Sample records for validation network prototype

  1. Prototype of NASA's Global Precipitation Measurement Mission Ground Validation System

    NASA Technical Reports Server (NTRS)

    Schwaller, M. R.; Morris, K. R.; Petersen, W. A.

    2007-01-01

    NASA is developing a Ground Validation System (GVS) as one of its contributions to the Global Precipitation Mission (GPM). The GPM GVS provides an independent means for evaluation, diagnosis, and ultimately improvement of GPM spaceborne measurements and precipitation products. NASA's GPM GVS consists of three elements: field campaigns/physical validation, direct network validation, and modeling and simulation. The GVS prototype of direct network validation compares Tropical Rainfall Measuring Mission (TRMM) satellite-borne radar data to similar measurements from the U.S. national network of operational weather radars. A prototype field campaign has also been conducted; modeling and simulation prototypes are under consideration.

  2. Data Visualization and Analysis Tools for the Global Precipitation Measurement (GPM) Validation Network

    NASA Technical Reports Server (NTRS)

    Morris, Kenneth R.; Schwaller, Mathew

    2010-01-01

    The Validation Network (VN) prototype for the Global Precipitation Measurement (GPM) Mission compares data from the Tropical Rainfall Measuring Mission (TRMM) satellite Precipitation Radar (PR) to similar measurements from U.S. and international operational weather radars. This prototype is a major component of the GPM Ground Validation System (GVS). The VN provides a means for the precipitation measurement community to identify and resolve significant discrepancies between the ground radar (GR) observations and similar satellite observations. The VN prototype is based on research results and computer code described by Anagnostou et al. (2001), Bolen and Chandrasekar (2000), and Liao et al. (2001), and has previously been described by Morris, et al. (2007). Morris and Schwaller (2009) describe the PR-GR volume-matching algorithm used to create the VN match-up data set used for the comparisons. This paper describes software tools that have been developed for visualization and statistical analysis of the original and volume matched PR and GR data.

  3. NC truck network model development research.

    DOT National Transportation Integrated Search

    2008-09-01

    This research develops a validated prototype truck traffic network model for North Carolina. The model : includes all counties and metropolitan areas of North Carolina and major economic areas throughout the : U.S. Geographic boundaries, population a...

  4. Independent verification and validation report of Washington state ferries' wireless high speed data project

    DOT National Transportation Integrated Search

    2008-06-30

    The following Independent Verification and Validation (IV&V) report documents and presents the results of a study of the Washington State Ferries Prototype Wireless High Speed Data Network. The purpose of the study was to evaluate and determine if re...

  5. Test and Evaluation of a Prototyped Sensor-Camera Network for Persistent Intelligence, Surveillance, and Reconnaissance in Support of Tactical Coalition Networking Environments

    DTIC Science & Technology

    2006-06-01

    scenarios. The demonstration planned for May 2006, in Chiang Mai , Thailand, will have a first-responder, law enforcement, and counter-terrorism and counter...to local ( Chiang Mai ), theater (Bangkok), and global (Alameda, California) command and control centers. This fusion of information validates using...network performance to be tested during moderate environmental conditions. The third and fourth scenarios were conducted in Chiang Mai , Thailand

  6. The Global File System

    NASA Technical Reports Server (NTRS)

    Soltis, Steven R.; Ruwart, Thomas M.; OKeefe, Matthew T.

    1996-01-01

    The global file system (GFS) is a prototype design for a distributed file system in which cluster nodes physically share storage devices connected via a network-like fiber channel. Networks and network-attached storage devices have advanced to a level of performance and extensibility so that the previous disadvantages of shared disk architectures are no longer valid. This shared storage architecture attempts to exploit the sophistication of storage device technologies whereas a server architecture diminishes a device's role to that of a simple component. GFS distributes the file system responsibilities across processing nodes, storage across the devices, and file system resources across the entire storage pool. GFS caches data on the storage devices instead of the main memories of the machines. Consistency is established by using a locking mechanism maintained by the storage devices to facilitate atomic read-modify-write operations. The locking mechanism is being prototyped in the Silicon Graphics IRIX operating system and is accessed using standard Unix commands and modules.

  7. Networking Technologies Enable Advances in Earth Science

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard

    2004-01-01

    This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.

  8. Controlling extreme events on complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-08-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network ``mobile'' can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.

  9. Implementing a prototyping network for injection moulded imaging lenses in Finland

    NASA Astrophysics Data System (ADS)

    Keränen, K.; Mäkinen, J.-T.; Pääkkönen, E. J.; Koponen, M.; Karttunen, M.; Hiltunen, J.; Karioja, P.

    2005-10-01

    A network for prototyping imaging lenses using injection moulding was established in Finland. The network consists of several academic and industrial partners capable of designing, processing and characterising imaging lenses produced by injection moulding technology. In order to validate the operation of the network a demonstrator lens was produced. The process steps included in the manufacturing were lens specification, designing and modelling, material selection, mould tooling, moulding process simulation, injection moulding and characterisation. A magnifying imaging singlet lens to be used as an add-on in a camera phone was selected as a demonstrator. The design of the add-on lens proved to be somewhat challenging, but a double aspheric singlet lens design fulfilling nearly the requirement specification was produced. In the material selection task the overall characteristics profile of polymethyl methacrylate (PMMA) material was seen to be the most fitting to the pilot case. It is a low cost material with good moulding properties and therefore it was selected as a material for the pilot lens. Lens mould design was performed using I-DEAS and tested by using MoldFlow 3D injection moulding simulation software. The simulations predicted the achievable lens quality in the processing, when using a two-cavity mould design. First cavity was tooled directly into the mould plate and the second cavity was made by tooling separate insert pieces for the mould. Mould material was steel and the inserts were made from Moldmax copper alloy. Parts were tooled with high speed milling machines. Insert pieces were hand polished after tooling. Prototype lenses were injection moulded using two PMMA grades, namely 6N and 7N. Different process parameters were also experimented in the injection moulding test runs. Prototypes were characterised by measuring mechanical dimensions, surface profile, roughness and MTF of the lenses. Characterisations showed that the lens surface RMS roughness was 30-50 nm and the profile deviation was 5 μm from the design at a distance of 0.3 mm from the lens vertex. These manufacturing defects caused that the measured MTF values were lower than designed. The lens overall quality, however, was adequate to demonstrate the concept successfully. Through the implementation of the demonstrator lens we could test effectively different stages of the manufacturing process and get information about process component weight and risk factors and validate the overall performance of the network.

  10. A mobile sensing system for structural health monitoring: design and validation

    NASA Astrophysics Data System (ADS)

    Zhu, Dapeng; Yi, Xiaohua; Wang, Yang; Lee, Kok-Meng; Guo, Jiajie

    2010-05-01

    This paper describes a new approach using mobile sensor networks for structural health monitoring. Compared with static sensors, mobile sensor networks offer flexible system architectures with adaptive spatial resolutions. The paper first describes the design of a mobile sensing node that is capable of maneuvering on structures built with ferromagnetic materials. The mobile sensing node can also attach/detach an accelerometer onto/from the structural surface. The performance of the prototype mobile sensor network has been validated through laboratory experiments. Two mobile sensing nodes are adopted for navigating on a steel portal frame and providing dense acceleration measurements. Transmissibility function analysis is conducted to identify structural damage using data collected by the mobile sensing nodes. This preliminary work is expected to spawn transformative changes in the use of mobile sensors for future structural health monitoring.

  11. Security-Enhanced Autonomous Network Management

    NASA Technical Reports Server (NTRS)

    Zeng, Hui

    2015-01-01

    Ensuring reliable communication in next-generation space networks requires a novel network management system to support greater levels of autonomy and greater awareness of the environment and assets. Intelligent Automation, Inc., has developed a security-enhanced autonomous network management (SEANM) approach for space networks through cross-layer negotiation and network monitoring, analysis, and adaptation. The underlying technology is bundle-based delay/disruption-tolerant networking (DTN). The SEANM scheme allows a system to adaptively reconfigure its network elements based on awareness of network conditions, policies, and mission requirements. Although SEANM is generically applicable to any radio network, for validation purposes it has been prototyped and evaluated on two specific networks: a commercial off-the-shelf hardware test-bed using Institute of Electrical Engineers (IEEE) 802.11 Wi-Fi devices and a military hardware test-bed using AN/PRC-154 Rifleman Radio platforms. Testing has demonstrated that SEANM provides autonomous network management resulting in reliable communications in delay/disruptive-prone environments.

  12. Prototype-Incorporated Emotional Neural Network.

    PubMed

    Oyedotun, Oyebade K; Khashman, Adnan

    2017-08-15

    Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many ''engineering'' prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as ``prototype-incorporated EmNN''. Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.

  13. Field test results with the targeted search MCSA. [multi-channel spectrum analyzer for SETI

    NASA Technical Reports Server (NTRS)

    Tarter, J. C.

    1988-01-01

    In April 1985, a 74,000 channel prototype of the multichannel spectrum analyzer (MCSA) that NASA plans to use in a systematic search for extraterrestrial intelligence (SETI) was installed at DSS13, a 26 meter R&D antenna facility at the Goldstone Deep Space Network (DSN) site. Since that time the instrumentation has been used to validate the performance of signal detection algorithms using locally injected signals and the weak carriers from distant spacecraft. This paper describes results from the Goldstone Field Tests and plans to move the prototype equipment to other sites where SETI may be conducted in the future.

  14. PhotoMEA: an opto-electronic biosensor for monitoring in vitro neuronal network activity.

    PubMed

    Ghezzi, Diego; Pedrocchi, Alessandra; Menegon, Andrea; Mantero, Sara; Valtorta, Flavia; Ferrigno, Giancarlo

    2007-02-01

    PhotoMEA is a biosensor useful for the analysis of an in vitro neuronal network, fully based on optical methods. Its function is based on the stimulation of neurons with caged glutamate and the recording of neuronal activity by Voltage-Sensitive fluorescent Dyes (VSD). The main advantage is that it will be possible to stimulate even at sub-single neuron level and to record with high resolution the activity of the entire network in the culture. A large-scale view of neuronal intercommunications offers a unique opportunity for testing the ability of drugs to affect neuronal properties as well as alterations in the behaviour of the entire network. The concept and a prototype for validation is described here in detail.

  15. Edmodo social learning network for elementary school mathematics learning

    NASA Astrophysics Data System (ADS)

    Ariani, Y.; Helsa, Y.; Ahmad, S.; Prahmana, RCI

    2017-12-01

    A developed instructional media can be as printed media, visual media, audio media, and multimedia. The development of instructional media can also take advantage of technological development by utilizing Edmodo social network. This research aims to develop a digital classroom learning model using Edmodo social learning network for elementary school mathematics learning which is practical, valid and effective in order to improve the quality of learning activities. The result of this research showed that the prototype of mathematics learning device for elementary school students using Edmodo was in good category. There were 72% of students passed the assessment as a result of Edmodo learning. Edmodo has become a promising way to engage students in a collaborative learning process.

  16. From MIMO-OFDM Algorithms to a Real-Time Wireless Prototype: A Systematic Matlab-to-Hardware Design Flow

    NASA Astrophysics Data System (ADS)

    Weijers, Jan-Willem; Derudder, Veerle; Janssens, Sven; Petré, Frederik; Bourdoux, André

    2006-12-01

    To assess the performance of forthcoming 4th generation wireless local area networks, the algorithmic functionality is usually modelled using a high-level mathematical software package, for instance, Matlab. In order to validate the modelling assumptions against the real physical world, the high-level functional model needs to be translated into a prototype. A systematic system design methodology proves very valuable, since it avoids, or, at least reduces, numerous design iterations. In this paper, we propose a novel Matlab-to-hardware design flow, which allows to map the algorithmic functionality onto the target prototyping platform in a systematic and reproducible way. The proposed design flow is partly manual and partly tool assisted. It is shown that the proposed design flow allows to use the same testbench throughout the whole design flow and avoids time-consuming and error-prone intermediate translation steps.

  17. On detection and visualization techniques for cyber security situation awareness

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Wei, Shixiao; Shen, Dan; Blowers, Misty; Blasch, Erik P.; Pham, Khanh D.; Chen, Genshe; Zhang, Hanlin; Lu, Chao

    2013-05-01

    Networking technologies are exponentially increasing to meet worldwide communication requirements. The rapid growth of network technologies and perversity of communications pose serious security issues. In this paper, we aim to developing an integrated network defense system with situation awareness capabilities to present the useful information for human analysts. In particular, we implement a prototypical system that includes both the distributed passive and active network sensors and traffic visualization features, such as 1D, 2D and 3D based network traffic displays. To effectively detect attacks, we also implement algorithms to transform real-world data of IP addresses into images and study the pattern of attacks and use both the discrete wavelet transform (DWT) based scheme and the statistical based scheme to detect attacks. Through an extensive simulation study, our data validate the effectiveness of our implemented defense system.

  18. A Scalable Multicore Architecture With Heterogeneous Memory Structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs).

    PubMed

    Moradi, Saber; Qiao, Ning; Stefanini, Fabio; Indiveri, Giacomo

    2018-02-01

    Neuromorphic computing systems comprise networks of neurons that use asynchronous events for both computation and communication. This type of representation offers several advantages in terms of bandwidth and power consumption in neuromorphic electronic systems. However, managing the traffic of asynchronous events in large scale systems is a daunting task, both in terms of circuit complexity and memory requirements. Here, we present a novel routing methodology that employs both hierarchical and mesh routing strategies and combines heterogeneous memory structures for minimizing both memory requirements and latency, while maximizing programming flexibility to support a wide range of event-based neural network architectures, through parameter configuration. We validated the proposed scheme in a prototype multicore neuromorphic processor chip that employs hybrid analog/digital circuits for emulating synapse and neuron dynamics together with asynchronous digital circuits for managing the address-event traffic. We present a theoretical analysis of the proposed connectivity scheme, describe the methods and circuits used to implement such scheme, and characterize the prototype chip. Finally, we demonstrate the use of the neuromorphic processor with a convolutional neural network for the real-time classification of visual symbols being flashed to a dynamic vision sensor (DVS) at high speed.

  19. A prototype implementation of a network-level intrusion detection system. Technical report number CS91-11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heady, R.; Luger, G.F.; Maccabe, A.B.

    1991-05-15

    This paper presents the implementation of a prototype network level intrusion detection system. The prototype system monitors base level information in network packets (source, destination, packet size, time, and network protocol), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.

  20. Technical report on prototype intelligent network flow optimization (INFLO) dynamic speed harmonization and queue warning.

    DOT National Transportation Integrated Search

    2015-06-01

    This Technical Report on Prototype Intelligent Network Flow Optimization (INFLO) Dynamic Speed Harmonization and Queue Warning is the final report for the project. It describes the prototyping, acceptance testing and small-scale demonstration of the ...

  1. A Mobile Sensor Network System for Monitoring of Unfriendly Environments.

    PubMed

    Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo

    2008-11-14

    Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.

  2. Validation of the European Prototype for Integrated Care at Municipal Level in Savona: Updating and Maintenance

    DTIC Science & Technology

    2001-10-25

    within one of the programmes sponsored by the European Commission.The system mainly consists of a shared care database in which each groups of...care database in which each community facility, or group of facilities, is supported by a local area network (LAN). Each of these LANs is connected over...functions. The software is layered, so that the client application is not affected by how the servers are implemented or which database system they use

  3. Prototyping an institutional IAIMS/UMLS information environment for an academic medical center.

    PubMed

    Miller, P L; Paton, J A; Clyman, J I; Powsner, S M

    1992-07-01

    The paper describes a prototype information environment designed to link network-based information resources in an integrated fashion and thus enhance the information capabilities of an academic medical center. The prototype was implemented on a single Macintosh computer to permit exploration of the overall "information architecture" and to demonstrate the various desired capabilities prior to full-scale network-based implementation. At the heart of the prototype are two components: a diverse set of information resources available over an institutional computer network and an information sources map designed to assist users in finding and accessing information resources relevant to their needs. The paper describes these and other components of the prototype and presents a scenario illustrating its use. The prototype illustrates the link between the goals of two National Library of Medicine initiatives, the Integrated Academic Information Management System (IAIMS) and the Unified Medical Language System (UMLS).

  4. Perception Evolution Network Based on Cognition Deepening Model--Adapting to the Emergence of New Sensory Receptor.

    PubMed

    Xing, Youlu; Shen, Furao; Zhao, Jinxi

    2016-03-01

    The proposed perception evolution network (PEN) is a biologically inspired neural network model for unsupervised learning and online incremental learning. It is able to automatically learn suitable prototypes from learning data in an incremental way, and it does not require the predefined prototype number or the predefined similarity threshold. Meanwhile, being more advanced than the existing unsupervised neural network model, PEN permits the emergence of a new dimension of perception in the perception field of the network. When a new dimension of perception is introduced, PEN is able to integrate the new dimensional sensory inputs with the learned prototypes, i.e., the prototypes are mapped to a high-dimensional space, which consists of both the original dimension and the new dimension of the sensory inputs. In the experiment, artificial data and real-world data are used to test the proposed PEN, and the results show that PEN can work effectively.

  5. A Prototype of Reflection Pulse Oximeter Designed for Mobile Healthcare.

    PubMed

    Lu, Zhiyuan; Chen, Xiang; Dong, Zhongfei; Zhao, Zhangyan; Zhang, Xu

    2016-09-01

    This paper introduces a pulse oximeter prototype designed for mobile healthcare. In this prototype, a reflection pulse oximeter is embedded into the back cover of a smart handheld device to offer the convenient measurement of both heart rate (HR) and SpO2 (estimation of arterial oxygen saturation) for home or mobile applications. Novel and miniaturized circuit modules including a chopper network and a filtering amplifier were designed to overcome the influence of ambient light and interferences that are caused by embedding the sensor into a flat cover. A method based on adaptive trough detection for improved HR and SpO2 estimation is proposed with appropriate simplification for its implementation on mobile devices. A fast and effective photoplethysmogram validation scheme is also proposed. Clinical experiments have been carried out to calibrate and test our oximeter. Our prototype oximeter can achieve comparable performance to a clinical oximeter with no significant difference revealed by paired t -tests ( p = 0.182 for SpO2 measurement and p = 0.496 for HR measurement). The design of this pulse oximeter will facilitate fast and convenient measurement of SpO2 for mobile healthcare.

  6. Prediction of Slot Shape and Slot Size for Improving the Performance of Microstrip Antennas Using Knowledge-Based Neural Networks.

    PubMed

    Khan, Taimoor; De, Asok

    2014-01-01

    In the last decade, artificial neural networks have become very popular techniques for computing different performance parameters of microstrip antennas. The proposed work illustrates a knowledge-based neural networks model for predicting the appropriate shape and accurate size of the slot introduced on the radiating patch for achieving desired level of resonance, gain, directivity, antenna efficiency, and radiation efficiency for dual-frequency operation. By incorporating prior knowledge in neural model, the number of required training patterns is drastically reduced. Further, the neural model incorporated with prior knowledge can be used for predicting response in extrapolation region beyond the training patterns region. For validation, a prototype is also fabricated and its performance parameters are measured. A very good agreement is attained between measured, simulated, and predicted results.

  7. Prediction of Slot Shape and Slot Size for Improving the Performance of Microstrip Antennas Using Knowledge-Based Neural Networks

    PubMed Central

    De, Asok

    2014-01-01

    In the last decade, artificial neural networks have become very popular techniques for computing different performance parameters of microstrip antennas. The proposed work illustrates a knowledge-based neural networks model for predicting the appropriate shape and accurate size of the slot introduced on the radiating patch for achieving desired level of resonance, gain, directivity, antenna efficiency, and radiation efficiency for dual-frequency operation. By incorporating prior knowledge in neural model, the number of required training patterns is drastically reduced. Further, the neural model incorporated with prior knowledge can be used for predicting response in extrapolation region beyond the training patterns region. For validation, a prototype is also fabricated and its performance parameters are measured. A very good agreement is attained between measured, simulated, and predicted results. PMID:27382616

  8. FPGA platform for prototyping and evaluation of neural network automotive applications

    NASA Technical Reports Server (NTRS)

    Aranki, N.; Tawel, R.

    2002-01-01

    In this paper we present an FPGA based reconfigurable computing platform for prototyping and evaluation of advanced neural network based applications for control and diagnostics in an automotive sub-systems.

  9. Intelligent Network Flow Optimization (INFLO) prototype acceptance test summary.

    DOT National Transportation Integrated Search

    2015-05-01

    This report summarizes the results of System Acceptance Testing for the implementation of the Intelligent Network Flow Optimization (INFLO) Prototype bundle within the Dynamic Mobility Applications (DMA) portion of the Connected Vehicle Program. This...

  10. A comparison of the validity of the five-factor model (FFM) personality disorder prototypes. Using FFM self-report and interview measures.

    PubMed

    Miller, Joshua D; Bagby, R Michael; Pilkonis, Paul A

    2005-12-01

    Recent studies have demonstrated that personality disorders (PDs) can be assessed via a prototype-matching technique, which enables researchers and clinicians to match an individual's five-factor model (FFM) personality profile to an expert-generated prototype. The current study examined the relations between these prototype scores, using interview and self-report data, and PD symptoms in an outpatient sample (N = 115). Both sets of PD prototype scores demonstrated significant convergent validity with PD symptom counts, suggesting that the FFM PD prototype scores are appropriate for use with both sources of data.

  11. Computer-Based Semantic Network in Molecular Biology: A Demonstration.

    ERIC Educational Resources Information Center

    Callman, Joshua L.; And Others

    This paper analyzes the hardware and software features that would be desirable in a computer-based semantic network system for representing biology knowledge. It then describes in detail a prototype network of molecular biology knowledge that has been developed using Filevision software and a Macintosh computer. The prototype contains about 100…

  12. Neural network adaptive control of wing-rock motion of aircraft model mounted on three-degree-of-freedom dynamic rig in wind tunnel

    NASA Astrophysics Data System (ADS)

    Ignatyev, D. I.

    2018-06-01

    High-angles-of-attack dynamics of aircraft are complicated with dangerous phenomena such as wing rock, stall, and spin. Autonomous dynamically scaled aircraft model mounted in three-degree-of-freedom (3DoF) dynamic rig is proposed for studying aircraft dynamics and prototyping of control laws in wind tunnel. Dynamics of the scaled aircraft model in 3DoF manoeuvre rig in wind tunnel is considered. The model limit-cycle oscillations are obtained at high angles of attack. A neural network (NN) adaptive control suppressing wing rock motion is designed. The wing rock suppression with the proposed control law is validated using nonlinear time-domain simulations.

  13. Design of autonomous sensor nodes for remote soil monitoring in tropical banana plantation

    NASA Astrophysics Data System (ADS)

    Tiausas, Francis Jerome G.; Co, Jerelyn; Macalinao, Marc Joseph M.; Guico, Maria Leonora; Monje, Jose Claro; Oppus, Carlos

    2017-09-01

    Determining the effect of Fusarium oxysporum f. sp. cubense Tropical Race 4 on various soil parameters is essential in modeling and predicting its occurrence in banana plantations. One way to fulfill this is through a sensor network that will continuously and automatically monitor environmental conditions at suspect locations for an extended period of time. A wireless sensor network was developed specifically for this purpose. This sensor network is capable of measuring soil acidity, moisture, temperature, and conductivity. The designed prototype made use of off-the-shelf Parrot Flower Power soil sensor, pH sensor, Bluno Beetle, battery, and 3D-printed materials, catering specifically to the conditions of tropical banana plantations with consideration for sensor node size, communication, and power. Sensor nodes were tested on both simulated tropical environments and on an actual banana plantation in San Jose, General Santos City, Philippines. Challenges were resolved through iterative design and development of prototypes. Several tests including temperature and weather resilience, and structural stress tests were done to validate the design. Findings showed that the WSN nodes developed for this purpose are resilient to high tropical temperatures for up to 12 hours of continuous exposure, are able to withstand compressive forces of up to 8880.6 N, and can reliably collect data automatically from the area 47.96% of the time at an hourly frequency under actual field conditions.

  14. Proof of Concept in Disrupted Tactical Networking

    DTIC Science & Technology

    2017-09-01

    because of the risk of detection. In this study , we design projectile-based mesh networking prototypes as one potential type of short-living network...to communicate because of the risk of detection. In this study , we design projectile-based mesh networking prototypes as one potential type of short...reader with a background in systems-theory. This study is designed using systems theory and uses systems theory as a lens through which to observe

  15. Iowa Hydrologic and Environmental Validation Site: A Proposal to the Community

    NASA Astrophysics Data System (ADS)

    Bradley, A. A.; Ciach, G. J.; Eichinger, W. N.; Hornbuckle, K. C.; Illman, W.; Krajewski, W. F.; Kruger, A.; Patel, V. C.; Weirich, F. H.; Zhang, Y.

    2002-05-01

    We present a proposal to the hydrologic research community to establish a validation site in eastern Iowa. Many hydrological and meteorological variables observed using remote sensing techniques or predicted using numerical simulation models require validation. Validation, understood as quantification of the uncertainty, is difficult and often even impossible using operationally available in-situ observations. Specialized high-density networks of sensors with well-established error characteristics are required to serve as reference. We propose to establish a well-instrumented site for validation of several hydrometeorlogical and environmental variables near Iowa City, Iowa. We foresee this site as a national resource of detailed information collected in partnership with federal, state, and local agencies but independent of their routine mission oriented operations. The data would be distributed in real-time via the Internet to the research community nation wide to support model validation and development studies. In the presentation we justify the need for such sites, we make the case for setting a prototype site in Iowa, and we present preliminary considerations for the site's design and the data distribution system.

  16. ATM encryption testing

    NASA Astrophysics Data System (ADS)

    Capell, Joyce; Deeth, David

    1996-01-01

    This paper describes why encryption was selected by Lockheed Martin Missiles & Space as the means for securing ATM networks. The ATM encryption testing program is part of an ATM network trial provided by Pacific Bell under the California Research Education Network (CalREN). The problem being addressed is the threat to data security which results when changing from a packet switched network infrastructure to a circuit switched ATM network backbone. As organizations move to high speed cell-based networks, there is a break down in the traditional security model which is designed to protect packet switched data networks from external attacks. This is due to the fact that most data security firewalls filter IP packets, restricting inbound and outbound protocols, e.g. ftp. ATM networks, based on cell-switching over virtual circuits, does not support this method for restricting access since the protocol information is not carried by each cell. ATM switches set up multiple virtual connections, thus there is no longer a single point of entry into the internal network. The problem is further complicated by the fact that ATM networks support high speed multi-media applications, including real time video and video teleconferencing which are incompatible with packet switched networks. The ability to restrict access to Lockheed Martin networks in support of both unclassified and classified communications is required before ATM network technology can be fully deployed. The Lockheed Martin CalREN ATM testbed provides the opportunity to test ATM encryption prototypes with actual applications to assess the viability of ATM encryption methodologies prior to installing large scale ATM networks. Two prototype ATM encryptors are being tested: (1) `MILKBUSH' a prototype encryptor developed by NSA for transmission of government classified data over ATM networks, and (2) a prototype ATM encryptor developed by Sandia National Labs in New Mexico, for the encryption of proprietary data.

  17. Construct and Concurrent Validity of a Prototype Questionnaire to Survey Public Attitudes toward Stuttering

    ERIC Educational Resources Information Center

    St. Louis, Kenneth O.; Reichel, Isabella K.; Yaruss, J. Scott; Lubker, Bobbie Boyd

    2009-01-01

    Purpose: Construct validity and concurrent validity were investigated in a prototype survey instrument, the "Public Opinion Survey of Human Attributes-Experimental Edition" (POSHA-E). The POSHA-E was designed to measure public attitudes toward stuttering within the context of eight other attributes, or "anchors," assumed to range from negative…

  18. Form Factor Evaluation of Open Body Area Network (OBAN) Physiological Status Monitoring (PSM) System Prototype Designs

    DTIC Science & Technology

    2018-05-11

    SYSTEM PROTOTYPE DESIGNS DISCLAIMERS The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as...FORM FACTOR EVALUATION OF OPEN BODY AREA NETWORK (OBAN) PHYSIOLOGICAL STATUS MONITORING (PSM) SYSTEM PROTOTYPE DESIGNS William J...security; and is designed to function for 72 hours or more. The test described in this report assesses proposed form-factor designs . Feedback using

  19. The Validity of the Five-Factor Model Prototypes for Personality Disorders in Two Clinical Samples

    ERIC Educational Resources Information Center

    Miller, Joshua D.; Reynolds, Sarah K.; Pilkonis, Paul A.

    2004-01-01

    The authors examined the validity of D. R. Lynam and T. A. Widiger's (2001) prototypes for personality disorders (PDs) derived from the facets of the 5-factor model (FFM) of personality in 2 clinical samples. In the 1st sample (N = 94), there was good agreement between the prototypes generated by experts and the profiles reported by patients.…

  20. A user-centred methodology for designing an online social network to motivate health behaviour change.

    PubMed

    Kamal, Noreen; Fels, Sidney

    2013-01-01

    Positive health behaviour is critical to preventing illness and managing chronic conditions. A user-centred methodology was employed to design an online social network to motivate health behaviour change. The methodology was augmented by utilizing the Appeal, Belonging, Commitment (ABC) Framework, which is based on theoretical models for health behaviour change and use of online social networks. The user-centred methodology included four phases: 1) initial user inquiry on health behaviour and use of online social networks; 2) interview feedback on paper prototypes; 2) laboratory study on medium fidelity prototype; and 4) a field study on the high fidelity prototype. The points of inquiry through these phases were based on the ABC Framework. This yielded an online social network system that linked to external third party databases to deploy to users via an interactive website.

  1. The Maryland Commercial Vehicle Information Systems and Networks (CVISN) prototype project plan : making intelligent use of ITS/CVO

    DOT National Transportation Integrated Search

    1996-05-15

    This document constitutes the project plan for the Maryland Commercial Vehicle : Information Systems and Networks Prototype, a project undertaken by the State of : Maryland in partnership with the Federal Highway Administration, the Commonwealth of :...

  2. Characterization of HIRF Susceptibility Threshold for a Prototype Implementation of an Onboard Data Network

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2012-01-01

    An experiment was conducted to characterize the effects of HIRF-induced upsets on a prototype onboard data network. The experiment was conducted at the NASA Langley Research Center s High Intensity Radiation Field Laboratory and used a generic distributed system prototyping platform to realize the data network. This report presents the results of the hardware susceptibility threshold characterization which examined the dependence of measured susceptibility on factors like the frequency and modulation of the radiation, layout of the physical nodes and position of the nodes in the test chamber. The report also includes lessons learned during the development and execution of the experiment.

  3. Multispectral image fusion using neural networks

    NASA Technical Reports Server (NTRS)

    Kagel, J. H.; Platt, C. A.; Donaven, T. W.; Samstad, E. A.

    1990-01-01

    A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard, a circuit card assembly, and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations, results, and a description of the prototype system are presented.

  4. Adaptive Optimization of Aircraft Engine Performance Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Long, Theresa W.

    1995-01-01

    Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.

  5. Network-Based Real-time Integrated Fire Detection and Alarm (FDA) System with Building Automation

    NASA Astrophysics Data System (ADS)

    Anwar, F.; Boby, R. I.; Rashid, M. M.; Alam, M. M.; Shaikh, Z.

    2017-11-01

    Fire alarm systems have become increasingly an important lifesaving technology in many aspects, such as applications to detect, monitor and control any fire hazard. A large sum of money is being spent annually to install and maintain the fire alarm systems in buildings to protect property and lives from the unexpected spread of fire. Several methods are already developed and it is improving on a daily basis to reduce the cost as well as increase quality. An integrated Fire Detection and Alarm (FDA) systems with building automation was studied, to reduce cost and improve their reliability by preventing false alarm. This work proposes an improved framework for FDA system to ensure a robust intelligent network of FDA control panels in real-time. A shortest path algorithmic was chosen for series of buildings connected by fiber optic network. The framework shares information and communicates with each fire alarm panels connected in peer to peer configuration and declare the network state using network address declaration from any building connected in network. The fiber-optic connection was proposed to reduce signal noises, thus increasing large area coverage, real-time communication and long-term safety. Based on this proposed method an experimental setup was designed and a prototype system was developed to validate the performance in practice. Also, the distributed network system was proposed to connect with an optional remote monitoring terminal panel to validate proposed network performance and ensure fire survivability where the information is sequentially transmitted. The proposed FDA system is different from traditional fire alarm and detection system in terms of topology as it manages group of buildings in an optimal and efficient manner.Introduction

  6. Experiences with the AEROnet/PSCN ATM Prototype

    NASA Technical Reports Server (NTRS)

    Kurak, Richard S.; Lisotta, Anthony J.; McCabe, James D.; Nothaft, Alfred E.; Russell, Kelly R.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    This paper discusses the experience gained by the AEROnet/PSCN networking team in deploying a prototype Asynchronous Transfer Mode (ATM) based network as part of the wide-area network for the Numerical Aerodynamic Simulation (NAS) Program at NASA Ames Research Center. The objectives of this prototype were to test concepts in using ATM over wide-area Internet Protocol (IP) networks and measure end-to-end system performance. This testbed showed that end-to-end ATM over a DS3 reaches approximately 80% of the throughput achieved from a FDDI to DS3 network. The 20% reduction in through-put can be attributed to the overhead associated with running ATM. As a result, we conclude that if the loss in capacity due to ATM overhead is balanced by the reduction in cost of ATM services, as compared to dedicated circuits, then ATM can be a viable alternative.

  7. Intelligent Network Flow Optimization (INFLO) prototype : Seattle small-scale demonstration plan.

    DOT National Transportation Integrated Search

    2015-01-01

    This report describes the INFLO Prototype Small-Scale Demonstration to be performed in Seattle Washington. This demonstration is intended to demonstrate that the INFLO Prototype, previously demonstrated in a controlled environment, functions well in ...

  8. Designing a Facebook interface for senior users.

    PubMed

    Gomes, Gonçalo; Duarte, Carlos; Coelho, José; Matos, Eduardo

    2014-01-01

    The adoption of social networks by older adults has increased in recent years. However, many still cannot make use of social networks as these are simply not adapted to them. Through a series of direct observations, interviews, and focus groups, we identified recommendations for the design of social networks targeting seniors. Based on these, we developed a prototype for tablet devices, supporting sharing and viewing Facebook content. We then conducted a user study comparing our prototype with Facebook's native mobile application. We have found that Facebook's native application does not meet senior users concerns, like privacy and family focus, while our prototype, designed in accordance with the collected recommendations, supported relevant use cases in a usable and accessible manner.

  9. Validation of Reverse-Engineered and Additive-Manufactured Microsurgical Instrument Prototype.

    PubMed

    Singh, Ramandeep; Suri, Ashish; Anand, Sneh; Baby, Britty

    2016-12-01

    With advancements in imaging techniques, neurosurgical procedures are becoming highly precise and minimally invasive, thus demanding development of new ergonomically aesthetic instruments. Conventionally, neurosurgical instruments are manufactured using subtractive manufacturing methods. Such a process is complex, time-consuming, and impractical for prototype development and validation of new designs. Therefore, an alternative design process has been used utilizing blue light scanning, computer-aided designing, and additive manufacturing direct metal laser sintering (DMLS) for microsurgical instrument prototype development. Deviations of DMLS-fabricated instrument were studied by superimposing scan data of fabricated instrument with the computer-aided designing model. Content and concurrent validity of the fabricated prototypes was done by a group of 15 neurosurgeons by performing sciatic nerve anastomosis in small laboratory animals. Comparative scoring was obtained for the control and study instrument. T test was applied to the individual parameters and P values for force (P < .0001) and surface roughness (P < .01) were found to be statistically significant. These 2 parameters were further analyzed using objective measures. Results depicts that additive manufacturing by DMLS provides an effective method for prototype development. However, direct application of these additive-manufactured instruments in the operating room requires further validation. © The Author(s) 2016.

  10. A neural network - based algorithm for predicting stone -free status after ESWL therapy

    PubMed Central

    Seckiner, Ilker; Seckiner, Serap; Sen, Haluk; Bayrak, Omer; Dogan, Kazım; Erturhan, Sakip

    2017-01-01

    ABSTRACT Objective: The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free status and to help in planning treatment with Extracorporeal Shock Wave Lithotripsy (ESWL) for kidney stones. Materials and Methods: Data were collected from the 203 patients including gender, single or multiple nature of the stone, location of the stone, infundibulopelvic angle primary or secondary nature of the stone, status of hydronephrosis, stone size after ESWL, age, size, skin to stone distance, stone density and creatinine, for eleven variables. Regression analysis and the ANN method were applied to predict treatment success using the same series of data. Results: Subsequently, patients were divided into three groups by neural network software, in order to implement the ANN: training group (n=139), validation group (n=32), and the test group (n=32). ANN analysis demonstrated that the prediction accuracy of the stone-free rate was 99.25% in the training group, 85.48% in the validation group, and 88.70% in the test group. Conclusions: Successful results were obtained to predict the stone-free rate, with the help of the ANN model designed by using a series of data collected from real patients in whom ESWL was implemented to help in planning treatment for kidney stones. PMID:28727384

  11. Clinical Evaluation of a Prototype Underwear Designed to Detect Urine Leakage From Continence Pads.

    PubMed

    Long, Adele; Edwards, Julia; Worthington, Joanna; Cotterill, Nikki; Weir, Iain; Drake, Marcus J; van den Heuvel, Eleanor

    2015-01-01

    We evaluated the performance of prototype underwear designed to detect urine leakage from continence pads, their acceptability to users, and their effect on health-related quality of life and psychosocial factors. Prototype product evaluation. Participants were 81 women with an average age of 67 years (range, 32-98 years) recruited between October 2010 and February 2012 from outpatient clinics, general practice surgeries, community continence services, and through charities and networks. The TACT3 project developed and manufactured a prototype undergarment designed to alert the wearer to a pad leak before it reaches outer clothing or furniture. The study was conducted in 2 stages: a pilot/feasibility study to assess general performance and a larger study to measure performance, acceptability to users, health-related quality of life, and psychosocial impact. Participants were asked to wear the prototype underwear for a period of 2 weeks, keeping a daily diary of leakage events for the first 7 days. They also completed validated instruments measuring lower urinary tract symptoms, health-related quality of life, and psychosocial impact. On average, 86% of the time participants were alerted to pad leakage events. More than 90% thought the prototype underwear was "good" or "OK" and that it would or could give them more confidence. Mean scores for the International Consultation on Incontinence Questionnaire-Urinary Incontinence Short Form indicated no change in the level of symptoms reported before or after the intervention, and no significant changes in health-related quality of life status occurred, except improvement in for travel restrictions. Evaluation via the Psychosocial Impact of Assistive Devices Scale also indicated a positive impact. The prototype underwear evaluated in this study was effective and acceptable for 5 out of every 10 wearers. Findings also suggest that the prototype underwear is suitable for women of all ages, dress sizes, and continence severity.

  12. A translational platform for prototyping closed-loop neuromodulation systems

    PubMed Central

    Afshar, Pedram; Khambhati, Ankit; Stanslaski, Scott; Carlson, David; Jensen, Randy; Linde, Dave; Dani, Siddharth; Lazarewicz, Maciej; Cong, Peng; Giftakis, Jon; Stypulkowski, Paul; Denison, Tim

    2013-01-01

    While modulating neural activity through stimulation is an effective treatment for neurological diseases such as Parkinson's disease and essential tremor, an opportunity for improving neuromodulation therapy remains in automatically adjusting therapy to continuously optimize patient outcomes. Practical issues associated with achieving this include the paucity of human data related to disease states, poorly validated estimators of patient state, and unknown dynamic mappings of optimal stimulation parameters based on estimated states. To overcome these challenges, we present an investigational platform including: an implanted sensing and stimulation device to collect data and run automated closed-loop algorithms; an external tool to prototype classifier and control-policy algorithms; and real-time telemetry to update the implanted device firmware and monitor its state. The prototyping system was demonstrated in a chronic large animal model studying hippocampal dynamics. We used the platform to find biomarkers of the observed states and transfer functions of different stimulation amplitudes. Data showed that moderate levels of stimulation suppress hippocampal beta activity, while high levels of stimulation produce seizure-like after-discharge activity. The biomarker and transfer function observations were mapped into classifier and control-policy algorithms, which were downloaded to the implanted device to continuously titrate stimulation amplitude for the desired network effect. The platform is designed to be a flexible prototyping tool and could be used to develop improved mechanistic models and automated closed-loop systems for a variety of neurological disorders. PMID:23346048

  13. A translational platform for prototyping closed-loop neuromodulation systems.

    PubMed

    Afshar, Pedram; Khambhati, Ankit; Stanslaski, Scott; Carlson, David; Jensen, Randy; Linde, Dave; Dani, Siddharth; Lazarewicz, Maciej; Cong, Peng; Giftakis, Jon; Stypulkowski, Paul; Denison, Tim

    2012-01-01

    While modulating neural activity through stimulation is an effective treatment for neurological diseases such as Parkinson's disease and essential tremor, an opportunity for improving neuromodulation therapy remains in automatically adjusting therapy to continuously optimize patient outcomes. Practical issues associated with achieving this include the paucity of human data related to disease states, poorly validated estimators of patient state, and unknown dynamic mappings of optimal stimulation parameters based on estimated states. To overcome these challenges, we present an investigational platform including: an implanted sensing and stimulation device to collect data and run automated closed-loop algorithms; an external tool to prototype classifier and control-policy algorithms; and real-time telemetry to update the implanted device firmware and monitor its state. The prototyping system was demonstrated in a chronic large animal model studying hippocampal dynamics. We used the platform to find biomarkers of the observed states and transfer functions of different stimulation amplitudes. Data showed that moderate levels of stimulation suppress hippocampal beta activity, while high levels of stimulation produce seizure-like after-discharge activity. The biomarker and transfer function observations were mapped into classifier and control-policy algorithms, which were downloaded to the implanted device to continuously titrate stimulation amplitude for the desired network effect. The platform is designed to be a flexible prototyping tool and could be used to develop improved mechanistic models and automated closed-loop systems for a variety of neurological disorders.

