model validation to the level required. A process of model identification, model input/output documentation, model sensitivity analyses, and test measurement correspondence is required so that decisions can be made to satisfy validation requirements within program constraints.

  10. Validity of empirical models of exposure in asphalt paving

    PubMed Central

    Burstyn, I; Boffetta, P; Burr, G; Cenni, A; Knecht, U; Sciarra, G; Kromhout, H

    2002-01-01

    Aims: To investigate the validity of empirical models of exposure to bitumen fume and benzo(a)pyrene, developed for a historical cohort study of asphalt paving in Western Europe. Methods: Validity was evaluated using data from the USA, Italy, and Germany not used to develop the original models. Correlation between observed and predicted exposures was examined. Bias and precision were estimated. Results: Models were imprecise. Furthermore, predicted bitumen fume exposures tended to be lower (-70%) than concentrations found during paving in the USA. This apparent bias might be attributed to differences between Western European and USA paving practices. Evaluation of the validity of the benzo(a)pyrene exposure model revealed a similar to expected effect of re-paving and a larger than expected effect of tar use. Overall, benzo(a)pyrene models underestimated exposures by 51%. Conclusions: Possible bias as a result of underestimation of the impact of coal tar on benzo(a)pyrene exposure levels must be explored in sensitivity analysis of the exposure–response relation. Validation of the models, albeit limited, increased our confidence in their applicability to exposure assessment in the historical cohort study of cancer risk among asphalt workers. PMID:12205236

  11. Validation techniques of agent based modelling for geospatial simulations

    NASA Astrophysics Data System (ADS)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  12. A Formal Approach to Empirical Dynamic Model Optimization and Validation

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G; Morelli, Eugene A.; Kenny, Sean P.; Giesy, Daniel P.

    2014-01-01

    A framework was developed for the optimization and validation of empirical dynamic models subject to an arbitrary set of validation criteria. The validation requirements imposed upon the model, which may involve several sets of input-output data and arbitrary specifications in time and frequency domains, are used to determine if model predictions are within admissible error limits. The parameters of the empirical model are estimated by finding the parameter realization for which the smallest of the margins of requirement compliance is as large as possible. The uncertainty in the value of this estimate is characterized by studying the set of model parameters yielding predictions that comply with all the requirements. Strategies are presented for bounding this set, studying its dependence on admissible prediction error set by the analyst, and evaluating the sensitivity of the model predictions to parameter variations. This information is instrumental in characterizing uncertainty models used for evaluating the dynamic model at operating conditions differing from those used for its identification and validation. A practical example based on the short period dynamics of the F-16 is used for illustration.

  13. An Approach to Comprehensive and Sustainable Solar Wind Model Validation

    NASA Astrophysics Data System (ADS)

    Rastaetter, L.; MacNeice, P. J.; Mays, M. L.; Boblitt, J. M.; Wiegand, C.

    2017-12-01

    The number of models of the corona and inner heliosphere and of their updates and upgrades grows steadily, as does the number and character of the model inputs. Maintaining up to date validation of these models, in the face of this constant model evolution, is a necessary but very labor intensive activity. In the last year alone, both NASA's LWS program and the CCMC's ongoing support of model forecasting activities at NOAA SWPC have sought model validation reports on the quality of all aspects of the community's coronal and heliospheric models, including both ambient and CME related wind solutions at L1. In this presentation I will give a brief review of the community's previous model validation results of L1 wind representation. I will discuss the semi-automated web based system we are constructing at the CCMC to present comparative visualizations of all interesting aspects of the solutions from competing models.This system is designed to be easily queried to provide the essential comprehensive inputs to repeat andupdate previous validation studies and support extensions to them. I will illustrate this by demonstrating how the system is being used to support the CCMC/LWS Model Assessment Forum teams focused on the ambient and time dependent corona and solar wind, including CME arrival time and IMF Bz.I will also discuss plans to extend the system to include results from the Forum teams addressing SEP model validation.

  14. Parameterization of Model Validating Sets for Uncertainty Bound Optimizations. Revised

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Giesy, D. P.

    2000-01-01

    Given measurement data, a nominal model and a linear fractional transformation uncertainty structure with an allowance on unknown but bounded exogenous disturbances, easily computable tests for the existence of a model validating uncertainty set are given. Under mild conditions, these tests are necessary and sufficient for the case of complex, nonrepeated, block-diagonal structure. For the more general case which includes repeated and/or real scalar uncertainties, the tests are only necessary but become sufficient if a collinearity condition is also satisfied. With the satisfaction of these tests, it is shown that a parameterization of all model validating sets of plant models is possible. The new parameterization is used as a basis for a systematic way to construct or perform uncertainty tradeoff with model validating uncertainty sets which have specific linear fractional transformation structure for use in robust control design and analysis. An illustrative example which includes a comparison of candidate model validating sets is given.

  15. Validation of the Poisson Stochastic Radiative Transfer Model

    NASA Technical Reports Server (NTRS)

    Zhuravleva, Tatiana; Marshak, Alexander

    2004-01-01

    A new approach to validation of the Poisson stochastic radiative transfer method is proposed. In contrast to other validations of stochastic models, the main parameter of the Poisson model responsible for cloud geometrical structure - cloud aspect ratio - is determined entirely by matching measurements and calculations of the direct solar radiation. If the measurements of the direct solar radiation is unavailable, it was shown that there is a range of the aspect ratios that allows the stochastic model to accurately approximate the average measurements of surface downward and cloud top upward fluxes. Realizations of the fractionally integrated cascade model are taken as a prototype of real measurements.

  16. AdViSHE: A Validation-Assessment Tool of Health-Economic Models for Decision Makers and Model Users.

    PubMed

    Vemer, P; Corro Ramos, I; van Voorn, G A K; Al, M J; Feenstra, T L

    2016-04-01

    A trade-off exists between building confidence in health-economic (HE) decision models and the use of scarce resources. We aimed to create a practical tool providing model users with a structured view into the validation status of HE decision models, to address this trade-off. A Delphi panel was organized, and was completed by a workshop during an international conference. The proposed tool was constructed iteratively based on comments from, and the discussion amongst, panellists. During the Delphi process, comments were solicited on the importance and feasibility of possible validation techniques for modellers, their relevance for decision makers, and the overall structure and formulation in the tool. The panel consisted of 47 experts in HE modelling and HE decision making from various professional and international backgrounds. In addition, 50 discussants actively engaged in the discussion at the conference workshop and returned 19 questionnaires with additional comments. The final version consists of 13 items covering all relevant aspects of HE decision models: the conceptual model, the input data, the implemented software program, and the model outcomes. Assessment of the Validation Status of Health-Economic decision models (AdViSHE) is a validation-assessment tool in which model developers report in a systematic way both on validation efforts performed and on their outcomes. Subsequently, model users can establish whether confidence in the model is justified or whether additional validation efforts should be undertaken. In this way, AdViSHE enhances transparency of the validation status of HE models and supports efficient model validation.

  17. Geographic and temporal validity of prediction models: Different approaches were useful to examine model performance

    PubMed Central

    Austin, Peter C.; van Klaveren, David; Vergouwe, Yvonne; Nieboer, Daan; Lee, Douglas S.; Steyerberg, Ewout W.

    2017-01-01

    Objective Validation of clinical prediction models traditionally refers to the assessment of model performance in new patients. We studied different approaches to geographic and temporal validation in the setting of multicenter data from two time periods. Study Design and Setting We illustrated different analytic methods for validation using a sample of 14,857 patients hospitalized with heart failure at 90 hospitals in two distinct time periods. Bootstrap resampling was used to assess internal validity. Meta-analytic methods were used to assess geographic transportability. Each hospital was used once as a validation sample, with the remaining hospitals used for model derivation. Hospital-specific estimates of discrimination (c-statistic) and calibration (calibration intercepts and slopes) were pooled using random effects meta-analysis methods. I2 statistics and prediction interval width quantified geographic transportability. Temporal transportability was assessed using patients from the earlier period for model derivation and patients from the later period for model validation. Results Estimates of reproducibility, pooled hospital-specific performance, and temporal transportability were on average very similar, with c-statistics of 0.75. Between-hospital variation was moderate according to I2 statistics and prediction intervals for c-statistics. Conclusion This study illustrates how performance of prediction models can be assessed in settings with multicenter data at different time periods. PMID:27262237

  18. Virtual Model Validation of Complex Multiscale Systems: Applications to Nonlinear Elastostatics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oden, John Tinsley; Prudencio, Ernest E.; Bauman, Paul T.

    We propose a virtual statistical validation process as an aid to the design of experiments for the validation of phenomenological models of the behavior of material bodies, with focus on those cases in which knowledge of the fabrication process used to manufacture the body can provide information on the micro-molecular-scale properties underlying macroscale behavior. One example is given by models of elastomeric solids fabricated using polymerization processes. We describe a framework for model validation that involves Bayesian updates of parameters in statistical calibration and validation phases. The process enables the quanti cation of uncertainty in quantities of interest (QoIs) andmore » the determination of model consistency using tools of statistical information theory. We assert that microscale information drawn from molecular models of the fabrication of the body provides a valuable source of prior information on parameters as well as a means for estimating model bias and designing virtual validation experiments to provide information gain over calibration posteriors.« less

  19. Validation of urban freeway models. [supporting datasets

    DOT National Transportation Integrated Search

    2015-01-01

    The goal of the SHRP 2 Project L33 Validation of Urban Freeway Models was to assess and enhance the predictive travel time reliability models developed in the SHRP 2 Project L03, Analytic Procedures for Determining the Impacts of Reliability Mitigati...

  20. Developing rural palliative care: validating a conceptual model.

    PubMed

    Kelley, Mary Lou; Williams, Allison; DeMiglio, Lily; Mettam, Hilary

    2011-01-01

    The purpose of this research was to validate a conceptual model for developing palliative care in rural communities. This model articulates how local rural healthcare providers develop palliative care services according to four sequential phases. The model has roots in concepts of community capacity development, evolves from collaborative, generalist rural practice, and utilizes existing health services infrastructure. It addresses how rural providers manage challenges, specifically those related to: lack of resources, minimal community understanding of palliative care, health professionals' resistance, the bureaucracy of the health system, and the obstacles of providing services in rural environments. Seven semi-structured focus groups were conducted with interdisciplinary health providers in 7 rural communities in two Canadian provinces. Using a constant comparative analysis approach, focus group data were analyzed by examining participants' statements in relation to the model and comparing emerging themes in the development of rural palliative care to the elements of the model. The data validated the conceptual model as the model was able to theoretically predict and explain the experiences of the 7 rural communities that participated in the study. New emerging themes from the data elaborated existing elements in the model and informed the requirement for minor revisions. The model was validated and slightly revised, as suggested by the data. The model was confirmed as being a useful theoretical tool for conceptualizing the development of rural palliative care that is applicable in diverse rural communities.

  1. Multiple Versus Single Set Validation of Multivariate Models to Avoid Mistakes.

    PubMed

    Harrington, Peter de Boves

    2018-01-02

    Validation of multivariate models is of current importance for a wide range of chemical applications. Although important, it is neglected. The common practice is to use a single external validation set for evaluation. This approach is deficient and may mislead investigators with results that are specific to the single validation set of data. In addition, no statistics are available regarding the precision of a derived figure of merit (FOM). A statistical approach using bootstrapped Latin partitions is advocated. This validation method makes an efficient use of the data because each object is used once for validation. It was reviewed a decade earlier but primarily for the optimization of chemometric models this review presents the reasons it should be used for generalized statistical validation. Average FOMs with confidence intervals are reported and powerful, matched-sample statistics may be applied for comparing models and methods. Examples demonstrate the problems with single validation sets.

  2. Outward Bound Outcome Model Validation and Multilevel Modeling

    ERIC Educational Resources Information Center

    Luo, Yuan-Chun

    2011-01-01

    This study was intended to measure construct validity for the Outward Bound Outcomes Instrument (OBOI) and to predict outcome achievement from individual characteristics and course attributes using multilevel modeling. A sample of 2,340 participants was collected by Outward Bound USA between May and September 2009 using the OBOI. Two phases of…

  3. Validation of Community Models: Identifying Events in Space Weather Model Timelines

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter

    2009-01-01

    I develop and document a set of procedures which test the quality of predictions of solar wind speed and polarity of the interplanetary magnetic field (IMF) made by coupled models of the ambient solar corona and heliosphere. The Wang-Sheeley-Arge (WSA) model is used to illustrate the application of these validation procedures. I present an algorithm which detects transitions of the solar wind from slow to high speed. I also present an algorithm which processes the measured polarity of the outward directed component of the IMF. This removes high-frequency variations to expose the longer-scale changes that reflect IMF sector changes. I apply these algorithms to WSA model predictions made using a small set of photospheric synoptic magnetograms obtained by the Global Oscillation Network Group as input to the model. The results of this preliminary validation of the WSA model (version 1.6) are summarized.

  4. Validating Computational Human Behavior Models: Consistency and Accuracy Issues

    DTIC Science & Technology

    2004-06-01

    includes a discussion of SME demographics, content, and organization of the datasets . This research generalizes data from two pilot studies and two base...meet requirements for validating the varied and complex behavioral models. Through a series of empirical studies , this research identifies subject...meet requirements for validating the varied and complex behavioral models. Through a series of empirical studies , this research identifies subject

  5. Adolescent Personality: A Five-Factor Model Construct Validation

    ERIC Educational Resources Information Center

    Baker, Spencer T.; Victor, James B.; Chambers, Anthony L.; Halverson, Jr., Charles F.

    2004-01-01

    The purpose of this study was to investigate convergent and discriminant validity of the five-factor model of adolescent personality in a school setting using three different raters (methods): self-ratings, peer ratings, and teacher ratings. The authors investigated validity through a multitrait-multimethod matrix and a confirmatory factor…

  6. A Model for Estimating the Reliability and Validity of Criterion-Referenced Measures.

    ERIC Educational Resources Information Center

    Edmonston, Leon P.; Randall, Robert S.

    A decision model designed to determine the reliability and validity of criterion referenced measures (CRMs) is presented. General procedures which pertain to the model are discussed as to: Measures of relationship, Reliability, Validity (content, criterion-oriented, and construct validation), and Item Analysis. The decision model is presented in…

  7. Refinement, Validation and Benchmarking of a Model for E-Government Service Quality

    NASA Astrophysics Data System (ADS)

    Magoutas, Babis; Mentzas, Gregoris

    This paper presents the refinement and validation of a model for Quality of e-Government Services (QeGS). We built upon our previous work where a conceptualized model was identified and put focus on the confirmatory phase of the model development process, in order to come up with a valid and reliable QeGS model. The validated model, which was benchmarked with very positive results with similar models found in the literature, can be used for measuring the QeGS in a reliable and valid manner. This will form the basis for a continuous quality improvement process, unleashing the full potential of e-government services for both citizens and public administrations.

  8. SPR Hydrostatic Column Model Verification and Validation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettin, Giorgia; Lord, David; Rudeen, David Keith

    2015-10-01

    A Hydrostatic Column Model (HCM) was developed to help differentiate between normal "tight" well behavior and small-leak behavior under nitrogen for testing the pressure integrity of crude oil storage wells at the U.S. Strategic Petroleum Reserve. This effort was motivated by steady, yet distinct, pressure behavior of a series of Big Hill caverns that have been placed under nitrogen for extended period of time. This report describes the HCM model, its functional requirements, the model structure and the verification and validation process. Different modes of operation are also described, which illustrate how the software can be used to model extendedmore » nitrogen monitoring and Mechanical Integrity Tests by predicting wellhead pressures along with nitrogen interface movements. Model verification has shown that the program runs correctly and it is implemented as intended. The cavern BH101 long term nitrogen test was used to validate the model which showed very good agreement with measured data. This supports the claim that the model is, in fact, capturing the relevant physical phenomena and can be used to make accurate predictions of both wellhead pressure and interface movements.« less

  9. Longitudinal Models of Reliability and Validity: A Latent Curve Approach.

    ERIC Educational Resources Information Center

    Tisak, John; Tisak, Marie S.

    1996-01-01

    Dynamic generalizations of reliability and validity that will incorporate longitudinal or developmental models, using latent curve analysis, are discussed. A latent curve model formulated to depict change is incorporated into the classical definitions of reliability and validity. The approach is illustrated with sociological and psychological…

  10. Development and validation of a mass casualty conceptual model.

    PubMed

    Culley, Joan M; Effken, Judith A

    2010-03-01

    To develop and validate a conceptual model that provides a framework for the development and evaluation of information systems for mass casualty events. The model was designed based on extant literature and existing theoretical models. A purposeful sample of 18 experts validated the model. Open-ended questions, as well as a 7-point Likert scale, were used to measure expert consensus on the importance of each construct and its relationship in the model and the usefulness of the model to future research. Computer-mediated applications were used to facilitate a modified Delphi technique through which a panel of experts provided validation for the conceptual model. Rounds of questions continued until consensus was reached, as measured by an interquartile range (no more than 1 scale point for each item); stability (change in the distribution of responses less than 15% between rounds); and percent agreement (70% or greater) for indicator questions. Two rounds of the Delphi process were needed to satisfy the criteria for consensus or stability related to the constructs, relationships, and indicators in the model. The panel reached consensus or sufficient stability to retain all 10 constructs, 9 relationships, and 39 of 44 indicators. Experts viewed the model as useful (mean of 5.3 on a 7-point scale). Validation of the model provides the first step in understanding the context in which mass casualty events take place and identifying variables that impact outcomes of care. This study provides a foundation for understanding the complexity of mass casualty care, the roles that nurses play in mass casualty events, and factors that must be considered in designing and evaluating information-communication systems to support effective triage under these conditions.

  11. Model-based verification and validation of the SMAP uplink processes

    NASA Astrophysics Data System (ADS)

    Khan, M. O.; Dubos, G. F.; Tirona, J.; Standley, S.

    Model-Based Systems Engineering (MBSE) is being used increasingly within the spacecraft design community because of its benefits when compared to document-based approaches. As the complexity of projects expands dramatically with continually increasing computational power and technology infusion, the time and effort needed for verification and validation (V& V) increases geometrically. Using simulation to perform design validation with system-level models earlier in the life cycle stands to bridge the gap between design of the system (based on system-level requirements) and verifying those requirements/validating the system as a whole. This case study stands as an example of how a project can validate a system-level design earlier in the project life cycle than traditional V& V processes by using simulation on a system model. Specifically, this paper describes how simulation was added to a system model of the Soil Moisture Active-Passive (SMAP) mission's uplink process. Also discussed are the advantages and disadvantages of the methods employed and the lessons learned; which are intended to benefit future model-based and simulation-based development efforts.

  12. Control Oriented Modeling and Validation of Aeroservoelastic Systems

    NASA Technical Reports Server (NTRS)

    Crowder, Marianne; deCallafon, Raymond (Principal Investigator)

    2002-01-01

    Lightweight aircraft design emphasizes the reduction of structural weight to maximize aircraft efficiency and agility at the cost of increasing the likelihood of structural dynamic instabilities. To ensure flight safety, extensive flight testing and active structural servo control strategies are required to explore and expand the boundary of the flight envelope. Aeroservoelastic (ASE) models can provide online flight monitoring of dynamic instabilities to reduce flight time testing and increase flight safety. The success of ASE models is determined by the ability to take into account varying flight conditions and the possibility to perform flight monitoring under the presence of active structural servo control strategies. In this continued study, these aspects are addressed by developing specific methodologies and algorithms for control relevant robust identification and model validation of aeroservoelastic structures. The closed-loop model robust identification and model validation are based on a fractional model approach where the model uncertainties are characterized in a closed-loop relevant way.

  13. Design and validation of diffusion MRI models of white matter

    NASA Astrophysics Data System (ADS)

    Jelescu, Ileana O.; Budde, Matthew D.

    2017-11-01

    Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure. A plethora of white matter models have been proposed. However, overparameterization and mathematical fitting complications encourage the introduction of simplifying assumptions that vary between different approaches. These choices impact the quantitative estimation of model parameters with potential detriments to their biological accuracy and promised specificity. First, we review biophysical white matter models in use and recapitulate their underlying assumptions and realms of applicability. Second, we present up-to-date efforts to validate parameters estimated from biophysical models. Simulations and dedicated phantoms are useful in assessing the performance of models when the ground truth is known. However, the biggest challenge remains the validation of the “biological accuracy” of estimated parameters. Complementary techniques such as microscopy of fixed tissue specimens have facilitated direct comparisons of estimates of white matter fiber orientation and densities. However, validation of compartmental diffusivities remains challenging, and complementary MRI-based techniques such as alternative diffusion encodings, compartment-specific contrast agents and metabolites have been used to validate diffusion models. Finally, white matter injury and disease pose additional challenges to modeling, which are also discussed. This review aims to provide an overview of the current state of models and their validation and to stimulate further research in the field to solve the remaining open

  14. Design and validation of diffusion MRI models of white matter

    PubMed Central

    Jelescu, Ileana O.; Budde, Matthew D.

    2018-01-01

    Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure. A plethora of white matter models have been proposed. However, overparameterization and mathematical fitting complications encourage the introduction of simplifying assumptions that vary between different approaches. These choices impact the quantitative estimation of model parameters with potential detriments to their biological accuracy and promised specificity. First, we review biophysical white matter models in use and recapitulate their underlying assumptions and realms of applicability. Second, we present up-to-date efforts to validate parameters estimated from biophysical models. Simulations and dedicated phantoms are useful in assessing the performance of models when the ground truth is known. However, the biggest challenge remains the validation of the “biological accuracy” of estimated parameters. Complementary techniques such as microscopy of fixed tissue specimens have facilitated direct comparisons of estimates of white matter fiber orientation and densities. However, validation of compartmental diffusivities remains challenging, and complementary MRI-based techniques such as alternative diffusion encodings, compartment-specific contrast agents and metabolites have been used to validate diffusion models. Finally, white matter injury and disease pose additional challenges to modeling, which are also discussed. This review aims to provide an overview of the current state of models and their validation and to stimulate further research in the field to solve the remaining open

  15. The Role of Structural Models in the Solar Sail Flight Validation Process

    NASA Technical Reports Server (NTRS)

    Johnston, John D.

    2004-01-01

    NASA is currently soliciting proposals via the New Millennium Program ST-9 opportunity for a potential Solar Sail Flight Validation (SSFV) experiment to develop and operate in space a deployable solar sail that can be steered and provides measurable acceleration. The approach planned for this experiment is to test and validate models and processes for solar sail design, fabrication, deployment, and flight. These models and processes would then be used to design, fabricate, and operate scaleable solar sails for future space science missions. There are six validation objectives planned for the ST9 SSFV experiment: 1) Validate solar sail design tools and fabrication methods; 2) Validate controlled deployment; 3) Validate in space structural characteristics (focus of poster); 4) Validate solar sail attitude control; 5) Validate solar sail thrust performance; 6) Characterize the sail's electromagnetic interaction with the space environment. This poster presents a top-level assessment of the role of structural models in the validation process for in-space structural characteristics.

  16. Modeling and validating the cost and clinical pathway of colorectal cancer.

    PubMed

    Joranger, Paal; Nesbakken, Arild; Hoff, Geir; Sorbye, Halfdan; Oshaug, Arne; Aas, Eline

    2015-02-01

    Cancer is a major cause of morbidity and mortality, and colorectal cancer (CRC) is the third most common cancer in the world. The estimated costs of CRC treatment vary considerably, and if CRC costs in a model are based on empirically estimated total costs of stage I, II, III, or IV treatments, then they lack some flexibility to capture future changes in CRC treatment. The purpose was 1) to describe how to model CRC costs and survival and 2) to validate the model in a transparent and reproducible way. We applied a semi-Markov model with 70 health states and tracked age and time since specific health states (using tunnels and 3-dimensional data matrix). The model parameters are based on an observational study at Oslo University Hospital (2049 CRC patients), the National Patient Register, literature, and expert opinion. The target population was patients diagnosed with CRC. The model followed the patients diagnosed with CRC from the age of 70 until death or 100 years. The study focused on the perspective of health care payers. The model was validated for face validity, internal and external validity, and cross-validity. The validation showed a satisfactory match with other models and empirical estimates for both cost and survival time, without any preceding calibration of the model. The model can be used to 1) address a range of CRC-related themes (general model) like survival and evaluation of the cost of treatment and prevention measures; 2) make predictions from intermediate to final outcomes; 3) estimate changes in resource use and costs due to changing guidelines; and 4) adjust for future changes in treatment and trends over time. The model is adaptable to other populations. © The Author(s) 2014.

  17. Models, validation, and applied geochemistry: Issues in science, communication, and philosophy

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2012-01-01

    Models have become so fashionable that many scientists and engineers cannot imagine working without them. The predominant use of computer codes to execute model calculations has blurred the distinction between code and model. The recent controversy regarding model validation has brought into question what we mean by a ‘model’ and by ‘validation.’ It has become apparent that the usual meaning of validation may be common in engineering practice and seems useful in legal practice but it is contrary to scientific practice and brings into question our understanding of science and how it can best be applied to such problems as hazardous waste characterization, remediation, and aqueous geochemistry in general. This review summarizes arguments against using the phrase model validation and examines efforts to validate models for high-level radioactive waste management and for permitting and monitoring open-pit mines. Part of the controversy comes from a misunderstanding of ‘prediction’ and the need to distinguish logical from temporal prediction. Another problem stems from the difference in the engineering approach contrasted with the scientific approach. The reductionist influence on the way we approach environmental investigations also limits our ability to model the interconnected nature of reality. Guidelines are proposed to improve our perceptions and proper utilization of models. Use of the word ‘validation’ is strongly discouraged when discussing model reliability.

  18. Modeling and Validation of a Three-Stage Solidification Model for Sprays

    NASA Astrophysics Data System (ADS)

    Tanner, Franz X.; Feigl, Kathleen; Windhab, Erich J.

    2010-09-01

    A three-stage freezing model and its validation are presented. In the first stage, the cooling of the droplet down to the freezing temperature is described as a convective heat transfer process in turbulent flow. In the second stage, when the droplet has reached the freezing temperature, the solidification process is initiated via nucleation and crystal growth. The latent heat release is related to the amount of heat convected away from the droplet and the rate of solidification is expressed with a freezing progress variable. After completion of the solidification process, in stage three, the cooling of the solidified droplet (particle) is described again by a convective heat transfer process until the particle approaches the temperature of the gaseous environment. The model has been validated by experimental data of a single cocoa butter droplet suspended in air. The subsequent spray validations have been performed with data obtained from a cocoa butter melt in an experimental spray tower using the open-source computational fluid dynamics code KIVA-3.

  19. Validation of recent geopotential models in Tierra Del Fuego

    NASA Astrophysics Data System (ADS)

    Gomez, Maria Eugenia; Perdomo, Raul; Del Cogliano, Daniel

    2017-10-01

    This work presents a validation study of global geopotential models (GGM) in the region of Fagnano Lake, located in the southern Andes. This is an excellent area for this type of validation because it is surrounded by the Andes Mountains, and there is no terrestrial gravity or GNSS/levelling data. However, there are mean lake level (MLL) observations, and its surface is assumed to be almost equipotential. Furthermore, in this article, we propose improved geoid solutions through the Residual Terrain Modelling (RTM) approach. Using a global geopotential model, the results achieved allow us to conclude that it is possible to use this technique to extend an existing geoid model to those regions that lack any information (neither gravimetric nor GNSS/levelling observations). As GGMs have evolved, our results have improved progressively. While the validation of EGM2008 with MLL data shows a standard deviation of 35 cm, GOCO05C shows a deviation of 13 cm, similar to the results obtained on land.

  20. Cost model validation: a technical and cultural approach

    NASA Technical Reports Server (NTRS)

    Hihn, J.; Rosenberg, L.; Roust, K.; Warfield, K.

    2001-01-01

    This paper summarizes how JPL's parametric mission cost model (PMCM) has been validated using both formal statistical methods and a variety of peer and management reviews in order to establish organizational acceptance of the cost model estimates.

  1. Pharmacokinetic modeling of gentamicin in treatment of infective endocarditis: Model development and validation of existing models.

    PubMed

    Gomes, Anna; van der Wijk, Lars; Proost, Johannes H; Sinha, Bhanu; Touw, Daan J

    2017-01-01

    Gentamicin shows large variations in half-life and volume of distribution (Vd) within and between individuals. Thus, monitoring and accurately predicting serum levels are required to optimize effectiveness and minimize toxicity. Currently, two population pharmacokinetic models are applied for predicting gentamicin doses in adults. For endocarditis patients the optimal model is unknown. We aimed at: 1) creating an optimal model for endocarditis patients; and 2) assessing whether the endocarditis and existing models can accurately predict serum levels. We performed a retrospective observational two-cohort study: one cohort to parameterize the endocarditis model by iterative two-stage Bayesian analysis, and a second cohort to validate and compare all three models. The Akaike Information Criterion and the weighted sum of squares of the residuals divided by the degrees of freedom were used to select the endocarditis model. Median Prediction Error (MDPE) and Median Absolute Prediction Error (MDAPE) were used to test all models with the validation dataset. We built the endocarditis model based on data from the modeling cohort (65 patients) with a fixed 0.277 L/h/70kg metabolic clearance, 0.698 (±0.358) renal clearance as fraction of creatinine clearance, and Vd 0.312 (±0.076) L/kg corrected lean body mass. External validation with data from 14 validation cohort patients showed a similar predictive power of the endocarditis model (MDPE -1.77%, MDAPE 4.68%) as compared to the intensive-care (MDPE -1.33%, MDAPE 4.37%) and standard (MDPE -0.90%, MDAPE 4.82%) models. All models acceptably predicted pharmacokinetic parameters for gentamicin in endocarditis patients. However, these patients appear to have an increased Vd, similar to intensive care patients. Vd mainly determines the height of peak serum levels, which in turn correlate with bactericidal activity. In order to maintain simplicity, we advise to use the existing intensive-care model in clinical practice to avoid

  2. Pharmacokinetic modeling of gentamicin in treatment of infective endocarditis: Model development and validation of existing models

    PubMed Central

    van der Wijk, Lars; Proost, Johannes H.; Sinha, Bhanu; Touw, Daan J.

    2017-01-01

    Gentamicin shows large variations in half-life and volume of distribution (Vd) within and between individuals. Thus, monitoring and accurately predicting serum levels are required to optimize effectiveness and minimize toxicity. Currently, two population pharmacokinetic models are applied for predicting gentamicin doses in adults. For endocarditis patients the optimal model is unknown. We aimed at: 1) creating an optimal model for endocarditis patients; and 2) assessing whether the endocarditis and existing models can accurately predict serum levels. We performed a retrospective observational two-cohort study: one cohort to parameterize the endocarditis model by iterative two-stage Bayesian analysis, and a second cohort to validate and compare all three models. The Akaike Information Criterion and the weighted sum of squares of the residuals divided by the degrees of freedom were used to select the endocarditis model. Median Prediction Error (MDPE) and Median Absolute Prediction Error (MDAPE) were used to test all models with the validation dataset. We built the endocarditis model based on data from the modeling cohort (65 patients) with a fixed 0.277 L/h/70kg metabolic clearance, 0.698 (±0.358) renal clearance as fraction of creatinine clearance, and Vd 0.312 (±0.076) L/kg corrected lean body mass. External validation with data from 14 validation cohort patients showed a similar predictive power of the endocarditis model (MDPE -1.77%, MDAPE 4.68%) as compared to the intensive-care (MDPE -1.33%, MDAPE 4.37%) and standard (MDPE -0.90%, MDAPE 4.82%) models. All models acceptably predicted pharmacokinetic parameters for gentamicin in endocarditis patients. However, these patients appear to have an increased Vd, similar to intensive care patients. Vd mainly determines the height of peak serum levels, which in turn correlate with bactericidal activity. In order to maintain simplicity, we advise to use the existing intensive-care model in clinical practice to avoid

  3. Predicting the ungauged basin: model validation and realism assessment

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Mulder, Gert; Eilander, Dirk; Piet, Marijn; Savenije, Hubert

    2016-04-01

    The hydrological decade on Predictions in Ungauged Basins (PUB) [1] led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of model outcome has not been discussed to a great extent. With this study [2] we aim to contribute to the discussion on how one can determine the value and validity of a hydrological model developed for an ungauged basin. As in many cases no local, or even regional, data are available, alternative methods should be applied. Using a PUB case study in a genuinely ungauged basin in southern Cambodia, we give several examples of how one can use different types of soft data to improve model design, calibrate and validate the model, and assess the realism of the model output. A rainfall-runoff model was coupled to an irrigation reservoir, allowing the use of additional and unconventional data. The model was mainly forced with remote sensing data, and local knowledge was used to constrain the parameters. Model realism assessment was done using data from surveys. This resulted in a successful reconstruction of the reservoir dynamics, and revealed the different hydrological characteristics of the two topographical classes. We do not present a generic approach that can be transferred to other ungauged catchments, but we aim to show how clever model design and alternative data acquisition can result in a valuable hydrological model for ungauged catchments. [1] Sivapalan, M., Takeuchi, K., Franks, S., Gupta, V., Karambiri, H., Lakshmi, V., et al. (2003). IAHS decade on predictions in ungauged basins (PUB), 2003-2012: shaping an exciting future for the hydrological sciences. Hydrol. Sci. J. 48, 857-880. doi: 10.1623/hysj.48.6.857.51421 [2] van Emmerik, T., Mulder, G., Eilander, D., Piet, M. and Savenije, H. (2015). Predicting the ungauged basin: model validation and realism assessment

  4. Validation and calibration of structural models that combine information from multiple sources.

    PubMed

    Dahabreh, Issa J; Wong, John B; Trikalinos, Thomas A

    2017-02-01

    Mathematical models that attempt to capture structural relationships between their components and combine information from multiple sources are increasingly used in medicine. Areas covered: We provide an overview of methods for model validation and calibration and survey studies comparing alternative approaches. Expert commentary: Model validation entails a confrontation of models with data, background knowledge, and other models, and can inform judgments about model credibility. Calibration involves selecting parameter values to improve the agreement of model outputs with data. When the goal of modeling is quantitative inference on the effects of interventions or forecasting, calibration can be viewed as estimation. This view clarifies issues related to parameter identifiability and facilitates formal model validation and the examination of consistency among different sources of information. In contrast, when the goal of modeling is the generation of qualitative insights about the modeled phenomenon, calibration is a rather informal process for selecting inputs that result in model behavior that roughly reproduces select aspects of the modeled phenomenon and cannot be equated to an estimation procedure. Current empirical research on validation and calibration methods consists primarily of methodological appraisals or case-studies of alternative techniques and cannot address the numerous complex and multifaceted methodological decisions that modelers must make. Further research is needed on different approaches for developing and validating complex models that combine evidence from multiple sources.

  5. Validation analysis of probabilistic models of dietary exposure to food additives.

    PubMed

    Gilsenan, M B; Thompson, R L; Lambe, J; Gibney, M J

    2003-10-01

    The validity of a range of simple conceptual models designed specifically for the estimation of food additive intakes using probabilistic analysis was assessed. Modelled intake estimates that fell below traditional conservative point estimates of intake and above 'true' additive intakes (calculated from a reference database at brand level) were considered to be in a valid region. Models were developed for 10 food additives by combining food intake data, the probability of an additive being present in a food group and additive concentration data. Food intake and additive concentration data were entered as raw data or as a lognormal distribution, and the probability of an additive being present was entered based on the per cent brands or the per cent eating occasions within a food group that contained an additive. Since the three model components assumed two possible modes of input, the validity of eight (2(3)) model combinations was assessed. All model inputs were derived from the reference database. An iterative approach was employed in which the validity of individual model components was assessed first, followed by validation of full conceptual models. While the distribution of intake estimates from models fell below conservative intakes, which assume that the additive is present at maximum permitted levels (MPLs) in all foods in which it is permitted, intake estimates were not consistently above 'true' intakes. These analyses indicate the need for more complex models for the estimation of food additive intakes using probabilistic analysis. Such models should incorporate information on market share and/or brand loyalty.

  6. Empirical validation of an agent-based model of wood markets in Switzerland

    PubMed Central

    Hilty, Lorenz M.; Lemm, Renato; Thees, Oliver

    2018-01-01

    We present an agent-based model of wood markets and show our efforts to validate this model using empirical data from different sources, including interviews, workshops, experiments, and official statistics. Own surveys closed gaps where data was not available. Our approach to model validation used a variety of techniques, including the replication of historical production amounts, prices, and survey results, as well as a historical case study of a large sawmill entering the market and becoming insolvent only a few years later. Validating the model using this case provided additional insights, showing how the model can be used to simulate scenarios of resource availability and resource allocation. We conclude that the outcome of the rigorous validation qualifies the model to simulate scenarios concerning resource availability and allocation in our study region. PMID:29351300

  7. CheS-Mapper 2.0 for visual validation of (Q)SAR models

    PubMed Central

    2014-01-01

    Background Sound statistical validation is important to evaluate and compare the overall performance of (Q)SAR models. However, classical validation does not support the user in better understanding the properties of the model or the underlying data. Even though, a number of visualization tools for analyzing (Q)SAR information in small molecule datasets exist, integrated visualization methods that allow the investigation of model validation results are still lacking. Results We propose visual validation, as an approach for the graphical inspection of (Q)SAR model validation results. The approach applies the 3D viewer CheS-Mapper, an open-source application for the exploration of small molecules in virtual 3D space. The present work describes the new functionalities in CheS-Mapper 2.0, that facilitate the analysis of (Q)SAR information and allows the visual validation of (Q)SAR models. The tool enables the comparison of model predictions to the actual activity in feature space. The approach is generic: It is model-independent and can handle physico-chemical and structural input features as well as quantitative and qualitative endpoints. Conclusions Visual validation with CheS-Mapper enables analyzing (Q)SAR information in the data and indicates how this information is employed by the (Q)SAR model. It reveals, if the endpoint is modeled too specific or too generic and highlights common properties of misclassified compounds. Moreover, the researcher can use CheS-Mapper to inspect how the (Q)SAR model predicts activity cliffs. The CheS-Mapper software is freely available at http://ches-mapper.org. Graphical abstract Comparing actual and predicted activity values with CheS-Mapper.

  8. Description of a Website Resource for Turbulence Modeling Verification and Validation

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Smith, Brian R.; Huang, George P.

    2010-01-01

    The activities of the Turbulence Model Benchmarking Working Group - which is a subcommittee of the American Institute of Aeronautics and Astronautics (AIAA) Fluid Dynamics Technical Committee - are described. The group s main purpose is to establish a web-based repository for Reynolds-averaged Navier-Stokes turbulence model documentation, including verification and validation cases. This turbulence modeling resource has been established based on feedback from a survey on what is needed to achieve consistency and repeatability in turbulence model implementation and usage, and to document and disseminate information on new turbulence models or improvements to existing models. The various components of the website are described in detail: description of turbulence models, turbulence model readiness rating system, verification cases, validation cases, validation databases, and turbulence manufactured solutions. An outline of future plans of the working group is also provided.

  9. Modeling and Validation of Microwave Ablations with Internal Vaporization

    PubMed Central

    Chiang, Jason; Birla, Sohan; Bedoya, Mariajose; Jones, David; Subbiah, Jeyam; Brace, Christopher L.

    2014-01-01

    Numerical simulation is increasingly being utilized for computer-aided design of treatment devices, analysis of ablation growth, and clinical treatment planning. Simulation models to date have incorporated electromagnetic wave propagation and heat conduction, but not other relevant physics such as water vaporization and mass transfer. Such physical changes are particularly noteworthy during the intense heat generation associated with microwave heating. In this work, a numerical model was created that integrates microwave heating with water vapor generation and transport by using porous media assumptions in the tissue domain. The heating physics of the water vapor model was validated through temperature measurements taken at locations 5, 10 and 20 mm away from the heating zone of the microwave antenna in homogenized ex vivo bovine liver setup. Cross-sectional area of water vapor transport was validated through intra-procedural computed tomography (CT) during microwave ablations in homogenized ex vivo bovine liver. Iso-density contours from CT images were compared to vapor concentration contours from the numerical model at intermittent time points using the Jaccard Index. In general, there was an improving correlation in ablation size dimensions as the ablation procedure proceeded, with a Jaccard Index of 0.27, 0.49, 0.61, 0.67 and 0.69 at 1, 2, 3, 4, and 5 minutes. This study demonstrates the feasibility and validity of incorporating water vapor concentration into thermal ablation simulations and validating such models experimentally. PMID:25330481

  10. Highlights of Transient Plume Impingement Model Validation and Applications

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2011-01-01

    This paper describes highlights of an ongoing validation effort conducted to assess the viability of applying a set of analytic point source transient free molecule equations to model behavior ranging from molecular effusion to rocket plumes. The validation effort includes encouraging comparisons to both steady and transient studies involving experimental data and direct simulation Monte Carlo results. Finally, this model is applied to describe features of two exotic transient scenarios involving NASA Goddard Space Flight Center satellite programs.

  11. PACIC Instrument: disentangling dimensions using published validation models.

    PubMed

    Iglesias, K; Burnand, B; Peytremann-Bridevaux, I

    2014-06-01

    To better understand the structure of the Patient Assessment of Chronic Illness Care (PACIC) instrument. More specifically to test all published validation models, using one single data set and appropriate statistical tools. Validation study using data from cross-sectional survey. A population-based sample of non-institutionalized adults with diabetes residing in Switzerland (canton of Vaud). French version of the 20-items PACIC instrument (5-point response scale). We conducted validation analyses using confirmatory factor analysis (CFA). The original five-dimension model and other published models were tested with three types of CFA: based on (i) a Pearson estimator of variance-covariance matrix, (ii) a polychoric correlation matrix and (iii) a likelihood estimation with a multinomial distribution for the manifest variables. All models were assessed using loadings and goodness-of-fit measures. The analytical sample included 406 patients. Mean age was 64.4 years and 59% were men. Median of item responses varied between 1 and 4 (range 1-5), and range of missing values was between 5.7 and 12.3%. Strong floor and ceiling effects were present. Even though loadings of the tested models were relatively high, the only model showing acceptable fit was the 11-item single-dimension model. PACIC was associated with the expected variables of the field. Our results showed that the model considering 11 items in a single dimension exhibited the best fit for our data. A single score, in complement to the consideration of single-item results, might be used instead of the five dimensions usually described. © The Author 2014. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  12. Cross-validation of an employee safety climate model in Malaysia.

    PubMed

    Bahari, Siti Fatimah; Clarke, Sharon

    2013-06-01

    Whilst substantial research has investigated the nature of safety climate, and its importance as a leading indicator of organisational safety, much of this research has been conducted with Western industrial samples. The current study focuses on the cross-validation of a safety climate model in the non-Western industrial context of Malaysian manufacturing. The first-order factorial validity of Cheyne et al.'s (1998) [Cheyne, A., Cox, S., Oliver, A., Tomas, J.M., 1998. Modelling safety climate in the prediction of levels of safety activity. Work and Stress, 12(3), 255-271] model was tested, using confirmatory factor analysis, in a Malaysian sample. Results showed that the model fit indices were below accepted levels, indicating that the original Cheyne et al. (1998) safety climate model was not supported. An alternative three-factor model was developed using exploratory factor analysis. Although these findings are not consistent with previously reported cross-validation studies, we argue that previous studies have focused on validation across Western samples, and that the current study demonstrates the need to take account of cultural factors in the development of safety climate models intended for use in non-Western contexts. The results have important implications for the transferability of existing safety climate models across cultures (for example, in global organisations) and highlight the need for future research to examine cross-cultural issues in relation to safety climate. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  13. Using airborne laser scanning profiles to validate marine geoid models

    NASA Astrophysics Data System (ADS)

    Julge, Kalev; Gruno, Anti; Ellmann, Artu; Liibusk, Aive; Oja, Tõnis

    2014-05-01

    Airborne laser scanning (ALS) is a remote sensing method which utilizes LiDAR (Light Detection And Ranging) technology. The datasets collected are important sources for large range of scientific and engineering applications. Mostly the ALS is used to measure terrain surfaces for compilation of Digital Elevation Models but it can also be used in other applications. This contribution focuses on usage of ALS system for measuring sea surface heights and validating gravimetric geoid models over marine areas. This is based on the ALS ability to register echoes of LiDAR pulse from the water surface. A case study was carried out to analyse the possibilities for validating marine geoid models by using ALS profiles. A test area at the southern shores of the Gulf of Finland was selected for regional geoid validation. ALS measurements were carried out by the Estonian Land Board in spring 2013 at different altitudes and using different scan rates. The one wavelength Leica ALS50-II laser scanner on board of a small aircraft was used to determine the sea level (with respect to the GRS80 reference ellipsoid), which follows roughly the equipotential surface of the Earth's gravity field. For the validation a high-resolution (1'x2') regional gravimetric GRAV-GEOID2011 model was used. This geoid model covers the entire area of Estonia and surrounding waters of the Baltic Sea. The fit between the geoid model and GNSS/levelling data within the Estonian dry land revealed RMS of residuals ±1… ±2 cm. Note that such fitting validation cannot proceed over marine areas. Therefore, an ALS observation-based methodology was developed to evaluate the GRAV-GEOID2011 quality over marine areas. The accuracy of acquired ALS dataset were analyzed, also an optimal width of nadir-corridor containing good quality ALS data was determined. Impact of ALS scan angle range and flight altitude to obtainable vertical accuracy were investigated as well. The quality of point cloud is analysed by cross

  14. Predicting Pilot Error in Nextgen: Pilot Performance Modeling and Validation Efforts

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher; Sebok, Angelia; Gore, Brian; Hooey, Becky

    2012-01-01

    We review 25 articles presenting 5 general classes of computational models to predict pilot error. This more targeted review is placed within the context of the broader review of computational models of pilot cognition and performance, including such aspects as models of situation awareness or pilot-automation interaction. Particular emphasis is placed on the degree of validation of such models against empirical pilot data, and the relevance of the modeling and validation efforts to Next Gen technology and procedures.

  15. Is the Acute NMDA Receptor Hypofunction a Valid Model of Schizophrenia?

    PubMed Central

    Adell, Albert; Jiménez-Sánchez, Laura; López-Gil, Xavier; Romón, Tamara

    2012-01-01

    Several genetic, neurodevelopmental, and pharmacological animal models of schizophrenia have been established. This short review examines the validity of one of the most used pharmacological model of the illness, ie, the acute administration of N-methyl-D-aspartate (NMDA) receptor antagonists in rodents. In some cases, data on chronic or prenatal NMDA receptor antagonist exposure have been introduced for comparison. The face validity of acute NMDA receptor blockade is granted inasmuch as hyperlocomotion and stereotypies induced by phencyclidine, ketamine, and MK-801 are regarded as a surrogate for the positive symptoms of schizophrenia. In addition, the loss of parvalbumin-containing cells (which is one of the most compelling finding in postmortem schizophrenia brain) following NMDA receptor blockade adds construct validity to this model. However, the lack of changes in glutamic acid decarboxylase (GAD67) is at variance with human studies. It is possible that changes in GAD67 are more reflective of the neurodevelopmental condition of schizophrenia. Finally, the model also has predictive validity, in that its behavioral and transmitter activation in rodents are responsive to antipsychotic treatment. Overall, although not devoid of drawbacks, the acute administration of NMDA receptor antagonists can be considered as a good model of schizophrenia bearing a satisfactory degree of validity. PMID:21965469

  16. A new framework to enhance the interpretation of external validation studies of clinical prediction models.

    PubMed

    Debray, Thomas P A; Vergouwe, Yvonne; Koffijberg, Hendrik; Nieboer, Daan; Steyerberg, Ewout W; Moons, Karel G M

    2015-03-01

    It is widely acknowledged that the performance of diagnostic and prognostic prediction models should be assessed in external validation studies with independent data from "different but related" samples as compared with that of the development sample. We developed a framework of methodological steps and statistical methods for analyzing and enhancing the interpretation of results from external validation studies of prediction models. We propose to quantify the degree of relatedness between development and validation samples on a scale ranging from reproducibility to transportability by evaluating their corresponding case-mix differences. We subsequently assess the models' performance in the validation sample and interpret the performance in view of the case-mix differences. Finally, we may adjust the model to the validation setting. We illustrate this three-step framework with a prediction model for diagnosing deep venous thrombosis using three validation samples with varying case mix. While one external validation sample merely assessed the model's reproducibility, two other samples rather assessed model transportability. The performance in all validation samples was adequate, and the model did not require extensive updating to correct for miscalibration or poor fit to the validation settings. The proposed framework enhances the interpretation of findings at external validation of prediction models. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. MRI-based modeling for radiocarpal joint mechanics: validation criteria and results for four specimen-specific models.

    PubMed

    Fischer, Kenneth J; Johnson, Joshua E; Waller, Alexander J; McIff, Terence E; Toby, E Bruce; Bilgen, Mehmet

    2011-10-01

    The objective of this study was to validate the MRI-based joint contact modeling methodology in the radiocarpal joints by comparison of model results with invasive specimen-specific radiocarpal contact measurements from four cadaver experiments. We used a single validation criterion for multiple outcome measures to characterize the utility and overall validity of the modeling approach. For each experiment, a Pressurex film and a Tekscan sensor were sequentially placed into the radiocarpal joints during simulated grasp. Computer models were constructed based on MRI visualization of the cadaver specimens without load. Images were also acquired during the loaded configuration used with the direct experimental measurements. Geometric surface models of the radius, scaphoid and lunate (including cartilage) were constructed from the images acquired without the load. The carpal bone motions from the unloaded state to the loaded state were determined using a series of 3D image registrations. Cartilage thickness was assumed uniform at 1.0 mm with an effective compressive modulus of 4 MPa. Validation was based on experimental versus model contact area, contact force, average contact pressure and peak contact pressure for the radioscaphoid and radiolunate articulations. Contact area was also measured directly from images acquired under load and compared to the experimental and model data. Qualitatively, there was good correspondence between the MRI-based model data and experimental data, with consistent relative size, shape and location of radioscaphoid and radiolunate contact regions. Quantitative data from the model generally compared well with the experimental data for all specimens. Contact area from the MRI-based model was very similar to the contact area measured directly from the images. For all outcome measures except average and peak pressures, at least two specimen models met the validation criteria with respect to experimental measurements for both articulations

  18. Some guidance on preparing validation plans for the DART Full System Models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, Genetha Anne; Hough, Patricia Diane; Hills, Richard Guy

    2009-03-01

    Planning is an important part of computational model verification and validation (V&V) and the requisite planning document is vital for effectively executing the plan. The document provides a means of communicating intent to the typically large group of people, from program management to analysts to test engineers, who must work together to complete the validation activities. This report provides guidelines for writing a validation plan. It describes the components of such a plan and includes important references and resources. While the initial target audience is the DART Full System Model teams in the nuclear weapons program, the guidelines are generallymore » applicable to other modeling efforts. Our goal in writing this document is to provide a framework for consistency in validation plans across weapon systems, different types of models, and different scenarios. Specific details contained in any given validation plan will vary according to application requirements and available resources.« less

  19. Validation of an Evaluation Model for Learning Management Systems

    ERIC Educational Resources Information Center

    Kim, S. W.; Lee, M. G.

    2008-01-01

    This study aims to validate a model for evaluating learning management systems (LMS) used in e-learning fields. A survey of 163 e-learning experts, regarding 81 validation items developed through literature review, was used to ascertain the importance of the criteria. A concise list of explanatory constructs, including two principle factors, was…

  20. Molprobity's ultimate rotamer-library distributions for model validation.

    PubMed

    Hintze, Bradley J; Lewis, Steven M; Richardson, Jane S; Richardson, David C

    2016-09-01

    Here we describe the updated MolProbity rotamer-library distributions derived from an order-of-magnitude larger and more stringently quality-filtered dataset of about 8000 (vs. 500) protein chains, and we explain the resulting changes and improvements to model validation as seen by users. To include only side-chains with satisfactory justification for their given conformation, we added residue-specific filters for electron-density value and model-to-density fit. The combined new protocol retains a million residues of data, while cleaning up false-positive noise in the multi- χ datapoint distributions. It enables unambiguous characterization of conformational clusters nearly 1000-fold less frequent than the most common ones. We describe examples of local interactions that favor these rare conformations, including the role of authentic covalent bond-angle deviations in enabling presumably strained side-chain conformations. Further, along with favored and outlier, an allowed category (0.3-2.0% occurrence in reference data) has been added, analogous to Ramachandran validation categories. The new rotamer distributions are used for current rotamer validation in MolProbity and PHENIX, and for rotamer choice in PHENIX model-building and refinement. The multi-dimensional χ distributions and Top8000 reference dataset are freely available on GitHub. These rotamers are termed "ultimate" because data sampling and quality are now fully adequate for this task, and also because we believe the future of conformational validation should integrate side-chain with backbone criteria. Proteins 2016; 84:1177-1189. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. FDA 2011 process validation guidance: lifecycle compliance model.

    PubMed

    Campbell, Cliff

    2014-01-01

    This article has been written as a contribution to the industry's efforts in migrating from a document-driven to a data-driven compliance mindset. A combination of target product profile, control engineering, and general sum principle techniques is presented as the basis of a simple but scalable lifecycle compliance model in support of modernized process validation. Unit operations and significant variables occupy pole position within the model, documentation requirements being treated as a derivative or consequence of the modeling process. The quality system is repositioned as a subordinate of system quality, this being defined as the integral of related "system qualities". The article represents a structured interpretation of the U.S. Food and Drug Administration's 2011 Guidance for Industry on Process Validation and is based on the author's educational background and his manufacturing/consulting experience in the validation field. The U.S. Food and Drug Administration's Guidance for Industry on Process Validation (2011) provides a wide-ranging and rigorous outline of compliant drug manufacturing requirements relative to its 20(th) century predecessor (1987). Its declared focus is patient safety, and it identifies three inter-related (and obvious) stages of the compliance lifecycle. Firstly, processes must be designed, both from a technical and quality perspective. Secondly, processes must be qualified, providing evidence that the manufacturing facility is fully "roadworthy" and fit for its intended purpose. Thirdly, processes must be verified, meaning that commercial batches must be monitored to ensure that processes remain in a state of control throughout their lifetime.

  2. Institutional Effectiveness: A Model for Planning, Assessment & Validation.

    ERIC Educational Resources Information Center

    Truckee Meadows Community Coll., Sparks, NV.

    The report presents Truckee Meadows Community College's (Colorado) model for assessing institutional effectiveness and validating the College's mission and vision, and the strategic plan for carrying out the institutional effectiveness model. It also outlines strategic goals for the years 1999-2001. From the system-wide directive that education…

  3. Evaluation experimentale et theorique du comportement a la flexion de nouveaux poteaux en materiaux composites

    NASA Astrophysics Data System (ADS)

    Metiche, Slimane

    entre ces proprietes est due au nombre de couches utilisees dans chaque zone ainsi qu'a l'orientation des fibres de chaque couche. Un total de vingt-trois prototypes de dimensions differentes; ont ete testes en flexion jusqu'a la rupture. Deux types de fibres de verre de masses lineaires differentes, ont ete utilisees afin d'evaluer l'effet du type de fibres sur le comportement a la flexion. Un nouveau montage experimental permettant de tester tous les types de poteaux en PRF a ete dimensionne et fabrique selon les recommandations decrites dans les normes ASTM D 4923-01 et ANSI C 136.20-2005. Un modele analytique base sur la theorie des poutres en elasticite lineaire est propose dans cette these. Ce modele predit avec une bonne precision le comportement experimental charge---deflexion ainsi que la deflexion maximale au sommet des poteaux en PRF; constitues de plusieurs zones de caracteristiques geometriques et mecaniques differentes. Une procedure de dimensionnement des poteaux en PRF, basee sur les resultats experimentaux obtenus dans le cadre de la presente these, est egalement proposee. Les resultats obtenus dans le cadre de la presente these permettront le developpement et l'amelioration des regles de conception utiles et pratiques a l'usage des concepteurs et des industriels du domaine des poteaux en PRF. Les retombees de cette recherche sont a la fois economiques et technologiques, car les resultats obtenus constitueront une banque de donnees qui contribueront au developpement des normes de calcul, et par consequent a l'optimisation des materiaux utilises, et serviront a valider de futurs resultats et modeles theoriques.

  4. Validating a Technology Enhanced Student-Centered Learning Model

    ERIC Educational Resources Information Center

    Kang, Myunghee; Hahn, Jungsun; Chung, Warren

    2015-01-01

    The Technology Enhanced Student Centered Learning (TESCL) Model in this study presents the core factors that ensure the quality of learning in a technology-supported environment. Although the model was conceptually constructed using a student-centered learning framework and drawing upon previous studies, it should be validated through real-world…

  5. Finite Element Model Development and Validation for Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.

  6. Finite Element Model and Validation of Nasal Tip Deformation

    PubMed Central

    Manuel, Cyrus T; Harb, Rani; Badran, Alan; Ho, David; Wong, Brian JF

    2016-01-01

    Nasal tip mechanical stability is important for functional and cosmetic nasal airway surgery. Palpation of the nasal tip provides information on tip strength to the surgeon, though it is a purely subjective assessment. Providing a means to simulate nasal tip deformation with a validated model can offer a more objective approach in understanding the mechanics and nuances of the nasal tip support and eventual nasal mechanics as a whole. Herein we present validation of a finite element (FE) model of the nose using physical measurements recorded using an ABS plastic-silicone nasal phantom. Three-dimensional photogrammetry was used to capture the geometry of the phantom at rest and while under steady state load. The silicone used to make the phantom was mechanically tested and characterized using a linear elastic constitutive model. Surface point clouds of the silicone and FE model were compared for both the loaded and unloaded state. The average Hausdorff distance between actual measurements and FE simulations across the nose were 0.39mm ± 1.04 mm and deviated up to 2mm at the outermost boundaries of the model. FE simulation and measurements were in near complete agreement in the immediate vicinity of the nasal tip with millimeter accuracy. We have demonstrated validation of a two-component nasal FE model, which could be used to model more complex modes of deformation where direct measurement may be challenging. This is the first step in developing a nasal model to simulate nasal mechanics and ultimately the interaction between geometry and airflow. PMID:27633018

  7. Finite Element Model and Validation of Nasal Tip Deformation.

    PubMed

    Manuel, Cyrus T; Harb, Rani; Badran, Alan; Ho, David; Wong, Brian J F

    2017-03-01

    Nasal tip mechanical stability is important for functional and cosmetic nasal airway surgery. Palpation of the nasal tip provides information on tip strength to the surgeon, though it is a purely subjective assessment. Providing a means to simulate nasal tip deformation with a validated model can offer a more objective approach in understanding the mechanics and nuances of the nasal tip support and eventual nasal mechanics as a whole. Herein we present validation of a finite element (FE) model of the nose using physical measurements recorded using an ABS plastic-silicone nasal phantom. Three-dimensional photogrammetry was used to capture the geometry of the phantom at rest and while under steady state load. The silicone used to make the phantom was mechanically tested and characterized using a linear elastic constitutive model. Surface point clouds of the silicone and FE model were compared for both the loaded and unloaded state. The average Hausdorff distance between actual measurements and FE simulations across the nose were 0.39 ± 1.04 mm and deviated up to 2 mm at the outermost boundaries of the model. FE simulation and measurements were in near complete agreement in the immediate vicinity of the nasal tip with millimeter accuracy. We have demonstrated validation of a two-component nasal FE model, which could be used to model more complex modes of deformation where direct measurement may be challenging. This is the first step in developing a nasal model to simulate nasal mechanics and ultimately the interaction between geometry and airflow.

  8. Validation and Trustworthiness of Multiscale Models of Cardiac Electrophysiology

    PubMed Central

    Pathmanathan, Pras; Gray, Richard A.