  14. Five-Factor Model personality disorder prototypes: a review of their development, validity, and comparison to alternative approaches.

    PubMed

    Miller, Joshua D

    2012-12-01

    In this article, the development of Five-Factor Model (FFM) personality disorder (PD) prototypes for the assessment of DSM-IV PDs are reviewed, as well as subsequent procedures for scoring individuals' FFM data with regard to these PD prototypes, including similarity scores and simple additive counts that are based on a quantitative prototype matching methodology. Both techniques, which result in very strongly correlated scores, demonstrate convergent and discriminant validity, and provide clinically useful information with regard to various forms of functioning. The techniques described here for use with FFM data are quite different from the prototype matching methods used elsewhere. © 2012 The Author. Journal of Personality © 2012, Wiley Periodicals, Inc.

  15. Validation of a Piezoelectric Sensor Array-Based Device for Measurement of Carotid-Femoral Pulse Wave Velocity: The Philips Prototype.

    PubMed

    Xu, Shao-Kun; Hong, Xiang-Fei; Cheng, Yi-Bang; Liu, Chang-Yuan; Li, Yan; Yin, Bin; Wang, Ji-Guang

    2018-03-01

    Multiple piezoelectric pressure mechanotransducers topologized into an array might improve efficiency and accuracy in collecting arterial pressure waveforms for measurement of pulse wave velocity (PWV). In the present study, we validated a piezoelectric sensor array-based prototype (Philips) against the validated and clinically widely used Complior device (Alam Medical). We recruited 33 subjects with a wide distribution of PWV. For the validation, PWV was measured sequentially with the Complior device (four times) and the Philips prototype (three times). With the 99 paired PWV values, we investigated the agreement between the Philips prototype and the Complior device using Pearson correlation analysis and Bland-Altman plot. We also performed analysis on the determinants and reproducibility of PWV measured with both devices. The correlation coefficient for PWV measured with the two devices was 0.92 ( p < 0.0001). Compared with the Complior device, the Philips prototype slightly overestimated PWV by 0.24 (± 2 standard deviations, ± 1.91) m/s, especially when PWV was high. The correlation coefficient between the difference and the average of the Philips and Complior measurements was 0.21 ( p = 0.035). Nonetheless, they had similar determinants. Age, mean arterial pressure, and sex altogether explained 81.6 and 83.9% of the variance of PWV values measured with the Philips prototype and Complior device, respectively. When the two extremes of the three PWV values measured with the Philips prototype and the Complior device were investigated, the coefficients of variation were 8.26 and 3.26%, respectively. Compared with the Complior device, the Philips prototype had similar accuracy, determinants, and reproducibility in measuring PWV.

  16. Effect of synapse dilution on the memory retrieval in structured attractor neural networks

    NASA Astrophysics Data System (ADS)

    Brunel, N.

    1993-08-01

    We investigate a simple model of structured attractor neural network (ANN). In this network a module codes for the category of the stored information, while another group of neurons codes for the remaining information. The probability distribution of stabilities of the patterns and the prototypes of the categories are calculated, for two different synaptic structures. The stability of the prototypes is shown to increase when the fraction of neurons coding for the category goes down. Then the effect of synapse destruction on the retrieval is studied in two opposite situations : first analytically in sparsely connected networks, then numerically in completely connected ones. In both cases the behaviour of the structured network and that of the usual homogeneous networks are compared. When lesions increase, two transitions are shown to appear in the behaviour of the structured network when one of the patterns is presented to the network. After the first transition the network recognizes the category of the pattern but not the individual pattern. After the second transition the network recognizes nothing. These effects are similar to syndromes caused by lesions in the central visual system, namely prosopagnosia and agnosia. In both types of networks (structured or homogeneous) the stability of the prototype is greater than the stability of individual patterns, however the first transition, for completely connected networks, occurs only when the network is structured.

  17. INcreasing Security and Protection through Infrastructure REsilience: The INSPIRE Project

    NASA Astrophysics Data System (ADS)

    D'Antonio, Salvatore; Romano, Luigi; Khelil, Abdelmajid; Suri, Neeraj

    The INSPIRE project aims at enhancing the European potential in the field of security by ensuring the protection of critical information infrastructures through (a) the identification of their vulnerabilities and (b) the development of innovative techniques for securing networked process control systems. To increase the resilience of such systems INSPIRE will develop traffic engineering algorithms, diagnostic processes and self-reconfigurable architectures along with recovery techniques. Hence, the core idea of the INSPIRE project is to protect critical information infrastructures by appropriately configuring, managing, and securing the communication network which interconnects the distributed control systems. A working prototype will be implemented as a final demonstrator of selected scenarios. Controls/Communication Experts will support project partners in the validation and demonstration activities. INSPIRE will also contribute to standardization process in order to foster multi-operator interoperability and coordinated strategies for securing lifeline systems.

  18. Intelligent Network Flow Optimization (INFLO) prototype : Seattle small-scale demonstration report.

    DOT National Transportation Integrated Search

    2015-05-01

    This report describes the performance and results of the INFLO Prototype Small-Scale Demonstration. The purpose of the Small-Scale Demonstration was to deploy the INFLO Prototype System to demonstrate its functionality and performance in an operation...

  19. Clinical validity of prototype personality disorder ratings in adolescents.

    PubMed

    Defife, Jared A; Haggerty, Greg; Smith, Scott W; Betancourt, Luis; Ahmed, Zain; Ditkowsky, Keith

    2015-01-01

    A growing body of research shows that personality pathology in adolescents is clinically distinctive and frequently stable into adulthood. A reliable and useful method for rating personality pathology in adolescent patients has the potential to enhance conceptualization, dissemination, and treatment effectiveness. The aim of this study is to examine the clinical validity of a prototype matching approach (derived from the Shedler Westen Assessment Procedure-Adolescent Version) for quantifying personality pathology in an adolescent inpatient sample. Sixty-six adolescent inpatients and their parents or legal guardians completed forms of the Child Behavior Checklist (CBCL) assessing emotional and behavioral problems. Clinical criterion variables including suicide history, substance use, and fights with peers were also assessed. Patients' individual and group therapists on the inpatient unit completed personality prototype ratings. Prototype diagnoses demonstrated substantial reliability (median intraclass correlation coefficient =.75) across independent ratings from individual and group therapists. Personality prototype ratings correlated with the CBCL scales and clinical criterion variables in anticipated and meaningful ways. As seen in prior research with adult samples, prototype personality ratings show clinical validity across independent clinician raters previously unfamiliar with the approach, and they are meaningfully related to clinical symptoms, behavioral problems, and adaptive functioning.

  20. Clinical Validity of Prototype Personality Disorder Ratings in Adolescents

    PubMed Central

    DeFife, Jared A.; Haggerty, Greg; Smith, Scott W.; Betancourt, Luis; Ahmed, Zain; Ditkowsky, Keith

    2015-01-01

    A growing body of research shows that personality pathology in adolescents is clinically distinctive and frequently stable into adulthood. A reliable and useful method for rating personality pathology in adolescent patients has the potential to enhance conceptualization, dissemination, and treatment effectiveness. The aim of this study is to examine the clinical validity of a prototype matching approach (derived from the Shedler Westen Assessment Procedure – Adolescent Version) for quantifying personality pathology in an adolescent inpatient sample. Sixty-six adolescent inpatients and their parents or legal guardians completed forms of the Child Behavior Checklist (CBCL) assessing emotional and behavioral problems. Clinical criterion variables including suicide history, substance use, and fights with peers were also assessed. Patients’ individual and group therapists on the inpatient unit completed personality prototype ratings. Prototype diagnoses demonstrated substantial reliability (median ICC = .75) across independent ratings from individual and group therapists. Personality prototype ratings correlated with the CBCL scales and clinical criterion variables in anticipated and meaningful ways. As seen in prior research with adult samples, prototype personality ratings show clinical validity across independent clinician raters previously unfamiliar with the approach, and they are meaningfully related to clinical symptoms, behavioral problems, and adaptive functioning. PMID:25457971

  1. NASA's Next Generation Space Geodesy Network

    NASA Technical Reports Server (NTRS)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  2. Reliability and Validity of Prototype Diagnosis for Adolescent Psychopathology.

    PubMed

    Haggerty, Greg; Zodan, Jennifer; Mehra, Ashwin; Zubair, Ayyan; Ghosh, Krishnendu; Siefert, Caleb J; Sinclair, Samuel J; DeFife, Jared

    2016-04-01

    The current study investigated the interrater reliability and validity of prototype ratings of 5 common adolescent psychiatric disorders: attention-deficit/hyperactivity disorder, conduct disorder, major depressive disorder, generalized anxiety disorder, and posttraumatic stress disorder. One hundred fifty-seven adolescent inpatient participants consented to participate in this study. We compared ratings from 2 inpatient clinicians, blinded to each other's ratings and patient measures, after their separate initial diagnostic interview to assess interrater reliability. Prototype ratings completed by clinicians after their initial diagnostic interview with adolescent inpatients and outpatients were compared with patient-reported behavior problems and parents' report of their child's behavioral problems. Prototype ratings demonstrated good interrater reliability. Clinicians' prototype ratings showed predicted relationships with patient-reported behavior problems and parent-reported behavior problems. Prototype matching seems to be a possible alternative for psychiatric diagnosis. Prototype ratings showed good interrater reliability based on clinicians unique experiences with the patient (as opposed to video-/audio-recorded material) with no training.

  3. Large format array controller (aLFA-C): tests and characterisation at ESA

    NASA Astrophysics Data System (ADS)

    Lemmel, Frédéric; ter Haar, Jörg; van der Biezen, John; Duvet, Ludovic; Nelms, Nick; Blommaert, Sander; Butler, Bart; van der Luijt, Cornelis; Heijnen, Jerko; Smit, Hans; Visser, Ivo

    2016-08-01

    For future near infrared astronomy missions, ESA is developing a complete detection and conversion chain (photon to SpaceWire chain system): Large Format Array (aLFA-N) based on MCT type detectors. aLFA-C (Astronomy Large Format Array Controller): a versatile cryogenic detector controller. An aLFA-C prototype was developed by Caeleste (Belgium) under ESA contract (400106260400). To validate independently the performances of the aLFA-C prototype and consolidate the definition of the follow-on activity, a dedicated test bench has been designed and developed in ESTEC/ESA within the Payload Technology Validation group. This paper presents the test setup and the performance validation of the first prototype of this controller at room and cryogenic temperature. Test setup and software needed to test the HAWAII-2RG and aLFA-N detectors with the aLFA-C prototype at cryogenic temperature will be also presented.

  4. Facebook for scientists: requirements and services for optimizing how scientific collaborations are established.

    PubMed

    Schleyer, Titus; Spallek, Heiko; Butler, Brian S; Subramanian, Sushmita; Weiss, Daniel; Poythress, M Louisa; Rattanathikun, Phijarana; Mueller, Gregory

    2008-08-13

    As biomedical research projects become increasingly interdisciplinary and complex, collaboration with appropriate individuals, teams, and institutions becomes ever more crucial to project success. While social networks are extremely important in determining how scientific collaborations are formed, social networking technologies have not yet been studied as a tool to help form scientific collaborations. Many currently emerging expertise locating systems include social networking technologies, but it is unclear whether they make the process of finding collaborators more efficient and effective. This study was conducted to answer the following questions: (1) Which requirements should systems for finding collaborators in biomedical science fulfill? and (2) Which information technology services can address these requirements? The background research phase encompassed a thorough review of the literature, affinity diagramming, contextual inquiry, and semistructured interviews. This phase yielded five themes suggestive of requirements for systems to support the formation of collaborations. In the next phase, the generative phase, we brainstormed and selected design ideas for formal concept validation with end users. Then, three related, well-validated ideas were selected for implementation and evaluation in a prototype. Five main themes of systems requirements emerged: (1) beyond expertise, successful collaborations require compatibility with respect to personality, work style, productivity, and many other factors (compatibility); (2) finding appropriate collaborators requires the ability to effectively search in domains other than your own using information that is comprehensive and descriptive (communication); (3) social networks are important for finding potential collaborators, assessing their suitability and compatibility, and establishing contact with them (intermediation); (4) information profiles must be complete, correct, up-to-date, and comprehensive and allow fine-grained control over access to information by different audiences (information quality and access); (5) keeping online profiles up-to-date should require little or no effort and be integrated into the scientist's existing workflow (motivation). Based on the requirements, 16 design ideas underwent formal validation with end users. Of those, three were chosen to be implemented and evaluated in a system prototype, "Digital|Vita": maintaining, formatting, and semi-automated updating of biographical information; searching for experts; and building and maintaining the social network and managing document flow. In addition to quantitative and factual information about potential collaborators, social connectedness, personal and professional compatibility, and power differentials also influence whether collaborations are formed. Current systems only partially model these requirements. Services in Digital|Vita combine an existing workflow, maintaining and formatting biographical information, with collaboration-searching functions in a novel way. Several barriers to the adoption of systems such as Digital|Vita exist, such as potential adoption asymmetries between junior and senior researchers and the tension between public and private information. Developers and researchers may consider one or more of the services described in this paper for implementation in their own expertise locating systems.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Weikuan; Vetter, Jeffrey S

    Parallel NFS (pNFS) is touted as an emergent standard protocol for parallel I/O access in various storage environments. Several pNFS prototypes have been implemented for initial validation and protocol examination. Previous efforts have focused on realizing the pNFS protocol to expose the best bandwidth potential from underlying file and storage systems. In this presentation, we provide an initial characterization of two pNFS prototype implementations, lpNFS (a Lustre-based parallel NFS implementation) and spNFS (another reference implementation from Network Appliance, Inc.). We show that both lpNFS and spNFS can faithfully achieve the primary goal of pNFS, i.e., aggregating I/O bandwidth from manymore » storage servers. However, they both face the challenge of scalable metadata management. Particularly, the throughput of sp-NFS metadata operations degrades significanlty with an increasing number of data servers. Even for the better-performing lpNFS, we discuss its architecture and propose a direct I/O request flow protocol to improve its performance.« less

  6. Design and Control of Compliant Tensegrity Robots Through Simulation and Hardware Validation

    NASA Technical Reports Server (NTRS)

    Caluwaerts, Ken; Despraz, Jeremie; Iscen, Atil; Sabelhaus, Andrew P.; Bruce, Jonathan; Schrauwen, Benjamin; Sunspiral, Vytas

    2014-01-01

    To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center has developed and validated two different software environments for the analysis, simulation, and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity ("tensile-integrity") structures have unique physical properties which make them ideal for interaction with uncertain environments. Yet these characteristics, such as variable structural compliance, and global multi-path load distribution through the tension network, make design and control of bio-inspired tensegrity robots extremely challenging. This work presents the progress in using these two tools in tackling the design and control challenges. The results of this analysis includes multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures. The current hardware prototype of a six-bar tensegrity, code-named ReCTeR, is presented in the context of this validation.

  7. A Ground Validation Network for the Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew R.; Morris, K. Robert

    2011-01-01

    A prototype Validation Network (VN) is currently operating as part of the Ground Validation System for NASA's Global Precipitation Measurement (GPM) mission. The VN supports precipitation retrieval algorithm development in the GPM prelaunch era. Postlaunch, the VN will be used to validate GPM spacecraft instrument measurements and retrieved precipitation data products. The period of record for the VN prototype starts on 8 August 2006 and runs to the present day. The VN database includes spacecraft data from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and coincident ground radar (GR) data from operational meteorological networks in the United States, Australia, Korea, and the Kwajalein Atoll in the Marshall Islands. Satellite and ground radar data products are collected whenever the PR satellite track crosses within 200 km of a VN ground radar, and these data are stored permanently in the VN database. VN products are generated from coincident PR and GR observations when a significant rain event occurs. The VN algorithm matches PR and GR radar data (including retrieved precipitation data in the case of the PR) by calculating averages of PR reflectivity (both raw and attenuation corrected) and rain rate, and GR reflectivity at the geometric intersection of the PR rays with the individual GR elevation sweeps. The algorithm thus averages the minimum PR and GR sample volumes needed to "matchup" the spatially coincident PR and GR data types. The result of this technique is a set of vertical profiles for a given rainfall event, with coincident PR and GR samples matched at specified heights throughout the profile. VN data can be used to validate satellite measurements and to track ground radar calibration over time. A comparison of matched TRMM PR and GR radar reflectivity factor data found a remarkably small difference between the PR and GR radar reflectivity factor averaged over this period of record in stratiform and convective rain cases when samples were taken from high in the atmosphere. A significant difference in PR and GR reflectivity was found in convective cases, particularly in convective samples from the lower part of the atmosphere. In this case, the mean difference between PR and corrected GR reflectivity was -1.88 dBZ. The PR-GR bias was found to increase with the amount of PR attenuation correction applied, with the PR-GR bias reaching -3.07 dBZ in cases where the attenuation correction applied is greater than 6 dBZ. Additional analysis indicated that the version 6 TRMM PR retrieval algorithm underestimates rainfall in case of convective rain in the lower part of the atmosphere by 30%-40%.

  8. Cool or Fool? The Association Between Drinker Prototypes and Alcohol Consumption Using Multiple Time-Point Diary Assessments in Adolescent Males.

    PubMed

    Teunissen, Hanneke A; Spijkerman, Renske; Kuntsche, Emmanuel; Engels, Rutger C M E; Scholte, Ron H J

    2017-04-16

    There is still limited understanding of how different kinds of drinker prototypes are associated with adolescent drinking. This study uses the strengths of multiple time-point diary measures (enhanced validity of alcohol use measurement) to test the predictive value of abstainer, moderate and heavy drinker prototypes in social situations. We examined whether the favorability of these prototypes (i.e., "prototype evaluation"), the perceived similarity of these prototypes to one's self-image (i.e., "prototype similarity") assessed at baseline, and their interaction predict alcohol use assessed in social situations. Drinker prototypes were assessed in a baseline sample of 599 adolescents. Subsequently, a sample of 77 alcohol-using 16 to 18-year-old males reported their Friday and Saturday evening drinking behavior the next day during eight weeks (resulting in 495 daily measures). Alcohol use was assessed in the company of peers. The more adolescents perceived themselves as similar to heavy drinker prototypes the higher their alcohol consumption in social situations. The more adolescents held favorable abstainer prototypes, the lower their alcohol consumption. The interaction between prototype evaluation and similarity was not significant. By using a more reliable and valid method to assess adolescents' alcohol use, the present study showed that more "extreme" drinker prototypes (i.e., heavy drinker and abstainer prototypes) are most predictive of adolescent alcohol use in social situations. Increasing the perceived dissimilarity to heavy drinker prototypes and the favorability of abstainer prototypes may therefore be important targets in interventions aimed at reducing adolescents' alcohol consumption.

  9. Standard Spacecraft Interfaces and IP Network Architectures: Prototyping Activities at the GSFC

    NASA Technical Reports Server (NTRS)

    Schnurr, Richard; Marquart, Jane; Lin, Michael

    2003-01-01

    Advancements in fright semiconductor technology have opened the door for IP-based networking in spacecraft architectures. The GSFC believes the same signlJicant cost savings gained using MIL-STD-1553/1773 as a standard low rate interface for spacecraft busses cun be realized for highspeed network interfaces. To that end, GSFC is developing hardware and software to support a seamless, space mission IP network based on Ethernet and MIL-STD-1553. The Ethernet network shall connect all fright computers and communications systems using interface standards defined by the CCSDS Standard Onboard InterFace (SOIF) Panel. This paper shall discuss the prototyping effort underway at GSFC and expected results.

  10. Development of a low mobility IEEE 802.15.4 compliant VANET system for urban environments.

    PubMed

    Nazabal, Juan Antonio; Falcone, Francisco; Fernández-Valdivielso, Carlos; Matías, Ignacio Raúl

    2013-05-29

    The use of Vehicular Ad-Hoc Networks (VANETs) is growing nowadays and it includes both roadside-to-vehicle communication (RVC) and inter-vehicle communication (IVC). The purpose of VANETs is to exchange useful information between vehicles and the roadside infrastructures for making an intelligent use of them. There are several possible applications for this technology like: emergency warning system for vehicles, cooperative adaptive cruise control or collision avoidance, among others. The objective of this work is to develop a VANET prototype system for urban environments using IEEE 802.15.4 compliant devices. Simulation-based values of the estimated signal strength and radio link quality values are obtained and compared with measurements in outdoor conditions to validate an implemented VANET system. The results confirm the possibility of implementing low cost vehicular communication networks operating at moderate vehicular speeds.

  11. Wideband Array for C, X, and Ku-Band Applications with 5.3:1 Bandwidth

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    Planar arrays that exploit strong intentional coupling between elements have allowed for very wide bandwidths in low-profile configurations. However, such designs also require complex impedance matching networks that must also be very compact. For many space applications, typically occurring at C-, X-, Ku-, and most recently at Ka-band, such designs require specialized and expensive fabrication techniques. To address this issue, a novel ultra-wideband array is presented, using a simplified feed network to reduce fabrication cost. The array operates from 3.5-18.5 GHz with VSWR less than 2.4 at broadside, and is of very low profile, having a total height of lambda/10 at the lowest frequency of operation. Validation is provided using a 64-element prototype array, fabricated using common Printed Circuit Board (PCB) technology. The low size, weight, and cost of this array make it attractive for space-borne applications.

  12. A Compact Optical Instrument with Artificial Neural Network for pH Determination

    PubMed Central

    Capel-Cuevas, Sonia; López-Ruiz, Nuria; Martinez-Olmos, Antonio; Cuéllar, Manuel P.; Pegalajar, Maria del Carmen; Palma, Alberto José; de Orbe-Payá, Ignacio; Capitán-Vallvey, Luis Fermin

    2012-01-01

    The aim of this work was the determination of pH with a sensor array-based optical portable instrument. This sensor array consists of eleven membranes with selective colour changes at different pH intervals. The method for the pH calculation is based on the implementation of artificial neural networks that use the responses of the membranes to generate a final pH value. A multi-objective algorithm was used to select the minimum number of sensing elements required to achieve an accurate pH determination from the neural network, and also to minimise the network size. This helps to minimise instrument and array development costs and save on microprocessor energy consumption. A set of artificial neural networks that fulfils these requirements is proposed using different combinations of the membranes in the sensor array, and is evaluated in terms of accuracy and reliability. In the end, the network including the response of the eleven membranes in the sensor was selected for validation in the instrument prototype because of its high accuracy. The performance of the instrument was evaluated by measuring the pH of a large set of real samples, showing that high precision can be obtained in the full range. PMID:22778668

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carothers, Christopher D.; Meredith, Jeremy S.; Blanco, Marc

    Performance modeling of extreme-scale applications on accurate representations of potential architectures is critical for designing next generation supercomputing systems because it is impractical to construct prototype systems at scale with new network hardware in order to explore designs and policies. However, these simulations often rely on static application traces that can be difficult to work with because of their size and lack of flexibility to extend or scale up without rerunning the original application. To address this problem, we have created a new technique for generating scalable, flexible workloads from real applications, we have implemented a prototype, called Durango, thatmore » combines a proven analytical performance modeling language, Aspen, with the massively parallel HPC network modeling capabilities of the CODES framework.Our models are compact, parameterized and representative of real applications with computation events. They are not resource intensive to create and are portable across simulator environments. We demonstrate the utility of Durango by simulating the LULESH application in the CODES simulation environment on several topologies and show that Durango is practical to use for simulation without loss of fidelity, as quantified by simulation metrics. During our validation of Durango's generated communication model of LULESH, we found that the original LULESH miniapp code had a latent bug where the MPI_Waitall operation was used incorrectly. This finding underscores the potential need for a tool such as Durango, beyond its benefits for flexible workload generation and modeling.Additionally, we demonstrate the efficacy of Durango's direct integration approach, which links Aspen into CODES as part of the running network simulation model. Here, Aspen generates the application-level computation timing events, which in turn drive the start of a network communication phase. Results show that Durango's performance scales well when executing both torus and dragonfly network models on up to 4K Blue Gene/Q nodes using 32K MPI ranks, Durango also avoids the overheads and complexities associated with extreme-scale trace files.« less

  14. The Jade File System. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Rao, Herman Chung-Hwa

    1991-01-01

    File systems have long been the most important and most widely used form of shared permanent storage. File systems in traditional time-sharing systems, such as Unix, support a coherent sharing model for multiple users. Distributed file systems implement this sharing model in local area networks. However, most distributed file systems fail to scale from local area networks to an internet. Four characteristics of scalability were recognized: size, wide area, autonomy, and heterogeneity. Owing to size and wide area, techniques such as broadcasting, central control, and central resources, which are widely adopted by local area network file systems, are not adequate for an internet file system. An internet file system must also support the notion of autonomy because an internet is made up by a collection of independent organizations. Finally, heterogeneity is the nature of an internet file system, not only because of its size, but also because of the autonomy of the organizations in an internet. The Jade File System, which provides a uniform way to name and access files in the internet environment, is presented. Jade is a logical system that integrates a heterogeneous collection of existing file systems, where heterogeneous means that the underlying file systems support different file access protocols. Because of autonomy, Jade is designed under the restriction that the underlying file systems may not be modified. In order to avoid the complexity of maintaining an internet-wide, global name space, Jade permits each user to define a private name space. In Jade's design, we pay careful attention to avoiding unnecessary network messages between clients and file servers in order to achieve acceptable performance. Jade's name space supports two novel features: (1) it allows multiple file systems to be mounted under one direction; and (2) it permits one logical name space to mount other logical name spaces. A prototype of Jade was implemented to examine and validate its design. The prototype consists of interfaces to the Unix File System, the Sun Network File System, and the File Transfer Protocol.

  15. A Comparison of the Validity of the Five-Factor Model (FFM) Personality Disorder Prototypes Using FFM Self-Report and Interview Measures

    ERIC Educational Resources Information Center

    Miller, Joshua D.; Bagby, R. Michael; Pilkonis, Paul A.

    2005-01-01

    Recent studies have demonstrated that personality disorders (PDs) can be assessed via a prototype-matching technique, which enables researchers and clinicians to match an individual's five-factor model (FFM) personality profile to an expert-generated prototype. The current study examined the relations between these prototype scores, using…

  16. Development of a self-healing soft pneumatic actuator: a first concept.

    PubMed

    Terryn, Seppe; Mathijssen, Glenn; Brancart, Joost; Lefeber, Dirk; Assche, Guy Van; Vanderborght, Bram

    2015-07-07

    Inspired by the intrinsic softness and the corresponding embodied intelligence principles, soft pneumatic actuators (SPA) have been developed, which ensure safe interaction in unstructured, unknown environments. Due to their intrinsic softness, these actuators have the ability to resist large mechanical impacts. However, the soft materials used in these structures are in general susceptible to damage caused by sharp objects found in the unstructured environments. This paper proposes to integrate a self-healing (SH-) mechanism in SPAs, such that cuts, tears and perforations in the actuator can be self-healed. Diels-Alder (DA-) polymers, covalent polymer network systems based on the thermoreversible DA-reaction, were selected and their mechanical, as well as SH-properties, are described. To evaluate the feasibility of developing an SPA constructed out of SH-material, a single cell prototype, a SH-soft pneumatic cell (SH-SPC), was constructed entirely out of DA-polymers. Exploiting the SH-property of the DA-polymers, a completely new shaping process is presented in this paper, referred to as 'shaping through folding and self-healing'. 3D polygon structures, like the cubic SH-SPC, can be constructed by folding SH-polymer sheet. The sides of the structures can be sealed and made airtight using a SH-procedure at relatively low temperatures (<90 °C). Both the (thermo) mechanical and SH-properties of the SH-SPC prototype were experimentally validated and showed excellent performances. Macroscopic incisions in the prototype were completely healed using a SH-procedure (<70 °C). Starting from this single-cell prototype, it is straight-forward to develop a multi-cell prototype, the first SPA ever built completely out of SH-polymers.

  17. Performance Evaluation of a Prototyped Wireless Ground Sensor Network

    DTIC Science & Technology

    2005-03-01

    the network was capable of dynamic adaptation to failure and degradation. 14. SUBJECT TERMS: Wireless Sensor Network , Unmanned Sensor, Unattended...2 H. WIRELESS SENSOR NETWORKS .................................................................... 3...zation, and network traffic. The evaluated scenarios included outdoor, urban and indoor environments. The characteristics of wireless sensor networks , types

  18. Compact OXC architecture, design and prototype development for flexible waveband routing optical networks.

    PubMed

    Ishikawa, Tomohiro; Mori, Yojiro; Hasegawa, Hiroshi; Subramaniam, Suresh; Sato, Ken-Ichi; Moriwaki, Osamu

    2017-07-10

    A novel compact OXC node architecture that combines WSSs and arrays of small scale optical delivery-coupling type switches ("DCSWs") is proposed. Unlike conventional OXC nodes, the WSSs are only responsible for dynamic path bundling ("flexible waveband") while the small scale optical switches route bundled path groups. A network design algorithm that is aware of the routing scheme is also proposed, and numerical experiments elucidate that the necessary number of WSSs and amplifiers can be significantly reduced. A prototype of the proposed OXC is also developed using monolithic arrayed DCSWs. Transmission experiments on the prototype verify the proposal's technical feasibility.

  19. Concurrent Validity of Hill's Educational Cognitive Style Model as a Prototype for Successful Academic Programs Among Lower-Class Students.

    ERIC Educational Resources Information Center

    London, David T.

    Data from the stepwise multiple regression of four educational cognitive style predictor sets on each of six academic competence criteria were used to define the concurrent validity of Hill's educational cognitive style model. The purpose was to determine how appropriate it may be to use this model as a prototype for successful academic programs…

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinthavali, Madhu Sudhan; Campbell, Steven L

    This paper presents an analytical model for wireless power transfer system used in electric vehicle application. The equivalent circuit model for each major component of the system is described, including the input voltage source, resonant network, transformer, nonlinear diode rectifier load, etc. Based on the circuit model, the primary side compensation capacitance, equivalent input impedance, active / reactive power are calculated, which provides a guideline for parameter selection. Moreover, the voltage gain curve from dc output to dc input is derived as well. A hardware prototype with series-parallel resonant stage is built to verify the developed model. The experimental resultsmore » from the hardware are compared with the model predicted results to show the validity of the model.« less

  1. Microfluidic platform for neurotransmitter sensing based on cyclic voltammetry and dielectrophoresis for in vitro experiments.

    PubMed

    Mathault, Jessy; Zamprogno, Pauline; Greener, Jesse; Miled, Amine

    2015-08-01

    This paper presents a new microfluidic platform that can simultaneously measure and locally modulate neurotransmitter concentration in a neuron network. This work focuses on the development of a first prototype including a potentiostat and electrode functionalization to detect several neurotransmitter's simultaneously. We tested dopamine as proof of concept to validate functionality. The system is based on 320 bidirectional electrode array for dielectrophoretic manipulation and cyclic voltammetry. Each electrode is connected to a mechanical multiplexer in order to reduce noise interference and fully isolate the electrode. The multiplexing rate is 476 kHz and each electrode can drive a signal with an amplitude of 60 V pp for dielectrophoretic manipulation.

  2. Report on architecture description for the INFLO prototype.

    DOT National Transportation Integrated Search

    2014-01-01

    This report documents the Architecture Description for the implementation of the Intelligent Network Flow Optimization (INFLO) Prototype bundle within the Dynamic Mobility Applications (DMA) portion of the Connected Vehicle Program. The intent is to ...

  3. Facebook for Scientists: Requirements and Services for Optimizing How Scientific Collaborations Are Established

    PubMed Central

    Spallek, Heiko; Butler, Brian S; Subramanian, Sushmita; Weiss, Daniel; Poythress, M Louisa; Rattanathikun, Phijarana; Mueller, Gregory

    2008-01-01

    Background As biomedical research projects become increasingly interdisciplinary and complex, collaboration with appropriate individuals, teams, and institutions becomes ever more crucial to project success. While social networks are extremely important in determining how scientific collaborations are formed, social networking technologies have not yet been studied as a tool to help form scientific collaborations. Many currently emerging expertise locating systems include social networking technologies, but it is unclear whether they make the process of finding collaborators more efficient and effective. Objective This study was conducted to answer the following questions: (1) Which requirements should systems for finding collaborators in biomedical science fulfill? and (2) Which information technology services can address these requirements? Methods The background research phase encompassed a thorough review of the literature, affinity diagramming, contextual inquiry, and semistructured interviews. This phase yielded five themes suggestive of requirements for systems to support the formation of collaborations. In the next phase, the generative phase, we brainstormed and selected design ideas for formal concept validation with end users. Then, three related, well-validated ideas were selected for implementation and evaluation in a prototype. Results Five main themes of systems requirements emerged: (1) beyond expertise, successful collaborations require compatibility with respect to personality, work style, productivity, and many other factors (compatibility); (2) finding appropriate collaborators requires the ability to effectively search in domains other than your own using information that is comprehensive and descriptive (communication); (3) social networks are important for finding potential collaborators, assessing their suitability and compatibility, and establishing contact with them (intermediation); (4) information profiles must be complete, correct, up-to-date, and comprehensive and allow fine-grained control over access to information by different audiences (information quality and access); (5) keeping online profiles up-to-date should require little or no effort and be integrated into the scientist’s existing workflow (motivation). Based on the requirements, 16 design ideas underwent formal validation with end users. Of those, three were chosen to be implemented and evaluated in a system prototype, “Digital|Vita”: maintaining, formatting, and semi-automated updating of biographical information; searching for experts; and building and maintaining the social network and managing document flow. Conclusions In addition to quantitative and factual information about potential collaborators, social connectedness, personal and professional compatibility, and power differentials also influence whether collaborations are formed. Current systems only partially model these requirements. Services in Digital|Vita combine an existing workflow, maintaining and formatting biographical information, with collaboration-searching functions in a novel way. Several barriers to the adoption of systems such as Digital|Vita exist, such as potential adoption asymmetries between junior and senior researchers and the tension between public and private information. Developers and researchers may consider one or more of the services described in this paper for implementation in their own expertise locating systems. PMID:18701421

  4. Verifying Stability of Dynamic Soft-Computing Systems

    NASA Technical Reports Server (NTRS)

    Wen, Wu; Napolitano, Marcello; Callahan, John

    1997-01-01

    Soft computing is a general term for algorithms that learn from human knowledge and mimic human skills. Example of such algorithms are fuzzy inference systems and neural networks. Many applications, especially in control engineering, have demonstrated their appropriateness in building intelligent systems that are flexible and robust. Although recent research have shown that certain class of neuro-fuzzy controllers can be proven bounded and stable, they are implementation dependent and difficult to apply to the design and validation process. Many practitioners adopt the trial and error approach for system validation or resort to exhaustive testing using prototypes. In this paper, we describe our on-going research towards establishing necessary theoretic foundation as well as building practical tools for the verification and validation of soft-computing systems. A unified model for general neuro-fuzzy system is adopted. Classic non-linear system control theory and recent results of its applications to neuro-fuzzy systems are incorporated and applied to the unified model. It is hoped that general tools can be developed to help the designer to visualize and manipulate the regions of stability and boundedness, much the same way Bode plots and Root locus plots have helped conventional control design and validation.

  5. Future Directions for Space Transportation and Propulsion at NASA

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.

    2005-01-01

    Contents include the following: Oxygen Compatible Materials. Manufacturing Technology Demonstrations. Turbopump Inducer Waterflow Test. Turbine Damping "Whirligig" Test. Single Element Preburner and Main Injector Test. 40K Multi-Element Preburner and MI. Full-Scale Battleship Preburner. Prototype Preburner Test Article. Full-Scale Prototype TCA. Turbopump Hot-Fire Test Article. Prototype Engine. Validated Analytical Models.

  6. Numerical aerodynamic simulation program long haul communications prototype

    NASA Technical Reports Server (NTRS)

    Cmaylo, Bohden K.; Foo, Lee

    1987-01-01

    This document is a report of the Numerical Aerodynamic Simulation (NAS) Long Haul Communications Prototype (LHCP). It describes the accomplishments of the LHCP group, presents the results from all LHCP experiments and testing activities, makes recommendations for present and future LHCP activities, and evaluates the remote workstation accesses from Langley Research Center, Lewis Research Center, and Colorado State University to Ames Research Center. The report is the final effort of the Long Haul (Wideband) Communications Prototype Plan (PT-1133-02-N00), 3 October 1985, which defined the requirements for the development, test, and operation of the LHCP network and was the plan used to evaluate the remote user bandwidth requirements for the Numerical Aerodynamic Simulation Processing System Network.

  7. The Sense-City equipment project: insight into the prototyping and validation of environmental micro- and nanosensors for a sustainable urbanization

    NASA Astrophysics Data System (ADS)

    Lebental, Bérengère; Angelescu, Dan; Bourouina, Tarik; Bourquin, Frédéric; Cojocaru, Costel-Sorin; Derkx, François; Dumoulin, Jean; Ha, Thi-Lan; Robine, Enric; Van Damme, Henri

    2013-04-01

    While today's galloping urbanization weighs heavily on both People and Environment, the massive instrumentation of urban spaces appears a landmark toward sustainability. Collecting massively distributed information requires the use of high-performance communication systems as well as sensors with very small ecological footprint. Because of their high sensitivity, the wide range of their observables, their energetic self-sufficiency and their low cost, micro- and nano- sensors are particularly well suited to urban metrology. A 8 years, 9 M€ equipment project funded by the French "Programme d'Investissement d'Avenir" starting in 2012, the Sense-City project will offer a suite of high-quality facilities for the design, prototyping and performance assessment of micro- and nanosensors devoted to sustainable urbanization. The scientific program of Sense-City is built around four programs, environmental monitoring, structural health monitoring, energy performances monitoring and people health and exposure monitoring. We present the activities of the consortium partners, IFSTTAR, ESIEE-Paris, CSTB, LPICM, and the prospects brought by Sense-City equipment in terms of sensor prototyping, benchmarking and operation validation. We discuss how the various sensors developed by LPICM and ESIEE (for instance conformable chemical and gas microsensors using nanomaterials at LPICM, miniaturized gas chromatographs or microfluidic lab-on-chip for particles analysis at ESIEE-Paris) can be integrated by IFSTTAR into sensors networks tested by IFSTTAR and CSTB in both lab and urban settings. The massively distributed data are interpreted using advanced physical models and inverse methods in order to monitor water, air or soil quality, infrastructure and network safety, building energy performances as well as people health and exposure. We discuss the shortcomings of evaluating the performances of sensors only in lab conditions or directly in real, urban conditions. As a solution, Sense-City will provide an environment of intermediate complexity for the testing of environmental sensors, a realistic urban test space in climatic conditions, both far more complex than clean rooms and far more controllable than actual cities. References: [1] Joblin Y et al., International Biodeterioration & Biodegradation 2010, 64, 210-217 [2] Lee C S et al., Nanotechnology 2012, accepted [3] Nachef K et al., IEEE/ASME Journal of Microelectromechanical Systems 2102, 21

  8. System design document for the INFLO prototype.

    DOT National Transportation Integrated Search

    2014-03-01

    This report documents the high level System Design Document (SDD) for the prototype development and demonstration of the Intelligent Network Flow Optimization (INFLO) application bundle, with a focus on the Speed Harmonization (SPD-HARM) and Queue Wa...

  9. Prototype real-time baseband signal combiner. [deep space network

    NASA Technical Reports Server (NTRS)

    Howard, L. D.

    1980-01-01

    The design and performance of a prototype real-time baseband signal combiner, used to enhance the received Voyager 2 spacecraft signals during the Jupiter flyby, is described. Hardware delay paths, operating programs, and firmware are discussed.

  10. Report on detailed requirements for the INFLO prototype.

    DOT National Transportation Integrated Search

    2013-12-01

    This report documents the System Requirements for the implementation of the Intelligent Network Flow Optimization (INFLO) Prototype bundle within the Dynamic Mobility Applications (DMA) portion of the Connected Vehicle Program. It builds off of the p...

  11. Development of an Online Platform to Support the Network of Caregivers of People with Dementia.

    PubMed

    Verwey, Renée; van Berlo, Miranda; Duymelinck, Saskia; Willard, Sarah; van Rossum, Erik

    2016-01-01

    In the Netherlands, care technology is used insufficiently to support people with dementia, their family and professional caregivers. In this project we integrate a range of services and applications into an online platform, with the aim to strengthen these networks and to support communication between their members. The prototype of the platform was made in an iterative user centered way. Semi structured (group) interviews were conducted to specify the requirements. The platform consists of 'cubes' with information about dementia (care), video communication options, a calendar and a care plan. The first prototype of the platform was valued by the participants, but privacy matters and registration issues were pointed out when using a shared care plan. Additional applications to monitor health and safety will be integrated in the second prototype. This prototype will be tested on its usability, feasibility and desirability during a pilot study in spring 2016.

  12. RESLanjut: The learning media for improve students understanding in embedded systems

    NASA Astrophysics Data System (ADS)

    Indrianto, Susanti, Meilia Nur Indah; Karina, Djunaidi

    2017-08-01

    The use of network in embedded system can be done with many kinds of network, with the use of mobile phones, bluetooths, modems, ethernet cards, wireless technology and so on. Using network in embedded system could help people to do remote controlling. On previous research, researchers found that many students have the ability to comprehend the basic concept of embedded system. They could also make embedded system tools but without network integration. And for that, a development is needed for the embedded system module. The embedded system practicum module design needs a prototype method in order to achieve the desired goal. The prototype method is often used in the real world. Or even, a prototype method is a part of products that consist of logic expression or external physical interface. The embedded system practicum module is meant to increase student comprehension of embedded system course, and also to encourage students to innovate on technology based tools. It is also meant to help teachers to teach the embedded system concept on the course. The student comprehension is hoped to increase with the use of practicum course.

  13. Neural Network Classifies Teleoperation Data

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Giancaspro, Antonio; Losito, Sergio; Pasquariello, Guido

    1994-01-01

    Prototype artificial neural network, implemented in software, identifies phases of telemanipulator tasks in real time by analyzing feedback signals from force sensors on manipulator hand. Prototype is early, subsystem-level product of continuing effort to develop automated system that assists in training and supervising human control operator: provides symbolic feedback (e.g., warnings of impending collisions or evaluations of performance) to operator in real time during successive executions of same task. Also simplifies transition between teleoperation and autonomous modes of telerobotic system.

  14. Network Computing Infrastructure to Share Tools and Data in Global Nuclear Energy Partnership

    NASA Astrophysics Data System (ADS)

    Kim, Guehee; Suzuki, Yoshio; Teshima, Naoya

    CCSE/JAEA (Center for Computational Science and e-Systems/Japan Atomic Energy Agency) integrated a prototype system of a network computing infrastructure for sharing tools and data to support the U.S. and Japan collaboration in GNEP (Global Nuclear Energy Partnership). We focused on three technical issues to apply our information process infrastructure, which are accessibility, security, and usability. In designing the prototype system, we integrated and improved both network and Web technologies. For the accessibility issue, we adopted SSL-VPN (Security Socket Layer-Virtual Private Network) technology for the access beyond firewalls. For the security issue, we developed an authentication gateway based on the PKI (Public Key Infrastructure) authentication mechanism to strengthen the security. Also, we set fine access control policy to shared tools and data and used shared key based encryption method to protect tools and data against leakage to third parties. For the usability issue, we chose Web browsers as user interface and developed Web application to provide functions to support sharing tools and data. By using WebDAV (Web-based Distributed Authoring and Versioning) function, users can manipulate shared tools and data through the Windows-like folder environment. We implemented the prototype system in Grid infrastructure for atomic energy research: AEGIS (Atomic Energy Grid Infrastructure) developed by CCSE/JAEA. The prototype system was applied for the trial use in the first period of GNEP.

  15. Prototype of an in vitro model of the microcirculation.

    PubMed

    Shevkoplyas, Sergey S; Gifford, Sean C; Yoshida, Tatsuro; Bitensky, Mark W

    2003-03-01

    We have used microfabrication technology to construct a network of microchannels, patterned after the dimensions and architecture of the mammalian microcirculation. The network is cast in transparent silicone elastomer and the channels are coated with silanated mPEG to provide lubrication. Flow of red and white blood cells through the network is readily visualized by the use of high-speed digital image acquisition. The acquired sequences of high-quality images are used to calculate hematocrits and rates of red cell movement in the microchannels. Our prototype system has significant advantages over scaled-up room-size experimental systems in that it permits experimentation with actual human blood cells. Experiments can be carried out under well-controlled conditions in a network of microchannels with precisely known dimensions using cell suspensions of defined composition. Moreover, there is no need to counteract or anticipate the host's adaptive responses that may confound live animal experiments. Notwithstanding its limitations, the current prototype demonstrates certain features characteristic of the microcirculation, such as parachute and bullet shapes of red cells deformed in capillary channels, rouleaux formation, plasma skimming, and the utilization of collateral flow pathways due to flow obstruction caused by a white cell blocking a microchannel. We present this device as a prototype scale-to-scale model of the mammalian microcirculation. Limitations of the system as well as a variety of possible applications are described.

  16. A neural network prototyping package within IRAF

    NASA Technical Reports Server (NTRS)

    Bazell, D.; Bankman, I.

    1992-01-01

    We outline our plans for incorporating a Neural Network Prototyping Package into the IRAF environment. The package we are developing will allow the user to choose between different types of networks and to specify the details of the particular architecture chosen. Neural networks consist of a highly interconnected set of simple processing units. The strengths of the connections between units are determined by weights which are adaptively set as the network 'learns'. In some cases, learning can be a separate phase of the user cycle of the network while in other cases the network learns continuously. Neural networks have been found to be very useful in pattern recognition and image processing applications. They can form very general 'decision boundaries' to differentiate between objects in pattern space and they can be used for associative recall of patterns based on partial cures and for adaptive filtering. We discuss the different architectures we plan to use and give examples of what they can do.

  17. Research and development of a NYNEX switched multi-megabit data service prototype system

    NASA Astrophysics Data System (ADS)

    Maman, K. H.; Haines, Robert; Chatterjee, Samir

    1991-02-01

    Switched Multi-megabit Data Service (SMDS) is a proposed high-speed packet-switched service which will support broadband applications such as Local Area Network (LAN) interconnections across a metropolitan area and beyond. This service is designed to take advantage of evolving Metropolitan Area Network (MAN) standards and technology which will provide customers with 45-mbps and 1 . 5-mbps access to high-speed public data communications networks. This paper will briefly discuss SMDS and review its architecture including the Subscriber Network Interface (SNI) and the SMDS Interface Protocol (SIP). It will review the fundamental features of SMDS such as address screening addressing scheme and access classes. Then it will describe the SMDS prototype system developed in-house by NYNEX Science Technology.

  18. On the relevance of using open wireless sensor networks in environment monitoring.

    PubMed

    Bagula, Antoine B; Inggs, Gordon; Scott, Simon; Zennaro, Marco

    2009-01-01

    This paper revisits the problem of the readiness for field deployments of wireless sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that fine-tunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks.

  19. Hierarchical Task Network Prototyping In Unity3d

    DTIC Science & Technology

    2016-06-01

    visually debug. Here we present a solution for prototyping HTNs by extending an existing commercial implementation of Behavior Trees within the Unity3D game ...HTN, dynamic behaviors, behavior prototyping, agent-based simulation, entity-level combat model, game engine, discrete event simulation, virtual...commercial implementation of Behavior Trees within the Unity3D game engine prior to building the HTN in COMBATXXI. Existing HTNs were emulated within

  20. Analysis, Design and Implementation of a Networking Proof-of-Concept Prototype to Support Maritime Visit, Board, Search and Seizure Teams

    DTIC Science & Technology

    2014-03-01

    M. Callaghan ( AKR -1001). Retrieved from http://www.navsource.org/archives/09/54/541001.htm Nguyen, H., & Baker, M. (2012). Characteristics of a ...AND IMPLEMENTATION OF A NETWORKING PROOF-OF-CONCEPT PROTOTYPE TO SUPPORT MARITIME VISIT, BOARD, SEARCH AND SEIZURE TEAMS by Van E. Stewart...2. REPORT DATE March 2014 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE ANALYSIS, DESIGN AND IMPLEMENTATION OF A

  1. Missing: Prototype Vocational Guidance System.

    ERIC Educational Resources Information Center

    Weltin, Mary M.; Johnson, Richard M.

    1985-01-01

    Describes Army research in recruitment and vocational counseling. Discusses the Joint Optical Information Network, which offers career opportunity information, and the Army Research Institute's investigations of vocational counseling for high school and community college students and its prototype vocational guidance system. Encourages community…

  2. Validity of prototype diagnosis for mood and anxiety disorders.

    PubMed

    DeFife, Jared A; Peart, Joanne; Bradley, Bekh; Ressler, Kerry; Drill, Rebecca; Westen, Drew

    2013-02-01

    CONTEXT With growing recognition that most forms of psychopathology are best represented as dimensions or spectra, a central question becomes how to implement dimensional diagnosis in a way that is empirically sound and clinically useful. Prototype matching, which involves comparing a patient's clinical presentation with a prototypical description of the disorder, is an approach to diagnosis that has gained increasing attention with forthcoming revisions to both the DSM and the International Classification of Diseases. OBJECTIVE To examine prototype diagnosis for mood and anxiety disorders. DESIGN, SETTING, AND PATIENTS In the first study, we examined clinicians' DSM-IV and prototype diagnoses with their ratings of the patients' adaptive functioning and patients' self-reported symptoms. In the second study, independent interviewers made prototype diagnoses following either a systematic clinical interview or a structured diagnostic interview. A third interviewer provided independent ratings of global adaptive functioning. Patients were recruited as outpatients (study 1; N = 84) and from primary care clinics (study 2; N = 143). MAIN OUTCOME MEASURES Patients' self-reported mood, anxiety, and externalizing symptoms along with independent clinical ratings of adaptive functioning. RESULTS Clinicians' prototype diagnoses showed small to moderate correlations with patient-reported psychopathology and performed as well as or better than DSM-IV diagnoses. Prototype diagnoses from independent interviewers correlated on average r = .50 and showed substantial incremental validity over DSM-IV diagnoses in predicting adaptive functioning. CONCLUSIONS Prototype matching is a viable alternative for psychiatric diagnosis. As in research on personality disorders, mood and anxiety disorder prototypes outperformed DSM-IV decision rules in predicting psychopathology and global functioning. Prototype matching has multiple advantages, including ease of use in clinical practice, reduced artifactual comorbidity, compatibility with naturally occurring cognitive processes in diagnosticians, and ready translation into both categorical and dimensional diagnosis.

  3. The StarLite Project Prototyping Real-Time Software

    DTIC Science & Technology

    1991-10-01

    multiversion data objects using the prototyping environment. Section 5 concludes the paper. 2. Message-Based Simulation When prototyping distributed...phase locking and priority-based synchronization algorithms, and between a multiversion database and its corresponding single-version database, through...its deadline, since the transaction is only aborted in the validation phase. 4.5. A Multiversion Database System To illustrate the effctivcness of the

  4. The Discriminant Analysis Flare Forecasting System (DAFFS)

    NASA Astrophysics Data System (ADS)

    Leka, K. D.; Barnes, Graham; Wagner, Eric; Hill, Frank; Marble, Andrew R.

    2016-05-01

    The Discriminant Analysis Flare Forecasting System (DAFFS) has been developed under NOAA/Small Business Innovative Research funds to quantitatively improve upon the NOAA/SWPC flare prediction. In the Phase-I of this project, it was demonstrated that DAFFS could indeed improve by the requested 25% most of the standard flare prediction data products from NOAA/SWPC. In the Phase-II of this project, a prototype has been developed and is presently running autonomously at NWRA.DAFFS uses near-real-time data from NOAA/GOES, SDO/HMI, and the NSO/GONG network to issue both region- and full-disk forecasts of solar flares, based on multi-variable non-parametric Discriminant Analysis. Presently, DAFFS provides forecasts which match those provided by NOAA/SWPC in terms of thresholds and validity periods (including 1-, 2-, and 3- day forecasts), although issued twice daily. Of particular note regarding DAFFS capabilities are the redundant system design, automatically-generated validation statistics and the large range of customizable options available. As part of this poster, a description of the data used, algorithm, performance and customizable options will be presented, as well as a demonstration of the DAFFS prototype.DAFFS development at NWRA is supported by NOAA/SBIR contracts WC-133R-13-CN-0079 and WC-133R-14-CN-0103, with additional support from NASA contract NNH12CG10C, plus acknowledgment to the SDO/HMI and NSO/GONG facilities and NOAA/SWPC personnel for data products, support, and feedback. DAFFS is presently ready for Phase-III development.

  5. From control to causation: Validating a 'complex systems model' of running-related injury development and prevention.

    PubMed

    Hulme, A; Salmon, P M; Nielsen, R O; Read, G J M; Finch, C F

    2017-11-01

    There is a need for an ecological and complex systems approach for better understanding the development and prevention of running-related injury (RRI). In a previous article, we proposed a prototype model of the Australian recreational distance running system which was based on the Systems Theoretic Accident Mapping and Processes (STAMP) method. That model included the influence of political, organisational, managerial, and sociocultural determinants alongside individual-level factors in relation to RRI development. The purpose of this study was to validate that prototype model by drawing on the expertise of both systems thinking and distance running experts. This study used a modified Delphi technique involving a series of online surveys (December 2016- March 2017). The initial survey was divided into four sections containing a total of seven questions pertaining to different features associated with the prototype model. Consensus in opinion about the validity of the prototype model was reached when the number of experts who agreed or disagreed with survey statement was ≥75% of the total number of respondents. A total of two Delphi rounds was needed to validate the prototype model. Out of a total of 51 experts who were initially contacted, 50.9% (n = 26) completed the first round of the Delphi, and 92.3% (n = 24) of those in the first round participated in the second. Most of the 24 full participants considered themselves to be a running expert (66.7%), and approximately a third indicated their expertise as a systems thinker (33.3%). After the second round, 91.7% of the experts agreed that the prototype model was a valid description of the Australian distance running system. This is the first study to formally examine the development and prevention of RRI from an ecological and complex systems perspective. The validated model of the Australian distance running system facilitates theoretical advancement in terms of identifying practical system-wide opportunities for the implementation of sustainable RRI prevention interventions. This 'big picture' perspective represents the first step required when thinking about the range of contributory causal factors that affect other system elements, as well as runners' behaviours in relation to RRI risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Validity and reliability of an instrumented leg-extension machine for measuring isometric muscle strength of the knee extensors.

    PubMed

    Ruschel, Caroline; Haupenthal, Alessandro; Jacomel, Gabriel Fernandes; Fontana, Heiliane de Brito; Santos, Daniela Pacheco dos; Scoz, Robson Dias; Roesler, Helio

    2015-05-20

    Isometric muscle strength of knee extensors has been assessed for estimating performance, evaluating progress during physical training, and investigating the relationship between isometric and dynamic/functional performance. To assess the validity and reliability of an adapted leg-extension machine for measuring isometric knee extensor force. Validity (concurrent approach) and reliability (test and test-retest approach) study. University laboratory. 70 healthy men and women aged between 20 and 30 y (39 in the validity study and 31 in the reliability study). Intraclass correlation coefficient (ICC) values calculated for the maximum voluntary isometric torque of knee extensors at 30°, 60°, and 90°, measured with the prototype and with an isokinetic dynamometer (ICC2,1, validity study) and measured with the prototype in test and retest sessions, scheduled from 48 h to 72 h apart (ICC1,1, reliability study). In the validity analysis, the prototype showed good agreement for measurements at 30° (ICC2,1 = .75, SEM = 18.2 Nm) and excellent agreement for measurements at 60° (ICC2,1 = .93, SEM = 9.6 Nm) and at 90° (ICC2,1 = .94, SEM = 8.9 Nm). Regarding the reliability analysis, between-days' ICC1,1 were good to excellent, ranging from .88 to .93. Standard error of measurement and minimal detectable difference based on test-retest ranged from 11.7 Nm to 18.1 Nm and 32.5 Nm to 50.1 Nm, respectively, for the 3 analyzed knee angles. The analysis of validity and repeatability of the prototype for measuring isometric muscle strength has shown to be good or excellent, depending on the knee joint angle analyzed. The new instrument, which presents a relative low cost and easiness of transportation when compared with an isokinetic dynamometer, is valid and provides consistent data concerning isometric strength of knee extensors and, for this reason, can be used for practical, clinical, and research purposes.

  7. Filmless radiology: The design, integration, implementation, and evaluation of a digital imaging network. Potential investigations to be conducted in conjunction with the Digital-Imaging Network System (DINS) evaluation project. Revision 1. Annual report, 1 March 1987-28 February 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerlin, B.D.; Cerva, J.R.; Glenn, M.E.

    This document describes evaluation studies and technical investigations proposed for the three-year Digital Imaging Network System (DINS) prototype project, sponsored by the U.S. Army Medical Research and Development Command, Ft. Detrick, Maryland. The project has three overall goals. The first is to install and operate a prototype DINS at each of two University-based hospitals for test purposes. The second is to evaluate key aspects of each prototype system once it is in full operation. The third is to develop guidelines and specifications for an operational DINS suitable for use by the military and others developing systems of the future. Thismore » document defines twelve overall evaluative questions for use in meeting the second and third objectives of the project and proposes studies that will answer these questions.« less

  8. USC orthogonal multiprocessor for image processing with neural networks

    NASA Astrophysics Data System (ADS)

    Hwang, Kai; Panda, Dhabaleswar K.; Haddadi, Navid

    1990-07-01

    This paper presents the architectural features and imaging applications of the Orthogonal MultiProcessor (OMP) system, which is under construction at the University of Southern California with research funding from NSF and assistance from several industrial partners. The prototype OMP is being built with 16 Intel i860 RISC microprocessors and 256 parallel memory modules using custom-designed spanning buses, which are 2-D interleaved and orthogonally accessed without conflicts. The 16-processor OMP prototype is targeted to achieve 430 MIPS and 600 Mflops, which have been verified by simulation experiments based on the design parameters used. The prototype OMP machine will be initially applied for image processing, computer vision, and neural network simulation applications. We summarize important vision and imaging algorithms that can be restructured with neural network models. These algorithms can efficiently run on the OMP hardware with linear speedup. The ultimate goal is to develop a high-performance Visual Computer (Viscom) for integrated low- and high-level image processing and vision tasks.

  9. An Architecture for Intelligent Systems Based on Smart Sensors

    NASA Technical Reports Server (NTRS)

    Schmalzel, John; Figueroa, Fernando; Morris, Jon; Mandayam, Shreekanth; Polikar, Robi

    2004-01-01

    Based on requirements for a next-generation rocket test facility, elements of a prototype Intelligent Rocket Test Facility (IRTF) have been implemented. A key component is distributed smart sensor elements integrated using a knowledgeware environment. One of the specific goals is to imbue sensors with the intelligence needed to perform self diagnosis of health and to participate in a hierarchy of health determination at sensor, process, and system levels. The preliminary results provide the basis for future advanced development and validation using rocket test stand facilities at Stennis Space Center (SSC). We have identified issues important to further development of health-enabled networks, which should be of interest to others working with smart sensors and intelligent health management systems.

  10. Monitoring the bending and twist of morphing structures

    NASA Astrophysics Data System (ADS)

    Smoker, J.; Baz, A.

    2008-03-01

    This paper presents the development of the theoretical basis for the design of sensor networks for determining the 2-dimensioal shape of morphing structures by monitoring simultaneously the bending and twist deflections. The proposed development is based on the non-linear theory of finite elements to extract the transverse linear and angular deflections of a plate-like structure. The sensors outputs are wirelessly transmitted to the command unit to simultaneously compute maps of the linear and angular deflections and maps of the strain distribution of the entire structure. The deflection and shape information are required to ascertain that the structure is properly deployed and that its surfaces are operating wrinkle-free. The strain map ensures that the structure is not loaded excessively to adversely affect its service life. The developed theoretical model is validated experimentally using a prototype of a variable cambered span morphing structure provided with a network of distributed sensors. The structure/sensor network system is tested under various static conditions to determine the response characteristics of the proposed sensor network as compared to other conventional sensor systems. The presented theoretical and experimental techniques can have a great impact on the safe deployment and effective operation of a wide variety of morphing and inflatable structures such as morphing aircraft, solar sails, inflatable wings, and large antennas.

  11. The convergent and concurrent validity of trait-based prototype assessment of personality disorder categories in homeless persons.

    PubMed

    Samuel, Douglas B; Connolly, Adrian J; Ball, Samuel A

    2012-09-01

    The DSM-5 proposal indicates that personality disorders (PDs) be defined as collections of maladaptive traits but does not provide a specific diagnostic method. However, researchers have previously suggested that PD constructs can be assessed by comparing individuals' trait profiles with those prototypic of PDs and evidence from the five-factor model (FFM) suggests that these prototype matching scores converge moderately with traditional PD instruments. The current study investigates the convergence of FFM PD prototypes with interview-assigned PD diagnoses in a sample of 99 homeless individuals. This sample had very high rates of PDs, which extends previous research on samples with more modest prevalence rates. Results indicated that diagnostic agreement between these methods was generally low but consistent with the agreement previously observed between explicit PD measures. Furthermore, trait-based and diagnostic interview scores evinced similar relationships with clinically important indicators such as abuse history and past suicide attempts. These findings demonstrate the validity of prototype methods and suggest their consideration for assessing trait-defined PD types within DSM-5.

  12. ALLTEM Multi-Axis Electromagnetic Induction System Demonstration and Validation

    DTIC Science & Technology

    2012-08-01

    threshold T-high higher threshold TMGS Tensor Magnetic Gradiometer System TOI target of interest Tx ALLTEM transmitter USGS U.S. Geological...the Tensor Magnetic Gradiometer System ( TMGS ) and two prototype EMI instruments, the Very Early Time-domain ElectroMagnetic (VETEM) system and the...project one prototype magnetic system, the TMGS , and two prototype EMI instruments, VETEM and the High Frequency Sounder, were evaluated. Subsequent

  13. Adolescent alcohol-related risk cognitions: the roles of social norms and social networking sites.

    PubMed

    Litt, Dana M; Stock, Michelle L

    2011-12-01

    The present study examined the impact of socially based descriptive norms on willingness to drink alcohol, drinker prototype favorability, affective alcohol attitudes, and perceived vulnerability for alcohol-related consequences within the Prototype Willingness model. Descriptive norms were manipulated by having 189 young adolescents view experimenter-created profile pages from the social networking site Facebook, which either showed older peers drinking or not. The results provided evidence that descriptive norms for alcohol use, as portrayed by Facebook profiles, significantly impact willingness to use, prototypes, attitudes toward use, and perceived vulnerability. A multiple mediation analysis indicated that prototypes, attitudes, and perceptions of use mediated the relationship between the content of the Facebook profile and willingness. These results indicate that adolescents who perceive that alcohol use is normative, as evidenced by Facebook profiles, are at higher risk for cognitions shown to predict alcohol use than adolescents who do not see alcohol use portrayed as frequently on Facebook.

  14. MyShake: Building a smartphone seismic network

    NASA Astrophysics Data System (ADS)

    Kong, Q.; Allen, R. M.; Schreier, L.

    2014-12-01

    We are in the process of building up a smartphone seismic network. In order to build this network, we did shake table tests to evaluate the performance of the smartphones as seismic recording instruments. We also conducted noise floor test to find the minimum earthquake signal we can record using smartphones. We added phone noises to the strong motion data from past earthquakes, and used these as an analogy dataset to test algorithms and to understand the difference of using the smartphone network and the traditional seismic network. We also built a prototype system to trigger the smartphones from our server to record signals which can be sent back to the server in near real time. The phones can also be triggered by our developed algorithm running locally on the phone, if there's an earthquake occur to trigger the phones, the signal recorded by the phones will be sent back to the server. We expect to turn the prototype system into a real smartphone seismic network to work as a supplementary network to the existing traditional seismic network.

  15. Gently does it: Humans outperform a software classifier in recognizing subtle, nonstereotypical facial expressions.

    PubMed

    Yitzhak, Neta; Giladi, Nir; Gurevich, Tanya; Messinger, Daniel S; Prince, Emily B; Martin, Katherine; Aviezer, Hillel

    2017-12-01

    According to dominant theories of affect, humans innately and universally express a set of emotions using specific configurations of prototypical facial activity. Accordingly, thousands of studies have tested emotion recognition using sets of highly intense and stereotypical facial expressions, yet their incidence in real life is virtually unknown. In fact, a commonplace experience is that emotions are expressed in subtle and nonprototypical forms. Such facial expressions are at the focus of the current study. In Experiment 1, we present the development and validation of a novel stimulus set consisting of dynamic and subtle emotional facial displays conveyed without constraining expressers to using prototypical configurations. Although these subtle expressions were more challenging to recognize than prototypical dynamic expressions, they were still well recognized by human raters, and perhaps most importantly, they were rated as more ecological and naturalistic than the prototypical expressions. In Experiment 2, we examined the characteristics of subtle versus prototypical expressions by subjecting them to a software classifier, which used prototypical basic emotion criteria. Although the software was highly successful at classifying prototypical expressions, it performed very poorly at classifying the subtle expressions. Further validation was obtained from human expert face coders: Subtle stimuli did not contain many of the key facial movements present in prototypical expressions. Together, these findings suggest that emotions may be successfully conveyed to human viewers using subtle nonprototypical expressions. Although classic prototypical facial expressions are well recognized, they appear less naturalistic and may not capture the richness of everyday emotional communication. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Verification and calibration of laser Doppler flowmetry (LDF) prototype for measurement of microcirculation

    NASA Astrophysics Data System (ADS)

    Li, Yung-Hui; Hu, Chia-Ming; Tsai, Ming-Lun

    2017-10-01

    Laser Doppler Flowmetry (LDF), a non-invasive microcirculation measurement equipment, is designed to be used in measuring microcirculation and perfusion in the skin. LDF is very applicable to healthcare. However, the cost of commercial LDF prevents its prevalence and popularity. In this paper, continuing previous researches, a LDF prototype was built from the combination of the off-the-shelf electronic components. The raw signals acquired from the proposed LDF prototype is validated to be relevant to the microcirculation flux. Furthermore, we would like to verify the consistency between the signals measured from both model, and find an implicit transformation rule to transform the LDF prototype signals. For the purpose of verification and calibration of the LDF prototype signal feature, we first collected a parallel database consisting of flux signals measured by commercial and prototype LDF at the same time. Second, we extract signals with specific frequency of normalized signals as features and use these features to establish a model to allow us to map signals measured by LDF prototype to the commercial model. The result of the experiment showed that after we used the linear regression models to calibrate physiological feature, the correlation coefficient reached nearly 0.9999, which is close to a perfect positive correlation. The overall evaluation results showed that the proposed method can verify and ensure the validity of the LDF prototype. Through the proposed transformation, the flux signals measured by the proposed LDF prototype can successfully be transformed to its parallel form as if it is measured by commercial LDF.

  17. The Application of Integrated Knowledge-based Systems for the Biomedical Risk Assessment Intelligent Network (BRAIN)

    NASA Technical Reports Server (NTRS)

    Loftin, Karin C.; Ly, Bebe; Webster, Laurie; Verlander, James; Taylor, Gerald R.; Riley, Gary; Culbert, Chris; Holden, Tina; Rudisill, Marianne

    1993-01-01

    One of NASA's goals for long duration space flight is to maintain acceptable levels of crew health, safety, and performance. One way of meeting this goal is through the Biomedical Risk Assessment Intelligent Network (BRAIN), an integrated network of both human and computer elements. The BRAIN will function as an advisor to flight surgeons by assessing the risk of in-flight biomedical problems and recommending appropriate countermeasures. This paper describes the joint effort among various NASA elements to develop BRAIN and an Infectious Disease Risk Assessment (IDRA) prototype. The implementation of this effort addresses the technological aspects of the following: (1) knowledge acquisition; (2) integration of IDRA components; (3) use of expert systems to automate the biomedical prediction process; (4) development of a user-friendly interface; and (5) integration of the IDRA prototype and Exercise Countermeasures Intelligent System (ExerCISys). Because the C Language, CLIPS (the C Language Integrated Production System), and the X-Window System were portable and easily integrated, they were chosen as the tools for the initial IDRA prototype. The feasibility was tested by developing an IDRA prototype that predicts the individual risk of influenza. The application of knowledge-based systems to risk assessment is of great market value to the medical technology industry.

  18. Merlin - Massively parallel heterogeneous computing

    NASA Technical Reports Server (NTRS)

    Wittie, Larry; Maples, Creve

    1989-01-01

    Hardware and software for Merlin, a new kind of massively parallel computing system, are described. Eight computers are linked as a 300-MIPS prototype to develop system software for a larger Merlin network with 16 to 64 nodes, totaling 600 to 3000 MIPS. These working prototypes help refine a mapped reflective memory technique that offers a new, very general way of linking many types of computer to form supercomputers. Processors share data selectively and rapidly on a word-by-word basis. Fast firmware virtual circuits are reconfigured to match topological needs of individual application programs. Merlin's low-latency memory-sharing interfaces solve many problems in the design of high-performance computing systems. The Merlin prototypes are intended to run parallel programs for scientific applications and to determine hardware and software needs for a future Teraflops Merlin network.

  19. Exploiting the Use of Social Networking to Facilitate Collaboration in the Scientific Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppock, Edrick G.

    The goal of this project was to exploit social networking to facilitate scientific collaboration. The project objective was to research and identify scientific collaboration styles that are best served by social networking applications and to model the most effective social networking applications to substantiate how social networking can support scientific collaboration. To achieve this goal and objective, the project was to develop an understanding of the types of collaborations conducted by scientific researchers, through classification, data analysis and identification of unique collaboration requirements. Another technical objective in support of this goal was to understand the current state of technology inmore » collaboration tools. In order to test hypotheses about which social networking applications effectively support scientific collaboration the project was to create a prototype scientific collaboration system. The ultimate goal for testing the hypotheses and research of the project was to refine the prototype into a functional application that could effectively facilitate and grow collaboration within the U.S. Department of Energy (DOE) research community.« less

  20. Neural networks for simultaneous classification and parameter estimation in musical instrument control

    NASA Astrophysics Data System (ADS)

    Lee, Michael; Freed, Adrian; Wessel, David

    1992-08-01

    In this report we present our tools for prototyping adaptive user interfaces in the context of real-time musical instrument control. Characteristic of most human communication is the simultaneous use of classified events and estimated parameters. We have integrated a neural network object into the MAX language to explore adaptive user interfaces that considers these facets of human communication. By placing the neural processing in the context of a flexible real-time musical programming environment, we can rapidly prototype experiments on applications of adaptive interfaces and learning systems to musical problems. We have trained networks to recognize gestures from a Mathews radio baton, Nintendo Power GloveTM, and MIDI keyboard gestural input devices. In one experiment, a network successfully extracted classification and attribute data from gestural contours transduced by a continuous space controller, suggesting their application in the interpretation of conducting gestures and musical instrument control. We discuss network architectures, low-level features extracted for the networks to operate on, training methods, and musical applications of adaptive techniques.

  1. Rapidly Characterizing the Fast Dynamics of RNA Genetic Circuitry with Cell-Free Transcription–Translation (TX-TL) Systems

    PubMed Central

    2014-01-01

    RNA regulators are emerging as powerful tools to engineer synthetic genetic networks or rewire existing ones. A potential strength of RNA networks is that they may be able to propagate signals on time scales that are set by the fast degradation rates of RNAs. However, a current bottleneck to verifying this potential is the slow design-build-test cycle of evaluating these networks in vivo. Here, we adapt an Escherichia coli-based cell-free transcription-translation (TX-TL) system for rapidly prototyping RNA networks. We used this system to measure the response time of an RNA transcription cascade to be approximately five minutes per step of the cascade. We also show that this response time can be adjusted with temperature and regulator threshold tuning. Finally, we use TX-TL to prototype a new RNA network, an RNA single input module, and show that this network temporally stages the expression of two genes in vivo. PMID:24621257

  2. Hierarchical structural health monitoring system combining a fiber optic spinal cord network and distributed nerve cell devices

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo

    2009-03-01

    This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.

  3. Combining Image and Non-Image Data for Automatic Detection of Retina Disease in a Telemedicine Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aykac, Deniz; Chaum, Edward; Fox, Karen

    A telemedicine network with retina cameras and automated quality control, physiological feature location, and lesion/anomaly detection is a low-cost way of achieving broad-based screening for diabetic retinopathy (DR) and other eye diseases. In the process of a routine eye-screening examination, other non-image data is often available which may be useful in automated diagnosis of disease. In this work, we report on the results of combining this non-image data with image data, using the protocol and processing steps of a prototype system for automated disease diagnosis of retina examinations from a telemedicine network. The system includes quality assessments, automated physiology detection,more » and automated lesion detection to create an archive of known cases. Non-image data such as diabetes onset date and hemoglobin A1c (HgA1c) for each patient examination are included as well, and the system is used to create a content-based image retrieval engine capable of automated diagnosis of disease into 'normal' and 'abnormal' categories. The system achieves a sensitivity and specificity of 91.2% and 71.6% using hold-one-out validation testing.« less

  4. General Aviation Pilot Advisory and Training System (GAPATS)

    NASA Technical Reports Server (NTRS)

    Painter, John; Ward, Donald T.; Kelly, Wallace; Crump, John W.; Phillips, Ron; Trang, Jeff; Lee, Kris; Branham, Paul A.; Krishnamurthy, Karthik; Alcorn, William P., Jr.; hide

    1997-01-01

    The goal of this project is to achieve a validated General Aviation Pilot Advisor and Training System (GAPATS) engineering prototype, implemented according to commercial software standards and Federal Aviation Administration (FAA) issues of certification. Phase 2 builds on progress during Phase 1, which exceeded proposed objectives. The basic technology has been transferred from previous NASA research (1989 to 1994). We anticipate a commercially licensable prototype, validated by pilots in a flight simulator and in a light twin-engine research aircraft for FAA certification, by January 1998.

  5. The tinnitus functional index: development of a new clinical measure for chronic, intrusive tinnitus.

    PubMed

    Meikle, Mary B; Henry, James A; Griest, Susan E; Stewart, Barbara J; Abrams, Harvey B; McArdle, Rachel; Myers, Paula J; Newman, Craig W; Sandridge, Sharon; Turk, Dennis C; Folmer, Robert L; Frederick, Eric J; House, John W; Jacobson, Gary P; Kinney, Sam E; Martin, William H; Nagler, Stephen M; Reich, Gloria E; Searchfield, Grant; Sweetow, Robert; Vernon, Jack A

    2012-01-01

    Chronic subjective tinnitus is a prevalent condition that causes significant distress to millions of Americans. Effective tinnitus treatments are urgently needed, but evaluating them is hampered by the lack of standardized measures that are validated for both intake assessment and evaluation of treatment outcomes. This work was designed to develop a new self-report questionnaire, the Tinnitus Functional Index (TFI), that would have documented validity both for scaling the severity and negative impact of tinnitus for use in intake assessment and for measuring treatment-related changes in tinnitus (responsiveness) and that would provide comprehensive coverage of multiple tinnitus severity domains. To use preexisting knowledge concerning tinnitus-related problems, an Item Selection Panel (17 expert judges) surveyed the content (175 items) of nine widely used tinnitus questionnaires. From those items, the Panel identified 13 separate domains of tinnitus distress and selected 70 items most likely to be responsive to treatment effects. Eliminating redundant items while retaining good content validity and adding new items to achieve the recommended minimum of 3 to 4 items per domain yielded 43 items, which were then used for constructing TFI Prototype 1.Prototype 1 was tested at five clinics. The 326 participants included consecutive patients receiving tinnitus treatment who provided informed consent-constituting a convenience sample. Construct validity of Prototype 1 as an outcome measure was evaluated by measuring responsiveness of the overall scale and its individual items at 3 and 6 mo follow-up with 65 and 42 participants, respectively. Using a predetermined list of criteria, the 30 best-functioning items were selected for constructing TFI Prototype 2.Prototype 2 was tested at four clinics with 347 participants, including 155 and 86 who provided 3 and 6 mo follow-up data, respectively. Analyses were the same as for Prototype 1. Results were used to select the 25 best-functioning items for the final TFI. Both prototypes and the final TFI displayed strong measurement properties, with few missing data, high validity for scaling of tinnitus severity, and good reliability. All TFI versions exhibited the same eight factors characterizing tinnitus severity and negative impact. Responsiveness, evaluated by computing effect sizes for responses at follow-up, was satisfactory in all TFI versions.In the final TFI, Cronbach's alpha was 0.97 and test-retest reliability 0.78. Convergent validity (r = 0.86 with Tinnitus Handicap Inventory [THI]; r = 0.75 with Visual Analog Scale [VAS]) and discriminant validity (r = 0.56 with Beck Depression Inventory-Primary Care [BDI-PC]) were good. The final TFI was successful at detecting improvement from the initial clinic visit to 3 mo with moderate to large effect sizes and from initial to 6 mo with large effect sizes. Effect sizes for the TFI were generally larger than those obtained for the VAS and THI. After careful evaluation, a 13-point reduction was considered a preliminary criterion for meaningful reduction in TFI outcome scores. The TFI should be useful in both clinical and research settings because of its responsiveness to treatment-related change, validity for scaling the overall severity of tinnitus, and comprehensive coverage of multiple domains of tinnitus severity.

  6. Aerosol-jet printing of nanowire networks of zinc octaethylporphyrin and its application in flexible photodetectors.

    PubMed

    Wang, Feng-Xia; Lin, Jian; Gu, Wei-Bing; Liu, Yong-Qiang; Wu, Hao-Di; Pan, Ge-Bo

    2013-03-25

    Nanowire networks of zinc octaethylporphyrin (ZnOEP) were printed using an aerosol-jet printer on a poly(ethylene terephthalate) (PET) flexible substrate. The prototype photodetector based on the as-printed network exhibited high photosensitivity, fast photoresponse, and excellent mechanical stability.

  7. Wind Turbine Research Validation | Wind | NREL

    Science.gov Websites

    Wind Turbine Research Validation Wind Turbine Research Validation Photo of a large wind turbine operators with turbine and component research validation that ensures performance and reliability. Prototype research is especially important to capture manufacturing flaws. The NWTC staff conducts research on

  8. Operational space weather product development and validation at the joint SMC-AFRL Rapid Prototyping Center

    NASA Astrophysics Data System (ADS)

    Quigley, S.

    The Air Force Research Laboratory (AFRL/VSB) and Detachment 11, Space &Missile Systems Center (SMC, Det 11/CIT) have combined efforts to design, develop, test, and implement graphical products for the Air Force's space weather operations center. These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense systems and communications. Jointly-developed products that have been, or will soon be added to real-time operations include: 1) the Operational Space Environment Network Display (OpSEND) suit - a set of four products that address HF communication, UHF satellite communication scintillation, radar auroral clutter, and GP S single- frequency errors; 2) a solar radio background and burst effects (SoRBE) product suite; and C) a meteor effects (ME) product suite. The RPC is also involved in a rather substantial "V&V" effort to produce multiple operational product verifications and validations, with an added end goal of a generalized validation software package. The presentation will provide a general overview of the RPC and each of the products mentioned above, to include background science, operational history, inputs, outputs, dissemination, and customer uses for each.