    2018-01-01

    Computational models of cardiac electrophysiology have a long history in basic science applications and device design and evaluation, but have significant potential for clinical applications in all areas of cardiovascular medicine, including functional imaging and mapping, drug safety evaluation, disease diagnosis, patient selection, and therapy optimisation or personalisation. For all stakeholders to be confident in model-based clinical decisions, cardiac electrophysiological (CEP) models must be demonstrated to be trustworthy and reliable. Credibility, that is, the belief in the predictive capability, of a computational model is primarily established by performing validation, in which model predictions are compared to experimental or clinical data. However, there are numerous challenges to performing validation for highly complex multi-scale physiological models such as CEP models. As a result, credibility of CEP model predictions is usually founded upon a wide range of distinct factors, including various types of validation results, underlying theory, evidence supporting model assumptions, evidence from model calibration, all at a variety of scales from ion channel to cell to organ. Consequently, it is often unclear, or a matter for debate, the extent to which a CEP model can be trusted for a given application. The aim of this article is to clarify potential rationale for the trustworthiness of CEP models by reviewing evidence that has been (or could be) presented to support their credibility. We specifically address the complexity and multi-scale nature of CEP models which makes traditional model evaluation difficult. In addition, we make explicit some of the credibility justification that we believe is implicitly embedded in the CEP modeling literature. Overall, we provide a fresh perspective to CEP model credibility, and build a depiction and categorisation of the wide-ranging body of credibility evidence for CEP models. This paper also represents a step

  9. Testing the validity of the International Atomic Energy Agency (IAEA) safety culture model.

    PubMed

    López de Castro, Borja; Gracia, Francisco J; Peiró, José M; Pietrantoni, Luca; Hernández, Ana

    2013-11-01

    This paper takes the first steps to empirically validate the widely used model of safety culture of the International Atomic Energy Agency (IAEA), composed of five dimensions, further specified by 37 attributes. To do so, three independent and complementary studies are presented. First, 290 students serve to collect evidence about the face validity of the model. Second, 48 experts in organizational behavior judge its content validity. And third, 468 workers in a Spanish nuclear power plant help to reveal how closely the theoretical five-dimensional model can be replicated. Our findings suggest that several attributes of the model may not be related to their corresponding dimensions. According to our results, a one-dimensional structure fits the data better than the five dimensions proposed by the IAEA. Moreover, the IAEA model, as it stands, seems to have rather moderate content validity and low face validity. Practical implications for researchers and practitioners are included. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Using the split Hopkinson pressure bar to validate material models.

    PubMed

    Church, Philip; Cornish, Rory; Cullis, Ian; Gould, Peter; Lewtas, Ian

    2014-08-28

    This paper gives a discussion of the use of the split-Hopkinson bar with particular reference to the requirements of materials modelling at QinetiQ. This is to deploy validated material models for numerical simulations that are physically based and have as little characterization overhead as possible. In order to have confidence that the models have a wide range of applicability, this means, at most, characterizing the models at low rate and then validating them at high rate. The split Hopkinson pressure bar (SHPB) is ideal for this purpose. It is also a very useful tool for analysing material behaviour under non-shock wave loading. This means understanding the output of the test and developing techniques for reliable comparison of simulations with SHPB data. For materials other than metals comparison with an output stress v strain curve is not sufficient as the assumptions built into the classical analysis are generally violated. The method described in this paper compares the simulations with as much validation data as can be derived from deployed instrumentation including the raw strain gauge data on the input and output bars, which avoids any assumptions about stress equilibrium. One has to take into account Pochhammer-Chree oscillations and their effect on the specimen and recognize that this is itself also a valuable validation test of the material model. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Construct validity of the ovine model in endoscopic sinus surgery training.

    PubMed

    Awad, Zaid; Taghi, Ali; Sethukumar, Priya; Tolley, Neil S

    2015-03-01

    To demonstrate construct validity of the ovine model as a tool for training in endoscopic sinus surgery (ESS). Prospective, cross-sectional evaluation study. Over 18 consecutive months, trainees and experts were evaluated in their ability to perform a range of tasks (based on previous face validation and descriptive studies conducted by the same group) relating to ESS on the sheep-head model. Anonymized randomized video recordings of the above were assessed by two independent and blinded assessors. A validated assessment tool utilizing a five-point Likert scale was employed. Construct validity was calculated by comparing scores across training levels and experts using mean and interquartile range of global and task-specific scores. Subgroup analysis of the intermediate group ascertained previous experience. Nonparametric descriptive statistics were used, and analysis was carried out using SPSS version 21 (IBM, Armonk, NY). Reliability of the assessment tool was confirmed. The model discriminated well between different levels of expertise in global and task-specific scores. A positive correlation was noted between year in training and both global and task-specific scores (P < .001). Experience of the intermediate group was variable, and the number of ESS procedures performed under supervision had the highest impact on performance. This study describes an alternative model for ESS training and assessment. It is also the first to demonstrate construct validity of the sheep-head model for ESS training. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  12. Community-wide validation of geospace model local K-index predictions to support model transition to operations

    NASA Astrophysics Data System (ADS)

    Glocer, A.; Rastätter, L.; Kuznetsova, M.; Pulkkinen, A.; Singer, H. J.; Balch, C.; Weimer, D.; Welling, D.; Wiltberger, M.; Raeder, J.; Weigel, R. S.; McCollough, J.; Wing, S.

    2016-07-01

    We present the latest result of a community-wide space weather model validation effort coordinated among the Community Coordinated Modeling Center (CCMC), NOAA Space Weather Prediction Center (SWPC), model developers, and the broader science community. Validation of geospace models is a critical activity for both building confidence in the science results produced by the models and in assessing the suitability of the models for transition to operations. Indeed, a primary motivation of this work is supporting NOAA/SWPC's effort to select a model or models to be transitioned into operations. Our validation efforts focus on the ability of the models to reproduce a regional index of geomagnetic disturbance, the local K-index. Our analysis includes six events representing a range of geomagnetic activity conditions and six geomagnetic observatories representing midlatitude and high-latitude locations. Contingency tables, skill scores, and distribution metrics are used for the quantitative analysis of model performance. We consider model performance on an event-by-event basis, aggregated over events, at specific station locations, and separated into high-latitude and midlatitude domains. A summary of results is presented in this report, and an online tool for detailed analysis is available at the CCMC.

  13. Community-Wide Validation of Geospace Model Local K-Index Predictions to Support Model Transition to Operations

    NASA Technical Reports Server (NTRS)

    Glocer, A.; Rastaetter, L.; Kuznetsova, M.; Pulkkinen, A.; Singer, H. J.; Balch, C.; Weimer, D.; Welling, D.; Wiltberger, M.; Raeder, J.; hide

    2016-01-01

    We present the latest result of a community-wide space weather model validation effort coordinated among the Community Coordinated Modeling Center (CCMC), NOAA Space Weather Prediction Center (SWPC), model developers, and the broader science community. Validation of geospace models is a critical activity for both building confidence in the science results produced by the models and in assessing the suitability of the models for transition to operations. Indeed, a primary motivation of this work is supporting NOAA/SWPCs effort to select a model or models to be transitioned into operations. Our validation efforts focus on the ability of the models to reproduce a regional index of geomagnetic disturbance, the local K-index. Our analysis includes six events representing a range of geomagnetic activity conditions and six geomagnetic observatories representing midlatitude and high-latitude locations. Contingency tables, skill scores, and distribution metrics are used for the quantitative analysis of model performance. We consider model performance on an event-by-event basis, aggregated over events, at specific station locations, and separated into high-latitude and midlatitude domains. A summary of results is presented in this report, and an online tool for detailed analysis is available at the CCMC.

  14. Making Validated Educational Models Central in Preschool Standards.

    ERIC Educational Resources Information Center

    Schweinhart, Lawrence J.

    This paper presents some ideas to preschool educators and policy makers about how to make validated educational models central in standards for preschool education and care programs that are available to all 3- and 4-year-olds. Defining an educational model as a coherent body of program practices, curriculum content, program and child, and teacher…

  15. Web Based Semi-automatic Scientific Validation of Models of the Corona and Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    MacNeice, P. J.; Chulaki, A.; Taktakishvili, A.; Kuznetsova, M. M.

    2013-12-01

    Validation is a critical step in preparing models of the corona and inner heliosphere for future roles supporting either or both the scientific research community and the operational space weather forecasting community. Validation of forecasting quality tends to focus on a short list of key features in the model solutions, with an unchanging order of priority. Scientific validation exposes a much larger range of physical processes and features, and as the models evolve to better represent features of interest, the research community tends to shift its focus to other areas which are less well understood and modeled. Given the more comprehensive and dynamic nature of scientific validation, and the limited resources available to the community to pursue this, it is imperative that the community establish a semi-automated process which engages the model developers directly into an ongoing and evolving validation process. In this presentation we describe the ongoing design and develpment of a web based facility to enable this type of validation of models of the corona and inner heliosphere, on the growing list of model results being generated, and on strategies we have been developing to account for model results that incorporate adaptively refined numerical grids.

  16. Predictive Validation of an Influenza Spread Model

    PubMed Central

    Hyder, Ayaz; Buckeridge, David L.; Leung, Brian

    2013-01-01

    Background Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. Methods and Findings We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998–1999). Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. Conclusions Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve their predictive

  17. Forward ultrasonic model validation using wavefield imaging methods

    NASA Astrophysics Data System (ADS)

    Blackshire, James L.

    2018-04-01

    The validation of forward ultrasonic wave propagation models in a complex titanium polycrystalline material system is accomplished using wavefield imaging methods. An innovative measurement approach is described that permits the visualization and quantitative evaluation of bulk elastic wave propagation and scattering behaviors in the titanium material for a typical focused immersion ultrasound measurement process. Results are provided for the determination and direct comparison of the ultrasonic beam's focal properties, mode-converted shear wave position and angle, and scattering and reflection from millimeter-sized microtexture regions (MTRs) within the titanium material. The approach and results are important with respect to understanding the root-cause backscatter signal responses generated in aerospace engine materials, where model-assisted methods are being used to understand the probabilistic nature of the backscatter signal content. Wavefield imaging methods are shown to be an effective means for corroborating and validating important forward model predictions in a direct manner using time- and spatially-resolved displacement field amplitude measurements.

  18. Three Dimensional Vapor Intrusion Modeling: Model Validation and Uncertainty Analysis

    NASA Astrophysics Data System (ADS)

    Akbariyeh, S.; Patterson, B.; Rakoczy, A.; Li, Y.

    2013-12-01

    Volatile organic chemicals (VOCs), such as chlorinated solvents and petroleum hydrocarbons, are prevalent groundwater contaminants due to their improper disposal and accidental spillage. In addition to contaminating groundwater, VOCs may partition into the overlying vadose zone and enter buildings through gaps and cracks in foundation slabs or basement walls, a process termed vapor intrusion. Vapor intrusion of VOCs has been recognized as a detrimental source for human exposures to potential carcinogenic or toxic compounds. The simulation of vapor intrusion from a subsurface source has been the focus of many studies to better understand the process and guide field investigation. While multiple analytical and numerical models were developed to simulate the vapor intrusion process, detailed validation of these models against well controlled experiments is still lacking, due to the complexity and uncertainties associated with site characterization and soil gas flux and indoor air concentration measurement. In this work, we present an effort to validate a three-dimensional vapor intrusion model based on a well-controlled experimental quantification of the vapor intrusion pathways into a slab-on-ground building under varying environmental conditions. Finally, a probabilistic approach based on Monte Carlo simulations is implemented to determine the probability distribution of indoor air concentration based on the most uncertain input parameters.

  19. Software Validation via Model Animation

    NASA Technical Reports Server (NTRS)

    Dutle, Aaron M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Butler, Ricky W.

    2015-01-01

    This paper explores a new approach to validating software implementations that have been produced from formally-verified algorithms. Although visual inspection gives some confidence that the implementations faithfully reflect the formal models, it does not provide complete assurance that the software is correct. The proposed approach, which is based on animation of formal specifications, compares the outputs computed by the software implementations on a given suite of input values to the outputs computed by the formal models on the same inputs, and determines if they are equal up to a given tolerance. The approach is illustrated on a prototype air traffic management system that computes simple kinematic trajectories for aircraft. Proofs for the mathematical models of the system's algorithms are carried out in the Prototype Verification System (PVS). The animation tool PVSio is used to evaluate the formal models on a set of randomly generated test cases. Output values computed by PVSio are compared against output values computed by the actual software. This comparison improves the assurance that the translation from formal models to code is faithful and that, for example, floating point errors do not greatly affect correctness and safety properties.

  20. Calibration of Predictor Models Using Multiple Validation Experiments

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2015-01-01

    This paper presents a framework for calibrating computational models using data from several and possibly dissimilar validation experiments. The offset between model predictions and observations, which might be caused by measurement noise, model-form uncertainty, and numerical error, drives the process by which uncertainty in the models parameters is characterized. The resulting description of uncertainty along with the computational model constitute a predictor model. Two types of predictor models are studied: Interval Predictor Models (IPMs) and Random Predictor Models (RPMs). IPMs use sets to characterize uncertainty, whereas RPMs use random vectors. The propagation of a set through a model makes the response an interval valued function of the state, whereas the propagation of a random vector yields a random process. Optimization-based strategies for calculating both types of predictor models are proposed. Whereas the formulations used to calculate IPMs target solutions leading to the interval value function of minimal spread containing all observations, those for RPMs seek to maximize the models' ability to reproduce the distribution of observations. Regarding RPMs, we choose a structure for the random vector (i.e., the assignment of probability to points in the parameter space) solely dependent on the prediction error. As such, the probabilistic description of uncertainty is not a subjective assignment of belief, nor is it expected to asymptotically converge to a fixed value, but instead it casts the model's ability to reproduce the experimental data. This framework enables evaluating the spread and distribution of the predicted response of target applications depending on the same parameters beyond the validation domain.

  1. Validation of the measure automobile emissions model : a statistical analysis

    DOT National Transportation Integrated Search

    2000-09-01

    The Mobile Emissions Assessment System for Urban and Regional Evaluation (MEASURE) model provides an external validation capability for hot stabilized option; the model is one of several new modal emissions models designed to predict hot stabilized e...

  2. A Model-Based Approach to Support Validation of Medical Cyber-Physical Systems

    PubMed Central

    Silva, Lenardo C.; Almeida, Hyggo O.; Perkusich, Angelo; Perkusich, Mirko

    2015-01-01

    Medical Cyber-Physical Systems (MCPS) are context-aware, life-critical systems with patient safety as the main concern, demanding rigorous processes for validation to guarantee user requirement compliance and specification-oriented correctness. In this article, we propose a model-based approach for early validation of MCPS, focusing on promoting reusability and productivity. It enables system developers to build MCPS formal models based on a library of patient and medical device models, and simulate the MCPS to identify undesirable behaviors at design time. Our approach has been applied to three different clinical scenarios to evaluate its reusability potential for different contexts. We have also validated our approach through an empirical evaluation with developers to assess productivity and reusability. Finally, our models have been formally verified considering functional and safety requirements and model coverage. PMID:26528982

  3. A Model-Based Approach to Support Validation of Medical Cyber-Physical Systems.

    PubMed

    Silva, Lenardo C; Almeida, Hyggo O; Perkusich, Angelo; Perkusich, Mirko

    2015-10-30

    Medical Cyber-Physical Systems (MCPS) are context-aware, life-critical systems with patient safety as the main concern, demanding rigorous processes for validation to guarantee user requirement compliance and specification-oriented correctness. In this article, we propose a model-based approach for early validation of MCPS, focusing on promoting reusability and productivity. It enables system developers to build MCPS formal models based on a library of patient and medical device models, and simulate the MCPS to identify undesirable behaviors at design time. Our approach has been applied to three different clinical scenarios to evaluate its reusability potential for different contexts. We have also validated our approach through an empirical evaluation with developers to assess productivity and reusability. Finally, our models have been formally verified considering functional and safety requirements and model coverage.

  4. A process improvement model for software verification and validation

    NASA Technical Reports Server (NTRS)

    Callahan, John; Sabolish, George

    1994-01-01

    We describe ongoing work at the NASA Independent Verification and Validation (IV&V) Facility to establish a process improvement model for software verification and validation (V&V) organizations. This model, similar to those used by some software development organizations, uses measurement-based techniques to identify problem areas and introduce incremental improvements. We seek to replicate this model for organizations involved in V&V on large-scale software development projects such as EOS and space station. At the IV&V Facility, a university research group and V&V contractors are working together to collect metrics across projects in order to determine the effectiveness of V&V and improve its application. Since V&V processes are intimately tied to development processes, this paper also examines the repercussions for development organizations in large-scale efforts.

  5. A process improvement model for software verification and validation

    NASA Technical Reports Server (NTRS)

    Callahan, John; Sabolish, George

    1994-01-01

    We describe ongoing work at the NASA Independent Verification and Validation (IV&V) Facility to establish a process improvement model for software verification and validation (V&V) organizations. This model, similar to those used by some software development organizations, uses measurement-based techniques to identify problem areas and introduce incremental improvements. We seek to replicate this model for organizations involved in V&V on large-scale software development projects such as EOS and Space Station. At the IV&V Facility, a university research group and V&V contractors are working together to collect metrics across projects in order to determine the effectiveness of V&V and improve its application. Since V&V processes are intimately tied to development processes, this paper also examines the repercussions for development organizations in large-scale efforts.

  6. The Space Weather Modeling Framework (SWMF): Models and Validation

    NASA Astrophysics Data System (ADS)

    Gombosi, Tamas; Toth, Gabor; Sokolov, Igor; de Zeeuw, Darren; van der Holst, Bart; Ridley, Aaron; Manchester, Ward, IV

    In the last decade our group at the Center for Space Environment Modeling (CSEM) has developed the Space Weather Modeling Framework (SWMF) that efficiently couples together different models describing the interacting regions of the space environment. Many of these domain models (such as the global solar corona, the inner heliosphere or the global magneto-sphere) are based on MHD and are represented by our multiphysics code, BATS-R-US. SWMF is a powerful tool for coupling regional models describing the space environment from the solar photosphere to the bottom of the ionosphere. Presently, SWMF contains over a dozen components: the solar corona (SC), eruptive event generator (EE), inner heliosphere (IE), outer heliosphere (OH), solar energetic particles (SE), global magnetosphere (GM), inner magnetosphere (IM), radiation belts (RB), plasmasphere (PS), ionospheric electrodynamics (IE), polar wind (PW), upper atmosphere (UA) and lower atmosphere (LA). This talk will present an overview of SWMF, new results obtained with improved physics as well as some validation studies.

  7. CFD Modeling Needs and What Makes a Good Supersonic Combustion Validation Experiment

    NASA Technical Reports Server (NTRS)

    Gaffney, Richard L., Jr.; Cutler, Andrew D.

    2005-01-01

    If a CFD code/model developer is asked what experimental data he wants to validate his code or numerical model, his answer will be: "Everything, everywhere, at all times." Since this is not possible, practical, or even reasonable, the developer must understand what can be measured within the limits imposed by the test article, the test location, the test environment and the available diagnostic equipment. At the same time, it is important for the expermentalist/diagnostician to understand what the CFD developer needs (as opposed to wants) in order to conduct a useful CFD validation experiment. If these needs are not known, it is possible to neglect easily measured quantities at locations needed by the developer, rendering the data set useless for validation purposes. It is also important for the experimentalist/diagnostician to understand what the developer is trying to validate so that the experiment can be designed to isolate (as much as possible) the effects of a particular physical phenomena that is associated with the model to be validated. The probability of a successful validation experiment can be greatly increased if the two groups work together, each understanding the needs and limitations of the other.

  8. A Validated Open-Source Multisolver Fourth-Generation Composite Femur Model.

    PubMed

    MacLeod, Alisdair R; Rose, Hannah; Gill, Harinderjit S

    2016-12-01

    Synthetic biomechanical test specimens are frequently used for preclinical evaluation of implant performance, often in combination with numerical modeling, such as finite-element (FE) analysis. Commercial and freely available FE packages are widely used with three FE packages in particular gaining popularity: abaqus (Dassault Systèmes, Johnston, RI), ansys (ANSYS, Inc., Canonsburg, PA), and febio (University of Utah, Salt Lake City, UT). To the best of our knowledge, no study has yet made a comparison of these three commonly used solvers. Additionally, despite the femur being the most extensively studied bone in the body, no freely available validated model exists. The primary aim of the study was primarily to conduct a comparison of mesh convergence and strain prediction between the three solvers (abaqus, ansys, and febio) and to provide validated open-source models of a fourth-generation composite femur for use with all the three FE packages. Second, we evaluated the geometric variability around the femoral neck region of the composite femurs. Experimental testing was conducted using fourth-generation Sawbones® composite femurs instrumented with strain gauges at four locations. A generic FE model and four specimen-specific FE models were created from CT scans. The study found that the three solvers produced excellent agreement, with strain predictions being within an average of 3.0% for all the solvers (r2 > 0.99) and 1.4% for the two commercial codes. The average of the root mean squared error against the experimental results was 134.5% (r2 = 0.29) for the generic model and 13.8% (r2 = 0.96) for the specimen-specific models. It was found that composite femurs had variations in cortical thickness around the neck of the femur of up to 48.4%. For the first time, an experimentally validated, finite-element model of the femur is presented for use in three solvers. This model is freely available online along with all the supporting validation data.

  9. Community-Based Participatory Research Conceptual Model: Community Partner Consultation and Face Validity.

    PubMed

    Belone, Lorenda; Lucero, Julie E; Duran, Bonnie; Tafoya, Greg; Baker, Elizabeth A; Chan, Domin; Chang, Charlotte; Greene-Moton, Ella; Kelley, Michele A; Wallerstein, Nina

    2016-01-01

    A national community-based participatory research (CBPR) team developed a conceptual model of CBPR partnerships to understand the contribution of partnership processes to improved community capacity and health outcomes. With the model primarily developed through academic literature and expert consensus building, we sought community input to assess face validity and acceptability. Our research team conducted semi-structured focus groups with six partnerships nationwide. Participants validated and expanded on existing model constructs and identified new constructs based on "real-world" praxis, resulting in a revised model. Four cross-cutting constructs were identified: trust development, capacity, mutual learning, and power dynamics. By empirically testing the model, we found community face validity and capacity to adapt the model to diverse contexts. We recommend partnerships use and adapt the CBPR model and its constructs, for collective reflection and evaluation, to enhance their partnering practices and achieve their health and research goals. © The Author(s) 2014.

  10. KINEROS2-AGWA: Model Use, Calibration, and Validation

    NASA Technical Reports Server (NTRS)

    Goodrich, D C.; Burns, I. S.; Unkrich, C. L.; Semmens, D. J.; Guertin, D. P.; Hernandez, M.; Yatheendradas, S.; Kennedy, J. R.; Levick, L. R..

    2013-01-01

    KINEROS (KINematic runoff and EROSion) originated in the 1960s as a distributed event-based model that conceptualizes a watershed as a cascade of overland flow model elements that flow into trapezoidal channel model elements. KINEROS was one of the first widely available watershed models that interactively coupled a finite difference approximation of the kinematic overland flow equations to a physically based infiltration model. Development and improvement of KINEROS continued from the 1960s on a variety of projects for a range of purposes, which has resulted in a suite of KINEROS-based modeling tools. This article focuses on KINEROS2 (K2), a spatially distributed, event-based watershed rainfall-runoff and erosion model, and the companion ArcGIS-based Automated Geospatial Watershed Assessment (AGWA) tool. AGWA automates the time-consuming tasks of watershed delineation into distributed model elements and initial parameterization of these elements using commonly available, national GIS data layers. A variety of approaches have been used to calibrate and validate K2 successfully across a relatively broad range of applications (e.g., urbanization, pre- and post-fire, hillslope erosion, erosion from roads, runoff and recharge, and manure transport). The case studies presented in this article (1) compare lumped to stepwise calibration and validation of runoff and sediment at plot, hillslope, and small watershed scales; and (2) demonstrate an uncalibrated application to address relative change in watershed response to wildfire.

  11. KINEROS2/AGWA: Model use, calibration and validation

    USGS Publications Warehouse

    Goodrich, D.C.; Burns, I.S.; Unkrich, C.L.; Semmens, Darius J.; Guertin, D.P.; Hernandez, M.; Yatheendradas, S.; Kennedy, Jeffrey R.; Levick, Lainie R.

    2012-01-01

    KINEROS (KINematic runoff and EROSion) originated in the 1960s as a distributed event-based model that conceptualizes a watershed as a cascade of overland flow model elements that flow into trapezoidal channel model elements. KINEROS was one of the first widely available watershed models that interactively coupled a finite difference approximation of the kinematic overland flow equations to a physically based infiltration model. Development and improvement of KINEROS continued from the 1960s on a variety of projects for a range of purposes, which has resulted in a suite of KINEROS-based modeling tools. This article focuses on KINEROS2 (K2), a spatially distributed, event-based watershed rainfall-runoff and erosion model, and the companion ArcGIS-based Automated Geospatial Watershed Assessment (AGWA) tool. AGWA automates the time-consuming tasks of watershed delineation into distributed model elements and initial parameterization of these elements using commonly available, national GIS data layers. A variety of approaches have been used to calibrate and validate K2 successfully across a relatively broad range of applications (e.g., urbanization, pre- and post-fire, hillslope erosion, erosion from roads, runoff and recharge, and manure transport). The case studies presented in this article (1) compare lumped to stepwise calibration and validation of runoff and sediment at plot, hillslope, and small watershed scales; and (2) demonstrate an uncalibrated application to address relative change in watershed response to wildfire.

  12. Validation of elk resource selection models with spatially independent data

    Treesearch

    Priscilla K. Coe; Bruce K. Johnson; Michael J. Wisdom; John G. Cook; Marty Vavra; Ryan M. Nielson

    2011-01-01

    Knowledge of how landscape features affect wildlife resource use is essential for informed management. Resource selection functions often are used to make and validate predictions about landscape use; however, resource selection functions are rarely validated with data from landscapes independent of those from which the models were built. This problem has severely...

  13. A validated approach for modeling collapse of steel structures

    NASA Astrophysics Data System (ADS)

    Saykin, Vitaliy Victorovich

    A civil engineering structure is faced with many hazardous conditions such as blasts, earthquakes, hurricanes, tornadoes, floods, and fires during its lifetime. Even though structures are designed for credible events that can happen during a lifetime of the structure, extreme events do happen and cause catastrophic failures. Understanding the causes and effects of structural collapse is now at the core of critical areas of national need. One factor that makes studying structural collapse difficult is the lack of full-scale structural collapse experimental test results against which researchers could validate their proposed collapse modeling approaches. The goal of this work is the creation of an element deletion strategy based on fracture models for use in validated prediction of collapse of steel structures. The current work reviews the state-of-the-art of finite element deletion strategies for use in collapse modeling of structures. It is shown that current approaches to element deletion in collapse modeling do not take into account stress triaxiality in vulnerable areas of the structure, which is important for proper fracture and element deletion modeling. The report then reviews triaxiality and its role in fracture prediction. It is shown that fracture in ductile materials is a function of triaxiality. It is also shown that, depending on the triaxiality range, different fracture mechanisms are active and should be accounted for. An approach using semi-empirical fracture models as a function of triaxiality are employed. The models to determine fracture initiation, softening and subsequent finite element deletion are outlined. This procedure allows for stress-displacement softening at an integration point of a finite element in order to subsequently remove the element. This approach avoids abrupt changes in the stress that would create dynamic instabilities, thus making the results more reliable and accurate. The calibration and validation of these models are

  14. Nonparametric model validations for hidden Markov models with applications in financial econometrics.

    PubMed

    Zhao, Zhibiao

    2011-06-01

    We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise.

  15. Nonparametric model validations for hidden Markov models with applications in financial econometrics

    PubMed Central

    Zhao, Zhibiao

    2011-01-01

    We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise. PMID:21750601

  16. A Historical Forcing Ice Sheet Model Validation Framework for Greenland

    NASA Astrophysics Data System (ADS)

    Price, S. F.; Hoffman, M. J.; Howat, I. M.; Bonin, J. A.; Chambers, D. P.; Kalashnikova, I.; Neumann, T.; Nowicki, S.; Perego, M.; Salinger, A.

    2014-12-01

    We propose an ice sheet model testing and validation framework for Greenland for the years 2000 to the present. Following Perego et al. (2014), we start with a realistic ice sheet initial condition that is in quasi-equilibrium with climate forcing from the late 1990's. This initial condition is integrated forward in time while simultaneously applying (1) surface mass balance forcing (van Angelen et al., 2013) and (2) outlet glacier flux anomalies, defined using a new dataset of Greenland outlet glacier flux for the past decade (Enderlin et al., 2014). Modeled rates of mass and elevation change are compared directly to remote sensing observations obtained from GRACE and ICESat. Here, we present a detailed description of the proposed validation framework including the ice sheet model and model forcing approach, the model-to-observation comparison process, and initial results comparing model output and observations for the time period 2000-2013.

  17. Validation and upgrading of physically based mathematical models

    NASA Technical Reports Server (NTRS)

    Duval, Ronald

    1992-01-01

    The validation of the results of physically-based mathematical models against experimental results was discussed. Systematic techniques are used for: (1) isolating subsets of the simulator mathematical model and comparing the response of each subset to its experimental response for the same input conditions; (2) evaluating the response error to determine whether it is the result of incorrect parameter values, incorrect structure of the model subset, or unmodeled external effects of cross coupling; and (3) modifying and upgrading the model and its parameter values to determine the most physically appropriate combination of changes.

  18. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2001-01-01

    This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.

  19. Improved Conceptual Models Methodology (ICoMM) for Validation of Non-Observable Systems

    DTIC Science & Technology

    2015-12-01

    distribution is unlimited IMPROVED CONCEPTUAL MODELS METHODOLOGY (ICoMM) FOR VALIDATION OF NON-OBSERVABLE SYSTEMS by Sang M. Sok December 2015...REPORT TYPE AND DATES COVERED Dissertation 4. TITLE AND SUBTITLE IMPROVED CONCEPTUAL MODELS METHODOLOGY (ICoMM) FOR VALIDATION OF NON-OBSERVABLE...importance of the CoM. The improved conceptual model methodology (ICoMM) is developed in support of improving the structure of the CoM for both face and

  20. Validation of the Continuum of Care Conceptual Model for Athletic Therapy

    PubMed Central

    Lafave, Mark R.; Butterwick, Dale; Eubank, Breda

    2015-01-01

    Utilization of conceptual models in field-based emergency care currently borrows from existing standards of medical and paramedical professions. The purpose of this study was to develop and validate a comprehensive conceptual model that could account for injuries ranging from nonurgent to catastrophic events including events that do not follow traditional medical or prehospital care protocols. The conceptual model should represent the continuum of care from the time of initial injury spanning to an athlete's return to participation in their sport. Finally, the conceptual model should accommodate both novices and experts in the AT profession. This paper chronicles the content validation steps of the Continuum of Care Conceptual Model for Athletic Therapy (CCCM-AT). The stages of model development were domain and item generation, content expert validation using a three-stage modified Ebel procedure, and pilot testing. Only the final stage of the modified Ebel procedure reached a priori 80% consensus on three domains of interest: (1) heading descriptors; (2) the order of the model; (3) the conceptual model as a whole. Future research is required to test the use of the CCCM-AT in order to understand its efficacy in teaching and practice within the AT discipline. PMID:26464897

  1. Verifying and Validating Simulation Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemez, Francois M.

    2015-02-23

    This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statisticalmore » sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.« less

  2. I-15 San Diego, California, model validation and calibration report.

    DOT National Transportation Integrated Search

    2010-02-01

    The Integrated Corridor Management (ICM) initiative requires the calibration and validation of simulation models used in the Analysis, Modeling, and Simulation of Pioneer Site proposed integrated corridors. This report summarizes the results and proc...

  3. Animal models of binge drinking, current challenges to improve face validity.

    PubMed

    Jeanblanc, Jérôme; Rolland, Benjamin; Gierski, Fabien; Martinetti, Margaret P; Naassila, Mickael

    2018-05-05

    Binge drinking (BD), i.e., consuming a large amount of alcohol in a short period of time, is an increasing public health issue. Though no clear definition has been adopted worldwide the speed of drinking seems to be a keystone of this behavior. Developing relevant animal models of BD is a priority for gaining a better characterization of the neurobiological and psychobiological mechanisms underlying this dangerous and harmful behavior. Until recently, preclinical research on BD has been conducted mostly using forced administration of alcohol, but more recent studies used scheduled access to alcohol, to model more voluntary excessive intakes, and to achieve signs of intoxications that mimic the human behavior. The main challenges for future research are discussed regarding the need of good face validity, construct validity and predictive validity of animal models of BD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Techniques for Down-Sampling a Measured Surface Height Map for Model Validation

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2012-01-01

    This software allows one to down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. The software tool of the current two new techniques can be used in all optical model validation processes involving large space optical surfaces

  5. Validation Assessment of a Glass-to-Metal Seal Finite-Element Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamison, Ryan Dale; Buchheit, Thomas E.; Emery, John M

    Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element modelmore » of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.« less

  6. External validation of EPIWIN biodegradation models.

    PubMed

    Posthumus, R; Traas, T P; Peijnenburg, W J G M; Hulzebos, E M

    2005-01-01

    The BIOWIN biodegradation models were evaluated for their suitability for regulatory purposes. BIOWIN includes the linear and non-linear BIODEG and MITI models for estimating the probability of rapid aerobic biodegradation and an expert survey model for primary and ultimate biodegradation estimation. Experimental biodegradation data for 110 newly notified substances were compared with the estimations of the different models. The models were applied separately and in combinations to determine which model(s) showed the best performance. The results of this study were compared with the results of other validation studies and other biodegradation models. The BIOWIN models predict not-readily biodegradable substances with high accuracy in contrast to ready biodegradability. In view of the high environmental concern of persistent chemicals and in view of the large number of not-readily biodegradable chemicals compared to the readily ones, a model is preferred that gives a minimum of false positives without a corresponding high percentage false negatives. A combination of the BIOWIN models (BIOWIN2 or BIOWIN6) showed the highest predictive value for not-readily biodegradability. However, the highest score for overall predictivity with lowest percentage false predictions was achieved by applying BIOWIN3 (pass level 2.75) and BIOWIN6.

  7. Ventilation tube insertion simulation: a literature review and validity assessment of five training models.

    PubMed

    Mahalingam, S; Awad, Z; Tolley, N S; Khemani, S

    2016-08-01

    The objective of this study was to identify and investigate the face and content validity of ventilation tube insertion (VTI) training models described in the literature. A review of literature was carried out to identify articles describing VTI simulators. Feasible models were replicated and assessed by a group of experts. Postgraduate simulation centre. Experts were defined as surgeons who had performed at least 100 VTI on patients. Seventeen experts were participated ensuring sufficient statistical power for analysis. A standardised 18-item Likert-scale questionnaire was used. This addressed face validity (realism), global and task-specific content (suitability of the model for teaching) and curriculum recommendation. The search revealed eleven models, of which only five had associated validity data. Five models were found to be feasible to replicate. None of the tested models achieved face or global content validity. Only one model achieved task-specific validity, and hence, there was no agreement on curriculum recommendation. The quality of simulation models is moderate and there is room for improvement. There is a need for new models to be developed or existing ones to be refined in order to construct a more realistic training platform for VTI simulation. © 2015 John Wiley & Sons Ltd.

  8. A Validity Agenda for Growth Models: One Size Doesn't Fit All!

    ERIC Educational Resources Information Center

    Patelis, Thanos

    2012-01-01

    This is a keynote presentation given at AERA on developing a validity agenda for growth models in a large scale (e.g., state) setting. The emphasis of this presentation was to indicate that growth models and the validity agenda designed to provide evidence in supporting the claims to be made need to be personalized to meet the local or…

  9. Objective validation of central sensitization in the rat UVB and heat rekindling model

    PubMed Central

    Weerasinghe, NS; Lumb, BM; Apps, R; Koutsikou, S; Murrell, JC

    2014-01-01

    Background The UVB and heat rekindling (UVB/HR) model shows potential as a translatable inflammatory pain model. However, the occurrence of central sensitization in this model, a fundamental mechanism underlying chronic pain, has been debated. Face, construct and predictive validity are key requisites of animal models; electromyogram (EMG) recordings were utilized to objectively demonstrate validity of the rat UVB/HR model. Methods The UVB/HR model was induced on the heel of the hind paw under anaesthesia. Mechanical withdrawal thresholds (MWTs) were obtained from biceps femoris EMG responses to a gradually increasing pinch at the mid hind paw region under alfaxalone anaesthesia, 96 h after UVB irradiation. MWT was compared between UVB/HR and SHAM-treated rats (anaesthetic only). Underlying central mechanisms in the model were pharmacologically validated by MWT measurement following intrathecal N-methyl-d-aspartate (NMDA) receptor antagonist, MK-801, or saline. Results Secondary hyperalgesia was confirmed by a significantly lower pre-drug MWT {mean [±standard error of the mean (SEM)]} in UVB/HR [56.3 (±2.1) g/mm2, n = 15] compared with SHAM-treated rats [69.3 (±2.9) g/mm2, n = 8], confirming face validity of the model. Predictive validity was demonstrated by the attenuation of secondary hyperalgesia by MK-801, where mean (±SEM) MWT was significantly higher [77.2 (±5.9) g/mm2 n = 7] in comparison with pre-drug [57.8 (±3.5) g/mm2 n = 7] and saline [57.0 (±3.2) g/mm2 n = 8] at peak drug effect. The occurrence of central sensitization confirmed construct validity of the UVB/HR model. Conclusions This study used objective outcome measures of secondary hyperalgesia to validate the rat UVB/HR model as a translational model of inflammatory pain. What's already known about this topic? Most current animal chronic pain models lack translatability to human subjects. Primary hyperalgesia is an established feature of the UVB/heat rekindling

  10. Validation by simulation of a clinical trial model using the standardized mean and variance criteria.

    PubMed

    Abbas, Ismail; Rovira, Joan; Casanovas, Josep

    2006-12-01

    To develop and validate a model of a clinical trial that evaluates the changes in cholesterol level as a surrogate marker for lipodystrophy in HIV subjects under alternative antiretroviral regimes, i.e., treatment with Protease Inhibitors vs. a combination of nevirapine and other antiretroviral drugs. Five simulation models were developed based on different assumptions, on treatment variability and pattern of cholesterol reduction over time. The last recorded cholesterol level, the difference from the baseline, the average difference from the baseline and level evolution, are the considered endpoints. Specific validation criteria based on a 10% minus or plus standardized distance in means and variances were used to compare the real and the simulated data. The validity criterion was met by all models for considered endpoints. However, only two models met the validity criterion when all endpoints were considered. The model based on the assumption that within-subjects variability of cholesterol levels changes over time is the one that minimizes the validity criterion, standardized distance equal to or less than 1% minus or plus. Simulation is a useful technique for calibration, estimation, and evaluation of models, which allows us to relax the often overly restrictive assumptions regarding parameters required by analytical approaches. The validity criterion can also be used to select the preferred model for design optimization, until additional data are obtained allowing an external validation of the model.

  11. Validation of Community Models: 2. Development of a Baseline, Using the Wang-Sheeley-Arge Model

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter

    2009-01-01

    This paper is the second in a series providing independent validation of community models of the outer corona and inner heliosphere. Here I present a comprehensive validation of the Wang-Sheeley-Arge (WSA) model. These results will serve as a baseline against which to compare the next generation of comparable forecasting models. The WSA model is used by a number of agencies to predict Solar wind conditions at Earth up to 4 days into the future. Given its importance to both the research and forecasting communities, it is essential that its performance be measured systematically and independently. I offer just such an independent and systematic validation. I report skill scores for the model's predictions of wind speed and interplanetary magnetic field (IMF) polarity for a large set of Carrington rotations. The model was run in all its routinely used configurations. It ingests synoptic line of sight magnetograms. For this study I generated model results for monthly magnetograms from multiple observatories, spanning the Carrington rotation range from 1650 to 2074. I compare the influence of the different magnetogram sources and performance at quiet and active times. I also consider the ability of the WSA model to forecast both sharp transitions in wind speed from slow to fast wind and reversals in the polarity of the radial component of the IMF. These results will serve as a baseline against which to compare future versions of the model as well as the current and future generation of magnetohydrodynamic models under development for forecasting use.

  12. Development and validation of a cost-utility model for Type 1 diabetes mellitus.

    PubMed

    Wolowacz, S; Pearson, I; Shannon, P; Chubb, B; Gundgaard, J; Davies, M; Briggs, A

    2015-08-01

    To develop a health economic model to evaluate the cost-effectiveness of new interventions for Type 1 diabetes mellitus by their effects on long-term complications (measured through mean HbA1c ) while capturing the impact of treatment on hypoglycaemic events. Through a systematic review, we identified complications associated with Type 1 diabetes mellitus and data describing the long-term incidence of these complications. An individual patient simulation model was developed and included the following complications: cardiovascular disease, peripheral neuropathy, microalbuminuria, end-stage renal disease, proliferative retinopathy, ketoacidosis, cataract, hypoglycemia and adverse birth outcomes. Risk equations were developed from published cumulative incidence data and hazard ratios for the effect of HbA1c , age and duration of diabetes. We validated the model by comparing model predictions with observed outcomes from studies used to build the model (internal validation) and from other published data (external validation). We performed illustrative analyses for typical patient cohorts and a hypothetical intervention. Model predictions were within 2% of expected values in the internal validation and within 8% of observed values in the external validation (percentages represent absolute differences in the cumulative incidence). The model utilized high-quality, recent data specific to people with Type 1 diabetes mellitus. In the model validation, results deviated less than 8% from expected values. © 2014 Research Triangle Institute d/b/a RTI Health Solutions. Diabetic Medicine © 2014 Diabetes UK.

  13. Towards Automatic Validation and Healing of Citygml Models for Geometric and Semantic Consistency

    NASA Astrophysics Data System (ADS)

    Alam, N.; Wagner, D.; Wewetzer, M.; von Falkenhausen, J.; Coors, V.; Pries, M.

    2013-09-01

    A steadily growing number of application fields for large 3D city models have emerged in recent years. Like in many other domains, data quality is recognized as a key factor for successful business. Quality management is mandatory in the production chain nowadays. Automated domain-specific tools are widely used for validation of business-critical data but still common standards defining correct geometric modeling are not precise enough to define a sound base for data validation of 3D city models. Although the workflow for 3D city models is well-established from data acquisition to processing, analysis and visualization, quality management is not yet a standard during this workflow. Processing data sets with unclear specification leads to erroneous results and application defects. We show that this problem persists even if data are standard compliant. Validation results of real-world city models are presented to demonstrate the potential of the approach. A tool to repair the errors detected during the validation process is under development; first results are presented and discussed. The goal is to heal defects of the models automatically and export a corrected CityGML model.

  14. Modern modeling techniques had limited external validity in predicting mortality from traumatic brain injury.

    PubMed

    van der Ploeg, Tjeerd; Nieboer, Daan; Steyerberg, Ewout W

    2016-10-01

    Prediction of medical outcomes may potentially benefit from using modern statistical modeling techniques. We aimed to externally validate modeling strategies for prediction of 6-month mortality of patients suffering from traumatic brain injury (TBI) with predictor sets of increasing complexity. We analyzed individual patient data from 15 different studies including 11,026 TBI patients. We consecutively considered a core set of predictors (age, motor score, and pupillary reactivity), an extended set with computed tomography scan characteristics, and a further extension with two laboratory measurements (glucose and hemoglobin). With each of these sets, we predicted 6-month mortality using default settings with five statistical modeling techniques: logistic regression (LR), classification and regression trees, random forests (RFs), support vector machines (SVM) and neural nets. For external validation, a model developed on one of the 15 data sets was applied to each of the 14 remaining sets. This process was repeated 15 times for a total of 630 validations. The area under the receiver operating characteristic curve (AUC) was used to assess the discriminative ability of the models. For the most complex predictor set, the LR models performed best (median validated AUC value, 0.757), followed by RF and support vector machine models (median validated AUC value, 0.735 and 0.732, respectively). With each predictor set, the classification and regression trees models showed poor performance (median validated AUC value, <0.7). The variability in performance across the studies was smallest for the RF- and LR-based models (inter quartile range for validated AUC values from 0.07 to 0.10). In the area of predicting mortality from TBI, nonlinear and nonadditive effects are not pronounced enough to make modern prediction methods beneficial. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Object-oriented simulation model of a parabolic trough solar collector: Static and dynamic validation

    NASA Astrophysics Data System (ADS)

    Ubieta, Eduardo; Hoyo, Itzal del; Valenzuela, Loreto; Lopez-Martín, Rafael; Peña, Víctor de la; López, Susana

    2017-06-01

    A simulation model of a parabolic-trough solar collector developed in Modelica® language is calibrated and validated. The calibration is performed in order to approximate the behavior of the solar collector model to a real one due to the uncertainty in some of the system parameters, i.e. measured data is used during the calibration process. Afterwards, the validation of this calibrated model is done. During the validation, the results obtained from the model are compared to the ones obtained during real operation in a collector from the Plataforma Solar de Almeria (PSA).

  16. A ferrofluid based energy harvester: Computational modeling, analysis, and experimental validation

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Alazemi, Saad F.; Daqaq, Mohammed F.; Li, Gang

    2018-03-01

    A computational model is described and implemented in this work to analyze the performance of a ferrofluid based electromagnetic energy harvester. The energy harvester converts ambient vibratory energy into an electromotive force through a sloshing motion of a ferrofluid. The computational model solves the coupled Maxwell's equations and Navier-Stokes equations for the dynamic behavior of the magnetic field and fluid motion. The model is validated against experimental results for eight different configurations of the system. The validated model is then employed to study the underlying mechanisms that determine the electromotive force of the energy harvester. Furthermore, computational analysis is performed to test the effect of several modeling aspects, such as three-dimensional effect, surface tension, and type of the ferrofluid-magnetic field coupling on the accuracy of the model prediction.

  17. Model-Based Method for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  18. Developing a model for hospital inherent safety assessment: Conceptualization and validation.

    PubMed

    Yari, Saeed; Akbari, Hesam; Gholami Fesharaki, Mohammad; Khosravizadeh, Omid; Ghasemi, Mohammad; Barsam, Yalda; Akbari, Hamed

    2018-01-01

    Paying attention to the safety of hospitals, as the most crucial institute for providing medical and health services wherein a bundle of facilities, equipment, and human resource exist, is of significant importance. The present research aims at developing a model for assessing hospitals' safety based on principles of inherent safety design. Face validity (30 experts), content validity (20 experts), construct validity (268 examples), convergent validity, and divergent validity have been employed to validate the prepared questionnaire; and the items analysis, the Cronbach's alpha test, ICC test (to measure reliability of the test), composite reliability coefficient have been used to measure primary reliability. The relationship between variables and factors has been confirmed at 0.05 significance level by conducting confirmatory factor analysis (CFA) and structural equations modeling (SEM) technique with the use of Smart-PLS. R-square and load factors values, which were higher than 0.67 and 0.300 respectively, indicated the strong fit. Moderation (0.970), simplification (0.959), substitution (0.943), and minimization (0.5008) have had the most weights in determining the inherent safety of hospital respectively. Moderation, simplification, and substitution, among the other dimensions, have more weight on the inherent safety, while minimization has the less weight, which could be due do its definition as to minimize the risk.

  19. Load Model Verification, Validation and Calibration Framework by Statistical Analysis on Field Data

    NASA Astrophysics Data System (ADS)

    Jiao, Xiangqing; Liao, Yuan; Nguyen, Thai

    2017-11-01

    Accurate load models are critical for power system analysis and operation. A large amount of research work has been done on load modeling. Most of the existing research focuses on developing load models, while little has been done on developing formal load model verification and validation (V&V) methodologies or procedures. Most of the existing load model validation is based on qualitative rather than quantitative analysis. In addition, not all aspects of model V&V problem have been addressed by the existing approaches. To complement the existing methods, this paper proposes a novel load model verification and validation framework that can systematically and more comprehensively examine load model's effectiveness and accuracy. Statistical analysis, instead of visual check, quantifies the load model's accuracy, and provides a confidence level of the developed load model for model users. The analysis results can also be used to calibrate load models. The proposed framework can be used as a guidance to systematically examine load models for utility engineers and researchers. The proposed method is demonstrated through analysis of field measurements collected from a utility system.

  20. MODELS FOR SUBMARINE OUTFALL - VALIDATION AND PREDICTION UNCERTAINTIES

    EPA Science Inventory

    This address reports on some efforts to verify and validate dilution models, including those found in Visual Plumes. This is done in the context of problem experience: a range of problems, including different pollutants such as bacteria; scales, including near-field and far-field...

  1. Development and validation of a building design waste reduction model.

    PubMed

    Llatas, C; Osmani, M

    2016-10-01

    Reduction in construction waste is a pressing need in many countries. The design of building elements is considered a pivotal process to achieve waste reduction at source, which enables an informed prediction of their wastage reduction levels. However the lack of quantitative methods linking design strategies to waste reduction hinders designing out waste practice in building projects. Therefore, this paper addresses this knowledge gap through the design and validation of a Building Design Waste Reduction Strategies (Waste ReSt) model that aims to investigate the relationships between design variables and their impact on onsite waste reduction. The Waste ReSt model was validated in a real-world case study involving 20 residential buildings in Spain. The validation process comprises three stages. Firstly, design waste causes were analyzed. Secondly, design strategies were applied leading to several alternative low waste building elements. Finally, their potential source reduction levels were quantified and discussed within the context of the literature. The Waste ReSt model could serve as an instrumental tool to simulate designing out strategies in building projects. The knowledge provided by the model could help project stakeholders to better understand the correlation between the design process and waste sources and subsequently implement design practices for low-waste buildings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Sewer solids separation by sedimentation--the problem of modeling, validation and transferability.

    PubMed

    Kutzner, R; Brombach, H; Geiger, W F

    2007-01-01

    Sedimentation of sewer solids in tanks, ponds and similar devices is the most relevant process for the treatment of stormwater and combined sewer overflows in urban collecting systems. In the past a lot of research work was done to develop deterministic models for the description of this separation process. But these modern models are not commonly accepted in Germany until today. Water Authorities are sceptical with regard to model validation and transferability. Within this paper it is checked whether this scepticism is reasonable. A framework-proposal for the validation of mathematical models with zero or one dimensional spatial resolution for particle separation processes for stormwater and combined sewer overflow treatment is presented. This proposal was applied to publications of repute on sewer solids separation by sedimentation. The result was that none of the investigated models described in literature passed the validation entirely. There is an urgent need for future research in sewer solids sedimentation and remobilization!

  3. Parental modelling of eating behaviours: observational validation of the Parental Modelling of Eating Behaviours scale (PARM).

    PubMed

    Palfreyman, Zoe; Haycraft, Emma; Meyer, Caroline

    2015-03-01

    Parents are important role models for their children's eating behaviours. This study aimed to further validate the recently developed Parental Modelling of Eating Behaviours Scale (PARM) by examining the relationships between maternal self-reports on the PARM with the modelling practices exhibited by these mothers during three family mealtime observations. Relationships between observed maternal modelling and maternal reports of children's eating behaviours were also explored. Seventeen mothers with children aged between 2 and 6 years were video recorded at home on three separate occasions whilst eating a meal with their child. Mothers also completed the PARM, the Children's Eating Behaviour Questionnaire and provided demographic information about themselves and their child. Findings provided validation for all three PARM subscales, which were positively associated with their observed counterparts on the observational coding scheme (PARM-O). The results also indicate that habituation to observations did not change the feeding behaviours displayed by mothers. In addition, observed maternal modelling was significantly related to children's food responsiveness (i.e., their interest in and desire for foods), enjoyment of food, and food fussiness. This study makes three important contributions to the literature. It provides construct validation for the PARM measure and provides further observational support for maternal modelling being related to lower levels of food fussiness and higher levels of food enjoyment in their children. These findings also suggest that maternal feeding behaviours remain consistent across repeated observations of family mealtimes, providing validation for previous research which has used single observations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. U.S. 75 Dallas, Texas, Model Validation and Calibration Report

    DOT National Transportation Integrated Search

    2010-02-01

    This report presents the model validation and calibration results of the Integrated Corridor Management (ICM) analysis, modeling, and simulation (AMS) for the U.S. 75 Corridor in Dallas, Texas. The purpose of the project was to estimate the benefits ...

  5. Development and Validation of a Predictive Model for Functional Outcome After Stroke Rehabilitation: The Maugeri Model.

    PubMed

    Scrutinio, Domenico; Lanzillo, Bernardo; Guida, Pietro; Mastropasqua, Filippo; Monitillo, Vincenzo; Pusineri, Monica; Formica, Roberto; Russo, Giovanna; Guarnaschelli, Caterina; Ferretti, Chiara; Calabrese, Gianluigi

    2017-12-01

    Prediction of outcome after stroke rehabilitation may help clinicians in decision-making and planning rehabilitation care. We developed and validated a predictive tool to estimate the probability of achieving improvement in physical functioning (model 1) and a level of independence requiring no more than supervision (model 2) after stroke rehabilitation. The models were derived from 717 patients admitted for stroke rehabilitation. We used multivariable logistic regression analysis to build each model. Then, each model was prospectively validated in 875 patients. Model 1 included age, time from stroke occurrence to rehabilitation admission, admission motor and cognitive Functional Independence Measure scores, and neglect. Model 2 included age, male gender, time since stroke onset, and admission motor and cognitive Functional Independence Measure score. Both models demonstrated excellent discrimination. In the derivation cohort, the area under the curve was 0.883 (95% confidence intervals, 0.858-0.910) for model 1 and 0.913 (95% confidence intervals, 0.884-0.942) for model 2. The Hosmer-Lemeshow χ 2 was 4.12 ( P =0.249) and 1.20 ( P =0.754), respectively. In the validation cohort, the area under the curve was 0.866 (95% confidence intervals, 0.840-0.892) for model 1 and 0.850 (95% confidence intervals, 0.815-0.885) for model 2. The Hosmer-Lemeshow χ 2 was 8.86 ( P =0.115) and 34.50 ( P =0.001), respectively. Both improvement in physical functioning (hazard ratios, 0.43; 0.25-0.71; P =0.001) and a level of independence requiring no more than supervision (hazard ratios, 0.32; 0.14-0.68; P =0.004) were independently associated with improved 4-year survival. A calculator is freely available for download at https://goo.gl/fEAp81. This study provides researchers and clinicians with an easy-to-use, accurate, and validated predictive tool for potential application in rehabilitation research and stroke management. © 2017 American Heart Association, Inc.

  6. Independent external validation of predictive models for urinary dysfunction following external beam radiotherapy of the prostate: Issues in model development and reporting.

    PubMed

    Yahya, Noorazrul; Ebert, Martin A; Bulsara, Max; Kennedy, Angel; Joseph, David J; Denham, James W

    2016-08-01

    Most predictive models are not sufficiently validated for prospective use. We performed independent external validation of published predictive models for urinary dysfunctions following radiotherapy of the prostate. Multivariable models developed to predict atomised and generalised urinary symptoms, both acute and late, were considered for validation using a dataset representing 754 participants from the TROG 03.04-RADAR trial. Endpoints and features were harmonised to match the predictive models. The overall performance, calibration and discrimination were assessed. 14 models from four publications were validated. The discrimination of the predictive models in an independent external validation cohort, measured using the area under the receiver operating characteristic (ROC) curve, ranged from 0.473 to 0.695, generally lower than in internal validation. 4 models had ROC >0.6. Shrinkage was required for all predictive models' coefficients ranging from -0.309 (prediction probability was inverse to observed proportion) to 0.823. Predictive models which include baseline symptoms as a feature produced the highest discrimination. Two models produced a predicted probability of 0 and 1 for all patients. Predictive models vary in performance and transferability illustrating the need for improvements in model development and reporting. Several models showed reasonable potential but efforts should be increased to improve performance. Baseline symptoms should always be considered as potential features for predictive models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Exact Analysis of Squared Cross-Validity Coefficient in Predictive Regression Models

    ERIC Educational Resources Information Center

    Shieh, Gwowen

    2009-01-01

    In regression analysis, the notion of population validity is of theoretical interest for describing the usefulness of the underlying regression model, whereas the presumably more important concept of population cross-validity represents the predictive effectiveness for the regression equation in future research. It appears that the inference…

  8. Modeling the effects of argument length and validity on inductive and deductive reasoning.

    PubMed

    Rotello, Caren M; Heit, Evan

    2009-09-01

    In an effort to assess models of inductive reasoning and deductive reasoning, the authors, in 3 experiments, examined the effects of argument length and logical validity on evaluation of arguments. In Experiments 1a and 1b, participants were given either induction or deduction instructions for a common set of stimuli. Two distinct effects were observed: Induction judgments were more affected by argument length, and deduction judgments were more affected by validity. In Experiment 2, fluency was manipulated by displaying the materials in a low-contrast font, leading to increased sensitivity to logical validity. Several variants of 1-process and 2-process models of reasoning were assessed against the results. A 1-process model that assumed the same scale of argument strength underlies induction and deduction was not successful. A 2-process model that assumed separate, continuous informational dimensions of apparent deductive validity and associative strength gave the more successful account. (c) 2009 APA, all rights reserved.

  9. Validating soil phosphorus routines in the SWAT model

    USDA-ARS?s Scientific Manuscript database

    Phosphorus transfer from agricultural soils to surface waters is an important environmental issue. Commonly used models like SWAT have not always been updated to reflect improved understanding of soil P transformations and transfer to runoff. Our objective was to validate the ability of the P routin...

  10. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression

    PubMed Central

    2011-01-01

    Animal models of psychiatric disorders are usually discussed with regard to three criteria first elaborated by Willner; face, predictive and construct validity. Here, we draw the history of these concepts and then try to redraw and refine these criteria, using the framework of the diathesis model of depression that has been proposed by several authors. We thus propose a set of five major criteria (with sub-categories for some of them); homological validity (including species validity and strain validity), pathogenic validity (including ontopathogenic validity and triggering validity), mechanistic validity, face validity (including ethological and biomarker validity) and predictive validity (including induction and remission validity). Homological validity requires that an adequate species and strain be chosen: considering species validity, primates will be considered to have a higher score than drosophila, and considering strains, a high stress reactivity in a strain scores higher than a low stress reactivity in another strain. Pathological validity corresponds to the fact that, in order to shape pathological characteristics, the organism has been manipulated both during the developmental period (for example, maternal separation: ontopathogenic validity) and during adulthood (for example, stress: triggering validity). Mechanistic validity corresponds to the fact that the cognitive (for example, cognitive bias) or biological mechanisms (such as dysfunction of the hormonal stress axis regulation) underlying the disorder are identical in both humans and animals. Face validity corresponds to the observable behavioral (ethological validity) or biological (biomarker validity) outcomes: for example anhedonic behavior (ethological validity) or elevated corticosterone (biomarker validity). Finally, predictive validity corresponds to the identity of the relationship between the triggering factor and the outcome (induction validity) and between the effects of the treatments

  11. Calibration and validation of earthquake catastrophe models. Case study: Impact Forecasting Earthquake Model for Algeria

    NASA Astrophysics Data System (ADS)

    Trendafiloski, G.; Gaspa Rebull, O.; Ewing, C.; Podlaha, A.; Magee, B.

    2012-04-01

    Calibration and validation are crucial steps in the production of the catastrophe models for the insurance industry in order to assure the model's reliability and to quantify its uncertainty. Calibration is needed in all components of model development including hazard and vulnerability. Validation is required to ensure that the losses calculated by the model match those observed in past events and which could happen in future. Impact Forecasting, the catastrophe modelling development centre of excellence within Aon Benfield, has recently launched its earthquake model for Algeria as a part of the earthquake model for the Maghreb region. The earthquake model went through a detailed calibration process including: (1) the seismic intensity attenuation model by use of macroseismic observations and maps from past earthquakes in Algeria; (2) calculation of the country-specific vulnerability modifiers by use of past damage observations in the country. The use of Benouar, 1994 ground motion prediction relationship was proven as the most appropriate for our model. Calculation of the regional vulnerability modifiers for the country led to 10% to 40% larger vulnerability indexes for different building types compared to average European indexes. The country specific damage models also included aggregate damage models for residential, commercial and industrial properties considering the description of the buildings stock given by World Housing Encyclopaedia and the local rebuilding cost factors equal to 10% for damage grade 1, 20% for damage grade 2, 35% for damage grade 3, 75% for damage grade 4 and 100% for damage grade 5. The damage grades comply with the European Macroseismic Scale (EMS-1998). The model was validated by use of "as-if" historical scenario simulations of three past earthquake events in Algeria M6.8 2003 Boumerdes, M7.3 1980 El-Asnam and M7.3 1856 Djidjelli earthquake. The calculated return periods of the losses for client market portfolio align with the

  12. Hypersonic Experimental and Computational Capability, Improvement and Validation. Volume 2. (l’Hypersonique experimentale et de calcul - capacite, ameliorafion et validation)

    DTIC Science & Technology

    1998-12-01

    Soft Sphere Molecular Model for Inverse-Power-Law or Lennard Jones Potentials , Physics of Fluids A, Vol. 3, No. 10, pp. 2459-2465. 42. Legge, H...information; — Providing assistance to member nations for the purpose of increasing their scientific and technical potential ; — Rendering scientific and...nal, 34:756-763, 1996. [22] W. Jones and B. Launder. The Prediction of Laminarization with a Two-Equation Model of Turbulence. Int. Journal of Heat

  13. Integrated Medical Model Verification, Validation, and Credibility

    NASA Technical Reports Server (NTRS)

    Walton, Marlei; Kerstman, Eric; Foy, Millennia; Shah, Ronak; Saile, Lynn; Boley, Lynn; Butler, Doug; Myers, Jerry

    2014-01-01

    The Integrated Medical Model (IMM) was designed to forecast relative changes for a specified set of crew health and mission success risk metrics by using a probabilistic (stochastic process) model based on historical data, cohort data, and subject matter expert opinion. A probabilistic approach is taken since exact (deterministic) results would not appropriately reflect the uncertainty in the IMM inputs. Once the IMM was conceptualized, a plan was needed to rigorously assess input information, framework and code, and output results of the IMM, and ensure that end user requests and requirements were considered during all stages of model development and implementation. METHODS: In 2008, the IMM team developed a comprehensive verification and validation (VV) plan, which specified internal and external review criteria encompassing 1) verification of data and IMM structure to ensure proper implementation of the IMM, 2) several validation techniques to confirm that the simulation capability of the IMM appropriately represents occurrences and consequences of medical conditions during space missions, and 3) credibility processes to develop user confidence in the information derived from the IMM. When the NASA-STD-7009 (7009) was published, the IMM team updated their verification, validation, and credibility (VVC) project plan to meet 7009 requirements and include 7009 tools in reporting VVC status of the IMM. RESULTS: IMM VVC updates are compiled recurrently and include 7009 Compliance and Credibility matrices, IMM VV Plan status, and a synopsis of any changes or updates to the IMM during the reporting period. Reporting tools have evolved over the lifetime of the IMM project to better communicate VVC status. This has included refining original 7009 methodology with augmentation from the NASA-STD-7009 Guidance Document. End user requests and requirements are being satisfied as evidenced by ISS Program acceptance of IMM risk forecasts, transition to an operational model and

  14. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 2 - model validation

    NASA Astrophysics Data System (ADS)

    Zhang, Yaning; Xu, Fei; Li, Bingxi; Kim, Yong-Song; Zhao, Wenke; Xie, Gongnan; Fu, Zhongbin

    2018-04-01

    This study aims to validate the three-phase heat and mass transfer model developed in the first part (Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development). Experimental results from studies and experiments were used for the validation. The results showed that the correlation coefficients for the simulated and experimental water contents at different soil depths were between 0.83 and 0.92. The correlation coefficients for the simulated and experimental liquid water contents at different soil temperatures were between 0.95 and 0.99. With these high accuracies, the developed model can be well used to predict the water contents at different soil depths and temperatures.