  9. Benchmark tests for a Formula SAE Student car prototyping

    NASA Astrophysics Data System (ADS)

    Mariasiu, Florin

    2011-12-01

    Aerodynamic characteristics of a vehicle are important elements in its design and construction. A low drag coefficient brings significant fuel savings and increased engine power efficiency. In designing and developing vehicles trough computer simulation process to determine the vehicles aerodynamic characteristics are using dedicated CFD (Computer Fluid Dynamics) software packages. However, the results obtained by this faster and cheaper method, are validated by experiments in wind tunnels tests, which are expensive and were complex testing equipment are used in relatively high costs. Therefore, the emergence and development of new low-cost testing methods to validate CFD simulation results would bring great economic benefits for auto vehicles prototyping process. This paper presents the initial development process of a Formula SAE Student race-car prototype using CFD simulation and also present a measurement system based on low-cost sensors through which CFD simulation results were experimentally validated. CFD software package used for simulation was Solid Works with the FloXpress add-on and experimental measurement system was built using four piezoresistive force sensors FlexiForce type.

  10. Carnegie Mellon's STUDIO for Creative Inquiry [and] The Interdisciplinary Teaching Network (ITeN) [and] Interactive Fiction [and] The Networked Virtual Art Museum.

    ERIC Educational Resources Information Center

    Holden, Lynn; And Others

    1992-01-01

    Explains the STUDIO for Creative Inquiry, an interdisciplinary center at Carnegie Mellon University that supports experimental activities in the arts, and its Interdisciplinary Teaching Network. Three STUDIO projects are described: the Ancient Egypt Prototype application of the network; an interactive fiction system based on artificial…

  11. A novel prototype 3/5 laparoscopic needle driver: A validation study with conventional laparoscopic needle driver

    PubMed Central

    Ganpule, Arvind P.; Deshmukh, Chaitanya S.; Joshi, Tanmay

    2018-01-01

    Introduction: The challenges in laparoscopic suturing include need to expertise to suture. Laparoscopic needle holder is a ”key” instrument to accomplish this arduous task. Instrument: The objective of this new invention was to develop a laparoscopic needle holder which would be adapted to avoid any wobble (with a shaft diameter same as a 5mm port), ensure accurate and dexterous suturing not just in adult patients but pediatric patients alike (with a short shaft diameter) and finally ensure seamless throw of knots with a narrow tip configuration. Validation: We did an initial evaluation to evaluate the validity of the prototype needle holder and its impact on laparoscopic suturing skills by experienced laparoscopic surgeons and novice laparoscopic Surgeons. Both the groups of surgeons performed two tasks. The first task was to grasp the needle and position it in an angle deemed ideal for suturing. The second task was to pass suture through two fixed points and make a single square knot. At the end of the tasks each participant was asked to complete a 5- point Likert's scale questionnaire (8 items; 4 items of handling and 4 items of suturing) rating each needle holder. In expert group, the mean time to complete task 1 was shorter with prototype 3/5 laparoscopic needle holder (11.8 sec Vs 20.8 sec). The mean time to complete task 2 was also shorter with prototype 3/5 laparoscopic needle holder (103.2 sec Vs 153.2 sec). In novice group, mean time to complete both the task was shorter with prototype 3/5 laparoscopic needle holder. Conclusion: The expert laparoscopic surgeons as well as novice laparoscopic surgeons performed laparoscopic suturing faster and with more ease while using the prototype 3/5 laparoscopic needle holder. PMID:28782740

  12. Validation of multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Siewiorek, D. P.; Segall, Z.; Kong, T.

    1982-01-01

    Experiments that can be used to validate fault free performance of multiprocessor systems in aerospace systems integrating flight controls and avionics are discussed. Engineering prototypes for two fault tolerant multiprocessors are tested.

  13. A Worldwide Intercultural Network: Exploring Electronic Messaging for Instruction. Interactive Technology Laboratory Report #8.

    ERIC Educational Resources Information Center

    Cohen, Moshe; Miyake, Naomi

    A worldwide international computer network, called the Intercultural Learning Network, has been developed to provide students from different cultures with opportunities to work cooperatively. Prototype activities have been developed and tested which facilitate and contextualize interactions among secondary and college students. Joint projects in…

  14. Phase aided 3D imaging and modeling: dedicated systems and case studies

    NASA Astrophysics Data System (ADS)

    Yin, Yongkai; He, Dong; Liu, Zeyi; Liu, Xiaoli; Peng, Xiang

    2014-05-01

    Dedicated prototype systems for 3D imaging and modeling (3DIM) are presented. The 3D imaging systems are based on the principle of phase-aided active stereo, which have been developed in our laboratory over the past few years. The reported 3D imaging prototypes range from single 3D sensor to a kind of optical measurement network composed of multiple node 3D-sensors. To enable these 3D imaging systems, we briefly discuss the corresponding calibration techniques for both single sensor and multi-sensor optical measurement network, allowing good performance of the 3DIM prototype systems in terms of measurement accuracy and repeatability. Furthermore, two case studies including the generation of high quality color model of movable cultural heritage and photo booth from body scanning are presented to demonstrate our approach.

  15. Right-side-stretched multifractal spectra indicate small-worldness in networks

    NASA Astrophysics Data System (ADS)

    Oświȩcimka, Paweł; Livi, Lorenzo; Drożdż, Stanisław

    2018-04-01

    Complex network formalism allows to explain the behavior of systems composed by interacting units. Several prototypical network models have been proposed thus far. The small-world model has been introduced to mimic two important features observed in real-world systems: i) local clustering and ii) the possibility to move across a network by means of long-range links that significantly reduce the characteristic path length. A natural question would be whether there exist several ;types; of small-world architectures, giving rise to a continuum of models with properties (partially) shared with other models belonging to different network families. Here, we take advantage of the interplay between network theory and time series analysis and propose to investigate small-world signatures in complex networks by analyzing multifractal characteristics of time series generated from such networks. In particular, we suggest that the degree of right-sided asymmetry of multifractal spectra is linked with the degree of small-worldness present in networks. This claim is supported by numerical simulations performed on several parametric models, including prototypical small-world networks, scale-free, fractal and also real-world networks describing protein molecules. Our results also indicate that right-sided asymmetry emerges with the presence of the following topological properties: low edge density, low average shortest path, and high clustering coefficient.

  16. Rapid Prototyping for In Vitro Knee Rig Investigations of Prosthetized Knee Biomechanics: Comparison with Cobalt-Chromium Alloy Implant Material

    PubMed Central

    Schröder, Christian; Steinbrück, Arnd; Müller, Tatjana; Woiczinski, Matthias; Chevalier, Yan; Müller, Peter E.; Jansson, Volkmar

    2015-01-01

    Retropatellar complications after total knee arthroplasty (TKA) such as anterior knee pain and subluxations might be related to altered patellofemoral biomechanics, in particular to trochlear design and femorotibial joint positioning. A method was developed to test femorotibial and patellofemoral joint modifications separately with 3D-rapid prototyped components for in vitro tests, but material differences may further influence results. This pilot study aims at validating the use of prostheses made of photopolymerized rapid prototype material (RPM) by measuring the sliding friction with a ring-on-disc setup as well as knee kinematics and retropatellar pressure on a knee rig. Cobalt-chromium alloy (standard prosthesis material, SPM) prostheses served as validation standard. Friction coefficients between these materials and polytetrafluoroethylene (PTFE) were additionally tested as this latter material is commonly used to protect pressure sensors in experiments. No statistical differences were found between friction coefficients of both materials to PTFE. UHMWPE shows higher friction coefficient at low axial loads for RPM, a difference that disappears at higher load. No measurable statistical differences were found in knee kinematics and retropatellar pressure distribution. This suggests that using polymer prototypes may be a valid alternative to original components for in vitro TKA studies and future investigations on knee biomechanics. PMID:25879019

  17. Next Generation NASA Initiative for Space Geodesy

    NASA Technical Reports Server (NTRS)

    Merkowitz, S. M.; Desai, S.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Space geodesy measurement requirements have become more and more stringent as our understanding of the physical processes and our modeling techniques have improved. In addition, current and future spacecraft will have ever-increasing measurement capability and will lead to increasingly sophisticated models of changes in the Earth system. Ground-based space geodesy networks with enhanced measurement capability will be essential to meeting these oncoming requirements and properly interpreting the sate1!ite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation ofthe observed geophysical signals. These requirements have been articulated by the Global Geodetic Observing System (GGOS). The NASA Space Geodesy Project (SGP) is developing a prototype core site as the basis for a next generation Space Geodetic Network (SGN) that would be NASA's contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Each of the sites in the SGN would include co-located, state of-the-art systems from all four space geodetic observing techniques (GNSS, SLR, VLBI, and DORIS). The prototype core site is being developed at NASA's Geophysical and Astronomical Observatory at Goddard Space Flight Center. The project commenced in 2011 and is scheduled for completion in late 2013. In January 2012, two multiconstellation GNSS receivers, GODS and GODN, were established at the prototype site as part of the local geodetic network. Development and testing are also underway on the next generation SLR and VLBI systems along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vector ties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  18. Construction of a technological semi-digital hadronic calorimeter using GRPC

    NASA Astrophysics Data System (ADS)

    Laktineh, I.

    2011-04-01

    A high-granularity semi-digital Hadronic calorimeter using GRPC as sensitive medium is one of the two HCAL options considered by the ILD collaboration to be proposed for the detector of the future International Linear Collider project. A prototype of 1m3 has been conceived within the CALICE collaboration in order to validate this option. The prototype intends to be as close as possible to the one proposed in the ILD Letter Of Intent. Few units made of 1m2 GRPC fully equipped with semi-digital readout electronics and new gas distribution design were produced and successfully tested. In 2010 we intend to produce 40 similar units to be inserted in a self-supporting mechanical structure. The prototype will then be exposed to TestBeams at CERN for final validation.

  19. Emerging technology for advancing the treatment of epilepsy using a dynamic control framework.

    PubMed

    Stanslaski, Scott; Giftakis, John; Stypulkowski, Paul; Carlson, Dave; Afshar, Pedram; Cong, Peng; Denison, Timothy

    2011-01-01

    We briefly describe a dynamic control system framework for neuromodulation for epilepsy, with an emphasis on its practical challenges and the preliminary validation of key prototype technologies in a chronic animal model. The current state of neuromodulation can be viewed as a classical dynamic control framework such that the nervous system is the classical "plant", the neural stimulator is the controller/actuator, clinical observation, patient diaries and/or measured bio-markers are the sensor, and clinical judgment applied to these sensor inputs forms the state estimator. Technology can potentially address two main factors contributing to the performance limitations of existing systems: "observability," the ability to observe the state of the system from output measurements, and "controllability," the ability to drive the system to a desired state. In addition to improving sensors and actuator performance, methods and tools to better understand disease state dynamics and state estimation are also critical for improving therapy outcomes. We describe our preliminary validation of key "observability" and "controllability" technology blocks using an implanted research tool in an epilepsy disease model. This model allows for testing the key emerging technologies in a representative neural network of therapeutic importance. In the future, we believe these technologies might enable both first principles understanding of neural network behavior for optimizing therapy design, and provide a practical pathway towards clinical translation.

  20. Optimal Design of a Planar Textile Antenna for Industrial Scientific Medical (ISM) 2.4 GHz Wireless Body Area Networks (WBAN) with the CRO-SL Algorithm.

    PubMed

    Sánchez-Montero, Rocío; Camacho-Gómez, Carlos; López-Espí, Pablo-Luís; Salcedo-Sanz, Sancho

    2018-06-21

    This paper proposes a low-profile textile-modified meander line Inverted-F Antenna (IFA) with variable width and spacing meanders, for Industrial Scientific Medical (ISM) 2.4-GHz Wireless Body Area Networks (WBAN), optimized with a novel metaheuristic algorithm. Specifically, a metaheuristic known as Coral Reefs Optimization with Substrate Layer (CRO-SL) is used to obtain an optimal antenna for sensor systems, which allows covering properly and resiliently the 2.4⁻2.45-GHz industrial scientific medical bandwidth. Flexible pad foam has been used to make the designed prototype with a 1.1-mm thickness. We have used a version of the algorithm that is able to combine different searching operators within a single population of solutions. This approach is ideal to deal with hard optimization problems, such as the design of the proposed meander line IFA. During the optimization phase with the CRO-SL, the proposed antenna has been simulated using CST Microwave Studio software, linked to the CRO-SL by means of MATLAB implementation and Visual Basic Applications (VBA) code. We fully describe the antenna design process, the adaptation of the CRO-SL approach to this problem and several practical aspects of the optimization and details on the algorithm’s performance. To validate the simulation results, we have constructed and measured two prototypes of the antenna, designed with the proposed algorithm. Several practical aspects such as sensitivity during the antenna manufacturing or the agreement between the simulated and constructed antenna are also detailed in the paper.

  1. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  2. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project

    NASA Technical Reports Server (NTRS)

    Griner, James H.

    2013-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication system prototype radio, operating on recently allocated UAS frequency spectrum bands. The prototype radio will be used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current status of the design, development, and flight test planning for this prototype radio.

  3. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project - Gen-4 and Gen-5 Radio Plans

    NASA Technical Reports Server (NTRS)

    Griner, James H.

    2014-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current plans for the prototype radio development.

  4. The Local Integrity Approach for Urban Contexts: Definition and Vehicular Experimental Assessment

    PubMed Central

    Margaria, Davide; Falletti, Emanuela

    2016-01-01

    A novel cooperative integrity monitoring concept, called “local integrity”, suitable to automotive applications in urban scenarios, is discussed in this paper. The idea is to take advantage of a collaborative Vehicular Ad hoc NETwork (VANET) architecture in order to perform a spatial/temporal characterization of possible degradations of Global Navigation Satellite System (GNSS) signals. Such characterization enables the computation of the so-called “Local Protection Levels”, taking into account local impairments to the received signals. Starting from theoretical concepts, this paper describes the experimental validation by means of a measurement campaign and the real-time implementation of the algorithm on a vehicular prototype. A live demonstration in a real scenario has been successfully carried out, highlighting effectiveness and performance of the proposed approach. PMID:26821028

  5. Broadcast of four HD videos with LED ceiling lighting: optical-wireless MAC

    NASA Astrophysics Data System (ADS)

    Bouchet, Olivier; Porcon, Pascal; Gueutier, Eric

    2011-09-01

    The European project "hOME Gigabit Access Network" (OMEGA) targeted various wireless and wired solutions for 1 Gbit/s connectivity in Home Area Networks (HANs). One objective was to evaluate the suitability of optical wireless technologies in two spectral regions: visible light (visible-light communications - VLC) and near infrared (infrared communications - IRC). Several demonstrators have been built, all of them largely relying on overthe- shelf components. The demonstrators included a "wide-area" VLC broadcast link based on LED ceiling lighting and a laser-based high-data-rate "wide-area" IRC prototype. In this paper we discuss an adapted optical-wireless media-access-control (OWMAC) sublayer, which was developed and implemented during the project. It is suitable for both IRC and VLC. The VLC prototype is based on DMT signal processing and provides broadcasting at { 100 Mbit/s over an area of approximately 5 m2. The IRC prototype provides {300 Mbit/s half-duplex communication over an area of approximately 30 m2. The IRC mesh network, composed of one base station and two terminals, is based on OOK modulation, multi-sector transceivers, and an ultra-fast sector switch. After a brief discussion about the design of the optical-wireless data link layer and the optical-wireless switch (OWS) card, we address the card development and implementation. We also present applications for the VLC and IRC prototypes and measurement results regarding the MAC layer.

  6. Design of a Model-Based Online Management Information System for Interlibrary Loan Networks.

    ERIC Educational Resources Information Center

    Rouse, Sandra H.; Rouse, William B.

    1979-01-01

    Discusses the design of a model-based management information system in terms of mathematical/statistical, information processing, and human factors issues and presents a prototype system for interlibrary loan networks. (Author/CWM)

  7. Investigation of prototype volcano-surveillance network

    NASA Technical Reports Server (NTRS)

    Eaton, J. P. (Principal Investigator); Ward, P. L.

    1973-01-01

    The author has identified the following significant results. The equipment installed in the volcano surveillance network continues to work quite reliably and earthquakes are being recorded at all sites. A summary of platform receptions per day has been prepared.

  8. Architectural Design for the Global Legal Information Network

    NASA Technical Reports Server (NTRS)

    Kalpakis, Konstantinos

    1999-01-01

    In this report, we provide a summary of our activities regarding the goals, requirements analysis, design, and prototype implementation for the Global Legal Information Network, a joint effort between the Law Library of Congress and NASA.

  9. Implanted neural network potentials: Application to Li-Si alloys

    NASA Astrophysics Data System (ADS)

    Onat, Berk; Cubuk, Ekin D.; Malone, Brad D.; Kaxiras, Efthimios

    2018-03-01

    Modeling the behavior of materials composed of elements with different bonding and electronic structure character for large spatial and temporal scales and over a large compositional range is a challenging problem. Cases in point are amorphous alloys of Si, a prototypical covalent material, and Li, a prototypical metal, which are being considered as anodes for high-energy-density batteries. To address this challenge, we develop a methodology based on neural networks that extends the conventional training approach to incorporate pre-trained parts that capture the character of different components, into the overall network; we refer to this model as the "implanted neural network" method. We show that this approach works well for the Si-Li amorphous alloys for a wide range of compositions, giving good results for key quantities like the diffusion coefficients. The method is readily generalizable to more complicated situations that involve two or more different elements.

  10. Validity of High School Physic Module With Character Values Using Process Skill Approach In STKIP PGRI West Sumatera

    NASA Astrophysics Data System (ADS)

    Anaperta, M.; Helendra, H.; Zulva, R.

    2018-04-01

    This study aims to describe the validity of physics module with Character Oriented Values Using Process Approach Skills at Dynamic Electrical Material in high school physics / MA and SMK. The type of research is development research. The module development model uses the development model proposed by Plomp which consists of (1) preliminary research phase, (2) the prototyping phase, and (3) assessment phase. In this research is done is initial investigation phase and designing. Data collecting technique to know validation is observation and questionnaire. In the initial investigative phase, curriculum analysis, student analysis, and concept analysis were conducted. In the design phase and the realization of module design for SMA / MA and SMK subjects in dynamic electrical materials. After that, the formative evaluation which include self evaluation, prototyping (expert reviews, one-to-one, and small group. At this stage validity is performed. This research data is obtained through the module validation sheet, which then generates a valid module.

  11. Real-time data flow and product generating for GNSS

    NASA Technical Reports Server (NTRS)

    Muellerschoen, Ronald J.; Caissy, Mark

    2004-01-01

    The last IGS workshop with the theme 'Towards Real-Time' resulted in the design of a prototype for real-time data and sharing within the IGS. A prototype real-time network is being established that will serve as a test bed for real-time activities within the IGS. We review the developments of the prototype and discuss some of the existing methods and related products of real-time GNSS systems. Recommendations are made concerning real-time data distribution and product generation.

  12. Prototype-Distortion Category Learning: A Two-Phase Learning Process across a Distributed Network

    ERIC Educational Resources Information Center

    Little, Deborah M.; Thulborn, Keith R.

    2006-01-01

    This paper reviews a body of work conducted in our laboratory that applies functional magnetic resonance imaging (fMRI) to better understand the biological response and change that occurs during prototype-distortion learning. We review results from two experiments (Little, Klein, Shobat, McClure, & Thulborn, 2004; Little & Thulborn, 2005) that…

  13. Adaptive neural network/expert system that learns fault diagnosis for different structures

    NASA Astrophysics Data System (ADS)

    Simon, Solomon H.

    1992-08-01

    Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.

  14. Personality Subtypes in Adolescents with Eating Disorders: Validation of a Classification Approach

    ERIC Educational Resources Information Center

    Thompson-Brenner, Heather; Eddy, Kamryn T.; Satir, Dana A.; Boisseau, Christina L.; Westen, Drew

    2008-01-01

    Background: Research has identified three personality subtypes in adults with eating disorders (EDs): a high-functioning, an undercontrolled, and an overcontrolled group. The current study investigated whether similar personality prototypes exist in adolescents with EDs, and whether these personality prototypes show relationships to external…

  15. Rapid Prototyping: A Survey and Evaluation of Methodologies and Models

    DTIC Science & Technology

    1990-03-01

    possibility of program coding errors or design differences from the actual prototype the user validated. The method - ology should result in a production...behavior within the problem domain to be defned. "Each method has a different approach towards developing the set of symbols with which to define the...investigate prototyping as a viable alternative to the conventional method of software development. By the mid 1980’s, it was evi- dent that the traditional

  16. Smart Valley Infrastructure.

    ERIC Educational Resources Information Center

    Maule, R. William

    1994-01-01

    Discusses prototype information infrastructure projects in northern California's Silicon Valley. The strategies of the public and private telecommunications carriers vying for backbone services and industries developing end-user infrastructure technologies via office networks, set-top box networks, Internet multimedia, and "smart homes"…

  17. Validation of the ULCEAT methodology by applying it in retrospect to the Roboticbed.

    PubMed

    Nakamura, Mio; Suzurikawa, Jun; Tsukada, Shohei; Kume, Yohei; Kawakami, Hideo; Inoue, Kaoru; Inoue, Takenobu

    2015-01-01

    In answer to the increasing demand for care by the Japanese oldest portion of the population, an extensive programme of life support robots is under development, advocated by the Japanese government. Roboticbed® (RB) is developed to facilitate patients in their daily life in making independent transfers from and to the bed. The bed is intended both for elderly and persons with a disability. The purpose of this study is to examine the validity of the user and user's life centred clinical evaluation of assistive technology (ULCEAT) methodology. To support user centred development of life support robots the ULCEAT method was developed. By means of the ULCEAT method the target users and the use environment were re-established in an earlier study. The validity of the method is tested by re-evaluating the development of RB in retrospect. Six participants used the first prototype of RB (RB1) and eight participants used the second prototype of RB (RB2). The results indicated that the functionality was improved owing to the end-user evaluations. Therefore, we confirmed the content validity of the proposed ULCEAT method. In this study we confirmed the validation of the ULCEAT methodology by applying it in retrospect to RB using development process. This method will be used for the development of Life-support robots and prototype assistive technologies.

  18. Designing Security-Hardened Microkernels For Field Devices

    NASA Astrophysics Data System (ADS)

    Hieb, Jeffrey; Graham, James

    Distributed control systems (DCSs) play an essential role in the operation of critical infrastructures. Perimeter field devices are important DCS components that measure physical process parameters and perform control actions. Modern field devices are vulnerable to cyber attacks due to their increased adoption of commodity technologies and that fact that control networks are no longer isolated. This paper describes an approach for creating security-hardened field devices using operating system microkernels that isolate vital field device operations from untrusted network-accessible applications. The approach, which is influenced by the MILS and Nizza architectures, is implemented in a prototype field device. Whereas, previous microkernel-based implementations have been plagued by poor inter-process communication (IPC) performance, the prototype exhibits an average IPC overhead for protected device calls of 64.59 μs. The overall performance of field devices is influenced by several factors; nevertheless, the observed IPC overhead is low enough to encourage the continued development of the prototype.

  19. Network operating system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Long-term and short-term objectives for the development of a network operating system for the Space Station are stated. The short-term objective is to develop a prototype network operating system for a 100 megabit/second fiber optic data bus. The long-term objective is to establish guidelines for writing a detailed specification for a Space Station network operating system. Major milestones are noted. Information is given in outline form.

  20. Development and assessment of a higher-spatial-resolution (4.4 km) MISR aerosol optical depth product using AERONET-DRAGON data

    NASA Astrophysics Data System (ADS)

    Garay, Michael J.; Kalashnikova, Olga V.; Bull, Michael A.

    2017-04-01

    Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been acquiring data that have been used to produce aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution. Capitalizing on the capabilities provided by multi-angle viewing, the current operational (Version 22) MISR algorithm performs well, with about 75 % of MISR AOD retrievals globally falling within 0.05 or 20 % × AOD of paired validation data from the ground-based Aerosol Robotic Network (AERONET). This paper describes the development and assessment of a prototype version of a higher-spatial-resolution 4.4 km MISR aerosol optical depth product compared against multiple AERONET Distributed Regional Aerosol Gridded Observations Network (DRAGON) deployments around the globe. In comparisons with AERONET-DRAGON AODs, the 4.4 km resolution retrievals show improved correlation (r = 0. 9595), smaller RMSE (0.0768), reduced bias (-0.0208), and a larger fraction within the expected error envelope (80.92 %) relative to the Version 22 MISR retrievals.

  1. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems

    PubMed Central

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-01

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems. PMID:28079187

  2. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems.

    PubMed

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-12

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  3. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems

    NASA Astrophysics Data System (ADS)

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-01

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, J. H.; Ng, E. Y. K.; Robertson, Amy

    As part of a collaboration of the National Renewable Energy Laboratory (NREL) and SWAY AS, NREL installed scientific wind, wave, and motion measurement equipment on the spar-type 1/6.5th-scale prototype SWAY floating offshore wind system. The equipment enhanced SWAY's data collection and allowed SWAY to verify the concept and NREL to validate a FAST model of the SWAY design in an open-water condition. Nanyang Technological University (NTU), in collaboration with NREL, assisted with the validation. This final report gives an overview of the SWAY prototype and NREL and NTU's efforts to validate a model of the system. The report provides amore » summary of the different software tools used in the study, the modeling strategies, and the development of a FAST model of the SWAY prototype wind turbine, including justification of the modeling assumptions. Because of uncertainty in system parameters and modeling assumptions due to the complexity of the design, several system properties were tuned to better represent the system and improve the accuracy of the simulations. Calibration was performed using data from a static equilibrium test and free-decay tests.« less

  5. The Semi-Planned LAN: Prototyping a Local Area Network.

    ERIC Educational Resources Information Center

    True, John F.; Rosenwald, Judah

    1986-01-01

    Five administrative user departments at San Francisco State University discovered that they had common requirements for office automation and data manipulation that could be addressed with microcomputers. The results of a local area network project are presented. (Author/MLW)

  6. Increased rate of solvent diffusion in a prototypical supramolecular gel measured on the picosecond timescale.

    PubMed

    Seydel, Tilo; Edkins, Robert M; Jones, Christopher D; Foster, Jonathan A; Bewley, Robert; Aguilar, Juan A; Edkins, Katharina

    2018-06-14

    Solvent diffusion in a prototypical supramolecular gel probed by quasi-elastic neutron scattering on the picosecond timescale is faster than that in the respective bulk solvent. This phenomenon is hypothesized to be due to disruption of the hydrogen bonding of the solvent by the large hydrophobic surface of the gel network.

  7. Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling.

    PubMed

    Cao, Shuai; Bennett, Thomas D; Keen, David A; Goodwin, Andrew L; Cheetham, Anthony K

    2012-08-14

    We report the rapid amorphization of the prototypical substituted zeolitic imidazolate framework, ZIF-8, by ball-milling. The resultant amorphous ZIF-8 (a(m)ZIF-8) possesses a continuous random network (CRN) topology with a higher density and a lower porosity than its crystalline counterpart. A decrease in thermal stability upon amorphization is also evident.

  8. An Embedded Systems Laboratory to Support Rapid Prototyping of Robotics and the Internet of Things

    ERIC Educational Resources Information Center

    Hamblen, J. O.; van Bekkum, G. M. E.

    2013-01-01

    This paper describes a new approach for a course and laboratory designed to allow students to develop low-cost prototypes of robotic and other embedded devices that feature Internet connectivity, I/O, networking, a real-time operating system (RTOS), and object-oriented C/C++. The application programming interface (API) libraries provided permit…

  9. Design, Realization, and First Validation of an Immersive Web-Based Virtual Patient Simulator for Training Clinical Decisions in Surgery.

    PubMed

    Kleinert, Robert; Heiermann, Nadine; Wahba, Roger; Chang, De-Huan; Hölscher, Arnulf H; Stippel, Dirk L

    2015-01-01

    Immersive patient simulators (IPS) allow an illusionary immersion into a synthetic world where the user can freely navigate through a 3-dimensional environment similar to computer games. Playful learning with IPS allows internalization of medical workflows without harming real patients. Ideally, IPS show high student acceptance and can have positive effect on knowledge gain. Development of IPS with high technical quality is resource intensive. Therefore most of the "high-fidelity" IPS are commercially driven. Usage of IPS in the daily curriculum is still rare. There is no academic-driven simulator that is freely accessible to every student and combines high immersion grade with a profound amount of medical content. Therefore it was our aim to develop an academic-driven IPS prototype that is free to use and combines a high immersion grade with profound medical content. In addition, a first validation of the prototype was conducted. The conceptual design included definition of the following parameters: amount of curricular content, grade of technical quality, availability, and level of validation. A preliminary validation was done with 25 students. Students' opinion about acceptance was evaluated by a Likert-scale questionnaire. Effect on knowledge gain was determined by testing concordance and predictive validity. A custom-made simulator prototype (Artificial learning interface for clinical education [ALICE]) displays a virtual clinic environment that can be explored from a first-person view similar to a video game. By controlling an avatar, the user navigates through the environment, is able to treat virtual patients, and faces the consequence of different decisions. ALICE showed high students' acceptance. There was positive correlation for concordance validity and predictive validity. Simulator usage had positive effect on reproduction of trained content and declarative knowledge. We successfully developed a university-based, IPS prototype (ALICE) with profound medical content. ALICE is a nonprofit simulator, easy to use, and showed high students' acceptance; thus it potentially provides an additional tool for supporting student teaching in the daily clinical curriculum. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  10. Prototyping and validating requirements of radiation and nuclear emergency plan simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamid, AHA., E-mail: amyhamijah@nm.gov.my; Faculty of Computing, Universiti Teknologi Malaysia; Rozan, MZA.

    2015-04-29

    Organizational incapability in developing unrealistic, impractical, inadequate and ambiguous mechanisms of radiological and nuclear emergency preparedness and response plan (EPR) causing emergency plan disorder and severe disasters. These situations resulting from 65.6% of poor definition and unidentified roles and duties of the disaster coordinator. Those unexpected conditions brought huge aftermath to the first responders, operators, workers, patients and community at large. Hence, in this report, we discuss prototyping and validating of Malaysia radiation and nuclear emergency preparedness and response plan simulation model (EPRM). A prototyping technique was required to formalize the simulation model requirements. Prototyping as systems requirements validation wasmore » carried on to endorse the correctness of the model itself against the stakeholder’s intensions in resolving those organizational incapability. We have made assumptions for the proposed emergency preparedness and response model (EPRM) through the simulation software. Those assumptions provided a twofold of expected mechanisms, planning and handling of the respective emergency plan as well as in bringing off the hazard involved. This model called RANEPF (Radiation and Nuclear Emergency Planning Framework) simulator demonstrated the training emergency response perquisites rather than the intervention principles alone. The demonstrations involved the determination of the casualties’ absorbed dose range screening and the coordination of the capacity planning of the expected trauma triage. Through user-centred design and sociotechnical approach, RANEPF simulator was strategized and simplified, though certainly it is equally complex.« less

  11. Prototyping and validating requirements of radiation and nuclear emergency plan simulator

    NASA Astrophysics Data System (ADS)

    Hamid, AHA.; Rozan, MZA.; Ibrahim, R.; Deris, S.; Selamat, A.

    2015-04-01

    Organizational incapability in developing unrealistic, impractical, inadequate and ambiguous mechanisms of radiological and nuclear emergency preparedness and response plan (EPR) causing emergency plan disorder and severe disasters. These situations resulting from 65.6% of poor definition and unidentified roles and duties of the disaster coordinator. Those unexpected conditions brought huge aftermath to the first responders, operators, workers, patients and community at large. Hence, in this report, we discuss prototyping and validating of Malaysia radiation and nuclear emergency preparedness and response plan simulation model (EPRM). A prototyping technique was required to formalize the simulation model requirements. Prototyping as systems requirements validation was carried on to endorse the correctness of the model itself against the stakeholder's intensions in resolving those organizational incapability. We have made assumptions for the proposed emergency preparedness and response model (EPRM) through the simulation software. Those assumptions provided a twofold of expected mechanisms, planning and handling of the respective emergency plan as well as in bringing off the hazard involved. This model called RANEPF (Radiation and Nuclear Emergency Planning Framework) simulator demonstrated the training emergency response perquisites rather than the intervention principles alone. The demonstrations involved the determination of the casualties' absorbed dose range screening and the coordination of the capacity planning of the expected trauma triage. Through user-centred design and sociotechnical approach, RANEPF simulator was strategized and simplified, though certainly it is equally complex.

  12. Design of an electrochemical prototype to determine relative NaCl content and its application in fresh cheeses

    USDA-ARS?s Scientific Manuscript database

    An electrochemical prototype (ECP) was designed and validated to determine NaCl electrical variables [volt (V), ampere (A), resistance (R), and power (P)] and its application for detection of possible adulteration in fresh cheeses. The ECP circuit consisted of two electrodes, aluminum (anode) and c...

  13. Prototype Testing in Instructional Development. SWRL Working Papers: 1972.

    ERIC Educational Resources Information Center

    Niedermeyer, Fred C., Ed.

    When properly implemented, prototype testing appears to provide one of the most direct and economical methods for identifying means to optimize the effectiveness of a product, and ultimately to validate a product's effect. The nine papers in this volume exemplify several categories of protytype testing conducted at different stages of the…

  14. E-Services quality assessment framework for collaborative networks

    NASA Astrophysics Data System (ADS)

    Stegaru, Georgiana; Danila, Cristian; Sacala, Ioan Stefan; Moisescu, Mihnea; Mihai Stanescu, Aurelian

    2015-08-01

    In a globalised networked economy, collaborative networks (CNs) are formed to take advantage of new business opportunities. Collaboration involves shared resources and capabilities, such as e-Services that can be dynamically composed to automate CN participants' business processes. Quality is essential for the success of business process automation. Current approaches mostly focus on quality of service (QoS)-based service selection and ranking algorithms, overlooking the process of service composition which requires interoperable, adaptable and secure e-Services to ensure seamless collaboration, data confidentiality and integrity. Lack of assessment of these quality attributes can result in e-Service composition failure. The quality of e-Service composition relies on the quality of each e-Service and on the quality of the composition process. Therefore, there is the need for a framework that addresses quality from both views: product and process. We propose a quality of e-Service composition (QoESC) framework for quality assessment of e-Service composition for CNs which comprises of a quality model for e-Service evaluation and guidelines for quality of e-Service composition process. We implemented a prototype considering a simplified telemedicine use case which involves a CN in e-Healthcare domain. To validate the proposed quality-driven framework, we analysed service composition reliability with and without using the proposed framework.

  15. New Algorithm and Software (BNOmics) for Inferring and Visualizing Bayesian Networks from Heterogeneous Big Biological and Genetic Data

    PubMed Central

    Gogoshin, Grigoriy; Boerwinkle, Eric

    2017-01-01

    Abstract Bayesian network (BN) reconstruction is a prototypical systems biology data analysis approach that has been successfully used to reverse engineer and model networks reflecting different layers of biological organization (ranging from genetic to epigenetic to cellular pathway to metabolomic). It is especially relevant in the context of modern (ongoing and prospective) studies that generate heterogeneous high-throughput omics datasets. However, there are both theoretical and practical obstacles to the seamless application of BN modeling to such big data, including computational inefficiency of optimal BN structure search algorithms, ambiguity in data discretization, mixing data types, imputation and validation, and, in general, limited scalability in both reconstruction and visualization of BNs. To overcome these and other obstacles, we present BNOmics, an improved algorithm and software toolkit for inferring and analyzing BNs from omics datasets. BNOmics aims at comprehensive systems biology—type data exploration, including both generating new biological hypothesis and testing and validating the existing ones. Novel aspects of the algorithm center around increasing scalability and applicability to varying data types (with different explicit and implicit distributional assumptions) within the same analysis framework. An output and visualization interface to widely available graph-rendering software is also included. Three diverse applications are detailed. BNOmics was originally developed in the context of genetic epidemiology data and is being continuously optimized to keep pace with the ever-increasing inflow of available large-scale omics datasets. As such, the software scalability and usability on the less than exotic computer hardware are a priority, as well as the applicability of the algorithm and software to the heterogeneous datasets containing many data types—single-nucleotide polymorphisms and other genetic/epigenetic/transcriptome variables, metabolite levels, epidemiological variables, endpoints, and phenotypes, etc. PMID:27681505

  16. New Algorithm and Software (BNOmics) for Inferring and Visualizing Bayesian Networks from Heterogeneous Big Biological and Genetic Data.

    PubMed

    Gogoshin, Grigoriy; Boerwinkle, Eric; Rodin, Andrei S

    2017-04-01

    Bayesian network (BN) reconstruction is a prototypical systems biology data analysis approach that has been successfully used to reverse engineer and model networks reflecting different layers of biological organization (ranging from genetic to epigenetic to cellular pathway to metabolomic). It is especially relevant in the context of modern (ongoing and prospective) studies that generate heterogeneous high-throughput omics datasets. However, there are both theoretical and practical obstacles to the seamless application of BN modeling to such big data, including computational inefficiency of optimal BN structure search algorithms, ambiguity in data discretization, mixing data types, imputation and validation, and, in general, limited scalability in both reconstruction and visualization of BNs. To overcome these and other obstacles, we present BNOmics, an improved algorithm and software toolkit for inferring and analyzing BNs from omics datasets. BNOmics aims at comprehensive systems biology-type data exploration, including both generating new biological hypothesis and testing and validating the existing ones. Novel aspects of the algorithm center around increasing scalability and applicability to varying data types (with different explicit and implicit distributional assumptions) within the same analysis framework. An output and visualization interface to widely available graph-rendering software is also included. Three diverse applications are detailed. BNOmics was originally developed in the context of genetic epidemiology data and is being continuously optimized to keep pace with the ever-increasing inflow of available large-scale omics datasets. As such, the software scalability and usability on the less than exotic computer hardware are a priority, as well as the applicability of the algorithm and software to the heterogeneous datasets containing many data types-single-nucleotide polymorphisms and other genetic/epigenetic/transcriptome variables, metabolite levels, epidemiological variables, endpoints, and phenotypes, etc.

  17. A Model-Driven Approach for Telecommunications Network Services Definition

    NASA Astrophysics Data System (ADS)

    Chiprianov, Vanea; Kermarrec, Yvon; Alff, Patrick D.

    Present day Telecommunications market imposes a short concept-to-market time for service providers. To reduce it, we propose a computer-aided, model-driven, service-specific tool, with support for collaborative work and for checking properties on models. We started by defining a prototype of the Meta-model (MM) of the service domain. Using this prototype, we defined a simple graphical modeling language specific for service designers. We are currently enlarging the MM of the domain using model transformations from Network Abstractions Layers (NALs). In the future, we will investigate approaches to ensure the support for collaborative work and for checking properties on models.

  18. Instrumental measurement of odour nuisance in city agglomeration using electronic nose

    NASA Astrophysics Data System (ADS)

    Szulczyński, Bartosz; Dymerski, Tomasz; Gębicki, Jacek; Namieśnik, Jacek

    2018-01-01

    The paper describes an operation principle of odour nuisance monitoring network in a city agglomeration. Moreover, it presents the results of investigation on ambient air quality with respect to odour obtained during six-month period. The investigation was carried out using a network comprised of six prototypes of electronic nose and Nasal Ranger field olfactometers employed as a reference method. The monitoring network consisted of two measurement stations localized in a vicinity of crude oil processing plant and four stations localized near the main emitters of volatile odorous compounds such as sewage treatment plant, municipal landfill, phosphatic fertilizer production plant. The electronic nose prototype was equipped with a set of six semiconductor sensors by FIGARO Co. and one PID-type sensor. The field olfactometers were utilized for determination of mean concentration of odorants and for calibration of the electronic nose prototypes in order to provide their proper operation. Mean monthly values of odour concentration depended on the site of measurement and on meteorological parameters. They were within 0 - 6.0 ou/m3 range. Performed investigations revealed the possibility of electronic nose instrument application as a tool for monitoring of odour nuisance.

  19. Software-codec-based full motion video conferencing on the PC using visual pattern image sequence coding

    NASA Astrophysics Data System (ADS)

    Barnett, Barry S.; Bovik, Alan C.

    1995-04-01

    This paper presents a real time full motion video conferencing system based on the Visual Pattern Image Sequence Coding (VPISC) software codec. The prototype system hardware is comprised of two personal computers, two camcorders, two frame grabbers, and an ethernet connection. The prototype system software has a simple structure. It runs under the Disk Operating System, and includes a user interface, a video I/O interface, an event driven network interface, and a free running or frame synchronous video codec that also acts as the controller for the video and network interfaces. Two video coders have been tested in this system. Simple implementations of Visual Pattern Image Coding and VPISC have both proven to support full motion video conferencing with good visual quality. Future work will concentrate on expanding this prototype to support the motion compensated version of VPISC, as well as encompassing point-to-point modem I/O and multiple network protocols. The application will be ported to multiple hardware platforms and operating systems. The motivation for developing this prototype system is to demonstrate the practicality of software based real time video codecs. Furthermore, software video codecs are not only cheaper, but are more flexible system solutions because they enable different computer platforms to exchange encoded video information without requiring on-board protocol compatible video codex hardware. Software based solutions enable true low cost video conferencing that fits the `open systems' model of interoperability that is so important for building portable hardware and software applications.

  20. Space-based Science Operations Grid Prototype

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Welch, Clara L.; Redman, Sandra

    2004-01-01

    Grid technology is the up and coming technology that is enabling widely disparate services to be offered to users that is very economical, easy to use and not available on a wide basis. Under the Grid concept disparate organizations generally defined as "virtual organizations" can share services i.e. sharing discipline specific computer applications, required to accomplish the specific scientific and engineering organizational goals and objectives. Grids are emerging as the new technology of the future. Grid technology has been enabled by the evolution of increasingly high speed networking. Without the evolution of high speed networking Grid technology would not have emerged. NASA/Marshall Space Flight Center's (MSFC) Flight Projects Directorate, Ground Systems Department is developing a Space-based Science Operations Grid prototype to provide to scientists and engineers the tools necessary to operate space-based science payloads/experiments and for scientists to conduct public and educational outreach. In addition Grid technology can provide new services not currently available to users. These services include mission voice and video, application sharing, telemetry management and display, payload and experiment commanding, data mining, high order data processing, discipline specific application sharing and data storage, all from a single grid portal. The Prototype will provide most of these services in a first step demonstration of integrated Grid and space-based science operations technologies. It will initially be based on the International Space Station science operational services located at the Payload Operations Integration Center at MSFC, but can be applied to many NASA projects including free flying satellites and future projects. The Prototype will use the Internet2 Abilene Research and Education Network that is currently a 10 Gb backbone network to reach the University of Alabama at Huntsville and several other, as yet unidentified, Space Station based science experimenters. There is an international aspect to the Grid involving the America's Pathway (AMPath) network, the Chilean REUNA Research and Education Network and the University of Chile in Santiago that will further demonstrate how extensive these services can be used. From the user's perspective, the Prototype will provide a single interface and logon to these varied services without the complexity of knowing the where's and how's of each service. There is a separate and deliberate emphasis on security. Security will be addressed by specifically outlining the different approaches and tools used. Grid technology, unlike the Internet, is being designed with security in mind. In addition we will show the locations, configurations and network paths associated with each service and virtual organization. We will discuss the separate virtual organizations that we define for the varied user communities. These will include certain, as yet undetermined, space-based science functions and/or processes and will include specific virtual organizations required for public and educational outreach and science and engineering collaboration. We will also discuss the Grid Prototype performance and the potential for further Grid applications both space-based and ground based projects and processes. In this paper and presentation we will detail each service and how they are integrated using Grid

  1. Patch models and their applications to multivehicle command and control.

    PubMed

    Rao, Venkatesh G; D'Andrea, Raffaello

    2007-06-01

    We introduce patch models, a computational modeling formalism for multivehicle combat domains, based on spatiotemporal abstraction methods developed in the computer science community. The framework yields models that are expressive enough to accommodate nontrivial controlled vehicle dynamics while being within the representational capabilities of common artificial intelligence techniques used in the construction of autonomous systems. The framework allows several key design requirements of next-generation network-centric command and control systems, such as maintenance of shared situation awareness, to be achieved. Major features include support for multiple situation models at each decision node and rapid mission plan adaptation. We describe the formal specification of patch models and our prototype implementation, i.e., Patchworks. The capabilities of patch models are validated through a combat mission simulation in Patchworks, which involves two defending teams protecting a camp from an enemy attacking team.

  2. Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks.

    PubMed

    Wang, Zhijun; Mirdamadi, Reza; Wang, Qing

    2016-01-01

    Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building.

  3. Feature to prototype transition in neural networks

    NASA Astrophysics Data System (ADS)

    Krotov, Dmitry; Hopfield, John

    Models of associative memory with higher order (higher than quadratic) interactions, and their relationship to neural networks used in deep learning are discussed. Associative memory is conventionally described by recurrent neural networks with dynamical convergence to stable points. Deep learning typically uses feedforward neural nets without dynamics. However, a simple duality relates these two different views when applied to problems of pattern classification. From the perspective of associative memory such models deserve attention because they make it possible to store a much larger number of memories, compared to the quadratic case. In the dual description, these models correspond to feedforward neural networks with one hidden layer and unusual activation functions transmitting the activities of the visible neurons to the hidden layer. These activation functions are rectified polynomials of a higher degree rather than the rectified linear functions used in deep learning. The network learns representations of the data in terms of features for rectified linear functions, but as the power in the activation function is increased there is a gradual shift to a prototype-based representation, the two extreme regimes of pattern recognition known in cognitive psychology. Simons Center for Systems Biology.

  4. Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks

    PubMed Central

    Wang, Zhijun; Mirdamadi, Reza; Wang, Qing

    2016-01-01

    Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building. PMID:28540284

  5. User-Centered Design (UCD) Process Description

    DTIC Science & Technology

    2014-12-01

    where critical tasks and decision points are identified. From here, paper wireframe storyboards are sketched and then validated with cognitive...paper wireframe storyboards are sketched and then validated with cognitive walk-throughs. Low-fidelity prototypes are then created and checked

  6. Automated Induction Of Rule-Based Neural Networks

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J.; Goodman, Rodney M.

    1994-01-01

    Prototype expert systems implemented in software and are functionally equivalent to neural networks set up automatically and placed into operation within minutes following information-theoretic approach to automated acquisition of knowledge from large example data bases. Approach based largely on use of ITRULE computer program.

  7. Implementation of body area networks based on MICS/WMTS medical bands for healthcare systems.

    PubMed

    Yuce, Mehmet R; Ho, Chee Keong

    2008-01-01

    A multi-hoping sensor network system has been implemented to monitor physiological parameters from multiple patient bodies by means of medical communication standards MICS (Medical Implant Communication Service) and WMTS (Wireless Medical Telemetry Service). Unlike the other medical sensor networks (they usually use 2.4 GHz ISM band), we used the two medical standards occupying the frequency bands that are mainly assigned to medical applications. The prototype system uses the MICS band (402-405 MHz) between the sensor nodes and a remote central control unit (CCU). And WMTS frequencies (608-614MHz) are used between the CCUs and the remote base stations allowing for a much larger range acting as an intermediate node. The sensor nodes in the prototype can measure up to four body signals (i.e. 4-channel) where one is dedicated to a continuous physiological signal such as ECC/EEG. The system includes firmware and software designs that can provide a long distance data transfer through the internet or a mobile network.

  8. DWTP: a basis for networked VR on the Internet

    NASA Astrophysics Data System (ADS)

    Broll, Wolfgang; Schick, Daniel

    1998-04-01

    Shared virtual worlds are one of today's major research topics. While limited to particular application areas and high speed networks in the past, they become more and more available to a large number of users. One reason for this development was the introduction of VRML (the Virtual Reality Modeling Language), which has been established as a standard of the exchange of 3D worlds on the Internet. Although a number of prototype systems have been developed to realize shared multi-user worlds based on VRML, no suitable network protocol to support the demands of such environments has yet been established. In this paper we will introduce our approach of a network protocol for shared virtual environments: DWTP--the Distributed Worlds Transfer and communication Protocol. We will show how DWTP meets the demands of shared virtual environments on the Internet. We will further present SmallView, our prototype of a distributed multi-user VR system, to show how DWTP can be used to realize shared worlds.

  9. Simulation studies of a wide area health care network.

    PubMed Central

    McDaniel, J. G.

    1994-01-01

    There is an increasing number of efforts to install wide area health care networks. Some of these networks are being built to support several applications over a wide user base consisting primarily of medical practices, hospitals, pharmacies, medical laboratories, payors, and suppliers. Although on-line, multi-media telecommunication is desirable for some purposes such as cardiac monitoring, store-and-forward messaging is adequate for many common, high-volume applications. Laboratory test results and payment claims, for example, can be distributed using electronic messaging networks. Several network prototypes have been constructed to determine the technical problems and to assess the effectiveness of electronic messaging in wide area health care networks. Our project, Health Link, developed prototype software that was able to use the public switched telephone network to exchange messages automatically, reliably and securely. The network could be configured to accommodate the many different traffic patterns and cost constraints of its users. Discrete event simulations were performed on several network models. Canonical star and mesh networks, that were composed of nodes operating at steady state under equal loads, were modeled. Both topologies were found to support the throughput of a generic wide area health care network. The mean message delivery time of the mesh network was found to be less than that of the star network. Further simulations were conducted for a realistic large-scale health care network consisting of 1,553 doctors, 26 hospitals, four medical labs, one provincial lab and one insurer. Two network topologies were investigated: one using predominantly peer-to-peer communication, the other using client-server communication.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7949966

  10. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging

    PubMed Central

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J.; Ramella-Roman, Jessica C.; Mathews, Scott A.; Coburn, James C.; Sorg, Brian S.; Chen, Yu; Joshua Pfefer, T.

    2015-01-01

    Abstract. The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance. PMID:26662064

  11. A technical platform for environments for ageing--lessons learned from three field studies.

    PubMed

    Eichelberg, Marco; Büsching, Felix; Steen, Enno-Edzard; Helmer, Axel; Thiel, Andreas; Hein, Andreas; Wolf, Lars

    2014-01-01

    The Lower Saxony Research Network "Design of Environments for Ageing" (GAL) studied possible applications of assistive technology for enabling older adults to live longer and independent in their own home. As part of this work, a technical platform was developed as a common technical basis for all assistive systems in the project. This article presents an overview of the architecture and core functionality of the technical platform, which in the first generation was developed for use in a laboratory setting, and in a second generation was extended for use in the project's field studies, i.e. prototype installations in end-users homes. The field studies' primary objective was the evaluation of the assistive technologies, that were developed within the overall project. However, these studies also confirmed that the fundamental concept of the technical platform is valid, and the prototypes continuously worked 24 h a day for several months. However, there were some problems related to lack of infrastructure in the older adults' homes and human factors such as inadvertent placement of objects across sensors' field of view, acceptance problems due to aesthetical reasons or simply communication problems, which show that making complex technologies work for users with little technical experience is well possible, but requires a careful consideration of the complete service chain and related "soft factors".

  12. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging.

    PubMed

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J; Ramella-Roman, Jessica C; Mathews, Scott A; Coburn, James C; Sorg, Brian S; Chen, Yu; Pfefer, T Joshua

    2015-01-01

    The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance.

  13. A Prototype System for a Computer-Based Statewide Film Library Network: A Model for Operation. Final Report.

    ERIC Educational Resources Information Center

    Bidwell, Charles M.; Auricchio, Dominick

    The project set out to establish an operational film scheduling network to improve service to New York State teachers using 16mm educational films. The Network is designed to serve local libraries located in Boards of Cooperative Educational Services (BOCES), regional libraries, and a statewide Syracuse University Film Rental Library (SUFRL). The…

  14. A Framework for Supporting Survivability, Network Planning and Cross-Layer Optimization in Future Multi-Domain Terabit Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldin, Ilya; Huang, Shu; Gopidi, Rajesh

    This final project report describes the accomplishments, products and publications from the award. It includes the overview of the project goals to devise a framework for managing resources in multi-domain, multi-layer networks, as well the details of the mathematical problem formulation and the description of the prototype built to prove the concept.

  15. Highball: A high speed, reserved-access, wide area network

    NASA Technical Reports Server (NTRS)

    Mills, David L.; Boncelet, Charles G.; Elias, John G.; Schragger, Paul A.; Jackson, Alden W.

    1990-01-01

    A network architecture called Highball and a preliminary design for a prototype, wide-area data network designed to operate at speeds of 1 Gbps and beyond are described. It is intended for applications requiring high speed burst transmissions where some latency between requesting a transmission and granting the request can be anticipated and tolerated. Examples include real-time video and disk-disk transfers, national filestore access, remote sensing, and similar applications. The network nodes include an intelligent crossbar switch, but have no buffering capabilities; thus, data must be queued at the end nodes. There are no restrictions on the network topology, link speeds, or end-end protocols. The end system, nodes, and links can operate at any speed up to the limits imposed by the physical facilities. An overview of an initial design approach is presented and is intended as a benchmark upon which a detailed design can be developed. It describes the network architecture and proposed access protocols, as well as functional descriptions of the hardware and software components that could be used in a prototype implementation. It concludes with a discussion of additional issues to be resolved in continuing stages of this project.

  16. Advanced ASON prototyping research activities in China

    NASA Astrophysics Data System (ADS)

    Hu, WeiSheng; Jin, Yaohui; Guo, Wei; Su, Yikai; He, Hao; Sun, Weiqiang

    2005-02-01

    This paper provides an overview of prototyping research activities of automatically switched optical networks and transport networks (ASONs/ASTNs) in China. In recent years, China has recognized the importance and benefits of the emerging ASON/ASTN techniques. During the period of 2001 and 2002, the national 863 Program of China started the preliminary ASON research projects with the main objectives to build preliminary ASON testbeds, develop control plane protocols and test their performance in the testbeds. During the period of 2003 and 2004, the 863 program started ASTN prototyping equipment projects for more practical applications. Totally 12 ASTN equipments are being developed by three groups led by Chinese venders: ZTE with Beijing University of Posts and Telecommunications (BUPT), Wuhan Research Institute of Posts and Telecommunication (WRI) with Shanghai Jiao Tong University (SJTU), and Huawei Inc. Meanwhile, as the ASTN is maturing, some of the China"s carries are participating in the OIF"s World Interoperability Demonstration, carrying out ASTN test, or deploying ASTN backbone networks. Finally, several ASTN backbone networks being tested or deployed now will be operated by the carries in 2005. The 863 Program will carry out an ASTN field trail in Yangtse River Delta, and finally deploy the 3TNET. 3TNET stands for Tbps transmission, Tbps switching, and Tbps routing, as well as a network integrating the above techniques. A task force under the "863" program is responsible for ASTN equipment specifications and interoperation agreements, technical coordination among all the participants, schedule of the whole project during the project undergoing, and organization of internetworking of all the equipments in the laboratories and field trials.

  17. The Convergent and Concurrent Validity of Trait-Based Prototype Assessment of Personality Disorder Categories in Homeless Persons

    ERIC Educational Resources Information Center

    Samuel, Douglas B.; Connolly, Adrian J.; Ball, Samuel A.

    2012-01-01

    The "DSM-5" proposal indicates that personality disorders (PDs) be defined as collections of maladaptive traits but does not provide a specific diagnostic method. However, researchers have previously suggested that PD constructs can be assessed by comparing individuals' trait profiles with those prototypic of PDs and evidence from the…

  18. Disentangling prototypicality and social desirability: the case of the KNOWI task.

    PubMed

    Turan, Bulent

    2011-01-01

    The prototype of indicators of a relationship partner who can be trusted to be responsive at times of stress is one kind of social knowledge structure. The Knowledge of Indicators (KNOWI) Task assesses individual differences in knowledge about these prototypic indicators. In constructing the KNOWI, an iterative procedure was used in an attempt to identify those indicators for which ratings of prototypicality are not influenced by social desirability. Study 1 demonstrated that the correlation between ratings of prototypicality and social desirability is indeed eliminated for the final set of indicators retained in the KNOWI. Study 2 tested the prototype matching hypothesis: Comparing an actual partner to the prototype might shape global judgments about that partner's responsiveness. Because in Study 2 only those indicators that are uncorrelated with social desirability were used, this result cannot be explained by social desirability. These results support the construct validity of the indicators used in the KNOWI Task, which seems to be a precise assessment tool not influenced by social desirability.

  19. The ART of representation: Memory reduction and noise tolerance in a neural network vision system

    NASA Astrophysics Data System (ADS)

    Langley, Christopher S.

    The Feature Cerebellar Model Arithmetic Computer (FCMAC) is a multiple-input-single-output neural network that can provide three-degree-of-freedom (3-DOF) pose estimation for a robotic vision system. The FCMAC provides sufficient accuracy to enable a manipulator to grasp an object from an arbitrary pose within its workspace. The network learns an appearance-based representation of an object by storing coarsely quantized feature patterns. As all unique patterns are encoded, the network size grows uncontrollably. A new architecture is introduced herein, which combines the FCMAC with an Adaptive Resonance Theory (ART) network. The ART module categorizes patterns observed during training into a set of prototypes that are used to build the FCMAC. As a result, the network no longer grows without bound, but constrains itself to a user-specified size. Pose estimates remain accurate since the ART layer tends to discard the least relevant information first. The smaller network performs recall faster, and in some cases is better for generalization, resulting in a reduction of error at recall time. The ART-Under-Constraint (ART-C) algorithm is extended to include initial filling with randomly selected patterns (referred to as ART-F). In experiments using a real-world data set, the new network performed equally well using less than one tenth the number of coarse patterns as a regular FCMAC. The FCMAC is also extended to include real-valued input activations. As a result, the network can be tuned to reject a variety of types of noise in the image feature detection. A quantitative analysis of noise tolerance was performed using four synthetic noise algorithms, and a qualitative investigation was made using noisy real-world image data. In validation experiments, the FCMAC system outperformed Radial Basis Function (RBF) networks for the 3-DOF problem, and had accuracy comparable to that of Principal Component Analysis (PCA) and superior to that of Shape Context Matching (SCM), both of which estimate orientation only.

  20. Dichroic Filter for Separating W-Band and Ka-Band

    NASA Technical Reports Server (NTRS)

    Epp, Larry W.; Durden, Stephen L.; Jamnejad, Vahraz; Long, Ezra M.; Sosnowski, John B.; Higuera, Raymond J.; Chen, Jacqueline C.

    2012-01-01

    The proposed Aerosol/Cloud/Ecosystems (ACEs) mission development would advance cloud profiling radar from that used in CloudSat by adding a 35-GHz (Ka-band) channel to the 94-GHz (W-band) channel used in CloudSat. In order to illuminate a single antenna, and use CloudSat-like quasi-optical transmission lines, a spatial diplexer is needed to add the Ka-band channel. A dichroic filter separates Ka-band from W-band by employing advances in electrical discharge machining (EDM) and mode-matching analysis techniques developed and validated for designing dichroics for the Deep Space Network (DSN), to develop a preliminary design that both met the requirements of frequency separation and mechanical strength. First, a mechanical prototype was built using an approximately 102-micron-diameter EDM process, and tolerances of the hole dimensions, wall thickness, radius, and dichroic filter thickness measured. The prototype validated the manufacturing needed to design a dichroic filter for a higher-frequency usage than previously used in the DSN. The initial design was based on a Ka-band design, but thicker walls are required for mechanical rigidity than one obtains by simply scaling the Ka-band dichroic filter. The resulting trade of hole dimensions for mechanical rigidity (wall thickness) required electrical redesign of the hole dimensions. Updates to existing codes in the linear solver decreased the analysis time using mode-matching, enabling the electrical design to be realized quickly. This work is applicable to missions and instruments that seek to extend W-band cloud profiling measurements to other frequencies. By demonstrating a dichroic filter that passes W-band, but reflects a lower frequency, this opens up the development of instruments that both compare to and enhance CloudSat.

  1. A small-world network model of facial emotion recognition.

    PubMed

    Takehara, Takuma; Ochiai, Fumio; Suzuki, Naoto

    2016-01-01

    Various models have been proposed to increase understanding of the cognitive basis of facial emotions. Despite those efforts, interactions between facial emotions have received minimal attention. If collective behaviours relating to each facial emotion in the comprehensive cognitive system could be assumed, specific facial emotion relationship patterns might emerge. In this study, we demonstrate that the frameworks of complex networks can effectively capture those patterns. We generate 81 facial emotion images (6 prototypes and 75 morphs) and then ask participants to rate degrees of similarity in 3240 facial emotion pairs in a paired comparison task. A facial emotion network constructed on the basis of similarity clearly forms a small-world network, which features an extremely short average network distance and close connectivity. Further, even if two facial emotions have opposing valences, they are connected within only two steps. In addition, we show that intermediary morphs are crucial for maintaining full network integration, whereas prototypes are not at all important. These results suggest the existence of collective behaviours in the cognitive systems of facial emotions and also describe why people can efficiently recognize facial emotions in terms of information transmission and propagation. For comparison, we construct three simulated networks--one based on the categorical model, one based on the dimensional model, and one random network. The results reveal that small-world connectivity in facial emotion networks is apparently different from those networks, suggesting that a small-world network is the most suitable model for capturing the cognitive basis of facial emotions.

  2. Medical applications for high-performance computers in SKIF-GRID network.

    PubMed

    Zhuchkov, Alexey; Tverdokhlebov, Nikolay

    2009-01-01

    The paper presents a set of software services for massive mammography image processing by using high-performance parallel computers of SKIF-family which are linked into a service-oriented grid-network. An experience of a prototype system implementation in two medical institutions is also described.

  3. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project, UAS Control and Non-Payload Communication System Phase-1 Flight Test Results

    NASA Technical Reports Server (NTRS)

    Griner, James H.

    2014-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current status of the prototype radio development, and results from phase 1 flight tests conducted during 2013.

  4. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways.

    PubMed

    Azimzadeh Jamalkandi, Sadegh; Mozhgani, Sayed-Hamidreza; Gholami Pourbadie, Hamid; Mirzaie, Mehdi; Noorbakhsh, Farshid; Vaziri, Behrouz; Gholami, Alireza; Ansari-Pour, Naser; Jafari, Mohieddin

    2016-01-01

    The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein-protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets.

  5. Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates.

    PubMed

    Ke, Kevin; Hasselbrink, Ernest F; Hunt, Alan J

    2005-08-15

    Microfluidic and nanofluidic technologies have long sought a fast, reliable method to overcome the creative limitations of planar fabrication methods, the resolution limits of lithography, and the materials limitations for fast prototyping. In the present work, we demonstrate direct 3D machining of submicrometer diameter, subsurface fluidic channels in glass, via optical breakdown near critical intensity, using a femtosecond pulsed laser. No postexposure etching or bonding is required; the channel network (or almost any arbitrary-shaped cavity below the surface) is produced directly from "art-to-part". The key to this approach is to use very low energy, highly focused, pulses in the presence of liquid. Microbubbles that result from laser energy deposition gently expand and extrude machining debris from the channels. These bubbles are in a highly damped, low Reynolds number regime, implying that surface spalling due to bubble collapse is unimportant. We demonstrate rapid prototyping of three-dimensional "jumpers", mixers, and other key components of complex 3D microscale analysis systems in glass substrates.

  6. Wireless optical network for a home network

    NASA Astrophysics Data System (ADS)

    Bouchet, Olivier; Porcon, Pascal; Walewski, Joachim W.; Nerreter, Stefan; Langer, Klaus-Dieter; Fernández, Luz; Vucic, Jelena; Kamalakis, Thomas; Ntogari, Georgia; Neokosmidis, Ioannis; Gueutier, Eric

    2010-08-01

    During the European collaborative project OMEGA, two optical-wireless prototypes have been developed. The first prototype operates in the near-infrared spectral region and features Giga Ethernet connectivity, a simple transceiver architecture due to the use of on-off keying, a multi-sector transceiver, and an ultra-fast switch for sector-to-sector hand over. This full-duplex system, composed by one base station and one module, transmits data on three meters. The second prototype is a visible-light-communications system based on DMT signal processing and an adapted MAC sublayer. Data rates around to 100 Mb/s at the physical layer are achieved. This broadcast system, composed also by one base station and one module, transmits data up to two meters. In this paper we present the adapted optical wireless media-access-control sublayer protocol for visible-light communications. This protocol accommodates link adaptation from 128 Mb/s to 1024 Mb/s with multi-sector coverage, and half-duplex or full-duplex transmission.

  7. Implementation and Testing of the JANUS Standard with SSC Pacific’s Software-Defined Acoustic Modem

    DTIC Science & Technology

    2017-12-01

    Communications Outpost (FDECO) Innovative Naval Prototype (INP) Program by the Advanced Photonic Technologies Branch (Code 55360), Space and Naval Warfare... Communications and Networks Division iii EXECUTIVE SUMMARY This report presents Space and Naval Warfare (SPAWAR) Systems Center Pacific’s (SSC... Frequency -Hopped Binary Frequency Shift Keying Office of Naval Research Innovative Naval Prototype Forward Deployed Energy and Communications Outpost

  8. Convergence of Health Level Seven Version 2 Messages to Semantic Web Technologies for Software-Intensive Systems in Telemedicine Trauma Care.

    PubMed

    Menezes, Pedro Monteiro; Cook, Timothy Wayne; Cavalini, Luciana Tricai

    2016-01-01

    To present the technical background and the development of a procedure that enriches the semantics of Health Level Seven version 2 (HL7v2) messages for software-intensive systems in telemedicine trauma care. This study followed a multilevel model-driven approach for the development of semantically interoperable health information systems. The Pre-Hospital Trauma Life Support (PHTLS) ABCDE protocol was adopted as the use case. A prototype application embedded the semantics into an HL7v2 message as an eXtensible Markup Language (XML) file, which was validated against an XML schema that defines constraints on a common reference model. This message was exchanged with a second prototype application, developed on the Mirth middleware, which was also used to parse and validate both the original and the hybrid messages. Both versions of the data instance (one pure XML, one embedded in the HL7v2 message) were equally validated and the RDF-based semantics recovered by the receiving side of the prototype from the shared XML schema. This study demonstrated the semantic enrichment of HL7v2 messages for intensive-software telemedicine systems for trauma care, by validating components of extracts generated in various computing environments. The adoption of the method proposed in this study ensures the compliance of the HL7v2 standard in Semantic Web technologies.

  9. Airport Simulations Using Distributed Computational Resources

    NASA Technical Reports Server (NTRS)

    McDermott, William J.; Maluf, David A.; Gawdiak, Yuri; Tran, Peter; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The Virtual National Airspace Simulation (VNAS) will improve the safety of Air Transportation. In 2001, using simulation and information management software running over a distributed network of super-computers, researchers at NASA Ames, Glenn, and Langley Research Centers developed a working prototype of a virtual airspace. This VNAS prototype modeled daily operations of the Atlanta airport by integrating measured operational data and simulation data on up to 2,000 flights a day. The concepts and architecture developed by NASA for this prototype are integral to the National Airspace Simulation to support the development of strategies improving aviation safety, identifying precursors to component failure.

  10. Untangling Basal Ganglia Network Dynamics and Function: Role of Dopamine Depletion and Inhibition Investigated in a Spiking Network Model.

    PubMed

    Lindahl, Mikael; Hellgren Kotaleski, Jeanette

    2016-01-01

    The basal ganglia are a crucial brain system for behavioral selection, and their function is disturbed in Parkinson's disease (PD), where neurons exhibit inappropriate synchronization and oscillations. We present a spiking neural model of basal ganglia including plausible details on synaptic dynamics, connectivity patterns, neuron behavior, and dopamine effects. Recordings of neuronal activity in the subthalamic nucleus and Type A (TA; arkypallidal) and Type I (TI; prototypical) neurons in globus pallidus externa were used to validate the model. Simulation experiments predict that both local inhibition in striatum and the existence of an indirect pathway are important for basal ganglia to function properly over a large range of cortical drives. The dopamine depletion-induced increase of AMPA efficacy in corticostriatal synapses to medium spiny neurons (MSNs) with dopamine receptor D2 synapses (CTX-MSN D2) and the reduction of MSN lateral connectivity (MSN-MSN) were found to contribute significantly to the enhanced synchrony and oscillations seen in PD. Additionally, reversing the dopamine depletion-induced changes to CTX-MSN D1, CTX-MSN D2, TA-MSN, and MSN-MSN couplings could improve or restore basal ganglia action selection ability. In summary, we found multiple changes of parameters for synaptic efficacy and neural excitability that could improve action selection ability and at the same time reduce oscillations. Identification of such targets could potentially generate ideas for treatments of PD and increase our understanding of the relation between network dynamics and network function.

  11. A Prototype System for a Computer-Based Statewide Film Library Network: A Model for Operation. Statewide Film Library Network: System-1 Specifications - Files.

    ERIC Educational Resources Information Center

    Sullivan, Todd

    Using an IBM System/360 Model 50 computer, the New York Statewide Film Library Network schedules film use, reports on materials handling and statistics, and provides for interlibrary loan of films. Communications between the film libraries and the computer are maintained by Teletype model 33 ASR Teletypewriter terminals operating on TWX…

  12. Efficient Strategies for Active Interface-Level Network Topology Discovery

    DTIC Science & Technology

    2013-09-01

    Network Information Centre API Application Programming Interface APNIC Asia-Pacific Network Information Centre ARIN American Registry for Internet Numbers...very convenient Application Programming Interface ( API ) for easy primitive implementation. Ark’s API facilitates easy development and rapid...prototyping – important attributes as the char- acteristics of our primitives evolve. The API allows a high-level of abstraction, which in turn leads to rapid

  13. Design of 1 MHz Solid State High Frequency Power Supply

    NASA Astrophysics Data System (ADS)

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal

    2017-04-01

    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  14. An expert system prototype for aiding in the development of software functional requirements for NASA Goddard's command management system: A case study and lessons learned

    NASA Technical Reports Server (NTRS)

    Liebowitz, Jay

    1986-01-01

    At NASA Goddard, the role of the command management system (CMS) is to transform general requests for spacecraft opeerations into detailed operational plans to be uplinked to the spacecraft. The CMS is part of the NASA Data System which entails the downlink of science and engineering data from NASA near-earth satellites to the user, and the uplink of command and control data to the spacecraft. Presently, it takes one to three years, with meetings once or twice a week, to determine functional requirements for CMS software design. As an alternative approach to the present technique of developing CMS software functional requirements, an expert system prototype was developed to aid in this function. Specifically, the knowledge base was formulated through interactions with domain experts, and was then linked to an existing expert system application generator called 'Knowledge Engineering System (Version 1.3).' Knowledge base development focused on four major steps: (1) develop the problem-oriented attribute hierachy; (2) determine the knowledge management approach; (3) encode the knowledge base; and (4) validate, test, certify, and evaluate the knowledge base and the expert system prototype as a whole. Backcasting was accomplished for validating and testing the expert system prototype. Knowledge refinement, evaluation, and implementation procedures of the expert system prototype were then transacted.

  15. OASIS: Prototyping Graphical Interfaces to Networked Information.

    ERIC Educational Resources Information Center

    Buckland, Michael K.; And Others

    1993-01-01

    Describes the latest modifications being made to OASIS, a front-end enhancement to the University of California's MELVYL online union catalog. Highlights include the X Windows interface; multiple database searching to act as an information network; Lisp implementation for flexible data representation; and OASIS commands and features to help…

  16. "TIS": An Intelligent Gateway Computer for Information and Modeling Networks. Overview.

    ERIC Educational Resources Information Center

    Hampel, Viktor E.; And Others

    TIS (Technology Information System) is being used at the Lawrence Livermore National Laboratory (LLNL) to develop software for Intelligent Gateway Computers (IGC) suitable for the prototyping of advanced, integrated information networks. Dedicated to information management, TIS leads the user to available information resources, on TIS or…

  17. Use of Communication Resources in a Networked Collaborative Design Environment.

    ERIC Educational Resources Information Center

    Gay, Geri; Lentini, Marc

    1995-01-01

    Examines student use of a prototype networked collaborative design environment to support or augment learning about engineering design. Finds that students use the channels for a variety of activities to increase depth of communication, increase breadth of communication, and overcome technical difficulty. Suggests that students need multiple…

  18. Communication Resource Use in a Networked Collaborative Design Environment.

    ERIC Educational Resources Information Center

    Gay, Geri; Lentini, Marc

    The purpose of this exploratory study was to examine student use of a prototype networked collaborative design environment to support or augment learning about engineering design. The theoretical framework is based primarily on Vygotsky's social construction of knowledge and the belief that collaboration and communication are critical components…

  19. GMPLS-based control plane for optical networks: early implementation experience

    NASA Astrophysics Data System (ADS)

    Liu, Hang; Pendarakis, Dimitrios; Komaee, Nooshin; Saha, Debanjan

    2002-07-01

    Generalized Multi-Protocol Label Switching (GMPLS) extends MPLS signaling and Internet routing protocols to provide a scalable, interoperable, distributed control plane, which is applicable to multiple network technologies such as optical cross connects (OXCs), photonic switches, IP routers, ATM switches, SONET and DWDM systems. It is intended to facilitate automatic service provisioning and dynamic neighbor and topology discovery across multi-vendor intelligent transport networks, as well as their clients. Efforts to standardize such a distributed common control plane have reached various stages in several bodies such as the IETF, ITU and OIF. This paper describes the design considerations and architecture of a GMPLS-based control plane that we have prototyped for core optical networks. Functional components of GMPLS signaling and routing are integrated in this architecture with an application layer controller module. Various requirements including bandwidth, network protection and survivability, traffic engineering, optimal utilization of network resources, and etc. are taken into consideration during path computation and provisioning. Initial experiments with our prototype demonstrate the feasibility and main benefits of GMPLS as a distributed control plane for core optical networks. In addition to such feasibility results, actual adoption and deployment of GMPLS as a common control plane for intelligent transport networks will depend on the successful completion of relevant standardization activities, extensive interoperability testing as well as the strengthening of appropriate business drivers.

  20. Adopting customers' empowerment and social networks to encourage participations in e-health services.

    PubMed

    Anshari, Muhammad; Almunawar, Mohammad Nabil; Low, Patrick Kim Cheng; Wint, Zaw; Younis, Mustafa Z

    2013-01-01

    The aim of this article is to present an e-health model that embeds empowerment and social network intervention that may extend the role of customers in health care settings. A 25-item Likert-type survey instrument was specifically developed for this study and administered to a sample of 108 participants in Indonesia from October to November 2012. The data were analyzed to provide ideas on how to move forward with the e-health initiative as a means to improve e-health services. The survey revealed that there is a high demand for customers' empowerment and involvement in social networks to improve their health literacy and customer satisfaction. Regardless of the limitations of the study, the participants have responded with great support for the abilities of the prototype systems drawn from the survey. The survey results were used as requirements to develop a system prototype that incorporates the expectations of the people. The prototype (namely Clinic 2.0) was derived from the model and confirmed from the survey. Participants were selected to use the system for three months, after which we measured its impact towards their health literacy and customer satisfaction. The results show that the system intervention through Clinic 2.0 leads to a high level of customer satisfaction and health literacy.

  1. Making tomorrow's mistakes today: Evolutionary prototyping for risk reduction and shorter development time

    NASA Astrophysics Data System (ADS)

    Friedman, Gary; Schwuttke, Ursula M.; Burliegh, Scott; Chow, Sanguan; Parlier, Randy; Lee, Lorrine; Castro, Henry; Gersbach, Jim

    1993-03-01

    In the early days of JPL's solar system exploration, each spacecraft mission required its own dedicated data system with all software applications written in the mainframe's native assembly language. Although these early telemetry processing systems were a triumph of engineering in their day, since that time the computer industry has advanced to the point where it is now advantageous to replace these systems with more modern technology. The Space Flight Operations Center (SFOC) Prototype group was established in 1985 as a workstation and software laboratory. The charter of the lab was to determine if it was possible to construct a multimission telemetry processing system using commercial, off-the-shelf computers that communicated via networks. The staff of the lab mirrored that of a typical skunk works operation -- a small, multi-disciplinary team with a great deal of autonomy that could get complex tasks done quickly. In an effort to determine which approaches would be useful, the prototype group experimented with all types of operating systems, inter-process communication mechanisms, network protocols, packet size parameters. Out of that pioneering work came the confidence that a multi-mission telemetry processing system could be built using high-level languages running in a heterogeneous, networked workstation environment. Experience revealed that the operating systems on all nodes should be similar (i.e., all VMS or all PC-DOS or all UNIX), and that a unique Data Transport Subsystem tool needed to be built to address the incompatibilities of network standards, byte ordering, and socket buffering. The advantages of building a telemetry processing system based on emerging industry standards were numerous: by employing these standards, we would no longer be locked into a single vendor. When new technology came to market which offered ten times the performance at one eighth the cost, it would be possible to attach the new machine to the network, re-compile the application code, and run. In addition, we would no longer be plagued with lack of manufacturer support when we encountered obscure bugs. And maybe, hopefully, the eternal elusive goal of software portability across different vendors' platforms would finally be available. Some highlights of our prototyping efforts are described.

  2. Making tomorrow's mistakes today: Evolutionary prototyping for risk reduction and shorter development time

    NASA Technical Reports Server (NTRS)

    Friedman, Gary; Schwuttke, Ursula M.; Burliegh, Scott; Chow, Sanguan; Parlier, Randy; Lee, Lorrine; Castro, Henry; Gersbach, Jim

    1993-01-01

    In the early days of JPL's solar system exploration, each spacecraft mission required its own dedicated data system with all software applications written in the mainframe's native assembly language. Although these early telemetry processing systems were a triumph of engineering in their day, since that time the computer industry has advanced to the point where it is now advantageous to replace these systems with more modern technology. The Space Flight Operations Center (SFOC) Prototype group was established in 1985 as a workstation and software laboratory. The charter of the lab was to determine if it was possible to construct a multimission telemetry processing system using commercial, off-the-shelf computers that communicated via networks. The staff of the lab mirrored that of a typical skunk works operation -- a small, multi-disciplinary team with a great deal of autonomy that could get complex tasks done quickly. In an effort to determine which approaches would be useful, the prototype group experimented with all types of operating systems, inter-process communication mechanisms, network protocols, packet size parameters. Out of that pioneering work came the confidence that a multi-mission telemetry processing system could be built using high-level languages running in a heterogeneous, networked workstation environment. Experience revealed that the operating systems on all nodes should be similar (i.e., all VMS or all PC-DOS or all UNIX), and that a unique Data Transport Subsystem tool needed to be built to address the incompatibilities of network standards, byte ordering, and socket buffering. The advantages of building a telemetry processing system based on emerging industry standards were numerous: by employing these standards, we would no longer be locked into a single vendor. When new technology came to market which offered ten times the performance at one eighth the cost, it would be possible to attach the new machine to the network, re-compile the application code, and run. In addition, we would no longer be plagued with lack of manufacturer support when we encountered obscure bugs. And maybe, hopefully, the eternal elusive goal of software portability across different vendors' platforms would finally be available. Some highlights of our prototyping efforts are described.

  3. Validation and verification of a virtual environment for training naval submarine officers

    NASA Astrophysics Data System (ADS)

    Zeltzer, David L.; Pioch, Nicholas J.

    1996-04-01

    A prototype virtual environment (VE) has been developed for training a submarine officer of the desk (OOD) to perform in-harbor navigation on a surfaced submarine. The OOD, stationed on the conning tower of the vessel, is responsible for monitoring the progress of the boat as it negotiates a marked channel, as well as verifying the navigational suggestions of the below- deck piloting team. The VE system allows an OOD trainee to view a particular harbor and associated waterway through a head-mounted display, receive spoken reports from a simulated piloting team, give spoken commands to the helmsman, and receive verbal confirmation of command execution from the helm. The task analysis of in-harbor navigation, and the derivation of application requirements are briefly described. This is followed by a discussion of the implementation of the prototype. This implementation underwent a series of validation and verification assessment activities, including operational validation, data validation, and software verification of individual software modules as well as the integrated system. Validation and verification procedures are discussed with respect to the OOD application in particular, and with respect to VE applications in general.

  4. Demonstrating a Realistic IP Mission Prototype

    NASA Technical Reports Server (NTRS)

    Rash, James; Ferrer, Arturo B.; Goodman, Nancy; Ghazi-Tehrani, Samira; Polk, Joe; Johnson, Lorin; Menke, Greg; Miller, Bill; Criscuolo, Ed; Hogie, Keith

    2003-01-01

    Flight software and hardware and realistic space communications environments were elements of recent demonstrations of the Internet Protocol (IP) mission concept in the lab. The Operating Missions as Nodes on the Internet (OMNI) Project and the Flight Software Branch at NASA/GSFC collaborated to build the prototype of a representative space mission that employed unmodified off-the-shelf Internet protocols and technologies for end-to-end communications between the spacecraft/instruments and the ground system/users. The realistic elements used in the prototype included an RF communications link simulator and components of the TRIANA mission flight software and ground support system. A web-enabled camera connected to the spacecraft computer via an Ethernet LAN represented an on-board instrument creating image data. In addition to the protocols at the link layer (HDLC), transport layer (UDP, TCP), and network (IP) layer, a reliable file delivery protocol (MDP) at the application layer enabled reliable data delivery both to and from the spacecraft. The standard Network Time Protocol (NTP) performed on-board clock synchronization with a ground time standard. The demonstrations of the prototype mission illustrated some of the advantages of using Internet standards and technologies for space missions, but also helped identify issues that must be addressed. These issues include applicability to embedded real-time systems on flight-qualified hardware, range of applicability of TCP, and liability for and maintenance of commercial off-the-shelf (COTS) products. The NASA Earth Science Technology Office (ESTO) funded the collaboration to build and demonstrate the prototype IP mission.