  15. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  16. MolProbity’s Ultimate Rotamer-Library Distributions for Model Validation

    PubMed Central

    Hintze, Bradley J.; Lewis, Steven M.; Richardson, Jane S.; Richardson, David C.

    2016-01-01

    Here we describe the updated MolProbity rotamer-library distributions derived from an order-of-magnitude larger and more stringently quality-filtered dataset of about 8000 (vs. 500) protein chains, and we explain the resulting changes and improvements to model validation as seen by users. To include only sidechains with satisfactory justification for their given conformation, we added residue-specific filters for electron-density value and model-to-density fit. The combined new protocol retains a million residues of data, while cleaning up false-positive noise in the multi-χ datapoint distributions. It enables unambiguous characterization of conformational clusters nearly 1000-fold less frequent than the most common ones. We describe examples of local interactions that favor these rare conformations, including the role of authentic covalent bond-angle deviations in enabling presumably strained sidechain conformations. Further, along with favored and outlier, an allowed category (0.3% to 2.0% occurrence in reference data) has been added, analogous to Ramachandran validation categories. The new rotamer distributions are used for current rotamer validation in Mol-Probity and PHENIX, and for rotamer choice in PHENIX model-building and refinement. The multi-dimensional χ distributions and Top8000 reference dataset are freely available on GitHub. These rotamers are termed “ultimate” because data sampling and quality are now fully adequate for this task, and also because we believe the future of conformational validation should integrate sidechain with backbone criteria. PMID:27018641

  17. Data-Driven Residential Load Modeling and Validation in GridLAB-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotseff, Peter; Lundstrom, Blake

    Accurately characterizing the impacts of high penetrations of distributed energy resources (DER) on the electric distribution system has driven modeling methods from traditional static snap shots, often representing a critical point in time (e.g., summer peak load), to quasi-static time series (QSTS) simulations capturing all the effects of variable DER, associated controls and hence, impacts on the distribution system over a given time period. Unfortunately, the high time resolution DER source and load data required for model inputs is often scarce or non-existent. This paper presents work performed within the GridLAB-D model environment to synthesize, calibrate, and validate 1-second residentialmore » load models based on measured transformer loads and physics-based models suitable for QSTS electric distribution system modeling. The modeling and validation approach taken was to create a typical GridLAB-D model home that, when replicated to represent multiple diverse houses on a single transformer, creates a statistically similar load to a measured load for a given weather input. The model homes are constructed to represent the range of actual homes on an instrumented transformer: square footage, thermal integrity, heating and cooling system definition as well as realistic occupancy schedules. House model calibration and validation was performed using the distribution transformer load data and corresponding weather. The modeled loads were found to be similar to the measured loads for four evaluation metrics: 1) daily average energy, 2) daily average and standard deviation of power, 3) power spectral density, and 4) load shape.« less

  18. Turbulence Modeling Validation, Testing, and Development

    NASA Technical Reports Server (NTRS)

    Bardina, J. E.; Huang, P. G.; Coakley, T. J.

    1997-01-01

    The primary objective of this work is to provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results. Four popular turbulence models have been tested and validated against experimental data often turbulent flows. The models are: (1) the two-equation k-epsilon model of Wilcox, (2) the two-equation k-epsilon model of Launder and Sharma, (3) the two-equation k-omega/k-epsilon SST model of Menter, and (4) the one-equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been extensively used in model developments. The results are shown in the following four sections: Part A describes the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters, boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the performance of the models in the free-shear flows and the boundary layer flows, respectively.

  19. Pre-engineering Spaceflight Validation of Environmental Models and the 2005 HZETRN Simulation Code

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Cucinotta, Francis A.; Wilson, John W.; Badavi, Francis F.; Dachev, Ts. P.; Tomov, B. T.; Walker, Steven A.; DeAngelis, Giovanni; Blattnig, Steve R.; Atwell, William

    2006-01-01

    The HZETRN code has been identified by NASA for engineering design in the next phase of space exploration highlighting a return to the Moon in preparation for a Mars mission. In response, a new series of algorithms beginning with 2005 HZETRN, will be issued by correcting some prior limitations and improving control of propagated errors along with established code verification processes. Code validation processes will use new/improved low Earth orbit (LEO) environmental models with a recently improved International Space Station (ISS) shield model to validate computational models and procedures using measured data aboard ISS. These validated models will provide a basis for flight-testing the designs of future space vehicles and systems of the Constellation program in the LEO environment.

  20. Criterion for evaluating the predictive ability of nonlinear regression models without cross-validation.

    PubMed

    Kaneko, Hiromasa; Funatsu, Kimito

    2013-09-23

    We propose predictive performance criteria for nonlinear regression models without cross-validation. The proposed criteria are the determination coefficient and the root-mean-square error for the midpoints between k-nearest-neighbor data points. These criteria can be used to evaluate predictive ability after the regression models are updated, whereas cross-validation cannot be performed in such a situation. The proposed method is effective and helpful in handling big data when cross-validation cannot be applied. By analyzing data from numerical simulations and quantitative structural relationships, we confirm that the proposed criteria enable the predictive ability of the nonlinear regression models to be appropriately quantified.

  1. Validation of Modelled Ice Dynamics of the Greenland Ice Sheet using Historical Forcing

    NASA Astrophysics Data System (ADS)

    Hoffman, M. J.; Price, S. F.; Howat, I. M.; Bonin, J. A.; Chambers, D. P.; Tezaur, I.; Kennedy, J. H.; Lenaerts, J.; Lipscomb, W. H.; Neumann, T.; Nowicki, S.; Perego, M.; Saba, J. L.; Salinger, A.; Guerber, J. R.

    2015-12-01

    Although ice sheet models are used for sea level rise projections, the degree to which these models have been validated by observations is fairly limited, due in part to the limited duration of the satellite observation era and the long adjustment time scales of ice sheets. Here we describe a validation framework for the Greenland Ice Sheet applied to the Community Ice Sheet Model by forcing the model annually with flux anomalies at the major outlet glaciers (Enderlin et al., 2014, observed from Landsat/ASTER/Operation IceBridge) and surface mass balance (van Angelen et al., 2013, calculated from RACMO2) for the period 1991-2012. The ice sheet model output is compared to ice surface elevation observations from ICESat and ice sheet mass change observations from GRACE. Early results show promise for assessing the performance of different model configurations. Additionally, we explore the effect of ice sheet model resolution on validation skill.

  2. Validation of the Colorado Retinopathy of Prematurity Screening Model.

    PubMed

    McCourt, Emily A; Ying, Gui-Shuang; Lynch, Anne M; Palestine, Alan G; Wagner, Brandie D; Wymore, Erica; Tomlinson, Lauren A; Binenbaum, Gil

    2018-04-01

    The Colorado Retinopathy of Prematurity (CO-ROP) model uses birth weight, gestational age, and weight gain at the first month of life (WG-28) to predict risk of severe retinopathy of prematurity (ROP). In previous validation studies, the model performed very well, predicting virtually all cases of severe ROP and potentially reducing the number of infants who need ROP examinations, warranting validation in a larger, more diverse population. To validate the performance of the CO-ROP model in a large multicenter cohort. This study is a secondary analysis of data from the Postnatal Growth and Retinopathy of Prematurity (G-ROP) Study, a retrospective multicenter cohort study conducted in 29 hospitals in the United States and Canada between January 2006 and June 2012 of 6351 premature infants who received ROP examinations. Sensitivity and specificity for severe (early treatment of ROP [ETROP] type 1 or 2) ROP, and reduction in infants receiving examinations. The CO-ROP model was applied to the infants in the G-ROP data set with all 3 data points (infants would have received examinations if they met all 3 criteria: birth weight, <1501 g; gestational age, <30 weeks; and WG-28, <650 g). Infants missing WG-28 information were included in a secondary analysis in which WG-28 was considered fewer than 650 g. Of 7438 infants in the G-ROP study, 3575 (48.1%) were girls, and maternal race/ethnicity was 2310 (31.1%) African American, 3615 (48.6%) white, 233 (3.1%) Asian, 40 (0.52%) American Indian/Alaskan Native, and 93 (1.3%) Pacific Islander. In the study cohort, 747 infants (11.8%) had type 1 or 2 ROP, 2068 (32.6%) had lower-grade ROP, and 3536 (55.6%) had no ROP. The CO-ROP model had a sensitivity of 96.9% (95% CI, 95.4%-97.9%) and a specificity of 40.9% (95% CI, 39.3%-42.5%). It missed 23 (3.1%) infants who developed severe ROP. The CO-ROP model would have reduced the number of infants who received examinations by 26.1% (95% CI, 25.0%-27.2%). The CO-ROP model demonstrated high

  3. Beyond Corroboration: Strengthening Model Validation by Looking for Unexpected Patterns

    PubMed Central

    Chérel, Guillaume; Cottineau, Clémentine; Reuillon, Romain

    2015-01-01

    Models of emergent phenomena are designed to provide an explanation to global-scale phenomena from local-scale processes. Model validation is commonly done by verifying that the model is able to reproduce the patterns to be explained. We argue that robust validation must not only be based on corroboration, but also on attempting to falsify the model, i.e. making sure that the model behaves soundly for any reasonable input and parameter values. We propose an open-ended evolutionary method based on Novelty Search to look for the diverse patterns a model can produce. The Pattern Space Exploration method was tested on a model of collective motion and compared to three common a priori sampling experiment designs. The method successfully discovered all known qualitatively different kinds of collective motion, and performed much better than the a priori sampling methods. The method was then applied to a case study of city system dynamics to explore the model’s predicted values of city hierarchisation and population growth. This case study showed that the method can provide insights on potential predictive scenarios as well as falsifiers of the model when the simulated dynamics are highly unrealistic. PMID:26368917

  4. Validation of Fatigue Modeling Predictions in Aviation Operations

    NASA Technical Reports Server (NTRS)

    Gregory, Kevin; Martinez, Siera; Flynn-Evans, Erin

    2017-01-01

    Bio-mathematical fatigue models that predict levels of alertness and performance are one potential tool for use within integrated fatigue risk management approaches. A number of models have been developed that provide predictions based on acute and chronic sleep loss, circadian desynchronization, and sleep inertia. Some are publicly available and gaining traction in settings such as commercial aviation as a means of evaluating flight crew schedules for potential fatigue-related risks. Yet, most models have not been rigorously evaluated and independently validated for the operations to which they are being applied and many users are not fully aware of the limitations in which model results should be interpreted and applied.

  5. Validation of a common data model for active safety surveillance research

    PubMed Central

    Ryan, Patrick B; Reich, Christian G; Hartzema, Abraham G; Stang, Paul E

    2011-01-01

    Objective Systematic analysis of observational medical databases for active safety surveillance is hindered by the variation in data models and coding systems. Data analysts often find robust clinical data models difficult to understand and ill suited to support their analytic approaches. Further, some models do not facilitate the computations required for systematic analysis across many interventions and outcomes for large datasets. Translating the data from these idiosyncratic data models to a common data model (CDM) could facilitate both the analysts' understanding and the suitability for large-scale systematic analysis. In addition to facilitating analysis, a suitable CDM has to faithfully represent the source observational database. Before beginning to use the Observational Medical Outcomes Partnership (OMOP) CDM and a related dictionary of standardized terminologies for a study of large-scale systematic active safety surveillance, the authors validated the model's suitability for this use by example. Validation by example To validate the OMOP CDM, the model was instantiated into a relational database, data from 10 different observational healthcare databases were loaded into separate instances, a comprehensive array of analytic methods that operate on the data model was created, and these methods were executed against the databases to measure performance. Conclusion There was acceptable representation of the data from 10 observational databases in the OMOP CDM using the standardized terminologies selected, and a range of analytic methods was developed and executed with sufficient performance to be useful for active safety surveillance. PMID:22037893

  6. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  7. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  8. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  9. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  10. Computational Modeling and Validation for Hypersonic Inlets

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1996-01-01

    Hypersonic inlet research activity at NASA is reviewed. The basis for the paper is the experimental tests performed with three inlets: the NASA Lewis Research Center Mach 5, the McDonnell Douglas Mach 12, and the NASA Langley Mach 18. Both three-dimensional PNS and NS codes have been used to compute the flow within the three inlets. Modeling assumptions in the codes involve the turbulence model, the nature of the boundary layer, shock wave-boundary layer interaction, and the flow spilled to the outside of the inlet. Use of the codes and the experimental data are helping to develop a clearer understanding of the inlet flow physics and to focus on the modeling improvements required in order to arrive at validated codes.

  11. Validation of Slosh Modeling Approach Using STAR-CCM+

    NASA Technical Reports Server (NTRS)

    Benson, David J.; Ng, Wanyi

    2018-01-01

    Without an adequate understanding of propellant slosh, the spacecraft attitude control system may be inadequate to control the spacecraft or there may be an unexpected loss of science observation time due to higher slosh settling times. Computational fluid dynamics (CFD) is used to model propellant slosh. STAR-CCM+ is a commercially available CFD code. This paper seeks to validate the CFD modeling approach via a comparison between STAR-CCM+ liquid slosh modeling results and experimental, empirically, and analytically derived results. The geometries examined are a bare right cylinder tank and a right cylinder with a single ring baffle.

  12. Quantitative impedance measurements for eddy current model validation

    NASA Astrophysics Data System (ADS)

    Khan, T. A.; Nakagawa, N.

    2000-05-01

    This paper reports on a series of laboratory-based impedance measurement data, collected by the use of a quantitatively accurate, mechanically controlled measurement station. The purpose of the measurement is to validate a BEM-based eddy current model against experiment. We have therefore selected two "validation probes," which are both split-D differential probes. Their internal structures and dimensions are extracted from x-ray CT scan data, and thus known within the measurement tolerance. A series of measurements was carried out, using the validation probes and two Ti-6Al-4V block specimens, one containing two 1-mm long fatigue cracks, and the other containing six EDM notches of a range of sizes. Motor-controlled XY scanner performed raster scans over the cracks, with the probe riding on the surface with a spring-loaded mechanism to maintain the lift off. Both an impedance analyzer and a commercial EC instrument were used in the measurement. The probes were driven in both differential and single-coil modes for the specific purpose of model validation. The differential measurements were done exclusively by the eddyscope, while the single-coil data were taken with both the impedance analyzer and the eddyscope. From the single-coil measurements, we obtained the transfer function to translate the voltage output of the eddyscope into impedance values, and then used it to translate the differential measurement data into impedance results. The presentation will highlight the schematics of the measurement procedure, a representative of raw data, explanation of the post data-processing procedure, and then a series of resulting 2D flaw impedance results. A noise estimation will be given also, in order to quantify the accuracy of these measurements, and to be used in probability-of-detection estimation.—This work was supported by the NSF Industry/University Cooperative Research Program.

  13. Dynamic modelling and experimental validation of three wheeled tilting vehicles

    NASA Astrophysics Data System (ADS)

    Amati, Nicola; Festini, Andrea; Pelizza, Luigi; Tonoli, Andrea

    2011-06-01

    The present paper describes the study of the stability in the straight running of a three-wheeled tilting vehicle for urban and sub-urban mobility. The analysis was carried out by developing a multibody model in the Matlab/SimulinkSimMechanics environment. An Adams-Motorcycle model and an equivalent analytical model were developed for the cross-validation and for highlighting the similarities with the lateral dynamics of motorcycles. Field tests were carried out to validate the model and identify some critical parameters, such as the damping on the steering system. The stability analysis demonstrates that the lateral dynamic motions are characterised by vibration modes that are similar to that of a motorcycle. Additionally, it shows that the wobble mode is significantly affected by the castor trail, whereas it is only slightly affected by the dynamics of the front suspension. For the present case study, the frame compliance also has no influence on the weave and wobble.

  14. Experimental Validation of Model Updating and Damage Detection via Eigenvalue Sensitivity Methods with Artificial Boundary Conditions

    DTIC Science & Technology

    2017-09-01

    VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY CONDITIONS by Matthew D. Bouwense...VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY CONDITIONS 5. FUNDING NUMBERS 6. AUTHOR...unlimited. EXPERIMENTAL VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY

  15. Selection, calibration, and validation of models of tumor growth.

    PubMed

    Lima, E A B F; Oden, J T; Hormuth, D A; Yankeelov, T E; Almeida, R C

    2016-11-01

    This paper presents general approaches for addressing some of the most important issues in predictive computational oncology concerned with developing classes of predictive models of tumor growth. First, the process of developing mathematical models of vascular tumors evolving in the complex, heterogeneous, macroenvironment of living tissue; second, the selection of the most plausible models among these classes, given relevant observational data; third, the statistical calibration and validation of models in these classes, and finally, the prediction of key Quantities of Interest (QOIs) relevant to patient survival and the effect of various therapies. The most challenging aspects of this endeavor is that all of these issues often involve confounding uncertainties: in observational data, in model parameters, in model selection, and in the features targeted in the prediction. Our approach can be referred to as "model agnostic" in that no single model is advocated; rather, a general approach that explores powerful mixture-theory representations of tissue behavior while accounting for a range of relevant biological factors is presented, which leads to many potentially predictive models. Then representative classes are identified which provide a starting point for the implementation of OPAL, the Occam Plausibility Algorithm (OPAL) which enables the modeler to select the most plausible models (for given data) and to determine if the model is a valid tool for predicting tumor growth and morphology ( in vivo ). All of these approaches account for uncertainties in the model, the observational data, the model parameters, and the target QOI. We demonstrate these processes by comparing a list of models for tumor growth, including reaction-diffusion models, phase-fields models, and models with and without mechanical deformation effects, for glioma growth measured in murine experiments. Examples are provided that exhibit quite acceptable predictions of tumor growth in laboratory

  16. Refining and validating a conceptual model of Clinical Nurse Leader integrated care delivery.

    PubMed

    Bender, Miriam; Williams, Marjory; Su, Wei; Hites, Lisle

    2017-02-01

    To empirically validate a conceptual model of Clinical Nurse Leader integrated care delivery. There is limited evidence of frontline care delivery models that consistently achieve quality patient outcomes. Clinical Nurse Leader integrated care delivery is a promising nursing model with a growing record of success. However, theoretical clarity is necessary to generate causal evidence of effectiveness. Sequential mixed methods. A preliminary Clinical Nurse Leader practice model was refined and survey items developed to correspond with model domains, using focus groups and a Delphi process with a multi-professional expert panel. The survey was administered in 2015 to clinicians and administrators involved in Clinical Nurse Leader initiatives. Confirmatory factor analysis and structural equation modelling were used to validate the measurement and model structure. Final sample n = 518. The model incorporates 13 components organized into five conceptual domains: 'Readiness for Clinical Nurse Leader integrated care delivery'; 'Structuring Clinical Nurse Leader integrated care delivery'; 'Clinical Nurse Leader Practice: Continuous Clinical Leadership'; 'Outcomes of Clinical Nurse Leader integrated care delivery'; and 'Value'. Sample data had good fit with specified model and two-level measurement structure. All hypothesized pathways were significant, with strong coefficients suggesting good fit between theorized and observed path relationships. The validated model articulates an explanatory pathway of Clinical Nurse Leader integrated care delivery, including Clinical Nurse Leader practices that result in improved care dynamics and patient outcomes. The validated model provides a basis for testing in practice to generate evidence that can be deployed across the healthcare spectrum. © 2016 John Wiley & Sons Ltd.

  17. Summary of EASM Turbulence Models in CFL3D With Validation Test Cases

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Gatski, Thomas B.

    2003-01-01

    This paper summarizes the Explicit Algebraic Stress Model in k-omega form (EASM-ko) and in k-epsilon form (EASM-ke) in the Reynolds-averaged Navier-Stokes code CFL3D. These models have been actively used over the last several years in CFL3D, and have undergone some minor modifications during that time. Details of the equations and method for coding the latest versions of the models are given, and numerous validation cases are presented. This paper serves as a validation archive for these models.

  18. Rationality Validation of a Layered Decision Model for Network Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Huaqiang; Alves-Foss, James; Zhang, Du

    2007-08-31

    We propose a cost-effective network defense strategy built on three key: three decision layers: security policies, defense strategies, and real-time defense tactics for countering immediate threats. A layered decision model (LDM) can be used to capture this decision process. The LDM helps decision-makers gain insight into the hierarchical relationships among inter-connected entities and decision types, and supports the selection of cost-effective defense mechanisms to safeguard computer networks. To be effective as a business tool, it is first necessary to validate the rationality of model before applying it to real-world business cases. This paper describes our efforts in validating the LDMmore » rationality through simulation.« less

  19. A method for landing gear modeling and simulation with experimental validation

    NASA Technical Reports Server (NTRS)

    Daniels, James N.

    1996-01-01

    This document presents an approach for modeling and simulating landing gear systems. Specifically, a nonlinear model of an A-6 Intruder Main Gear is developed, simulated, and validated against static and dynamic test data. This model includes nonlinear effects such as a polytropic gas model, velocity squared damping, a geometry governed model for the discharge coefficients, stick-slip friction effects and a nonlinear tire spring and damping model. An Adams-Moulton predictor corrector was used to integrate the equations of motion until a discontinuity caused by a stick-slip friction model was reached, at which point, a Runga-Kutta routine integrated past the discontinuity and returned the problem solution back to the predictor corrector. Run times of this software are around 2 mins. per 1 sec. of simulation under dynamic circumstances. To validate the model, engineers at the Aircraft Landing Dynamics facilities at NASA Langley Research Center installed one A-6 main gear on a drop carriage and used a hydraulic shaker table to provide simulated runway inputs to the gear. Model parameters were tuned to produce excellent agreement for many cases.

  20. The Development and Validation of a New Land Surface Model for Regional and Global Climate Modeling

    NASA Astrophysics Data System (ADS)

    Lynch-Stieglitz, Marc

    1995-11-01

    A new land-surface scheme intended for use in mesoscale and global climate models has been developed and validated. The ground scheme consists of 6 soil layers. Diffusion and a modified tipping bucket model govern heat and water flow respectively. A 3 layer snow model has been incorporated into a modified BEST vegetation scheme. TOPMODEL equations and Digital Elevation Model data are used to generate baseflow which supports lowland saturated zones. Soil moisture heterogeneity represented by saturated lowlands subsequently impacts watershed evapotranspiration, the partitioning of surface fluxes, and the development of the storm hydrograph. Five years of meteorological and hydrological data from the Sleepers river watershed located in the eastern highlands of Vermont where winter snow cover is significant were then used to drive and validate the new scheme. Site validation data were sufficient to evaluate model performance with regard to various aspects of the watershed water balance, including snowpack growth/ablation, the spring snowmelt hydrograph, storm hydrographs, and the seasonal development of watershed evapotranspiration and soil moisture. By including topographic effects, not only are the main spring hydrographs and individual storm hydrographs adequately resolved, but the mechanisms generating runoff are consistent with current views of hydrologic processes. The seasonal movement of the mean water table depth and the saturated area of the watershed are consistent with site data and the overall model hydroclimatology, including the surface fluxes, seems reasonable.

  1. Validation of landsurface processes in the AMIP models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, T J

    The Atmospheric Model Intercomparison Project (AMIP) is a commonly accepted protocol for testing the performance of the world's atmospheric general circulation models (AGCMs) under common specifications of radiative forcings (in solar constant and carbon dioxide concentration) and observed ocean boundary conditions (Gates 1992, Gates et al. 1999). From the standpoint of landsurface specialists, the AMIP affords an opportunity to investigate the behaviors of a wide variety of land-surface schemes (LSS) that are coupled to their ''native'' AGCMs (Phillips et al. 1995, Phillips 1999). In principle, therefore, the AMIP permits consideration of an overarching question: ''To what extent does an AGCM'smore » performance in simulating continental climate depend on the representations of land-surface processes by the embedded LSS?'' There are, of course, some formidable obstacles to satisfactorily addressing this question. First, there is the dilemna of how to effectively validate simulation performance, given the present dearth of global land-surface data sets. Even if this data problem were to be alleviated, some inherent methodological difficulties would remain: in the context of the AMIP, it is not possible to validate a given LSS per se, since the associated land-surface climate simulation is a product of the coupled AGCM/LSS system. Moreover, aside from the intrinsic differences in LSS across the AMIP models, the varied representations of land-surface characteristics (e.g. vegetation properties, surface albedos and roughnesses, etc.) and related variations in land-surface forcings further complicate such an attribution process. Nevertheless, it may be possible to develop validation methodologies/statistics that are sufficiently penetrating to reveal ''signatures'' of particular ISS representations (e.g. ''bucket'' vs more complex parameterizations of hydrology) in the AMIP land-surface simulations.« less

  2. A new simple local muscle recovery model and its theoretical and experimental validation.

    PubMed

    Ma, Liang; Zhang, Wei; Wu, Su; Zhang, Zhanwu

    2015-01-01

    This study was conducted to provide theoretical and experimental validation of a local muscle recovery model. Muscle recovery has been modeled in different empirical and theoretical approaches to determine work-rest allowance for musculoskeletal disorder (MSD) prevention. However, time-related parameters and individual attributes have not been sufficiently considered in conventional approaches. A new muscle recovery model was proposed by integrating time-related task parameters and individual attributes. Theoretically, this muscle recovery model was compared to other theoretical models mathematically. Experimentally, a total of 20 subjects participated in the experimental validation. Hand grip force recovery and shoulder joint strength recovery were measured after a fatiguing operation. The recovery profile was fitted by using the recovery model, and individual recovery rates were calculated as well after fitting. Good fitting values (r(2) > .8) were found for all the subjects. Significant differences in recovery rates were found among different muscle groups (p < .05). The theoretical muscle recovery model was primarily validated by characterization of the recovery process after fatiguing operation. The determined recovery rate may be useful to represent individual recovery attribute.

  3. Model performance evaluation (validation and calibration) in model-based studies of therapeutic interventions for cardiovascular diseases : a review and suggested reporting framework.

    PubMed

    Haji Ali Afzali, Hossein; Gray, Jodi; Karnon, Jonathan

    2013-04-01

    Decision analytic models play an increasingly important role in the economic evaluation of health technologies. Given uncertainties around the assumptions used to develop such models, several guidelines have been published to identify and assess 'best practice' in the model development process, including general modelling approach (e.g., time horizon), model structure, input data and model performance evaluation. This paper focuses on model performance evaluation. In the absence of a sufficient level of detail around model performance evaluation, concerns regarding the accuracy of model outputs, and hence the credibility of such models, are frequently raised. Following presentation of its components, a review of the application and reporting of model performance evaluation is presented. Taking cardiovascular disease as an illustrative example, the review investigates the use of face validity, internal validity, external validity, and cross model validity. As a part of the performance evaluation process, model calibration is also discussed and its use in applied studies investigated. The review found that the application and reporting of model performance evaluation across 81 studies of treatment for cardiovascular disease was variable. Cross-model validation was reported in 55 % of the reviewed studies, though the level of detail provided varied considerably. We found that very few studies documented other types of validity, and only 6 % of the reviewed articles reported a calibration process. Considering the above findings, we propose a comprehensive model performance evaluation framework (checklist), informed by a review of best-practice guidelines. This framework provides a basis for more accurate and consistent documentation of model performance evaluation. This will improve the peer review process and the comparability of modelling studies. Recognising the fundamental role of decision analytic models in informing public funding decisions, the proposed

  4. Lessons learned from recent geomagnetic disturbance model validation activities

    NASA Astrophysics Data System (ADS)

    Pulkkinen, A. A.; Welling, D. T.

    2017-12-01

    Due to concerns pertaining to geomagnetically induced current impact on ground-based infrastructure, there has been significantly elevated interest in applying models for local geomagnetic disturbance or "delta-B" predictions. Correspondingly there has been elevated need for testing the quality of the delta-B predictions generated by the modern empirical and physics-based models. To address this need, community-wide activities were launched under the GEM Challenge framework and one culmination of the activities was the validation and selection of models that were transitioned into operations at NOAA SWPC. The community-wide delta-B action is continued under the CCMC-facilitated International Forum for Space Weather Capabilities Assessment and its "Ground Magnetic Perturbations: dBdt, delta-B, GICs, FACs" working group. The new delta-B working group builds on the past experiences and expands the collaborations to cover the entire international space weather community. In this paper, we discuss the key lessons learned from the past delta-B validation exercises and lay out the path forward for building on those experience under the new delta-B working group.

  5. Temporal and external validation of a prediction model for adverse outcomes among inpatients with diabetes.

    PubMed

    Adderley, N J; Mallett, S; Marshall, T; Ghosh, S; Rayman, G; Bellary, S; Coleman, J; Akiboye, F; Toulis, K A; Nirantharakumar, K

    2018-06-01

    To temporally and externally validate our previously developed prediction model, which used data from University Hospitals Birmingham to identify inpatients with diabetes at high risk of adverse outcome (mortality or excessive length of stay), in order to demonstrate its applicability to other hospital populations within the UK. Temporal validation was performed using data from University Hospitals Birmingham and external validation was performed using data from both the Heart of England NHS Foundation Trust and Ipswich Hospital. All adult inpatients with diabetes were included. Variables included in the model were age, gender, ethnicity, admission type, intensive therapy unit admission, insulin therapy, albumin, sodium, potassium, haemoglobin, C-reactive protein, estimated GFR and neutrophil count. Adverse outcome was defined as excessive length of stay or death. Model discrimination in the temporal and external validation datasets was good. In temporal validation using data from University Hospitals Birmingham, the area under the curve was 0.797 (95% CI 0.785-0.810), sensitivity was 70% (95% CI 67-72) and specificity was 75% (95% CI 74-76). In external validation using data from Heart of England NHS Foundation Trust, the area under the curve was 0.758 (95% CI 0.747-0.768), sensitivity was 73% (95% CI 71-74) and specificity was 66% (95% CI 65-67). In external validation using data from Ipswich, the area under the curve was 0.736 (95% CI 0.711-0.761), sensitivity was 63% (95% CI 59-68) and specificity was 69% (95% CI 67-72). These results were similar to those for the internally validated model derived from University Hospitals Birmingham. The prediction model to identify patients with diabetes at high risk of developing an adverse event while in hospital performed well in temporal and external validation. The externally validated prediction model is a novel tool that can be used to improve care pathways for inpatients with diabetes. Further research to assess

  6. Differential Validation of a Path Analytic Model of University Dropout.

    ERIC Educational Resources Information Center

    Winteler, Adolf

    Tinto's conceptual schema of college dropout forms the theoretical framework for the development of a model of university student dropout intention. This study validated Tinto's model in two different departments within a single university. Analyses were conducted on a sample of 684 college freshmen in the Education and Economics Department. A…

  7. Exploring the Validity of Proposed Transgenic Animal Models of Attention-Deficit Hyperactivity Disorder (ADHD).

    PubMed

    de la Peña, June Bryan; Dela Peña, Irene Joy; Custodio, Raly James; Botanas, Chrislean Jun; Kim, Hee Jin; Cheong, Jae Hoon

    2018-05-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common, behavioral, and heterogeneous neurodevelopmental condition characterized by hyperactivity, impulsivity, and inattention. Symptoms of this disorder are managed by treatment with methylphenidate, amphetamine, and/or atomoxetine. The cause of ADHD is unknown, but substantial evidence indicates that this disorder has a significant genetic component. Transgenic animals have become an essential tool in uncovering the genetic factors underlying ADHD. Although they cannot accurately reflect the human condition, they can provide insights into the disorder that cannot be obtained from human studies due to various limitations. An ideal animal model of ADHD must have face (similarity in symptoms), predictive (similarity in response to treatment or medications), and construct (similarity in etiology or underlying pathophysiological mechanism) validity. As the exact etiology of ADHD remains unclear, the construct validity of animal models of ADHD would always be limited. The proposed transgenic animal models of ADHD have substantially increased and diversified over the years. In this paper, we compiled and explored the validity of proposed transgenic animal models of ADHD. Each of the reviewed transgenic animal models has strengths and limitations. Some fulfill most of the validity criteria of an animal model of ADHD and have been extensively used, while there are others that require further validation. Nevertheless, these transgenic animal models of ADHD have provided and will continue to provide valuable insights into the genetic underpinnings of this complex disorder.

  8. Caracterisation experimentale et numerique de la flamme de carburants synthetiques gazeux

    NASA Astrophysics Data System (ADS)

    Ouimette, Pascale

    The goal of this research is to characterize experimentally and numerically laminar flames of syngas fuels made of hydrogen (H2), carbon monoxide (CO), and carbon dioxide (CO2). More specifically, the secondary objectives are: 1) to understand the effects of CO2 concentration and H2/CO ratio on NOx emissions, flame temperature, visible flame height, and flame appearance; 2) to analyze the influence of H2/CO ratio on the lame structure, and; 3) to compare and validate different H2/CO kinetic mechanisms used in a CFD (computational fluid dynamics) model over different H2/CO ratios. Thus, the present thesis is divided in three chapters, each one corresponding to a secondary objective. For the first part, experimentations enabled to conclude that adding CO2 diminishes flame temperature and EINOx for all equivalence ratios while increasing the H2/CO ratio has no influence on flame temperature but increases EINOx for equivalence ratios lower than 2. Concerning flame appearance, a low CO2 concentration in the fuel or a high H2/CO ratio gives the flame an orange color, which is explained by a high level of CO in the combustion by-products. The observed constant flame temperature with the addition of CO, which has a higher adiabatic flame temperature, is mainly due to the increased heat loss through radiation by CO2. Because NOx emissions of H2/CO/CO 2 flames are mainly a function of flame temperature, which is a function of the H2/CO ratio, the rest of the thesis concentrates on measuring and predicting species in the flame as a good prediction of species and heat release will enable to predict NOx emissions. Thus, for the second part, different H2/CO fuels are tested and major species are measured by Raman spectroscopy. Concerning major species, the maximal measured H 2O concentration decreases with addition of CO to the fuel, while the central CO2 concentration increases, as expected. However, at 20% of the visible flame height and for all fuels tested herein, the

  9. Temporal validation for landsat-based volume estimation model

    Treesearch

    Renaldo J. Arroyo; Emily B. Schultz; Thomas G. Matney; David L. Evans; Zhaofei Fan

    2015-01-01

    Satellite imagery can potentially reduce the costs and time associated with ground-based forest inventories; however, for satellite imagery to provide reliable forest inventory data, it must produce consistent results from one time period to the next. The objective of this study was to temporally validate a Landsat-based volume estimation model in a four county study...

  10. Modeling and validating HL7 FHIR profiles using semantic web Shape Expressions (ShEx).

    PubMed

    Solbrig, Harold R; Prud'hommeaux, Eric; Grieve, Grahame; McKenzie, Lloyd; Mandel, Joshua C; Sharma, Deepak K; Jiang, Guoqian

    2017-03-01

    HL7 Fast Healthcare Interoperability Resources (FHIR) is an emerging open standard for the exchange of electronic healthcare information. FHIR resources are defined in a specialized modeling language. FHIR instances can currently be represented in either XML or JSON. The FHIR and Semantic Web communities are developing a third FHIR instance representation format in Resource Description Framework (RDF). Shape Expressions (ShEx), a formal RDF data constraint language, is a candidate for describing and validating the FHIR RDF representation. Create a FHIR to ShEx model transformation and assess its ability to describe and validate FHIR RDF data. We created the methods and tools that generate the ShEx schemas modeling the FHIR to RDF specification being developed by HL7 ITS/W3C RDF Task Force, and evaluated the applicability of ShEx in the description and validation of FHIR to RDF transformations. The ShEx models contributed significantly to workgroup consensus. Algorithmic transformations from the FHIR model to ShEx schemas and FHIR example data to RDF transformations were incorporated into the FHIR build process. ShEx schemas representing 109 FHIR resources were used to validate 511 FHIR RDF data examples from the Standards for Trial Use (STU 3) Ballot version. We were able to uncover unresolved issues in the FHIR to RDF specification and detect 10 types of errors and root causes in the actual implementation. The FHIR ShEx representations have been included in the official FHIR web pages for the STU 3 Ballot version since September 2016. ShEx can be used to define and validate the syntax of a FHIR resource, which is complementary to the use of RDF Schema (RDFS) and Web Ontology Language (OWL) for semantic validation. ShEx proved useful for describing a standard model of FHIR RDF data. The combination of a formal model and a succinct format enabled comprehensive review and automated validation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Validation of Risk Assessment Models of Venous Thromboembolism in Hospitalized Medical Patients.

    PubMed

    Greene, M Todd; Spyropoulos, Alex C; Chopra, Vineet; Grant, Paul J; Kaatz, Scott; Bernstein, Steven J; Flanders, Scott A

    2016-09-01

    Patients hospitalized for acute medical illness are at increased risk for venous thromboembolism. Although risk assessment is recommended and several at-admission risk assessment models have been developed, these have not been adequately derived or externally validated. Therefore, an optimal approach to evaluate venous thromboembolism risk in medical patients is not known. We conducted an external validation study of existing venous thromboembolism risk assessment models using data collected on 63,548 hospitalized medical patients as part of the Michigan Hospital Medicine Safety (HMS) Consortium. For each patient, cumulative venous thromboembolism risk scores and risk categories were calculated. Cox regression models were used to quantify the association between venous thromboembolism events and assigned risk categories. Model discrimination was assessed using Harrell's C-index. Venous thromboembolism incidence in hospitalized medical patients is low (1%). Although existing risk assessment models demonstrate good calibration (hazard ratios for "at-risk" range 2.97-3.59), model discrimination is generally poor for all risk assessment models (C-index range 0.58-0.64). The performance of several existing risk assessment models for predicting venous thromboembolism among acutely ill, hospitalized medical patients at admission is limited. Given the low venous thromboembolism incidence in this nonsurgical patient population, careful consideration of how best to utilize existing venous thromboembolism risk assessment models is necessary, and further development and validation of novel venous thromboembolism risk assessment models for this patient population may be warranted. Published by Elsevier Inc.

  12. Quantification of Dynamic Model Validation Metrics Using Uncertainty Propagation from Requirements

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Peck, Jeffrey A.; Stewart, Eric C.

    2018-01-01

    The Space Launch System, NASA's new large launch vehicle for long range space exploration, is presently in the final design and construction phases, with the first launch scheduled for 2019. A dynamic model of the system has been created and is critical for calculation of interface loads and natural frequencies and mode shapes for guidance, navigation, and control (GNC). Because of the program and schedule constraints, a single modal test of the SLS will be performed while bolted down to the Mobile Launch Pad just before the first launch. A Monte Carlo and optimization scheme will be performed to create thousands of possible models based on given dispersions in model properties and to determine which model best fits the natural frequencies and mode shapes from modal test. However, the question still remains as to whether this model is acceptable for the loads and GNC requirements. An uncertainty propagation and quantification (UP and UQ) technique to develop a quantitative set of validation metrics that is based on the flight requirements has therefore been developed and is discussed in this paper. There has been considerable research on UQ and UP and validation in the literature, but very little on propagating the uncertainties from requirements, so most validation metrics are "rules-of-thumb;" this research seeks to come up with more reason-based metrics. One of the main assumptions used to achieve this task is that the uncertainty in the modeling of the fixed boundary condition is accurate, so therefore that same uncertainty can be used in propagating the fixed-test configuration to the free-free actual configuration. The second main technique applied here is the usage of the limit-state formulation to quantify the final probabilistic parameters and to compare them with the requirements. These techniques are explored with a simple lumped spring-mass system and a simplified SLS model. When completed, it is anticipated that this requirements-based validation

  13. Radiative transfer model validations during the First ISLSCP Field Experiment

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Breon, Francois-Marie; Gautier, Catherine

    1990-01-01

    Two simple radiative transfer models, the 5S model based on Tanre et al. (1985, 1986) and the wide-band model of Morcrette (1984) are validated by comparing their outputs with results obtained during the First ISLSCP Field Experiment on concomitant radiosonde, aerosol turbidity, and radiation measurements and sky photographs. Results showed that the 5S model overestimates the short-wave irradiance by 13.2 W/sq m, whereas the Morcrette model underestimated the long-wave irradiance by 7.4 W/sq m.

  14. Heat Transfer Modeling and Validation for Optically Thick Alumina Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    2009-01-01

    Combined radiation/conduction heat transfer through unbonded alumina fibrous insulation was modeled using the diffusion approximation for modeling the radiation component of heat transfer in the optically thick insulation. The validity of the heat transfer model was investigated by comparison to previously reported experimental effective thermal conductivity data over the insulation density range of 24 to 96 kg/cu m, with a pressure range of 0.001 to 750 torr (0.1 to 101.3 x 10(exp 3) Pa), and test sample hot side temperature range of 530 to 1360 K. The model was further validated by comparison to thermal conductivity measurements using the transient step heating technique on an insulation sample at a density of 144 kg/cu m over a pressure range of 0.001 to 760 torr, and temperature range of 290 to 1090 K.

  15. Etude experimentale des excitations topologiques de l'effet Hall quantique a nu = 1 dans les heterostructures semiconductrices a double puits quantique

    NASA Astrophysics Data System (ADS)

    Charlebois, Serge

    De nombreux travaux theoriques et experimentaux ont ete publies sur les excitations topologiques de gaz electroniques bidimensionnels (GE2D), appellees skyrmions, dans le regime de l'effet Hall quantique a remplissage unitaire. On attend des excitations semblables appellees bimerons dans les systemes formes de deux GE2D couples. Contrairement au cas des GE2D simples, aucune experience n'a, a notre connaissance, presente la mesure d'une propriete specifique aux bimerons. Nous presentons dans cette these des travaux experimentaux ayant pour objectif l'etude d'excitations topologiques dans les heterostructures a double puits quantique. Une manifestation attendue (les bimerons est la presence d'une anisotropie dans la conductivite a travers une constriction. Nous avons concu un dispositif original a point de contact a trois grilles non-coplanaires. Ce dispositif a trois grilles a la particularite de permettre la creation d'une constriction etroite dans le double GE2D tout en permettant l'equilibrage de la densite electronique entre les deux puits dans l'etroit canal de conduction. Nous avons fabrique ce dispositif de taille submicronique par electrolithographie sur des heterostructures a double puits. Les dispositifs ainsi fabriques ont ete etudies a basse temperature (0.3K) et ont montre un fonctionnement conforme aux attentes. Les travaux n'ont pas permis de mettre en evidence une anisotropie de transport revelatrice de l'existence de bimerons. Cette these est a notre connaissance la premiere etude experimentale visant la realisation de l'experience d'anisotropie de transport et est ainsi une contribution significative a l'avancement des connaissances dans ce domaine. Les travaux theoriques que nous presentons ont permis de montrer l'effet des excitations topologiques sur la capacite grille-GE2D du systeme. Ces travaux ouvrent la voie de la detection des bimerons par l'intermediaire de la mesure de la capacite grille-GE2D ou encore de la susceptibilite electrique du

  16. SHERMAN, a shape-based thermophysical model. I. Model description and validation

    NASA Astrophysics Data System (ADS)

    Magri, Christopher; Howell, Ellen S.; Vervack, Ronald J.; Nolan, Michael C.; Fernández, Yanga R.; Marshall, Sean E.; Crowell, Jenna L.

    2018-03-01

    SHERMAN, a new thermophysical modeling package designed for analyzing near-infrared spectra of asteroids and other solid bodies, is presented. The model's features, the methods it uses to solve for surface and subsurface temperatures, and the synthetic data it outputs are described. A set of validation tests demonstrates that SHERMAN produces accurate output in a variety of special cases for which correct results can be derived from theory. These cases include a family of solutions to the heat equation for which thermal inertia can have any value and thermophysical properties can vary with depth and with temperature. An appendix describes a new approximation method for estimating surface temperatures within spherical-section craters, more suitable for modeling infrared beaming at short wavelengths than the standard method.

  17. Validating a model that predicts daily growth and feed quality of New Zealand dairy pastures.

    PubMed

    Woodward, S J

    2001-09-01

    The Pasture Quality (PQ) model is a simple, mechanistic, dynamical system model that was designed to capture the essential biological processes in grazed grass-clover pasture, and to be optimised to derive improved grazing strategies for New Zealand dairy farms. While the individual processes represented in the model (photosynthesis, tissue growth, flowering, leaf death, decomposition, worms) were based on experimental data, this did not guarantee that the assembled model would accurately predict the behaviour of the system as a whole (i.e., pasture growth and quality). Validation of the whole model was thus a priority, since any strategy derived from the model could impact a farm business in the order of thousands of dollars per annum if adopted. This paper describes the process of defining performance criteria for the model, obtaining suitable data to test the model, and carrying out the validation analysis. The validation process highlighted a number of weaknesses in the model, which will lead to the model being improved. As a result, the model's utility will be enhanced. Furthermore, validation was found to have an unexpected additional benefit, in that despite the model's poor initial performance, support was generated for the model among field scientists involved in the wider project.

  18. Evaluation of Validity and Reliability for Hierarchical Scales Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2012-01-01

    A latent variable modeling method is outlined, which accomplishes estimation of criterion validity and reliability for a multicomponent measuring instrument with hierarchical structure. The approach provides point and interval estimates for the scale criterion validity and reliability coefficients, and can also be used for testing composite or…

  19. When is the Anelastic Approximation a Valid Model for Compressible Convection?

    NASA Astrophysics Data System (ADS)

    Alboussiere, T.; Curbelo, J.; Labrosse, S.; Ricard, Y. R.; Dubuffet, F.

    2017-12-01

    Compressible convection is ubiquitous in large natural systems such Planetary atmospheres, stellar and planetary interiors. Its modelling is notoriously more difficult than the case when the Boussinesq approximation applies. One reason for that difficulty has been put forward by Ogura and Phillips (1961): the compressible equations generate sound waves with very short time scales which need to be resolved. This is why they introduced an anelastic model, based on an expansion of the solution around an isentropic hydrostatic profile. How accurate is that anelastic model? What are the conditions for its validity? To answer these questions, we have developed a numerical model for the full set of compressible equations and compared its solutions with those of the corresponding anelastic model. We considered a simple rectangular 2D Rayleigh-Bénard configuration and decided to restrict the analysis to infinite Prandtl numbers. This choice is valid for convection in the mantles of rocky planets, but more importantly lead to a zero Mach number. So we got rid of the question of the interference of acoustic waves with convection. In that simplified context, we used the entropy balances (that of the full set of equations and that of the anelastic model) to investigate the differences between exact and anelastic solutions. We found that the validity of the anelastic model is dictated by two conditions: first, the superadiabatic temperature difference must be small compared with the adiabatic temperature difference (as expected) ɛ = Δ TSA / delta Ta << 1, and secondly that the product of ɛ with the Nusselt number must be small.

  20. On the validation of a code and a turbulence model appropriate to circulation control airfoils

    NASA Technical Reports Server (NTRS)

    Viegas, J. R.; Rubesin, M. W.; Maccormack, R. W.

    1988-01-01

    A computer code for calculating flow about a circulation control airfoil within a wind tunnel test section has been developed. This code is being validated for eventual use as an aid to design such airfoils. The concept of code validation being used is explained. The initial stages of the process have been accomplished. The present code has been applied to a low-subsonic, 2-D flow about a circulation control airfoil for which extensive data exist. Two basic turbulence models and variants thereof have been successfully introduced into the algorithm, the Baldwin-Lomax algebraic and the Jones-Launder two-equation models of turbulence. The variants include adding a history of the jet development for the algebraic model and adding streamwise curvature effects for both models. Numerical difficulties and difficulties in the validation process are discussed. Turbulence model and code improvements to proceed with the validation process are also discussed.

  1. Use of the Ames Check Standard Model for the Validation of Wall Interference Corrections

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Amaya, M.; Flach, R.

    2018-01-01

    The new check standard model of the NASA Ames 11-ft Transonic Wind Tunnel was chosen for a future validation of the facility's wall interference correction system. The chosen validation approach takes advantage of the fact that test conditions experienced by a large model in the slotted part of the tunnel's test section will change significantly if a subset of the slots is temporarily sealed. Therefore, the model's aerodynamic coefficients have to be recorded, corrected, and compared for two different test section configurations in order to perform the validation. Test section configurations with highly accurate Mach number and dynamic pressure calibrations were selected for the validation. First, the model is tested with all test section slots in open configuration while keeping the model's center of rotation on the tunnel centerline. In the next step, slots on the test section floor are sealed and the model is moved to a new center of rotation that is 33 inches below the tunnel centerline. Then, the original angle of attack sweeps are repeated. Afterwards, wall interference corrections are applied to both test data sets and response surface models of the resulting aerodynamic coefficients in interference-free flow are generated. Finally, the response surface models are used to predict the aerodynamic coefficients for a family of angles of attack while keeping dynamic pressure, Mach number, and Reynolds number constant. The validation is considered successful if the corrected aerodynamic coefficients obtained from the related response surface model pair show good agreement. Residual differences between the corrected coefficient sets will be analyzed as well because they are an indicator of the overall accuracy of the facility's wall interference correction process.

  2. Qualitative Validation of the IMM Model for ISS and STS Programs

    NASA Technical Reports Server (NTRS)

    Kerstman, E.; Walton, M.; Reyes, D.; Boley, L.; Saile, L.; Young, M.; Arellano, J.; Garcia, Y.; Myers, J. G.

    2016-01-01

    To validate and further improve the Integrated Medical Model (IMM), medical event data were obtained from 32 ISS and 122 STS person-missions. Using the crew characteristics from these observed missions, IMM v4.0 was used to forecast medical events and medical resource utilization. The IMM medical condition incidence values were compared to the actual observed medical event incidence values, and the IMM forecasted medical resource utilization was compared to actual observed medical resource utilization. Qualitative comparisons of these parameters were conducted for both the ISS and STS programs. The results of these analyses will provide validation of IMM v4.0 and reveal areas of the model requiring adjustments to improve the overall accuracy of IMM outputs. This validation effort should result in enhanced credibility of the IMM and improved confidence in the use of IMM as a decision support tool for human space flight.

  3. Model-based Systems Engineering: Creation and Implementation of Model Validation Rules for MOS 2.0

    NASA Technical Reports Server (NTRS)

    Schmidt, Conrad K.

    2013-01-01

    Model-based Systems Engineering (MBSE) is an emerging modeling application that is used to enhance the system development process. MBSE allows for the centralization of project and system information that would otherwise be stored in extraneous locations, yielding better communication, expedited document generation and increased knowledge capture. Based on MBSE concepts and the employment of the Systems Modeling Language (SysML), extremely large and complex systems can be modeled from conceptual design through all system lifecycles. The Operations Revitalization Initiative (OpsRev) seeks to leverage MBSE to modernize the aging Advanced Multi-Mission Operations Systems (AMMOS) into the Mission Operations System 2.0 (MOS 2.0). The MOS 2.0 will be delivered in a series of conceptual and design models and documents built using the modeling tool MagicDraw. To ensure model completeness and cohesiveness, it is imperative that the MOS 2.0 models adhere to the specifications, patterns and profiles of the Mission Service Architecture Framework, thus leading to the use of validation rules. This paper outlines the process by which validation rules are identified, designed, implemented and tested. Ultimately, these rules provide the ability to maintain model correctness and synchronization in a simple, quick and effective manner, thus allowing the continuation of project and system progress.

  4. Validation of the Economic and Health Outcomes Model of Type 2 Diabetes Mellitus (ECHO-T2DM).

    PubMed

    Willis, Michael; Johansen, Pierre; Nilsson, Andreas; Asseburg, Christian

    2017-03-01

    The Economic and Health Outcomes Model of Type 2 Diabetes Mellitus (ECHO-T2DM) was developed to address study questions pertaining to the cost-effectiveness of treatment alternatives in the care of patients with type 2 diabetes mellitus (T2DM). Naturally, the usefulness of a model is determined by the accuracy of its predictions. A previous version of ECHO-T2DM was validated against actual trial outcomes and the model predictions were generally accurate. However, there have been recent upgrades to the model, which modify model predictions and necessitate an update of the validation exercises. The objectives of this study were to extend the methods available for evaluating model validity, to conduct a formal model validation of ECHO-T2DM (version 2.3.0) in accordance with the principles espoused by the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) and the Society for Medical Decision Making (SMDM), and secondarily to evaluate the relative accuracy of four sets of macrovascular risk equations included in ECHO-T2DM. We followed the ISPOR/SMDM guidelines on model validation, evaluating face validity, verification, cross-validation, and external validation. Model verification involved 297 'stress tests', in which specific model inputs were modified systematically to ascertain correct model implementation. Cross-validation consisted of a comparison between ECHO-T2DM predictions and those of the seminal National Institutes of Health model. In external validation, study characteristics were entered into ECHO-T2DM to replicate the clinical results of 12 studies (including 17 patient populations), and model predictions were compared to observed values using established statistical techniques as well as measures of average prediction error, separately for the four sets of macrovascular risk equations supported in ECHO-T2DM. Sub-group analyses were conducted for dependent vs. independent outcomes and for microvascular vs. macrovascular vs. mortality

  5. Addendum to validation of FHWA's Traffic Noise Model (TNM) : phase 1

    DOT National Transportation Integrated Search

    2004-07-01

    (FHWA) is conducting a multiple-phase study to assess the accuracy and make recommendations on the use of FHWAs Traffic Noise Model (TNM). The TNM Validation Study involves highway noise data collection and TNM modeling for the purpose of data com...

  6. Modelling and validation of electromechanical shock absorbers

    NASA Astrophysics Data System (ADS)

    Tonoli, Andrea; Amati, Nicola; Girardello Detoni, Joaquim; Galluzzi, Renato; Gasparin, Enrico

    2013-08-01

    Electromechanical vehicle suspension systems represent a promising substitute to conventional hydraulic solutions. However, the design of electromechanical devices that are able to supply high damping forces without exceeding geometric dimension and mass constraints is a difficult task. All these challenges meet in off-road vehicle suspension systems, where the power density of the dampers is a crucial parameter. In this context, the present paper outlines a particular shock absorber configuration where a suitable electric machine and a transmission mechanism are utilised to meet off-road vehicle requirements. A dynamic model is used to represent the device. Subsequently, experimental tests are performed on an actual prototype to verify the functionality of the damper and validate the proposed model.

  7. Validation of the filament winding process model

    NASA Technical Reports Server (NTRS)

    Calius, Emilo P.; Springer, George S.; Wilson, Brian A.; Hanson, R. Scott

    1987-01-01

    Tests were performed toward validating the WIND model developed previously for simulating the filament winding of composite cylinders. In these tests two 24 in. long, 8 in. diam and 0.285 in. thick cylinders, made of IM-6G fibers and HBRF-55 resin, were wound at + or - 45 deg angle on steel mandrels. The temperatures on the inner and outer surfaces and inside the composite cylinders were recorded during oven cure. The temperatures inside the cylinders were also calculated by the WIND model. The measured and calculated temperatures were then compared. In addition, the degree of cure and resin viscosity distributions inside the cylinders were calculated for the conditions which existed in the tests.

  8. Validation of coupled atmosphere-fire behavior models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossert, J.E.; Reisner, J.M.; Linn, R.R.

    1998-12-31

    Recent advances in numerical modeling and computer power have made it feasible to simulate the dynamical interaction and feedback between the heat and turbulence induced by wildfires and the local atmospheric wind and temperature fields. At Los Alamos National Laboratory, the authors have developed a modeling system that includes this interaction by coupling a high resolution atmospheric dynamics model, HIGRAD, with a fire behavior model, BEHAVE, to predict the spread of wildfires. The HIGRAD/BEHAVE model is run at very high resolution to properly resolve the fire/atmosphere interaction. At present, these coupled wildfire model simulations are computationally intensive. The additional complexitymore » of these models require sophisticated methods for assuring their reliability in real world applications. With this in mind, a substantial part of the research effort is directed at model validation. Several instrumented prescribed fires have been conducted with multi-agency support and participation from chaparral, marsh, and scrub environments in coastal areas of Florida and inland California. In this paper, the authors first describe the data required to initialize the components of the wildfire modeling system. Then they present results from one of the Florida fires, and discuss a strategy for further testing and improvement of coupled weather/wildfire models.« less

  9. Validation of the 'full reconnection model' of the sawtooth instability in KSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Y. B.; Ko, J. S.; Choe, G. H.

    In this paper, the central safety factor (q 0) during sawtooth oscillation has been measured with a great accuracy with the motional Stark effect (MSE) system on KSTAR and the measured value was However, this measurement alone cannot validate the disputed full and partial reconnection models definitively due to non-trivial off-set error (~0.05). Supplemental experiment of the excited m = 2, m = 3 modes that are extremely sensitive to the background q 0 and core magnetic shear definitively validates the 'full reconnection model'. The radial position of the excited modes right after the crash and time evolution into themore » 1/1 kink mode before the crash in a sawtoothing plasma suggests that in the MHD quiescent period after the crash and before the crash. Finally, additional measurement of the long lived m = 3, m = 5 modes in a non-sawtoothing discharge (presumably ) further validates the 'full reconnection model'.« less

  10. Validation of the 'full reconnection model' of the sawtooth instability in KSTAR

    DOE PAGES

    Nam, Y. B.; Ko, J. S.; Choe, G. H.; ...

    2018-03-26

    In this paper, the central safety factor (q 0) during sawtooth oscillation has been measured with a great accuracy with the motional Stark effect (MSE) system on KSTAR and the measured value was However, this measurement alone cannot validate the disputed full and partial reconnection models definitively due to non-trivial off-set error (~0.05). Supplemental experiment of the excited m = 2, m = 3 modes that are extremely sensitive to the background q 0 and core magnetic shear definitively validates the 'full reconnection model'. The radial position of the excited modes right after the crash and time evolution into themore » 1/1 kink mode before the crash in a sawtoothing plasma suggests that in the MHD quiescent period after the crash and before the crash. Finally, additional measurement of the long lived m = 3, m = 5 modes in a non-sawtoothing discharge (presumably ) further validates the 'full reconnection model'.« less

  11. Propeller aircraft interior noise model utilization study and validation

    NASA Technical Reports Server (NTRS)

    Pope, L. D.

    1984-01-01

    Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.

  12. Validation of PV-RPM Code in the System Advisor Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Geoffrey Taylor; Lavrova, Olga; Freeman, Janine

    2017-04-01

    This paper describes efforts made by Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) to validate the SNL developed PV Reliability Performance Model (PV - RPM) algorithm as implemented in the NREL System Advisor Model (SAM). The PV - RPM model is a library of functions that estimates component failure and repair in a photovoltaic system over a desired simulation period. The failure and repair distributions in this paper are probabilistic representations of component failure and repair based on data collected by SNL for a PV power plant operating in Arizona. The validation effort focuses on whethermore » the failure and repair dist ributions used in the SAM implementation result in estimated failures that match the expected failures developed in the proof - of - concept implementation. Results indicate that the SAM implementation of PV - RPM provides the same results as the proof - of - concep t implementation, indicating the algorithms were reproduced successfully.« less

  13. Aeroservoelastic Model Validation and Test Data Analysis of the F/A-18 Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.; Prazenica, Richard J.

    2003-01-01

    Model validation and flight test data analysis require careful consideration of the effects of uncertainty, noise, and nonlinearity. Uncertainty prevails in the data analysis techniques and results in a composite model uncertainty from unmodeled dynamics, assumptions and mechanics of the estimation procedures, noise, and nonlinearity. A fundamental requirement for reliable and robust model development is an attempt to account for each of these sources of error, in particular, for model validation, robust stability prediction, and flight control system development. This paper is concerned with data processing procedures for uncertainty reduction in model validation for stability estimation and nonlinear identification. F/A-18 Active Aeroelastic Wing (AAW) aircraft data is used to demonstrate signal representation effects on uncertain model development, stability estimation, and nonlinear identification. Data is decomposed using adaptive orthonormal best-basis and wavelet-basis signal decompositions for signal denoising into linear and nonlinear identification algorithms. Nonlinear identification from a wavelet-based Volterra kernel procedure is used to extract nonlinear dynamics from aeroelastic responses, and to assist model development and uncertainty reduction for model validation and stability prediction by removing a class of nonlinearity from the uncertainty.

  14. Spatial calibration and temporal validation of flow for regional scale hydrologic modeling

    USDA-ARS?s Scientific Manuscript database

    Physically based regional scale hydrologic modeling is gaining importance for planning and management of water resources. Calibration and validation of such regional scale model is necessary before applying it for scenario assessment. However, in most regional scale hydrologic modeling, flow validat...

  15. Methods for Geometric Data Validation of 3d City Models

    NASA Astrophysics Data System (ADS)

    Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2015-12-01

    Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges

  16. Validity test and its consistency in the construction of patient loyalty model

    NASA Astrophysics Data System (ADS)

    Yanuar, Ferra

    2016-04-01

    The main objective of this present study is to demonstrate the estimation of validity values and its consistency based on structural equation model. The method of estimation was then implemented to an empirical data in case of the construction the patient loyalty model. In the hypothesis model, service quality, patient satisfaction and patient loyalty were determined simultaneously, each factor were measured by any indicator variables. The respondents involved in this study were the patients who ever got healthcare at Puskesmas in Padang, West Sumatera. All 394 respondents who had complete information were included in the analysis. This study found that each construct; service quality, patient satisfaction and patient loyalty were valid. It means that all hypothesized indicator variables were significant to measure their corresponding latent variable. Service quality is the most measured by tangible, patient satisfaction is the most mesured by satisfied on service and patient loyalty is the most measured by good service quality. Meanwhile in structural equation, this study found that patient loyalty was affected by patient satisfaction positively and directly. Service quality affected patient loyalty indirectly with patient satisfaction as mediator variable between both latent variables. Both structural equations were also valid. This study also proved that validity values which obtained here were also consistence based on simulation study using bootstrap approach.

  17. Validation of the replica trick for simple models

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2018-04-01

    We discuss the replica analytic continuation using several simple models in order to prove mathematically the validity of the replica analysis, which is used in a wide range of fields related to large-scale complex systems. While replica analysis consists of two analytical techniques—the replica trick (or replica analytic continuation) and the thermodynamical limit (and/or order parameter expansion)—we focus our study on replica analytic continuation, which is the mathematical basis of the replica trick. We apply replica analysis to solve a variety of analytical models, and examine the properties of replica analytic continuation. Based on the positive results for these models we propose that replica analytic continuation is a robust procedure in replica analysis.

  18. Development and Validation of a Disease Severity Scoring Model for Pediatric Sepsis.

    PubMed

    Hu, Li; Zhu, Yimin; Chen, Mengshi; Li, Xun; Lu, Xiulan; Liang, Ying; Tan, Hongzhuan

    2016-07-01

    Multiple severity scoring systems have been devised and evaluated in adult sepsis, but a simplified scoring model for pediatric sepsis has not yet been developed. This study aimed to develop and validate a new scoring model to stratify the severity of pediatric sepsis, thus assisting the treatment of sepsis in children. Data from 634 consecutive patients who presented with sepsis at Children's hospital of Hunan province in China in 2011-2013 were analyzed, with 476 patients placed in training group and 158 patients in validation group. Stepwise discriminant analysis was used to develop the accurate discriminate model. A simplified scoring model was generated using weightings defined by the discriminate coefficients. The discriminant ability of the model was tested by receiver operating characteristic curves (ROC). The discriminant analysis showed that prothrombin time, D-dimer, total bilirubin, serum total protein, uric acid, PaO2/FiO2 ratio, myoglobin were associated with severity of sepsis. These seven variables were assigned with values of 4, 3, 3, 4, 3, 3, 3 respectively based on the standardized discriminant coefficients. Patients with higher scores had higher risk of severe sepsis. The areas under ROC (AROC) were 0.836 for accurate discriminate model, and 0.825 for simplified scoring model in validation group. The proposed disease severity scoring model for pediatric sepsis showed adequate discriminatory capacity and sufficient accuracy, which has important clinical significance in evaluating the severity of pediatric sepsis and predicting its progress.

  19. Evaluation and cross-validation of Environmental Models

    NASA Astrophysics Data System (ADS)

    Lemaire, Joseph

    Before scientific models (statistical or empirical models based on experimental measurements; physical or mathematical models) can be proposed and selected as ISO Environmental Standards, a Commission of professional experts appointed by an established International Union or Association (e.g. IAGA for Geomagnetism and Aeronomy, . . . ) should have been able to study, document, evaluate and validate the best alternative models available at a given epoch. Examples will be given, indicating that different values for the Earth radius have been employed in different data processing laboratories, institutes or agencies, to process, analyse or retrieve series of experimental observations. Furthermore, invariant magnetic coordinates like B and L, commonly used in the study of Earth's radiation belts fluxes and for their mapping, differ from one space mission data center to the other, from team to team, and from country to country. Worse, users of empirical models generally fail to use the original magnetic model which had been employed to compile B and L , and thus to build these environmental models. These are just some flagrant examples of inconsistencies and misuses identified so far; there are probably more of them to be uncovered by careful, independent examination and benchmarking. A meter prototype, the standard unit length that has been determined on 20 May 1875, during the Diplomatic Conference of the Meter, and deposited at the BIPM (Bureau International des Poids et Mesures). In the same token, to coordinate and safeguard progress in the field of Space Weather, similar initiatives need to be undertaken, to prevent wild, uncontrolled dissemination of pseudo Environmental Models and Standards. Indeed, unless validation tests have been performed, there is guaranty, a priori, that all models on the market place have been built consistently with the same units system, and that they are based on identical definitions for the coordinates systems, etc... Therefore

  20. Crazy like a fox. Validity and ethics of animal models of human psychiatric disease.

    PubMed

    Rollin, Michael D H; Rollin, Bernard E

    2014-04-01

    Animal models of human disease play a central role in modern biomedical science. Developing animal models for human mental illness presents unique practical and philosophical challenges. In this article we argue that (1) existing animal models of psychiatric disease are not valid, (2) attempts to model syndromes are undermined by current nosology, (3) models of symptoms are rife with circular logic and anthropomorphism, (4) any model must make unjustified assumptions about subjective experience, and (5) any model deemed valid would be inherently unethical, for if an animal adequately models human subjective experience, then there is no morally relevant difference between that animal and a human.

  1. Developing and validating risk prediction models in an individual participant data meta-analysis

    PubMed Central

    2014-01-01

    Background Risk prediction models estimate the risk of developing future outcomes for individuals based on one or more underlying characteristics (predictors). We review how researchers develop and validate risk prediction models within an individual participant data (IPD) meta-analysis, in order to assess the feasibility and conduct of the approach. Methods A qualitative review of the aims, methodology, and reporting in 15 articles that developed a risk prediction model using IPD from multiple studies. Results The IPD approach offers many opportunities but methodological challenges exist, including: unavailability of requested IPD, missing patient data and predictors, and between-study heterogeneity in methods of measurement, outcome definitions and predictor effects. Most articles develop their model using IPD from all available studies and perform only an internal validation (on the same set of data). Ten of the 15 articles did not allow for any study differences in baseline risk (intercepts), potentially limiting their model’s applicability and performance in some populations. Only two articles used external validation (on different data), including a novel method which develops the model on all but one of the IPD studies, tests performance in the excluded study, and repeats by rotating the omitted study. Conclusions An IPD meta-analysis offers unique opportunities for risk prediction research. Researchers can make more of this by allowing separate model intercept terms for each study (population) to improve generalisability, and by using ‘internal-external cross-validation’ to simultaneously develop and validate their model. Methodological challenges can be reduced by prospectively planned collaborations that share IPD for risk prediction. PMID:24397587

  2. Validation of tsunami inundation model TUNA-RP using OAR-PMEL-135 benchmark problem set

    NASA Astrophysics Data System (ADS)

    Koh, H. L.; Teh, S. Y.; Tan, W. K.; Kh'ng, X. Y.

    2017-05-01

    A standard set of benchmark problems, known as OAR-PMEL-135, is developed by the US National Tsunami Hazard Mitigation Program for tsunami inundation model validation. Any tsunami inundation model must be tested for its accuracy and capability using this standard set of benchmark problems before it can be gainfully used for inundation simulation. The authors have previously developed an in-house tsunami inundation model known as TUNA-RP. This inundation model solves the two-dimensional nonlinear shallow water equations coupled with a wet-dry moving boundary algorithm. This paper presents the validation of TUNA-RP against the solutions provided in the OAR-PMEL-135 benchmark problem set. This benchmark validation testing shows that TUNA-RP can indeed perform inundation simulation with accuracy consistent with that in the tested benchmark problem set.

  3. Calibration and validation of coarse-grained models of atomic systems: application to semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Farrell, Kathryn; Oden, J. Tinsley

    2014-07-01

    Coarse-grained models of atomic systems, created by aggregating groups of atoms into molecules to reduce the number of degrees of freedom, have been used for decades in important scientific and technological applications. In recent years, interest in developing a more rigorous theory for coarse graining and in assessing the predictivity of coarse-grained models has arisen. In this work, Bayesian methods for the calibration and validation of coarse-grained models of atomistic systems in thermodynamic equilibrium are developed. For specificity, only configurational models of systems in canonical ensembles are considered. Among major challenges in validating coarse-grained models are (1) the development of validation processes that lead to information essential in establishing confidence in the model's ability predict key quantities of interest and (2), above all, the determination of the coarse-grained model itself; that is, the characterization of the molecular architecture, the choice of interaction potentials and thus parameters, which best fit available data. The all-atom model is treated as the "ground truth," and it provides the basis with respect to which properties of the coarse-grained model are compared. This base all-atom model is characterized by an appropriate statistical mechanics framework in this work by canonical ensembles involving only configurational energies. The all-atom model thus supplies data for Bayesian calibration and validation methods for the molecular model. To address the first challenge, we develop priors based on the maximum entropy principle and likelihood functions based on Gaussian approximations of the uncertainties in the parameter-to-observation error. To address challenge (2), we introduce the notion of model plausibilities as a means for model selection. This methodology provides a powerful approach toward constructing coarse-grained models which are most plausible for given all-atom data. We demonstrate the theory and

  4. Approaches to Validation of Models for Low Gravity Fluid Behavior

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Marchetta, Jeffery; Hochstein, John I.; Kassemi, Mohammad

    2005-01-01

    This paper details the author experiences with the validation of computer models to predict low gravity fluid behavior. It reviews the literature of low gravity fluid behavior as a starting point for developing a baseline set of test cases. It examines authors attempts to validate their models against these cases and the issues they encountered. The main issues seem to be that: Most of the data is described by empirical correlation rather than fundamental relation; Detailed measurements of the flow field have not been made; Free surface shapes are observed but through thick plastic cylinders, and therefore subject to a great deal of optical distortion; and Heat transfer process time constants are on the order of minutes to days but the zero-gravity time available has been only seconds.

  5. Validation workflow for a clinical Bayesian network model in multidisciplinary decision making in head and neck oncology treatment.

    PubMed

    Cypko, Mario A; Stoehr, Matthaeus; Kozniewski, Marcin; Druzdzel, Marek J; Dietz, Andreas; Berliner, Leonard; Lemke, Heinz U

    2017-11-01

    Oncological treatment is being increasingly complex, and therefore, decision making in multidisciplinary teams is becoming the key activity in the clinical pathways. The increased complexity is related to the number and variability of possible treatment decisions that may be relevant to a patient. In this paper, we describe validation of a multidisciplinary cancer treatment decision in the clinical domain of head and neck oncology. Probabilistic graphical models and corresponding inference algorithms, in the form of Bayesian networks, can support complex decision-making processes by providing a mathematically reproducible and transparent advice. The quality of BN-based advice depends on the quality of the model. Therefore, it is vital to validate the model before it is applied in practice. For an example BN subnetwork of laryngeal cancer with 303 variables, we evaluated 66 patient records. To validate the model on this dataset, a validation workflow was applied in combination with quantitative and qualitative analyses. In the subsequent analyses, we observed four sources of imprecise predictions: incorrect data, incomplete patient data, outvoting relevant observations, and incorrect model. Finally, the four problems were solved by modifying the data and the model. The presented validation effort is related to the model complexity. For simpler models, the validation workflow is the same, although it may require fewer validation methods. The validation success is related to the model's well-founded knowledge base. The remaining laryngeal cancer model may disclose additional sources of imprecise predictions.

  6. Validation of sea ice models using an uncertainty-based distance metric for multiple model variables: NEW METRIC FOR SEA ICE MODEL VALIDATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urrego-Blanco, Jorge R.; Hunke, Elizabeth C.; Urban, Nathan M.

    Here, we implement a variance-based distance metric (D n) to objectively assess skill of sea ice models when multiple output variables or uncertainties in both model predictions and observations need to be considered. The metric compares observations and model data pairs on common spatial and temporal grids improving upon highly aggregated metrics (e.g., total sea ice extent or volume) by capturing the spatial character of model skill. The D n metric is a gamma-distributed statistic that is more general than the χ 2 statistic commonly used to assess model fit, which requires the assumption that the model is unbiased andmore » can only incorporate observational error in the analysis. The D n statistic does not assume that the model is unbiased, and allows the incorporation of multiple observational data sets for the same variable and simultaneously for different variables, along with different types of variances that can characterize uncertainties in both observations and the model. This approach represents a step to establish a systematic framework for probabilistic validation of sea ice models. The methodology is also useful for model tuning by using the D n metric as a cost function and incorporating model parametric uncertainty as part of a scheme to optimize model functionality. We apply this approach to evaluate different configurations of the standalone Los Alamos sea ice model (CICE) encompassing the parametric uncertainty in the model, and to find new sets of model configurations that produce better agreement than previous configurations between model and observational estimates of sea ice concentration and thickness.« less

  7. Validation of sea ice models using an uncertainty-based distance metric for multiple model variables: NEW METRIC FOR SEA ICE MODEL VALIDATION

    DOE PAGES

    Urrego-Blanco, Jorge R.; Hunke, Elizabeth C.; Urban, Nathan M.; ...

    2017-04-01

    Here, we implement a variance-based distance metric (D n) to objectively assess skill of sea ice models when multiple output variables or uncertainties in both model predictions and observations need to be considered. The metric compares observations and model data pairs on common spatial and temporal grids improving upon highly aggregated metrics (e.g., total sea ice extent or volume) by capturing the spatial character of model skill. The D n metric is a gamma-distributed statistic that is more general than the χ 2 statistic commonly used to assess model fit, which requires the assumption that the model is unbiased andmore » can only incorporate observational error in the analysis. The D n statistic does not assume that the model is unbiased, and allows the incorporation of multiple observational data sets for the same variable and simultaneously for different variables, along with different types of variances that can characterize uncertainties in both observations and the model. This approach represents a step to establish a systematic framework for probabilistic validation of sea ice models. The methodology is also useful for model tuning by using the D n metric as a cost function and incorporating model parametric uncertainty as part of a scheme to optimize model functionality. We apply this approach to evaluate different configurations of the standalone Los Alamos sea ice model (CICE) encompassing the parametric uncertainty in the model, and to find new sets of model configurations that produce better agreement than previous configurations between model and observational estimates of sea ice concentration and thickness.« less

  8. Development and validation of a mortality risk model for pediatric sepsis.

    PubMed

    Chen, Mengshi; Lu, Xiulan; Hu, Li; Liu, Pingping; Zhao, Wenjiao; Yan, Haipeng; Tang, Liang; Zhu, Yimin; Xiao, Zhenghui; Chen, Lizhang; Tan, Hongzhuan

    2017-05-01

    Pediatric sepsis is a burdensome public health problem. Assessing the mortality risk of pediatric sepsis patients, offering effective treatment guidance, and improving prognosis to reduce mortality rates, are crucial.We extracted data derived from electronic medical records of pediatric sepsis patients that were collected during the first 24 hours after admission to the pediatric intensive care unit (PICU) of the Hunan Children's hospital from January 2012 to June 2014. A total of 788 children were randomly divided into a training (592, 75%) and validation group (196, 25%). The risk factors for mortality among these patients were identified by conducting multivariate logistic regression in the training group. Based on the established logistic regression equation, the logit probabilities for all patients (in both groups) were calculated to verify the model's internal and external validities.According to the training group, 6 variables (brain natriuretic peptide, albumin, total bilirubin, D-dimer, lactate levels, and mechanical ventilation in 24 hours) were included in the final logistic regression model. The areas under the curves of the model were 0.854 (0.826, 0.881) and 0.844 (0.816, 0.873) in the training and validation groups, respectively.The Mortality Risk Model for Pediatric Sepsis we established in this study showed acceptable accuracy to predict the mortality risk in pediatric sepsis patients.

  9. Development and validation of a mortality risk model for pediatric sepsis

    PubMed Central

    Chen, Mengshi; Lu, Xiulan; Hu, Li; Liu, Pingping; Zhao, Wenjiao; Yan, Haipeng; Tang, Liang; Zhu, Yimin; Xiao, Zhenghui; Chen, Lizhang; Tan, Hongzhuan

    2017-01-01

    Abstract Pediatric sepsis is a burdensome public health problem. Assessing the mortality risk of pediatric sepsis patients, offering effective treatment guidance, and improving prognosis to reduce mortality rates, are crucial. We extracted data derived from electronic medical records of pediatric sepsis patients that were collected during the first 24 hours after admission to the pediatric intensive care unit (PICU) of the Hunan Children's hospital from January 2012 to June 2014. A total of 788 children were randomly divided into a training (592, 75%) and validation group (196, 25%). The risk factors for mortality among these patients were identified by conducting multivariate logistic regression in the training group. Based on the established logistic regression equation, the logit probabilities for all patients (in both groups) were calculated to verify the model's internal and external validities. According to the training group, 6 variables (brain natriuretic peptide, albumin, total bilirubin, D-dimer, lactate levels, and mechanical ventilation in 24 hours) were included in the final logistic regression model. The areas under the curves of the model were 0.854 (0.826, 0.881) and 0.844 (0.816, 0.873) in the training and validation groups, respectively. The Mortality Risk Model for Pediatric Sepsis we established in this study showed acceptable accuracy to predict the mortality risk in pediatric sepsis patients. PMID:28514310

  10. Filament winding cylinders. II - Validation of the process model

    NASA Technical Reports Server (NTRS)

    Calius, Emilio P.; Lee, Soo-Yong; Springer, George S.

    1990-01-01

    Analytical and experimental studies were performed to validate the model developed by Lee and Springer for simulating the manufacturing process of filament wound composite cylinders. First, results calculated by the Lee-Springer model were compared to results of the Calius-Springer thin cylinder model. Second, temperatures and strains calculated by the Lee-Springer model were compared to data. The data used in these comparisons were generated during the course of this investigation with cylinders made of Hercules IM-6G/HBRF-55 and Fiberite T-300/976 graphite-epoxy tows. Good agreement was found between the calculated and measured stresses and strains, indicating that the model is a useful representation of the winding and curing processes.

  11. Consistency, Verification, and Validation of Turbulence Models for Reynolds-Averaged Navier-Stokes Applications

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2009-01-01

    In current practice, it is often difficult to draw firm conclusions about turbulence model accuracy when performing multi-code CFD studies ostensibly using the same model because of inconsistencies in model formulation or implementation in different codes. This paper describes an effort to improve the consistency, verification, and validation of turbulence models within the aerospace community through a website database of verification and validation cases. Some of the variants of two widely-used turbulence models are described, and two independent computer codes (one structured and one unstructured) are used in conjunction with two specific versions of these models to demonstrate consistency with grid refinement for several representative problems. Naming conventions, implementation consistency, and thorough grid resolution studies are key factors necessary for success.

  12. Rational selection of training and test sets for the development of validated QSAR models

    NASA Astrophysics Data System (ADS)

    Golbraikh, Alexander; Shen, Min; Xiao, Zhiyan; Xiao, Yun-De; Lee, Kuo-Hsiung; Tropsha, Alexander

    2003-02-01

    Quantitative Structure-Activity Relationship (QSAR) models are used increasingly to screen chemical databases and/or virtual chemical libraries for potentially bioactive molecules. These developments emphasize the importance of rigorous model validation to ensure that the models have acceptable predictive power. Using k nearest neighbors ( kNN) variable selection QSAR method for the analysis of several datasets, we have demonstrated recently that the widely accepted leave-one-out (LOO) cross-validated R2 (q2) is an inadequate characteristic to assess the predictive ability of the models [Golbraikh, A., Tropsha, A. Beware of q2! J. Mol. Graphics Mod. 20, 269-276, (2002)]. Herein, we provide additional evidence that there exists no correlation between the values of q 2 for the training set and accuracy of prediction ( R 2) for the test set and argue that this observation is a general property of any QSAR model developed with LOO cross-validation. We suggest that external validation using rationally selected training and test sets provides a means to establish a reliable QSAR model. We propose several approaches to the division of experimental datasets into training and test sets and apply them in QSAR studies of 48 functionalized amino acid anticonvulsants and a series of 157 epipodophyllotoxin derivatives with antitumor activity. We formulate a set of general criteria for the evaluation of predictive power of QSAR models.

  13. Predictive Model for Particle Residence Time Distributions in Riser Reactors. Part 1: Model Development and Validation

    DOE PAGES

    Foust, Thomas D.; Ziegler, Jack L.; Pannala, Sreekanth; ...

    2017-02-28

    Here in this computational study, we model the mixing of biomass pyrolysis vapor with solid catalyst in circulating riser reactors with a focus on the determination of solid catalyst residence time distributions (RTDs). A comprehensive set of 2D and 3D simulations were conducted for a pilot-scale riser using the Eulerian-Eulerian two-fluid modeling framework with and without sub-grid-scale models for the gas-solids interaction. A validation test case was also simulated and compared to experiments, showing agreement in the pressure gradient and RTD mean and spread. For simulation cases, it was found that for accurate RTD prediction, the Johnson and Jackson partialmore » slip solids boundary condition was required for all models and a sub-grid model is useful so that ultra high resolutions grids that are very computationally intensive are not required. Finally, we discovered a 2/3 scaling relation for the RTD mean and spread when comparing resolved 2D simulations to validated unresolved 3D sub-grid-scale model simulations.« less

  14. Use of the FDA nozzle model to illustrate validation techniques in computational fluid dynamics (CFD) simulations.

    PubMed

    Hariharan, Prasanna; D'Souza, Gavin A; Horner, Marc; Morrison, Tina M; Malinauskas, Richard A; Myers, Matthew R

    2017-01-01

    A "credible" computational fluid dynamics (CFD) model has the potential to provide a meaningful evaluation of safety in medical devices. One major challenge in establishing "model credibility" is to determine the required degree of similarity between the model and experimental results for the model to be considered sufficiently validated. This study proposes a "threshold-based" validation approach that provides a well-defined acceptance criteria, which is a function of how close the simulation and experimental results are to the safety threshold, for establishing the model validity. The validation criteria developed following the threshold approach is not only a function of Comparison Error, E (which is the difference between experiments and simulations) but also takes in to account the risk to patient safety because of E. The method is applicable for scenarios in which a safety threshold can be clearly defined (e.g., the viscous shear-stress threshold for hemolysis in blood contacting devices). The applicability of the new validation approach was tested on the FDA nozzle geometry. The context of use (COU) was to evaluate if the instantaneous viscous shear stress in the nozzle geometry at Reynolds numbers (Re) of 3500 and 6500 was below the commonly accepted threshold for hemolysis. The CFD results ("S") of velocity and viscous shear stress were compared with inter-laboratory experimental measurements ("D"). The uncertainties in the CFD and experimental results due to input parameter uncertainties were quantified following the ASME V&V 20 standard. The CFD models for both Re = 3500 and 6500 could not be sufficiently validated by performing a direct comparison between CFD and experimental results using the Student's t-test. However, following the threshold-based approach, a Student's t-test comparing |S-D| and |Threshold-S| showed that relative to the threshold, the CFD and experimental datasets for Re = 3500 were statistically similar and the model could be

  15. Development and Validation of a Polarimetric-MCScene 3D Atmospheric Radiation Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berk, Alexander; Hawes, Frederick; Fox, Marsha

    2016-03-15

    Polarimetric measurements can substantially enhance the ability of both spectrally resolved and single band imagery to detect the proliferation of weapons of mass destruction, providing data for locating and identifying facilities, materials, and processes of undeclared and proliferant nuclear weapons programs worldwide. Unfortunately, models do not exist that efficiently and accurately predict spectral polarized signatures for the materials of interest embedded in complex 3D environments. Having such a model would enable one to test hypotheses and optimize both the enhancement of scene contrast and the signal processing for spectral signature extraction. The Phase I set the groundwork for development ofmore » fully validated polarimetric spectral signature and scene simulation models. This has been accomplished 1. by (a) identifying and downloading state-of-the-art surface and atmospheric polarimetric data sources, (b) implementing tools for generating custom polarimetric data, and (c) identifying and requesting US Government funded field measurement data for use in validation; 2. by formulating an approach for upgrading the radiometric spectral signature model MODTRAN to generate polarimetric intensities through (a) ingestion of the polarimetric data, (b) polarimetric vectorization of existing MODTRAN modules, and (c) integration of a newly developed algorithm for computing polarimetric multiple scattering contributions; 3. by generating an initial polarimetric model that demonstrates calculation of polarimetric solar and lunar single scatter intensities arising from the interaction of incoming irradiances with molecules and aerosols; 4. by developing a design and implementation plan to (a) automate polarimetric scene construction and (b) efficiently sample polarimetric scattering and reflection events, for use in a to be developed polarimetric version of the existing first-principles synthetic scene simulation model, MCScene; and 5. by planning a validation

  16. GCR Environmental Models III: GCR Model Validation and Propagated Uncertainties in Effective Dose

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Xu, Xiaojing; Blattnig, Steve R.; Norman, Ryan B.

    2014-01-01

    This is the last of three papers focused on quantifying the uncertainty associated with galactic cosmic rays (GCR) models used for space radiation shielding applications. In the first paper, it was found that GCR ions with Z>2 and boundary energy below 500 MeV/nucleon induce less than 5% of the total effective dose behind shielding. This is an important finding since GCR model development and validation have been heavily biased toward Advanced Composition Explorer/Cosmic Ray Isotope Spectrometer measurements below 500 MeV/nucleon. Weights were also developed that quantify the relative contribution of defined GCR energy and charge groups to effective dose behind shielding. In the second paper, it was shown that these weights could be used to efficiently propagate GCR model uncertainties into effective dose behind shielding. In this work, uncertainties are quantified for a few commonly used GCR models. A validation metric is developed that accounts for measurements uncertainty, and the metric is coupled to the fast uncertainty propagation method. For this work, the Badhwar-O'Neill (BON) 2010 and 2011 and the Matthia GCR models are compared to an extensive measurement database. It is shown that BON2011 systematically overestimates heavy ion fluxes in the range 0.5-4 GeV/nucleon. The BON2010 and BON2011 also show moderate and large errors in reproducing past solar activity near the 2000 solar maximum and 2010 solar minimum. It is found that all three models induce relative errors in effective dose in the interval [-20%, 20%] at a 68% confidence level. The BON2010 and Matthia models are found to have similar overall uncertainty estimates and are preferred for space radiation shielding applications.

  17. Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain

    NASA Astrophysics Data System (ADS)

    Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.

    2010-09-01

    A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.

  18. A Public-Private Partnership Develops and Externally Validates a 30-Day Hospital Readmission Risk Prediction Model

    PubMed Central

    Choudhry, Shahid A.; Li, Jing; Davis, Darcy; Erdmann, Cole; Sikka, Rishi; Sutariya, Bharat

    2013-01-01

    Introduction: Preventing the occurrence of hospital readmissions is needed to improve quality of care and foster population health across the care continuum. Hospitals are being held accountable for improving transitions of care to avert unnecessary readmissions. Advocate Health Care in Chicago and Cerner (ACC) collaborated to develop all-cause, 30-day hospital readmission risk prediction models to identify patients that need interventional resources. Ideally, prediction models should encompass several qualities: they should have high predictive ability; use reliable and clinically relevant data; use vigorous performance metrics to assess the models; be validated in populations where they are applied; and be scalable in heterogeneous populations. However, a systematic review of prediction models for hospital readmission risk determined that most performed poorly (average C-statistic of 0.66) and efforts to improve their performance are needed for widespread usage. Methods: The ACC team incorporated electronic health record data, utilized a mixed-method approach to evaluate risk factors, and externally validated their prediction models for generalizability. Inclusion and exclusion criteria were applied on the patient cohort and then split for derivation and internal validation. Stepwise logistic regression was performed to develop two predictive models: one for admission and one for discharge. The prediction models were assessed for discrimination ability, calibration, overall performance, and then externally validated. Results: The ACC Admission and Discharge Models demonstrated modest discrimination ability during derivation, internal and external validation post-recalibration (C-statistic of 0.76 and 0.78, respectively), and reasonable model fit during external validation for utility in heterogeneous populations. Conclusions: The ACC Admission and Discharge Models embody the design qualities of ideal prediction models. The ACC plans to continue its partnership to

  19. Sorbent, Sublimation, and Icing Modeling Methods: Experimental Validation and Application to an Integrated MTSA Subassembly Thermal Model

    NASA Technical Reports Server (NTRS)

    Bower, Chad; Padilla, Sebastian; Iacomini, Christie; Paul, Heather L.

    2010-01-01

    This paper details the validation of modeling methods for the three core components of a Metabolic heat regenerated Temperature Swing Adsorption (MTSA) subassembly, developed for use in a Portable Life Support System (PLSS). The first core component in the subassembly is a sorbent bed, used to capture and reject metabolically produced carbon dioxide (CO2). The sorbent bed performance can be augmented with a temperature swing driven by a liquid CO2 (LCO2) sublimation heat exchanger (SHX) for cooling the sorbent bed, and a condensing, icing heat exchanger (CIHX) for warming the sorbent bed. As part of the overall MTSA effort, scaled design validation test articles for each of these three components have been independently tested in laboratory conditions. Previously described modeling methodologies developed for implementation in Thermal Desktop and SINDA/FLUINT are reviewed and updated, their application in test article models outlined, and the results of those model correlations relayed. Assessment of the applicability of each modeling methodology to the challenge of simulating the response of the test articles and their extensibility to a full scale integrated subassembly model is given. The independent verified and validated modeling methods are applied to the development of a MTSA subassembly prototype model and predictions of the subassembly performance are given. These models and modeling methodologies capture simulation of several challenging and novel physical phenomena in the Thermal Desktop and SINDA/FLUINT software suite. Novel methodologies include CO2 adsorption front tracking and associated thermal response in the sorbent bed, heat transfer associated with sublimation of entrained solid CO2 in the SHX, and water mass transfer in the form of ice as low as 210 K in the CIHX.

  20. MT3DMS: Model use, calibration, and validation

    USGS Publications Warehouse

    Zheng, C.; Hill, Mary C.; Cao, G.; Ma, R.

    2012-01-01

    MT3DMS is a three-dimensional multi-species solute transport model for solving advection, dispersion, and chemical reactions of contaminants in saturated groundwater flow systems. MT3DMS interfaces directly with the U.S. Geological Survey finite-difference groundwater flow model MODFLOW for the flow solution and supports the hydrologic and discretization features of MODFLOW. MT3DMS contains multiple transport solution techniques in one code, which can often be important, including in model calibration. Since its first release in 1990 as MT3D for single-species mass transport modeling, MT3DMS has been widely used in research projects and practical field applications. This article provides a brief introduction to MT3DMS and presents recommendations about calibration and validation procedures for field applications of MT3DMS. The examples presented suggest the need to consider alternative processes as models are calibrated and suggest opportunities and difficulties associated with using groundwater age in transport model calibration.

  1. Lessons Learned from a Cross-Model Validation between a Discrete Event Simulation Model and a Cohort State-Transition Model for Personalized Breast Cancer Treatment.

    PubMed

    Jahn, Beate; Rochau, Ursula; Kurzthaler, Christina; Paulden, Mike; Kluibenschädl, Martina; Arvandi, Marjan; Kühne, Felicitas; Goehler, Alexander; Krahn, Murray D; Siebert, Uwe

    2016-04-01

    Breast cancer is the most common malignancy among women in developed countries. We developed a model (the Oncotyrol breast cancer outcomes model) to evaluate the cost-effectiveness of a 21-gene assay when used in combination with Adjuvant! Online to support personalized decisions about the use of adjuvant chemotherapy. The goal of this study was to perform a cross-model validation. The Oncotyrol model evaluates the 21-gene assay by simulating a hypothetical cohort of 50-year-old women over a lifetime horizon using discrete event simulation. Primary model outcomes were life-years, quality-adjusted life-years (QALYs), costs, and incremental cost-effectiveness ratios (ICERs). We followed the International Society for Pharmacoeconomics and Outcomes Research-Society for Medical Decision Making (ISPOR-SMDM) best practice recommendations for validation and compared modeling results of the Oncotyrol model with the state-transition model developed by the Toronto Health Economics and Technology Assessment (THETA) Collaborative. Both models were populated with Canadian THETA model parameters, and outputs were compared. The differences between the models varied among the different validation end points. The smallest relative differences were in costs, and the greatest were in QALYs. All relative differences were less than 1.2%. The cost-effectiveness plane showed that small differences in the model structure can lead to different sets of nondominated test-treatment strategies with different efficiency frontiers. We faced several challenges: distinguishing between differences in outcomes due to different modeling techniques and initial coding errors, defining meaningful differences, and selecting measures and statistics for comparison (means, distributions, multivariate outcomes). Cross-model validation was crucial to identify and correct coding errors and to explain differences in model outcomes. In our comparison, small differences in either QALYs or costs led to changes in

  2. WEC-SIM Phase 1 Validation Testing -- Numerical Modeling of Experiments: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruehl, Kelley; Michelen, Carlos; Bosma, Bret

    2016-08-01

    The Wave Energy Converter Simulator (WEC-Sim) is an open-source code jointly developed by Sandia National Laboratories and the National Renewable Energy Laboratory. It is used to model wave energy converters subjected to operational and extreme waves. In order for the WEC-Sim code to be beneficial to the wave energy community, code verification and physical model validation is necessary. This paper describes numerical modeling of the wave tank testing for the 1:33-scale experimental testing of the floating oscillating surge wave energy converter. The comparison between WEC-Sim and the Phase 1 experimental data set serves as code validation. This paper is amore » follow-up to the WEC-Sim paper on experimental testing, and describes the WEC-Sim numerical simulations for the floating oscillating surge wave energy converter.« less

  3. Probability of Detection (POD) as a statistical model for the validation of qualitative methods.

    PubMed

    Wehling, Paul; LaBudde, Robert A; Brunelle, Sharon L; Nelson, Maria T

    2011-01-01

    A statistical model is presented for use in validation of qualitative methods. This model, termed Probability of Detection (POD), harmonizes the statistical concepts and parameters between quantitative and qualitative method validation. POD characterizes method response with respect to concentration as a continuous variable. The POD model provides a tool for graphical representation of response curves for qualitative methods. In addition, the model allows comparisons between candidate and reference methods, and provides calculations of repeatability, reproducibility, and laboratory effects from collaborative study data. Single laboratory study and collaborative study examples are given.

  4. Decompression models: review, relevance and validation capabilities.

    PubMed

    Hugon, J

    2014-01-01

    For more than a century, several types of mathematical models have been proposed to describe tissue desaturation mechanisms in order to limit decompression sickness. These models are statistically assessed by DCS cases, and, over time, have gradually included bubble formation biophysics. This paper proposes to review this evolution and discuss its limitations. This review is organized around the comparison of decompression model biophysical criteria and theoretical foundations. Then, the DCS-predictive capability was analyzed to assess whether it could be improved by combining different approaches. Most of the operational decompression models have a neo-Haldanian form. Nevertheless, bubble modeling has been gaining popularity, and the circulating bubble amount has become a major output. By merging both views, it seems possible to build a relevant global decompression model that intends to simulate bubble production while predicting DCS risks for all types of exposures and decompression profiles. A statistical approach combining both DCS and bubble detection databases has to be developed to calibrate a global decompression model. Doppler ultrasound and DCS data are essential: i. to make correlation and validation phases reliable; ii. to adjust biophysical criteria to fit at best the observed bubble kinetics; and iii. to build a relevant risk function.

  5. DEVELOPMENT OF GUIDELINES FOR CALIBRATING, VALIDATING, AND EVALUATING HYDROLOGIC AND WATER QUALITY MODELS: ASABE ENGINEERING PRACTICE 621

    USDA-ARS?s Scientific Manuscript database

    Information to support application of hydrologic and water quality (H/WQ) models abounds, yet modelers commonly use arbitrary, ad hoc methods to conduct, document, and report model calibration, validation, and evaluation. Consistent methods are needed to improve model calibration, validation, and e...

  6. The Model Analyst’s Toolkit: Scientific Model Development, Analysis, and Validation

    DTIC Science & Technology

    2013-11-20

    Granger causality F-test validation 3.1.2. Dynamic time warping for uneven temporal relationships Many causal relationships are imperfectly...mapping for dynamic feedback models Granger causality and DTW can identify causal relationships and consider complex temporal factors. However, many ...variant of the tf-idf algorithm (Manning, Raghavan, Schutze et al., 2008), typically used in search engines, to “score” features. The (-log tf) in

  7. Calibration and validation of a general infiltration model

    NASA Astrophysics Data System (ADS)

    Mishra, Surendra Kumar; Ranjan Kumar, Shashi; Singh, Vijay P.

    1999-08-01

    A general infiltration model proposed by Singh and Yu (1990) was calibrated and validated using a split sampling approach for 191 sets of infiltration data observed in the states of Minnesota and Georgia in the USA. Of the five model parameters, fc (the final infiltration rate), So (the available storage space) and exponent n were found to be more predictable than the other two parameters: m (exponent) and a (proportionality factor). A critical examination of the general model revealed that it is related to the Soil Conservation Service (1956) curve number (SCS-CN) method and its parameter So is equivalent to the potential maximum retention of the SCS-CN method and is, in turn, found to be a function of soil sorptivity and hydraulic conductivity. The general model was found to describe infiltration rate with time varying curve number.

  8. Acute Brain Dysfunction: Development and Validation of a Daily Prediction Model.

    PubMed

    Marra, Annachiara; Pandharipande, Pratik P; Shotwell, Matthew S; Chandrasekhar, Rameela; Girard, Timothy D; Shintani, Ayumi K; Peelen, Linda M; Moons, Karl G M; Dittus, Robert S; Ely, E Wesley; Vasilevskis, Eduard E

    2018-03-24

    The goal of this study was to develop and validate a dynamic risk model to predict daily changes in acute brain dysfunction (ie, delirium and coma), discharge, and mortality in ICU patients. Using data from a multicenter prospective ICU cohort, a daily acute brain dysfunction-prediction model (ABD-pm) was developed by using multinomial logistic regression that estimated 15 transition probabilities (from one of three brain function states [normal, delirious, or comatose] to one of five possible outcomes [normal, delirious, comatose, ICU discharge, or died]) using baseline and daily risk factors. Model discrimination was assessed by using predictive characteristics such as negative predictive value (NPV). Calibration was assessed by plotting empirical vs model-estimated probabilities. Internal validation was performed by using a bootstrap procedure. Data were analyzed from 810 patients (6,711 daily transitions). The ABD-pm included individual risk factors: mental status, age, preexisting cognitive impairment, baseline and daily severity of illness, and daily administration of sedatives. The model yielded very high NPVs for "next day" delirium (NPV: 0.823), coma (NPV: 0.892), normal cognitive state (NPV: 0.875), ICU discharge (NPV: 0.905), and mortality (NPV: 0.981). The model demonstrated outstanding calibration when predicting the total number of patients expected to be in any given state across predicted risk. We developed and internally validated a dynamic risk model that predicts the daily risk for one of three cognitive states, ICU discharge, or mortality. The ABD-pm may be useful for predicting the proportion of patients for each outcome state across entire ICU populations to guide quality, safety, and care delivery activities. Copyright © 2018 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  9. Evaluation of nonlinearity and validity of nonlinear modeling for complex time series.

    PubMed

    Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo

    2007-10-01

    Even if an original time series exhibits nonlinearity, it is not always effective to approximate the time series by a nonlinear model because such nonlinear models have high complexity from the viewpoint of information criteria. Therefore, we propose two measures to evaluate both the nonlinearity of a time series and validity of nonlinear modeling applied to it by nonlinear predictability and information criteria. Through numerical simulations, we confirm that the proposed measures effectively detect the nonlinearity of an observed time series and evaluate the validity of the nonlinear model. The measures are also robust against observational noises. We also analyze some real time series: the difference of the number of chickenpox and measles patients, the number of sunspots, five Japanese vowels, and the chaotic laser. We can confirm that the nonlinear model is effective for the Japanese vowel /a/, the difference of the number of measles patients, and the chaotic laser.

  10. Evaluation of nonlinearity and validity of nonlinear modeling for complex time series

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo

    2007-10-01

    Even if an original time series exhibits nonlinearity, it is not always effective to approximate the time series by a nonlinear model because such nonlinear models have high complexity from the viewpoint of information criteria. Therefore, we propose two measures to evaluate both the nonlinearity of a time series and validity of nonlinear modeling applied to it by nonlinear predictability and information criteria. Through numerical simulations, we confirm that the proposed measures effectively detect the nonlinearity of an observed time series and evaluate the validity of the nonlinear model. The measures are also robust against observational noises. We also analyze some real time series: the difference of the number of chickenpox and measles patients, the number of sunspots, five Japanese vowels, and the chaotic laser. We can confirm that the nonlinear model is effective for the Japanese vowel /a/, the difference of the number of measles patients, and the chaotic laser.

  11. Design and validation of a model to predict early mortality in haemodialysis patients.

    PubMed

    Mauri, Joan M; Clèries, Montse; Vela, Emili

    2008-05-01

    Mortality and morbidity rates are higher in patients receiving haemodialysis therapy than in the general population. Detection of risk factors related to early death in these patients could be of aid for clinical and administrative decision making. Objectives. The aims of this study were (1) to identify risk factors (comorbidity and variables specific to haemodialysis) associated with death in the first year following the start of haemodialysis and (2) to design and validate a prognostic model to quantify the probability of death for each patient. An analysis was carried out on all patients starting haemodialysis treatment in Catalonia during the period 1997-2003 (n = 5738). The data source was the Renal Registry of Catalonia, a mandatory population registry. Patients were randomly divided into two samples: 60% (n = 3455) of the total were used to develop the prognostic model and the remaining 40% (n = 2283) to validate the model. Logistic regression analysis was used to construct the model. One-year mortality in the total study population was 16.5%. The predictive model included the following variables: age, sex, primary renal disease, grade of functional autonomy, chronic obstructive pulmonary disease, malignant processes, chronic liver disease, cardiovascular disease, initial vascular access and malnutrition. The analyses showed adequate calibration for both the sample to develop the model and the validation sample (Hosmer-Lemeshow statistic 0.97 and P = 0.49, respectively) as well as adequate discrimination (ROC curve 0.78 in both cases). Risk factors implicated in mortality at one year following the start of haemodialysis have been determined and a prognostic model designed. The validated, easy-to-apply model quantifies individual patient risk attributable to various factors, some of them amenable to correction by directed interventions.

  12. Developing and validating a model to predict the success of an IHCS implementation: the Readiness for Implementation Model.

    PubMed

    Wen, Kuang-Yi; Gustafson, David H; Hawkins, Robert P; Brennan, Patricia F; Dinauer, Susan; Johnson, Pauley R; Siegler, Tracy

    2010-01-01

    To develop and validate the Readiness for Implementation Model (RIM). This model predicts a healthcare organization's potential for success in implementing an interactive health communication system (IHCS). The model consists of seven weighted factors, with each factor containing five to seven elements. Two decision-analytic approaches, self-explicated and conjoint analysis, were used to measure the weights of the RIM with a sample of 410 experts. The RIM model with weights was then validated in a prospective study of 25 IHCS implementation cases. Orthogonal main effects design was used to develop 700 conjoint-analysis profiles, which varied on seven factors. Each of the 410 experts rated the importance and desirability of the factors and their levels, as well as a set of 10 different profiles. For the prospective 25-case validation, three time-repeated measures of the RIM scores were collected for comparison with the implementation outcomes. Two of the seven factors, 'organizational motivation' and 'meeting user needs,' were found to be most important in predicting implementation readiness. No statistically significant difference was found in the predictive validity of the two approaches (self-explicated and conjoint analysis). The RIM was a better predictor for the 1-year implementation outcome than the half-year outcome. The expert sample, the order of the survey tasks, the additive model, and basing the RIM cut-off score on experience are possible limitations of the study. The RIM needs to be empirically evaluated in institutions adopting IHCS and sustaining the system in the long term.

  13. A diagnostic model for the detection of sensitization to wheat allergens was developed and validated in bakery workers.

    PubMed

    Suarthana, Eva; Vergouwe, Yvonne; Moons, Karel G; de Monchy, Jan; Grobbee, Diederick; Heederik, Dick; Meijer, Evert

    2010-09-01

    To develop and validate a prediction model to detect sensitization to wheat allergens in bakery workers. The prediction model was developed in 867 Dutch bakery workers (development set, prevalence of sensitization 13%) and included questionnaire items (candidate predictors). First, principal component analysis was used to reduce the number of candidate predictors. Then, multivariable logistic regression analysis was used to develop the model. Internal validation and extent of optimism was assessed with bootstrapping. External validation was studied in 390 independent Dutch bakery workers (validation set, prevalence of sensitization 20%). The prediction model contained the predictors nasoconjunctival symptoms, asthma symptoms, shortness of breath and wheeze, work-related upper and lower respiratory symptoms, and traditional bakery. The model showed good discrimination with an area under the receiver operating characteristic (ROC) curve area of 0.76 (and 0.75 after internal validation). Application of the model in the validation set gave a reasonable discrimination (ROC area=0.69) and good calibration after a small adjustment of the model intercept. A simple model with questionnaire items only can be used to stratify bakers according to their risk of sensitization to wheat allergens. Its use may increase the cost-effectiveness of (subsequent) medical surveillance.

  14. Model improvements and validation of TerraSAR-X precise orbit determination

    NASA Astrophysics Data System (ADS)

    Hackel, S.; Montenbruck, O.; Steigenberger, P.; Balss, U.; Gisinger, C.; Eineder, M.

    2017-05-01

    The radar imaging satellite mission TerraSAR-X requires precisely determined satellite orbits for validating geodetic remote sensing techniques. Since the achieved quality of the operationally derived, reduced-dynamic (RD) orbit solutions limits the capabilities of the synthetic aperture radar (SAR) validation, an effort is made to improve the estimated orbit solutions. This paper discusses the benefits of refined dynamical models on orbit accuracy as well as estimated empirical accelerations and compares different dynamic models in a RD orbit determination. Modeling aspects discussed in the paper include the use of a macro-model for drag and radiation pressure computation, the use of high-quality atmospheric density and wind models as well as the benefit of high-fidelity gravity and ocean tide models. The Sun-synchronous dusk-dawn orbit geometry of TerraSAR-X results in a particular high correlation of solar radiation pressure modeling and estimated normal-direction positions. Furthermore, this mission offers a unique suite of independent sensors for orbit validation. Several parameters serve as quality indicators for the estimated satellite orbit solutions. These include the magnitude of the estimated empirical accelerations, satellite laser ranging (SLR) residuals, and SLR-based orbit corrections. Moreover, the radargrammetric distance measurements of the SAR instrument are selected for assessing the quality of the orbit solutions and compared to the SLR analysis. The use of high-fidelity satellite dynamics models in the RD approach is shown to clearly improve the orbit quality compared to simplified models and loosely constrained empirical accelerations. The estimated empirical accelerations are substantially reduced by 30% in tangential direction when working with the refined dynamical models. Likewise the SLR residuals are reduced from -3 ± 17 to 2 ± 13 mm, and the SLR-derived normal-direction position corrections are reduced from 15 to 6 mm, obtained from

  15. LIVVkit: An extensible, python-based, land ice verification and validation toolkit for ice sheet models

    NASA Astrophysics Data System (ADS)

    Kennedy, Joseph H.; Bennett, Andrew R.; Evans, Katherine J.; Price, Stephen; Hoffman, Matthew; Lipscomb, William H.; Fyke, Jeremy; Vargo, Lauren; Boghozian, Adrianna; Norman, Matthew; Worley, Patrick H.

    2017-06-01

    To address the pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice sheet models is underway. Concurrent to the development of the Community Ice Sheet Model (CISM), the corresponding verification and validation (V&V) process is being coordinated through a new, robust, Python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVVkit). Incorporated into the typical ice sheet model development cycle, it provides robust and automated numerical verification, software verification, performance validation, and physical validation analyses on a variety of platforms, from personal laptops to the largest supercomputers. LIVVkit operates on sets of regression test and reference data sets, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-for-bit evaluation, and plots of model variables to indicate where differences occur. LIVVkit also provides an easily extensible framework to incorporate and analyze results of new intercomparison projects, new observation data, and new computing platforms. LIVVkit is designed for quick adaptation to additional ice sheet models via abstraction of model specific code, functions, and configurations into an ice sheet model description bundle outside the main LIVVkit structure. Ultimately, through shareable and accessible analysis output, LIVVkit is intended to help developers build confidence in their models and enhance the credibility of ice sheet models overall.

  16. Understanding Dynamic Model Validation of a Wind Turbine Generator and a Wind Power Plant: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Zhang, Ying Chen; Gevorgian, Vahan

    Regional reliability organizations require power plants to validate the dynamic models that represent them to ensure that power systems studies are performed to the best representation of the components installed. In the process of validating a wind power plant (WPP), one must be cognizant of the parameter settings of the wind turbine generators (WTGs) and the operational settings of the WPP. Validating the dynamic model of a WPP is required to be performed periodically. This is because the control parameters of the WTGs and the other supporting components within a WPP may be modified to comply with new grid codesmore » or upgrades to the WTG controller with new capabilities developed by the turbine manufacturers or requested by the plant owners or operators. The diversity within a WPP affects the way we represent it in a model. Diversity within a WPP may be found in the way the WTGs are controlled, the wind resource, the layout of the WPP (electrical diversity), and the type of WTGs used. Each group of WTGs constitutes a significant portion of the output power of the WPP, and their unique and salient behaviors should be represented individually. The objective of this paper is to illustrate the process of dynamic model validations of WTGs and WPPs, the available data recorded that must be screened before it is used for the dynamic validations, and the assumptions made in the dynamic models of the WTG and WPP that must be understood. Without understanding the correct process, the validations may lead to the wrong representations of the WTG and WPP modeled.« less

  17. Development and validation of a two-dimensional fast-response flood estimation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judi, David R; Mcpherson, Timothy N; Burian, Steven J

    2009-01-01

    A finite difference formulation of the shallow water equations using an upwind differencing method was developed maintaining computational efficiency and accuracy such that it can be used as a fast-response flood estimation tool. The model was validated using both laboratory controlled experiments and an actual dam breach. Through the laboratory experiments, the model was shown to give good estimations of depth and velocity when compared to the measured data, as well as when compared to a more complex two-dimensional model. Additionally, the model was compared to high water mark data obtained from the failure of the Taum Sauk dam. Themore » simulated inundation extent agreed well with the observed extent, with the most notable differences resulting from the inability to model sediment transport. The results of these validation studies complex two-dimensional model. Additionally, the model was compared to high water mark data obtained from the failure of the Taum Sauk dam. The simulated inundation extent agreed well with the observed extent, with the most notable differences resulting from the inability to model sediment transport. The results of these validation studies show that a relatively numerical scheme used to solve the complete shallow water equations can be used to accurately estimate flood inundation. Future work will focus on further reducing the computation time needed to provide flood inundation estimates for fast-response analyses. This will be accomplished through the efficient use of multi-core, multi-processor computers coupled with an efficient domain-tracking algorithm, as well as an understanding of the impacts of grid resolution on model results.« less

  18. Review and evaluation of performance measures for survival prediction models in external validation settings.

    PubMed

    Rahman, M Shafiqur; Ambler, Gareth; Choodari-Oskooei, Babak; Omar, Rumana Z

    2017-04-18

    When developing a prediction model for survival data it is essential to validate its performance in external validation settings using appropriate performance measures. Although a number of such measures have been proposed, there is only limited guidance regarding their use in the context of model validation. This paper reviewed and evaluated a wide range of performance measures to provide some guidelines for their use in practice. An extensive simulation study based on two clinical datasets was conducted to investigate the performance of the measures in external validation settings. Measures were selected from categories that assess the overall performance, discrimination and calibration of a survival prediction model. Some of these have been modified to allow their use with validation data, and a case study is provided to describe how these measures can be estimated in practice. The measures were evaluated with respect to their robustness to censoring and ease of interpretation. All measures are implemented, or are straightforward to implement, in statistical software. Most of the performance measures were reasonably robust to moderate levels of censoring. One exception was Harrell's concordance measure which tended to increase as censoring increased. We recommend that Uno's concordance measure is used to quantify concordance when there are moderate levels of censoring. Alternatively, Gönen and Heller's measure could be considered, especially if censoring is very high, but we suggest that the prediction model is re-calibrated first. We also recommend that Royston's D is routinely reported to assess discrimination since it has an appealing interpretation. The calibration slope is useful for both internal and external validation settings and recommended to report routinely. Our recommendation would be to use any of the predictive accuracy measures and provide the corresponding predictive accuracy curves. In addition, we recommend to investigate the characteristics

  19. The Safety Culture Enactment Questionnaire (SCEQ): Theoretical model and empirical validation.

    PubMed

    de Castro, Borja López; Gracia, Francisco J; Tomás, Inés; Peiró, José M

    2017-06-01

    This paper presents the Safety Culture Enactment Questionnaire (SCEQ), designed to assess the degree to which safety is an enacted value in the day-to-day running of nuclear power plants (NPPs). The SCEQ is based on a theoretical safety culture model that is manifested in three fundamental components of the functioning and operation of any organization: strategic decisions, human resources practices, and daily activities and behaviors. The extent to which the importance of safety is enacted in each of these three components provides information about the pervasiveness of the safety culture in the NPP. To validate the SCEQ and the model on which it is based, two separate studies were carried out with data collection in 2008 and 2014, respectively. In Study 1, the SCEQ was administered to the employees of two Spanish NPPs (N=533) belonging to the same company. Participants in Study 2 included 598 employees from the same NPPs, who completed the SCEQ and other questionnaires measuring different safety outcomes (safety climate, safety satisfaction, job satisfaction and risky behaviors). Study 1 comprised item formulation and examination of the factorial structure and reliability of the SCEQ. Study 2 tested internal consistency and provided evidence of factorial validity, validity based on relationships with other variables, and discriminant validity between the SCEQ and safety climate. Exploratory Factor Analysis (EFA) carried out in Study 1 revealed a three-factor solution corresponding to the three components of the theoretical model. Reliability analyses showed strong internal consistency for the three scales of the SCEQ, and each of the 21 items on the questionnaire contributed to the homogeneity of its theoretically developed scale. Confirmatory Factor Analysis (CFA) carried out in Study 2 supported the internal structure of the SCEQ; internal consistency of the scales was also supported. Furthermore, the three scales of the SCEQ showed the expected correlation

  20. Integrated corridor management (ICM) analysis, modeling, and simulation (AMS) for Minneapolis site : model calibration and validation report.

    DOT National Transportation Integrated Search

    2010-02-01

    This technical report documents the calibration and validation of the baseline (2008) mesoscopic model for the I-394 Minneapolis, Minnesota, Pioneer Site. DynusT was selected as the mesoscopic model for analyzing operating conditions in the I-394 cor...

  1. Calibration and validation of toxicokinetic-toxicodynamic models for three neonicotinoids and some aquatic macroinvertebrates.

    PubMed

    Focks, Andreas; Belgers, Dick; Boerwinkel, Marie-Claire; Buijse, Laura; Roessink, Ivo; Van den Brink, Paul J

    2018-05-01

    Exposure patterns in ecotoxicological experiments often do not match the exposure profiles for which a risk assessment needs to be performed. This limitation can be overcome by using toxicokinetic-toxicodynamic (TKTD) models for the prediction of effects under time-variable exposure. For the use of TKTD models in the environmental risk assessment of chemicals, it is required to calibrate and validate the model for specific compound-species combinations. In this study, the survival of macroinvertebrates after exposure to the neonicotinoid insecticide was modelled using TKTD models from the General Unified Threshold models of Survival (GUTS) framework. The models were calibrated on existing survival data from acute or chronic tests under static exposure regime. Validation experiments were performed for two sets of species-compound combinations: one set focussed on multiple species sensitivity to a single compound: imidacloprid, and the other set on the effects of multiple compounds for a single species, i.e., the three neonicotinoid compounds imidacloprid, thiacloprid and thiamethoxam, on the survival of the mayfly Cloeon dipterum. The calibrated models were used to predict survival over time, including uncertainty ranges, for the different time-variable exposure profiles used in the validation experiments. From the comparison between observed and predicted survival, it appeared that the accuracy of the model predictions was acceptable for four of five tested species in the multiple species data set. For compounds such as neonicotinoids, which are known to have the potential to show increased toxicity under prolonged exposure, the calibration and validation of TKTD models for survival needs to be performed ideally by considering calibration data from both acute and chronic tests.

  2. Experimental Validation Techniques for the Heleeos Off-Axis Laser Propagation Model

    DTIC Science & Technology

    2010-03-01

    EXPERIMENTAL VALIDATION TECHNIQUES FOR THE HELEEOS OFF-AXIS LASER PROPAGATION MODEL THESIS John Haiducek, 1st Lt, USAF AFIT/GAP/ENP/10-M07 DEPARTMENT...Department of Defense, or the United States Government. AFIT/GAP/ENP/10-M07 EXPERIMENTAL VALIDATION TECHNIQUES FOR THE HELEEOS OFF-AXIS LASER ...BS, Physics 1st Lt, USAF March 2010 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GAP/ENP/10-M07 Abstract The High Energy Laser End-to-End

  3. Gene-environment interactions and construct validity in preclinical models of psychiatric disorders.

    PubMed

    Burrows, Emma L; McOmish, Caitlin E; Hannan, Anthony J

    2011-08-01

    The contributions of genetic risk factors to susceptibility for brain disorders are often so closely intertwined with environmental factors that studying genes in isolation cannot provide the full picture of pathogenesis. With recent advances in our understanding of psychiatric genetics and environmental modifiers we are now in a position to develop more accurate animal models of psychiatric disorders which exemplify the complex interaction of genes and environment. Here, we consider some of the insights that have emerged from studying the relationship between defined genetic alterations and environmental factors in rodent models. A key issue in such animal models is the optimization of construct validity, at both genetic and environmental levels. Standard housing of laboratory mice and rats generally includes ad libitum food access and limited opportunity for physical exercise, leading to metabolic dysfunction under control conditions, and thus reducing validity of animal models with respect to clinical populations. A related issue, of specific relevance to neuroscientists, is that most standard-housed rodents have limited opportunity for sensory and cognitive stimulation, which in turn provides reduced incentive for complex motor activity. Decades of research using environmental enrichment has demonstrated beneficial effects on brain and behavior in both wild-type and genetically modified rodent models, relative to standard-housed littermate controls. One interpretation of such studies is that environmentally enriched animals more closely approximate average human levels of cognitive and sensorimotor stimulation, whereas the standard housing currently used in most laboratories models a more sedentary state of reduced mental and physical activity and abnormal stress levels. The use of such standard housing as a single environmental variable may limit the capacity for preclinical models to translate into successful clinical trials. Therefore, there is a need to

  4. Copenhagen Psychosocial Questionnaire - A validation study using the Job Demand-Resources model.

    PubMed

    Berthelsen, Hanne; Hakanen, Jari J; Westerlund, Hugo

    2018-01-01

    This study aims at investigating the nomological validity of the Copenhagen Psychosocial Questionnaire (COPSOQ II) by using an extension of the Job Demands-Resources (JD-R) model with aspects of work ability as outcome. The study design is cross-sectional. All staff working at public dental organizations in four regions of Sweden were invited to complete an electronic questionnaire (75% response rate, n = 1345). The questionnaire was based on COPSOQ II scales, the Utrecht Work Engagement scale, and the one-item Work Ability Score in combination with a proprietary item. The data was analysed by Structural Equation Modelling. This study contributed to the literature by showing that: A) The scale characteristics were satisfactory and the construct validity of COPSOQ instrument could be integrated in the JD-R framework; B) Job resources arising from leadership may be a driver of the two processes included in the JD-R model; and C) Both the health impairment and motivational processes were associated with WA, and the results suggested that leadership may impact WA, in particularly by securing task resources. In conclusion, the nomological validity of COPSOQ was supported as the JD-R model-can be operationalized by the instrument. This may be helpful for transferral of complex survey results and work life theories to practitioners in the field.