  5. Validating a Geographical Image Retrieval System.

    ERIC Educational Resources Information Center

    Zhu, Bin; Chen, Hsinchun

    2000-01-01

    Summarizes a prototype geographical image retrieval system that demonstrates how to integrate image processing and information analysis techniques to support large-scale content-based image retrieval. Describes an experiment to validate the performance of this image retrieval system against that of human subjects by examining similarity analysis…

  6. Assessing self-care and social function using a computer adaptive testing version of the pediatric evaluation of disability inventory.

    PubMed

    Coster, Wendy J; Haley, Stephen M; Ni, Pengsheng; Dumas, Helene M; Fragala-Pinkham, Maria A

    2008-04-01

    To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the self-care and social function scales of the Pediatric Evaluation of Disability Inventory compared with the full-length version of these scales. Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children's homes. Children with disabilities (n=469) and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Not applicable. Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length self-care and social function scales; time (in seconds) to complete assessments and respondent ratings of burden. Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (r range, .94-.99). Using computer simulation of retrospective data, discriminant validity, and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared with over 16 minutes to complete the full-length scales. Self-care and social function score estimates from CAT administration are highly comparable with those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time.

  7. Parametric motion control of robotic arms: A biologically based approach using neural networks

    NASA Technical Reports Server (NTRS)

    Bock, O.; D'Eleuterio, G. M. T.; Lipitkas, J.; Grodski, J. J.

    1993-01-01

    A neural network based system is presented which is able to generate point-to-point movements of robotic manipulators. The foundation of this approach is the use of prototypical control torque signals which are defined by a set of parameters. The parameter set is used for scaling and shaping of these prototypical torque signals to effect a desired outcome of the system. This approach is based on neurophysiological findings that the central nervous system stores generalized cognitive representations of movements called synergies, schemas, or motor programs. It has been proposed that these motor programs may be stored as torque-time functions in central pattern generators which can be scaled with appropriate time and magnitude parameters. The central pattern generators use these parameters to generate stereotypical torque-time profiles, which are then sent to the joint actuators. Hence, only a small number of parameters need to be determined for each point-to-point movement instead of the entire torque-time trajectory. This same principle is implemented for controlling the joint torques of robotic manipulators where a neural network is used to identify the relationship between the task requirements and the torque parameters. Movements are specified by the initial robot position in joint coordinates and the desired final end-effector position in Cartesian coordinates. This information is provided to the neural network which calculates six torque parameters for a two-link system. The prototypical torque profiles (one per joint) are then scaled by those parameters. After appropriate training of the network, our parametric control design allowed the reproduction of a trained set of movements with relatively high accuracy, and the production of previously untrained movements with comparable accuracy. We conclude that our approach was successful in discriminating between trained movements and in generalizing to untrained movements.

  8. Implementation of logic functions and computations by chemical kinetics

    NASA Astrophysics Data System (ADS)

    Hjelmfelt, A.; Ross, J.

    We review our work on the computational functions of the kinetics of chemical networks. We examine spatially homogeneous networks which are based on prototypical reactions occurring in living cells and show the construction of logic gates and sequential and parallel networks. This work motivates the study of an important biochemical pathway, glycolysis, and we demonstrate that the switch that controls the flux in the direction of glycolysis or gluconeogenesis may be described as a fuzzy AND operator. We also study a spatially inhomogeneous network which shares features of theoretical and biological neural networks.

  9. Feedback, Mass Conservation and Reaction Kinetics Impact the Robustness of Cellular Oscillations

    PubMed Central

    Baum, Katharina; Kofahl, Bente; Steuer, Ralf; Wolf, Jana

    2016-01-01

    Oscillations occur in a wide variety of cellular processes, for example in calcium and p53 signaling responses, in metabolic pathways or within gene-regulatory networks, e.g. the circadian system. Since it is of central importance to understand the influence of perturbations on the dynamics of these systems a number of experimental and theoretical studies have examined their robustness. The period of circadian oscillations has been found to be very robust and to provide reliable timing. For intracellular calcium oscillations the period has been shown to be very sensitive and to allow for frequency-encoded signaling. We here apply a comprehensive computational approach to study the robustness of period and amplitude of oscillatory systems. We employ different prototype oscillator models and a large number of parameter sets obtained by random sampling. This framework is used to examine the effect of three design principles on the sensitivities towards perturbations of the kinetic parameters. We find that a prototype oscillator with negative feedback has lower period sensitivities than a prototype oscillator relying on positive feedback, but on average higher amplitude sensitivities. For both oscillator types, the use of Michaelis-Menten instead of mass action kinetics in all degradation and conversion reactions leads to an increase in period as well as amplitude sensitivities. We observe moderate changes in sensitivities if replacing mass conversion reactions by purely regulatory reactions. These insights are validated for a set of established models of various cellular rhythms. Overall, our work highlights the importance of reaction kinetics and feedback type for the variability of period and amplitude and therefore for the establishment of predictive models. PMID:28027301

  10. Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves.

    PubMed

    Li, Long; Zhou, Xiaoxiao

    2018-03-23

    In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.

  11. Double-differential recording and AGC using microcontrolled variable gain ASIC.

    PubMed

    Rieger, Robert; Deng, Shin-Liang

    2013-01-01

    Low-power wearable recording of biopotentials requires acquisition front-ends with high common-mode rejection for interference suppression and adjustable gain to provide an optimum signal range to a cascading analogue-to-digital stage. A microcontroller operated double-differential (DD) recording setup and automatic gain control circuit (AGC) are discussed which reject common-mode interference and provide tunable gain, thus compensating for imbalance and variation in electrode interface impedance. Custom-designed variable gain amplifiers (ASIC) are used as part of the recording setup. The circuit gain and balance is set by the timing of microcontroller generated clock signals. Measured results are presented which confirm that improved common-mode rejection is achieved compared to a single differential amplifier in the presence of input network imbalance. Practical measured examples further validate gain control suitable for biopotential recording and power-line rejection for wearable ECG and EMG recording. The prototype front-end consumes 318 μW including amplifiers and microcontroller.

  12. An event-based architecture for solving constraint satisfaction problems

    PubMed Central

    Mostafa, Hesham; Müller, Lorenz K.; Indiveri, Giacomo

    2015-01-01

    Constraint satisfaction problems are ubiquitous in many domains. They are typically solved using conventional digital computing architectures that do not reflect the distributed nature of many of these problems, and are thus ill-suited for solving them. Here we present a parallel analogue/digital hardware architecture specifically designed to solve such problems. We cast constraint satisfaction problems as networks of stereotyped nodes that communicate using digital pulses, or events. Each node contains an oscillator implemented using analogue circuits. The non-repeating phase relations among the oscillators drive the exploration of the solution space. We show that this hardware architecture can yield state-of-the-art performance on random SAT problems under reasonable assumptions on the implementation. We present measurements from a prototype electronic chip to demonstrate that a physical implementation of the proposed architecture is robust to practical non-idealities and to validate the theory proposed. PMID:26642827

  13. Psychologist in a pocket: towards depression screening on mobile phones.

    PubMed

    Bitsch, Jó Ágila; Ramos, Roann; Ix, Tim; Ferrer-Cheng, Paula Glenda; Wehrle, Klaus

    2015-01-01

    Depression is the most prevalent clinical disorder and one of the main causes of disability. This makes early detection of depressive symptoms critical in its prevention and management. This paper presents and discusses the development of Psychologist in a Pocket (PiaP), a mental mHealth application for Android which screens and monitors for these symptoms, and-given the explicit permission of the user-alerts a trusted contact such as the mental health professional or a close friend, if it detects symptoms. All text inputted electronically-such as short message services, emails, social network posts-is analyzed based on keywords related to depression based on DSM-5 and ICD criteria as well as Beck's Cognitive Theory of Depression and the Self-Focus Model. Data evaluation and collection happen in the background, on-device, without requiring any user involvement. Currently, the application is in an early prototype phase entering initial clinical validation.

  14. A Mobile Outdoor Augmented Reality Method Combining Deep Learning Object Detection and Spatial Relationships for Geovisualization

    PubMed Central

    Rao, Jinmeng; Qiao, Yanjun; Ren, Fu; Wang, Junxing; Du, Qingyun

    2017-01-01

    The purpose of this study was to develop a robust, fast and markerless mobile augmented reality method for registration, geovisualization and interaction in uncontrolled outdoor environments. We propose a lightweight deep-learning-based object detection approach for mobile or embedded devices; the vision-based detection results of this approach are combined with spatial relationships by means of the host device’s built-in Global Positioning System receiver, Inertial Measurement Unit and magnetometer. Virtual objects generated based on geospatial information are precisely registered in the real world, and an interaction method based on touch gestures is implemented. The entire method is independent of the network to ensure robustness to poor signal conditions. A prototype system was developed and tested on the Wuhan University campus to evaluate the method and validate its results. The findings demonstrate that our method achieves a high detection accuracy, stable geovisualization results and interaction. PMID:28837096

  15. A Mobile Outdoor Augmented Reality Method Combining Deep Learning Object Detection and Spatial Relationships for Geovisualization.

    PubMed

    Rao, Jinmeng; Qiao, Yanjun; Ren, Fu; Wang, Junxing; Du, Qingyun

    2017-08-24

    The purpose of this study was to develop a robust, fast and markerless mobile augmented reality method for registration, geovisualization and interaction in uncontrolled outdoor environments. We propose a lightweight deep-learning-based object detection approach for mobile or embedded devices; the vision-based detection results of this approach are combined with spatial relationships by means of the host device's built-in Global Positioning System receiver, Inertial Measurement Unit and magnetometer. Virtual objects generated based on geospatial information are precisely registered in the real world, and an interaction method based on touch gestures is implemented. The entire method is independent of the network to ensure robustness to poor signal conditions. A prototype system was developed and tested on the Wuhan University campus to evaluate the method and validate its results. The findings demonstrate that our method achieves a high detection accuracy, stable geovisualization results and interaction.

  16. Real-Time Data Filtering and Compression in Wide Area Simulation Networks

    DTIC Science & Technology

    1992-10-02

    Area Simulation Networks Achieving the real-time linkage among multiple , geographically-distant, local area networks that support distributed...November 1989, pp. 52-61. [IEEE85] IEEE/ANSI Standard 8802/3 "Carrier sense multiple access with collision detection (CSMA/CD) access method and...decoding/encoding of multiple bits. The hardware is programmable, easily adaptable and yields a high compression rate. A prototype 2-micron VLSI chip

  17. Intelligent voltage control strategy for three-phase UPS inverters with output LC filter

    NASA Astrophysics Data System (ADS)

    Jung, J. W.; Leu, V. Q.; Dang, D. Q.; Do, T. D.; Mwasilu, F.; Choi, H. H.

    2015-08-01

    This paper presents a supervisory fuzzy neural network control (SFNNC) method for a three-phase inverter of uninterruptible power supplies (UPSs). The proposed voltage controller is comprised of a fuzzy neural network control (FNNC) term and a supervisory control term. The FNNC term is deliberately employed to estimate the uncertain terms, and the supervisory control term is designed based on the sliding mode technique to stabilise the system dynamic errors. To improve the learning capability, the FNNC term incorporates an online parameter training methodology, using the gradient descent method and Lyapunov stability theory. Besides, a linear load current observer that estimates the load currents is used to exclude the load current sensors. The proposed SFNN controller and the observer are robust to the filter inductance variations, and their stability analyses are described in detail. The experimental results obtained on a prototype UPS test bed with a TMS320F28335 DSP are presented to validate the feasibility of the proposed scheme. Verification results demonstrate that the proposed control strategy can achieve smaller steady-state error and lower total harmonic distortion when subjected to nonlinear or unbalanced loads compared to the conventional sliding mode control method.

  18. Wireless Sensor Array Network DoA Estimation from Compressed Array Data via Joint Sparse Representation.

    PubMed

    Yu, Kai; Yin, Ming; Luo, Ji-An; Wang, Yingguan; Bao, Ming; Hu, Yu-Hen; Wang, Zhi

    2016-05-23

    A compressive sensing joint sparse representation direction of arrival estimation (CSJSR-DoA) approach is proposed for wireless sensor array networks (WSAN). By exploiting the joint spatial and spectral correlations of acoustic sensor array data, the CSJSR-DoA approach provides reliable DoA estimation using randomly-sampled acoustic sensor data. Since random sampling is performed at remote sensor arrays, less data need to be transmitted over lossy wireless channels to the fusion center (FC), and the expensive source coding operation at sensor nodes can be avoided. To investigate the spatial sparsity, an upper bound of the coherence of incoming sensor signals is derived assuming a linear sensor array configuration. This bound provides a theoretical constraint on the angular separation of acoustic sources to ensure the spatial sparsity of the received acoustic sensor array signals. The Cram e ´ r-Rao bound of the CSJSR-DoA estimator that quantifies the theoretical DoA estimation performance is also derived. The potential performance of the CSJSR-DoA approach is validated using both simulations and field experiments on a prototype WSAN platform. Compared to existing compressive sensing-based DoA estimation methods, the CSJSR-DoA approach shows significant performance improvement.

  19. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    PubMed Central

    Ferreira, Pedro M.; Gomes, João M.; Martins, Igor A. C.; Ruano, António E.

    2012-01-01

    Accurate measurements of global solar radiation and atmospheric temperature, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature. PMID:23202230

  20. Autonomously generating operations sequences for a Mars Rover using AI-based planning

    NASA Technical Reports Server (NTRS)

    Sherwood, Rob; Mishkin, Andrew; Estlin, Tara; Chien, Steve; Backes, Paul; Cooper, Brian; Maxwell, Scott; Rabideau, Gregg

    2001-01-01

    This paper discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from highlevel science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This Artificial Intelligence (AI) based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules.

  1. Trans-oceanic Remote Power Hardware-in-the-Loop: Multi-site Hardware, Integrated Controller, and Electric Network Co-simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, Blake R.; Palmintier, Bryan S.; Rowe, Daniel

    Electric system operators are increasingly concerned with the potential system-wide impacts of the large-scale integration of distributed energy resources (DERs) including voltage control, protection coordination, and equipment wear. This prompts a need for new simulation techniques that can simultaneously capture all the components of these large integrated smart grid systems. This paper describes a novel platform that combines three emerging research areas: power systems co-simulation, power hardware in the loop (PHIL) simulation, and lab-lab links. The platform is distributed, real-time capable, allows for easy internet-based connection from geographically-dispersed participants, and is software platform agnostic. We demonstrate its utility by studyingmore » real-time PHIL co-simulation of coordinated solar PV firming control of two inverters connected in multiple electric distribution network models, prototypical of U.S. and Australian systems. Here, the novel trans-pacific closed-loop system simulation was conducted in real-time using a power network simulator and physical PV/battery inverter at power at the National Renewable Energy Laboratory in Golden, CO, USA and a physical PV inverter at power at the Commonwealth Scientific and Industrial Research Organisation's Energy Centre in Newcastle, NSW, Australia. This capability enables smart grid researchers throughout the world to leverage their unique simulation capabilities for multi-site collaborations that can effectively simulate and validate emerging smart grid technology solutions.« less

  2. Trans-oceanic Remote Power Hardware-in-the-Loop: Multi-site Hardware, Integrated Controller, and Electric Network Co-simulation

    DOE PAGES

    Lundstrom, Blake R.; Palmintier, Bryan S.; Rowe, Daniel; ...

    2017-07-24

    Electric system operators are increasingly concerned with the potential system-wide impacts of the large-scale integration of distributed energy resources (DERs) including voltage control, protection coordination, and equipment wear. This prompts a need for new simulation techniques that can simultaneously capture all the components of these large integrated smart grid systems. This paper describes a novel platform that combines three emerging research areas: power systems co-simulation, power hardware in the loop (PHIL) simulation, and lab-lab links. The platform is distributed, real-time capable, allows for easy internet-based connection from geographically-dispersed participants, and is software platform agnostic. We demonstrate its utility by studyingmore » real-time PHIL co-simulation of coordinated solar PV firming control of two inverters connected in multiple electric distribution network models, prototypical of U.S. and Australian systems. Here, the novel trans-pacific closed-loop system simulation was conducted in real-time using a power network simulator and physical PV/battery inverter at power at the National Renewable Energy Laboratory in Golden, CO, USA and a physical PV inverter at power at the Commonwealth Scientific and Industrial Research Organisation's Energy Centre in Newcastle, NSW, Australia. This capability enables smart grid researchers throughout the world to leverage their unique simulation capabilities for multi-site collaborations that can effectively simulate and validate emerging smart grid technology solutions.« less

  3. Model-Driven Approach for Body Area Network Application Development.

    PubMed

    Venčkauskas, Algimantas; Štuikys, Vytautas; Jusas, Nerijus; Burbaitė, Renata

    2016-05-12

    This paper introduces the sensor-networked IoT model as a prototype to support the design of Body Area Network (BAN) applications for healthcare. Using the model, we analyze the synergistic effect of the functional requirements (data collection from the human body and transferring it to the top level) and non-functional requirements (trade-offs between energy-security-environmental factors, treated as Quality-of-Service (QoS)). We use feature models to represent the requirements at the earliest stage for the analysis and describe a model-driven methodology to design the possible BAN applications. Firstly, we specify the requirements as the problem domain (PD) variability model for the BAN applications. Next, we introduce the generative technology (meta-programming as the solution domain (SD)) and the mapping procedure to map the PD feature-based variability model onto the SD feature model. Finally, we create an executable meta-specification that represents the BAN functionality to describe the variability of the problem domain though transformations. The meta-specification (along with the meta-language processor) is a software generator for multiple BAN-oriented applications. We validate the methodology with experiments and a case study to generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation process for the concrete BAN application.

  4. Experiences with a Decade of Wireless Sensor Networks in Mountain Cryosphere Research

    NASA Astrophysics Data System (ADS)

    Beutel, Jan

    2017-04-01

    Research in geoscience depends on high-quality measurements over long periods of time in order to understand processes and to create and validate models. The promise of wireless sensor networks to monitor autonomously at unprecedented spatial and temporal scale motivated the use of this novel technology for studying mountain permafrost in the mid 2000s. Starting from a first experimental deployment to investigate the thermal properties of steep bedrock permafrost in 2006 on the Jungfraujoch, Switzerland at 3500 m asl using prototype wireless sensors the PermaSense project has evolved into a multi-site and multi-discipline initiative. We develop, deploy and operate wireless sensing systems customized for long-term autonomous operation in high-mountain environments. Around this central element, we develop concepts, methods and tools to investigate and to quantify the connection between climate, cryosphere (permafrost, glaciers, snow) and geomorphodynamics. In this presentation, we describe the concepts and system architecture used both for the wireless sensor network as well as for data management and processing. Furthermore, we will discuss the experience gained in over a decade of planning, installing and operating large deployments on field sites spread across a large part of the Swiss and French Alps and applications ranging from academic, experimental research campaigns, long-term monitoring and natural hazard warning in collaboration with government authorities and local industry partners. Reference http://www.permasense.ch Online Open Data Access http://data.permasense.ch

  5. Adaptive cyber-attack modeling system

    NASA Astrophysics Data System (ADS)

    Gonsalves, Paul G.; Dougherty, Edward T.

    2006-05-01

    The pervasiveness of software and networked information systems is evident across a broad spectrum of business and government sectors. Such reliance provides an ample opportunity not only for the nefarious exploits of lone wolf computer hackers, but for more systematic software attacks from organized entities. Much effort and focus has been placed on preventing and ameliorating network and OS attacks, a concomitant emphasis is required to address protection of mission critical software. Typical software protection technique and methodology evaluation and verification and validation (V&V) involves the use of a team of subject matter experts (SMEs) to mimic potential attackers or hackers. This manpower intensive, time-consuming, and potentially cost-prohibitive approach is not amenable to performing the necessary multiple non-subjective analyses required to support quantifying software protection levels. To facilitate the evaluation and V&V of software protection solutions, we have designed and developed a prototype adaptive cyber attack modeling system. Our approach integrates an off-line mechanism for rapid construction of Bayesian belief network (BN) attack models with an on-line model instantiation, adaptation and knowledge acquisition scheme. Off-line model construction is supported via a knowledge elicitation approach for identifying key domain requirements and a process for translating these requirements into a library of BN-based cyber-attack models. On-line attack modeling and knowledge acquisition is supported via BN evidence propagation and model parameter learning.

  6. Model-Driven Approach for Body Area Network Application Development

    PubMed Central

    Venčkauskas, Algimantas; Štuikys, Vytautas; Jusas, Nerijus; Burbaitė, Renata

    2016-01-01

    This paper introduces the sensor-networked IoT model as a prototype to support the design of Body Area Network (BAN) applications for healthcare. Using the model, we analyze the synergistic effect of the functional requirements (data collection from the human body and transferring it to the top level) and non-functional requirements (trade-offs between energy-security-environmental factors, treated as Quality-of-Service (QoS)). We use feature models to represent the requirements at the earliest stage for the analysis and describe a model-driven methodology to design the possible BAN applications. Firstly, we specify the requirements as the problem domain (PD) variability model for the BAN applications. Next, we introduce the generative technology (meta-programming as the solution domain (SD)) and the mapping procedure to map the PD feature-based variability model onto the SD feature model. Finally, we create an executable meta-specification that represents the BAN functionality to describe the variability of the problem domain though transformations. The meta-specification (along with the meta-language processor) is a software generator for multiple BAN-oriented applications. We validate the methodology with experiments and a case study to generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation process for the concrete BAN application. PMID:27187394

  7. A First Step Towards Network Security Virtualization: From Concept to Prototype

    DTIC Science & Technology

    2015-10-01

    ec2 security groups. http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network- security.html. [3] Jeffrey R. Ballard, Ian Rae, and Aditya...20] Matthew L. Meola Michael J. Freedman Jennifer Rexford Nate Foster, Rob Harrison and David Walker. Frenetic: A High-Level Langauge for OpenFlow

  8. Using Satellite Imagery with ET Weather Station Networks to Map Crop Water Use for Irrigation Scheduling: TOPS-SIMS.

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration estimates for scheduling irrigation must be field specific and real time. Weather station networks provide daily reference ET values, but users need to select crop coefficients for their particular crop and field. A prototype system has been developed that combines satellite image...

  9. The effect of visualizing healthy eaters and mortality reminders on nutritious grocery purchases: an integrative terror management and prototype willingness analysis.

    PubMed

    McCabe, Simon; Arndt, Jamie; Goldenberg, Jamie L; Vess, Matthew; Vail, Kenneth E; Gibbons, Frederick X; Rogers, Ross

    2015-03-01

    To use insights from an integration of the terror management health model and the prototype willingness model to inform and improve nutrition-related behavior using an ecologically valid outcome. Prior to shopping, grocery shoppers were exposed to a reminder of mortality (or pain) and then visualized a healthy (vs. neutral) prototype. Receipts were collected postshopping and food items purchased were coded using a nutrition database. Compared with those in the control conditions, participants who received the mortality reminder and who were led to visualize a healthy eater prototype purchased more nutritious foods. The integration of the terror management health model and the prototype willingness model has the potential for both basic and applied advances and offers a generative ground for future research. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  10. A clinical decision support system prototype for cardiovascular intensive care.

    PubMed

    Lau, F

    1994-08-01

    This paper describes the development and validation of a decision-support system prototype that can help manage hypovolemic hypotension in the Cardiovascular Intensive Care Unit (CVICU). The prototype uses physiologic pattern-matching, therapeutic protocols, computational drug-dosage response modeling and expert reasoning heuristics in its selection of intervention strategies and choices. As part of model testing, the prototype simulated real-time operation by processing historical physiologic and intervention data on a patient sequentially, generating alerts on questionable data, critiques of interventions instituted and recommendations on preferred interventions. Bench-testing with 399 interventions from 13 historical cases showed therapies for bleeding and fluid replacement proposed by the prototype were significantly more consistent (p < 0.0001) than those instituted by the staff when compared against expert critiques (80% versus 44%). This study has demonstrated the feasibility of formalizing hemodynamic management of CVICU patients in a manner that may be implemented and evaluated in a clinical setting.

  11. The load shedding advisor: An example of a crisis-response expert system

    NASA Technical Reports Server (NTRS)

    Bollinger, Terry B.; Lightner, Eric; Laverty, John; Ambrose, Edward

    1987-01-01

    A Prolog-based prototype expert system is described that was implemented by the Network Operations Branch of the NASA Goddard Space Flight Center. The purpose of the prototype was to test whether a small, inexpensive computer system could be used to host a load shedding advisor, a system which would monitor major physical environment parameters in a computer facility, then recommend appropriate operator reponses whenever a serious condition was detected. The resulting prototype performed significantly to efficiency gains achieved by replacing a purely rule-based design methodology with a hybrid approach that combined procedural, entity-relationship, and rule-based methods.

  12. Finding collaborators: toward interactive discovery tools for research network systems.

    PubMed

    Borromeo, Charles D; Schleyer, Titus K; Becich, Michael J; Hochheiser, Harry

    2014-11-04

    Research networking systems hold great promise for helping biomedical scientists identify collaborators with the expertise needed to build interdisciplinary teams. Although efforts to date have focused primarily on collecting and aggregating information, less attention has been paid to the design of end-user tools for using these collections to identify collaborators. To be effective, collaborator search tools must provide researchers with easy access to information relevant to their collaboration needs. The aim was to study user requirements and preferences for research networking system collaborator search tools and to design and evaluate a functional prototype. Paper prototypes exploring possible interface designs were presented to 18 participants in semistructured interviews aimed at eliciting collaborator search needs. Interview data were coded and analyzed to identify recurrent themes and related software requirements. Analysis results and elements from paper prototypes were used to design a Web-based prototype using the D3 JavaScript library and VIVO data. Preliminary usability studies asked 20 participants to use the tool and to provide feedback through semistructured interviews and completion of the System Usability Scale (SUS). Initial interviews identified consensus regarding several novel requirements for collaborator search tools, including chronological display of publication and research funding information, the need for conjunctive keyword searches, and tools for tracking candidate collaborators. Participant responses were positive (SUS score: mean 76.4%, SD 13.9). Opportunities for improving the interface design were identified. Interactive, timeline-based displays that support comparison of researcher productivity in funding and publication have the potential to effectively support searching for collaborators. Further refinement and longitudinal studies may be needed to better understand the implications of collaborator search tools for researcher workflows.

  13. Indoor Free Space Optic: a new prototype, realization and evaluation

    NASA Astrophysics Data System (ADS)

    Bouchet, Olivier; Besnard, Pascal; Mihaescu, Adrian

    2008-08-01

    The Free Space Optic (FSO) communication is a daily reality used by an increasing number of companies. For indoor environment, optical wireless communication becomes a good alternative with respect to radio proposals. For both technologies, the architecture is similar: emission/reception base station (Gateway or Bridge) are installed to cover zones, which are defined to ensure a quality of service. The customers may be connected to the Wireless Local Area Network (WLAN) with an adapter or module that emits and receives on this network. But due to its specific characteristics, wireless optical technology could present important advantages such as: Transmitted data security, medical immunity, high data rate, etc... Nevertheless, the optical system may have a limit on the network management aspect and link budget. The scope of this paper is to present a proposal at crossroads between optical fibre telecom system and data processing. In this document, we will present a prototype developed in Brittany during a regional collaborative project (Techim@ges). In order to answer to the management aspect and the link budget, this prototype uses an optical multiplexing technique in 1550 nm band: the Wavelength Division Multiple Access (WDMA). Moreover it also proposes a new class 1 high power emission solution. This full duplex system transmits these various wavelengths in free space, by using optical Multiplexer/Demultiplexer and optical modules. Each module has a defined and personal wavelength associated to the terminal identification (addresses MAC or IP). This approach permits a data rate at a minimum of a ten's Mbit/s per customer and potentially hundred Mbps for a line of sight system. The application field for the achieved and proposed prototype is potentially investigated from WLAN to WPAN.

  14. Finding Collaborators: Toward Interactive Discovery Tools for Research Network Systems

    PubMed Central

    Schleyer, Titus K; Becich, Michael J; Hochheiser, Harry

    2014-01-01

    Background Research networking systems hold great promise for helping biomedical scientists identify collaborators with the expertise needed to build interdisciplinary teams. Although efforts to date have focused primarily on collecting and aggregating information, less attention has been paid to the design of end-user tools for using these collections to identify collaborators. To be effective, collaborator search tools must provide researchers with easy access to information relevant to their collaboration needs. Objective The aim was to study user requirements and preferences for research networking system collaborator search tools and to design and evaluate a functional prototype. Methods Paper prototypes exploring possible interface designs were presented to 18 participants in semistructured interviews aimed at eliciting collaborator search needs. Interview data were coded and analyzed to identify recurrent themes and related software requirements. Analysis results and elements from paper prototypes were used to design a Web-based prototype using the D3 JavaScript library and VIVO data. Preliminary usability studies asked 20 participants to use the tool and to provide feedback through semistructured interviews and completion of the System Usability Scale (SUS). Results Initial interviews identified consensus regarding several novel requirements for collaborator search tools, including chronological display of publication and research funding information, the need for conjunctive keyword searches, and tools for tracking candidate collaborators. Participant responses were positive (SUS score: mean 76.4%, SD 13.9). Opportunities for improving the interface design were identified. Conclusions Interactive, timeline-based displays that support comparison of researcher productivity in funding and publication have the potential to effectively support searching for collaborators. Further refinement and longitudinal studies may be needed to better understand the implications of collaborator search tools for researcher workflows. PMID:25370463

  15. Fall Detection System for the Elderly Based on the Classification of Shimmer Sensor Prototype Data

    PubMed Central

    Ahmed, Moiz; Mehmood, Nadeem; Mehmood, Amir; Rizwan, Kashif

    2017-01-01

    Objectives Falling in the elderly is considered a major cause of death. In recent years, ambient and wireless sensor platforms have been extensively used in developed countries for the detection of falls in the elderly. However, we believe extra efforts are required to address this issue in developing countries, such as Pakistan, where most deaths due to falls are not even reported. Considering this, in this paper, we propose a fall detection system prototype that s based on the classification on real time shimmer sensor data. Methods We first developed a data set, ‘SMotion’ of certain postures that could lead to falls in the elderly by using a body area network of Shimmer sensors and categorized the items in this data set into age and weight groups. We developed a feature selection and classification system using three classifiers, namely, support vector machine (SVM), K-nearest neighbor (KNN), and neural network (NN). Finally, a prototype was fabricated to generate alerts to caregivers, health experts, or emergency services in case of fall. Results To evaluate the proposed system, SVM, KNN, and NN were used. The results of this study identified KNN as the most accurate classifier with maximum accuracy of 96% for age groups and 93% for weight groups. Conclusions In this paper, a classification-based fall detection system is proposed. For this purpose, the SMotion data set was developed and categorized into two groups (age and weight groups). The proposed fall detection system for the elderly is implemented through a body area sensor network using third-generation sensors. The evaluation results demonstrate the reasonable performance of the proposed fall detection prototype system in the tested scenarios. PMID:28875049

  16. Convergence of Health Level Seven Version 2 Messages to Semantic Web Technologies for Software-Intensive Systems in Telemedicine Trauma Care

    PubMed Central

    Cook, Timothy Wayne; Cavalini, Luciana Tricai

    2016-01-01

    Objectives To present the technical background and the development of a procedure that enriches the semantics of Health Level Seven version 2 (HL7v2) messages for software-intensive systems in telemedicine trauma care. Methods This study followed a multilevel model-driven approach for the development of semantically interoperable health information systems. The Pre-Hospital Trauma Life Support (PHTLS) ABCDE protocol was adopted as the use case. A prototype application embedded the semantics into an HL7v2 message as an eXtensible Markup Language (XML) file, which was validated against an XML schema that defines constraints on a common reference model. This message was exchanged with a second prototype application, developed on the Mirth middleware, which was also used to parse and validate both the original and the hybrid messages. Results Both versions of the data instance (one pure XML, one embedded in the HL7v2 message) were equally validated and the RDF-based semantics recovered by the receiving side of the prototype from the shared XML schema. Conclusions This study demonstrated the semantic enrichment of HL7v2 messages for intensive-software telemedicine systems for trauma care, by validating components of extracts generated in various computing environments. The adoption of the method proposed in this study ensures the compliance of the HL7v2 standard in Semantic Web technologies. PMID:26893947

  17. High-speed civil transport issues and technology program

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.

    1992-01-01

    A strawman program plan is presented, consisting of technology developments and demonstrations required to support the construction of a high-speed civil transport. The plan includes a compilation of technology issues related to the development of a transport. The issues represent technical areas in which research and development are required to allow airframe manufacturers to pursue an HSCT development. The vast majority of technical issues presented require flight demonstrated and validated solutions before a transport development will be undertaken by the industry. The author believes that NASA is the agency best suited to address flight demonstration issues in a concentrated effort. The new Integrated Test Facility at NASA Dryden Flight Research Facility is considered ideally suited to the task of supporting ground validations of proof-of-concept and prototype system demonstrations before night demonstrations. An elaborate ground hardware-in-the-loop (iron bird) simulation supported in this facility provides a viable alternative to developing an expensive fill-scale prototype transport technology demonstrator. Drygen's SR-71 assets, modified appropriately, are a suitable test-bed for supporting flight demonstrations and validations of certain transport technology solutions. A subscale, manned or unmanned flight demonstrator is suitable for flight validation of transport technology solutions, if appropriate structural similarity relationships can be established. The author contends that developing a full-scale prototype transport technology demonstrator is the best alternative to ensuring that a positive decision to develop a transport is reached by the United States aerospace industry.

  18. The Psychopathy Q-Sort. Construct Validity Evidence in a Nonclinical Sample

    ERIC Educational Resources Information Center

    Fowler, Katherine A.; Lilienfeld, Scott O.

    2007-01-01

    Scant research has examined the validity of instruments that permit observer ratings of psychopathy. Using a nonclinical (undergraduate) sample, the authors examined the associations between both self- and observer ratings on a psychopathy prototype (Psychopathy Q-Sort, PQS) and widely used measures of psychopathy, antisocial behavior, and…

  19. Rapid Prototyping of High Performance Signal Processing Applications

    DTIC Science & Technology

    2011-01-01

    understand- ing broadband wireless networking . Prentice Hall, 2007. [4] J.W.M. Baars, L.R. D’Addario, and A.R. Thompson. Radio astronomy in the... wireless sensor net- works. In Proceedings of the IEEE Real-Time Systems Symposium, pages 214–223, Tucson, Arizona, December 2007. 147 [74] C. Shen, H. Wu...computing platforms. In this region of high performance DSP, rapid prototyping is critical for faster time-to-market (e.g., in the wireless

  20. HPNAIDM: The High-Performance Network Anomaly/Intrusion Detection and Mitigation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yan

    Identifying traffic anomalies and attacks rapidly and accurately is critical for large network operators. With the rapid growth of network bandwidth, such as the next generation DOE UltraScience Network, and fast emergence of new attacks/virus/worms, existing network intrusion detection systems (IDS) are insufficient because they: • Are mostly host-based and not scalable to high-performance networks; • Are mostly signature-based and unable to adaptively recognize flow-level unknown attacks; • Cannot differentiate malicious events from the unintentional anomalies. To address these challenges, we proposed and developed a new paradigm called high-performance network anomaly/intrustion detection and mitigation (HPNAIDM) system. The new paradigm ismore » significantly different from existing IDSes with the following features (research thrusts). • Online traffic recording and analysis on high-speed networks; • Online adaptive flow-level anomaly/intrusion detection and mitigation; • Integrated approach for false positive reduction. Our research prototype and evaluation demonstrate that the HPNAIDM system is highly effective and economically feasible. Beyond satisfying the pre-set goals, we even exceed that significantly (see more details in the next section). Overall, our project harvested 23 publications (2 book chapters, 6 journal papers and 15 peer-reviewed conference/workshop papers). Besides, we built a website for technique dissemination, which hosts two system prototype release to the research community. We also filed a patent application and developed strong international and domestic collaborations which span both academia and industry.« less

  1. State of the art survey of network operating systems development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The results of the State-of-the-Art Survey of Network Operating Systems (NOS) performed for Goddard Space Flight Center are presented. NOS functional characteristics are presented in terms of user communication data migration, job migration, network control, and common functional categories. Products (current or future) as well as research and prototyping efforts are summarized. The NOS products which are revelant to the space station and its activities are evaluated.

  2. MAGMA: A Liquid Software Approach to Fault Tolerance, Computer Network Security, and Survivable Networking

    DTIC Science & Technology

    2001-12-01

    and Lieutenant Namik Kaplan , Turkish Navy. Maj Tiefert’s thesis, “Modeling Control Channel Dynamics of SAAM using NS Network Simulation”, helped lay...DEC99] Deconinck , Dr. ir. Geert, Fault Tolerant Systems, ESAT / Division ACCA , Katholieke Universiteit Leuven, October 1999. [FRE00] Freed...Systems”, Addison-Wesley, 1989. [KAP99] Kaplan , Namik, “Prototyping of an Active and Lightweight Router,” March 1999 [KAT99] Kati, Effraim

  3. A novel prototype 3/5 laparoscopic needle driver: A validation study with conventional laparoscopic needle driver.

    PubMed

    Ganpule, Arvind P; Deshmukh, Chaitanya S; Joshi, Tanmay

    2018-01-01

    The challenges in laparoscopic suturing include need to expertise to suture. Laparoscopic needle holder is a" key" instrument to accomplish this arduous task. The objective of this new invention was to develop a laparoscopic needle holder which would be adapted to avoid any wobble (with a shaft diameter same as a 5mm port), ensure accurate and dexterous suturing not just in adult patients but pediatric patients alike (with a short shaft diameter) and finally ensure seamless throw of knots with a narrow tip configuration. We did an initial evaluation to evaluate the validity of the prototype needle holder and its impact on laparoscopic suturing skills by experienced laparoscopic surgeons and novice laparoscopic Surgeons. Both the groups of surgeons performed two tasks. The first task was to grasp the needle and position it in an angle deemed ideal for suturing. The second task was to pass suture through two fixed points and make a single square knot. At the end of the tasks each participant was asked to complete a 5- point Likert's scale questionnaire (8 items; 4 items of handling and 4 items of suturing) rating each needle holder. In expert group, the mean time to complete task 1 was shorter with prototype 3/5 laparoscopic needle holder (11.8 sec Vs 20.8 sec). The mean time to complete task 2 was also shorter with prototype 3/5 laparoscopic needle holder (103.2 sec Vs 153.2 sec). In novice group, mean time to complete both the task was shorter with prototype 3/5 laparoscopic needle holder. The expert laparoscopic surgeons as well as novice laparoscopic surgeons performed laparoscopic suturing faster and with more ease while using the prototype 3/5 laparoscopic needle holder.

  4. A prototype Infrastructure for Cloud-based distributed services in High Availability over WAN

    NASA Astrophysics Data System (ADS)

    Bulfon, C.; Carlino, G.; De Salvo, A.; Doria, A.; Graziosi, C.; Pardi, S.; Sanchez, A.; Carboni, M.; Bolletta, P.; Puccio, L.; Capone, V.; Merola, L.

    2015-12-01

    In this work we present the architectural and performance studies concerning a prototype of a distributed Tier2 infrastructure for HEP, instantiated between the two Italian sites of INFN-Romal and INFN-Napoli. The network infrastructure is based on a Layer-2 geographical link, provided by the Italian NREN (GARR), directly connecting the two remote LANs of the named sites. By exploiting the possibilities offered by the new distributed file systems, a shared storage area with synchronous copy has been set up. The computing infrastructure, based on an OpenStack facility, is using a set of distributed Hypervisors installed in both sites. The main parameter to be taken into account when managing two remote sites with a single framework is the effect of the latency, due to the distance and the end-to-end service overhead. In order to understand the capabilities and limits of our setup, the impact of latency has been investigated by means of a set of stress tests, including data I/O throughput, metadata access performance evaluation and network occupancy, during the life cycle of a Virtual Machine. A set of resilience tests has also been performed, in order to verify the stability of the system on the event of hardware or software faults. The results of this work show that the reliability and robustness of the chosen architecture are effective enough to build a production system and to provide common services. This prototype can also be extended to multiple sites with small changes of the network topology, thus creating a National Network of Cloud-based distributed services, in HA over WAN.