  5. Use of the FDA nozzle model to illustrate validation techniques in computational fluid dynamics (CFD) simulations

    PubMed Central

    Hariharan, Prasanna; D’Souza, Gavin A.; Horner, Marc; Morrison, Tina M.; Malinauskas, Richard A.; Myers, Matthew R.

    2017-01-01

    A “credible” computational fluid dynamics (CFD) model has the potential to provide a meaningful evaluation of safety in medical devices. One major challenge in establishing “model credibility” is to determine the required degree of similarity between the model and experimental results for the model to be considered sufficiently validated. This study proposes a “threshold-based” validation approach that provides a well-defined acceptance criteria, which is a function of how close the simulation and experimental results are to the safety threshold, for establishing the model validity. The validation criteria developed following the threshold approach is not only a function of Comparison Error, E (which is the difference between experiments and simulations) but also takes in to account the risk to patient safety because of E. The method is applicable for scenarios in which a safety threshold can be clearly defined (e.g., the viscous shear-stress threshold for hemolysis in blood contacting devices). The applicability of the new validation approach was tested on the FDA nozzle geometry. The context of use (COU) was to evaluate if the instantaneous viscous shear stress in the nozzle geometry at Reynolds numbers (Re) of 3500 and 6500 was below the commonly accepted threshold for hemolysis. The CFD results (“S”) of velocity and viscous shear stress were compared with inter-laboratory experimental measurements (“D”). The uncertainties in the CFD and experimental results due to input parameter uncertainties were quantified following the ASME V&V 20 standard. The CFD models for both Re = 3500 and 6500 could not be sufficiently validated by performing a direct comparison between CFD and experimental results using the Student’s t-test. However, following the threshold-based approach, a Student’s t-test comparing |S-D| and |Threshold-S| showed that relative to the threshold, the CFD and experimental datasets for Re = 3500 were statistically similar and

  6. Validation of a dynamic linked segment model to calculate joint moments in lifting.

    PubMed

    de Looze, M P; Kingma, I; Bussmann, J B; Toussaint, H M

    1992-08-01

    A two-dimensional dynamic linked segment model was constructed and applied to a lifting activity. Reactive forces and moments were calculated by an instantaneous approach involving the application of Newtonian mechanics to individual adjacent rigid segments in succession. The analysis started once at the feet and once at a hands/load segment. The model was validated by comparing predicted external forces and moments at the feet or at a hands/load segment to actual values, which were simultaneously measured (ground reaction force at the feet) or assumed to be zero (external moments at feet and hands/load and external forces, beside gravitation, at hands/load). In addition, results of both procedures, in terms of joint moments, including the moment at the intervertebral disc between the fifth lumbar and first sacral vertebra (L5-S1), were compared. A correlation of r = 0.88 between calculated and measured vertical ground reaction forces was found. The calculated external forces and moments at the hands showed only minor deviations from the expected zero level. The moments at L5-S1, calculated starting from feet compared to starting from hands/load, yielded a coefficient of correlation of r = 0.99. However, moments calculated from hands/load were 3.6% (averaged values) and 10.9% (peak values) higher. This difference is assumed to be due mainly to erroneous estimations of the positions of centres of gravity and joint rotation centres. The estimation of the location of L5-S1 rotation axis can affect the results significantly. Despite the numerous studies estimating the load on the low back during lifting on the basis of linked segment models, only a few attempts to validate these models have been made. This study is concerned with the validity of the presented linked segment model. The results support the model's validity. Effects of several sources of error threatening the validity are discussed. Copyright © 1992. Published by Elsevier Ltd.

  7. IMPLEMENTATION AND VALIDATION OF A FULLY IMPLICIT ACCUMULATOR MODEL IN RELAP-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haihua; Zou, Ling; Zhang, Hongbin

    2016-01-01

    This paper presents the implementation and validation of an accumulator model in RELAP-7 under the framework of preconditioned Jacobian free Newton Krylov (JFNK) method, based on the similar model used in RELAP5. RELAP-7 is a new nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). RELAP-7 is a fully implicit system code. The JFNK and preconditioning methods used in RELAP-7 is briefly discussed. The slightly modified accumulator model is summarized for completeness. The implemented model was validated with LOFT L3-1 test and benchmarked with RELAP5 results. RELAP-7 and RELAP5 had almost identical results for themore » accumulator gas pressure and water level, although there were some minor difference in other parameters such as accumulator gas temperature and tank wall temperature. One advantage of the JFNK method is its easiness to maintain and modify models due to fully separation of numerical methods from physical models. It would be straightforward to extend the current RELAP-7 accumulator model to simulate the advanced accumulator design.« less

  8. The Model Analyst’s Toolkit: Scientific Model Development, Analysis, and Validation

    DTIC Science & Technology

    2014-05-20

    but there can still be many recommendations generated. Therefore, the recommender results are displayed in a sortable table where each row is a...reporting period. Since the synthesis graph can be complex and have many dependencies, the system must determine the order of evaluation of nodes, and...validation failure, if any. 3.1. Automatic Feature Extraction In many domains, causal models can often be more readily described as patterns of

  9. Validation of periodontitis screening model using sociodemographic, systemic, and molecular information in a Korean population.

    PubMed

    Kim, Hyun-Duck; Sukhbaatar, Munkhzaya; Shin, Myungseop; Ahn, Yoo-Been; Yoo, Wook-Sung

    2014-12-01

    This study aims to evaluate and validate a periodontitis screening model that includes sociodemographic, metabolic syndrome (MetS), and molecular information, including gingival crevicular fluid (GCF), matrix metalloproteinase (MMP), and blood cytokines. The authors selected 506 participants from the Shiwha-Banwol cohort: 322 participants from the 2005 cohort for deriving the screening model and 184 participants from the 2007 cohort for its validation. Periodontitis was assessed by dentists using the community periodontal index. Interleukin (IL)-6, IL-8, and tumor necrosis factor-α in blood and MMP-8, -9, and -13 in GCF were assayed using enzyme-linked immunosorbent assay. MetS was assessed by physicians using physical examination and blood laboratory data. Information about age, sex, income, smoking, and drinking was obtained by interview. Logistic regression analysis was applied to finalize the best-fitting model and validate the model using sensitivity, specificity, and c-statistics. The derived model for periodontitis screening had a sensitivity of 0.73, specificity of 0.85, and c-statistic of 0.86 (P <0.001); those of the validated model were 0.64, 0.91, and 0.83 (P <0.001), respectively. The model that included age, sex, income, smoking, drinking, and blood and GCF biomarkers could be useful in screening for periodontitis. A future prospective study is indicated for evaluating this model's ability to predict the occurrence of periodontitis.

  10. Validation Testing of a Peridynamic Impact Damage Model Using NASA's Micro-Particle Gun

    NASA Technical Reports Server (NTRS)

    Baber, Forrest E.; Zelinski, Brian J.; Guven, Ibrahim; Gray, Perry

    2017-01-01

    Through a collaborative effort between the Virginia Commonwealth University and Raytheon, a peridynamic model for sand impact damage has been developed1-3. Model development has focused on simulating impacts of sand particles on ZnS traveling at velocities consistent with aircraft take-off and landing speeds. The model reproduces common features of impact damage including pit and radial cracks, and, under some conditions, lateral cracks. This study focuses on a preliminary validation exercise in which simulation results from the peridynamic model are compared to a limited experimental data set generated by NASA's recently developed micro-particle gun (MPG). The MPG facility measures the dimensions and incoming and rebound velocities of the impact particles. It also links each particle to a specific impact site and its associated damage. In this validation exercise parameters of the peridynamic model are adjusted to fit the experimentally observed pit diameter, average length of radial cracks and rebound velocities for 4 impacts of 300 µm glass beads on ZnS. Results indicate that a reasonable fit of these impact characteristics can be obtained by suitable adjustment of the peridynamic input parameters, demonstrating that the MPG can be used effectively as a validation tool for impact modeling and that the peridynamic sand impact model described herein possesses not only a qualitative but also a quantitative ability to simulate sand impact events.

  11. Hierarchical multi-scale approach to validation and uncertainty quantification of hyper-spectral image modeling

    NASA Astrophysics Data System (ADS)

    Engel, Dave W.; Reichardt, Thomas A.; Kulp, Thomas J.; Graff, David L.; Thompson, Sandra E.

    2016-05-01

    Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensor level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.

  12. Hierarchical Multi-Scale Approach To Validation and Uncertainty Quantification of Hyper-Spectral Image Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, David W.; Reichardt, Thomas A.; Kulp, Thomas J.

    Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensormore » level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.« less

  13. Development and validation of a prediction model for functional decline in older medical inpatients.

    PubMed

    Takada, Toshihiko; Fukuma, Shingo; Yamamoto, Yosuke; Tsugihashi, Yukio; Nagano, Hiroyuki; Hayashi, Michio; Miyashita, Jun; Azuma, Teruhisa; Fukuhara, Shunichi

    2018-05-17

    To prevent functional decline in older inpatients, identification of high-risk patients is crucial. The aim of this study was to develop and validate a prediction model to assess the risk of functional decline in older medical inpatients. In this retrospective cohort study, patients ≥65 years admitted acutely to medical wards were included. The healthcare database of 246 acute care hospitals (n = 229,913) was used for derivation, and two acute care hospitals (n = 1767 and 5443, respectively) were used for validation. Data were collected using a national administrative claims and discharge database. Functional decline was defined as a decline of the Katz score at discharge compared with on admission. About 6% of patients in the derivation cohort and 9% and 2% in each validation cohort developed functional decline. A model with 7 items, age, body mass index, living in a nursing home, ambulance use, need for assistance in walking, dementia, and bedsore, was developed. On internal validation, it demonstrated a c-statistic of 0.77 (95% confidence interval (CI) = 0.767-0.771) and good fit on the calibration plot. On external validation, the c-statistics were 0.79 (95% CI = 0.77-0.81) and 0.75 (95% CI = 0.73-0.77) for each cohort, respectively. Calibration plots showed good fit in one cohort and overestimation in the other one. A prediction model for functional decline in older medical inpatients was derived and validated. It is expected that use of the model would lead to early identification of high-risk patients and introducing early intervention. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Verifying and Validating Proposed Models for FSW Process Optimization

    NASA Technical Reports Server (NTRS)

    Schneider, Judith

    2008-01-01

    This slide presentation reviews Friction Stir Welding (FSW) and the attempts to model the process in order to optimize and improve the process. The studies are ongoing to validate and refine the model of metal flow in the FSW process. There are slides showing the conventional FSW process, a couple of weld tool designs and how the design interacts with the metal flow path. The two basic components of the weld tool are shown, along with geometries of the shoulder design. Modeling of the FSW process is reviewed. Other topics include (1) Microstructure features, (2) Flow Streamlines, (3) Steady-state Nature, and (4) Grain Refinement Mechanisms

  15. Finite Element Model of the Knee for Investigation of Injury Mechanisms: Development and Validation

    PubMed Central

    Kiapour, Ali; Kiapour, Ata M.; Kaul, Vikas; Quatman, Carmen E.; Wordeman, Samuel C.; Hewett, Timothy E.; Demetropoulos, Constantine K.; Goel, Vijay K.

    2014-01-01

    Multiple computational models have been developed to study knee biomechanics. However, the majority of these models are mainly validated against a limited range of loading conditions and/or do not include sufficient details of the critical anatomical structures within the joint. Due to the multifactorial dynamic nature of knee injuries, anatomic finite element (FE) models validated against multiple factors under a broad range of loading conditions are necessary. This study presents a validated FE model of the lower extremity with an anatomically accurate representation of the knee joint. The model was validated against tibiofemoral kinematics, ligaments strain/force, and articular cartilage pressure data measured directly from static, quasi-static, and dynamic cadaveric experiments. Strong correlations were observed between model predictions and experimental data (r > 0.8 and p < 0.0005 for all comparisons). FE predictions showed low deviations (root-mean-square (RMS) error) from average experimental data under all modes of static and quasi-static loading, falling within 2.5 deg of tibiofemoral rotation, 1% of anterior cruciate ligament (ACL) and medial collateral ligament (MCL) strains, 17 N of ACL load, and 1 mm of tibiofemoral center of pressure. Similarly, the FE model was able to accurately predict tibiofemoral kinematics and ACL and MCL strains during simulated bipedal landings (dynamic loading). In addition to minimal deviation from direct cadaveric measurements, all model predictions fell within 95% confidence intervals of the average experimental data. Agreement between model predictions and experimental data demonstrates the ability of the developed model to predict the kinematics of the human knee joint as well as the complex, nonuniform stress and strain fields that occur in biological soft tissue. Such a model will facilitate the in-depth understanding of a multitude of potential knee injury mechanisms with special emphasis on ACL injury

  16. A validated method for modeling anthropoid hip abduction in silico.

    PubMed

    Hammond, Ashley S; Plavcan, J Michael; Ward, Carol V

    2016-07-01

    The ability to reconstruct hip joint mobility from femora and pelves could provide insight into the locomotion and paleobiology of fossil primates. This study presents a method for modeling hip abduction in anthropoids validated with in vivo data. Hip abduction simulations were performed on a large sample of anthropoids. The modeling approach integrates three-dimensional (3D) polygonal models created from laser surface scans of bones, 3D landmark data, and shape analysis software to digitally articulate and manipulate the hip joint. Range of femoral abduction (degrees) and the abducted knee position (distance spanned at the knee during abduction) were compared with published live animal data. The models accurately estimate knee position and (to a lesser extent) angular abduction across broad locomotor groups. They tend to underestimate abduction for acrobatic or suspensory taxa, but overestimate it in more stereotyped taxa. Correspondence between in vivo and in silico data varies at the specific and generic level. Our models broadly correspond to in vivo data on hip abduction, although the relationship between the models and live animal data is less straightforward than hypothesized. The models can predict acrobatic or stereotyped locomotor adaptation for taxa with values near the extremes of the range of abduction ability. Our findings underscore the difficulties associated with modeling complex systems and the importance of validating in silico models. They suggest that models of joint mobility can offer additional insight into the functional abilities of extinct primates when done in consideration of how joints move and function in vivo. Am J Phys Anthropol 160:529-548, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Model-Based Verification and Validation of the SMAP Uplink Processes

    NASA Technical Reports Server (NTRS)

    Khan, M. Omair; Dubos, Gregory F.; Tirona, Joseph; Standley, Shaun

    2013-01-01

    This case study stands as an example of how a project can validate a system-level design earlier in the project life cycle than traditional V&V processes by using simulation on a system model. Specifically, this paper describes how simulation was added to a system model of the Soil Moisture Active-Passive (SMAP) mission's uplink process.Also discussed are the advantages and disadvantages of the methods employed and the lessons learned; which are intended to benefit future model-based and simulation-based V&V development efforts.

  18. Method for Pre-Conditioning a Measured Surface Height Map for Model Validation

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2012-01-01

    This software allows one to up-sample or down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. Because the re-sampling of a surface map is accomplished based on the analytical expressions of Zernike-polynomials and a power spectral density model, such re-sampling does not introduce any aliasing and interpolation errors as is done by the conventional interpolation and FFT-based (fast-Fourier-transform-based) spatial-filtering method. Also, this new method automatically eliminates the measurement noise and other measurement errors such as artificial discontinuity. The developmental cycle of an optical system, such as a space telescope, includes, but is not limited to, the following two steps: (1) deriving requirements or specs on the optical quality of individual optics before they are fabricated through optical modeling and simulations, and (2) validating the optical model using the measured surface height maps after all optics are fabricated. There are a number of computational issues related to model validation, one of which is the "pre-conditioning" or pre-processing of the measured surface maps before using them in a model validation software tool. This software addresses the following issues: (1) up- or down-sampling a measured surface map to match it with the gridded data format of a model validation tool, and (2) eliminating the surface measurement noise or measurement errors such that the resulted surface height map is continuous or smoothly-varying. So far, the preferred method used for re-sampling a surface map is two-dimensional interpolation. The main problem of this method is that the same pixel can take different values when the method of interpolation is changed among the different methods such as the "nearest," "linear," "cubic," and "spline" fitting in Matlab. The conventional, FFT-based spatial filtering method used to

  19. Inhibitor-based validation of a homology model of the active-site of tripeptidyl peptidase II.

    PubMed

    De Winter, Hans; Breslin, Henry; Miskowski, Tamara; Kavash, Robert; Somers, Marijke

    2005-04-01

    A homology model of the active site region of tripeptidyl peptidase II (TPP II) was constructed based on the crystal structures of four subtilisin-like templates. The resulting model was subsequently validated by judging expectations of the model versus observed activities for a broad set of prepared TPP II inhibitors. The structure-activity relationships observed for the prepared TPP II inhibitors correlated nicely with the structural details of the TPP II active site model, supporting the validity of this model and its usefulness for structure-based drug design and pharmacophore searching experiments.

  20. One-month validation of the Space Weather Modeling Framework geospace model

    NASA Astrophysics Data System (ADS)

    Haiducek, J. D.; Welling, D. T.; Ganushkina, N. Y.; Morley, S.; Ozturk, D. S.

    2017-12-01

    The Space Weather Modeling Framework (SWMF) geospace model consists of a magnetohydrodynamic (MHD) simulation coupled to an inner magnetosphere model and an ionosphere model. This provides a predictive capability for magnetopsheric dynamics, including ground-based and space-based magnetic fields, geomagnetic indices, currents and densities throughout the magnetosphere, cross-polar cap potential, and magnetopause and bow shock locations. The only inputs are solar wind parameters and F10.7 radio flux. We have conducted a rigorous validation effort consisting of a continuous simulation covering the month of January, 2005 using three different model configurations. This provides a relatively large dataset for assessment of the model's predictive capabilities. We find that the model does an excellent job of predicting the Sym-H index, and performs well at predicting Kp and CPCP during active times. Dayside magnetopause and bow shock positions are also well predicted. The model tends to over-predict Kp and CPCP during quiet times and under-predicts the magnitude of AL during disturbances. The model under-predicts the magnitude of night-side geosynchronous Bz, and over-predicts the radial distance to the flank magnetopause and bow shock. This suggests that the model over-predicts stretching of the magnetotail and the overall size of the magnetotail. With the exception of the AL index and the nightside geosynchronous magnetic field, we find the results to be insensitive to grid resolution.

  1. Modeling pedestrian shopping behavior using principles of bounded rationality: model comparison and validation

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Timmermans, Harry

    2011-06-01

    Models of geographical choice behavior have been dominantly based on rational choice models, which assume that decision makers are utility-maximizers. Rational choice models may be less appropriate as behavioral models when modeling decisions in complex environments in which decision makers may simplify the decision problem using heuristics. Pedestrian behavior in shopping streets is an example. We therefore propose a modeling framework for pedestrian shopping behavior incorporating principles of bounded rationality. We extend three classical heuristic rules (conjunctive, disjunctive and lexicographic rule) by introducing threshold heterogeneity. The proposed models are implemented using data on pedestrian behavior in Wang Fujing Street, the city center of Beijing, China. The models are estimated and compared with multinomial logit models and mixed logit models. Results show that the heuristic models are the best for all the decisions that are modeled. Validation tests are carried out through multi-agent simulation by comparing simulated spatio-temporal agent behavior with the observed pedestrian behavior. The predictions of heuristic models are slightly better than those of the multinomial logit models.

  2. A Hardware Model Validation Tool for Use in Complex Space Systems

    NASA Technical Reports Server (NTRS)

    Davies, Misty Dawn; Gundy-Burlet, Karen L.; Limes, Gregory L.

    2010-01-01

    One of the many technological hurdles that must be overcome in future missions is the challenge of validating as-built systems against the models used for design. We propose a technique composed of intelligent parameter exploration in concert with automated failure analysis as a scalable method for the validation of complex space systems. The technique is impervious to discontinuities and linear dependencies in the data, and can handle dimensionalities consisting of hundreds of variables over tens of thousands of experiments.

  3. Are Model Transferability And Complexity Antithetical? Insights From Validation of a Variable-Complexity Empirical Snow Model in Space and Time

    NASA Astrophysics Data System (ADS)

    Lute, A. C.; Luce, Charles H.

    2017-11-01

    The related challenges of predictions in ungauged basins and predictions in ungauged climates point to the need to develop environmental models that are transferable across both space and time. Hydrologic modeling has historically focused on modelling one or only a few basins using highly parameterized conceptual or physically based models. However, model parameters and structures have been shown to change significantly when calibrated to new basins or time periods, suggesting that model complexity and model transferability may be antithetical. Empirical space-for-time models provide a framework within which to assess model transferability and any tradeoff with model complexity. Using 497 SNOTEL sites in the western U.S., we develop space-for-time models of April 1 SWE and Snow Residence Time based on mean winter temperature and cumulative winter precipitation. The transferability of the models to new conditions (in both space and time) is assessed using non-random cross-validation tests with consideration of the influence of model complexity on transferability. As others have noted, the algorithmic empirical models transfer best when minimal extrapolation in input variables is required. Temporal split-sample validations use pseudoreplicated samples, resulting in the selection of overly complex models, which has implications for the design of hydrologic model validation tests. Finally, we show that low to moderate complexity models transfer most successfully to new conditions in space and time, providing empirical confirmation of the parsimony principal.

  4. LIVVkit 2: An extensible land ice verification and validation toolkit for comparing observations and models?

    NASA Astrophysics Data System (ADS)

    Kennedy, J. H.; Bennett, A. R.; Evans, K. J.; Fyke, J. G.; Vargo, L.; Price, S. F.; Hoffman, M. J.

    2016-12-01

    Accurate representation of ice sheets and glaciers are essential for robust predictions of arctic climate within Earth System models. Verification and Validation (V&V) is a set of techniques used to quantify the correctness and accuracy of a model, which builds developer/modeler confidence, and can be used to enhance the credibility of the model. Fundamentally, V&V is a continuous process because each model change requires a new round of V&V testing. The Community Ice Sheet Model (CISM) development community is actively developing LIVVkit, the Land Ice Verification and Validation toolkit, which is designed to easily integrate into an ice-sheet model's development workflow (on both personal and high-performance computers) to provide continuous V&V testing.LIVVkit is a robust and extensible python package for V&V, which has components for both software V&V (construction and use) and model V&V (mathematics and physics). The model Verification component is used, for example, to verify model results against community intercomparisons such as ISMIP-HOM. The model validation component is used, for example, to generate a series of diagnostic plots showing the differences between model results against observations for variables such as thickness, surface elevation, basal topography, surface velocity, surface mass balance, etc. Because many different ice-sheet models are under active development, new validation datasets are becoming available, and new methods of analysing these models are actively being researched, LIVVkit includes a framework to easily extend the model V&V analyses by ice-sheet modelers. This allows modelers and developers to develop evaluations of parameters, implement changes, and quickly see how those changes effect the ice-sheet model and earth system model (when coupled). Furthermore, LIVVkit outputs a portable hierarchical website allowing evaluations to be easily shared, published, and analysed throughout the arctic and Earth system communities.

  5. Validating a spatially distributed hydrological model with soil morphology data

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Honti, M.; Zihlmann, U.; Weisskopf, P.; Stamm, C.

    2013-10-01

    Spatially distributed hydrological models are popular tools in hydrology and they are claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time-series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for the transport of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography. Around 40% of the catchment area are artificially drained. We measured weather data, discharge and groundwater levels in 11 piezometers for 1.5 yr. For broadening the spatially distributed data sets that can be used for model calibration and validation, we translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. We used redox-morphology signs for these estimates. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to the groundwater levels in the piezometers and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the accuracy of the groundwater level predictions was not high enough to be used for the prediction of saturated areas. The groundwater

  6. LIVVkit: An extensible, python-based, land ice verification and validation toolkit for ice sheet models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Joseph H.; Bennett, Andrew R.; Evans, Katherine J.

    To address the pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice sheet models is underway. Concurrent to the development of the Community Ice Sheet Model (CISM), the corresponding verification and validation (V&V) process is being coordinated through a new, robust, Python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVVkit). Incorporated into the typical ice sheet model development cycle, it provides robust and automated numerical verification, software verification, performance validation, and physical validation analyses on a variety of platforms, from personal laptopsmore » to the largest supercomputers. LIVVkit operates on sets of regression test and reference data sets, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-for-bit evaluation, and plots of model variables to indicate where differences occur. LIVVkit also provides an easily extensible framework to incorporate and analyze results of new intercomparison projects, new observation data, and new computing platforms. LIVVkit is designed for quick adaptation to additional ice sheet models via abstraction of model specific code, functions, and configurations into an ice sheet model description bundle outside the main LIVVkit structure. Furthermore, through shareable and accessible analysis output, LIVVkit is intended to help developers build confidence in their models and enhance the credibility of ice sheet models overall.« less

  7. LIVVkit: An extensible, python-based, land ice verification and validation toolkit for ice sheet models

    DOE PAGES

    Kennedy, Joseph H.; Bennett, Andrew R.; Evans, Katherine J.; ...

    2017-03-23

    To address the pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice sheet models is underway. Concurrent to the development of the Community Ice Sheet Model (CISM), the corresponding verification and validation (V&V) process is being coordinated through a new, robust, Python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVVkit). Incorporated into the typical ice sheet model development cycle, it provides robust and automated numerical verification, software verification, performance validation, and physical validation analyses on a variety of platforms, from personal laptopsmore » to the largest supercomputers. LIVVkit operates on sets of regression test and reference data sets, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-for-bit evaluation, and plots of model variables to indicate where differences occur. LIVVkit also provides an easily extensible framework to incorporate and analyze results of new intercomparison projects, new observation data, and new computing platforms. LIVVkit is designed for quick adaptation to additional ice sheet models via abstraction of model specific code, functions, and configurations into an ice sheet model description bundle outside the main LIVVkit structure. Furthermore, through shareable and accessible analysis output, LIVVkit is intended to help developers build confidence in their models and enhance the credibility of ice sheet models overall.« less

  8. Stakeholder validation of a model of readiness for transition to adult care.

    PubMed

    Schwartz, Lisa A; Brumley, Lauren D; Tuchman, Lisa K; Barakat, Lamia P; Hobbie, Wendy L; Ginsberg, Jill P; Daniel, Lauren C; Kazak, Anne E; Bevans, Katherine; Deatrick, Janet A

    2013-10-01

    That too few youth with special health care needs make the transition to adult-oriented health care successfully may be due, in part, to lack of readiness to transfer care. There is a lack of theoretical models to guide development and implementation of evidence-based guidelines, assessments, and interventions to improve transition readiness. To further validate the Social-ecological Model of Adolescent and Young Adult Readiness to Transition (SMART) via feedback from stakeholders (patients, parents, and providers) from a medically diverse population in need of life-long follow-up care, survivors of childhood cancer. Mixed-methods participatory research design. A large Mid-Atlantic children's hospital. Adolescent and young adult survivors of childhood cancer (n = 14), parents (n = 18), and pediatric providers (n = 10). Patients and parents participated in focus groups; providers participated in individual semi-structured interviews. Validity of SMART was assessed 3 ways: (1) ratings on importance of SMART components for transition readiness using a 5-point scale (0-4; ratings >2 support validity), (2) nominations of 3 "most important" components, and (3) directed content analysis of focus group/interview transcripts. Qualitative data supported the validity of SMART, with minor modifications to definitions of components. Quantitative ratings met criteria for validity; stakeholders endorsed all components of SMART as important for transition. No additional SMART variables were suggested by stakeholders and the "most important" components varied by stakeholders, thus supporting the comprehensiveness of SMART and need to involve multiple perspectives. SMART represents a comprehensive and empirically validated framework for transition research and program planning, supported by survivors of childhood cancer, parents, and pediatric providers. Future research should validate SMART among other populations with special health care needs.

  9. Second-Moment RANS Model Verification and Validation Using the Turbulence Modeling Resource Website (Invited)

    NASA Technical Reports Server (NTRS)

    Eisfeld, Bernhard; Rumsey, Chris; Togiti, Vamshi

    2015-01-01

    The implementation of the SSG/LRR-omega differential Reynolds stress model into the NASA flow solvers CFL3D and FUN3D and the DLR flow solver TAU is verified by studying the grid convergence of the solution of three different test cases from the Turbulence Modeling Resource Website. The model's predictive capabilities are assessed based on four basic and four extended validation cases also provided on this website, involving attached and separated boundary layer flows, effects of streamline curvature and secondary flow. Simulation results are compared against experimental data and predictions by the eddy-viscosity models of Spalart-Allmaras (SA) and Menter's Shear Stress Transport (SST).

  10. Shoulder model validation and joint contact forces during wheelchair activities.

    PubMed

    Morrow, Melissa M B; Kaufman, Kenton R; An, Kai-Nan

    2010-09-17

    Chronic shoulder impingement is a common problem for manual wheelchair users. The loading associated with performing manual wheelchair activities of daily living is substantial and often at a high frequency. Musculoskeletal modeling and optimization techniques can be used to estimate the joint contact forces occurring at the shoulder to assess the soft tissue loading during an activity and to possibly identify activities and strategies that place manual wheelchair users at risk for shoulder injuries. The purpose of this study was to validate an upper extremity musculoskeletal model and apply the model to wheelchair activities for analysis of the estimated joint contact forces. Upper extremity kinematics and handrim wheelchair kinetics were measured over three conditions: level propulsion, ramp propulsion, and a weight relief lift. The experimental data were used as input to a subject-specific musculoskeletal model utilizing optimization to predict joint contact forces of the shoulder during all conditions. The model was validated using a mean absolute error calculation. Model results confirmed that ramp propulsion and weight relief lifts place the shoulder under significantly higher joint contact loading than level propulsion. In addition, they exhibit large superior contact forces that could contribute to impingement. This study highlights the potential impingement risk associated with both the ramp and weight relief lift activities. Level propulsion was shown to have a low relative risk of causing injury, but with consideration of the frequency with which propulsion is performed, this observation is not conclusive.

  11. Noninvasive assessment of mitral inertness: clinical results with numerical model validation

    NASA Technical Reports Server (NTRS)

    Firstenberg, M. S.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.

    2001-01-01

    Inertial forces (Mdv/dt) are a significant component of transmitral flow, but cannot be measured with Doppler echo. We validated a method of estimating Mdv/dt. Ten patients had a dual sensor transmitral (TM) catheter placed during cardiac surgery. Doppler and 2D echo was performed while acquiring LA and LV pressures. Mdv/dt was determined from the Bernoulli equation using Doppler velocities and TM gradients. Results were compared with numerical modeling. TM gradients (range: 1.04-14.24 mmHg) consisted of 74.0 +/- 11.0% inertial forcers (range: 0.6-12.9 mmHg). Multivariate analysis predicted Mdv/dt = -4.171(S/D (RATIO)) + 0.063(LAvolume-max) + 5. Using this equation, a strong relationship was obtained for the clinical dataset (y=0.98x - 0.045, r=0.90) and the results of numerical modeling (y=0.96x - 0.16, r=0.84). TM gradients are mainly inertial and, as validated by modeling, can be estimated with echocardiography.

  12. Experimental validation of solid rocket motor damping models

    NASA Astrophysics Data System (ADS)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2017-12-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  13. Experimental validation of solid rocket motor damping models

    NASA Astrophysics Data System (ADS)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2018-06-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  14. Empirical Measurement and Model Validation of Infrared Spectra of Contaminated Surfaces

    NASA Astrophysics Data System (ADS)

    Archer, Sean

    The goal of this thesis was to validate predicted infrared spectra of liquid contaminated surfaces from a micro-scale bi-directional reflectance distribution function (BRDF) model through the use of empirical measurement. Liquid contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Image and Remote Sensing Image Generation (DIRSIG) model utilizes radiative transfer modeling to generate synthetic imagery for a variety of applications. Aside from DIRSIG, a micro-scale model known as microDIRSIG has been developed as a rigorous ray tracing physics-based model that could predict the BRDF of geometric surfaces that are defined as micron to millimeter resolution facets. The model offers an extension from the conventional BRDF models by allowing contaminants to be added as geometric objects to a micro-facet surface. This model was validated through the use of Fourier transform infrared spectrometer measurements. A total of 18 different substrate and contaminant combinations were measured and compared against modeled outputs. The substrates used in this experiment were wood and aluminum that contained three different paint finishes. The paint finishes included no paint, Krylon ultra-flat black, and Krylon glossy black. A silicon based oil (SF96) was measured out and applied to each surface to create three different contamination cases for each surface. Radiance in the longwave infrared region of the electromagnetic spectrum was measured by a Design and Prototypes (D&P) Fourier transform infrared spectrometer and a Physical Sciences Inc. Adaptive Infrared Imaging Spectroradiometer (AIRIS). The model outputs were compared against the measurements quantitatively in both the emissivity and radiance domains. A temperature emissivity separation (TES) algorithm had to be applied to the measured radiance spectra for comparison with the microDIRSIG predicted emissivity spectra. The model predicted

  15. Towards practical application of sensors for monitoring animal health; design and validation of a model to detect ketosis.

    PubMed

    Steensels, Machteld; Maltz, Ephraim; Bahr, Claudia; Berckmans, Daniel; Antler, Aharon; Halachmi, Ilan

    2017-05-01

    The objective of this study was to design and validate a mathematical model to detect post-calving ketosis. The validation was conducted in four commercial dairy farms in Israel, on a total of 706 multiparous Holstein dairy cows: 203 cows clinically diagnosed with ketosis and 503 healthy cows. A logistic binary regression model was developed, where the dependent variable is categorical (healthy/diseased) and a set of explanatory variables were measured with existing commercial sensors: rumination duration, activity and milk yield of each individual cow. In a first validation step (within-farm), the model was calibrated on the database of each farm separately. Two thirds of the sick cows and an equal number of healthy cows were randomly selected for model validation. The remaining one third of the cows, which did not participate in the model validation, were used for model calibration. In order to overcome the random selection effect, this procedure was repeated 100 times. In a second (between-farms) validation step, the model was calibrated on one farm and validated on another farm. Within-farm accuracy, ranging from 74 to 79%, was higher than between-farm accuracy, ranging from 49 to 72%, in all farms. The within-farm sensitivities ranged from 78 to 90%, and specificities ranged from 71 to 74%. The between-farms sensitivities ranged from 65 to 95%. The developed model can be improved in future research, by employing other variables that can be added; or by exploring other models to achieve greater sensitivity and specificity.

  16. Validation of the Inverted Pendulum Model in standing for transtibial prosthesis users.

    PubMed

    Rusaw, David F; Ramstrand, Simon

    2016-01-01

    Often in balance assessment variables associated with the center of pressure are used to draw conclusions about an individual's balance. Validity of these conclusions rests upon assumptions that movement of the center of pressure is inter-dependent on movement of the center of mass. This dependency is mechanical and is referred to as the Inverted Pendulum Model. The following study aimed to validate this model both kinematically and kinetically, in transtibial prosthesis users and a control group. Prosthesis users (n=6) and matched control participants (n=6) stood quietly while force and motion data were collected under three conditions (eyes-open, eyes-closed, and weight-bearing feedback). Correlation coefficients were used to investigate the relationships between height and excursion of markers and center of masses in mediolateral/anteroposterior-directions, difference between center of pressure and center of mass and the center of mass acceleration in mediolateral/anteroposterior directions, magnitude of mediolateral/anteroposterior-component forces and center of mass acceleration, angular position of ankle and excursion in mediolateral/anteroposterior-directions, and integrated force signals. Results indicate kinematic validity of similar magnitudes (mean (SD) marker-displacement) between prosthesis users and control group for mediolateral- (r=0.77 (0.17); 0.74 (0.19)) and anteroposterior-directions (r=0.88 (0.18); 0.88 (0.19)). Correlation between difference of center of pressure and center of mass and the center of mass acceleration was negligible on the prosthetic side (r = 0.08 (0.06)) vs. control group (r=-0.51(0.13)). Results indicate kinematic validity of the Inverted Pendulum Model in transtibial prosthesis users but kinetic validity is questionable, particularly on the side with a prosthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A comprehensive validation toolbox for regional ocean models - Outline, implementation and application to the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Jandt, Simon; Laagemaa, Priidik; Janssen, Frank

    2014-05-01

    The systematic and objective comparison between output from a numerical ocean model and a set of observations, called validation in the context of this presentation, is a beneficial activity at several stages, starting from early steps in model development and ending at the quality control of model based products delivered to customers. Even though the importance of this kind of validation work is widely acknowledged it is often not among the most popular tasks in ocean modelling. In order to ease the validation work a comprehensive toolbox has been developed in the framework of the MyOcean-2 project. The objective of this toolbox is to carry out validation integrating different data sources, e.g. time-series at stations, vertical profiles, surface fields or along track satellite data, with one single program call. The validation toolbox, implemented in MATLAB, features all parts of the validation process - ranging from read-in procedures of datasets to the graphical and numerical output of statistical metrics of the comparison. The basic idea is to have only one well-defined validation schedule for all applications, in which all parts of the validation process are executed. Each part, e.g. read-in procedures, forms a module in which all available functions of this particular part are collected. The interface between the functions, the module and the validation schedule is highly standardized. Functions of a module are set up for certain validation tasks, new functions can be implemented into the appropriate module without affecting the functionality of the toolbox. The functions are assigned for each validation task in user specific settings, which are externally stored in so-called namelists and gather all information of the used datasets as well as paths and metadata. In the framework of the MyOcean-2 project the toolbox is frequently used to validate the forecast products of the Baltic Sea Marine Forecasting Centre. Hereby the performance of any new product

  18. Fast Running Urban Dispersion Model for Radiological Dispersal Device (RDD) Releases: Model Description and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowardhan, Akshay; Neuscamman, Stephanie; Donetti, John

    Aeolus is an efficient three-dimensional computational fluid dynamics code based on finite volume method developed for predicting transport and dispersion of contaminants in a complex urban area. It solves the time dependent incompressible Navier-Stokes equation on a regular Cartesian staggered grid using a fractional step method. It also solves a scalar transport equation for temperature and using the Boussinesq approximation. The model also includes a Lagrangian dispersion model for predicting the transport and dispersion of atmospheric contaminants. The model can be run in an efficient Reynolds Average Navier-Stokes (RANS) mode with a run time of several minutes, or a moremore » detailed Large Eddy Simulation (LES) mode with run time of hours for a typical simulation. This report describes the model components, including details on the physics models used in the code, as well as several model validation efforts. Aeolus wind and dispersion predictions are compared to field data from the Joint Urban Field Trials 2003 conducted in Oklahoma City (Allwine et al 2004) including both continuous and instantaneous releases. Newly implemented Aeolus capabilities include a decay chain model and an explosive Radiological Dispersal Device (RDD) source term; these capabilities are described. Aeolus predictions using the buoyant explosive RDD source are validated against two experimental data sets: the Green Field explosive cloud rise experiments conducted in Israel (Sharon et al 2012) and the Full-Scale RDD Field Trials conducted in Canada (Green et al 2016).« less

  19. Simulated training in colonoscopic stenting of colonic strictures: validation of a cadaver model.

    PubMed

    Iordache, F; Bucobo, J C; Devlin, D; You, K; Bergamaschi, R

    2015-07-01

    There are currently no available simulation models for training in colonoscopic stent deployment. The aim of this study was to validate a cadaver model for simulation training in colonoscopy with stent deployment for colonic strictures. This was a prospective study enrolling surgeons at a single institution. Participants performed colonoscopic stenting on a cadaver model. Their performance was assessed by two independent observers. Measurements were performed for quantitative analysis (time to identify stenosis, time for deployment, accuracy) and a weighted score was devised for assessment. The Mann-Whitney U-test and Student's t-test were used for nonparametric and parametric data, respectively. Cohen's kappa coefficient was used for reliability. Twenty participants performed a colonoscopy with deployment of a self-expandable metallic stent in two cadavers (groups A and B) with 20 strictures overall. The median time was 206 s. The model was able to differentiate between experts and novices (P = 0. 013). The results showed a good consensus estimate of reliability, with kappa = 0.571 (P < 0.0001). The cadaver model described in this study has content, construct and concurrent validity for simulation training in colonoscopic deployment of self-expandable stents for colonic strictures. Further studies are needed to evaluate the predictive validity of this model in terms of skill transfer to clinical practice. Colorectal Disease © 2014 The Association of Coloproctology of Great Britain and Ireland.

  20. A New Symptom Model for Autism Cross-Validated in an Independent Sample

    ERIC Educational Resources Information Center

    Boomsma, A.; Van Lang, N. D. J.; De Jonge, M. V.; De Bildt, A. A.; Van Engeland, H.; Minderaa, R. B.

    2008-01-01

    Background: Results from several studies indicated that a symptom model other than the DSM triad might better describe symptom domains of autism. The present study focused on a) investigating the stability of a new symptom model for autism by cross-validating it in an independent sample and b) examining the invariance of the model regarding three…

  1. A Model-Based Method for Content Validation of Automatically Generated Test Items

    ERIC Educational Resources Information Center

    Zhang, Xinxin; Gierl, Mark

    2016-01-01

    The purpose of this study is to describe a methodology to recover the item model used to generate multiple-choice test items with a novel graph theory approach. Beginning with the generated test items and working backward to recover the original item model provides a model-based method for validating the content used to automatically generate test…

  2. Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames

    NASA Astrophysics Data System (ADS)

    Schlup, Jason; Blanquart, Guillaume

    2018-03-01

    The mixture-averaged thermal diffusion model originally proposed by Chapman and Cowling is validated using multiple flame configurations. Simulations using detailed hydrogen chemistry are done on one-, two-, and three-dimensional flames. The analysis spans flat and stretched, steady and unsteady, and laminar and turbulent flames. Quantitative and qualitative results using the thermal diffusion model compare very well with the more complex multicomponent diffusion model. Comparisons are made using flame speeds, surface areas, species profiles, and chemical source terms. Once validated, this model is applied to three-dimensional laminar and turbulent flames. For these cases, thermal diffusion causes an increase in the propagation speed of the flames as well as increased product chemical source terms in regions of high positive curvature. The results illustrate the necessity for including thermal diffusion, and the accuracy and computational efficiency of the mixture-averaged thermal diffusion model.

  3. Copenhagen Psychosocial Questionnaire - A validation study using the Job Demand-Resources model

    PubMed Central

    Hakanen, Jari J.; Westerlund, Hugo

    2018-01-01

    Aim This study aims at investigating the nomological validity of the Copenhagen Psychosocial Questionnaire (COPSOQ II) by using an extension of the Job Demands-Resources (JD-R) model with aspects of work ability as outcome. Material and methods The study design is cross-sectional. All staff working at public dental organizations in four regions of Sweden were invited to complete an electronic questionnaire (75% response rate, n = 1345). The questionnaire was based on COPSOQ II scales, the Utrecht Work Engagement scale, and the one-item Work Ability Score in combination with a proprietary item. The data was analysed by Structural Equation Modelling. Results This study contributed to the literature by showing that: A) The scale characteristics were satisfactory and the construct validity of COPSOQ instrument could be integrated in the JD-R framework; B) Job resources arising from leadership may be a driver of the two processes included in the JD-R model; and C) Both the health impairment and motivational processes were associated with WA, and the results suggested that leadership may impact WA, in particularly by securing task resources. Conclusion In conclusion, the nomological validity of COPSOQ was supported as the JD-R model-can be operationalized by the instrument. This may be helpful for transferral of complex survey results and work life theories to practitioners in the field. PMID:29708998

  4. Model testing for reliability and validity of the Outcome Expectations for Exercise Scale.

    PubMed

    Resnick, B; Zimmerman, S; Orwig, D; Furstenberg, A L; Magaziner, J

    2001-01-01

    Development of a reliable and valid measure of outcome expectations for exercise appropriate for older adults will help establish the relationship between outcome expectations and exercise. Once established, this measure can be used to facilitate the development of interventions to strengthen outcome expectations and improve adherence to regular exercise in older adults. Building on initial psychometrics of the Outcome Expectation for Exercise (OEE) Scale, the purpose of the current study was to use structural equation modeling to provide additional support for the reliability and validity of this measure. The OEE scale is a 9-item measure specifically focusing on the perceived consequences of exercise for older adults. The OEE scale was given to 191 residents in a continuing care retirement community. The mean age of the participants was 85 +/- 6.1 and the majority were female (76%), White (99%), and unmarried (76%). Using structural equation modeling, reliability was based on R2 values, and validity was based on a confirmatory factor analysis and path coefficients. There was continued evidence for reliability of the OEE based on R2 values ranging from .42 to .77, and validity with path coefficients ranging from .69 to .87, and evidence of model fit (X2 of 69, df = 27, p < .05, NFI = .98, RMSEA = .07). The evidence of reliability and validity of this measure has important implications for clinical work and research. The OEE scale can be used to identify older adults who have low outcome expectations for exercise, and interventions can then be implemented to strengthen these expectations and thereby improve exercise behavior.

  5. A validation procedure for a LADAR system radiometric simulation model

    NASA Astrophysics Data System (ADS)

    Leishman, Brad; Budge, Scott; Pack, Robert

    2007-04-01

    The USU LadarSIM software package is a ladar system engineering tool that has recently been enhanced to include the modeling of the radiometry of Ladar beam footprints. This paper will discuss our validation of the radiometric model and present a practical approach to future validation work. In order to validate complicated and interrelated factors affecting radiometry, a systematic approach had to be developed. Data for known parameters were first gathered then unknown parameters of the system were determined from simulation test scenarios. This was done in a way to isolate as many unknown variables as possible, then build on the previously obtained results. First, the appropriate voltage threshold levels of the discrimination electronics were set by analyzing the number of false alarms seen in actual data sets. With this threshold set, the system noise was then adjusted to achieve the appropriate number of dropouts. Once a suitable noise level was found, the range errors of the simulated and actual data sets were compared and studied. Predicted errors in range measurements were analyzed using two methods: first by examining the range error of a surface with known reflectivity and second by examining the range errors for specific detectors with known responsivities. This provided insight into the discrimination method and receiver electronics used in the actual system.

  6. Validating Human Performance Models of the Future Orion Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.; Walters, Brett; Fairey, Lisa

    2010-01-01

    NASA's Orion Crew Exploration Vehicle (CEV) will provide transportation for crew and cargo to and from destinations in support of the Constellation Architecture Design Reference Missions. Discrete Event Simulation (DES) is one of the design methods NASA employs for crew performance of the CEV. During the early development of the CEV, NASA and its prime Orion contractor Lockheed Martin (LM) strived to seek an effective low-cost method for developing and validating human performance DES models. This paper focuses on the method developed while creating a DES model for the CEV Rendezvous, Proximity Operations, and Docking (RPOD) task to the International Space Station. Our approach to validation was to attack the problem from several fronts. First, we began the development of the model early in the CEV design stage. Second, we adhered strictly to M&S development standards. Third, we involved the stakeholders, NASA astronauts, subject matter experts, and NASA's modeling and simulation development community throughout. Fourth, we applied standard and easy-to-conduct methods to ensure the model's accuracy. Lastly, we reviewed the data from an earlier human-in-the-loop RPOD simulation that had different objectives, which provided us an additional means to estimate the model's confidence level. The results revealed that a majority of the DES model was a reasonable representation of the current CEV design.

  7. A Method of Q-Matrix Validation for the Linear Logistic Test Model

    PubMed Central

    Baghaei, Purya; Hohensinn, Christine

    2017-01-01

    The linear logistic test model (LLTM) is a well-recognized psychometric model for examining the components of difficulty in cognitive tests and validating construct theories. The plausibility of the construct model, summarized in a matrix of weights, known as the Q-matrix or weight matrix, is tested by (1) comparing the fit of LLTM with the fit of the Rasch model (RM) using the likelihood ratio (LR) test and (2) by examining the correlation between the Rasch model item parameters and LLTM reconstructed item parameters. The problem with the LR test is that it is almost always significant and, consequently, LLTM is rejected. The drawback of examining the correlation coefficient is that there is no cut-off value or lower bound for the magnitude of the correlation coefficient. In this article we suggest a simulation method to set a minimum benchmark for the correlation between item parameters from the Rasch model and those reconstructed by the LLTM. If the cognitive model is valid then the correlation coefficient between the RM-based item parameters and the LLTM-reconstructed item parameters derived from the theoretical weight matrix should be greater than those derived from the simulated matrices. PMID:28611721

  8. Developing and Validating a Survival Prediction Model for NSCLC Patients Through Distributed Learning Across 3 Countries.

    PubMed

    Jochems, Arthur; Deist, Timo M; El Naqa, Issam; Kessler, Marc; Mayo, Chuck; Reeves, Jackson; Jolly, Shruti; Matuszak, Martha; Ten Haken, Randall; van Soest, Johan; Oberije, Cary; Faivre-Finn, Corinne; Price, Gareth; de Ruysscher, Dirk; Lambin, Philippe; Dekker, Andre

    2017-10-01

    Tools for survival prediction for non-small cell lung cancer (NSCLC) patients treated with chemoradiation or radiation therapy are of limited quality. In this work, we developed a predictive model of survival at 2 years. The model is based on a large volume of historical patient data and serves as a proof of concept to demonstrate the distributed learning approach. Clinical data from 698 lung cancer patients, treated with curative intent with chemoradiation or radiation therapy alone, were collected and stored at 2 different cancer institutes (559 patients at Maastro clinic (Netherlands) and 139 at Michigan university [United States]). The model was further validated on 196 patients originating from The Christie (United Kingdon). A Bayesian network model was adapted for distributed learning (the animation can be viewed at https://www.youtube.com/watch?v=ZDJFOxpwqEA). Two-year posttreatment survival was chosen as the endpoint. The Maastro clinic cohort data are publicly available at https://www.cancerdata.org/publication/developing-and-validating-survival-prediction-model-nsclc-patients-through-distributed, and the developed models can be found at www.predictcancer.org. Variables included in the final model were T and N category, age, performance status, and total tumor dose. The model has an area under the curve (AUC) of 0.66 on the external validation set and an AUC of 0.62 on a 5-fold cross validation. A model based on the T and N category performed with an AUC of 0.47 on the validation set, significantly worse than our model (P<.001). Learning the model in a centralized or distributed fashion yields a minor difference on the probabilities of the conditional probability tables (0.6%); the discriminative performance of the models on the validation set is similar (P=.26). Distributed learning from federated databases allows learning of predictive models on data originating from multiple institutions while avoiding many of the data-sharing barriers. We believe

  9. Smooth particle hydrodynamic modeling and validation for impact bird substitution

    NASA Astrophysics Data System (ADS)

    Babu, Arun; Prasad, Ganesh

    2018-04-01

    Bird strike events incidentally occur and can at times be fatal for air frame structures. Federal Aviation Regulations (FAR) and such other ones mandates aircrafts to be modeled to withstand various levels of bird hit damages. The subject matter of this paper is numerical modeling of a soft body geometry for realistically substituting an actual bird for carrying out simulations of bird hit on target structures. Evolution of such a numerical code to effect an actual bird behavior through impact is much desired for making use of the state of the art computational facilities in simulating bird strike events. Validity, of simulations depicting bird hits, is largely dependent on the correctness of the bird model. In an impact, a set of complex and coupled dynamic interaction exists between the target and the impactor. To simplify this problem, impactor response needs to be decoupled from that of the target. This can be done by assuming and modeling the target as noncompliant. Bird is assumed as fluidic in a impact. Generated stresses in the bird body are significant than its yield stresses. Hydrodynamic theory is most ideal for describing this problem. Impactor literally flows steadily over the target for most part of this problem. The impact starts with an initial shock and falls into a radial release shock regime. Subsequently a steady flow is established in the bird body and this phase continues till the whole length of the bird body is turned around. Initial shock pressure and steady state pressure are ideal variables for comparing and validating the bird model. Spatial discretization of the bird is done using Smooth Particle Hydrodynamic (SPH) approach. This Discrete Element Model (DEM) offers significant advantages over other contemporary approaches. Thermodynamic state variable relations are established using Polynomial Equation of State (EOS). ANSYS AUTODYN is used to perform the explicit dynamic simulation of the impact event. Validation of the shock and steady

  10. First approximations in avalanche model validations using seismic information

    NASA Astrophysics Data System (ADS)

    Roig Lafon, Pere; Suriñach, Emma; Bartelt, Perry; Pérez-Guillén, Cristina; Tapia, Mar; Sovilla, Betty

    2017-04-01

    Avalanche dynamics modelling is an essential tool for snow hazard management. Scenario based numerical modelling provides quantitative arguments for decision-making. The software tool RAMMS (WSL Institute for Snow and Avalanche Research SLF) is one such tool, often used by government authorities and geotechnical offices. As avalanche models improve, the quality of the numerical results will depend increasingly on user experience on the specification of input (e.g. release and entrainment volumes, secondary releases, snow temperature and quality). New model developments must continue to be validated using real phenomena data, for improving performance and reliability. The avalanches group form University of Barcelona (RISKNAT - UB), has studied the seismic signals generated from avalanches since 1994. Presently, the group manages the seismic installation at SLF's Vallée de la Sionne experimental site (VDLS). At VDLS the recorded seismic signals can be correlated to other avalanche measurement techniques, including both advanced remote sensing methods (radars, videogrammetry) and obstacle based sensors (pressure, capacitance, optical sender-reflector barriers). This comparison between different measurement techniques allows the group to address the question if seismic analysis can be used alone, on more additional avalanche tracks, to gain insight and validate numerical avalanche dynamics models in different terrain conditions. In this study, we aim to add the seismic data as an external record of the phenomena, able to validate RAMMS models. The seismic sensors are considerable easy and cheaper to install than other physical measuring tools, and are able to record data from the phenomena in every atmospheric conditions (e.g. bad weather, low light, freezing make photography, and other kind of sensors not usable). With seismic signals, we record the temporal evolution of the inner and denser parts of the avalanche. We are able to recognize the approximate position

  11. Measuring Students' Motivation: Validity Evidence for the MUSIC Model of Academic Motivation Inventory

    ERIC Educational Resources Information Center

    Jones, Brett D.; Skaggs, Gary

    2016-01-01

    This study provides validity evidence for the MUSIC Model of Academic Motivation Inventory (MUSIC Inventory; Jones, 2012), which measures college students' beliefs related to the five components of the MUSIC Model of Motivation (MUSIC model; Jones, 2009). The MUSIC model is a conceptual framework for five categories of teaching strategies (i.e.,…

  12. Validation and uncertainty analysis of a pre-treatment 2D dose prediction model

    NASA Astrophysics Data System (ADS)

    Baeza, Jose A.; Wolfs, Cecile J. A.; Nijsten, Sebastiaan M. J. J. G.; Verhaegen, Frank

    2018-02-01

    Independent verification of complex treatment delivery with megavolt photon beam radiotherapy (RT) has been effectively used to detect and prevent errors. This work presents the validation and uncertainty analysis of a model that predicts 2D portal dose images (PDIs) without a patient or phantom in the beam. The prediction model is based on an exponential point dose model with separable primary and secondary photon fluence components. The model includes a scatter kernel, off-axis ratio map, transmission values and penumbra kernels for beam-delimiting components. These parameters were derived through a model fitting procedure supplied with point dose and dose profile measurements of radiation fields. The model was validated against a treatment planning system (TPS; Eclipse) and radiochromic film measurements for complex clinical scenarios, including volumetric modulated arc therapy (VMAT). Confidence limits on fitted model parameters were calculated based on simulated measurements. A sensitivity analysis was performed to evaluate the effect of the parameter uncertainties on the model output. For the maximum uncertainty, the maximum deviating measurement sets were propagated through the fitting procedure and the model. The overall uncertainty was assessed using all simulated measurements. The validation of the prediction model against the TPS and the film showed a good agreement, with on average 90.8% and 90.5% of pixels passing a (2%,2 mm) global gamma analysis respectively, with a low dose threshold of 10%. The maximum and overall uncertainty of the model is dependent on the type of clinical plan used as input. The results can be used to study the robustness of the model. A model for predicting accurate 2D pre-treatment PDIs in complex RT scenarios can be used clinically and its uncertainties can be taken into account.

  13. Development and validation of a new population-based simulation model of osteoarthritis in New Zealand.

    PubMed

    Wilson, R; Abbott, J H

    2018-04-01

    To describe the construction and preliminary validation of a new population-based microsimulation model developed to analyse the health and economic burden and cost-effectiveness of treatments for knee osteoarthritis (OA) in New Zealand (NZ). We developed the New Zealand Management of Osteoarthritis (NZ-MOA) model, a discrete-time state-transition microsimulation model of the natural history of radiographic knee OA. In this article, we report on the model structure, derivation of input data, validation of baseline model parameters against external data sources, and validation of model outputs by comparison of the predicted population health loss with previous estimates. The NZ-MOA model simulates both the structural progression of radiographic knee OA and the stochastic development of multiple disease symptoms. Input parameters were sourced from NZ population-based data where possible, and from international sources where NZ-specific data were not available. The predicted distributions of structural OA severity and health utility detriments associated with OA were externally validated against other sources of evidence, and uncertainty resulting from key input parameters was quantified. The resulting lifetime and current population health-loss burden was consistent with estimates of previous studies. The new NZ-MOA model provides reliable estimates of the health loss associated with knee OA in the NZ population. The model structure is suitable for analysis of the effects of a range of potential treatments, and will be used in future work to evaluate the cost-effectiveness of recommended interventions within the NZ healthcare system. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. Developing and Validating the Socio-Technical Model in Ontology Engineering

    NASA Astrophysics Data System (ADS)

    Silalahi, Mesnan; Indra Sensuse, Dana; Giri Sucahyo, Yudho; Fadhilah Akmaliah, Izzah; Rahayu, Puji; Cahyaningsih, Elin

    2018-03-01

    This paper describes results from an attempt to develop a model in ontology engineering methodology and a way to validate the model. The approach to methodology in ontology engineering is from the point view of socio-technical system theory. Qualitative research synthesis is used to build the model using meta-ethnography. In order to ensure the objectivity of the measurement, inter-rater reliability method was applied using a multi-rater Fleiss Kappa. The results show the accordance of the research output with the diamond model in the socio-technical system theory by evidence of the interdependency of the four socio-technical variables namely people, technology, structure and task.

  15. Validation of High Displacement Piezoelectric Actuator Finite Element Models

    NASA Technical Reports Server (NTRS)

    Taleghani, B. K.

    2000-01-01

    The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.

  16. Verification and Validation of EnergyPlus Phase Change Material Model for Opaque Wall Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

    2012-08-01

    Phase change materials (PCMs) represent a technology that may reduce peak loads and HVAC energy consumption in buildings. A few building energy simulation programs have the capability to simulate PCMs, but their accuracy has not been completely tested. This study shows the procedure used to verify and validate the PCM model in EnergyPlus using a similar approach as dictated by ASHRAE Standard 140, which consists of analytical verification, comparative testing, and empirical validation. This process was valuable, as two bugs were identified and fixed in the PCM model, and version 7.1 of EnergyPlus will have a validated PCM model. Preliminarymore » results using whole-building energy analysis show that careful analysis should be done when designing PCMs in homes, as their thermal performance depends on several variables such as PCM properties and location in the building envelope.« less

  17. Development of the Galaxy Chronic Obstructive Pulmonary Disease (COPD) Model Using Data from ECLIPSE: Internal Validation of a Linked-Equations Cohort Model.

    PubMed

    Briggs, Andrew H; Baker, Timothy; Risebrough, Nancy A; Chambers, Mike; Gonzalez-McQuire, Sebastian; Ismaila, Afisi S; Exuzides, Alex; Colby, Chris; Tabberer, Maggie; Muellerova, Hana; Locantore, Nicholas; Rutten van Mölken, Maureen P M H; Lomas, David A

    2017-05-01

    The recent joint International Society for Pharmacoeconomics and Outcomes Research / Society for Medical Decision Making Modeling Good Research Practices Task Force emphasized the importance of conceptualizing and validating models. We report a new model of chronic obstructive pulmonary disease (COPD) (part of the Galaxy project) founded on a conceptual model, implemented using a novel linked-equation approach, and internally validated. An expert panel developed a conceptual model including causal relationships between disease attributes, progression, and final outcomes. Risk equations describing these relationships were estimated using data from the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study, with costs estimated from the TOwards a Revolution in COPD Health (TORCH) study. Implementation as a linked-equation model enabled direct estimation of health service costs and quality-adjusted life years (QALYs) for COPD patients over their lifetimes. Internal validation compared 3 years of predicted cohort experience with ECLIPSE results. At 3 years, the Galaxy COPD model predictions of annual exacerbation rate and annual decline in forced expiratory volume in 1 second fell within the ECLIPSE data confidence limits, although 3-year overall survival was outside the observed confidence limits. Projections of the risk equations over time permitted extrapolation to patient lifetimes. Averaging the predicted cost/QALY outcomes for the different patients within the ECLIPSE cohort gives an estimated lifetime cost of £25,214 (undiscounted)/£20,318 (discounted) and lifetime QALYs of 6.45 (undiscounted/5.24 [discounted]) per ECLIPSE patient. A new form of model for COPD was conceptualized, implemented, and internally validated, based on a series of linked equations using epidemiological data (ECLIPSE) and cost data (TORCH). This Galaxy model predicts COPD outcomes from treatment effects on disease attributes such as lung function

  18. Modeling and experimental validation of a Hybridized Energy Storage System for automotive applications

    NASA Astrophysics Data System (ADS)

    Fiorenti, Simone; Guanetti, Jacopo; Guezennec, Yann; Onori, Simona

    2013-11-01

    This paper presents the development and experimental validation of a dynamic model of a Hybridized Energy Storage System (HESS) consisting of a parallel connection of a lead acid (PbA) battery and double layer capacitors (DLCs), for automotive applications. The dynamic modeling of both the PbA battery and the DLC has been tackled via the equivalent electric circuit based approach. Experimental tests are designed for identification purposes. Parameters of the PbA battery model are identified as a function of state of charge and current direction, whereas parameters of the DLC model are identified for different temperatures. A physical HESS has been assembled at the Center for Automotive Research The Ohio State University and used as a test-bench to validate the model against a typical current profile generated for Start&Stop applications. The HESS model is then integrated into a vehicle simulator to assess the effects of the battery hybridization on the vehicle fuel economy and mitigation of the battery stress.

  19. Innovative use of self-organising maps (SOMs) in model validation.

    NASA Astrophysics Data System (ADS)

    Jolly, Ben; McDonald, Adrian; Coggins, Jack

    2016-04-01

    We present an innovative combination of techniques for validation of numerical weather prediction (NWP) output against both observations and reanalyses using two classification schemes, demonstrated by a validation of the operational NWP 'AMPS' (the Antarctic Mesoscale Prediction System). Historically, model validation techniques have centred on case studies or statistics at various time scales (yearly/seasonal/monthly). Within the past decade the latter technique has been expanded by the addition of classification schemes in place of time scales, allowing more precise analysis. Classifications are typically generated for either the model or the observations, then used to create composites for both which are compared. Our method creates and trains a single self-organising map (SOM) on both the model output and observations, which is then used to classify both datasets using the same class definitions. In addition to the standard statistics on class composites, we compare the classifications themselves between the model and the observations. To add further context to the area studied, we use the same techniques to compare the SOM classifications with regimes developed for another study to great effect. The AMPS validation study compares model output against surface observations from SNOWWEB and existing University of Wisconsin-Madison Antarctic Automatic Weather Stations (AWS) during two months over the austral summer of 2014-15. Twelve SOM classes were defined in a '4 x 3' pattern, trained on both model output and observations of 2 m wind components, then used to classify both training datasets. Simple statistics (correlation, bias and normalised root-mean-square-difference) computed for SOM class composites showed that AMPS performed well during extreme weather events, but less well during lighter winds and poorly during the more changeable conditions between either extreme. Comparison of the classification time-series showed that, while correlations were lower

  20. A Model for Investigating Predictive Validity at Highly Selective Institutions.

    ERIC Educational Resources Information Center

    Gross, Alan L.; And Others

    A statistical model for investigating predictive validity at highly selective institutions is described. When the selection ratio is small, one must typically deal with a data set containing relatively large amounts of missing data on both criterion and predictor variables. Standard statistical approaches are based on the strong assumption that…

  1. Selection and Validation of Model Early Childhood Projects: Final Report.

    ERIC Educational Resources Information Center

    Stock, John R.; And Others

    Presented is the final report of a research program to select and describe outstanding Handicapped Children's Early Education Program (HCEEP) projects. Projects were analyzed in terms of 14 components of an HCEEP program (such as screening, programing, and inservice training). A detailed discussion of model selection and validation is appendixed.)…

  2. Laparoscopic Common Bile Duct Exploration Four-Task Training Model: Construct Validity

    PubMed Central

    Otaño, Natalia; Rodríguez, Omaira; Sánchez, Renata; Benítez, Gustavo; Schweitzer, Michael

    2012-01-01

    Background: Training models in laparoscopic surgery allow the surgical team to practice procedures in a safe environment. We have proposed the use of a 4-task, low-cost inert model to practice critical steps of laparoscopic common bile duct exploration. Methods: The performance of 3 groups with different levels of expertise in laparoscopic surgery, novices (A), intermediates (B), and experts (C), was evaluated using a low-cost inert model in the following tasks: (1) intraoperative cholangiography catheter insertion, (2) transcystic exploration, (3) T-tube placement, and (4) choledochoscope management. Kruskal-Wallis and Mann-Whitney tests were used to identify differences among the groups. Results: A total of 14 individuals were evaluated: 5 novices (A), 5 intermediates (B), and 4 experts (C). The results involving intraoperative cholangiography catheter insertion were similar among the 3 groups. As for the other tasks, the expert had better results than the other 2, in which no significant differences occurred. The proposed model is able to discriminate among individuals with different levels of expertise, indicating that the abilities that the model evaluates are relevant in the surgeon's performance in CBD exploration. Conclusions: Construct validity for tasks 2 and 3 was demonstrated. However, task 1 was no capable of distinguishing between groups, and task 4 was not statistically validated. PMID:22906323

  3. Validation, Optimization and Simulation of a Solar Thermoelectric Generator Model

    NASA Astrophysics Data System (ADS)

    Madkhali, Hadi Ali; Hamil, Ali; Lee, HoSung

    2017-12-01

    This study explores thermoelectrics as a viable option for small-scale solar thermal applications. Thermoelectric technology is based on the Seebeck effect, which states that a voltage is induced when a temperature gradient is applied to the junctions of two differing materials. This research proposes to analyze, validate, simulate, and optimize a prototype solar thermoelectric generator (STEG) model in order to increase efficiency. The intent is to further develop STEGs as a viable and productive energy source that limits pollution and reduces the cost of energy production. An empirical study (Kraemer et al. in Nat Mater 10:532, 2011) on the solar thermoelectric generator reported a high efficiency performance of 4.6%. The system had a vacuum glass enclosure, a flat panel (absorber), thermoelectric generator and water circulation for the cold side. The theoretical and numerical approach of this current study validated the experimental results from Kraemer's study to a high degree. The numerical simulation process utilizes a two-stage approach in ANSYS software for Fluent and Thermal-Electric Systems. The solar load model technique uses solar radiation under AM 1.5G conditions in Fluent. This analytical model applies Dr. Ho Sung Lee's theory of optimal design to improve the performance of the STEG system by using dimensionless parameters. Applying this theory, using two cover glasses and radiation shields, the STEG model can achieve a highest efficiency of 7%.

  4. Modeling and Validation of Environmental Suitability for Schistosomiasis Transmission Using Remote Sensing

    PubMed Central

    Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Vounatsou, Penelope; Poda, Jean-Noël; N'Goran, Eliézer K.; Utzinger, Jürg; Raso, Giovanna

    2015-01-01

    Background Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. Methodology We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d’Ivoire and validated against readily available survey data from school-aged children. Principal Findings Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d’Ivoire. Conclusions/Significance A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs

  5. Modeling and Validation of Environmental Suitability for Schistosomiasis Transmission Using Remote Sensing.

    PubMed

    Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Vounatsou, Penelope; Poda, Jean-Noël; N'Goran, Eliézer K; Utzinger, Jürg; Raso, Giovanna

    2015-11-01

    Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d'Ivoire and validated against readily available survey data from school-aged children. Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d'Ivoire. A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail

  6. VALIDATION OF THE CORONAL THICK TARGET SOURCE MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleishman, Gregory D.; Xu, Yan; Nita, Gelu N.

    2016-01-10

    We present detailed 3D modeling of a dense, coronal thick-target X-ray flare using the GX Simulator tool, photospheric magnetic measurements, and microwave imaging and spectroscopy data. The developed model offers a remarkable agreement between the synthesized and observed spectra and images in both X-ray and microwave domains, which validates the entire model. The flaring loop parameters are chosen to reproduce the emission measure, temperature, and the nonthermal electron distribution at low energies derived from the X-ray spectral fit, while the remaining parameters, unconstrained by the X-ray data, are selected such as to match the microwave images and total power spectra.more » The modeling suggests that the accelerated electrons are trapped in the coronal part of the flaring loop, but away from where the magnetic field is minimal, and, thus, demonstrates that the data are clearly inconsistent with electron magnetic trapping in the weak diffusion regime mediated by the Coulomb collisions. Thus, the modeling supports the interpretation of the coronal thick-target sources as sites of electron acceleration in flares and supplies us with a realistic 3D model with physical parameters of the acceleration region and flaring loop.« less

  7. Development and validation of a treatment planning model for magnetic nanoparticle hyperthermia cancer therapy

    NASA Astrophysics Data System (ADS)

    Stigliano, Robert Vincent

    The use of magnetic nanoparticles (mNPs) to induce local hyperthermia has been emerging in recent years as a promising cancer therapy, in both a stand-alone and combination treatment setting, including surgery radiation and chemotherapy. The mNP solution can be injected either directly into the tumor, or administered intravenously. Studies have shown that some cancer cells associate with, internalize, and aggregate mNPs more preferentially than normal cells, with and without antibody targeting. Once the mNPs are delivered inside the cells, a low frequency (30-300kHz) alternating electromagnetic field is used to activate the mNPs. The nanoparticles absorb the applied field and provide localized heat generation at nano-micron scales. Treatment planning models have been shown to improve treatment efficacy in radiation therapy by limiting normal tissue damage while maximizing dose to the tumor. To date, there does not exist a clinical treatment planning model for magnetic nanoparticle hyperthermia which is robust, validated, and commercially available. The focus of this research is on the development and experimental validation of a treatment planning model, consisting of a coupled electromagnetic and thermal model that predicts dynamic thermal distributions during treatment. When allowed to incubate, the mNPs are often sequestered by cancer cells and packed into endosomes. The proximity of the mNPs has a strong influence on their ability to heat due to interparticle magnetic interaction effects. A model of mNP heating which takes into account the effects of magnetic interaction was developed, and validated against experimental data. An animal study in mice was conducted to determine the effects of mNP solution injection duration and PEGylation on macroscale mNP distribution within the tumor, in order to further inform the treatment planning model and future experimental technique. In clinical applications, a critical limiting factor for the maximum applied field is

  8. Unremarked or Unperformed? Systematic Review on Reporting of Validation Efforts of Health Economic Decision Models in Seasonal Influenza and Early Breast Cancer.

    PubMed

    de Boer, Pieter T; Frederix, Geert W J; Feenstra, Talitha L; Vemer, Pepijn

    2016-09-01

    Transparent reporting of validation efforts of health economic models give stakeholders better insight into the credibility of model outcomes. In this study we reviewed recently published studies on seasonal influenza and early breast cancer in order to gain insight into the reporting of model validation efforts in the overall health economic literature. A literature search was performed in Pubmed and Embase to retrieve health economic modelling studies published between 2008 and 2014. Reporting on model validation was evaluated by checking for the word validation, and by using AdViSHE (Assessment of the Validation Status of Health Economic decision models), a tool containing a structured list of relevant items for validation. Additionally, we contacted corresponding authors to ask whether more validation efforts were performed other than those reported in the manuscripts. A total of 53 studies on seasonal influenza and 41 studies on early breast cancer were included in our review. The word validation was used in 16 studies (30 %) on seasonal influenza and 23 studies (56 %) on early breast cancer; however, in a minority of studies, this referred to a model validation technique. Fifty-seven percent of seasonal influenza studies and 71 % of early breast cancer studies reported one or more validation techniques. Cross-validation of study outcomes was found most often. A limited number of studies reported on model validation efforts, although good examples were identified. Author comments indicated that more validation techniques were performed than those reported in the manuscripts. Although validation is deemed important by many researchers, this is not reflected in the reporting habits of health economic modelling studies. Systematic reporting of validation efforts would be desirable to further enhance decision makers' confidence in health economic models and their outcomes.

  9. Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes

    NASA Astrophysics Data System (ADS)

    Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico

    2017-12-01

    Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.

  10. Validated predictive modelling of the environmental resistome

    PubMed Central

    Amos, Gregory CA; Gozzard, Emma; Carter, Charlotte E; Mead, Andrew; Bowes, Mike J; Hawkey, Peter M; Zhang, Lihong; Singer, Andrew C; Gaze, William H; Wellington, Elizabeth M H

    2015-01-01

    Multi-drug-resistant bacteria pose a significant threat to public health. The role of the environment in the overall rise in antibiotic-resistant infections and risk to humans is largely unknown. This study aimed to evaluate drivers of antibiotic-resistance levels across the River Thames catchment, model key biotic, spatial and chemical variables and produce predictive models for future risk assessment. Sediment samples from 13 sites across the River Thames basin were taken at four time points across 2011 and 2012. Samples were analysed for class 1 integron prevalence and enumeration of third-generation cephalosporin-resistant bacteria. Class 1 integron prevalence was validated as a molecular marker of antibiotic resistance; levels of resistance showed significant geospatial and temporal variation. The main explanatory variables of resistance levels at each sample site were the number, proximity, size and type of surrounding wastewater-treatment plants. Model 1 revealed treatment plants accounted for 49.5% of the variance in resistance levels. Other contributing factors were extent of different surrounding land cover types (for example, Neutral Grassland), temporal patterns and prior rainfall; when modelling all variables the resulting model (Model 2) could explain 82.9% of variations in resistance levels in the whole catchment. Chemical analyses correlated with key indicators of treatment plant effluent and a model (Model 3) was generated based on water quality parameters (contaminant and macro- and micro-nutrient levels). Model 2 was beta tested on independent sites and explained over 78% of the variation in integron prevalence showing a significant predictive ability. We believe all models in this study are highly useful tools for informing and prioritising mitigation strategies to reduce the environmental resistome. PMID:25679532

  11. Validated predictive modelling of the environmental resistome.

    PubMed

    Amos, Gregory C A; Gozzard, Emma; Carter, Charlotte E; Mead, Andrew; Bowes, Mike J; Hawkey, Peter M; Zhang, Lihong; Singer, Andrew C; Gaze, William H; Wellington, Elizabeth M H

    2015-06-01

    Multi-drug-resistant bacteria pose a significant threat to public health. The role of the environment in the overall rise in antibiotic-resistant infections and risk to humans is largely unknown. This study aimed to evaluate drivers of antibiotic-resistance levels across the River Thames catchment, model key biotic, spatial and chemical variables and produce predictive models for future risk assessment. Sediment samples from 13 sites across the River Thames basin were taken at four time points across 2011 and 2012. Samples were analysed for class 1 integron prevalence and enumeration of third-generation cephalosporin-resistant bacteria. Class 1 integron prevalence was validated as a molecular marker of antibiotic resistance; levels of resistance showed significant geospatial and temporal variation. The main explanatory variables of resistance levels at each sample site were the number, proximity, size and type of surrounding wastewater-treatment plants. Model 1 revealed treatment plants accounted for 49.5% of the variance in resistance levels. Other contributing factors were extent of different surrounding land cover types (for example, Neutral Grassland), temporal patterns and prior rainfall; when modelling all variables the resulting model (Model 2) could explain 82.9% of variations in resistance levels in the whole catchment. Chemical analyses correlated with key indicators of treatment plant effluent and a model (Model 3) was generated based on water quality parameters (contaminant and macro- and micro-nutrient levels). Model 2 was beta tested on independent sites and explained over 78% of the variation in integron prevalence showing a significant predictive ability. We believe all models in this study are highly useful tools for informing and prioritising mitigation strategies to reduce the environmental resistome.

  12. Use of a Computer-Mediated Delphi Process to Validate a Mass Casualty Conceptual Model

    PubMed Central

    CULLEY, JOAN M.

    2012-01-01

    Since the original work on the Delphi technique, multiple versions have been developed and used in research and industry; however, very little empirical research has been conducted that evaluates the efficacy of using online computer, Internet, and e-mail applications to facilitate a Delphi method that can be used to validate theoretical models. The purpose of this research was to develop computer, Internet, and e-mail applications to facilitate a modified Delphi technique through which experts provide validation for a proposed conceptual model that describes the information needs for a mass-casualty continuum of care. Extant literature and existing theoretical models provided the basis for model development. Two rounds of the Delphi process were needed to satisfy the criteria for consensus and/or stability related to the constructs, relationships, and indicators in the model. The majority of experts rated the online processes favorably (mean of 6.1 on a seven-point scale). Using online Internet and computer applications to facilitate a modified Delphi process offers much promise for future research involving model building or validation. The online Delphi process provided an effective methodology for identifying and describing the complex series of events and contextual factors that influence the way we respond to disasters. PMID:21076283

  13. Use of a computer-mediated Delphi process to validate a mass casualty conceptual model.

    PubMed

    Culley, Joan M

    2011-05-01

    Since the original work on the Delphi technique, multiple versions have been developed and used in research and industry; however, very little empirical research has been conducted that evaluates the efficacy of using online computer, Internet, and e-mail applications to facilitate a Delphi method that can be used to validate theoretical models. The purpose of this research was to develop computer, Internet, and e-mail applications to facilitate a modified Delphi technique through which experts provide validation for a proposed conceptual model that describes the information needs for a mass-casualty continuum of care. Extant literature and existing theoretical models provided the basis for model development. Two rounds of the Delphi process were needed to satisfy the criteria for consensus and/or stability related to the constructs, relationships, and indicators in the model. The majority of experts rated the online processes favorably (mean of 6.1 on a seven-point scale). Using online Internet and computer applications to facilitate a modified Delphi process offers much promise for future research involving model building or validation. The online Delphi process provided an effective methodology for identifying and describing the complex series of events and contextual factors that influence the way we respond to disasters.

  14. On the validation of cloud parametrization schemes in numerical atmospheric models with satellite data from ISCCP

    NASA Astrophysics Data System (ADS)

    Meinke, I.

    2003-04-01

    A new method is presented to validate cloud parametrization schemes in numerical atmospheric models with satellite data of scanning radiometers. This method is applied to the regional atmospheric model HRM (High Resolution Regional Model) using satellite data from ISCCP (International Satellite Cloud Climatology Project). Due to the limited reliability of former validations there has been a need for developing a new validation method: Up to now differences between simulated and measured cloud properties are mostly declared as deficiencies of the cloud parametrization scheme without further investigation. Other uncertainties connected with the model or with the measurements have not been taken into account. Therefore changes in the cloud parametrization scheme based on such kind of validations might not be realistic. The new method estimates uncertainties of the model and the measurements. Criteria for comparisons of simulated and measured data are derived to localize deficiencies in the model. For a better specification of these deficiencies simulated clouds are classified regarding their parametrization. With this classification the localized model deficiencies are allocated to a certain parametrization scheme. Applying this method to the regional model HRM the quality of forecasting cloud properties is estimated in detail. The overestimation of simulated clouds in low emissivity heights especially during the night is localized as model deficiency. This is caused by subscale cloudiness. As the simulation of subscale clouds in the regional model HRM is described by a relative humidity parametrization these deficiencies are connected with this parameterization.

  15. Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils

    NASA Astrophysics Data System (ADS)

    González, A.; Gomez-Iradi, S.; Munduate, X.

    2014-06-01

    From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.

  16. Survey of statistical techniques used in validation studies of air pollution prediction models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornstein, R D; Anderson, S F

    1979-03-01

    Statistical techniques used by meteorologists to validate predictions made by air pollution models are surveyed. Techniques are divided into the following three groups: graphical, tabular, and summary statistics. Some of the practical problems associated with verification are also discussed. Characteristics desired in any validation program are listed and a suggested combination of techniques that possesses many of these characteristics is presented.

  17. Derivation and external validation of a case mix model for the standardized reporting of 30-day stroke mortality rates.

    PubMed

    Bray, Benjamin D; Campbell, James; Cloud, Geoffrey C; Hoffman, Alex; James, Martin; Tyrrell, Pippa J; Wolfe, Charles D A; Rudd, Anthony G

    2014-11-01

    Case mix adjustment is required to allow valid comparison of outcomes across care providers. However, there is a lack of externally validated models suitable for use in unselected stroke admissions. We therefore aimed to develop and externally validate prediction models to enable comparison of 30-day post-stroke mortality outcomes using routine clinical data. Models were derived (n=9000 patients) and internally validated (n=18 169 patients) using data from the Sentinel Stroke National Audit Program, the national register of acute stroke in England and Wales. External validation (n=1470 patients) was performed in the South London Stroke Register, a population-based longitudinal study. Models were fitted using general estimating equations. Discrimination and calibration were assessed using receiver operating characteristic curve analysis and correlation plots. Two final models were derived. Model A included age (<60, 60-69, 70-79, 80-89, and ≥90 years), National Institutes of Health Stroke Severity Score (NIHSS) on admission, presence of atrial fibrillation on admission, and stroke type (ischemic versus primary intracerebral hemorrhage). Model B was similar but included only the consciousness component of the NIHSS in place of the full NIHSS. Both models showed excellent discrimination and calibration in internal and external validation. The c-statistics in external validation were 0.87 (95% confidence interval, 0.84-0.89) and 0.86 (95% confidence interval, 0.83-0.89) for models A and B, respectively. We have derived and externally validated 2 models to predict mortality in unselected patients with acute stroke using commonly collected clinical variables. In settings where the ability to record the full NIHSS on admission is limited, the level of consciousness component of the NIHSS provides a good approximation of the full NIHSS for mortality prediction. © 2014 American Heart Association, Inc.

  18. On the validity of cosmic no-hair conjecture in an anisotropic inationary model

    NASA Astrophysics Data System (ADS)

    Do, Tuan Q.

    2018-05-01

    We will present main results of our recent investigations on the validity of cosmic no-hair conjecture proposed by Hawking and his colleagues long time ago in the framework of an anisotropic inflationary model proposed by Kanno, Soda, and Watanabe. As a result, we will show that the cosmic no-hair conjecture seems to be generally violated in the Kanno-Soda- Watanabe model for both canonical and non-canonical scalar fields due to the existence of a non-trivial coupling term between scalar and electromagnetic fields. However, we will also show that the validity of the cosmic no-hair conjecture will be ensured once a unusual scalar field called the phantom field, whose kinetic energy term is negative definite, is introduced into the Kanno-Soda-Watanabe model.

  19. Partial validation of the Dutch model for emission and transport of nutrients (STONE).

    PubMed

    Overbeek, G B; Tiktak, A; Beusen, A H; van Puijenbroek, P J

    2001-11-17

    The Netherlands has to cope with large losses of N and P to groundwater and surface water. Agriculture is the dominant source of these nutrients, particularly with reference to nutrient excretion due to intensive animal husbandry in combination with fertilizer use. The Dutch government has recently launched a stricter eutrophication abatement policy to comply with the EC nitrate directive. The Dutch consensus model for N and P emission to groundwater and surface water (STONE) has been developed to evaluate the environmental benefits of abatement plans. Due to the possibly severe socioeconomic consequences of eutrophication abatement plans, it is of utmost importance that the model is thoroughly validated. Because STONE is applied on a nationwide scale, the model validation has also been carried out on this scale. For this purpose the model outputs were compared with lumped results from monitoring networks in the upper groundwater and in surface waters. About 13,000 recent point source observations of nitrate in the upper groundwater were available, along with several hundreds of observations showing N and P in local surface water systems. Comparison of observations from the different spatial scales available showed the issue of scale to be important. Scale issues will be addressed in the next stages of the validation study.

  20. Model Checking Verification and Validation at JPL and the NASA Fairmont IV and V Facility

    NASA Technical Reports Server (NTRS)

    Schneider, Frank; Easterbrook, Steve; Callahan, Jack; Montgomery, Todd

    1999-01-01

    We show how a technology transfer effort was carried out. The successful use of model checking on a pilot JPL flight project demonstrates the usefulness and the efficacy of the approach. The pilot project was used to model a complex spacecraft controller. Software design and implementation validation were carried out successfully. To suggest future applications we also show how the implementation validation step can be automated. The effort was followed by the formal introduction of the modeling technique as a part of the JPL Quality Assurance process.

  1. Challenges in validating model results for first year ice

    NASA Astrophysics Data System (ADS)

    Melsom, Arne; Eastwood, Steinar; Xie, Jiping; Aaboe, Signe; Bertino, Laurent

    2017-04-01

    In order to assess the quality of model results for the distribution of first year ice, a comparison with a product based on observations from satellite-borne instruments has been performed. Such a comparison is not straightforward due to the contrasting algorithms that are used in the model product and the remote sensing product. The implementation of the validation is discussed in light of the differences between this set of products, and validation results are presented. The model product is the daily updated 10-day forecast from the Arctic Monitoring and Forecasting Centre in CMEMS. The forecasts are produced with the assimilative ocean prediction system TOPAZ. Presently, observations of sea ice concentration and sea ice drift are introduced in the assimilation step, but data for sea ice thickness and ice age (or roughness) are not included. The model computes the age of the ice by recording and updating the time passed after ice formation as sea ice grows and deteriorates as it is advected inside the model domain. Ice that is younger than 365 days is classified as first year ice. The fraction of first-year ice is recorded as a tracer in each grid cell. The Ocean and Sea Ice Thematic Assembly Centre in CMEMS redistributes a daily product from the EUMETSAT OSI SAF of gridded sea ice conditions which include "ice type", a representation of the separation of regions between those infested by first year ice, and those infested by multi-year ice. The ice type is parameterized based on data for the gradient ratio GR(19,37) from SSMIS observations, and from the ASCAT backscatter parameter. This product also includes information on ambiguity in the processing of the remote sensing data, and the product's confidence level, which have a strong seasonal dependency.

  2. Validating Work Discrimination and Coping Strategy Models for Sexual Minorities

    ERIC Educational Resources Information Center

    Chung, Y. Barry; Williams, Wendi; Dispenza, Franco

    2009-01-01

    The purpose of this study was to validate and expand on Y. B. Chung's (2001) models of work discrimination and coping strategies among lesbian, gay, and bisexual persons. In semistructured individual interviews, 17 lesbians and gay men reported 35 discrimination incidents and their related coping strategies. Responses were coded based on Chung's…

  3. MAIN software for density averaging, model building, structure refinement and validation

    PubMed Central

    Turk, Dušan

    2013-01-01

    MAIN is software that has been designed to interactively perform the complex tasks of macromolecular crystal structure determination and validation. Using MAIN, it is possible to perform density modification, manual and semi-automated or automated model building and rebuilding, real- and reciprocal-space structure optimization and refinement, map calculations and various types of molecular structure validation. The prompt availability of various analytical tools and the immediate visualization of molecular and map objects allow a user to efficiently progress towards the completed refined structure. The extraordinary depth perception of molecular objects in three dimensions that is provided by MAIN is achieved by the clarity and contrast of colours and the smooth rotation of the displayed objects. MAIN allows simultaneous work on several molecular models and various crystal forms. The strength of MAIN lies in its manipulation of averaged density maps and molecular models when noncrystallographic symmetry (NCS) is present. Using MAIN, it is possible to optimize NCS parameters and envelopes and to refine the structure in single or multiple crystal forms. PMID:23897458

  4. Non-Linear Slosh Damping Model Development and Validation

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can

  5. A turbulence model for iced airfoils and its validation

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon; Chen, Hsun H.; Cebeci, Tuncer

    1992-01-01

    A turbulence model based on the extension of the algebraic eddy viscosity formulation of Cebeci and Smith developed for two dimensional flows over smooth and rough surfaces is described for iced airfoils and validated for computed ice shapes obtained for a range of total temperatures varying from 28 to -15 F. The validation is made with an interactive boundary layer method which uses a panel method to compute the inviscid flow and an inverse finite difference boundary layer method to compute the viscous flow. The interaction between inviscid and viscous flows is established by the use of the Hilbert integral. The calculated drag coefficients compare well with recent experimental data taken at the NASA-Lewis Icing Research Tunnel (IRT) and show that, in general, the drag increase due to ice accretion can be predicted well and efficiently.

  6. Individualized prediction of perineural invasion in colorectal cancer: development and validation of a radiomics prediction model.

    PubMed

    Huang, Yanqi; He, Lan; Dong, Di; Yang, Caiyun; Liang, Cuishan; Chen, Xin; Ma, Zelan; Huang, Xiaomei; Yao, Su; Liang, Changhong; Tian, Jie; Liu, Zaiyi

    2018-02-01

    To develop and validate a radiomics prediction model for individualized prediction of perineural invasion (PNI) in colorectal cancer (CRC). After computed tomography (CT) radiomics features extraction, a radiomics signature was constructed in derivation cohort (346 CRC patients). A prediction model was developed to integrate the radiomics signature and clinical candidate predictors [age, sex, tumor location, and carcinoembryonic antigen (CEA) level]. Apparent prediction performance was assessed. After internal validation, independent temporal validation (separate from the cohort used to build the model) was then conducted in 217 CRC patients. The final model was converted to an easy-to-use nomogram. The developed radiomics nomogram that integrated the radiomics signature and CEA level showed good calibration and discrimination performance [Harrell's concordance index (c-index): 0.817; 95% confidence interval (95% CI): 0.811-0.823]. Application of the nomogram in validation cohort gave a comparable calibration and discrimination (c-index: 0.803; 95% CI: 0.794-0.812). Integrating the radiomics signature and CEA level into a radiomics prediction model enables easy and effective risk assessment of PNI in CRC. This stratification of patients according to their PNI status may provide a basis for individualized auxiliary treatment.

  7. Predicting the success of IVF: external validation of the van Loendersloot's model.

    PubMed

    Sarais, Veronica; Reschini, Marco; Busnelli, Andrea; Biancardi, Rossella; Paffoni, Alessio; Somigliana, Edgardo

    2016-06-01

    Is the predictive model for IVF success proposed by van Loendersloot et al. valid in a different geographical and cultural context? The model discriminates well but was less accurate than in the original context where it was developed. Several independent groups have developed models that combine different variables with the aim of estimating the chance of pregnancy with IVF but only four of them have been externally validated. One of these four, the van Loendersloot's model, deserves particular attention and further investigation for at least three reasons; (i) the reported area under the receiver operating characteristics curve (c-statistics) in the temporal validation setting was the highest reported to date (0.68), (ii) the perspective of the model is clinically wise since it includes variables obtained from previous failed cycles, if any, so it can be applied to any women entering an IVF cycle, (iii) the model lacks external validation in a geographically different center. Retrospective cohort study of women undergoing oocyte retrieval for IVF between January 2013 and December 2013 at the infertility unit of the Fondazione Ca' Granda, Ospedale Maggiore Policlinico of Milan, Italy. Only the first oocyte retrieval cycle performed during the study period was included in the study. Women with previous IVF cycles were excluded if the last one before the study cycle was in another center. The main outcome was the cumulative live birth rate per oocytes retrieval. Seven hundred seventy-two women were selected. Variables included in the van Loendersloot's model and the relative weights (beta) were used. The variable resulting from this combination (Y) was transformed into a probability. The discriminatory capacity was assessed using the c-statistics. Calibration was made using a logistic regression that included Y as the unique variable and live birth as the outcome. Data are presented using both the original and the calibrated models. Performance was evaluated

  8. Validity of "Hi_Science" as instructional media based-android refer to experiential learning model

    NASA Astrophysics Data System (ADS)

    Qamariah, Jumadi, Senam, Wilujeng, Insih

    2017-08-01

    Hi_Science is instructional media based-android in learning science on material environmental pollution and global warming. This study is aimed: (a) to show the display of Hi_Science that will be applied in Junior High School, and (b) to describe the validity of Hi_Science. Hi_Science as instructional media created with colaboration of innovative learning model and development of technology at the current time. Learning media selected is based-android and collaborated with experiential learning model as an innovative learning model. Hi_Science had adapted student worksheet by Taufiq (2015). Student worksheet had very good category by two expert lecturers and two science teachers (Taufik, 2015). This student worksheet is refined and redeveloped in android as an instructional media which can be used by students for learning science not only in the classroom, but also at home. Therefore, student worksheet which has become instructional media based-android must be validated again. Hi_Science has been validated by two experts. The validation is based on assessment of meterials aspects and media aspects. The data collection was done by media assessment instrument. The result showed the assessment of material aspects has obtained the average value 4,72 with percentage of agreement 96,47%, that means Hi_Science on the material aspects is in excellent category or very valid category. The assessment of media aspects has obtained the average value 4,53 with percentage of agreement 98,70%, that means Hi_Science on the media aspects is in excellent category or very valid category. It was concluded that Hi_Science as instructional media can be applied in the junior high school.

  9. Validated numerical simulation model of a dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Foerster, Florentine; Moessinger, Holger; Schlaak, Helmut F.

    2013-04-01

    Dielectric elastomer generators (DEG) produce electrical energy by converting mechanical into electrical energy. Efficient operation requires homogeneous deformation of each single layer. However, by different internal and external influences like supports or the shape of a DEG the deformation will be inhomogeneous and hence negatively affect the amount of the generated electrical energy. Optimization of the deformation behavior leads to improved efficiency of the DEG and consequently to higher energy gain. In this work a numerical simulation model of a multilayer dielectric elastomer generator is developed using the FEM software ANSYS. The analyzed multilayer DEG consists of 49 active dielectric layers with layer thicknesses of 50 μm. The elastomer is silicone (PDMS) while the compliant electrodes are made of graphite powder. In the simulation the real material parameters of the PDMS and the graphite electrodes need to be included. Therefore, the mechanical and electrical material parameters of the PDMS are determined by experimental investigations of test samples while the electrode parameters are determined by numerical simulations of test samples. The numerical simulation of the DEG is carried out as coupled electro-mechanical simulation for the constant voltage energy harvesting cycle. Finally, the derived numerical simulation model is validated by comparison with analytical calculations and further simulated DEG configurations. The comparison of the determined results show good accordance with regard to the deformation of the DEG. Based on the validated model it is now possible to optimize the DEG layout for improved deformation behavior with further simulations.

  10. Uncertainty in Earth System Models: Benchmarks for Ocean Model Performance and Validation

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Elliott, S.; Collier, N.; Wingenter, O. W.; Deal, C.; Fu, W.; Hoffman, F. M.

    2017-12-01

    The mean ocean CO2 sink is a major component of the global carbon budget, with marine reservoirs holding about fifty times more carbon than the atmosphere. Phytoplankton play a significant role in the net carbon sink through photosynthesis and drawdown, such that about a quarter of anthropogenic CO2 emissions end up in the ocean. Biology greatly increases the efficiency of marine environments in CO2 uptake and ultimately reduces the impact of the persistent rise in atmospheric concentrations. However, a number of challenges remain in appropriate representation of marine biogeochemical processes in Earth System Models (ESM). These threaten to undermine the community effort to quantify seasonal to multidecadal variability in ocean uptake of atmospheric CO2. In a bid to improve analyses of marine contributions to climate-carbon cycle feedbacks, we have developed new analysis methods and biogeochemistry metrics as part of the International Ocean Model Benchmarking (IOMB) effort. Our intent is to meet the growing diagnostic and benchmarking needs of ocean biogeochemistry models. The resulting software package has been employed to validate DOE ocean biogeochemistry results by comparison with observational datasets. Several other international ocean models contributing results to the fifth phase of the Coupled Model Intercomparison Project (CMIP5) were analyzed simultaneously. Our comparisons suggest that the biogeochemical processes determining CO2 entry into the global ocean are not well represented in most ESMs. Polar regions continue to show notable biases in many critical biogeochemical and physical oceanographic variables. Some of these disparities could have first order impacts on the conversion of atmospheric CO2 to organic carbon. In addition, single forcing simulations show that the current ocean state can be partly explained by the uptake of anthropogenic emissions. Combined effects of two or more of these forcings on ocean biogeochemical cycles and ecosystems

  11. Construct Validation of the Louisiana School Analysis Model (SAM) Instructional Staff Questionnaire

    ERIC Educational Resources Information Center

    Bray-Clark, Nikki; Bates, Reid

    2005-01-01

    The purpose of this study was to validate the Louisiana SAM Instructional Staff Questionnaire, a key component of the Louisiana School Analysis Model. The model was designed as a comprehensive evaluation tool for schools. Principle axis factoring with oblique rotation was used to uncover the underlying structure of the SISQ. (Contains 1 table.)

  12. External validation of the Cairns Prediction Model (CPM) to predict conversion from laparoscopic to open cholecystectomy.

    PubMed

    Hu, Alan Shiun Yew; Donohue, Peter O'; Gunnarsson, Ronny K; de Costa, Alan

    2018-03-14

    Valid and user-friendly prediction models for conversion to open cholecystectomy allow for proper planning prior to surgery. The Cairns Prediction Model (CPM) has been in use clinically in the original study site for the past three years, but has not been tested at other sites. A retrospective, single-centred study collected ultrasonic measurements and clinical variables alongside with conversion status from consecutive patients who underwent laparoscopic cholecystectomy from 2013 to 2016 in The Townsville Hospital, North Queensland, Australia. An area under the curve (AUC) was calculated to externally validate of the CPM. Conversion was necessary in 43 (4.2%) out of 1035 patients. External validation showed an area under the curve of 0.87 (95% CI 0.82-0.93, p = 1.1 × 10 -14 ). In comparison with most previously published models, which have an AUC of approximately 0.80 or less, the CPM has the highest AUC of all published prediction models both for internal and external validation. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  13. LANL*V2.0: global modeling and validation

    NASA Astrophysics Data System (ADS)

    Koller, J.; Zaharia, S.

    2011-08-01

    We describe in this paper the new version of LANL*, an artificial neural network (ANN) for calculating the magnetic drift invariant L*. This quantity is used for modeling radiation belt dynamics and for space weather applications. We have implemented the following enhancements in the new version: (1) we have removed the limitation to geosynchronous orbit and the model can now be used for a much larger region. (2) The new version is based on the improved magnetic field model by Tsyganenko and Sitnov (2005) (TS05) instead of the older model by Tsyganenko et al. (2003). We have validated the model and compared our results to L* calculations with the TS05 model based on ephemerides for CRRES, Polar, GPS, a LANL geosynchronous satellite, and a virtual RBSP type orbit. We find that the neural network performs very well for all these orbits with an error typically ΔL* < 0.2 which corresponds to an error of 3 % at geosynchronous orbit. This new LANL* V2.0 artificial neural network is orders of magnitudes faster than traditional numerical field line integration techniques with the TS05 model. It has applications to real-time radiation belt forecasting, analysis of data sets involving decades of satellite of observations, and other problems in space weather.

  14. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, N. A. S., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Correia, T. M., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Rokosz, M. K., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk

    2014-07-28

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to supportmore » the design of optimised electrocaloric units and operating conditions.« less

  15. Coupled Hydro-Mechanical Constitutive Model for Vegetated Soils: Validation and Applications

    NASA Astrophysics Data System (ADS)

    Switala, Barbara Maria; Veenhof, Rick; Wu, Wei; Askarinejad, Amin

    2016-04-01

    It is well known, that presence of vegetation influences stability of the slope. However, the quantitative assessment of this contribution remains challenging. It is essential to develop a numerical model, which combines mechanical root reinforcement and root water uptake, and allows modelling rainfall induced landslides of vegetated slopes. Therefore a novel constitutive formulation is proposed, which is based on the modified Cam-clay model for unsaturated soils. Mechanical root reinforcement is modelled introducing a new constitutive parameter, which governs the evolution of the Cam-clay failure surface with the degree of root reinforcement. Evapotranspiration is modelled in terms of the root water uptake, defined as a sink term in the water flow continuity equation. The original concept is extended for different shapes of the root architecture in three dimensions, and combined with the mechanical model. The model is implemented in the research finite element code Comes-Geo, and in the commercial software Abaqus. The formulation is tested, performing a series of numerical examples, which allow validation of the concept. The direct shear test and the triaxial test are modelled in order to test the performance of the mechanical part of the model. In order to validate the hydrological part of the constitutive formulation, evapotranspiration from the vegetated box is simulated and compared with the experimental results. Obtained numerical results exhibit a good agreement with the experimental data. The implemented model is capable of reproducing results of basic geotechnical laboratory tests. Moreover, the constitutive formulation can be used to model rainfall induced landslides of vegetated slopes, taking into account the most important factors influencing the slope stability (root reinforcement and evapotranspiration).

  16. A solution to the static frame validation challenge problem using Bayesian model selection

    DOE PAGES

    Grigoriu, M. D.; Field, R. V.

    2007-12-23

    Within this paper, we provide a solution to the static frame validation challenge problem (see this issue) in a manner that is consistent with the guidelines provided by the Validation Challenge Workshop tasking document. The static frame problem is constructed such that variability in material properties is known to be the only source of uncertainty in the system description, but there is ignorance on the type of model that best describes this variability. Hence both types of uncertainty, aleatoric and epistemic, are present and must be addressed. Our approach is to consider a collection of competing probabilistic models for themore » material properties, and calibrate these models to the information provided; models of different levels of complexity and numerical efficiency are included in the analysis. A Bayesian formulation is used to select the optimal model from the collection, which is then used for the regulatory assessment. Lastly, bayesian credible intervals are used to provide a measure of confidence to our regulatory assessment.« less

  17. Validation of the Activities of Community Transportation model for individuals with cognitive impairments.

    PubMed

    Sohlberg, McKay Moore; Fickas, Stephen; Lemoncello, Rik; Hung, Pei-Fang

    2009-01-01

    To develop a theoretical, functional model of community navigation for individuals with cognitive impairments: the Activities of Community Transportation (ACTs). Iterative design using qualitative methods (i.e. document review, focus groups and observations). Four agencies providing travel training to adults with cognitive impairments in the USA participated in the validation study. A thorough document review and series of focus groups led to the development of a comprehensive model (ACTs Wheels) delineating the requisite steps and skills for community navigation. The model was validated and updated based on observations of 395 actual trips by travellers with navigational challenges from the four participating agencies. Results revealed that the 'ACTs Wheel' models were complete and comprehensive. The 'ACTs Wheels' represent a comprehensive model of the steps needed to navigate to destinations using paratransit and fixed-route public transportation systems for travellers with cognitive impairments. Suggestions are made for future investigations of community transportation for this population.

  18. DEVELOPMENT AND VALIDATION OF A MULTIFIELD MODEL OF CHURN-TURBULENT GAS/LIQUID FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elena A. Tselishcheva; Steven P. Antal; Michael Z. Podowski

    The accuracy of numerical predictions for gas/liquid two-phase flows using Computational Multiphase Fluid Dynamics (CMFD) methods strongly depends on the formulation of models governing the interaction between the continuous liquid field and bubbles of different sizes. The purpose of this paper is to develop, test and validate a multifield model of adiabatic gas/liquid flows at intermediate gas concentrations (e.g., churn-turbulent flow regime), in which multiple-size bubbles are divided into a specified number of groups, each representing a prescribed range of sizes. The proposed modeling concept uses transport equations for the continuous liquid field and for each bubble field. The overallmore » model has been implemented in the NPHASE-CMFD computer code. The results of NPHASE-CMFD simulations have been validated against the experimental data from the TOPFLOW test facility. Also, a parametric analysis on the effect of various modeling assumptions has been performed.« less

  19. Development and External Validation of a Melanoma Risk Prediction Model Based on Self-assessed Risk Factors.

    PubMed

    Vuong, Kylie; Armstrong, Bruce K; Weiderpass, Elisabete; Lund, Eiliv; Adami, Hans-Olov; Veierod, Marit B; Barrett, Jennifer H; Davies, John R; Bishop, D Timothy; Whiteman, David C; Olsen, Catherine M; Hopper, John L; Mann, Graham J; Cust, Anne E; McGeechan, Kevin

    2016-08-01

    Identifying individuals at high risk of melanoma can optimize primary and secondary prevention strategies. To develop and externally validate a risk prediction model for incident first-primary cutaneous melanoma using self-assessed risk factors. We used unconditional logistic regression to develop a multivariable risk prediction model. Relative risk estimates from the model were combined with Australian melanoma incidence and competing mortality rates to obtain absolute risk estimates. A risk prediction model was developed using the Australian Melanoma Family Study (629 cases and 535 controls) and externally validated using 4 independent population-based studies: the Western Australia Melanoma Study (511 case-control pairs), Leeds Melanoma Case-Control Study (960 cases and 513 controls), Epigene-QSkin Study (44 544, of which 766 with melanoma), and Swedish Women's Lifestyle and Health Cohort Study (49 259 women, of which 273 had melanoma). We validated model performance internally and externally by assessing discrimination using the area under the receiver operating curve (AUC). Additionally, using the Swedish Women's Lifestyle and Health Cohort Study, we assessed model calibration and clinical usefulness. The risk prediction model included hair color, nevus density, first-degree family history of melanoma, previous nonmelanoma skin cancer, and lifetime sunbed use. On internal validation, the AUC was 0.70 (95% CI, 0.67-0.73). On external validation, the AUC was 0.66 (95% CI, 0.63-0.69) in the Western Australia Melanoma Study, 0.67 (95% CI, 0.65-0.70) in the Leeds Melanoma Case-Control Study, 0.64 (95% CI, 0.62-0.66) in the Epigene-QSkin Study, and 0.63 (95% CI, 0.60-0.67) in the Swedish Women's Lifestyle and Health Cohort Study. Model calibration showed close agreement between predicted and observed numbers of incident melanomas across all deciles of predicted risk. In the external validation setting, there was higher net benefit when using the risk prediction

  20. Modal testing for model validation of structures with discrete nonlinearities.

    PubMed

    Ewins, D J; Weekes, B; delli Carri, A

    2015-09-28

    Model validation using data from modal tests is now widely practiced in many industries for advanced structural dynamic design analysis, especially where structural integrity is a primary requirement. These industries tend to demand highly efficient designs for their critical structures which, as a result, are increasingly operating in regimes where traditional linearity assumptions are no longer adequate. In particular, many modern structures are found to contain localized areas, often around joints or boundaries, where the actual mechanical behaviour is far from linear. Such structures need to have appropriate representation of these nonlinear features incorporated into the otherwise largely linear models that are used for design and operation. This paper proposes an approach to this task which is an extension of existing linear techniques, especially in the testing phase, involving only just as much nonlinear analysis as is necessary to construct a model which is good enough, or 'valid': i.e. capable of predicting the nonlinear response behaviour of the structure under all in-service operating and test conditions with a prescribed accuracy. A short-list of methods described in the recent literature categorized using our framework is given, which identifies those areas in which further development is most urgently required. © 2015 The Authors.

  1. Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine.

    PubMed

    Ayturk, Ugur M; Puttlitz, Christian M

    2011-08-01

    The primary objective of this study was to generate a finite element model of the human lumbar spine (L1-L5), verify mesh convergence for each tissue constituent and perform an extensive validation using both kinematic/kinetic and stress/strain data. Mesh refinement was accomplished via convergence of strain energy density (SED) predictions for each spinal tissue. The converged model was validated based on range of motion, intradiscal pressure, facet force transmission, anterolateral cortical bone strain and anterior longitudinal ligament deformation predictions. Changes in mesh resolution had the biggest impact on SED predictions under axial rotation loading. Nonlinearity of the moment-rotation curves was accurately simulated and the model predictions on the aforementioned parameters were in good agreement with experimental data. The validated and converged model will be utilised to study the effects of degeneration on the lumbar spine biomechanics, as well as to investigate the mechanical underpinning of the contemporary treatment strategies.

  2. Design-validation of a hand exoskeleton using musculoskeletal modeling.

    PubMed

    Hansen, Clint; Gosselin, Florian; Ben Mansour, Khalil; Devos, Pierre; Marin, Frederic

    2018-04-01

    Exoskeletons are progressively reaching homes and workplaces, allowing interaction with virtual environments, remote control of robots, or assisting human operators in carrying heavy loads. Their design is however still a challenge as these robots, being mechanically linked to the operators who wear them, have to meet ergonomic constraints besides usual robotic requirements in terms of workspace, speed, or efforts. They have in particular to fit the anthropometry and mobility of their users. This traditionally results in numerous prototypes which are progressively fitted to each individual person. In this paper, we propose instead to validate the design of a hand exoskeleton in a fully digital environment, without the need for a physical prototype. The purpose of this study is thus to examine whether finger kinematics are altered when using a given hand exoskeleton. Therefore, user specific musculoskeletal models were created and driven by a motion capture system to evaluate the fingers' joint kinematics when performing two industrial related tasks. The kinematic chain of the exoskeleton was added to the musculoskeletal models and its compliance with the hand movements was evaluated. Our results show that the proposed exoskeleton design does not influence fingers' joints angles, the coefficient of determination between the model with and without exoskeleton being consistently high (R 2 ¯=0.93) and the nRMSE consistently low (nRMSE¯ = 5.42°). These results are promising and this approach combining musculoskeletal and robotic modeling driven by motion capture data could be a key factor in the ergonomics validation of the design of orthotic devices and exoskeletons prior to manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Derivation and validation of in-hospital mortality prediction models in ischaemic stroke patients using administrative data.

    PubMed

    Lee, Jason; Morishima, Toshitaka; Kunisawa, Susumu; Sasaki, Noriko; Otsubo, Tetsuya; Ikai, Hiroshi; Imanaka, Yuichi

    2013-01-01

    Stroke and other cerebrovascular diseases are a major cause of death and disability. Predicting in-hospital mortality in ischaemic stroke patients can help to identify high-risk patients and guide treatment approaches. Chart reviews provide important clinical information for mortality prediction, but are laborious and limiting in sample sizes. Administrative data allow for large-scale multi-institutional analyses but lack the necessary clinical information for outcome research. However, administrative claims data in Japan has seen the recent inclusion of patient consciousness and disability information, which may allow more accurate mortality prediction using administrative data alone. The aim of this study was to derive and validate models to predict in-hospital mortality in patients admitted for ischaemic stroke using administrative data. The sample consisted of 21,445 patients from 176 Japanese hospitals, who were randomly divided into derivation and validation subgroups. Multivariable logistic regression models were developed using 7- and 30-day and overall in-hospital mortality as dependent variables. Independent variables included patient age, sex, comorbidities upon admission, Japan Coma Scale (JCS) score, Barthel Index score, modified Rankin Scale (mRS) score, and admissions after hours and on weekends/public holidays. Models were developed in the derivation subgroup, and coefficients from these models were applied to the validation subgroup. Predictive ability was analysed using C-statistics; calibration was evaluated with Hosmer-Lemeshow χ(2) tests. All three models showed predictive abilities similar or surpassing that of chart review-based models. The C-statistics were highest in the 7-day in-hospital mortality prediction model, at 0.906 and 0.901 in the derivation and validation subgroups, respectively. For the 30-day in-hospital mortality prediction models, the C-statistics for the derivation and validation subgroups were 0.893 and 0

  4. Validation of hydrogen gas stratification and mixing models

    DOE PAGES

    Wu, Hsingtzu; Zhao, Haihua

    2015-05-26

    Two validation benchmarks confirm that the BMIX++ code is capable of simulating unintended hydrogen release scenarios efficiently. The BMIX++ (UC Berkeley mechanistic MIXing code in C++) code has been developed to accurately and efficiently predict the fluid mixture distribution and heat transfer in large stratified enclosures for accident analyses and design optimizations. The BMIX++ code uses a scaling based one-dimensional method to achieve large reduction in computational effort compared to a 3-D computational fluid dynamics (CFD) simulation. Two BMIX++ benchmark models have been developed. One is for a single buoyant jet in an open space and another is for amore » large sealed enclosure with both a jet source and a vent near the floor. Both of them have been validated by comparisons with experimental data. Excellent agreements are observed. The entrainment coefficients of 0.09 and 0.08 are found to fit the experimental data for hydrogen leaks with the Froude number of 99 and 268 best, respectively. In addition, the BIX++ simulation results of the average helium concentration for an enclosure with a vent and a single jet agree with the experimental data within a margin of about 10% for jet flow rates ranging from 1.21 × 10⁻⁴ to 3.29 × 10⁻⁴ m³/s. In conclusion, computing time for each BMIX++ model with a normal desktop computer is less than 5 min.« less

  5. Development and validation of a predictive model for excessive postpartum blood loss: A retrospective, cohort study.

    PubMed

    Rubio-Álvarez, Ana; Molina-Alarcón, Milagros; Arias-Arias, Ángel; Hernández-Martínez, Antonio

    2018-03-01

    postpartum haemorrhage is one of the leading causes of maternal morbidity and mortality worldwide. Despite the use of uterotonics agents as preventive measure, it remains a challenge to identify those women who are at increased risk of postpartum bleeding. to develop and to validate a predictive model to assess the risk of excessive bleeding in women with vaginal birth. retrospective cohorts study. "Mancha-Centro Hospital" (Spain). the elaboration of the predictive model was based on a derivation cohort consisting of 2336 women between 2009 and 2011. For validation purposes, a prospective cohort of 953 women between 2013 and 2014 were employed. Women with antenatal fetal demise, multiple pregnancies and gestations under 35 weeks were excluded METHODS: we used a multivariate analysis with binary logistic regression, Ridge Regression and areas under the Receiver Operating Characteristic curves to determine the predictive ability of the proposed model. there was 197 (8.43%) women with excessive bleeding in the derivation cohort and 63 (6.61%) women in the validation cohort. Predictive factors in the final model were: maternal age, primiparity, duration of the first and second stages of labour, neonatal birth weight and antepartum haemoglobin levels. Accordingly, the predictive ability of this model in the derivation cohort was 0.90 (95% CI: 0.85-0.93), while it remained 0.83 (95% CI: 0.74-0.92) in the validation cohort. this predictive model is proved to have an excellent predictive ability in the derivation cohort, and its validation in a latter population equally shows a good ability for prediction. This model can be employed to identify women with a higher risk of postpartum haemorrhage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Signatures of Subacute Potentially Catastrophic Illness in the ICU: Model Development and Validation.

    PubMed

    Moss, Travis J; Lake, Douglas E; Calland, J Forrest; Enfield, Kyle B; Delos, John B; Fairchild, Karen D; Moorman, J Randall

    2016-09-01

    Patients in ICUs are susceptible to subacute potentially catastrophic illnesses such as respiratory failure, sepsis, and hemorrhage that present as severe derangements of vital signs. More subtle physiologic signatures may be present before clinical deterioration, when treatment might be more effective. We performed multivariate statistical analyses of bedside physiologic monitoring data to identify such early subclinical signatures of incipient life-threatening illness. We report a study of model development and validation of a retrospective observational cohort using resampling (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis type 1b internal validation) and a study of model validation using separate data (type 2b internal/external validation). University of Virginia Health System (Charlottesville), a tertiary-care, academic medical center. Critically ill patients consecutively admitted between January 2009 and June 2015 to either the neonatal, surgical/trauma/burn, or medical ICUs with available physiologic monitoring data. None. We analyzed 146 patient-years of vital sign and electrocardiography waveform time series from the bedside monitors of 9,232 ICU admissions. Calculations from 30-minute windows of the physiologic monitoring data were made every 15 minutes. Clinicians identified 1,206 episodes of respiratory failure leading to urgent unplanned intubation, sepsis, or hemorrhage leading to multi-unit transfusions from systematic individual chart reviews. Multivariate models to predict events up to 24 hours prior had internally validated C-statistics of 0.61-0.88. In adults, physiologic signatures of respiratory failure and hemorrhage were distinct from each other but externally consistent across ICUs. Sepsis, on the other hand, demonstrated less distinct and inconsistent signatures. Physiologic signatures of all neonatal illnesses were similar. Subacute potentially catastrophic illnesses in three diverse ICU

  7. Validating a Predictive Model of Acute Advanced Imaging Biomarkers in Ischemic Stroke.

    PubMed

    Bivard, Andrew; Levi, Christopher; Lin, Longting; Cheng, Xin; Aviv, Richard; Spratt, Neil J; Lou, Min; Kleinig, Tim; O'Brien, Billy; Butcher, Kenneth; Zhang, Jingfen; Jannes, Jim; Dong, Qiang; Parsons, Mark

    2017-03-01

    Advanced imaging to identify tissue pathophysiology may provide more accurate prognostication than the clinical measures used currently in stroke. This study aimed to derive and validate a predictive model for functional outcome based on acute clinical and advanced imaging measures. A database of prospectively collected sub-4.5 hour patients with ischemic stroke being assessed for thrombolysis from 5 centers who had computed tomographic perfusion and computed tomographic angiography before a treatment decision was assessed. Individual variable cut points were derived from a classification and regression tree analysis. The optimal cut points for each assessment variable were then used in a backward logic regression to predict modified Rankin scale (mRS) score of 0 to 1 and 5 to 6. The variables remaining in the models were then assessed using a receiver operating characteristic curve analysis. Overall, 1519 patients were included in the study, 635 in the derivation cohort and 884 in the validation cohort. The model was highly accurate at predicting mRS score of 0 to 1 in all patients considered for thrombolysis therapy (area under the curve [AUC] 0.91), those who were treated (AUC 0.88) and those with recanalization (AUC 0.89). Next, the model was highly accurate at predicting mRS score of 5 to 6 in all patients considered for thrombolysis therapy (AUC 0.91), those who were treated (0.89) and those with recanalization (AUC 0.91). The odds ratio of thrombolysed patients who met the model criteria achieving mRS score of 0 to 1 was 17.89 (4.59-36.35, P <0.001) and for mRS score of 5 to 6 was 8.23 (2.57-26.97, P <0.001). This study has derived and validated a highly accurate model at predicting patient outcome after ischemic stroke. © 2017 American Heart Association, Inc.

  8. A posteriori model validation for the temporal order of directed functional connectivity maps

    PubMed Central

    Beltz, Adriene M.; Molenaar, Peter C. M.

    2015-01-01

    A posteriori model validation for the temporal order of neural directed functional connectivity maps is rare. This is striking because models that require sequential independence among residuals are regularly implemented. The aim of the current study was (a) to apply to directed functional connectivity maps of functional magnetic resonance imaging data an a posteriori model validation procedure (i.e., white noise tests of one-step-ahead prediction errors combined with decision criteria for revising the maps based upon Lagrange Multiplier tests), and (b) to demonstrate how the procedure applies to single-subject simulated, single-subject task-related, and multi-subject resting state data. Directed functional connectivity was determined by the unified structural equation model family of approaches in order to map contemporaneous and first order lagged connections among brain regions at the group- and individual-levels while incorporating external input, then white noise tests were run. Findings revealed that the validation procedure successfully detected unmodeled sequential dependencies among residuals and recovered higher order (greater than one) simulated connections, and that the procedure can accommodate task-related input. Findings also revealed that lags greater than one were present in resting state data: With a group-level network that contained only contemporaneous and first order connections, 44% of subjects required second order, individual-level connections in order to obtain maps with white noise residuals. Results have broad methodological relevance (e.g., temporal validation is necessary after directed functional connectivity analyses because the presence of unmodeled higher order sequential dependencies may bias parameter estimates) and substantive implications (e.g., higher order lags may be common in resting state data). PMID:26379489

  9. Design of experiments in medical physics: Application to the AAA beam model validation.

    PubMed

    Dufreneix, S; Legrand, C; Di Bartolo, C; Bremaud, M; Mesgouez, J; Tiplica, T; Autret, D

    2017-09-01

    The purpose of this study is to evaluate the usefulness of the design of experiments in the analysis of multiparametric problems related to the quality assurance in radiotherapy. The main motivation is to use this statistical method to optimize the quality assurance processes in the validation of beam models. Considering the Varian Eclipse system, eight parameters with several levels were selected: energy, MLC, depth, X, Y 1 and Y 2 jaw dimensions, wedge and wedge jaw. A Taguchi table was used to define 72 validation tests. Measurements were conducted in water using a CC04 on a TrueBeam STx, a TrueBeam Tx, a Trilogy and a 2300IX accelerator matched by the vendor. Dose was computed using the AAA algorithm. The same raw data was used for all accelerators during the beam modelling. The mean difference between computed and measured doses was 0.1±0.5% for all beams and all accelerators with a maximum difference of 2.4% (under the 3% tolerance level). For all beams, the measured doses were within 0.6% for all accelerators. The energy was found to be an influencing parameter but the deviations observed were smaller than 1% and not considered clinically significant. Designs of experiment can help define the optimal measurement set to validate a beam model. The proposed method can be used to identify the prognostic factors of dose accuracy. The beam models were validated for the 4 accelerators which were found dosimetrically equivalent even though the accelerator characteristics differ. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Development and validation of multivariable predictive model for thromboembolic events in lymphoma patients.