  5. Request-Driven Schedule Automation for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Tran, Daniel; Arroyo, Belinda; Call, Jared; Mercado, Marisol

    2010-01-01

    The DSN Scheduling Engine (DSE) has been developed to increase the level of automated scheduling support available to users of NASA s Deep Space Network (DSN). We have adopted a request-driven approach to DSN scheduling, in contrast to the activity-oriented approach used up to now. Scheduling requests allow users to declaratively specify patterns and conditions on their DSN service allocations, including timing, resource requirements, gaps, overlaps, time linkages among services, repetition, priorities, and a wide range of additional factors and preferences. The DSE incorporates a model of the key constraints and preferences of the DSN scheduling domain, along with algorithms to expand scheduling requests into valid resource allocations, to resolve schedule conflicts, and to repair unsatisfied requests. We use time-bounded systematic search with constraint relaxation to return nearby solutions if exact ones cannot be found, where the relaxation options and order are under user control. To explore the usability aspects of our approach we have developed a graphical user interface incorporating some crucial features to make it easier to work with complex scheduling requests. Among these are: progressive revelation of relevant detail, immediate propagation and visual feedback from a user s decisions, and a meeting calendar metaphor for repeated patterns of requests. Even as a prototype, the DSE has been deployed and adopted as the initial step in building the operational DSN schedule, thus representing an important initial validation of our overall approach. The DSE is a core element of the DSN Service Scheduling Software (S(sup 3)), a web-based collaborative scheduling system now under development for deployment to all DSN users.

  6. Single neural adaptive controller and neural network identifier based on PSO algorithm for spherical actuators with 3D magnet array

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Zhang, Lu; Zhu, Bo; Zhang, Jingying; Jiao, Zongxia

    2017-10-01

    Permanent magnet spherical actuator (PMSA) is a multi-variable featured and inter-axis coupled nonlinear system, which unavoidably compromises its motion control implementation. Uncertainties such as external load and friction torque of ball bearing and manufacturing errors also influence motion performance significantly. Therefore, the objective of this paper is to propose a controller based on a single neural adaptive (SNA) algorithm and a neural network (NN) identifier optimized with a particle swarm optimization (PSO) algorithm to improve the motion stability of PMSA with three-dimensional magnet arrays. The dynamic model and computed torque model are formulated for the spherical actuator, and a dynamic decoupling control algorithm is developed. By utilizing the global-optimization property of the PSO algorithm, the NN identifier is trained to avoid locally optimal solution and achieve high-precision compensations to uncertainties. The employment of the SNA controller helps to reduce the effect of compensation errors and convert the system to a stable one, even if there is difference between the compensations and uncertainties due to external disturbances. A simulation model is established, and experiments are conducted on the research prototype to validate the proposed control algorithm. The amplitude of the parameter perturbation is set to 5%, 10%, and 15%, respectively. The strong robustness of the proposed hybrid algorithm is validated by the abundant simulation data. It shows that the proposed algorithm can effectively compensate the influence of uncertainties and eliminate the effect of inter-axis couplings of the spherical actuator.

  7. SCM: A method to improve network service layout efficiency with network evolution.

    PubMed

    Zhao, Qi; Zhang, Chuanhao; Zhao, Zheng

    2017-01-01

    Network services are an important component of the Internet, which are used to expand network functions for third-party developers. Network function virtualization (NFV) can improve the speed and flexibility of network service deployment. However, with the evolution of the network, network service layout may become inefficient. Regarding this problem, this paper proposes a service chain migration (SCM) method with the framework of "software defined network + network function virtualization" (SDN+NFV), which migrates service chains to adapt to network evolution and improves the efficiency of the network service layout. SCM is modeled as an integer linear programming problem and resolved via particle swarm optimization. An SCM prototype system is designed based on an SDN controller. Experiments demonstrate that SCM could reduce the network traffic cost and energy consumption efficiently.

  8. Support vector machines for nuclear reactor state estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavaljevski, N.; Gross, K. C.

    2000-02-14

    Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformedmore » into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.« less

  9. A prototype system based on visual interactive SDM called VGC

    NASA Astrophysics Data System (ADS)

    Jia, Zelu; Liu, Yaolin; Liu, Yanfang

    2009-10-01

    In many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. Spatial data mining recently emerges from a number of real applications, such as real-estate marketing, urban planning, weather forecasting, medical image analysis, road traffic accident analysis, etc. It demands for efficient solutions for many new, expensive, and complicated problems. For spatial data mining of large data sets to be effective, it is also important to include humans in the data exploration process and combine their flexibility, creativity, and general knowledge with the enormous storage capacity and computational power of today's computers. Visual spatial data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the information and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper a visual interactive spatial data mining prototype system (visual geo-classify) based on VC++6.0 and MapObject2.0 are designed and developed, the basic algorithms of the spatial data mining is used decision tree and Bayesian networks, and data classify are used training and learning and the integration of the two to realize. The result indicates it's a practical and extensible visual interactive spatial data mining tool.

  10. High-Rate Digital Receiver Board

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder; Bialas, Thomas; Brambora, Clifford; Fisher, David

    2004-01-01

    A high-rate digital receiver (HRDR) implemented as a peripheral component interface (PCI) board has been developed as a prototype of compact, general-purpose, inexpensive, potentially mass-producible data-acquisition interfaces between telemetry systems and personal computers. The installation of this board in a personal computer together with an analog preprocessor enables the computer to function as a versatile, highrate telemetry-data-acquisition and demodulator system. The prototype HRDR PCI board can handle data at rates as high as 600 megabits per second, in a variety of telemetry formats, transmitted by diverse phase-modulation schemes that include binary phase-shift keying and various forms of quadrature phaseshift keying. Costing less than $25,000 (as of year 2003), the prototype HRDR PCI board supplants multiple racks of older equipment that, when new, cost over $500,000. Just as the development of standard network-interface chips has contributed to the proliferation of networked computers, it is anticipated that the development of standard chips based on the HRDR could contribute to reductions in size and cost and increases in performance of telemetry systems.

  11. A resource management tool for public health continuity of operations during disasters.

    PubMed

    Turner, Anne M; Reeder, Blaine; Wallace, James C

    2013-04-01

    We developed and validated a user-centered information system to support the local planning of public health continuity of operations for the Community Health Services Division, Public Health - Seattle & King County, Washington. The Continuity of Operations Data Analysis (CODA) system was designed as a prototype developed using requirements identified through participatory design. CODA uses open-source software that links personnel contact and licensing information with needed skills and clinic locations for 821 employees at 14 public health clinics in Seattle and King County. Using a web-based interface, CODA can visualize locations of personnel in relationship to clinics to assist clinic managers in allocating public health personnel and resources under dynamic conditions. Based on user input, the CODA prototype was designed as a low-cost, user-friendly system to inventory and manage public health resources. In emergency conditions, the system can run on a stand-alone battery-powered laptop computer. A formative evaluation by managers of multiple public health centers confirmed the prototype design's usefulness. Emergency management administrators also provided positive feedback about the system during a separate demonstration. Validation of the CODA information design prototype by public health managers and emergency management administrators demonstrates the potential usefulness of building a resource management system using open-source technologies and participatory design principles.

  12. A Resource Management Tool for Public Health Continuity of Operations During Disasters

    PubMed Central

    Turner, Anne M.; Reeder, Blaine; Wallace, James C.

    2014-01-01

    Objective We developed and validated a user-centered information system to support the local planning of public health continuity of operations for the Community Health Services Division, Public Health - Seattle & King County, Washington. Methods The Continuity of Operations Data Analysis (CODA) system was designed as a prototype developed using requirements identified through participatory design. CODA uses open-source software that links personnel contact and licensing information with needed skills and clinic locations for 821 employees at 14 public health clinics in Seattle and King County. Using a web-based interface, CODA can visualize locations of personnel in relationship to clinics to assist clinic managers in allocating public health personnel and resources under dynamic conditions. Results Based on user input, the CODA prototype was designed as a low-cost, user-friendly system to inventory and manage public health resources. In emergency conditions, the system can run on a stand-alone battery-powered laptop computer. A formative evaluation by managers of multiple public health centers confirmed the prototype design’s usefulness. Emergency management administrators also provided positive feedback about the system during a separate demonstration. Conclusions Validation of the CODA information design prototype by public health managers and emergency management administrators demonstrates the potential usefulness of building a resource management system using open-source technologies and participatory design principles. PMID:24618165

  13. Development of Methodologies for IV and V of Neural Networks

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Darrah, Marjorie

    2003-01-01

    Non-deterministic systems often rely upon neural network (NN) technology to "lean" to manage flight systems under controlled conditions using carefully chosen training sets. How can these adaptive systems be certified to ensure that they will become increasingly efficient and behave appropriately in real-time situations? The bulk of Independent Verification and Validation (IV&V) research of non-deterministic software control systems such as Adaptive Flight Controllers (AFC's) addresses NNs in well-behaved and constrained environments such as simulations and strict process control. However, neither substantive research, nor effective IV&V techniques have been found to address AFC's learning in real-time and adapting to live flight conditions. Adaptive flight control systems offer good extensibility into commercial aviation as well as military aviation and transportation. Consequently, this area of IV&V represents an area of growing interest and urgency. ISR proposes to further the current body of knowledge to meet two objectives: Research the current IV&V methods and assess where these methods may be applied toward a methodology for the V&V of Neural Network; and identify effective methods for IV&V of NNs that learn in real-time, including developing a prototype test bed for IV&V of AFC's. Currently. no practical method exists. lSR will meet these objectives through the tasks identified and described below. First, ISR will conduct a literature review of current IV&V technology. TO do this, ISR will collect the existing body of research on IV&V of non-deterministic systems and neural network. ISR will also develop the framework for disseminating this information through specialized training. This effort will focus on developing NASA's capability to conduct IV&V of neural network systems and to provide training to meet the increasing need for IV&V expertise in such systems.

  14. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways

    PubMed Central

    Azimzadeh Jamalkandi, Sadegh; Mozhgani, Sayed-Hamidreza; Gholami Pourbadie, Hamid; Mirzaie, Mehdi; Noorbakhsh, Farshid; Vaziri, Behrouz; Gholami, Alireza; Ansari-Pour, Naser; Jafari, Mohieddin

    2016-01-01

    The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein–protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets. PMID:27872612

  15. Assessing self-care and social function using a computer adaptive testing version of the Pediatric Evaluation of Disability Inventory Accepted for Publication, Archives of Physical Medicine and Rehabilitation

    PubMed Central

    Coster, Wendy J.; Haley, Stephen M.; Ni, Pengsheng; Dumas, Helene M.; Fragala-Pinkham, Maria A.

    2009-01-01

    Objective To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the Self-Care and Social Function scales of the Pediatric Evaluation of Disability Inventory (PEDI) compared to the full-length version of these scales. Design Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Settings Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children’s homes. Participants Four hundred sixty-nine children with disabilities and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Interventions Not applicable. Main Outcome Measures Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length Self-Care and Social Function scales; time (in seconds) to complete assessments and respondent ratings of burden. Results Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (all r’s between .94 and .99). Using computer simulation of retrospective data, discriminant validity and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared to over 16 minutes to complete the full-length scales. Conclusions Self-care and Social Function score estimates from CAT administration are highly comparable to those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time. PMID:18373991

  16. Prototyping distributed simulation networks

    NASA Technical Reports Server (NTRS)

    Doubleday, Dennis L.

    1990-01-01

    Durra is a declarative language designed to support application-level programming. The use of Durra is illustrated to describe a simple distributed application: a simulation of a collection of networked vehicle simulators. It is shown how the language is used to describe the application, its components and structure, and how the runtime executive provides for the execution of the application.

  17. Group Communication through Computers. Volume 1: Design and Use of the FORUM System. IFF Report R-32.

    ERIC Educational Resources Information Center

    Vallee, Jacques; And Others

    To explore the feasibility and usefulness of group communication via computer, a system called FORUM was constructed and used in research and management tasks using ARPANET, an international computer network. Working softward and data regarding the dynamics of groups using network communication were developed, and a prototype hardware system for…

  18. Scheduling the future NASA Space Network: Experiences with a flexible scheduling prototype

    NASA Technical Reports Server (NTRS)

    Happell, Nadine; Moe, Karen L.; Minnix, Jay

    1993-01-01

    NASA's Space Network (SN) provides telecommunications and tracking services to low earth orbiting spacecraft. One proposal for improving resource allocation and automating conflict resolution for the SN is the concept of flexible scheduling. In this concept, each Payload Operations Control Center (POCC) will possess a Space Network User POCC Interface (SNUPI) to support the development and management of flexible requests. Flexible requests express the flexibility, constraints, and repetitious nature of the user's communications requirements. Flexible scheduling is expected to improve SN resource utilization and user satisfaction, as well as reduce the effort to produce and maintain a schedule. A prototype testbed has been developed to better understand flexible scheduling as it applies to the SN. This testbed consists of a SNUPI workstation, an SN scheduler, and a flexible request language that conveys information between the two systems. All three are being evaluated by operations personnel. Benchmark testing is being conducted on the scheduler to quantify the productivity improvements achieved with flexible requests.

  19. Five years of designing wireless sensor networks in the Doñana Biological Reserve (Spain): an applications approach.

    PubMed

    Larios, Diego F; Barbancho, Julio; Sevillano, José L; Rodríguez, Gustavo; Molina, Francisco J; Gasull, Virginia G; Mora-Merchan, Javier M; León, Carlos

    2013-09-10

    Wireless Sensor Networks (WSNs) are a technology that is becoming very popular for many applications, and environmental monitoring is one of its most important application areas. This technology solves the lack of flexibility of wired sensor installations and, at the same time, reduces the deployment costs. To demonstrate the advantages of WSN technology, for the last five years we have been deploying some prototypes in the Doñana Biological Reserve, which is an important protected area in Southern Spain. These prototypes not only evaluate the technology, but also solve some of the monitoring problems that have been raised by biologists working in Doñana. This paper presents a review of the work that has been developed during these five years. Here, we demonstrate the enormous potential of using machine learning in wireless sensor networks for environmental and animal monitoring because this approach increases the amount of useful information and reduces the effort that is required by biologists in an environmental monitoring task.

  20. Recognition memory is modulated by visual similarity.

    PubMed

    Yago, Elena; Ishai, Alumit

    2006-06-01

    We used event-related fMRI to test whether recognition memory depends on visual similarity between familiar prototypes and novel exemplars. Subjects memorized portraits, landscapes, and abstract compositions by six painters with a unique style, and later performed a memory recognition task. The prototypes were presented with new exemplars that were either visually similar or dissimilar. Behaviorally, novel, dissimilar items were detected faster and more accurately. We found activation in a distributed cortical network that included face- and object-selective regions in the visual cortex, where familiar prototypes evoked stronger responses than new exemplars; attention-related regions in parietal cortex, where responses elicited by new exemplars were reduced with decreased similarity to the prototypes; and the hippocampus and memory-related regions in parietal and prefrontal cortices, where stronger responses were evoked by the dissimilar exemplars. Our findings suggest that recognition memory is mediated by classification of novel exemplars as a match or a mismatch, based on their visual similarity to familiar prototypes.

  1. Filtered Push: Annotating Distributed Data for Quality Control and Fitness for Use Analysis

    NASA Astrophysics Data System (ADS)

    Morris, P. J.; Kelly, M. A.; Lowery, D. B.; Macklin, J. A.; Morris, R. A.; Tremonte, D.; Wang, Z.

    2009-12-01

    The single greatest problem with the federation of scientific data is the assessment of the quality and validity of the aggregated data in the context of particular research problems, that is, its fitness for use. There are three critical data quality issues in networks of distributed natural science collections data, as in all scientific data: identifying and correcting errors, maintaining currency, and assessing fitness for use. To this end, we have designed and implemented a prototype network in the domain of natural science collections. This prototype is built over the open source Map-Reduce platform Hadoop with a network client in the open source collections management system Specify 6. We call this network “Filtered Push” as, at its core, annotations are pushed from the network edges to relevant authoritative repositories, where humans and software filter the annotations before accepting them as changes to the authoritative data. The Filtered Push software is a domain-neutral framework for originating, distributing, and analyzing record-level annotations. Network participants can subscribe to notifications arising from ontology-based analyses of new annotations or of purpose-built queries against the network's global history of annotations. Quality and fitness for use of distributed natural science collections data can be addressed with Filtered Push software by implementing a network that allows data providers and consumers to define potential errors in data, develop metrics for those errors, specify workflows to analyze distributed data to detect potential errors, and to close the quality management cycle by providing a network architecture to pushing assertions about data quality such as corrections back to the curators of the participating data sets. Quality issues in distributed scientific data have several things in common: (1) Statements about data quality should be regarded as hypotheses about inconsistencies between perhaps several records, data sets, or practices of science. (2) Data quality problems often cannot be detected only from internal statistical correlations or logical analysis, but may need the application of defined workflows that signal illogical output. (3) Changes in scientific theory or practice over time can result in changes of what QC tests should be applied to legacy data. (4) The frequency of some classes of error in a data set may be identifiable without the ability to assert that a particular record is in error. To address these issues requires, as does science itself, framing QC hypotheses against data that may be anywhere and may arise at any time in the future. In short, QC for science data is a never ending process. It must provide for notice to an agent (human or software) that a given dataset supports a hypothesis of inconsistency with a current scientific resource or model, or with potential generalizations of the concepts in a metadata ontology. Like quality control in general, quality control of distributed data is a repeated cyclical process. In implementing a Filtered Push network for quality control, we have a model in which the cost of QC forever is not substantially greater than QC once.

  2. Untangling Basal Ganglia Network Dynamics and Function: Role of Dopamine Depletion and Inhibition Investigated in a Spiking Network Model

    PubMed Central

    2016-01-01

    Abstract The basal ganglia are a crucial brain system for behavioral selection, and their function is disturbed in Parkinson’s disease (PD), where neurons exhibit inappropriate synchronization and oscillations. We present a spiking neural model of basal ganglia including plausible details on synaptic dynamics, connectivity patterns, neuron behavior, and dopamine effects. Recordings of neuronal activity in the subthalamic nucleus and Type A (TA; arkypallidal) and Type I (TI; prototypical) neurons in globus pallidus externa were used to validate the model. Simulation experiments predict that both local inhibition in striatum and the existence of an indirect pathway are important for basal ganglia to function properly over a large range of cortical drives. The dopamine depletion–induced increase of AMPA efficacy in corticostriatal synapses to medium spiny neurons (MSNs) with dopamine receptor D2 synapses (CTX-MSN D2) and the reduction of MSN lateral connectivity (MSN–MSN) were found to contribute significantly to the enhanced synchrony and oscillations seen in PD. Additionally, reversing the dopamine depletion–induced changes to CTX–MSN D1, CTX–MSN D2, TA–MSN, and MSN–MSN couplings could improve or restore basal ganglia action selection ability. In summary, we found multiple changes of parameters for synaptic efficacy and neural excitability that could improve action selection ability and at the same time reduce oscillations. Identification of such targets could potentially generate ideas for treatments of PD and increase our understanding of the relation between network dynamics and network function. PMID:28101525

  3. NMESys: An expert system for network fault detection

    NASA Technical Reports Server (NTRS)

    Nelson, Peter C.; Warpinski, Janet

    1991-01-01

    The problem of network management is becoming an increasingly difficult and challenging task. It is very common today to find heterogeneous networks consisting of many different types of computers, operating systems, and protocols. The complexity of implementing a network with this many components is difficult enough, while the maintenance of such a network is an even larger problem. A prototype network management expert system, NMESys, implemented in the C Language Integrated Production System (CLIPS). NMESys concentrates on solving some of the critical problems encountered in managing a large network. The major goal of NMESys is to provide a network operator with an expert system tool to quickly and accurately detect hard failures, potential failures, and to minimize or eliminate user down time in a large network.

  4. Design and Implementation of Davis Social Links OSN Kernel

    NASA Astrophysics Data System (ADS)

    Tran, Thomas; Chan, Kelcey; Ye, Shaozhi; Bhattacharyya, Prantik; Garg, Ankush; Lu, Xiaoming; Wu, S. Felix

    Social network popularity continues to rise as they broaden out to more users. Hidden away within these social networks is a valuable set of data that outlines everyone’s relationships. Networks have created APIs such as the Facebook Development Platform and OpenSocial that allow developers to create applications that can leverage user information. However, at the current stage, the social network support for these new applications is fairly limited in its functionality. Most, if not all, of the existing internet applications such as email, BitTorrent, and Skype cannot benefit from the valuable social network among their own users. In this paper, we present an architecture that couples two different communication layers together: the end2end communication layer and the social context layer, under the Davis Social Links (DSL) project. Our proposed architecture attempts to preserve the original application semantics (i.e., we can use Thunderbird or Outlook, unmodified, to read our SMTP emails) and provides the communicating parties (email sender and receivers) a social context for control and management. For instance, the receiver can set trust policy rules based on the social context between the pair, to determine how a particular email in question should be prioritized for delivery to the SMTP layer. Furthermore, as our architecture includes two coupling layers, it is then possible, as an option, to shift some of the services from the original applications into the social context layer. In the context of email, for example, our architecture allows users to choose operations, such as reply, reply-all, and forward, to be realized in either the application layer or the social network layer. And, the realization of these operations under the social network layer offers powerful features unavailable in the original applications. To validate our coupling architecture, we have implemented a DSL kernel prototype as a Facebook application called CyrusDSL (currently about 40 local users) and a simple communication application combined into the DSL kernel but is unaware of Facebook’s API.

  5. Remote telescope control of site testing with ASCOM

    NASA Astrophysics Data System (ADS)

    Ji, Kaifan; Liang, Bo; Peng, Yajie; Wang, Feng

    2012-04-01

    Remote telescope control is significant important for the astronomical site testing. Basing on ASCOM standard, a prototype of remote telescope control system has been implemented. In this paper, the details of the system design, both server end and client end, are introduced. We tested the prototype on a narrow-band dial-up networking and controlled a real remote telescope successfully. The result indicates that it is effective to control remote telescope and other devices with ASCOM.

  6. Assemble worldwide biologists in a network construct a web services based architecture for bioinformatics.

    PubMed

    Tao, Yuan; Liu, Juan

    2005-01-01

    The Internet has already deflated our world of working and living into a very small scope, thus bringing out the concept of Earth Village, in which people could communicate and co-work though thousands' miles far away from each other. This paper describes a prototype, which is just like an Earth Lab for bioinformatics, based on Web services framework to build up a network architecture for bioinformatics research and for world wide biologists to easily implement enormous, complex processes, and effectively share and access computing resources and data, regardless of how heterogeneous the format of the data is and how decentralized and distributed these resources are around the world. A diminutive and simplified example scenario is given out to realize the prototype after that.

  7. Control and Non-Payload Communications (CNPC) Prototype Radio Validation Flight Test Report

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Kurt A.; Ishac, Joseph A.; Iannicca, Dennis C.; Bretmersky, Steven C.; Smith, Albert E.

    2017-01-01

    This report provides an overview and results from the unmanned aircraft (UA) Control and Non-Payload Communications (CNPC) Generation 5 prototype radio validation flight test campaign. The radios used in the test campaign were developed under cooperative agreement NNC11AA01A between the NASA Glenn Research Center and Rockwell Collins, Inc., of Cedar Rapids, Iowa. Measurement results are presented for flight tests over hilly terrain, open water, and urban landscape, utilizing radio sets installed into a NASA aircraft and ground stations. Signal strength and frame loss measurement data are analyzed relative to time and aircraft position, specifically addressing the impact of line-of-sight terrain obstructions on CNPC data flow. Both the radio and flight test system are described.

  8. Regular dislocation networks in silicon as a tool for nanostructure devices used in optics, biology, and electronics.

    PubMed

    Kittler, M; Yu, X; Mchedlidze, T; Arguirov, T; Vyvenko, O F; Seifert, W; Reiche, M; Wilhelm, T; Seibt, M; Voss, O; Wolff, A; Fritzsche, W

    2007-06-01

    Well-controlled fabrication of dislocation networks in Si using direct wafer bonding opens broad possibilities for nanotechnology applications. Concepts of dislocation-network-based light emitters, manipulators of biomolecules, gettering and insulating layers, and three-dimensional buried conductive channels are presented and discussed. A prototype of a Si-based light emitter working at a wavelength of about 1.5 microm with an efficiency potential estimated at 1% is demonstrated.

  9. Development of network-based multichannel neuromuscular electrical stimulation system for stroke rehabilitation.

    PubMed

    Qu, Hongen; Xie, Yongji; Liu, Xiaoxuan; He, Xin; Hao, Manzhao; Bao, Yong; Xie, Qing; Lan, Ning

    2016-01-01

    Neuromuscular electrical stimulation (NMES) is a promising assistive technology for stroke rehabilitation. Here we present the design and development of a multimuscle stimulation system as an emerging therapy for people with paretic stroke. A network-based multichannel NMES system was integrated based on dual bus architecture of communication and an H-bridge current regulator with a power booster. The structure of the system was a body area network embedded with multiple stimulators and a communication protocol of controlled area network to transmit muscle stimulation parameter information to individual stimulators. A graphical user interface was designed to allow clinicians to specify temporal patterns and muscle stimulation parameters. We completed and tested a prototype of the hardware and communication software modules of the multichannel NMES system. The prototype system was first verified in nondisabled subjects for safety, and then tested in subjects with stroke for feasibility with assisting multijoint movements. Results showed that synergistic stimulation of multiple muscles in subjects with stroke improved performance of multijoint movements with more natural velocity profiles at elbow and shoulder and reduced acromion excursion due to compensatory trunk rotation. The network-based NMES system may provide an innovative solution that allows more physiological activation of multiple muscles in multijoint task training for patients with stroke.

  10. Integrated Service Provisioning in an Ipv6 over ATM Research Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eli Dart; Helen Chen; Jerry Friesen

    1999-02-01

    During the past few years, the worldwide Internet has grown at a phenomenal rate, which has spurred the proposal of innovative network technologies to support the fast, efficient and low-latency transport of a wide spectrum of multimedia traffic types. Existing network infrastructures have been plagued by their inability to provide for real-time application traffic as well as their general lack of resources and resilience to congestion. This work proposes to address these issues by implementing a prototype high-speed network infrastructure consisting of Internet Protocol Version 6 (IPv6) on top of an Asynchronous Transfer Mode (ATM) transport medium. Since ATM ismore » connection-oriented whereas IP uses a connection-less paradigm, the efficient integration of IPv6 over ATM is especially challenging and has generated much interest in the research community. We propose, in collaboration with an industry partner, to implement IPv6 over ATM using a unique approach that integrates IP over fast A TM hardware while still preserving IP's connection-less paradigm. This is achieved by replacing ATM's control software with IP's routing code and by caching IP's forwarding decisions in ATM's VPI/VCI translation tables. Prototype ''VR'' and distributed-parallel-computing applications will also be developed to exercise the realtime capability of our IPv6 over ATM network.« less

  11. SCM: A method to improve network service layout efficiency with network evolution

    PubMed Central

    Zhao, Qi; Zhang, Chuanhao

    2017-01-01

    Network services are an important component of the Internet, which are used to expand network functions for third-party developers. Network function virtualization (NFV) can improve the speed and flexibility of network service deployment. However, with the evolution of the network, network service layout may become inefficient. Regarding this problem, this paper proposes a service chain migration (SCM) method with the framework of “software defined network + network function virtualization” (SDN+NFV), which migrates service chains to adapt to network evolution and improves the efficiency of the network service layout. SCM is modeled as an integer linear programming problem and resolved via particle swarm optimization. An SCM prototype system is designed based on an SDN controller. Experiments demonstrate that SCM could reduce the network traffic cost and energy consumption efficiently. PMID:29267299

  12. Earth-Mars Telecommunications and Information Management System (TIMS): Antenna Visibility Determination, Network Simulation, and Management Models

    NASA Technical Reports Server (NTRS)

    Odubiyi, Jide; Kocur, David; Pino, Nino; Chu, Don

    1996-01-01

    This report presents the results of our research on Earth-Mars Telecommunications and Information Management System (TIMS) network modeling and unattended network operations. The primary focus of our research is to investigate the feasibility of the TIMS architecture, which links the Earth-based Mars Operations Control Center, Science Data Processing Facility, Mars Network Management Center, and the Deep Space Network of antennae to the relay satellites and other communication network elements based in the Mars region. The investigation was enhanced by developing Build 3 of the TIMS network modeling and simulation model. The results of several 'what-if' scenarios are reported along with reports on upgraded antenna visibility determination software and unattended network management prototype.

  13. Network Security Validation Using Game Theory

    NASA Astrophysics Data System (ADS)

    Papadopoulou, Vicky; Gregoriades, Andreas

    Non-functional requirements (NFR) such as network security recently gained widespread attention in distributed information systems. Despite their importance however, there is no systematic approach to validate these requirements given the complexity and uncertainty characterizing modern networks. Traditionally, network security requirements specification has been the results of a reactive process. This however, limited the immunity property of the distributed systems that depended on these networks. Security requirements specification need a proactive approach. Networks' infrastructure is constantly under attack by hackers and malicious software that aim to break into computers. To combat these threats, network designers need sophisticated security validation techniques that will guarantee the minimum level of security for their future networks. This paper presents a game-theoretic approach to security requirements validation. An introduction to game theory is presented along with an example that demonstrates the application of the approach.

  14. Prototype of a Mobile Social Network for Education Using Dynamic Web Service

    ERIC Educational Resources Information Center

    Hoentsch, Sandra Costa Pinto; Carvalho, Felipe Oliveira; Santos, Luiz Marcus Monteiro de Almeida; Ribeiro, Admilson de Ribamar Lima

    2012-01-01

    This article presents the proposal of a social network site SocialNetLab that belongs to the Department of Computing-Federal University of Sergipe and which aims to locate and notify users of a nearby friend independently of the location technology available in the equipment through dynamic Web Service; to serve as a laboratory for research in…

  15. Design Science Research toward Designing/Prototyping a Repeatable Model for Testing Location Management (LM) Algorithms for Wireless Networking

    ERIC Educational Resources Information Center

    Peacock, Christopher

    2012-01-01

    The purpose of this research effort was to develop a model that provides repeatable Location Management (LM) testing using a network simulation tool, QualNet version 5.1 (2011). The model will provide current and future protocol developers a framework to simulate stable protocol environments for development. This study used the Design Science…

  16. A Nano-Thin Film-Based Prototype QCM Sensor Array for Monitoring Human Breath and Respiratory Patterns.

    PubMed

    Selyanchyn, Roman; Wakamatsu, Shunichi; Hayashi, Kenshi; Lee, Seung-Woo

    2015-07-31

    Quartz crystal microbalance (QCM) sensor array was developed for multi-purpose human respiration assessment. The sensor system was designed to provide feedback for human respiration. Thorough optimization of measurement conditions: air flow, temperature in the QCM chamber, frequency measurement rate, and electrode position regarding to the gas flow-was performed. As shown, acquisition of respiratory parameters (rate and respiratory pattern) could be achieved even with a single electrode used in the system. The prototype system contains eight available QCM channels that can be potentially used for selective responses to certain breath chemicals. At present, the prototype machine is ready for the assessment of respiratory functions in larger populations in order to gain statistical validation. To the best of our knowledge, the developed prototype is the only respiratory assessment system based on surface modified QCM sensors.

  17. [Development of an electronic device to organize medications and promote treatment adherence].

    PubMed

    Vieira, Liliana Batista; Ramos, Celso de Ávila; Castello, Matheus de Barros; Nascimento, Lorenzo Couto do

    2016-04-01

    This article describes the development of an electronic prototype to organize medications - the Electronic System for Personal and Controlled Use of Medications (Sistema Eletrônico de Uso Personalizado e Controlado de Medicamentos, SUPERMED). The prototype includes a drawer containing 1 month's supply of medicines, sound and visual medication timers, and a memory card for recording the times when the box was opened/closed (scheduled and unscheduled). This information is later transferred to a computer. Evolutionary prototyping was used to develop SUPERMED with the Arduino platform and C programming. To read alarm and box opening/closing data, software was developed in Java. Once the alarms are programmed (ideally by a health care professional), no additional adjustments are required by the patient. The prototype was tested during 31 days by the developers, with satisfactory functioning. The system seems adequate to organize medications and facilitate adherence to treatment. New studies will be carried out to validate and improve the prototype.

  18. A molecular level prototype for mechanoelectrical transducer in mammalian hair cells

    PubMed Central

    Park, Jinkyoung

    2013-01-01

    The mechanoelectrical transducer (MET) is a crucial component of mammalian auditory system. The gating mechanism of the MET channel remains a puzzling issue, though there are many speculations, due to the lack of essential molecular building blocks. To understand the working principle of mammalian MET, we propose a molecular level prototype which constitutes a charged blocker, a realistic ion channel and its surrounding membrane. To validate the proposed prototype, we make use of a well-established ion channel theory, the Poisson-Nernst-Planck equations, for three-dimensional (3D) numerical simulations. A wide variety of model parameters, including bulk ion concentration, applied external voltage, blocker charge and blocker displacement, are explored to understand the basic function of the proposed MET prototype. We show that our prototype prediction of channel open probability in response to blocker relative displacement is in a remarkable accordance with experimental observation of rat cochlea outer hair cells. Our results appear to suggest that tip links which connect hair bundles gate MET channels. PMID:23625048

  19. Development and prototype testing of MgCl 2 /graphite foam latent heat thermal energy storage system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Dileep; Yu, Wenhua; Zhao, Weihuan

    Composites of graphite foam infiltrated with a magnesium chloride phase-change material have been developed as high-temperature thermal energy storage media for concentrated solar power applications. This storage medium provides a high thermal energy storage density, a narrow operating temperature range, and excellent heat transfer characteristics. In this study, experimental investigations were conducted on laboratory-scale prototypes with magnesium chloride/graphite foam composite as the latent heat thermal energy storage system. Prototypes were designed and built to monitor the melt front movement during the charging/discharging tests. A test loop was built to ensure the charging/discharging of the prototypes at temperatures > 700 degreesmore » C. Repeated thermal cycling experiments were carried out on the fabricated prototypes, and the experimental temperature profiles were compared to the predicted results from numerical simulations using COMSOL Multiphysics software. Experimental results were found to be in good agreement with the simulations to validate the thermal models.« less

  20. Topology reduction in deep convolutional feature extraction networks

    NASA Astrophysics Data System (ADS)

    Wiatowski, Thomas; Grohs, Philipp; Bölcskei, Helmut

    2017-08-01

    Deep convolutional neural networks (CNNs) used in practice employ potentially hundreds of layers and 10,000s of nodes. Such network sizes entail significant computational complexity due to the large number of convolutions that need to be carried out; in addition, a large number of parameters needs to be learned and stored. Very deep and wide CNNs may therefore not be well suited to applications operating under severe resource constraints as is the case, e.g., in low-power embedded and mobile platforms. This paper aims at understanding the impact of CNN topology, specifically depth and width, on the network's feature extraction capabilities. We address this question for the class of scattering networks that employ either Weyl-Heisenberg filters or wavelets, the modulus non-linearity, and no pooling. The exponential feature map energy decay results in Wiatowski et al., 2017, are generalized to O(a-N), where an arbitrary decay factor a > 1 can be realized through suitable choice of the Weyl-Heisenberg prototype function or the mother wavelet. We then show how networks of fixed (possibly small) depth N can be designed to guarantee that ((1 - ɛ) · 100)% of the input signal's energy are contained in the feature vector. Based on the notion of operationally significant nodes, we characterize, partly rigorously and partly heuristically, the topology-reducing effects of (effectively) band-limited input signals, band-limited filters, and feature map symmetries. Finally, for networks based on Weyl-Heisenberg filters, we determine the prototype function bandwidth that minimizes - for fixed network depth N - the average number of operationally significant nodes per layer.

  1. Desert Research and Technology Studies (RATS) 2007 Field Campaign Objectives and Results

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph; Romig, Barbara

    2008-01-01

    Desert "RATS" (Research and Technology Studies) is a combined, multi-discipline group of inter-NASA center scientists and engineers, net-working and collaborating with representatives of industry and academia, for the purpose of conducting planetary surface exploration-focused remote field exercises. These integrated testing exercises conducted under representative analog Lunar and Mars surface terrain conditions, provide NASA the capability to validate experimental prototype hardware and software systems as well as to evaluate and develop mission operational techniques in order to identify and establish technical requirements and identify potential technology "gaps" applicable for future planetary human exploration. The 2007 D-RATS field campaign test activities were initiated based on the major themes and objectives of a notional 5-year plan developed for conducting relative analog test activities in support of the engineering evaluation and assessment of various system architectural requirements, conceptual prototype support equipment and selected technologies necessary for the establishment of a lunar outpost. Specifically, the major objectives included measuring task efficiency during robot, human, and human-robot interactive tasks associated with lunar outpost site surveying and reconnaissance activities and deployment of a representative solar panel power and distribution system. In addition, technology demonstrations were conducted with a new Lithium-ion battery and autonomous software to coordinate multiple robot activities. Secondary objectives were evaluating airlock concept mockups and prototype removable space suit over-garment elements for dust mitigation, and upgrades to the prototype extravehicular activities (EVA) communication and information system. Dry run test activities, prior to testing at a designated remote field site location, were initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. Both the local JSC and remote field test sites have terrain conditions that are representative and characteristic of both the Moon and Mars, such as strewn rock and volcanic ash fields, craters, rolling plains, hills, gullies, slopes, and outcrops. The D-RATS 2007 field campaign, representing the completion of its tenth year of analog testing, was conducted at the large Cinder Lake volcanic ash bed area adjacent to Flagstaff, Arizona.

  2. Development of a prototype real-time automated filter for operational deep space navigation

    NASA Technical Reports Server (NTRS)

    Masters, W. C.; Pollmeier, V. M.

    1994-01-01

    Operational deep space navigation has been in the past, and is currently, performed using systems whose architecture requires constant human supervision and intervention. A prototype for a system which allows relatively automated processing of radio metric data received in near real-time from NASA's Deep Space Network (DSN) without any redesign of the existing operational data flow has been developed. This system can allow for more rapid response as well as much reduced staffing to support mission navigation operations.

  3. Neural Network Prototyping Package Within IRAF

    NASA Technical Reports Server (NTRS)

    Bazell, David

    1997-01-01

    The purpose of this contract was to develop a neural network package within the IRAF environment to allow users to easily understand and use different neural network algorithms the analysis of astronomical data. The package was developed for use within IRAF to allow portability to different computing environments and to provide a familiar and easy to use interface with the routines. In addition to developing the software and supporting documentation, we planned to use the system for the analysis of several sample problems to prove its viability and usefulness.

  4. Validating Large Scale Networks Using Temporary Local Scale Networks

    USDA-ARS?s Scientific Manuscript database

    The USDA NRCS Soil Climate Analysis Network and NOAA Climate Reference Networks are nationwide meteorological and land surface data networks with soil moisture measurements in the top layers of soil. There is considerable interest in scaling these point measurements to larger scales for validating ...

  5. A Framework for Seamless Interoperation of Heterogeneous Distributed Software Components

    DTIC Science & Technology

    2005-05-01

    interoperability, b) distributed resource discovery, and c) validation of quality requirements. Principles and prototypical systems were created to demonstrate the successful completion of the research.

  6. Prototyping sensor network system for automatic vital signs collection. Evaluation of a location based automated assignment of measured vital signs to patients.