    PubMed

    Antic, Darko; Milic, Natasa; Nikolovski, Srdjan; Todorovic, Milena; Bila, Jelena; Djurdjevic, Predrag; Andjelic, Bosko; Djurasinovic, Vladislava; Sretenovic, Aleksandra; Vukovic, Vojin; Jelicic, Jelena; Hayman, Suzanne; Mihaljevic, Biljana

    2016-10-01

    Lymphoma patients are at increased risk of thromboembolic events but thromboprophylaxis in these patients is largely underused. We sought to develop and validate a simple model, based on individual clinical and laboratory patient characteristics that would designate lymphoma patients at risk for thromboembolic event. The study population included 1,820 lymphoma patients who were treated in the Lymphoma Departments at the Clinics of Hematology, Clinical Center of Serbia and Clinical Center Kragujevac. The model was developed using data from a derivation cohort (n = 1,236), and further assessed in the validation cohort (n = 584). Sixty-five patients (5.3%) in the derivation cohort and 34 (5.8%) patients in the validation cohort developed thromboembolic events. The variables independently associated with risk for thromboembolism were: previous venous and/or arterial events, mediastinal involvement, BMI>30 kg/m(2) , reduced mobility, extranodal localization, development of neutropenia and hemoglobin level < 100g/L. Based on the risk model score, the population was divided into the following risk categories: low (score 0-1), intermediate (score 2-3), and high (score >3). For patients classified at risk (intermediate and high-risk scores), the model produced negative predictive value of 98.5%, positive predictive value of 25.1%, sensitivity of 75.4%, and specificity of 87.5%. A high-risk score had positive predictive value of 65.2%. The diagnostic performance measures retained similar values in the validation cohort. Developed prognostic Thrombosis Lymphoma - ThroLy score is more specific for lymphoma patients than any other available score targeting thrombosis in cancer patients. Am. J. Hematol. 91:1014-1019, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. A posteriori model validation for the temporal order of directed functional connectivity maps.

    PubMed

    Beltz, Adriene M; Molenaar, Peter C M

    2015-01-01

    A posteriori model validation for the temporal order of neural directed functional connectivity maps is rare. This is striking because models that require sequential independence among residuals are regularly implemented. The aim of the current study was (a) to apply to directed functional connectivity maps of functional magnetic resonance imaging data an a posteriori model validation procedure (i.e., white noise tests of one-step-ahead prediction errors combined with decision criteria for revising the maps based upon Lagrange Multiplier tests), and (b) to demonstrate how the procedure applies to single-subject simulated, single-subject task-related, and multi-subject resting state data. Directed functional connectivity was determined by the unified structural equation model family of approaches in order to map contemporaneous and first order lagged connections among brain regions at the group- and individual-levels while incorporating external input, then white noise tests were run. Findings revealed that the validation procedure successfully detected unmodeled sequential dependencies among residuals and recovered higher order (greater than one) simulated connections, and that the procedure can accommodate task-related input. Findings also revealed that lags greater than one were present in resting state data: With a group-level network that contained only contemporaneous and first order connections, 44% of subjects required second order, individual-level connections in order to obtain maps with white noise residuals. Results have broad methodological relevance (e.g., temporal validation is necessary after directed functional connectivity analyses because the presence of unmodeled higher order sequential dependencies may bias parameter estimates) and substantive implications (e.g., higher order lags may be common in resting state data).

  12. Space Weather Models and Their Validation and Verification at the CCMC

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2010-01-01

    The Community Coordinated l\\lodeling Center (CCMC) is a US multi-agency activity with a dual mission. With equal emphasis, CCMC strives to provide science support to the international space research community through the execution of advanced space plasma simulations, and it endeavors to support the space weather needs of the CS and partners. Space weather support involves a broad spectrum, from designing robust forecasting systems and transitioning them to forecasters, to providing space weather updates and forecasts to NASA's robotic mission operators. All of these activities have to rely on validation and verification of models and their products, so users and forecasters have the means to assign confidence levels to the space weather information. In this presentation, we provide an overview of space weather models resident at CCMC, as well as of validation and verification activities undertaken at CCMC or through the use of CCMC services.

  13. Predictive modeling of infrared radiative heating in tomato dry-peeling process: Part II. Model validation and sensitivity analysis

    USDA-ARS?s Scientific Manuscript database

    A predictive mathematical model was developed to simulate heat transfer in a tomato undergoing double sided infrared (IR) heating in a dry-peeling process. The aims of this study were to validate the developed model using experimental data and to investigate different engineering parameters that mos...

  14. Experimental validation of flexible robot arm modeling and control

    NASA Technical Reports Server (NTRS)

    Ulsoy, A. Galip

    1989-01-01

    Flexibility is important for high speed, high precision operation of lightweight manipulators. Accurate dynamic modeling of flexible robot arms is needed. Previous work has mostly been based on linear elasticity with prescribed rigid body motions (i.e., no effect of flexible motion on rigid body motion). Little or no experimental validation of dynamic models for flexible arms is available. Experimental results are also limited for flexible arm control. Researchers include the effects of prismatic as well as revolute joints. They investigate the effect of full coupling between the rigid and flexible motions, and of axial shortening, and consider the control of flexible arms using only additional sensors.

  15. Testing alternative ground water models using cross-validation and other methods

    USGS Publications Warehouse

    Foglia, L.; Mehl, S.W.; Hill, M.C.; Perona, P.; Burlando, P.

    2007-01-01

    Many methods can be used to test alternative ground water models. Of concern in this work are methods able to (1) rank alternative models (also called model discrimination) and (2) identify observations important to parameter estimates and predictions (equivalent to the purpose served by some types of sensitivity analysis). Some of the measures investigated are computationally efficient; others are computationally demanding. The latter are generally needed to account for model nonlinearity. The efficient model discrimination methods investigated include the information criteria: the corrected Akaike information criterion, Bayesian information criterion, and generalized cross-validation. The efficient sensitivity analysis measures used are dimensionless scaled sensitivity (DSS), composite scaled sensitivity, and parameter correlation coefficient (PCC); the other statistics are DFBETAS, Cook's D, and observation-prediction statistic. Acronyms are explained in the introduction. Cross-validation (CV) is a computationally intensive nonlinear method that is used for both model discrimination and sensitivity analysis. The methods are tested using up to five alternative parsimoniously constructed models of the ground water system of the Maggia Valley in southern Switzerland. The alternative models differ in their representation of hydraulic conductivity. A new method for graphically representing CV and sensitivity analysis results for complex models is presented and used to evaluate the utility of the efficient statistics. The results indicate that for model selection, the information criteria produce similar results at much smaller computational cost than CV. For identifying important observations, the only obviously inferior linear measure is DSS; the poor performance was expected because DSS does not include the effects of parameter correlation and PCC reveals large parameter correlations. ?? 2007 National Ground Water Association.

  16. Validation of Extended MHD Models using MST RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Chapman, B. E.; Craig, D.; McCollam, K. J.; Sovinec, C. R.

    2016-10-01

    Significant effort has been devoted to improvement of computational models used in fusion energy sciences. Rigorous validation of these models is necessary in order to increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation over a wide range of parameters. In particular, the Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), can be varied over a wide range and provide substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 5 ×104 for single-fluid runs, with the magnetic Prandtl number Pm = 1 . Experiments with plasma current IP ranging from 60 kA to 500 kA result in S from 4 ×104 to 8 ×106 . Validation metric comparisons are presented, focusing on how magnetic fluctuations b scale with S. Single-fluid NIMROD results give S b - 0.21 , and experiments give S b - 0.28 for the dominant m = 1 , n = 6 mode. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.

  17. The Model Human Processor and the Older Adult: Parameter Estimation and Validation Within a Mobile Phone Task

    PubMed Central

    Jastrzembski, Tiffany S.; Charness, Neil

    2009-01-01

    The authors estimate weighted mean values for nine information processing parameters for older adults using the Card, Moran, and Newell (1983) Model Human Processor model. The authors validate a subset of these parameters by modeling two mobile phone tasks using two different phones and comparing model predictions to a sample of younger (N = 20; Mage = 20) and older (N = 20; Mage = 69) adults. Older adult models fit keystroke-level performance at the aggregate grain of analysis extremely well (R = 0.99) and produced equivalent fits to previously validated younger adult models. Critical path analyses highlighted points of poor design as a function of cognitive workload, hardware/software design, and user characteristics. The findings demonstrate that estimated older adult information processing parameters are valid for modeling purposes, can help designers understand age-related performance using existing interfaces, and may support the development of age-sensitive technologies. PMID:18194048

  18. The Model Human Processor and the older adult: parameter estimation and validation within a mobile phone task.

    PubMed

    Jastrzembski, Tiffany S; Charness, Neil

    2007-12-01

    The authors estimate weighted mean values for nine information processing parameters for older adults using the Card, Moran, and Newell (1983) Model Human Processor model. The authors validate a subset of these parameters by modeling two mobile phone tasks using two different phones and comparing model predictions to a sample of younger (N = 20; M-sub(age) = 20) and older (N = 20; M-sub(age) = 69) adults. Older adult models fit keystroke-level performance at the aggregate grain of analysis extremely well (R = 0.99) and produced equivalent fits to previously validated younger adult models. Critical path analyses highlighted points of poor design as a function of cognitive workload, hardware/software design, and user characteristics. The findings demonstrate that estimated older adult information processing parameters are valid for modeling purposes, can help designers understand age-related performance using existing interfaces, and may support the development of age-sensitive technologies.

  19. Development and Validation of a Computational Model for Androgen Receptor Activity

    PubMed Central

    2016-01-01

    Testing thousands of chemicals to identify potential androgen receptor (AR) agonists or antagonists would cost millions of dollars and take decades to complete using current validated methods. High-throughput in vitro screening (HTS) and computational toxicology approaches can more rapidly and inexpensively identify potential androgen-active chemicals. We integrated 11 HTS ToxCast/Tox21 in vitro assays into a computational network model to distinguish true AR pathway activity from technology-specific assay interference. The in vitro HTS assays probed perturbations of the AR pathway at multiple points (receptor binding, coregulator recruitment, gene transcription, and protein production) and multiple cell types. Confirmatory in vitro antagonist assay data and cytotoxicity information were used as additional flags for potential nonspecific activity. Validating such alternative testing strategies requires high-quality reference data. We compiled 158 putative androgen-active and -inactive chemicals from a combination of international test method validation efforts and semiautomated systematic literature reviews. Detailed in vitro assay information and results were compiled into a single database using a standardized ontology. Reference chemical concentrations that activated or inhibited AR pathway activity were identified to establish a range of potencies with reproducible reference chemical results. Comparison with existing Tier 1 AR binding data from the U.S. EPA Endocrine Disruptor Screening Program revealed that the model identified binders at relevant test concentrations (<100 μM) and was more sensitive to antagonist activity. The AR pathway model based on the ToxCast/Tox21 assays had balanced accuracies of 95.2% for agonist (n = 29) and 97.5% for antagonist (n = 28) reference chemicals. Out of 1855 chemicals screened in the AR pathway model, 220 chemicals demonstrated AR agonist or antagonist activity and an additional 174 chemicals were predicted to have

  20. V-SUIT Model Validation Using PLSS 1.0 Test Results

    NASA Technical Reports Server (NTRS)

    Olthoff, Claas

    2015-01-01

    The dynamic portable life support system (PLSS) simulation software Virtual Space Suit (V-SUIT) has been under development at the Technische Universitat Munchen since 2011 as a spin-off from the Virtual Habitat (V-HAB) project. The MATLAB(trademark)-based V-SUIT simulates space suit portable life support systems and their interaction with a detailed and also dynamic human model, as well as the dynamic external environment of a space suit moving on a planetary surface. To demonstrate the feasibility of a large, system level simulation like V-SUIT, a model of NASA's PLSS 1.0 prototype was created. This prototype was run through an extensive series of tests in 2011. Since the test setup was heavily instrumented, it produced a wealth of data making it ideal for model validation. The implemented model includes all components of the PLSS in both the ventilation and thermal loops. The major components are modeled in greater detail, while smaller and ancillary components are low fidelity black box models. The major components include the Rapid Cycle Amine (RCA) CO2 removal system, the Primary and Secondary Oxygen Assembly (POS/SOA), the Pressure Garment System Volume Simulator (PGSVS), the Human Metabolic Simulator (HMS), the heat exchanger between the ventilation and thermal loops, the Space Suit Water Membrane Evaporator (SWME) and finally the Liquid Cooling Garment Simulator (LCGS). Using the created model, dynamic simulations were performed using same test points also used during PLSS 1.0 testing. The results of the simulation were then compared to the test data with special focus on absolute values during the steady state phases and dynamic behavior during the transition between test points. Quantified simulation results are presented that demonstrate which areas of the V-SUIT model are in need of further refinement and those that are sufficiently close to the test results. Finally, lessons learned from the modelling and validation process are given in combination

  1. A model of fluid and solute exchange in the human: validation and implications.

    PubMed

    Bert, J L; Gyenge, C C; Bowen, B D; Reed, R K; Lund, T

    2000-11-01

    In order to understand better the complex, dynamic behaviour of the redistribution and exchange of fluid and solutes administered to normal individuals or to those with acute hypovolemia, mathematical models are used in addition to direct experimental investigation. Initial validation of a model developed by our group involved data from animal experiments (Gyenge, C.C., Bowen, B.D., Reed, R.K. & Bert, J.L. 1999b. Am J Physiol 277 (Heart Circ Physiol 46), H1228-H1240). For a first validation involving humans, we compare the results of simulations with a wide range of different types of data from two experimental studies. These studies involved administration of normal saline or hypertonic saline with Dextran to both normal and 10% haemorrhaged subjects. We compared simulations with data including the dynamic changes in plasma and interstitial fluid volumes VPL and VIT respectively, plasma and interstitial colloid osmotic pressures PiPL and PiIT respectively, haematocrit (Hct), plasma solute concentrations and transcapillary flow rates. The model predictions were overall in very good agreement with the wide range of experimental results considered. Based on the conditions investigated, the model was also validated for humans. We used the model both to investigate mechanisms associated with the redistribution and transport of fluid and solutes administered following a mild haemorrhage and to speculate on the relationship between the timing and amount of fluid infusions and subsequent blood volume expansion.

  2. Development and Validation of a Teacher Success Questionnaire Using the Rasch Model

    ERIC Educational Resources Information Center

    Tabatabaee-Yazdi, Mona; Motallebzadeh, Khalil; Ashraf, Hamid; Baghaei, Purya

    2018-01-01

    An increased enthusiasm on teacher accountability, in recent times, has led policy makers and teachers to a significant care over evaluating teachers' success. To this aim, a 40-item Teacher Success questionnaire was developed and validated by the application of the Rasch model. The Rasch model is used to decide whether the scores of an instrument…

  3. Numerical modeling and preliminary validation of drag-based vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Krysiński, Tomasz; Buliński, Zbigniew; Nowak, Andrzej J.

    2015-03-01

    The main purpose of this article is to verify and validate the mathematical description of the airflow around a wind turbine with vertical axis of rotation, which could be considered as representative for this type of devices. Mathematical modeling of the airflow around wind turbines in particular those with the vertical axis is a problematic matter due to the complex nature of this highly swirled flow. Moreover, it is turbulent flow accompanied by a rotation of the rotor and the dynamic boundary layer separation. In such conditions, the key aspects of the mathematical model are accurate turbulence description, definition of circular motion as well as accompanying effects like centrifugal force or the Coriolis force and parameters of spatial and temporal discretization. The paper presents the impact of the different simulation parameters on the obtained results of the wind turbine simulation. Analysed models have been validated against experimental data published in the literature.

  4. Model development and validation of geometrically complex eddy current coils using finite element methods

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Eviston, Connor

    2017-02-01

    Multiple FEM models of complex eddy current coil geometries were created and validated to calculate the change of impedance due to the presence of a notch. Capable realistic simulations of eddy current inspections are required for model assisted probability of detection (MAPOD) studies, inversion algorithms, experimental verification, and tailored probe design for NDE applications. An FEM solver was chosen to model complex real world situations including varying probe dimensions and orientations along with complex probe geometries. This will also enable creation of a probe model library database with variable parameters. Verification and validation was performed using other commercially available eddy current modeling software as well as experimentally collected benchmark data. Data analysis and comparison showed that the created models were able to correctly model the probe and conductor interactions and accurately calculate the change in impedance of several experimental scenarios with acceptable error. The promising results of the models enabled the start of an eddy current probe model library to give experimenters easy access to powerful parameter based eddy current models for alternate project applications.

  5. Validating and Verifying Biomathematical Models of Human Fatigue

    NASA Technical Reports Server (NTRS)

    Martinez, Siera Brooke; Quintero, Luis Ortiz; Flynn-Evans, Erin

    2015-01-01

    Airline pilots experience acute and chronic sleep deprivation, sleep inertia, and circadian desynchrony due to the need to schedule flight operations around the clock. This sleep loss and circadian desynchrony gives rise to cognitive impairments, reduced vigilance and inconsistent performance. Several biomathematical models, based principally on patterns observed in circadian rhythms and homeostatic drive, have been developed to predict a pilots levels of fatigue or alertness. These models allow for the Federal Aviation Administration (FAA) and commercial airlines to make decisions about pilot capabilities and flight schedules. Although these models have been validated in a laboratory setting, they have not been thoroughly tested in operational environments where uncontrolled factors, such as environmental sleep disrupters, caffeine use and napping, may impact actual pilot alertness and performance. We will compare the predictions of three prominent biomathematical fatigue models (McCauley Model, Harvard Model, and the privately-sold SAFTE-FAST Model) to actual measures of alertness and performance. We collected sleep logs, movement and light recordings, psychomotor vigilance task (PVT), and urinary melatonin (a marker of circadian phase) from 44 pilots in a short-haul commercial airline over one month. We will statistically compare with the model predictions to lapses on the PVT and circadian phase. We will calculate the sensitivity and specificity of each model prediction under different scheduling conditions. Our findings will aid operational decision-makers in determining the reliability of each model under real-world scheduling situations.

  6. Conceptualization of Approaches and Thought Processes Emerging in Validating of Model in Mathematical Modeling in Technology Aided Environment

    ERIC Educational Resources Information Center

    Hidiroglu, Çaglar Naci; Bukova Güzel, Esra

    2013-01-01

    The aim of the present study is to conceptualize the approaches displayed for validation of model and thought processes provided in mathematical modeling process performed in technology-aided learning environment. The participants of this grounded theory study were nineteen secondary school mathematics student teachers. The data gathered from the…

  7. A Supervised Learning Process to Validate Online Disease Reports for Use in Predictive Models.

    PubMed

    Patching, Helena M M; Hudson, Laurence M; Cooke, Warrick; Garcia, Andres J; Hay, Simon I; Roberts, Mark; Moyes, Catherine L

    2015-12-01

    Pathogen distribution models that predict spatial variation in disease occurrence require data from a large number of geographic locations to generate disease risk maps. Traditionally, this process has used data from public health reporting systems; however, using online reports of new infections could speed up the process dramatically. Data from both public health systems and online sources must be validated before they can be used, but no mechanisms exist to validate data from online media reports. We have developed a supervised learning process to validate geolocated disease outbreak data in a timely manner. The process uses three input features, the data source and two metrics derived from the location of each disease occurrence. The location of disease occurrence provides information on the probability of disease occurrence at that location based on environmental and socioeconomic factors and the distance within or outside the current known disease extent. The process also uses validation scores, generated by disease experts who review a subset of the data, to build a training data set. The aim of the supervised learning process is to generate validation scores that can be used as weights going into the pathogen distribution model. After analyzing the three input features and testing the performance of alternative processes, we selected a cascade of ensembles comprising logistic regressors. Parameter values for the training data subset size, number of predictors, and number of layers in the cascade were tested before the process was deployed. The final configuration was tested using data for two contrasting diseases (dengue and cholera), and 66%-79% of data points were assigned a validation score. The remaining data points are scored by the experts, and the results inform the training data set for the next set of predictors, as well as going to the pathogen distribution model. The new supervised learning process has been implemented within our live site and is

  8. Development and Validation of Methodology to Model Flow in Ventilation Systems Commonly Found in Nuclear Facilities. Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strons, Philip; Bailey, James L.; Davis, John

    2016-03-01

    In this work, we apply the CFD in modeling airflow and particulate transport. This modeling is then compared to field validation studies to both inform and validate the modeling assumptions. Based on the results of field tests, modeling assumptions and boundary conditions are refined and the process is repeated until the results are found to be reliable with a high level of confidence.

  9. External validation of a 5-year survival prediction model after elective abdominal aortic aneurysm repair.

    PubMed

    DeMartino, Randall R; Huang, Ying; Mandrekar, Jay; Goodney, Philip P; Oderich, Gustavo S; Kalra, Manju; Bower, Thomas C; Cronenwett, Jack L; Gloviczki, Peter

    2018-01-01

    The benefit of prophylactic repair of abdominal aortic aneurysms (AAAs) is based on the risk of rupture exceeding the risk of death from other comorbidities. The purpose of this study was to validate a 5-year survival prediction model for patients undergoing elective repair of asymptomatic AAA <6.5 cm to assist in optimal selection of patients. All patients undergoing elective repair for asymptomatic AAA <6.5 cm (open or endovascular) from 2002 to 2011 were identified from a single institutional database (validation group). We assessed the ability of a prior published Vascular Study Group of New England (VSGNE) model (derivation group) to predict survival in our cohort. The model was assessed for discrimination (concordance index), calibration (calibration slope and calibration in the large), and goodness of fit (score test). The VSGNE derivation group consisted of 2367 patients (70% endovascular). Major factors associated with survival in the derivation group were age, coronary disease, chronic obstructive pulmonary disease, renal function, and antiplatelet and statin medication use. Our validation group consisted of 1038 patients (59% endovascular). The validation group was slightly older (74 vs 72 years; P < .01) and had a higher proportion of men (76% vs 68%; P < .01). In addition, the derivation group had higher rates of advanced cardiac disease, chronic obstructive pulmonary disease, and baseline creatinine concentration (1.2 vs 1.1 mg/dL; P < .01). Despite slight differences in preoperative patient factors, 5-year survival was similar between validation and derivation groups (75% vs 77%; P = .33). The concordance index of the validation group was identical between derivation and validation groups at 0.659 (95% confidence interval, 0.63-0.69). Our validation calibration in the large value was 1.02 (P = .62, closer to 1 indicating better calibration), calibration slope of 0.84 (95% confidence interval, 0.71-0.97), and score test of P = .57 (>.05

  10. Construction and validation of a three-dimensional finite element model of degenerative scoliosis.

    PubMed

    Zheng, Jie; Yang, Yonghong; Lou, Shuliang; Zhang, Dongsheng; Liao, Shenghui

    2015-12-24

    With the aging of the population, degenerative scoliosis (DS) incidence rate is increasing. In recent years, increasing research on this topic has been carried out, yet biomechanical research on the subject is seldom seen and in vitro biomechanical model of DS nearly cannot be available. The objective of this study was to develop and validate a complete three-dimensional finite element model of DS in order to build the digital platform for further biomechanical study. A 55-year-old female DS patient (Suer Pan, ID number was P141986) was selected for this study. This study was performed in accordance with the ethical standards of Declaration of Helsinki and its amendments and was approved by the local ethics committee (117 hospital of PLA ethics committee). Spiral computed tomography (CT) scanning was conducted on the patient's lumbar spine from the T12 to S1. CT images were then imported into a finite element modeling system. A three-dimensional solid model was then formed from segmentation of the CT scan. The three-dimensional model of each vertebra was then meshed, and material properties were assigned to each element according to the pathological characteristics of DS. Loads and boundary conditions were then applied in such a manner as to simulate in vitro biomechanical experiments conducted on lumbar segments. The results of the model were then compared with experimental results in order to validate the model. An integral three-dimensional finite element model of DS was built successfully, consisting of 113,682 solid elements, 686 cable elements, 33,329 shell elements, 4968 target elements, 4968 contact elements, totaling 157,635 elements, and 197,374 nodes. The model accurately described the physical features of DS and was geometrically similar to the object of study. The results of analysis with the finite element model agreed closely with in vitro experiments, validating the accuracy of the model. The three-dimensional finite element model of DS built in

  11. Simulation model calibration and validation : phase II : development of implementation handbook and short course.

    DOT National Transportation Integrated Search

    2006-01-01

    A previous study developed a procedure for microscopic simulation model calibration and validation and evaluated the procedure via two relatively simple case studies using three microscopic simulation models. Results showed that default parameters we...

  12. Development and Validation of Accident Models for FeCrAl Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, Kyle Allan Lawrence; Hales, Jason Dean

    2016-08-01

    The purpose of this milestone report is to present the work completed in regards to material model development for FeCrAl cladding and highlight the results of applying these models to Loss of Coolant Accidents (LOCA) and Station Blackouts (SBO). With the limited experimental data available (essentially only the data used to create the models) true validation is not possible. In the absence of another alternative, qualitative comparisons during postulated accident scenarios between FeCrAl and Zircaloy-4 cladded rods have been completed demonstrating the superior performance of FeCrAl.

  13. User's Manual for Data for Validating Models for PV Module Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marion, W.; Anderberg, A.; Deline, C.

    2014-04-01

    This user's manual describes performance data measured for flat-plate photovoltaic (PV) modules installed in Cocoa, Florida, Eugene, Oregon, and Golden, Colorado. The data include PV module current-voltage curves and associated meteorological data for approximately one-year periods. These publicly available data are intended to facilitate the validation of existing models for predicting the performance of PV modules, and for the development of new and improved models. For comparing different modeling approaches, using these public data will provide transparency and more meaningful comparisons of the relative benefits.

  14. Diurnal ocean surface layer model validation

    NASA Technical Reports Server (NTRS)

    Hawkins, Jeffrey D.; May, Douglas A.; Abell, Fred, Jr.

    1990-01-01

    The diurnal ocean surface layer (DOSL) model at the Fleet Numerical Oceanography Center forecasts the 24-hour change in a global sea surface temperatures (SST). Validating the DOSL model is a difficult task due to the huge areas involved and the lack of in situ measurements. Therefore, this report details the use of satellite infrared multichannel SST imagery to provide day and night SSTs that can be directly compared to DOSL products. This water-vapor-corrected imagery has the advantages of high thermal sensitivity (0.12 C), large synoptic coverage (nearly 3000 km across), and high spatial resolution that enables diurnal heating events to be readily located and mapped. Several case studies in the subtropical North Atlantic readily show that DOSL results during extreme heating periods agree very well with satellite-imagery-derived values in terms of the pattern of diurnal warming. The low wind and cloud-free conditions necessary for these events to occur lend themselves well to observation via infrared imagery. Thus, the normally cloud-limited aspects of satellite imagery do not come into play for these particular environmental conditions. The fact that the DOSL model does well in extreme events is beneficial from the standpoint that these cases can be associated with the destruction of the surface acoustic duct. This so-called afternoon effect happens as the afternoon warming of the mixed layer disrupts the sound channel and the propagation of acoustic energy.

  15. Automated finite element meshing of the lumbar spine: Verification and validation with 18 specimen-specific models.

    PubMed

    Campbell, J Q; Coombs, D J; Rao, M; Rullkoetter, P J; Petrella, A J

    2016-09-06

    The purpose of this study was to seek broad verification and validation of human lumbar spine finite element models created using a previously published automated algorithm. The automated algorithm takes segmented CT scans of lumbar vertebrae, automatically identifies important landmarks and contact surfaces, and creates a finite element model. Mesh convergence was evaluated by examining changes in key output variables in response to mesh density. Semi-direct validation was performed by comparing experimental results for a single specimen to the automated finite element model results for that specimen with calibrated material properties from a prior study. Indirect validation was based on a comparison of results from automated finite element models of 18 individual specimens, all using one set of generalized material properties, to a range of data from the literature. A total of 216 simulations were run and compared to 186 experimental data ranges in all six primary bending modes up to 7.8Nm with follower loads up to 1000N. Mesh convergence results showed less than a 5% difference in key variables when the original mesh density was doubled. The semi-direct validation results showed that the automated method produced results comparable to manual finite element modeling methods. The indirect validation results showed a wide range of outcomes due to variations in the geometry alone. The studies showed that the automated models can be used to reliably evaluate lumbar spine biomechanics, specifically within our intended context of use: in pure bending modes, under relatively low non-injurious simulated in vivo loads, to predict torque rotation response, disc pressures, and facet forces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Analytical Performance Modeling and Validation of Intel’s Xeon Phi Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chunduri, Sudheer; Balaprakash, Prasanna; Morozov, Vitali

    Modeling the performance of scientific applications on emerging hardware plays a central role in achieving extreme-scale computing goals. Analytical models that capture the interaction between applications and hardware characteristics are attractive because even a reasonably accurate model can be useful for performance tuning before the hardware is made available. In this paper, we develop a hardware model for Intel’s second-generation Xeon Phi architecture code-named Knights Landing (KNL) for the SKOPE framework. We validate the KNL hardware model by projecting the performance of mini-benchmarks and application kernels. The results show that our KNL model can project the performance with prediction errorsmore » of 10% to 20%. The hardware model also provides informative recommendations for code transformations and tuning.« less

  17. An improved snow scheme for the ECMWF land surface model: Description and offline validation

    Treesearch

    Emanuel Dutra; Gianpaolo Balsamo; Pedro Viterbo; Pedro M. A. Miranda; Anton Beljaars; Christoph Schar; Kelly Elder

    2010-01-01

    A new snow scheme for the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model has been tested and validated. The scheme includes a new parameterization of snow density, incorporating a liquid water reservoir, and revised formulations for the subgrid snow cover fraction and snow albedo. Offline validation (covering a wide range of spatial and...

  18. Preventing patient absenteeism: validation of a predictive overbooking model.

    PubMed

    Reid, Mark W; Cohen, Samuel; Wang, Hank; Kaung, Aung; Patel, Anish; Tashjian, Vartan; Williams, Demetrius L; Martinez, Bibiana; Spiegel, Brennan M R

    2015-12-01

    To develop a model that identifies patients at high risk for missing scheduled appointments ("no-shows" and cancellations) and to project the impact of predictive overbooking in a gastrointestinal endoscopy clinic-an exemplar resource-intensive environment with a high no-show rate. We retrospectively developed an algorithm that uses electronic health record (EHR) data to identify patients who do not show up to their appointments. Next, we prospectively validated the algorithm at a Veterans Administration healthcare network clinic. We constructed a multivariable logistic regression model that assigned a no-show risk score optimized by receiver operating characteristic curve analysis. Based on these scores, we created a calendar of projected open slots to offer to patients and compared the daily performance of predictive overbooking with fixed overbooking and typical "1 patient, 1 slot" scheduling. Data from 1392 patients identified several predictors of no-show, including previous absenteeism, comorbid disease burden, and current diagnoses of mood and substance use disorders. The model correctly classified most patients during the development (area under the curve [AUC] = 0.80) and validation phases (AUC = 0.75). Prospective testing in 1197 patients found that predictive overbooking averaged 0.51 unused appointments per day versus 6.18 for typical booking (difference = -5.67; 95% CI, -6.48 to -4.87; P < .0001). Predictive overbooking could have increased service utilization from 62% to 97% of capacity, with only rare clinic overflows. Information from EHRs can accurately predict whether patients will no-show. This method can be used to overbook appointments, thereby maximizing service utilization while staying within clinic capacity.

  19. LANL* V2.0: global modeling and validation

    NASA Astrophysics Data System (ADS)

    Koller, J.; Zaharia, S.

    2011-03-01

    We describe in this paper the new version of LANL*. Just like the previous version, this new version V2.0 of LANL* is an artificial neural network (ANN) for calculating the magnetic drift invariant, L*, that is used for modeling radiation belt dynamics and for other space weather applications. We have implemented the following enhancements in the new version: (1) we have removed the limitation to geosynchronous orbit and the model can now be used for any type of orbit. (2) The new version is based on the improved magnetic field model by Tsyganenko and Sitnov (2005) (TS05) instead of the older model by Tsyganenko et al. (2003). We have validated the model and compared our results to L* calculations with the TS05 model based on ephemerides for CRRES, Polar, GPS, a LANL geosynchronous satellite, and a virtual RBSP type orbit. We find that the neural network performs very well for all these orbits with an error typically Δ L* < 0.2 which corresponds to an error of 3% at geosynchronous orbit. This new LANL-V2.0 artificial neural network is orders of magnitudes faster than traditional numerical field line integration techniques with the TS05 model. It has applications to real-time radiation belt forecasting, analysis of data sets involving decades of satellite of observations, and other problems in space weather.

  20. Validation of the gravity model in predicting the global spread of influenza.

    PubMed

    Li, Xinhai; Tian, Huidong; Lai, Dejian; Zhang, Zhibin

    2011-08-01

    The gravity model is often used in predicting the spread of influenza. We use the data of influenza A (H1N1) to check the model's performance and validation, in order to determine the scope of its application. In this article, we proposed to model the pattern of global spread of the virus via a few important socio-economic indicators. We applied the epidemic gravity model for modelling the virus spread globally through the estimation of parameters of a generalized linear model. We compiled the daily confirmed cases of influenza A (H1N1) in each country as reported to the WHO and each state in the USA, and established the model to describe the relationship between the confirmed cases and socio-economic factors such as population size, per capita gross domestic production (GDP), and the distance between the countries/states and the country where the first confirmed case was reported (i.e., Mexico). The covariates we selected for the model were all statistically significantly associated with the global spread of influenza A (H1N1). However, within the USA, the distance and GDP were not significantly associated with the number of confirmed cases. The combination of the gravity model and generalized linear model provided a quick assessment of pandemic spread globally. The gravity model is valid if the spread period is long enough for estimating the model parameters. Meanwhile, the distance between donor and recipient communities has a good gradient. Besides, the spread should be at the early stage if a single source is taking into account.

  1. Space Weather Model Testing And Validation At The Community Coordinated Modeling Center

    NASA Astrophysics Data System (ADS)

    Hesse, M.; Kuznetsova, M.; Rastaetter, L.; Falasca, A.; Keller, K.; Reitan, P.

    The Community Coordinated Modeling Center (CCMC) is a multi-agency partner- ship aimed at the creation of next generation space weather models. The goal of the CCMC is to undertake the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to pro- vide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of NASA's Living With aStar initiative, of the National Space Weather Program Implementation Plan, and of the Department of Defense Space Weather Tran- sition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide updates on CCMC status, on current plans, research and devel- opment accomplishments and goals, and on the model testing and validation process undertaken as part of the CCMC mandate.

  2. Development and Validation of a Statistical Shape Modeling-Based Finite Element Model of the Cervical Spine Under Low-Level Multiple Direction Loading Conditions

    PubMed Central

    Bredbenner, Todd L.; Eliason, Travis D.; Francis, W. Loren; McFarland, John M.; Merkle, Andrew C.; Nicolella, Daniel P.

    2014-01-01

    Cervical spinal injuries are a significant concern in all trauma injuries. Recent military conflicts have demonstrated the substantial risk of spinal injury for the modern warfighter. Finite element models used to investigate injury mechanisms often fail to examine the effects of variation in geometry or material properties on mechanical behavior. The goals of this study were to model geometric variation for a set of cervical spines, to extend this model to a parametric finite element model, and, as a first step, to validate the parametric model against experimental data for low-loading conditions. Individual finite element models were created using cervical spine (C3–T1) computed tomography data for five male cadavers. Statistical shape modeling (SSM) was used to generate a parametric finite element model incorporating variability of spine geometry, and soft-tissue material property variation was also included. The probabilistic loading response of the parametric model was determined under flexion-extension, axial rotation, and lateral bending and validated by comparison to experimental data. Based on qualitative and quantitative comparison of the experimental loading response and model simulations, we suggest that the model performs adequately under relatively low-level loading conditions in multiple loading directions. In conclusion, SSM methods coupled with finite element analyses within a probabilistic framework, along with the ability to statistically validate the overall model performance, provide innovative and important steps toward describing the differences in vertebral morphology, spinal curvature, and variation in material properties. We suggest that these methods, with additional investigation and validation under injurious loading conditions, will lead to understanding and mitigating the risks of injury in the spine and other musculoskeletal structures. PMID:25506051

  3. Mathematical Capture of Human Crowd Behavioral Data for Computational Model Building, Verification, and Validation

    DTIC Science & Technology

    2011-03-21

    throughout the experimental runs. Reliable and validated measures of anxiety ( Spielberger , 1983), as well as custom-constructed questionnaires about...Crowd modeling and simulation technologies. Transactions on modeling and computer simulation, 20(4). Spielberger , C. D. (1983

  4. Validating agent based models through virtual worlds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakkaraju, Kiran; Whetzel, Jonathan H.; Lee, Jina

    As the US continues its vigilance against distributed, embedded threats, understanding the political and social structure of these groups becomes paramount for predicting and dis- rupting their attacks. Agent-based models (ABMs) serve as a powerful tool to study these groups. While the popularity of social network tools (e.g., Facebook, Twitter) has provided extensive communication data, there is a lack of ne-grained behavioral data with which to inform and validate existing ABMs. Virtual worlds, in particular massively multiplayer online games (MMOG), where large numbers of people interact within a complex environ- ment for long periods of time provide an alternative sourcemore » of data. These environments provide a rich social environment where players engage in a variety of activities observed between real-world groups: collaborating and/or competing with other groups, conducting battles for scarce resources, and trading in a market economy. Strategies employed by player groups surprisingly re ect those seen in present-day con icts, where players use diplomacy or espionage as their means for accomplishing their goals. In this project, we propose to address the need for ne-grained behavioral data by acquiring and analyzing game data a commercial MMOG, referred to within this report as Game X. The goals of this research were: (1) devising toolsets for analyzing virtual world data to better inform the rules that govern a social ABM and (2) exploring how virtual worlds could serve as a source of data to validate ABMs established for analogous real-world phenomena. During this research, we studied certain patterns of group behavior to compliment social modeling e orts where a signi cant lack of detailed examples of observed phenomena exists. This report outlines our work examining group behaviors that underly what we have termed the Expression-To-Action (E2A) problem: determining the changes in social contact that lead individuals/groups to engage in a particular

  5. A design of experiments approach to validation sampling for logistic regression modeling with error-prone medical records.

    PubMed

    Ouyang, Liwen; Apley, Daniel W; Mehrotra, Sanjay

    2016-04-01

    Electronic medical record (EMR) databases offer significant potential for developing clinical hypotheses and identifying disease risk associations by fitting statistical models that capture the relationship between a binary response variable and a set of predictor variables that represent clinical, phenotypical, and demographic data for the patient. However, EMR response data may be error prone for a variety of reasons. Performing a manual chart review to validate data accuracy is time consuming, which limits the number of chart reviews in a large database. The authors' objective is to develop a new design-of-experiments-based systematic chart validation and review (DSCVR) approach that is more powerful than the random validation sampling used in existing approaches. The DSCVR approach judiciously and efficiently selects the cases to validate (i.e., validate whether the response values are correct for those cases) for maximum information content, based only on their predictor variable values. The final predictive model will be fit using only the validation sample, ignoring the remainder of the unvalidated and unreliable error-prone data. A Fisher information based D-optimality criterion is used, and an algorithm for optimizing it is developed. The authors' method is tested in a simulation comparison that is based on a sudden cardiac arrest case study with 23 041 patients' records. This DSCVR approach, using the Fisher information based D-optimality criterion, results in a fitted model with much better predictive performance, as measured by the receiver operating characteristic curve and the accuracy in predicting whether a patient will experience the event, than a model fitted using a random validation sample. The simulation comparisons demonstrate that this DSCVR approach can produce predictive models that are significantly better than those produced from random validation sampling, especially when the event rate is low. © The Author 2015. Published by Oxford

  6. Validation of Real-time Modeling of Coronal Mass Ejections Using the WSA-ENLIL+Cone Heliospheric Model

    NASA Astrophysics Data System (ADS)

    Romano, M.; Mays, M. L.; Taktakishvili, A.; MacNeice, P. J.; Zheng, Y.; Pulkkinen, A. A.; Kuznetsova, M. M.; Odstrcil, D.

    2013-12-01

    Modeling coronal mass ejections (CMEs) is of great interest to the space weather research and forecasting communities. We present recent validation work of real-time CME arrival time predictions at different satellites using the WSA-ENLIL+Cone three-dimensional MHD heliospheric model available at the Community Coordinated Modeling Center (CCMC) and performed by the Space Weather Research Center (SWRC). SWRC is an in-house research-based operations team at the CCMC which provides interplanetary space weather forecasting for NASA's robotic missions and performs real-time model validation. The quality of model operation is evaluated by comparing its output to a measurable parameter of interest such as the CME arrival time and geomagnetic storm strength. The Kp index is calculated from the relation given in Newell et al. (2007), using solar wind parameters predicted by the WSA-ENLIL+Cone model at Earth. The CME arrival time error is defined as the difference between the predicted arrival time and the observed in-situ CME shock arrival time at the ACE, STEREO A, or STEREO B spacecraft. This study includes all real-time WSA-ENLIL+Cone model simulations performed between June 2011-2013 (over 400 runs) at the CCMC/SWRC. We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For hits we show the average absolute CME arrival time error, and the dependence of this error on CME input parameters such as speed, width, and direction. We also present the predicted geomagnetic storm strength (using the Kp index) error for Earth-directed CMEs.

  7. Barotropic Tidal Predictions and Validation in a Relocatable Modeling Environment. Revised

    NASA Technical Reports Server (NTRS)

    Mehra, Avichal; Passi, Ranjit; Kantha, Lakshmi; Payne, Steven; Brahmachari, Shuvobroto

    1998-01-01

    Under funding from the Office of Naval Research (ONR), the Mississippi State University Center for Air Sea Technology (CAST) has been working on developing a Relocatable Modeling Environment (RME) to provide a uniform and unbiased infrastructure for efficiently configuring numerical models in any geographic or oceanic region. Under Naval Oceanographic Office (NAVOCEANO) funding, the model was implemented and tested for NAVOCEANO use. With our current emphasis on ocean tidal modeling, CAST has adopted the Colorado University's numerical ocean model, known as CURReNTSS (Colorado University Rapidly Relocatable Nestable Storm Surge) Model, as the model of choice. During the RME development process, CURReNTSS has been relocated to several coastal oceanic regions, providing excellent results that demonstrate its veracity. This report documents the model validation results and provides a brief description of the Graphic user Interface.

  8. Development of Learning Models Based on Problem Solving and Meaningful Learning Standards by Expert Validity for Animal Development Course

    NASA Astrophysics Data System (ADS)

    Lufri, L.; Fitri, R.; Yogica, R.

    2018-04-01

    The purpose of this study is to produce a learning model based on problem solving and meaningful learning standards by expert assessment or validation for the course of Animal Development. This research is a development research that produce the product in the form of learning model, which consist of sub product, namely: the syntax of learning model and student worksheets. All of these products are standardized through expert validation. The research data is the level of validity of all sub products obtained using questionnaire, filled by validators from various field of expertise (field of study, learning strategy, Bahasa). Data were analysed using descriptive statistics. The result of the research shows that the problem solving and meaningful learning model has been produced. Sub products declared appropriate by expert include the syntax of learning model and student worksheet.

  9. A Framework for Validating Traffic Simulation Models at the Vehicle Trajectory Level

    DOT National Transportation Integrated Search

    2017-03-01

    Based on current practices, traffic simulation models are calibrated and validated using macroscopic measures such as 15-minute averages of traffic counts or average point-to-point travel times. For an emerging number of applications, including conne...

  10. Testing the Predictive Validity of the Hendrich II Fall Risk Model.

    PubMed

    Jung, Hyesil; Park, Hyeoun-Ae

    2018-03-01

    Cumulative data on patient fall risk have been compiled in electronic medical records systems, and it is possible to test the validity of fall-risk assessment tools using these data between the times of admission and occurrence of a fall. The Hendrich II Fall Risk Model scores assessed during three time points of hospital stays were extracted and used for testing the predictive validity: (a) upon admission, (b) when the maximum fall-risk score from admission to falling or discharge, and (c) immediately before falling or discharge. Predictive validity was examined using seven predictive indicators. In addition, logistic regression analysis was used to identify factors that significantly affect the occurrence of a fall. Among the different time points, the maximum fall-risk score assessed between admission and falling or discharge showed the best predictive performance. Confusion or disorientation and having a poor ability to rise from a sitting position were significant risk factors for a fall.

  11. Development and Validation of a 3-Dimensional CFB Furnace Model

    NASA Astrophysics Data System (ADS)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  12. Validation of chemistry models employed in a particle simulation method

    NASA Technical Reports Server (NTRS)

    Haas, Brian L.; Mcdonald, Jeffrey D.

    1991-01-01

    The chemistry models employed in a statistical particle simulation method, as implemented in the Intel iPSC/860 multiprocessor computer, are validated and applied. Chemical relaxation of five-species air in these reservoirs involves 34 simultaneous dissociation, recombination, and atomic-exchange reactions. The reaction rates employed in the analytic solutions are obtained from Arrhenius experimental correlations as functions of temperature for adiabatic gas reservoirs in thermal equilibrium. Favorable agreement with the analytic solutions validates the simulation when applied to relaxation of O2 toward equilibrium in reservoirs dominated by dissociation and recombination, respectively, and when applied to relaxation of air in the temperature range 5000 to 30,000 K. A flow of O2 over a circular cylinder at high Mach number is simulated to demonstrate application of the method to multidimensional reactive flows.

  13. Development and validation of a 10-year-old child ligamentous cervical spine finite element model.

    PubMed

    Dong, Liqiang; Li, Guangyao; Mao, Haojie; Marek, Stanley; Yang, King H

    2013-12-01

    Although a number of finite element (FE) adult cervical spine models have been developed to understand the injury mechanisms of the neck in automotive related crash scenarios, there have been fewer efforts to develop a child neck model. In this study, a 10-year-old ligamentous cervical spine FE model was developed for application in the improvement of pediatric safety related to motor vehicle crashes. The model geometry was obtained from medical scans and meshed using a multi-block approach. Appropriate properties based on review of literature in conjunction with scaling were assigned to different parts of the model. Child tensile force-deformation data in three segments, Occipital-C2 (C0-C2), C4-C5 and C6-C7, were used to validate the cervical spine model and predict failure forces and displacements. Design of computer experiments was performed to determine failure properties for intervertebral discs and ligaments needed to set up the FE model. The model-predicted ultimate displacements and forces were within the experimental range. The cervical spine FE model was validated in flexion and extension against the child experimental data in three segments, C0-C2, C4-C5 and C6-C7. Other model predictions were found to be consistent with the experimental responses scaled from adult data. The whole cervical spine model was also validated in tension, flexion and extension against the child experimental data. This study provided methods for developing a child ligamentous cervical spine FE model and to predict soft tissue failures in tension.

  14. Development and validation of age-dependent FE human models of a mid-sized male thorax.

    PubMed

    El-Jawahri, Raed E; Laituri, Tony R; Ruan, Jesse S; Rouhana, Stephen W; Barbat, Saeed D

    2010-11-01

    The increasing number of people over 65 years old (YO) is an important research topic in the area of impact biomechanics, and finite element (FE) modeling can provide valuable support for related research. There were three objectives of this study: (1) Estimation of the representative age of the previously-documented Ford Human Body Model (FHBM) -- an FE model which approximates the geometry and mass of a mid-sized male, (2) Development of FE models representing two additional ages, and (3) Validation of the resulting three models to the extent possible with respect to available physical tests. Specifically, the geometry of the model was compared to published data relating rib angles to age, and the mechanical properties of different simulated tissues were compared to a number of published aging functions. The FHBM was determined to represent a 53-59 YO mid-sized male. The aforementioned aging functions were used to develop FE models representing two additional ages: 35 and 75 YO. The rib model was validated against human rib specimens and whole rib tests, under different loading conditions, with and without modeled fracture. In addition, the resulting three age-dependent models were validated by simulating cadaveric tests of blunt and sled impacts. The responses of the models, in general, were within the cadaveric response corridors. When compared to peak responses from individual cadavers similar in size and age to the age-dependent models, some responses were within one standard deviation of the test data. All the other responses, but one, were within two standard deviations.

  15. Prediction of insufficient serum vitamin D status in older women: a validated model.

    PubMed

    Merlijn, T; Swart, K M A; Lips, P; Heymans, M W; Sohl, E; Van Schoor, N M; Netelenbos, C J; Elders, P J M

    2018-05-28

    We developed an externally validated simple prediction model to predict serum 25(OH)D levels < 30, < 40, < 50 and 60 nmol/L in older women with risk factors for fractures. The benefit of the model reduces when a higher 25(OH)D threshold is chosen. Vitamin D deficiency is associated with increased fracture risk in older persons. General supplementation of all older women with vitamin D could cause medicalization and costs. We developed a clinical model to identify insufficient serum 25-hydroxyvitamin D (25(OH)D) status in older women at risk for fractures. In a sample of 2689 women ≥ 65 years selected from general practices, with at least one risk factor for fractures, a questionnaire was administered and serum 25(OH)D was measured. Multivariable logistic regression models with backward selection were developed to select predictors for insufficient serum 25(OH)D status, using separate thresholds 30, 40, 50 and 60 nmol/L. Internal and external model validations were performed. Predictors in the models were as follows: age, BMI, vitamin D supplementation, multivitamin supplementation, calcium supplementation, daily use of margarine, fatty fish ≥ 2×/week, ≥ 1 hours/day outdoors in summer, season of blood sampling, the use of a walking aid and smoking. The AUC was 0.77 for the model using a 30 nmol/L threshold and decreased in the models with higher thresholds to 0.72 for 60 nmol/L. We demonstrate that the model can help to distinguish patients with or without insufficient serum 25(OH)D levels at thresholds of 30 and 40 nmol/L, but not when a threshold of 50 nmol/L is demanded. This externally validated model can predict the presence of vitamin D insufficiency in women at risk for fractures. The potential clinical benefit of this tool is highly dependent of the chosen 25(OH)D threshold and decreases when a higher threshold is used.

  16. Modelling the pre-assessment learning effects of assessment: evidence in the validity chain.

    PubMed

    Cilliers, Francois J; Schuwirth, Lambert W T; van der Vleuten, Cees P M

    2012-11-01

    We previously developed a model of the pre-assessment learning effects of consequential assessment and started to validate it. The model comprises assessment factors, mechanism factors and learning effects. The purpose of this study was to continue the validation process. For stringency, we focused on a subset of assessment factor-learning effect associations that featured least commonly in a baseline qualitative study. Our aims were to determine whether these uncommon associations were operational in a broader but similar population to that in which the model was initially derived. A cross-sectional survey of 361 senior medical students at one medical school was undertaken using a purpose-made questionnaire based on a grounded theory and comprising pairs of written situational tests. In each pair, the manifestation of an assessment factor was varied. The frequencies at which learning effects were selected were compared for each item pair, using an adjusted alpha to assign significance. The frequencies at which mechanism factors were selected were calculated. There were significant differences in the learning effect selected between the two scenarios of an item pair for 13 of this subset of 21 uncommon associations, even when a p-value of < 0.00625 was considered to indicate significance. Three mechanism factors were operational in most scenarios: agency; response efficacy, and response value. For a subset of uncommon associations in the model, the role of most assessment factor-learning effect associations and the mechanism factors involved were supported in a broader but similar population to that in which the model was derived. Although model validation is an ongoing process, these results move the model one step closer to the stage of usefully informing interventions. Results illustrate how factors not typically included in studies of the learning effects of assessment could confound the results of interventions aimed at using assessment to influence learning

  17. Updating and prospective validation of a prognostic model for high sickness absence.

    PubMed

    Roelen, C A M; Heymans, M W; Twisk, J W R; van Rhenen, W; Pallesen, S; Bjorvatn, B; Moen, B E; Magerøy, N

    2015-01-01

    To further develop and validate a Dutch prognostic model for high sickness absence (SA). Three-wave longitudinal cohort study of 2,059 Norwegian nurses. The Dutch prognostic model was used to predict high SA among Norwegian nurses at wave 2. Subsequently, the model was updated by adding person-related (age, gender, marital status, children at home, and coping strategies), health-related (BMI, physical activity, smoking, and caffeine and alcohol intake), and work-related (job satisfaction, job demands, decision latitude, social support at work, and both work-to-family and family-to-work spillover) variables. The updated model was then prospectively validated for predictions at wave 3. 1,557 (77 %) nurses had complete data at wave 2 and 1,342 (65 %) at wave 3. The risk of high SA was under-estimated by the Dutch model, but discrimination between high-risk and low-risk nurses was fair after re-calibration to the Norwegian data. Gender, marital status, BMI, physical activity, smoking, alcohol intake, job satisfaction, job demands, decision latitude, support at the workplace, and work-to-family spillover were identified as potential predictors of high SA. However, these predictors did not improve the model's discriminative ability, which remained fair at wave 3. The prognostic model correctly identifies 73 % of Norwegian nurses at risk of high SA, although additional predictors are needed before the model can be used to screen working populations for risk of high SA.

  18. Validation of a "Kane's Dynamics" Model for the Active Rack Isolation System

    NASA Technical Reports Server (NTRS)

    Beech, Geoffrey S.; Hampton, R. David

    2000-01-01

    Many microgravity space-science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages, to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (international Standard Payload Rack, or ISPR) level. Effective model-based vibration isolation requires (1) an isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller, ARIS provides the ISS response to the first requirement. In November 1999, the authors presented a response to the second ("A 'Kane's Dynamics' model for the Active Rack Isolation System", Hampton and Beech) intended to facilitate an optimal-controls approach to the third. This paper documents the validation of that high-fidelity dynamic model of ARIS. As before, this model contains the full actuator dynamics, however, the umbilical models are not included in this presentation. The validation of this dynamics model was achieved by utilizing two Commercial Off the Shelf (COTS) software tools: Deneb's ENVISION, and Online Dynamics' AUTOLEV. ENVISION is a robotics software package developed for the automotive industry that employs 3-dimensional (3-D) Computer Aided Design (CAD) models to facilitate both forward and inverse kinematics analyses. AUTOLEV is a DOS based interpreter that is designed in general to solve vector based mathematical problems and specifically to solve Dynamics problems using Kane's method.

  19. An ice sheet model validation framework for the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of < 1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on

  20. An ice sheet model validation framework for the Greenland ice sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.

    We propose a new ice sheet model validation framework the Cryospheric Model Comparison Tool (CMCT) that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quanti- tative metricsmore » for use in evaluating the different model simulations against the observations. We find 10 that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, the model initial condition as well as output from idealized and dynamic models all provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CMCT, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few

  1. An ice sheet model validation framework for the Greenland ice sheet

    PubMed Central

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2018-01-01

    We propose a new ice sheet model validation framework – the Cryospheric Model Comparison Tool (CmCt) – that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the

  2. An ice sheet model validation framework for the Greenland ice sheet.

    PubMed

    Price, Stephen F; Hoffman, Matthew J; Bonin, Jennifer A; Howat, Ian M; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P; Evans, Katherine J; Kennedy, Joseph H; Lenaerts, Jan; Lipscomb, William H; Perego, Mauro; Salinger, Andrew G; Tuminaro, Raymond S; van den Broeke, Michiel R; Nowicki, Sophie M J

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past

  3. An ice sheet model validation framework for the Greenland ice sheet

    DOE PAGES

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; ...

    2017-01-17

    We propose a new ice sheet model validation framework the Cryospheric Model Comparison Tool (CMCT) that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quanti- tative metricsmore » for use in evaluating the different model simulations against the observations. We find 10 that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, the model initial condition as well as output from idealized and dynamic models all provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CMCT, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few

  4. An Ice Sheet Model Validation Framework for the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas A.; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey R.; Chambers, Don P.; Evans, Katherine J.; hide

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of less than 1 meter). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred

  5. Technical Note: Procedure for the calibration and validation of kilo-voltage cone-beam CT models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilches-Freixas, Gloria; Létang, Jean Michel; Rit,

    2016-09-15

    Purpose: The aim of this work is to propose a general and simple procedure for the calibration and validation of kilo-voltage cone-beam CT (kV CBCT) models against experimental data. Methods: The calibration and validation of the CT model is a two-step procedure: the source model then the detector model. The source is described by the direction dependent photon energy spectrum at each voltage while the detector is described by the pixel intensity value as a function of the direction and the energy of incident photons. The measurements for the source consist of a series of dose measurements in air performedmore » at each voltage with varying filter thicknesses and materials in front of the x-ray tube. The measurements for the detector are acquisitions of projection images using the same filters and several tube voltages. The proposed procedure has been applied to calibrate and assess the accuracy of simple models of the source and the detector of three commercial kV CBCT units. If the CBCT system models had been calibrated differently, the current procedure would have been exclusively used to validate the models. Several high-purity attenuation filters of aluminum, copper, and silver combined with a dosimeter which is sensitive to the range of voltages of interest were used. A sensitivity analysis of the model has also been conducted for each parameter of the source and the detector models. Results: Average deviations between experimental and theoretical dose values are below 1.5% after calibration for the three x-ray sources. The predicted energy deposited in the detector agrees with experimental data within 4% for all imaging systems. Conclusions: The authors developed and applied an experimental procedure to calibrate and validate any model of the source and the detector of a CBCT unit. The present protocol has been successfully applied to three x-ray imaging systems. The minimum requirements in terms of material and equipment would make its implementation

  6. Anisotropic composite human skull model and skull fracture validation against temporo-parietal skull fracture.

    PubMed

    Sahoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy

    2013-12-01

    A composite material model for skull, taking into account damage is implemented in the Strasbourg University finite element head model (SUFEHM) in order to enhance the existing skull mechanical constitutive law. The skull behavior is validated in terms of fracture patterns and contact forces by reconstructing 15 experimental cases. The new SUFEHM skull model is capable of reproducing skull fracture precisely. The composite skull model is validated not only for maximum forces, but also for lateral impact against actual force time curves from PMHS for the first time. Skull strain energy is found to be a pertinent parameter to predict the skull fracture and based on statistical (binary logistical regression) analysis it is observed that 50% risk of skull fracture occurred at skull strain energy of 544.0mJ. © 2013 Elsevier Ltd. All rights reserved.

  7. FDA Benchmark Medical Device Flow Models for CFD Validation.

    PubMed

    Malinauskas, Richard A; Hariharan, Prasanna; Day, Steven W; Herbertson, Luke H; Buesen, Martin; Steinseifer, Ulrich; Aycock, Kenneth I; Good, Bryan C; Deutsch, Steven; Manning, Keefe B; Craven, Brent A

    Computational fluid dynamics (CFD) is increasingly being used to develop blood-contacting medical devices. However, the lack of standardized methods for validating CFD simulations and blood damage predictions limits its use in the safety evaluation of devices. Through a U.S. Food and Drug Administration (FDA) initiative, two benchmark models of typical device flow geometries (nozzle and centrifugal blood pump) were tested in multiple laboratories to provide experimental velocities, pressures, and hemolysis data to support CFD validation. In addition, computational simulations were performed by more than 20 independent groups to assess current CFD techniques. The primary goal of this article is to summarize the FDA initiative and to report recent findings from the benchmark blood pump model study. Discrepancies between CFD predicted velocities and those measured using particle image velocimetry most often occurred in regions of flow separation (e.g., downstream of the nozzle throat, and in the pump exit diffuser). For the six pump test conditions, 57% of the CFD predictions of pressure head were within one standard deviation of the mean measured values. Notably, only 37% of all CFD submissions contained hemolysis predictions. This project aided in the development of an FDA Guidance Document on factors to consider when reporting computational studies in medical device regulatory submissions. There is an accompanying podcast available for this article. Please visit the journal's Web site (www.asaiojournal.com) to listen.

  8. Assessment of human epidermal model LabCyte EPI-MODEL for in vitro skin irritation testing according to European Centre for the Validation of Alternative Methods (ECVAM)-validated protocol.

    PubMed

    Katoh, Masakazu; Hamajima, Fumiyasu; Ogasawara, Takahiro; Hata, Ken-Ichiro

    2009-06-01

    A validation study of an in vitro skin irritation testing method using a reconstructed human skin model has been conducted by the European Centre for the Validation of Alternative Methods (ECVAM), and a protocol using EpiSkin (SkinEthic, France) has been approved. The structural and performance criteria of skin models for testing are defined in the ECVAM Performance Standards announced along with the approval. We have performed several evaluations of the new reconstructed human epidermal model LabCyte EPI-MODEL, and confirmed that it is applicable to skin irritation testing as defined in the ECVAM Performance Standards. We selected 19 materials (nine irritants and ten non-irritants) available in Japan as test chemicals among the 20 reference chemicals described in the ECVAM Performance Standard. A test chemical was applied to the surface of the LabCyte EPI-MODEL for 15 min, after which it was completely removed and the model then post-incubated for 42 hr. Cell v iability was measured by MTT assay and skin irritancy of the test chemical evaluated. In addition, interleukin-1 alpha (IL-1alpha) concentration in the culture supernatant after post-incubation was measured to provide a complementary evaluation of skin irritation. Evaluation of the 19 test chemicals resulted in 79% accuracy, 78% sensitivity and 80% specificity, confirming that the in vitro skin irritancy of the LabCyte EPI-MODEL correlates highly with in vivo skin irritation. These results suggest that LabCyte EPI-MODEL is applicable to the skin irritation testing protocol set out in the ECVAM Performance Standards.

  9. Validating a Model of Effective Teaching Behaviour of Pre-Service Teachers

    ERIC Educational Resources Information Center

    Maulana, Ridwan; Helms-Lorenz, Michelle; Van de Grift, Wim

    2017-01-01

    Although effective teaching behaviour is central for pupil outcomes, the extent to which pre-service teachers behave effectively in the classroom and how their behaviour relates to pupils' engagement remain unanswered. The present study aims to validate a theoretical model linking effective pre-service teaching behaviour and pupil's engagement,…

  10. An Innovative Software Tool Suite for Power Plant Model Validation and Parameter Calibration using PMU Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuanyuan; Diao, Ruisheng; Huang, Renke

    Maintaining good quality of power plant stability models is of critical importance to ensure the secure and economic operation and planning of today’s power grid with its increasing stochastic and dynamic behavior. According to North American Electric Reliability (NERC) standards, all generators in North America with capacities larger than 10 MVA are required to validate their models every five years. Validation is quite costly and can significantly affect the revenue of generator owners, because the traditional staged testing requires generators to be taken offline. Over the past few years, validating and calibrating parameters using online measurements including phasor measurement unitsmore » (PMUs) and digital fault recorders (DFRs) has been proven to be a cost-effective approach. In this paper, an innovative open-source tool suite is presented for validating power plant models using PPMV tool, identifying bad parameters with trajectory sensitivity analysis, and finally calibrating parameters using an ensemble Kalman filter (EnKF) based algorithm. The architectural design and the detailed procedures to run the tool suite are presented, with results of test on a realistic hydro power plant using PMU measurements for 12 different events. The calibrated parameters of machine, exciter, governor and PSS models demonstrate much better performance than the original models for all the events and show the robustness of the proposed calibration algorithm.« less

  11. On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design.

    PubMed

    Roy, Kunal; Mitra, Indrani

    2011-07-01

    Quantitative structure-activity relationships (QSARs) have important applications in drug discovery research, environmental fate modeling, property prediction, etc. Validation has been recognized as a very important step for QSAR model development. As one of the important objectives of QSAR modeling is to predict activity/property/toxicity of new chemicals falling within the domain of applicability of the developed models and QSARs are being used for regulatory decisions, checking reliability of the models and confidence of their predictions is a very important aspect, which can be judged during the validation process. One prime application of a statistically significant QSAR model is virtual screening for molecules with improved potency based on the pharmacophoric features and the descriptors appearing in the QSAR model. Validated QSAR models may also be utilized for design of focused libraries which may be subsequently screened for the selection of hits. The present review focuses on various metrics used for validation of predictive QSAR models together with an overview of the application of QSAR models in the fields of virtual screening and focused library design for diverse series of compounds with citation of some recent examples.

  12. Validation of an immortalized human (hBMEC) in vitro blood-brain barrier model.

    PubMed

    Eigenmann, Daniela Elisabeth; Jähne, Evelyn Andrea; Smieško, Martin; Hamburger, Matthias; Oufir, Mouhssin

    2016-03-01

    We recently established and optimized an immortalized human in vitro blood-brain barrier (BBB) model based on the hBMEC cell line. In the present work, we validated this mono-culture 24-well model with a representative series of drug substances which are known to cross or not to cross the BBB. For each individual compound, a quantitative UHPLC-MS/MS method in Ringer HEPES buffer was developed and validated according to current regulatory guidelines, with respect to selectivity, precision, and reliability. Various biological and analytical challenges were met during method validation, highlighting the importance of careful method development. The positive controls antipyrine, caffeine, diazepam, and propranolol showed mean endothelial permeability coefficients (P e) in the range of 17-70 × 10(-6) cm/s, indicating moderate to high BBB permeability when compared to the barrier integrity marker sodium fluorescein (mean P e 3-5 × 10(-6) cm/s). The negative controls atenolol, cimetidine, and vinblastine showed mean P e values < 10 × 10(-6) cm/s, suggesting low permeability. In silico calculations were in agreement with in vitro data. With the exception of quinidine (P-glycoprotein inhibitor and substrate), BBB permeability of all control compounds was correctly predicted by this new, easy, and fast to set up human in vitro BBB model. Addition of retinoic acid and puromycin did not increase transendothelial electrical resistance (TEER) values of the BBB model.

  13. Circulation Control Model Experimental Database for CFD Validation

    NASA Technical Reports Server (NTRS)

    Paschal, Keith B.; Neuhart, Danny H.; Beeler, George B.; Allan, Brian G.

    2012-01-01

    A 2D circulation control wing was tested in the Basic Aerodynamic Research Tunnel at the NASA Langley Research Center. A traditional circulation control wing employs tangential blowing along the span over a trailing-edge Coanda surface for the purpose of lift augmentation. This model has been tested extensively at the Georgia Tech Research Institute for the purpose of performance documentation at various blowing rates. The current study seeks to expand on the previous work by documenting additional flow-field data needed for validation of computational fluid dynamics. Two jet momentum coefficients were tested during this entry: 0.047 and 0.114. Boundary-layer transition was investigated and turbulent boundary layers were established on both the upper and lower surfaces of the model. Chordwise and spanwise pressure measurements were made, and tunnel sidewall pressure footprints were documented. Laser Doppler Velocimetry measurements were made on both the upper and lower surface of the model at two chordwise locations (x/c = 0.8 and 0.9) to document the state of the boundary layers near the spanwise blowing slot.

  14. Experimental validation of finite element modelling of a modular metal-on-polyethylene total hip replacement.

    PubMed

    Hua, Xijin; Wang, Ling; Al-Hajjar, Mazen; Jin, Zhongmin; Wilcox, Ruth K; Fisher, John

    2014-07-01

    Finite element models are becoming increasingly useful tools to conduct parametric analysis, design optimisation and pre-clinical testing for hip joint replacements. However, the verification of the finite element model is critically important. The purposes of this study were to develop a three-dimensional anatomic finite element model for a modular metal-on-polyethylene total hip replacement for predicting its contact mechanics and to conduct experimental validation for a simple finite element model which was simplified from the anatomic finite element model. An anatomic modular metal-on-polyethylene total hip replacement model (anatomic model) was first developed and then simplified with reasonable accuracy to a simple modular total hip replacement model (simplified model) for validation. The contact areas on the articulating surface of three polyethylene liners of modular metal-on-polyethylene total hip replacement bearings with different clearances were measured experimentally in the Leeds ProSim hip joint simulator under a series of loading conditions and different cup inclination angles. The contact areas predicted from the simplified model were then compared with that measured experimentally under the same conditions. The results showed that the simplification made for the anatomic model did not change the predictions of contact mechanics of the modular metal-on-polyethylene total hip replacement substantially (less than 12% for contact stresses and contact areas). Good agreements of contact areas between the finite element predictions from the simplified model and experimental measurements were obtained, with maximum difference of 14% across all conditions considered. This indicated that the simplification and assumptions made in the anatomic model were reasonable and the finite element predictions from the simplified model were valid. © IMechE 2014.

  15. Development and field validation of a regional, management-scale habitat model: A koala Phascolarctos cinereus case study.

    PubMed

    Law, Bradley; Caccamo, Gabriele; Roe, Paul; Truskinger, Anthony; Brassil, Traecey; Gonsalves, Leroy; McConville, Anna; Stanton, Matthew

    2017-09-01

    Species distribution models have great potential to efficiently guide management for threatened species, especially for those that are rare or cryptic. We used MaxEnt to develop a regional-scale model for the koala Phascolarctos cinereus at a resolution (250 m) that could be used to guide management. To ensure the model was fit for purpose, we placed emphasis on validating the model using independently-collected field data. We reduced substantial spatial clustering of records in coastal urban areas using a 2-km spatial filter and by modeling separately two subregions separated by the 500-m elevational contour. A bias file was prepared that accounted for variable survey effort. Frequency of wildfire, soil type, floristics and elevation had the highest relative contribution to the model, while a number of other variables made minor contributions. The model was effective in discriminating different habitat suitability classes when compared with koala records not used in modeling. We validated the MaxEnt model at 65 ground-truth sites using independent data on koala occupancy (acoustic sampling) and habitat quality (browse tree availability). Koala bellows ( n  = 276) were analyzed in an occupancy modeling framework, while site habitat quality was indexed based on browse trees. Field validation demonstrated a linear increase in koala occupancy with higher modeled habitat suitability at ground-truth sites. Similarly, a site habitat quality index at ground-truth sites was correlated positively with modeled habitat suitability. The MaxEnt model provided a better fit to estimated koala occupancy than the site-based habitat quality index, probably because many variables were considered simultaneously by the model rather than just browse species. The positive relationship of the model with both site occupancy and habitat quality indicates that the model is fit for application at relevant management scales. Field-validated models of similar resolution would assist in

  16. Development and Validity of a Silicone Renal Tumor Model for Robotic Partial Nephrectomy Training.

    PubMed

    Monda, Steven M; Weese, Jonathan R; Anderson, Barrett G; Vetter, Joel M; Venkatesh, Ramakrishna; Du, Kefu; Andriole, Gerald L; Figenshau, Robert S

    2018-04-01

    To provide a training tool to address the technical challenges of robot-assisted laparoscopic partial nephrectomy, we created silicone renal tumor models using 3-dimensional printed molds of a patient's kidney with a mass. In this study, we assessed the face, content, and construct validity of these models. Surgeons of different training levels completed 4 simulations on silicone renal tumor models. Participants were surveyed on the usefulness and realism of the model as a training tool. Performance was measured using operation-specific metrics, self-reported operative demands (NASA Task Load Index [NASA TLX]), and blinded expert assessment (Global Evaluative Assessment of Robotic Surgeons [GEARS]). Twenty-four participants included attending urologists, endourology fellows, urology residents, and medical students. Post-training surveys of expert participants yielded mean results of 79.2 on the realism of the model's overall feel and 90.2 on the model's overall usefulness for training. Renal artery clamp times and GEARS scores were significantly better in surgeons further in training (P ≤.005 and P ≤.025). Renal artery clamp times, preserved renal parenchyma, positive margins, NASA TLX, and GEARS scores were all found to improve across trials (P <.001, P = .025, P = .024, P ≤.020, and P ≤.006, respectively). Face, content, and construct validity were demonstrated in the use of a silicone renal tumor model in a cohort of surgeons of different training levels. Expert participants deemed the model useful and realistic. Surgeons of higher training levels performed better than less experienced surgeons in various study metrics, and improvements within individuals were observed over sequential trials. Future studies should aim to assess model predictive validity, namely, the association between model performance improvements and improvements in live surgery. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Evaluating the Social Validity of the Early Start Denver Model: A Convergent Mixed Methods Study

    ERIC Educational Resources Information Center

    Ogilvie, Emily; McCrudden, Matthew T.

    2017-01-01

    An intervention has social validity to the extent that it is socially acceptable to participants and stakeholders. This pilot convergent mixed methods study evaluated parents' perceptions of the social validity of the Early Start Denver Model (ESDM), a naturalistic behavioral intervention for children with autism. It focused on whether the parents…

  18. Understanding Student Teachers' Behavioural Intention to Use Technology: Technology Acceptance Model (TAM) Validation and Testing

    ERIC Educational Resources Information Center

    Wong, Kung-Teck; Osman, Rosma bt; Goh, Pauline Swee Choo; Rahmat, Mohd Khairezan

    2013-01-01

    This study sets out to validate and test the Technology Acceptance Model (TAM) in the context of Malaysian student teachers' integration of their technology in teaching and learning. To establish factorial validity, data collected from 302 respondents were tested against the TAM using confirmatory factor analysis (CFA), and structural equation…

  19. A valid model for predicting responsible nerve roots in lumbar degenerative disease with diagnostic doubt.

    PubMed

    Li, Xiaochuan; Bai, Xuedong; Wu, Yaohong; Ruan, Dike

    2016-03-15

    To construct and validate a model to predict responsible nerve roots in lumbar degenerative disease with diagnostic doubt (DD). From January 2009-January 2013, 163 patients with DD were assigned to the construction (n = 106) or validation sample (n = 57) according to different admission times to hospital. Outcome was assessed according to the Japanese Orthopedic Association (JOA) recovery rate as excellent, good, fair, and poor. The first two results were considered as effective clinical outcome (ECO). Baseline patient and clinical characteristics were considered as secondary variables. A multivariate logistic regression model was used to construct a model with the ECO as a dependent variable and other factors as explanatory variables. The odds ratios (ORs) of each risk factor were adjusted and transformed into a scoring system. Area under the curve (AUC) was calculated and validated in both internal and external samples. Moreover, calibration plot and predictive ability of this scoring system were also tested for further validation. Patients with DD with ECOs in both construction and validation models were around 76 % (76.4 and 75.5 % respectively). more preoperative visual analog pain scale (VAS) score (OR = 1.56, p < 0.01), stenosis levels of L4/5 or L5/S1 (OR = 1.44, p = 0.04), stenosis locations with neuroforamen (OR = 1.95, p = 0.01), neurological deficit (OR = 1.62, p = 0.01), and more VAS improvement of selective nerve route block (SNRB) (OR = 3.42, p = 0.02). the internal area under the curve (AUC) was 0.85, and the external AUC was 0.72, with a good calibration plot of prediction accuracy. Besides, the predictive ability of ECOs was not different from the actual results (p = 0.532). We have constructed and validated a predictive model for confirming responsible nerve roots in patients with DD. The associated risk factors were preoperative VAS score, stenosis levels of L4/5 or L5/S1, stenosis locations

  20. Validating a spatially distributed hydrological model with soil morphology data

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Honti, M.; Zihlmann, U.; Weisskopf, P.; Stamm, C.

    2014-09-01

    Spatially distributed models are popular tools in hydrology claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for inputs of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography and artificial drainage. We translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to observed groundwater levels and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the the groundwater level predictions were not accurate enough to be used for the prediction of saturated areas. Groundwater level dynamics were not adequately reproduced and the predicted spatial saturation patterns did not correspond to those estimated from the soil map. Our results indicate that an accurate prediction of the groundwater level dynamics of the shallow groundwater in our catchment that is subject to artificial drainage would require a model that

  1. Barotropic Tidal Predictions and Validation in a Relocatable Modeling Environment. Revised

    NASA Technical Reports Server (NTRS)

    Mehra, Avichal; Passi, Ranjit; Kantha, Lakshmi; Payne, Steven; Brahmachari, Shuvobroto

    1998-01-01

    Under funding from the Office of Naval Research (ONR), and the Naval Oceanographic Office (NAVOCEANO), the Mississippi State University Center for Air Sea Technology (CAST) has been working on developing a Relocatable Modeling Environment(RME) to provide a uniform and unbiased infrastructure for efficiently configuring numerical models in any geographic/oceanic region. Under Naval Oceanographic Office (NAVO-CEANO) funding, the model was implemented and tested for NAVOCEANO use. With our current emphasis on ocean tidal modeling, CAST has adopted the Colorado University's numerical ocean model, known as CURReNTSS (Colorado University Rapidly Relocatable Nestable Storm Surge) Model, as the model of choice. During the RME development process, CURReNTSS has been relocated to several coastal oceanic regions, providing excellent results that demonstrate its veracity. This report documents the model validation results and provides a brief description of the Graphic user Interface (GUI).

  2. Model validation and error estimation of tsunami runup using high resolution data in Sadeng Port, Gunungkidul, Yogyakarta

    NASA Astrophysics Data System (ADS)

    Basith, Abdul; Prakoso, Yudhono; Kongko, Widjo

    2017-07-01

    A tsunami model using high resolution geometric data is indispensable in efforts to tsunami mitigation, especially in tsunami prone areas. It is one of the factors that affect the accuracy results of numerical modeling of tsunami. Sadeng Port is a new infrastructure in the Southern Coast of Java which could potentially hit by massive tsunami from seismic gap. This paper discusses validation and error estimation of tsunami model created using high resolution geometric data in Sadeng Port. Tsunami model validation uses the height wave of Tsunami Pangandaran 2006 recorded by Tide Gauge of Sadeng. Tsunami model will be used to accommodate the tsunami numerical modeling involves the parameters of earthquake-tsunami which is derived from the seismic gap. The validation results using t-test (student) shows that the height of the tsunami modeling results and observation in Tide Gauge of Sadeng are considered statistically equal at 95% confidence level and the value of the RMSE and NRMSE are 0.428 m and 22.12%, while the differences of tsunami wave travel time is 12 minutes.

  3. Validation of statistical predictive models meant to select melanoma patients for sentinel lymph node biopsy.

    PubMed

    Sabel, Michael S; Rice, John D; Griffith, Kent A; Lowe, Lori; Wong, Sandra L; Chang, Alfred E; Johnson, Timothy M; Taylor, Jeremy M G

    2012-01-01

    To identify melanoma patients at sufficiently low risk of nodal metastases who could avoid sentinel lymph node biopsy (SLNB), several statistical models have been proposed based upon patient/tumor characteristics, including logistic regression, classification trees, random forests, and support vector machines. We sought to validate recently published models meant to predict sentinel node status. We queried our comprehensive, prospectively collected melanoma database for consecutive melanoma patients undergoing SLNB. Prediction values were estimated based upon four published models, calculating the same reported metrics: negative predictive value (NPV), rate of negative predictions (RNP), and false-negative rate (FNR). Logistic regression performed comparably with our data when considering NPV (89.4 versus 93.6%); however, the model's specificity was not high enough to significantly reduce the rate of biopsies (SLN reduction rate of 2.9%). When applied to our data, the classification tree produced NPV and reduction in biopsy rates that were lower (87.7 versus 94.1 and 29.8 versus 14.3, respectively). Two published models could not be applied to our data due to model complexity and the use of proprietary software. Published models meant to reduce the SLNB rate among patients with melanoma either underperformed when applied to our larger dataset, or could not be validated. Differences in selection criteria and histopathologic interpretation likely resulted in underperformance. Statistical predictive models must be developed in a clinically applicable manner to allow for both validation and ultimately clinical utility.

  4. Validation of model predictions of pore-scale fluid distributions during two-phase flow

    NASA Astrophysics Data System (ADS)

    Bultreys, Tom; Lin, Qingyang; Gao, Ying; Raeini, Ali Q.; AlRatrout, Ahmed; Bijeljic, Branko; Blunt, Martin J.

    2018-05-01

    Pore-scale two-phase flow modeling is an important technology to study a rock's relative permeability behavior. To investigate if these models are predictive, the calculated pore-scale fluid distributions which determine the relative permeability need to be validated. In this work, we introduce a methodology to quantitatively compare models to experimental fluid distributions in flow experiments visualized with microcomputed tomography. First, we analyzed five repeated drainage-imbibition experiments on a single sample. In these experiments, the exact fluid distributions were not fully repeatable on a pore-by-pore basis, while the global properties of the fluid distribution were. Then two fractional flow experiments were used to validate a quasistatic pore network model. The model correctly predicted the fluid present in more than 75% of pores and throats in drainage and imbibition. To quantify what this means for the relevant global properties of the fluid distribution, we compare the main flow paths and the connectivity across the different pore sizes in the modeled and experimental fluid distributions. These essential topology characteristics matched well for drainage simulations, but not for imbibition. This suggests that the pore-filling rules in the network model we used need to be improved to make reliable predictions of imbibition. The presented analysis illustrates the potential of our methodology to systematically and robustly test two-phase flow models to aid in model development and calibration.

  5. Validation of the Gravity Model in Predicting the Global Spread of Influenza

    PubMed Central

    Li, Xinhai; Tian, Huidong; Lai, Dejian; Zhang, Zhibin

    2011-01-01

    The gravity model is often used in predicting the spread of influenza. We use the data of influenza A (H1N1) to check the model’s performance and validation, in order to determine the scope of its application. In this article, we proposed to model the pattern of global spread of the virus via a few important socio-economic indicators. We applied the epidemic gravity model for modelling the virus spread globally through the estimation of parameters of a generalized linear model. We compiled the daily confirmed cases of influenza A (H1N1) in each country as reported to the WHO and each state in the USA, and established the model to describe the relationship between the confirmed cases and socio-economic factors such as population size, per capita gross domestic production (GDP), and the distance between the countries/states and the country where the first confirmed case was reported (i.e., Mexico). The covariates we selected for the model were all statistically significantly associated with the global spread of influenza A (H1N1). However, within the USA, the distance and GDP were not significantly associated with the number of confirmed cases. The combination of the gravity model and generalized linear model provided a quick assessment of pandemic spread globally. The gravity model is valid if the spread period is long enough for estimating the model parameters. Meanwhile, the distance between donor and recipient communities has a good gradient. Besides, the spread should be at the early stage if a single source is taking into account. PMID:21909295

  6. Experimental validation of a numerical model for subway induced vibrations

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Degrande, G.; Lombaert, G.

    2009-04-01

    This paper presents the experimental validation of a coupled periodic finite element-boundary element model for the prediction of subway induced vibrations. The model fully accounts for the dynamic interaction between the train, the track, the tunnel and the soil. The periodicity or invariance of the tunnel and the soil in the longitudinal direction is exploited using the Floquet transformation, which allows for an efficient formulation in the frequency-wavenumber domain. A general analytical formulation is used to compute the response of three-dimensional invariant or periodic media that are excited by moving loads. The numerical model is validated by means of several experiments that have been performed at a site in Regent's Park on the Bakerloo line of London Underground. Vibration measurements have been performed on the axle boxes of the train, on the rail, the tunnel invert and the tunnel wall, and in the free field, both at the surface and at a depth of 15 m. Prior to these vibration measurements, the dynamic soil characteristics and the track characteristics have been determined. The Bakerloo line tunnel of London Underground has been modelled using the coupled periodic finite element-boundary element approach and free field vibrations due to the passage of a train at different speeds have been predicted and compared to the measurements. The correspondence between the predicted and measured response in the tunnel is reasonably good, although some differences are observed in the free field. The discrepancies are explained on the basis of various uncertainties involved in the problem. The variation in the response with train speed is similar for the measurements as well as the predictions. This study demonstrates the applicability of the coupled periodic finite element-boundary element model to make realistic predictions of the vibrations from underground railways.

  7. Development and validation of a nursing professionalism evaluation model in a career ladder system.

    PubMed

    Kim, Yeon Hee; Jung, Young Sun; Min, Ja; Song, Eun Young; Ok, Jung Hui; Lim, Changwon; Kim, Kyunghee; Kim, Ji-Su

    2017-01-01

    The clinical ladder system categorizes the degree of nursing professionalism and rewards and is an important human resource tool for managing nursing. We developed a model to evaluate nursing professionalism, which determines the clinical ladder system levels, and verified its validity. Data were collected using a clinical competence tool developed in this study, and existing methods such as the nursing professionalism evaluation tool, peer reviews, and face-to-face interviews to evaluate promotions and verify the presented content in a medical institution. Reliability and convergent and discriminant validity of the clinical competence evaluation tool were verified using SmartPLS software. The validity of the model for evaluating overall nursing professionalism was also analyzed. Clinical competence was determined by five dimensions of nursing practice: scientific, technical, ethical, aesthetic, and existential. The structural model explained 66% of the variance. Clinical competence scales, peer reviews, and face-to-face interviews directly determined nursing professionalism levels. The evaluation system can be used for evaluating nurses' professionalism in actual medical institutions from a nursing practice perspective. A conceptual framework for establishing a human resources management system for nurses and a tool for evaluating nursing professionalism at medical institutions is provided.

  8. Hierarchical calibration and validation of computational fluid dynamics models for solid sorbent-based carbon capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Canhai; Xu, Zhijie; Pan, Wenxiao

    2016-01-01

    To quantify the predictive confidence of a solid sorbent-based carbon capture design, a hierarchical validation methodology—consisting of basic unit problems with increasing physical complexity coupled with filtered model-based geometric upscaling has been developed and implemented. This paper describes the computational fluid dynamics (CFD) multi-phase reactive flow simulations and the associated data flows among different unit problems performed within the said hierarchical validation approach. The bench-top experiments used in this calibration and validation effort were carefully designed to follow the desired simple-to-complex unit problem hierarchy, with corresponding data acquisition to support model parameters calibrations at each unit problem level. A Bayesianmore » calibration procedure is employed and the posterior model parameter distributions obtained at one unit-problem level are used as prior distributions for the same parameters in the next-tier simulations. Overall, the results have demonstrated that the multiphase reactive flow models within MFIX can be used to capture the bed pressure, temperature, CO2 capture capacity, and kinetics with quantitative accuracy. The CFD modeling methodology and associated uncertainty quantification techniques presented herein offer a solid framework for estimating the predictive confidence in the virtual scale up of a larger carbon capture device.« less

  9. Experimental Validation of Various Temperature Modells for Semi-Physical Tyre Model Approaches

    NASA Astrophysics Data System (ADS)

    Hackl, Andreas; Scherndl, Christoph; Hirschberg, Wolfgang; Lex, Cornelia

    2017-10-01

    With increasing level of complexity and automation in the area of automotive engineering, the simulation of safety relevant Advanced Driver Assistance Systems (ADAS) leads to increasing accuracy demands in the description of tyre contact forces. In recent years, with improvement in tyre simulation, the needs for coping with tyre temperatures and the resulting changes in tyre characteristics are rising significantly. Therefore, experimental validation of three different temperature model approaches is carried out, discussed and compared in the scope of this article. To investigate or rather evaluate the range of application of the presented approaches in combination with respect of further implementation in semi-physical tyre models, the main focus lies on the a physical parameterisation. Aside from good modelling accuracy, focus is held on computational time and complexity of the parameterisation process. To evaluate this process and discuss the results, measurements from a Hoosier racing tyre 6.0 / 18.0 10 LCO C2000 from an industrial flat test bench are used. Finally the simulation results are compared with the measurement data.

  10. Verification and Validation of a Three-Dimensional Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Hoffarth, Canio; Harrington, Joseph; Subramaniam, D. Rajan; Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Blankenhorn, Gunther

    2014-01-01

    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800- F3900 fiber/resin composite material.

  11. Verification and Validation of a Three-Dimensional Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam D.; Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Blankenhorn, Gunther

    2015-01-01

    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800-F3900 fiber/resin composite material

  12. Procedure for the Selection and Validation of a Calibration Model I-Description and Application.

    PubMed

    Desharnais, Brigitte; Camirand-Lemyre, Félix; Mireault, Pascal; Skinner, Cameron D

    2017-05-01

    Calibration model selection is required for all quantitative methods in toxicology and more broadly in bioanalysis. This typically involves selecting the equation order (quadratic or linear) and weighting factor correctly modelizing the data. A mis-selection of the calibration model will generate lower quality control (QC) accuracy, with an error up to 154%. Unfortunately, simple tools to perform this selection and tests to validate the resulting model are lacking. We present a stepwise, analyst-independent scheme for selection and validation of calibration models. The success rate of this scheme is on average 40% higher than a traditional "fit and check the QCs accuracy" method of selecting the calibration model. Moreover, the process was completely automated through a script (available in Supplemental Data 3) running in RStudio (free, open-source software). The need for weighting was assessed through an F-test using the variances of the upper limit of quantification and lower limit of quantification replicate measurements. When weighting was required, the choice between 1/x and 1/x2 was determined by calculating which option generated the smallest spread of weighted normalized variances. Finally, model order was selected through a partial F-test. The chosen calibration model was validated through Cramer-von Mises or Kolmogorov-Smirnov normality testing of the standardized residuals. Performance of the different tests was assessed using 50 simulated data sets per possible calibration model (e.g., linear-no weight, quadratic-no weight, linear-1/x, etc.). This first of two papers describes the tests, procedures and outcomes of the developed procedure using real LC-MS-MS results for the quantification of cocaine and naltrexone. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. From model conception to verification and validation, a global approach to multiphase Navier-Stoke models with an emphasis on volcanic explosive phenomenology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dartevelle, Sebastian

    2007-10-01

    Large-scale volcanic eruptions are hazardous events that cannot be described by detailed and accurate in situ measurement: hence, little to no real-time data exists to rigorously validate current computer models of these events. In addition, such phenomenology involves highly complex, nonlinear, and unsteady physical behaviors upon many spatial and time scales. As a result, volcanic explosive phenomenology is poorly understood in terms of its physics, and inadequately constrained in terms of initial, boundary, and inflow conditions. Nevertheless, code verification and validation become even more critical because more and more volcanologists use numerical data for assessment and mitigation of volcanic hazards.more » In this report, we evaluate the process of model and code development in the context of geophysical multiphase flows. We describe: (1) the conception of a theoretical, multiphase, Navier-Stokes model, (2) its implementation into a numerical code, (3) the verification of the code, and (4) the validation of such a model within the context of turbulent and underexpanded jet physics. Within the validation framework, we suggest focusing on the key physics that control the volcanic clouds—namely, momentum-driven supersonic jet and buoyancy-driven turbulent plume. For instance, we propose to compare numerical results against a set of simple and well-constrained analog experiments, which uniquely and unambiguously represent each of the key-phenomenology. Key« less

  14. Validation of design procedure and performance modeling of a heat and fluid transport field experiment in the unsaturated zone

    NASA Astrophysics Data System (ADS)

    Nir, A.; Doughty, C.; Tsang, C. F.

    Validation methods which developed in the context of deterministic concepts of past generations often cannot be directly applied to environmental problems, which may be characterized by limited reproducibility of results and highly complex models. Instead, validation is interpreted here as a series of activities, including both theoretical and experimental tests, designed to enhance our confidence in the capability of a proposed model to describe some aspect of reality. We examine the validation process applied to a project concerned with heat and fluid transport in porous media, in which mathematical modeling, simulation, and results of field experiments are evaluated in order to determine the feasibility of a system for seasonal thermal energy storage in shallow unsaturated soils. Technical details of the field experiments are not included, but appear in previous publications. Validation activities are divided into three stages. The first stage, carried out prior to the field experiments, is concerned with modeling the relevant physical processes, optimization of the heat-exchanger configuration and the shape of the storage volume, and multi-year simulation. Subjects requiring further theoretical and experimental study are identified at this stage. The second stage encompasses the planning and evaluation of the initial field experiment. Simulations are made to determine the experimental time scale and optimal sensor locations. Soil thermal parameters and temperature boundary conditions are estimated using an inverse method. Then results of the experiment are compared with model predictions using different parameter values and modeling approximations. In the third stage, results of an experiment performed under different boundary conditions are compared to predictions made by the models developed in the second stage. Various aspects of this theoretical and experimental field study are described as examples of the verification and validation procedure. There is no

  15. Root zone water quality model (RZWQM2): Model use, calibration and validation

    USGS Publications Warehouse

    Ma, Liwang; Ahuja, Lajpat; Nolan, B.T.; Malone, Robert; Trout, Thomas; Qi, Z.

    2012-01-01

    The Root Zone Water Quality Model (RZWQM2) has been used widely for simulating agricultural management effects on crop production and soil and water quality. Although it is a one-dimensional model, it has many desirable features for the modeling community. This article outlines the principles of calibrating the model component by component with one or more datasets and validating the model with independent datasets. Users should consult the RZWQM2 user manual distributed along with the model and a more detailed protocol on how to calibrate RZWQM2 provided in a book chapter. Two case studies (or examples) are included in this article. One is from an irrigated maize study in Colorado to illustrate the use of field and laboratory measured soil hydraulic properties on simulated soil water and crop production. It also demonstrates the interaction between soil and plant parameters in simulated plant responses to water stresses. The other is from a maize-soybean rotation study in Iowa to show a manual calibration of the model for crop yield, soil water, and N leaching in tile-drained soils. Although the commonly used trial-and-error calibration method works well for experienced users, as shown in the second example, an automated calibration procedure is more objective, as shown in the first example. Furthermore, the incorporation of the Parameter Estimation Software (PEST) into RZWQM2 made the calibration of the model more efficient than a grid (ordered) search of model parameters. In addition, PEST provides sensitivity and uncertainty analyses that should help users in selecting the right parameters to calibrate.

  16. Validity of Multiprocess IRT Models for Separating Content and Response Styles

    ERIC Educational Resources Information Center

    Plieninger, Hansjörg; Meiser, Thorsten

    2014-01-01

    Response styles, the tendency to respond to Likert-type items irrespective of content, are a widely known threat to the reliability and validity of self-report measures. However, it is still debated how to measure and control for response styles such as extreme responding. Recently, multiprocess item response theory models have been proposed that…

  17. Challenges of forest landscape modeling - simulating large landscapes and validating results

    Treesearch

    Hong S. He; Jian Yang; Stephen R. Shifley; Frank R. Thompson

    2011-01-01

    Over the last 20 years, we have seen a rapid development in the field of forest landscape modeling, fueled by both technological and theoretical advances. Two fundamental challenges have persisted since the inception of FLMs: (1) balancing realistic simulation of ecological processes at broad spatial and temporal scales with computing capacity, and (2) validating...

  18. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anh Bui; Nam Dinh; Brian Williams

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Suchmore » sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to

  19. Predicting hospital stay, mortality and readmission in people admitted for hypoglycaemia: prognostic models derivation and validation.

    PubMed

    Zaccardi, Francesco; Webb, David R; Davies, Melanie J; Dhalwani, Nafeesa N; Gray, Laura J; Chatterjee, Sudesna; Housley, Gemma; Shaw, Dominick; Hatton, James W; Khunti, Kamlesh

    2017-06-01

    Hospital admissions for hypoglycaemia represent a significant burden on individuals with diabetes and have a substantial economic impact on healthcare systems. To date, no prognostic models have been developed to predict outcomes following admission for hypoglycaemia. We aimed to develop and validate prediction models to estimate risk of inpatient death, 24 h discharge and one month readmission in people admitted to hospital for hypoglycaemia. We used the Hospital Episode Statistics database, which includes data on all hospital admission to National Health Service hospital trusts in England, to extract admissions for hypoglycaemia between 2010 and 2014. We developed, internally and temporally validated, and compared two prognostic risk models for each outcome. The first model included age, sex, ethnicity, region, social deprivation and Charlson score ('base' model). In the second model, we added to the 'base' model the 20 most common medical conditions and applied a stepwise backward selection of variables ('disease' model). We used C-index and calibration plots to assess model performance and developed a calculator to estimate probabilities of outcomes according to individual characteristics. In derivation samples, 296 out of 11,136 admissions resulted in inpatient death, 1789/33,825 in one month readmission and 8396/33,803 in 24 h discharge. Corresponding values for validation samples were: 296/10,976, 1207/22,112 and 5363/22,107. The two models had similar discrimination. In derivation samples, C-indices for the base and disease models, respectively, were: 0.77 (95% CI 0.75, 0.80) and 0.78 (0.75, 0.80) for death, 0.57 (0.56, 0.59) and 0.57 (0.56, 0.58) for one month readmission, and 0.68 (0.67, 0.69) and 0.69 (0.68, 0.69) for 24 h discharge. Corresponding values in validation samples were: 0.74 (0.71, 0.76) and 0.74 (0.72, 0.77), 0.55 (0.54, 0.57) and 0.55 (0.53, 0.56), and 0.66 (0.65, 0.67) and 0.67 (0.66, 0.68). In both derivation and validation samples

  20. Comparison and validation of acoustic response models for wind noise reduction pipe arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marty, Julien; Denis, Stéphane; Gabrielson, Thomas

    The detection capability of the infrasound component of the International Monitoring System (IMS) is tightly linked to the performance of its wind noise reduction systems. The wind noise reduction solution implemented at all IMS infrasound measurement systems consists of a spatial distribution of air inlets connected to the infrasound sensor through a network of pipes. This system, usually referred to as “pipe array,” has proven its efficiency in operational conditions. The objective of this paper is to present the results of the comparison and validation of three distinct acoustic response models for pipe arrays. The characteristics of the models andmore » the results obtained for a defined set of pipe array configurations are described. A field experiment using a newly developed infrasound generator, dedicated to the validation of these models, is then presented. The comparison between the modeled and empirical acoustic responses shows that two of the three models can be confidently used to estimate pipe array acoustic responses. Lastly, this study paves the way to the deconvolution of IMS infrasound data from pipe array responses and to the optimization of pipe array design to IMS applications.« less

  1. Comparison and validation of acoustic response models for wind noise reduction pipe arrays

    DOE PAGES

    Marty, Julien; Denis, Stéphane; Gabrielson, Thomas; ...

    2017-02-13

    The detection capability of the infrasound component of the International Monitoring System (IMS) is tightly linked to the performance of its wind noise reduction systems. The wind noise reduction solution implemented at all IMS infrasound measurement systems consists of a spatial distribution of air inlets connected to the infrasound sensor through a network of pipes. This system, usually referred to as “pipe array,” has proven its efficiency in operational conditions. The objective of this paper is to present the results of the comparison and validation of three distinct acoustic response models for pipe arrays. The characteristics of the models andmore » the results obtained for a defined set of pipe array configurations are described. A field experiment using a newly developed infrasound generator, dedicated to the validation of these models, is then presented. The comparison between the modeled and empirical acoustic responses shows that two of the three models can be confidently used to estimate pipe array acoustic responses. Lastly, this study paves the way to the deconvolution of IMS infrasound data from pipe array responses and to the optimization of pipe array design to IMS applications.« less

  2. Experimental Validation and Combustion Modeling of a JP-8 Surrogate in a Single Cylinder Diesel Engine

    DTIC Science & Technology

    2014-04-15

    SINGLE CYLINDER DIESEL ENGINE Amit Shrestha, Umashankar Joshi, Ziliang Zheng, Tamer Badawy, Naeim A. Henein, Wayne State University, Detroit, MI, USA...13-03-2014 4. TITLE AND SUBTITLE EXPERIMENTAL VALIDATION AND COMBUSTION MODELING OF A JP-8 SURROGATE IN A SINGLE CYLINDER DIESEL ENGINE 5a...INTERNATIONAL UNCLASSIFIED • Validate a two-component JP-8 surrogate in a single cylinder diesel engine. Validation parameters include – Ignition delay

  3. Assessment of the Value, Impact, and Validity of the Jobs and Economic Development Impacts (JEDI) Suite of Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billman, L.; Keyser, D.

    The Jobs and Economic Development Impacts (JEDI) models, developed by the National Renewable Energy Laboratory (NREL) for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), use input-output methodology to estimate gross (not net) jobs and economic impacts of building and operating selected types of renewable electricity generation and fuel plants. This analysis provides the DOE with an assessment of the value, impact, and validity of the JEDI suite of models. While the models produce estimates of jobs, earnings, and economic output, this analysis focuses only on jobs estimates. This validation report includes an introductionmore » to JEDI models, an analysis of the value and impact of the JEDI models, and an analysis of the validity of job estimates generated by JEDI model through comparison to other modeled estimates and comparison to empirical, observed jobs data as reported or estimated for a commercial project, a state, or a region.« less

  4. Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber.

    PubMed

    Koch, Ina; Junker, Björn H; Heiner, Monika

    2005-04-01

    Because of the complexity of metabolic networks and their regulation, formal modelling is a useful method to improve the understanding of these systems. An essential step in network modelling is to validate the network model. Petri net theory provides algorithms and methods, which can be applied directly to metabolic network modelling and analysis in order to validate the model. The metabolism between sucrose and starch in the potato tuber is of great research interest. Even if the metabolism is one of the best studied in sink organs, it is not yet fully understood. We provide an approach for model validation of metabolic networks using Petri net theory, which we demonstrate for the sucrose breakdown pathway in the potato tuber. We start with hierarchical modelling of the metabolic network as a Petri net and continue with the analysis of qualitative properties of the network. The results characterize the net structure and give insights into the complex net behaviour.

  5. Semi-physiologic model validation and bioequivalence trials simulation to select the best analyte for acetylsalicylic acid.

    PubMed

    Cuesta-Gragera, Ana; Navarro-Fontestad, Carmen; Mangas-Sanjuan, Victor; González-Álvarez, Isabel; García-Arieta, Alfredo; Trocóniz, Iñaki F; Casabó, Vicente G; Bermejo, Marival

    2015-07-10

    The objective of this paper is to apply a previously developed semi-physiologic pharmacokinetic model implemented in NONMEM to simulate bioequivalence trials (BE) of acetyl salicylic acid (ASA) in order to validate the model performance against ASA human experimental data. ASA is a drug with first-pass hepatic and intestinal metabolism following Michaelis-Menten kinetics that leads to the formation of two main metabolites in two generations (first and second generation metabolites). The first aim was to adapt the semi-physiological model for ASA in NOMMEN using ASA pharmacokinetic parameters from literature, showing its sequential metabolism. The second aim was to validate this model by comparing the results obtained in NONMEM simulations with published experimental data at a dose of 1000 mg. The validated model was used to simulate bioequivalence trials at 3 dose schemes (100, 1000 and 3000 mg) and with 6 test formulations with decreasing in vivo dissolution rate constants versus the reference formulation (kD 8-0.25 h (-1)). Finally, the third aim was to determine which analyte (parent drug, first generation or second generation metabolite) was more sensitive to changes in formulation performance. The validation results showed that the concentration-time curves obtained with the simulations reproduced closely the published experimental data, confirming model performance. The parent drug (ASA) was the analyte that showed to be more sensitive to the decrease in pharmaceutical quality, with the highest decrease in Cmax and AUC ratio between test and reference formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Development and validation of P-MODTRAN7 and P-MCScene, 1D and 3D polarimetric radiative transfer models

    NASA Astrophysics Data System (ADS)

    Hawes, Frederick T.; Berk, Alexander; Richtsmeier, Steven C.

    2016-05-01

    A validated, polarimetric 3-dimensional simulation capability, P-MCScene, is being developed by generalizing Spectral Sciences' Monte Carlo-based synthetic scene simulation model, MCScene, to include calculation of all 4 Stokes components. P-MCScene polarimetric optical databases will be generated by a new version (MODTRAN7) of the government-standard MODTRAN radiative transfer algorithm. The conversion of MODTRAN6 to a polarimetric model is being accomplished by (1) introducing polarimetric data, by (2) vectorizing the MODTRAN radiation calculations and by (3) integrating the newly revised and validated vector discrete ordinate model VDISORT3. Early results, presented here, demonstrate a clear pathway to the long-term goal of fully validated polarimetric models.

  7. Volcanic Plume Heights on Mars: Limits of Validity for Convective Models

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Baloga, Stephen M.

    2002-01-01

    Previous studies have overestimated volcanic plume heights on Mars. In this work, we demonstrate that volcanic plume rise models, as currently formulated, have only limited validity in any environment. These limits are easily violated in the current Mars environment and may also be violated for terrestrial and early Mars conditions. We indicate some of the shortcomings of the model with emphasis on the limited applicability to current Mars conditions. Specifically, basic model assumptions are violated when (1) vertical velocities exceed the speed of sound, (2) radial expansion rates exceed the speed of sound, (3) radial expansion rates approach or exceed the vertical velocity, or (4) plume radius grossly exceeds plume height. All of these criteria are violated for the typical Mars example given here. Solutions imply that the convective rise, model is only valid to a height of approximately 10 kilometers. The reason for the model breakdown is hat the current Mars atmosphere is not of sufficient density to satisfy the conservation equations. It is likely that diffusion and other effects governed by higher-order differential equations are important within the first few kilometers of rise. When the same criteria are applied to eruptions into a higher-density early Mars atmosphere, we find that eruption rates higher than 1.4 x 10(exp 9) kilograms per second also violate model assumptions. This implies a maximum extent of approximately 65 kilometers for convective plumes on early Mars. The estimated plume heights for both current and early Mars are significantly lower than those previously predicted in the literature. Therefore, global-scale distribution of ash seems implausible.

  8. External validation of risk prediction models for incident colorectal cancer using UK Biobank

    PubMed Central

    Usher-Smith, J A; Harshfield, A; Saunders, C L; Sharp, S J; Emery, J; Walter, F M; Muir, K; Griffin, S J

    2018-01-01

    Background: This study aimed to compare and externally validate risk scores developed to predict incident colorectal cancer (CRC) that include variables routinely available or easily obtainable via self-completed questionnaire. Methods: External validation of fourteen risk models from a previous systematic review in 373 112 men and women within the UK Biobank cohort with 5-year follow-up, no prior history of CRC and data for incidence of CRC through linkage to national cancer registries. Results: There were 1719 (0.46%) cases of incident CRC. The performance of the risk models varied substantially. In men, the QCancer10 model and models by Tao, Driver and Ma all had an area under the receiver operating characteristic curve (AUC) between 0.67 and 0.70. Discrimination was lower in women: the QCancer10, Wells, Tao, Guesmi and Ma models were the best performing with AUCs between 0.63 and 0.66. Assessment of calibration was possible for six models in men and women. All would require country-specific recalibration if estimates of absolute risks were to be given to individuals. Conclusions: Several risk models based on easily obtainable data have relatively good discrimination in a UK population. Modelling studies are now required to estimate the potential health benefits and cost-effectiveness of implementing stratified risk-based CRC screening. PMID:29381683

  9. Validation of Statistical Predictive Models Meant to Select Melanoma Patients for Sentinel Lymph Node Biopsy

    PubMed Central

    Sabel, Michael S.; Rice, John D.; Griffith, Kent A.; Lowe, Lori; Wong, Sandra L.; Chang, Alfred E.; Johnson, Timothy M.; Taylor, Jeremy M.G.

    2013-01-01

    Introduction To identify melanoma patients at sufficiently low risk of nodal metastases who could avoid SLN biopsy (SLNB). Several statistical models have been proposed based upon patient/tumor characteristics, including logistic regression, classification trees, random forests and support vector machines. We sought to validate recently published models meant to predict sentinel node status. Methods We queried our comprehensive, prospectively-collected melanoma database for consecutive melanoma patients undergoing SLNB. Prediction values were estimated based upon 4 published models, calculating the same reported metrics: negative predictive value (NPV), rate of negative predictions (RNP), and false negative rate (FNR). Results Logistic regression performed comparably with our data when considering NPV (89.4% vs. 93.6%); however the model’s specificity was not high enough to significantly reduce the rate of biopsies (SLN reduction rate of 2.9%). When applied to our data, the classification tree produced NPV and reduction in biopsies rates that were lower 87.7% vs. 94.1% and 29.8% vs. 14.3%, respectively. Two published models could not be applied to our data due to model complexity and the use of proprietary software. Conclusions Published models meant to reduce the SLNB rate among patients with melanoma either underperformed when applied to our larger dataset, or could not be validated. Differences in selection criteria and histopathologic interpretation likely resulted in underperformance. Development of statistical predictive models must be created in a clinically applicable manner to allow for both validation and ultimately clinical utility. PMID:21822550

  10. Validation of BEHAVE fire behavior predictions in oak savannas using five fuel models

    Treesearch

    Keith Grabner; John Dwyer; Bruce Cutter

    1997-01-01

    Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (...

  11. Ground Target Modeling and Validation Conference (10th) Held in Houghton, Michigan, on 17-19 August 1999

    DTIC Science & Technology

    1999-08-01

    electrically small or only have a greater size in one dimension will not have a significant impact on the total RCS. At 1000 MHz, the components on the model ...7^/43- L"^y 16 % 6 ^Ly Cc>v y to-*^ r*r+r g,^\\oS^ Proceedings ? Tenth Annual Ground Target Modeling and Validation Conference August 1999...of the Tenth Annual Ground Target Modeling and Validation Conference (Unclassified) \\2. PERSONAL AUTHOR(S) William R Reynolds and Tracy T. Maki 13a

  12. Quantitative validation of an air-coupled ultrasonic probe model by Interferometric laser tomography

    NASA Astrophysics Data System (ADS)

    Revel, G. M.; Pandarese, G.; Cavuto, A.

    2012-06-01

    The present paper describes the quantitative validation of a finite element (FE) model of the ultrasound beam generated by an air coupled non-contact ultrasound transducer. The model boundary conditions are given by vibration velocities measured by laser vibrometry on the probe membrane. The proposed validation method is based on the comparison between the simulated 3D pressure field and the pressure data measured with interferometric laser tomography technique. The model details and the experimental techniques are described in paper. The analysis of results shows the effectiveness of the proposed approach and the possibility to quantitatively assess and predict the generated acoustic pressure field, with maximum discrepancies in the order of 20% due to uncertainty effects. This step is important for determining in complex problems the real applicability of air-coupled probes and for the simulation of the whole inspection procedure, also when the component is designed, so as to virtually verify its inspectability.

  13. A Chimpanzee (Pan troglodytes) Model of Triarchic Psychopathy Constructs: Development and Initial Validation

    PubMed Central

    Latzman, Robert D.; Drislane, Laura E.; Hecht, Lisa K.; Brislin, Sarah J.; Patrick, Christopher J.; Lilienfeld, Scott O.; Freeman, Hani J.; Schapiro, Steven J.; Hopkins, William D.

    2015-01-01

    The current work sought to operationalize constructs of the triarchic model of psychopathy in chimpanzees (Pan troglodytes), a species well-suited for investigations of basic biobehavioral dispositions relevant to psychopathology. Across three studies, we generated validity evidence for scale measures of the triarchic model constructs in a large sample (N=238) of socially-housed chimpanzees. Using a consensus-based rating approach, we first identified candidate items for the chimpanzee triarchic (CHMP-Tri) scales from an existing primate personality instrument and refined these into scales. In Study 2, we collected data for these scales from human informants (N=301), and examined their convergent and divergent relations with scales from another triarchic inventory developed for human use. In Study 3, we undertook validation work examining associations between CHMP-Tri scales and task measures of approach-avoidance behavior (N=73) and ability to delay gratification (N=55). Current findings provide support for a chimpanzee model of core dispositions relevant to psychopathy and other forms of psychopathology. PMID:26779396

  14. Validation of the BASALT model for simulating off-axis hydrothermal circulation in oceanic crust

    NASA Astrophysics Data System (ADS)

    Farahat, Navah X.; Archer, David; Abbot, Dorian S.

    2017-08-01

    Fluid recharge and discharge between the deep ocean and the porous upper layer of off-axis oceanic crust tends to concentrate in small volumes of rock, such as seamounts and fractures, that are unimpeded by low-permeability sediments. Basement structure, sediment burial, heat flow, and other regional characteristics of off-axis hydrothermal systems appear to produce considerable diversity of circulation behaviors. Circulation of seawater and seawater-derived fluids controls the extent of fluid-rock interaction, resulting in significant geochemical impacts. However, the primary regional characteristics that control how seawater is distributed within upper oceanic crust are still poorly understood. In this paper we present the details of the two-dimensional (2-D) BASALT (Basement Activity Simulated At Low Temperatures) numerical model of heat and fluid transport in an off-axis hydrothermal system. This model is designed to simulate a wide range of conditions in order to explore the dominant controls on circulation. We validate the BASALT model's ability to reproduce observations by configuring it to represent a thoroughly studied transect of the Juan de Fuca Ridge eastern flank. The results demonstrate that including series of narrow, ridge-parallel fractures as subgrid features produces a realistic circulation scenario at the validation site. In future projects, a full reactive transport version of the validated BASALT model will be used to explore geochemical fluxes in a variety of off-axis hydrothermal environments.

  15. Validating a hydrodynamic framework for long-term modelling of the German Bight

    NASA Astrophysics Data System (ADS)

    Koesters, Frank; Pluess, Andreas; Heyer, Harro; Kastens, Marko; Sehili, Aissa

    2010-05-01

    The intention of the "AufMod" project is to set up a modelling framework for questions concerning the large-scale, long-term morphodynamic evolution of the German Bight. First a hydrodynamic model has been set up which includes the entire North Sea and a sophisticated representation of the German Bight. In a second step, simulations of sediment transport and morphodynamic changes will be processed. This paper deals with the calibration and validation process for the hydrodynamic model in detail. The starting point for "AufMod" was the aim to better understand the morphodynamic processes in the German Bight. Changes in bottom topography need to be predicted to ensure a safe and easy transport through the German waterways leading to ports at the German coast such as Hamburg and Bremerhaven. Within "AufMod" this question is addressed through a combined effort of gaining a comprehensive sedimentological and bathymetric data set as well as running different numerical models. The model is based on the numerical method UnTRIM (Casulli and Zanolli, 2002). The model uses an unstructured grid in the horizontal to provide a good representation of the complex topography. The spatial resolution increases from about 20 km in the North Sea to 20 m within the estuaries. The model forcing represents conditions for the year 2006 and consists of wind stress at the surface, water level elevation and salinity at the open boundaries as well as freshwater inflows. Temperature is not taken into account. For the model validation, there exists a large number of over 40 hydrodynamic monitoring stations which are used to compare modelled and measured data. The calibration process consists of adapting the tidal components at the open boundaries following the approach of Pluess (2003). The validation process includes the analysis of tidal components of water level elevation and current values as well as an analysis of tidal characteristic values, e.g. tidal low and high water. Based on these

  16. The PKRC's Value as a Professional Development Model Validated

    ERIC Educational Resources Information Center

    Larson, Dale

    2013-01-01

    After a brief review of the 4-H professional development standards, a new model for determining the value of continuing professional development is introduced and applied to the 4-H standards. The validity of the 4-H standards is affirmed. 4-H Extension professionals are encouraged to celebrate the strength of their standards and to engage the…

  17. A validated finite element model of a soft artificial muscle motor

    NASA Astrophysics Data System (ADS)

    Tse, Tony Chun H.; O'Brien, Benjamin; McKay, Thomas; Anderson, Iain A.

    2011-04-01

    The Biomimetics Laboratory has developed a soft artificial muscle motor based on Dielectric Elastomers. The motor, 'Flexidrive', is light-weight and has low system complexity. It works by gripping and turning a shaft with a soft gear, like we would with our fingers. The motor's performance depends on many factors, such as actuation waveform, electrode patterning, geometries and contact tribology between the shaft and gear. We have developed a finite element model (FEM) of the motor as a study and design tool. Contact interaction was integrated with previous material and electromechanical coupling models in ABAQUS. The model was experimentally validated through a shape and blocked force analysis.

  18. SWAT model uncertainty analysis, calibration and validation for runoff simulation in the Luvuvhu River catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Thavhana, M. P.; Savage, M. J.; Moeletsi, M. E.

    2018-06-01

    The soil and water assessment tool (SWAT) was calibrated for the Luvuvhu River catchment, South Africa in order to simulate runoff. The model was executed through QSWAT which is an interface between SWAT and QGIS. Data from four weather stations and four weir stations evenly distributed over the catchment were used. The model was run for a 33-year period of 1983-2015. Sensitivity analysis, calibration and validation were conducted using the sequential uncertainty fitting (SUFI-2) algorithm through its interface with SWAT calibration and uncertainty procedure (SWAT-CUP). The calibration process was conducted for the period 1986 to 2005 while the validation process was from 2006 to 2015. Six model efficiency measures were used, namely: coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE) index, root mean square error (RMSE)-observations standard deviation ratio (RSR), percent bias (PBIAS), probability (P)-factor and correlation coefficient (R)-factor were used. Initial results indicated an over-estimation of low flows with regression slope of less than 0.7. Twelve model parameters were applied for sensitivity analysis with four (ALPHA_BF, CN2, GW_DELAY and SOL_K) found to be more distinguishable and sensitive to streamflow (p < 0.05). The SUFI-2 algorithm through the interface with the SWAT-CUP was capable of capturing the model's behaviour, with calibration results showing an R2 of 0.63, NSE index of 0.66, RSR of 0.56 and a positive PBIAS of 16.3 while validation results revealed an R2 of 0.52, NSE of 0.48, RSR of 0.72 and PBIAS of 19.90. The model produced P-factor of 0.67 and R-factor of 0.68 during calibration and during validation, 0.69 and 0.53 respectively. Although performance indicators yielded fair and acceptable results, the P-factor was still below the recommended model performance of 70%. Apart from the unacceptable P-factor values, the results obtained in this study demonstrate acceptable model performance during calibration while

  19. Derivation and External Validation of Prediction Models for Advanced Chronic Kidney Disease Following Acute Kidney Injury.

    PubMed

    James, Matthew T; Pannu, Neesh; Hemmelgarn, Brenda R; Austin, Peter C; Tan, Zhi; McArthur, Eric; Manns, Braden J; Tonelli, Marcello; Wald, Ron; Quinn, Robert R; Ravani, Pietro; Garg, Amit X

    2017-11-14

    Some patients will develop chronic kidney disease after a hospitalization with acute kidney injury; however, no risk-prediction tools have been developed to identify high-risk patients requiring follow-up. To derive and validate predictive models for progression of acute kidney injury to advanced chronic kidney disease. Data from 2 population-based cohorts of patients with a prehospitalization estimated glomerular filtration rate (eGFR) of more than 45 mL/min/1.73 m2 and who had survived hospitalization with acute kidney injury (defined by a serum creatinine increase during hospitalization > 0.3 mg/dL or > 50% of their prehospitalization baseline), were used to derive and validate multivariable prediction models. The risk models were derived from 9973 patients hospitalized in Alberta, Canada (April 2004-March 2014, with follow-up to March 2015). The risk models were externally validated with data from a cohort of 2761 patients hospitalized in Ontario, Canada (June 2004-March 2012, with follow-up to March 2013). Demographic, laboratory, and comorbidity variables measured prior to discharge. Advanced chronic kidney disease was defined by a sustained reduction in eGFR less than 30 mL/min/1.73 m2 for at least 3 months during the year after discharge. All participants were followed up for up to 1 year. The participants (mean [SD] age, 66 [15] years in the derivation and internal validation cohorts and 69 [11] years in the external validation cohort; 40%-43% women per cohort) had a mean (SD) baseline serum creatinine level of 1.0 (0.2) mg/dL and more than 20% had stage 2 or 3 acute kidney injury. Advanced chronic kidney disease developed in 408 (2.7%) of 9973 patients in the derivation cohort and 62 (2.2%) of 2761 patients in the external validation cohort. In the derivation cohort, 6 variables were independently associated with the outcome: older age, female sex, higher baseline serum creatinine value, albuminuria, greater severity of acute kidney injury, and higher

  20. An extended protocol for usability validation of medical devices: Research design and reference model.

    PubMed

    Schmettow, Martin; Schnittker, Raphaela; Schraagen, Jan Maarten

    2017-05-01

    This paper proposes and demonstrates an extended protocol for usability validation testing of medical devices. A review of currently used methods for the usability evaluation of medical devices revealed two main shortcomings. Firstly, the lack of methods to closely trace the interaction sequences and derive performance measures. Secondly, a prevailing focus on cross-sectional validation studies, ignoring the issues of learnability and training. The U.S. Federal Drug and Food Administration's recent proposal for a validation testing protocol for medical devices is then extended to address these shortcomings: (1) a novel process measure 'normative path deviations' is introduced that is useful for both quantitative and qualitative usability studies and (2) a longitudinal, completely within-subject study design is presented that assesses learnability, training effects and allows analysis of diversity of users. A reference regression model is introduced to analyze data from this and similar studies, drawing upon generalized linear mixed-effects models and a Bayesian estimation approach. The extended protocol is implemented and demonstrated in a study comparing a novel syringe infusion pump prototype to an existing design with a sample of 25 healthcare professionals. Strong performance differences between designs were observed with a variety of usability measures, as well as varying training-on-the-job effects. We discuss our findings with regard to validation testing guidelines, reflect on the extensions and discuss the perspectives they add to the validation process. Copyright © 2017 Elsevier Inc. All rights reserved.