    PubMed

    Kuroda, T; Noma, H; Naito, C; Tada, M; Yamanaka, H; Takemura, T; Nin, K; Yoshihara, H

    2013-01-01

    Development of a clinical sensor network system that automatically collects vital sign and its supplemental data, and evaluation the effect of automatic vital sensor value assignment to patients based on locations of sensors. The sensor network estimates the data-source, a target patient, from the position of a vital sign sensor obtained from a newly developed proximity sensing system. The proximity sensing system estimates the positions of the devices using a Bluetooth inquiry process. Using Bluetooth access points and the positioning system newly developed in this project, the sensor network collects vital sign and its 4W (who, where, what, and when) supplemental data from any Bluetooth ready vital sign sensors such as Continua-ready devices. The prototype was evaluated in a pseudo clinical setting at Kyoto University Hospital using a cyclic paired comparison and statistical analysis. The result of the cyclic paired analysis shows the subjects evaluated the proposed system is more effective and safer than POCS as well as paper-based operation. It halves the times for vital signs input and eliminates input errors. On the other hand, the prototype failed in its position estimation for 12.6% of all attempts, and the nurses overlooked half of the errors. A detailed investigation clears that an advanced interface to show the system's "confidence", i.e. the probability of estimation error, must be effective to reduce the oversights. This paper proposed a clinical sensor network system that relieves nurses from vital signs input tasks. The result clearly shows that the proposed system increases the efficiency and safety of the nursing process both subjectively and objectively. It is a step toward new generation of point of nursing care systems where sensors take over the tasks of data input from the nurses.

  7. High-Rate Wireless Airborne Network Demonstration (HiWAND) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Franz, Russell

    2008-01-01

    An increasing number of flight research and airborne science experiments now contain network-ready systems that could benefit from a high-rate bidirectional air-to-ground network link. A prototype system, the High-Rate Wireless Airborne Network Demonstration, was developed from commercial off-the-shelf components while leveraging the existing telemetry infrastructure on the Western Aeronautical Test Range. This approach resulted in a cost-effective, long-range, line-of-sight network link over the S and the L frequency bands using both frequency modulation and shaped-offset quadrature phase-shift keying modulation. This report discusses system configuration and the flight test results.

  8. High-Rate Wireless Airborne Network Demonstration (HiWAND) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Franz, Russell

    2007-01-01

    An increasing number of flight research and airborne science experiments now contain network-ready systems that could benefit from a high-rate bidirectional air-to-ground network link. A prototype system, the High-Rate Wireless Airborne Network Demonstration, was developed from commercial off-the-shelf components while leveraging the existing telemetry infrastructure on the Western Aeronautical Test Range. This approach resulted in a cost-effective, long-range, line-of-sight network link over the S and the L frequency bands using both frequency modulation and shaped-offset quadrature phase-shift keying modulation. This paper discusses system configuration and the flight test results.

  9. High performance network and channel-based storage

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.

    1991-01-01

    In the traditional mainframe-centered view of a computer system, storage devices are coupled to the system through complex hardware subsystems called input/output (I/O) channels. With the dramatic shift towards workstation-based computing, and its associated client/server model of computation, storage facilities are now found attached to file servers and distributed throughout the network. We discuss the underlying technology trends that are leading to high performance network-based storage, namely advances in networks, storage devices, and I/O controller and server architectures. We review several commercial systems and research prototypes that are leading to a new approach to high performance computing based on network-attached storage.

  10. Social Network Data Validity: The Example of the Social Network of Caregivers of Older Persons with Alzheimer-Type Dementia

    ERIC Educational Resources Information Center

    Carpentier, Normand

    2007-01-01

    This article offers reflection on the validity of relational data such as used in social network analysis. Ongoing research on the transformation of the support network of caregivers of persons with an Alzheimer-type disease provides the data to fuel the debate on the validity of participant report. More specifically, we sought to understand the…

  11. Alternative method to validate the seasonal land cover regions of the conterminous United States

    Treesearch

    Zhiliang Zhu; Donald O. Ohlen; Raymond L. Czaplewski; Robert E. Burgan

    1996-01-01

    An accuracy assessment method involving double sampling and the multivariate composite estimator has been used to validate the prototype seasonal land cover characteristics database of the conterminous United States. The database consists of 159 land cover classes, classified using time series of 1990 1-km satellite data and augmented with ancillary data including...

  12. Perception SoC Based on an Ultrasonic Array of Sensors: Efficient DSP Core Implementation and Subsequent Experimental Results

    NASA Astrophysics Data System (ADS)

    Kassem, A.; Sawan, M.; Boukadoum, M.; Haidar, A.

    2005-12-01

    We are concerned with the design, implementation, and validation of a perception SoC based on an ultrasonic array of sensors. The proposed SoC is dedicated to ultrasonic echography applications. A rapid prototyping platform is used to implement and validate the new architecture of the digital signal processing (DSP) core. The proposed DSP core efficiently integrates all of the necessary ultrasonic B-mode processing modules. It includes digital beamforming, quadrature demodulation of RF signals, digital filtering, and envelope detection of the received signals. This system handles 128 scan lines and 6400 samples per scan line with a[InlineEquation not available: see fulltext.] angle of view span. The design uses a minimum size lookup memory to store the initial scan information. Rapid prototyping using an ARM/FPGA combination is used to validate the operation of the described system. This system offers significant advantages of portability and a rapid time to market.

  13. Validation of Filtration Skid During Land-Based & Shipboard Tests

    DTIC Science & Technology

    2012-10-12

    b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18 12...skid device that it had previously developed. A prototype unit was developed and deployed on the bulk carrier M/ V Indiana Harbor, and commissioning...a preliminary design of a filter skid device that it had previously developed. A prototype unit was developed and deployed on the bulk carrier M/ V

  14. Constructing a clinical decision-making framework for image-guided radiotherapy using a Bayesian Network

    NASA Astrophysics Data System (ADS)

    Hargrave, C.; Moores, M.; Deegan, T.; Gibbs, A.; Poulsen, M.; Harden, F.; Mengersen, K.

    2014-03-01

    A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific subregions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

  15. Geometry in flipbook multimedia, a role of technology to improve mathematics learning quality: the case in madiun, east java

    NASA Astrophysics Data System (ADS)

    Andini, S.; Fitriana, L.; Budiyono

    2018-04-01

    This research is aimed to describe the process and to get product development of learning material using flipbook. The learning material is developed in geometry, especially quadrilateral. This research belongs to Research and Development (R&D). The procedure includes the steps of Budiyono Model such as conducting preliminary research, planning and developing a theoretical and prototype product, and determining product quality (validity, practicality, and effectiveness). The average assessment result of the theoretical product by the experts gets 4,54, while validity result of prototype product by the experts is 4,62. Practicability is obtained by the implementation of flipbook prototype in each meeting of limited-scale try out based on learning observation, with the average score of 4,10 and increasing of 4,50 in wide-scale try out. The effectiveness of the prototype product is obtained by the result from pretest and posttest on a limited-scale and a wide-scale try out. The limited-scale pre-test result showed a significant increase in average score of wide-scale pre-test of 25,2, and there is an increase in the average score of posttest on limited-scale try out and wide-scale try out is 8,16. The result of product quality can be concluded that flipbook media can be used in the geometry learning in elementary school which implemented curriculum 2013.

  16. Design and validation of a low cost, high-capacity weighing device for wheelchair users and bariatrics.

    PubMed

    Sherrod, Brandon A; Dew, Dustin A; Rogers, Rebecca; Rimmer, James H; Eberhardt, Alan W

    2017-01-01

    Accessible high-capacity weighing scales are scarce in healthcare facilities, in part due to high device cost and weight. This shortage impairs weight monitoring and health maintenance for people with disabilities and/or morbid obesity. We conducted this study to design and validate a lighter, lower cost, high-capacity accessible weighing device. A prototype featuring 360 kg (800 lbs) of weight capacity, a wheelchair-accessible ramp, and wireless data transmission was fabricated. Forty-five participants (20 standing, 20 manual wheelchair users, and five power wheelchair users) were weighed using the prototype and a calibrated scale. Participants were surveyed to assess perception of each weighing device and the weighing procedure. Weight measurements between devices demonstrated a strong linear correlation (R 2  = 0.997) with absolute differences of 1.4 ± 2.0% (mean±SD). Participant preference ratings showed no difference between devices. The prototype weighed 11 kg (38%) less than the next lightest high-capacity commercial device found by author survey. The prototype's estimated commercial price range, $500-$600, is approximately half the price of the least expensive commercial device found by author survey. Such low cost weighing devices may improve access to weighing instrumentation, which may in turn help eliminate current health disparities. Future work is needed to determine the feasibility of market transition.

  17. Wearable Virtual White Cane Network for navigating people with visual impairment.

    PubMed

    Gao, Yabiao; Chandrawanshi, Rahul; Nau, Amy C; Tse, Zion Tsz Ho

    2015-09-01

    Navigating the world with visual impairments presents inconveniences and safety concerns. Although a traditional white cane is the most commonly used mobility aid due to its low cost and acceptable functionality, electronic traveling aids can provide more functionality as well as additional benefits. The Wearable Virtual Cane Network is an electronic traveling aid that utilizes ultrasound sonar technology to scan the surrounding environment for spatial information. The Wearable Virtual Cane Network is composed of four sensing nodes: one on each of the user's wrists, one on the waist, and one on the ankle. The Wearable Virtual Cane Network employs vibration and sound to communicate object proximity to the user. While conventional navigation devices are typically hand-held and bulky, the hands-free design of our prototype allows the user to perform other tasks while using the Wearable Virtual Cane Network. When the Wearable Virtual Cane Network prototype was tested for distance resolution and range detection limits at various displacements and compared with a traditional white cane, all participants performed significantly above the control bar (p < 4.3 × 10(-5), standard t-test) in distance estimation. Each sensor unit can detect an object with a surface area as small as 1 cm(2) (1 cm × 1 cm) located 70 cm away. Our results showed that the walking speed for an obstacle course was increased by 23% on average when subjects used the Wearable Virtual Cane Network rather than the white cane. The obstacle course experiment also shows that the use of the white cane in combination with the Wearable Virtual Cane Network can significantly improve navigation over using either the white cane or the Wearable Virtual Cane Network alone (p < 0.05, paired t-test). © IMechE 2015.

  18. Creating, generating and comparing random network models with NetworkRandomizer.

    PubMed

    Tosadori, Gabriele; Bestvina, Ivan; Spoto, Fausto; Laudanna, Carlo; Scardoni, Giovanni

    2016-01-01

    Biological networks are becoming a fundamental tool for the investigation of high-throughput data in several fields of biology and biotechnology. With the increasing amount of information, network-based models are gaining more and more interest and new techniques are required in order to mine the information and to validate the results. To fill the validation gap we present an app, for the Cytoscape platform, which aims at creating randomised networks and randomising existing, real networks. Since there is a lack of tools that allow performing such operations, our app aims at enabling researchers to exploit different, well known random network models that could be used as a benchmark for validating real, biological datasets. We also propose a novel methodology for creating random weighted networks, i.e. the multiplication algorithm, starting from real, quantitative data. Finally, the app provides a statistical tool that compares real versus randomly computed attributes, in order to validate the numerical findings. In summary, our app aims at creating a standardised methodology for the validation of the results in the context of the Cytoscape platform.

  19. Hyperswitch communication network

    NASA Technical Reports Server (NTRS)

    Peterson, J.; Pniel, M.; Upchurch, E.

    1991-01-01

    The Hyperswitch Communication Network (HCN) is a large scale parallel computer prototype being developed at JPL. Commercial versions of the HCN computer are planned. The HCN computer being designed is a message passing multiple instruction multiple data (MIMD) computer, and offers many advantages in price-performance ratio, reliability and availability, and manufacturing over traditional uniprocessors and bus based multiprocessors. The design of the HCN operating system is a uniquely flexible environment that combines both parallel processing and distributed processing. This programming paradigm can achieve a balance among the following competing factors: performance in processing and communications, user friendliness, and fault tolerance. The prototype is being designed to accommodate a maximum of 64 state of the art microprocessors. The HCN is classified as a distributed supercomputer. The HCN system is described, and the performance/cost analysis and other competing factors within the system design are reviewed.

  20. Design of microstrip patch antennas using knowledge insertion through retraining

    NASA Astrophysics Data System (ADS)

    Divakar, T. V. S.; Sudhakar, A.

    2018-04-01

    The traditional way of analyzing/designing neural network is to collect experimental data and train neural network. Then, the trained neural network acts as global approximate function. The network is then used to calculate parameters for unknown configurations. The main drawback of this method is one does not have enough experimental data, cost of prototypes being a major factor [1-4]. Therefore, in this method the author collected training data from available approximate formulas with in full design range and trained the network with it. After successful training, the network is retrained with available measured results. This simple way inserts experimental knowledge into the network [5]. This method is tested for rectangular microstrip antenna and circular microstrip antenna.

  1. An Energy Efficient Technique Using Electric Active Shielding for Capacitive Coupling Intra-Body Communication

    PubMed Central

    Ma, Chao; Huang, Zhonghua; Wang, Zhiqi; Zhou, Linxuan; Li, Yinlin

    2017-01-01

    Capacitive coupling intra-body communication (CC-IBC) has become one of the candidates for healthcare sensor networks due to its positive prevailing features of energy efficiency, transmission rate and security. Under the CC-IBC scheme, some of the electric field emitted from signal (SIG) electrode of the transmitter will couple directly to the ground (GND) electrode, acting equivalently as an internal impedance of the signal source and inducing considerable energy losses. However, none of the previous works have fully studied the problem. In this paper, the underlying theory of such energy loss is investigated and quantitatively evaluated using conventional parameters. Accordingly, a method of electric active shielding is proposed to reduce the displacement current across the SIG-GND electrodes, leading to less power loss. In addition, the variation of such loss in regard to frequency range and positions on human body was also considered. The theory was validated by finite element method simulation and experimental measurement. The prototype result shows that the receiving power has been improved by approximate 5.5 dBm while the total power consumption is maximally 9 mW less using the proposed technique, providing an energy efficient option in physical layer for wearable and implantable healthcare sensor networks. PMID:28885546

  2. Data provenance assurance in the cloud using blockchain

    NASA Astrophysics Data System (ADS)

    Shetty, Sachin; Red, Val; Kamhoua, Charles; Kwiat, Kevin; Njilla, Laurent

    2017-05-01

    Ever increasing adoption of cloud technology scales up the activities like creation, exchange, and alteration of cloud data objects, which create challenges to track malicious activities and security violations. Addressing this issue requires implementation of data provenance framework so that each data object in the federated cloud environment can be tracked and recorded but cannot be modified. The blockchain technology gives a promising decentralized platform to build tamper-proof systems. Its incorruptible distributed ledger/blockchain complements the need of maintaining cloud data provenance. In this paper, we present a cloud based data provenance framework using block chain which traces data record operations and generates provenance data. We anchor provenance data records into block chain transactions, which provide validation on provenance data and preserve user privacy at the same time. Once the provenance data is uploaded to the global block chain network, it is extremely challenging to tamper the provenance data. Besides, the provenance data uses hashed user identifiers prior to uploading so the blockchain nodes cannot link the operations to a particular user. The framework ensures that the privacy is preserved. We implemented the architecture on ownCloud, uploaded records to blockchain network, stored records in a provenance database and developed a prototype in form of a web service.

  3. Neural network architectures to analyze OPAD data

    NASA Technical Reports Server (NTRS)

    Whitaker, Kevin W.

    1992-01-01

    A prototype Optical Plume Anomaly Detection (OPAD) system is now installed on the space shuttle main engine (SSME) Technology Test Bed (TTB) at MSFC. The OPAD system requirements dictate the need for fast, efficient data processing techniques. To address this need of the OPAD system, a study was conducted into how artificial neural networks could be used to assist in the analysis of plume spectral data.

  4. Prototyping Control and Data Acquisition for the ITER Neutral Beam Test Facility

    NASA Astrophysics Data System (ADS)

    Luchetta, Adriano; Manduchi, Gabriele; Taliercio, Cesare; Soppelsa, Anton; Paolucci, Francesco; Sartori, Filippo; Barbato, Paolo; Breda, Mauro; Capobianco, Roberto; Molon, Federico; Moressa, Modesto; Polato, Sandro; Simionato, Paola; Zampiva, Enrico

    2013-10-01

    The ITER Neutral Beam Test Facility will be the project's R&D facility for heating neutral beam injectors (HNB) for fusion research operating with H/D negative ions. Its mission is to develop technology to build the HNB prototype injector meeting the stringent HNB requirements (16.5 MW injection power, -1 MeV acceleration energy, 40 A ion current and one hour continuous operation). Two test-beds will be built in sequence in the facility: first SPIDER, the ion source test-bed, to optimize the negative ion source performance, second MITICA, the actual prototype injector, to optimize ion beam acceleration and neutralization. The SPIDER control and data acquisition system is under design. To validate the main architectural choices, a system prototype has been assembled and performance tests have been executed to assess the prototype's capability to meet the control and data acquisition system requirements. The prototype is based on open-source software frameworks running under Linux. EPICS is the slow control engine, MDSplus is the data handler and MARTe is the fast control manager. The prototype addresses low and high-frequency data acquisition, 10 kS/s and 10 MS/s respectively, camera image acquisition, data archiving, data streaming, data retrieval and visualization, real time fast control with 100 μs control cycle and supervisory control.

  5. Citizen science networks in natural history and the collective validation of biodiversity data.

    PubMed

    Turnhout, Esther; Lawrence, Anna; Turnhout, Sander

    2016-06-01

    Biodiversity data are in increasing demand to inform policy and management. A substantial portion of these data is generated in citizen science networks. To ensure the quality of biodiversity data, standards and criteria for validation have been put in place. We used interviews and document analysis from the United Kingdom and The Netherlands to examine how data validation serves as a point of connection between the diverse people and practices in natural history citizen science networks. We found that rather than a unidirectional imposition of standards, validation was performed collectively. Specifically, it was enacted in ongoing circulations of biodiversity records between recorders and validators as they jointly negotiated the biodiversity that was observed and the validity of the records. These collective validation practices contributed to the citizen science character or natural history networks and tied these networks together. However, when biodiversity records were included in biodiversity-information initiatives on different policy levels and scales, the circulation of records diminished. These initiatives took on a more extractive mode of data use. Validation ceased to be collective with important consequences for the natural history networks involved and citizen science more generally. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  6. SEG Advances in Rotational Seismic Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, Robert; Laughlin, Darren; Brune, Bob

    2016-10-17

    Significant advancements in the development of sensors to enable rotational seismic measurements have been achieved. Prototypes are available now to support experiments that help validate the utility of rotational seismic measurements.

  7. Prototypicality ratings of DSM-III criteria for personality disorders.

    PubMed

    Livesley, W J; Reiffer, L I; Sheldon, A E; West, M

    1987-07-01

    Although DSM-III personality disorder criteria have demonstrated acceptable reliability, the question of validity has not been adequately addressed. A first step in establishing the validity of diagnoses is to establish the validity of the criteria used to assess each diagnosis. The content validity of diagnostic criteria was investigated in relation to the larger set of potential criteria culled from the psychiatric literature. For each DSM-III axis II diagnosis, a panel of clinicians rated how prototypical each potential criterion was of the diagnosis in question. The results reveal problems with the organization and content of the criteria for most diagnoses. Many DSM-III criteria are composed of several statements linked by conjunctions or disjunctions. These component statements often received markedly different ratings, suggesting that criteria should be single statements. For most diagnoses, traits not included in DSM-III received higher ratings than did some DSM-III criteria. Suggestions are made to improve the distinctiveness and content validity of paranoid, schizoid, antisocial, borderline, avoidant, dependent, and compulsive personality disorders. The results for schizotypal personality disorder suggest that many clinicians are uncertain about this diagnosis. These findings provide a systematic way to modify definitions that contrasts with the more arbitrary ways in which diagnoses have previously been defined and redefined.

  8. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less

  9. An electronic nose for reliable measurement and correct classification of beverages.

    PubMed

    Mamat, Mazlina; Samad, Salina Abdul; Hannan, Mahammad A

    2011-01-01

    This paper reports the design of an electronic nose (E-nose) prototype for reliable measurement and correct classification of beverages. The prototype was developed and fabricated in the laboratory using commercially available metal oxide gas sensors and a temperature sensor. The repeatability, reproducibility and discriminative ability of the developed E-nose prototype were tested on odors emanating from different beverages such as blackcurrant juice, mango juice and orange juice, respectively. Repeated measurements of three beverages showed very high correlation (r > 0.97) between the same beverages to verify the repeatability. The prototype also produced highly correlated patterns (r > 0.97) in the measurement of beverages using different sensor batches to verify its reproducibility. The E-nose prototype also possessed good discriminative ability whereby it was able to produce different patterns for different beverages, different milk heat treatments (ultra high temperature, pasteurization) and fresh and spoiled milks. The discriminative ability of the E-nose was evaluated using Principal Component Analysis and a Multi Layer Perception Neural Network, with both methods showing good classification results.

  10. An Electronic Nose for Reliable Measurement and Correct Classification of Beverages

    PubMed Central

    Mamat, Mazlina; Samad, Salina Abdul; Hannan, Mahammad A.

    2011-01-01

    This paper reports the design of an electronic nose (E-nose) prototype for reliable measurement and correct classification of beverages. The prototype was developed and fabricated in the laboratory using commercially available metal oxide gas sensors and a temperature sensor. The repeatability, reproducibility and discriminative ability of the developed E-nose prototype were tested on odors emanating from different beverages such as blackcurrant juice, mango juice and orange juice, respectively. Repeated measurements of three beverages showed very high correlation (r > 0.97) between the same beverages to verify the repeatability. The prototype also produced highly correlated patterns (r > 0.97) in the measurement of beverages using different sensor batches to verify its reproducibility. The E-nose prototype also possessed good discriminative ability whereby it was able to produce different patterns for different beverages, different milk heat treatments (ultra high temperature, pasteurization) and fresh and spoiled milks. The discriminative ability of the E-nose was evaluated using Principal Component Analysis and a Multi Layer Perception Neural Network, with both methods showing good classification results. PMID:22163964

  11. Extending NASA Research Results to Benefit Society: Rapid Prototyping for Coastal Applications

    NASA Technical Reports Server (NTRS)

    Glorioso, Mark V.; Miller, Richard L.; Hall, Callie M.; McPherson, Terry R.

    2006-01-01

    The mission of the NASA Applied Sciences Program is to expand and accelerate the use of NASA research results to benefit society in 12 application areas of national priority. ONe of the program's major challenges is to perform a quick, efficient, and detailed review (i.e., prototyping) of the large number of combinations of NASA observations and results from Earth system models that may be used by a wide range of decision support tools. A Rapid Prototyping Capacity (RPC) is being developed to accelerate the use of NASA research results. Here, we present the conceptual framework of the Rapid Prototyping Capacity within the context of quickly assessing the efficacy of NASA research results and technologies to support the Coastal Management application. An initial RPC project designed to quickly evaluate the utility of moderate-resolution MODIS products for calibrating/validating coastal sediment transport models is also presented.

  12. A Nano-Thin Film-Based Prototype QCM Sensor Array for Monitoring Human Breath and Respiratory Patterns

    PubMed Central

    Selyanchyn, Roman; Wakamatsu, Shunichi; Hayashi, Kenshi; Lee, Seung-Woo

    2015-01-01

    Quartz crystal microbalance (QCM) sensor array was developed for multi-purpose human respiration assessment. The sensor system was designed to provide feedback for human respiration. Thorough optimization of measurement conditions: air flow, temperature in the QCM chamber, frequency measurement rate, and electrode position regarding to the gas flow—was performed. As shown, acquisition of respiratory parameters (rate and respiratory pattern) could be achieved even with a single electrode used in the system. The prototype system contains eight available QCM channels that can be potentially used for selective responses to certain breath chemicals. At present, the prototype machine is ready for the assessment of respiratory functions in larger populations in order to gain statistical validation. To the best of our knowledge, the developed prototype is the only respiratory assessment system based on surface modified QCM sensors. PMID:26263994

  13. A global positioning measurement system for regional geodesy in the caribbean

    NASA Astrophysics Data System (ADS)

    Renzetti, N. A.

    1986-11-01

    Low cost, portable receivers using signals from satellites of the Global Positioning System (GPS) will enable precision geodetic observations to be made on a large scale. A number of important geophysical questions relating to plate-motion kinematics and dynamics can be addressed with this measurement capability. We describe a plan to design and validate a GPS-based geodetic system, and to demonstrate its capability in California, Mexico and the Caribbean region. The Caribbean program is a prototype for a number of regional geodetic networks to be globally distributed. In 1985, efforts will be concentrated on understanding and minimizing error sources. Two dominant sources of error are uncertainties in the orbit ephemeris of the GPS satellites, and uncertainties in the correction for signal delay due to variable tropospheric water vapor. Orbit ephemeris uncertainties can be minimized by performing simultaneous satellite observations with GPS receivers at known (fiducial) points. Water vapor corrections can be made by performing simultaneous line-of-sight measurements of integrated water vapor content with ground-based water vapor radiometers. Specific experiments to validate both concepts are outlined. Caribbean measurements will begin in late 1985 or early 1986. Key areas of measurement are the northern strike-slip boundary, and the western convergent boundary. Specific measurement plans in both regions are described.

  14. Nanowire FET Based Neural Element for Robotic Tactile Sensing Skin

    PubMed Central

    Taube Navaraj, William; García Núñez, Carlos; Shakthivel, Dhayalan; Vinciguerra, Vincenzo; Labeau, Fabrice; Gregory, Duncan H.; Dahiya, Ravinder

    2017-01-01

    This paper presents novel Neural Nanowire Field Effect Transistors (υ-NWFETs) based hardware-implementable neural network (HNN) approach for tactile data processing in electronic skin (e-skin). The viability of Si nanowires (NWs) as the active material for υ-NWFETs in HNN is explored through modeling and demonstrated by fabricating the first device. Using υ-NWFETs to realize HNNs is an interesting approach as by printing NWs on large area flexible substrates it will be possible to develop a bendable tactile skin with distributed neural elements (for local data processing, as in biological skin) in the backplane. The modeling and simulation of υ-NWFET based devices show that the overlapping areas between individual gates and the floating gate determines the initial synaptic weights of the neural network - thus validating the working of υ-NWFETs as the building block for HNN. The simulation has been further extended to υ-NWFET based circuits and neuronal computation system and this has been validated by interfacing it with a transparent tactile skin prototype (comprising of 6 × 6 ITO based capacitive tactile sensors array) integrated on the palm of a 3D printed robotic hand. In this regard, a tactile data coding system is presented to detect touch gesture and the direction of touch. Following these simulation studies, a four-gated υ-NWFET is fabricated with Pt/Ti metal stack for gates, source and drain, Ni floating gate, and Al2O3 high-k dielectric layer. The current-voltage characteristics of fabricated υ-NWFET devices confirm the dependence of turn-off voltages on the (synaptic) weight of each gate. The presented υ-NWFET approach is promising for a neuro-robotic tactile sensory system with distributed computing as well as numerous futuristic applications such as prosthetics, and electroceuticals. PMID:28979183

  15. Distribution of genotype network sizes in sequence-to-structure genotype-phenotype maps.

    PubMed

    Manrubia, Susanna; Cuesta, José A

    2017-04-01

    An essential quantity to ensure evolvability of populations is the navigability of the genotype space. Navigability, understood as the ease with which alternative phenotypes are reached, relies on the existence of sufficiently large and mutually attainable genotype networks. The size of genotype networks (e.g. the number of RNA sequences folding into a particular secondary structure or the number of DNA sequences coding for the same protein structure) is astronomically large in all functional molecules investigated: an exhaustive experimental or computational study of all RNA folds or all protein structures becomes impossible even for moderately long sequences. Here, we analytically derive the distribution of genotype network sizes for a hierarchy of models which successively incorporate features of increasingly realistic sequence-to-structure genotype-phenotype maps. The main feature of these models relies on the characterization of each phenotype through a prototypical sequence whose sites admit a variable fraction of letters of the alphabet. Our models interpolate between two limit distributions: a power-law distribution, when the ordering of sites in the prototypical sequence is strongly constrained, and a lognormal distribution, as suggested for RNA, when different orderings of the same set of sites yield different phenotypes. Our main result is the qualitative and quantitative identification of those features of sequence-to-structure maps that lead to different distributions of genotype network sizes. © 2017 The Author(s).

  16. Pressure pulsation in Kaplan turbines: Prototype-CFD comparison

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Lucino1, C.; Liscia, S.; Muguerza, D.; Avellan, F.

    2012-11-01

    Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.

  17. Comparison of orbital volume obtained by tomography and rapid prototyping.

    PubMed

    Roça, Guilherme Berto; Foggiatto, José Aguiomar; Ono, Maria Cecilia Closs; Ono, Sergio Eiji; da Silva Freitas, Renato

    2013-11-01

    This study aims to compare orbital volume obtained by helical tomography and rapid prototyping. The study sample was composed of 6 helical tomography scans. Eleven healthy orbits were identified to have their volumes measured. The volumetric analysis with the helical tomography utilized the same protocol developed by the Plastic Surgery Unit of the Federal University of Paraná. From the CT images, 11 prototypes were created, and their respective volumes were analyzed in 2 ways: using software by SolidWorks and by direct analysis, when the prototype was filled with saline solution. For statistical analysis, the results of the volumes of the 11 orbits were considered independent. The average orbital volume measurements obtained by the method of Ono et al was 20.51 cm, the average obtained by the SolidWorks program was 20.64 cm, and the average measured using the prototype method was 21.81 cm. The 3 methods demonstrated a strong correlation between the measurements. The right and left orbits of each patient had similar volumes. The tomographic method for the analysis of orbital volume using the Ono protocol yielded consistent values, and by combining this method with rapid prototyping, both reliability validations of results were enhanced.

  18. Application of 3D printing to prototype and develop novel plant tissue culture systems.

    PubMed

    Shukla, Mukund R; Singh, Amritpal S; Piunno, Kevin; Saxena, Praveen K; Jones, A Maxwell P

    2017-01-01

    Due to the complex process of designing and manufacturing new plant tissue culture vessels through conventional means there have been limited efforts to innovate improved designs. Further, development and availability of low cost, energy efficient LEDs of various spectra has made it a promising light source for plant growth in controlled environments. However, direct replacement of conventional lighting sources with LEDs does not address problems with uniformity, spectral control, or the challenges in conducting statistically valid experiments to assess the effects of light. Prototyping using 3D printing and LED based light sources could help overcome these limitations and lead to improved culture systems. A modular culture vessel design in which the fluence rate and spectrum of light are independently controlled was designed, prototyped using 3D printing, and evaluated for plant growth. This design is compatible with semi-solid and liquid based culture systems. Observations on morphology, chlorophyll content, and chlorophyll fluorescence based stress parameters from in vitro plants cultured under different light spectra with similar overall fluence rate indicated different responses in Nicotiana tabacum and Artemisia annua plantlets. This experiment validates the utility of 3D printing to design and test functional vessels and demonstrated that optimal light spectra for in vitro plant growth is species-specific. 3D printing was successfully used to prototype novel culture vessels with independently controlled variable fluence rate/spectra LED lighting. This system addresses several limitations associated with current lighting systems, providing more uniform lighting and allowing proper replication/randomization for experimental plant biology while increasing energy efficiency. A complete procedure including the design and prototyping of a culture vessel using 3D printing, commercial scale injection molding of the prototype, and conducting a properly replicated experiment are discussed. This open source design has the scope for further improvement and adaptation and demonstrates the power of 3D printing to improve the design of culture systems.

  19. A platform for rapid prototyping of synthetic gene networks in mammalian cells

    PubMed Central

    Duportet, Xavier; Wroblewska, Liliana; Guye, Patrick; Li, Yinqing; Eyquem, Justin; Rieders, Julianne; Rimchala, Tharathorn; Batt, Gregory; Weiss, Ron

    2014-01-01

    Mammalian synthetic biology may provide novel therapeutic strategies, help decipher new paths for drug discovery and facilitate synthesis of valuable molecules. Yet, our capacity to genetically program cells is currently hampered by the lack of efficient approaches to streamline the design, construction and screening of synthetic gene networks. To address this problem, here we present a framework for modular and combinatorial assembly of functional (multi)gene expression vectors and their efficient and specific targeted integration into a well-defined chromosomal context in mammalian cells. We demonstrate the potential of this framework by assembling and integrating different functional mammalian regulatory networks including the largest gene circuit built and chromosomally integrated to date (6 transcription units, 27kb) encoding an inducible memory device. Using a library of 18 different circuits as a proof of concept, we also demonstrate that our method enables one-pot/single-flask chromosomal integration and screening of circuit libraries. This rapid and powerful prototyping platform is well suited for comparative studies of genetic regulatory elements, genes and multi-gene circuits as well as facile development of libraries of isogenic engineered cell lines. PMID:25378321

  20. Five Years of Designing Wireless Sensor Networks in the Doñana Biological Reserve (Spain): An Applications Approach

    PubMed Central

    Larios, Diego F.; Barbancho, Julio; Sevillano, José L.; Rodríguez, Gustavo; Molina, Francisco J.; Gasull, Virginia G.; Mora-Merchan, Javier M.; León, Carlos

    2013-01-01

    Wireless Sensor Networks (WSNs) are a technology that is becoming very popular for many applications, and environmental monitoring is one of its most important application areas. This technology solves the lack of flexibility of wired sensor installations and, at the same time, reduces the deployment costs. To demonstrate the advantages of WSN technology, for the last five years we have been deploying some prototypes in the Doñana Biological Reserve, which is an important protected area in Southern Spain. These prototypes not only evaluate the technology, but also solve some of the monitoring problems that have been raised by biologists working in Doñana. This paper presents a review of the work that has been developed during these five years. Here, we demonstrate the enormous potential of using machine learning in wireless sensor networks for environmental and animal monitoring because this approach increases the amount of useful information and reduces the effort that is required by biologists in an environmental monitoring task. PMID:24025554

  1. A tale of three cities--where RHIOS meet the NHIN.

    PubMed

    DeBor, Greg; Diamond, Carol; Grodecki, Don; Halamka, John; Overhage, J Marc; Shirky, Clay

    2006-01-01

    Regional health information exchanges in California, Indiana, and Massachusetts have been collaborating on a prototype for a nationwide health information network, first under the auspices of the Markle Foundation's Connecting for Health program and now under contract to the Department of Health and Human Services' Office of the National Coordinator for Health Information Technology. Since mid-2004, this collaboration has evolved from a collection of regional efforts to a standards-driven cooperative and now to one of four prototype national networks fostered by federal efforts. This development reflects a maturing market for interoperability and integration in healthcare information technology, starting with RHIOs, and suggests one response to the industry's need for the type of plug-and-play information exchange available in other industries. The authors share their experiences and their views of how RHIOs and a Nationwide Health Information Network will further develop to make interoperable electronic health records a reality in coming years. The content of this article is solely the responsibility of the authors and does not necessarily represent the official view of the Office of the National Coordinator for Health Information Technology.

  2. Automated Sample Preparation (ASP): Development of a Rapid Method to Sequentially Isolate Nucleic Acids and Protein from Any Sample Type by a Cartridge-Based System

    DTIC Science & Technology

    2013-11-27

    SECURITY CLASSIFICATION OF: CUBRC has developed an in-line, multi-analyte isolation technology that utilizes solid phase extraction chemistries to purify...goals. Specifically, CUBRC will design and manufacture a prototype cartridge(s) and test the prototype cartridge for its ability to isolate each...display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. CUBRC , Inc. P. O. Box 400 Buffalo, NY 14225 -1955

  3. The Use of Prototypes in Weapon System Development

    DTIC Science & Technology

    1981-03-01

    engine to minimize flameouts; experience showed that some uses of composite mate- rials were unwarranted, and other uses were proved valid; and a special... composite structure materials. The YF-16 used a single F100, an engine already developed for the F-15 program. By the time of the YF-16 first flight...lessons learned during the prototype tests led to a reduction in the use of composite materials ir the full scale F-16A program. UTTAS. Because of the

  4. Development of a system to measure local measurement conditions around textile electrodes.

    PubMed

    Kim, Saim; Oliveira, Joana; Roethlingshoefer, Lisa; Leonhard, Steffen

    2010-01-01

    The three main influence factors on the interface between textile electrode an skin are: temperature, contact pressure and relative humidity. This paper presents first results of a prototype, which measures these local measurement conditions around textile electrodes. The wearable prototype is a data acquisition system based on a microcontroller with a flexible sensor sleeve. Validation measurements included variation of ambient temperature, contact pressures and sleeve material. Results show a good correlation with data found in literature.

  5. Redesign and Test of an SSME Turbopump for the Large Throat Main Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Lunde, K. J.; Lee, G. A.; Eastland, A. H.; Rojas, L.

    1994-01-01

    The preburner oxidizer turbopump for the Space Shuttle Main Engine (SSME) was successfully redesigned for use with the Large Throat Main Combustion Chamber (LTMCC) and tested in air utilizing rapid prototyping. The redesign increases the SSME's operating range with the current Main Combustion Chamber (MCC) while achieving full operational range with the LTMCC. The use of rapid prototyping and air testing to validate the redesign demonstrated the ability to design, fabricate and test designs rapidly and at a very low cost.

  6. A model of user engagement in medical device development.

    PubMed

    Grocott, Patricia; Weir, Heather; Ram, Mala Bridgelal

    2007-01-01

    The purpose of this paper is to address three topical themes: user involvement in health services research; determining the value of new medical technologies in patient care pathways, furthering knowledge related to quality in health and social care; and knowledge exchange between manufacturers, health service supply chain networks and device users. The model is being validated in a case study in progress. The latter is a "proving ground" study for a translational research company. Medical devices play a pivotal role in the management of chronic diseases, across all care settings. Failure to engage users in device development inevitably affects the quality of clinical outcomes. A model of user engagement is presented, turning unmet needs for medical devices into viable commercial propositions. A case study investigating the perceptions of individuals with Epidermolysis Bullosa (EB), their lay and professional carers into unmet needs. EB is an inherited condition affecting the skin and mucosal linings that leads to blistering and wounds. Qualitative data are being collected to generate understanding of unmet needs and wound care products. These needs are being translated into new design concepts and prototypes. Prototypes will be evaluated in an n = 1 experimental design, generating quantitative outcomes data. There are generalisations from the case study, and the model outlined. New products for managing EB wounds can logically benefit other groups. The model is transferable to other clinical problems, which can benefit from research and technological advances that are integral to clinical needs and care.

  7. Physical and Technical Energy Problems: Testing of the Prototype for State Estimation of Large-Scale Power Systems / Lielo Energosistēmu Stāvokļa Novērtēšanas Prototipa Testēšana

    NASA Astrophysics Data System (ADS)

    Kochukov, O.; Briņķis, K.; Mutule, A.

    2013-08-01

    The paper describes the algorithm for distributed state estimation (SE) and is focused on its testing and validation. For this purpose, different events in the modeled power system of the 330-750 kV electrical ring Latvia - Lithuania - Belarus - Smolensk - Moscow - St. Petersburg - Estonia - Latvia were considered. The methods for testing the Inter-TSO SE prototype and dynamic network monitoring & modeling are based on comparison of the available SCADA data about real events with those of SE calculation. In total, four operational states were studied, including initial, accident and two post-accident operational states Rakstā tiek aprakstīti, testēti un novērtēti izkliedēta stāvokļa novērtēšanas algoritmi. Testēšanas nolūkos tika izmantoti dažādi 330-750 kV elektriskā loka Latvija - Lietuva - Baltkrievija - Smoļenska - Maskava - Pēterburga - Igaunija - Latvija modelēti scenāriji. Prototipa testēšanas metodoloģija balstīta uz pieejamo SCADA datu salīdzināšanu ar stāvokļa novērtēšanas prototipa aprēķina rezultātiem. Kopumā apskatīti sākotnējais, avārijas un divi pēcavārijas režīmi

  8. The Multifrequency Siberian Radioheliograph

    NASA Astrophysics Data System (ADS)

    Lesovoi, S. V.; Altyntsev, A. T.; Ivanov, E. F.; Gubin, A. V.

    2012-10-01

    The ten-antenna prototype of the multifrequency Siberian radioheliograph is described. The prototype consists of four parts: antennas with broadband front-ends, analog back-ends, digital receivers and a correlator. The prototype antennas are mounted on the outermost stations of the Siberian Solar Radio Telescope (SSRT) array. A signal from each antenna is transmitted to a workroom by an analog fiber optical link, laid in an underground tunnel. After mixing, all signals are digitized and processed by digital receivers before the data are transmitted to the correlator. The digital receivers and the correlator are accessible by the Local Area Network (LAN). The frequency range of the prototype is from 4 to 8 GHz. Currently the frequency switching observing mode is used. The prototype data include both circular polarizations at a number of frequencies given by a list. This prototype is the first stage of the multifrequency Siberian radioheliograph development. It is assumed that the radioheliograph will consist of 96 antennas and will occupy stations of the West-East-South subarray of the SSRT. The radioheliograph will be fully constructed in the autumn of 2012. We plan to reach the brightness temperature sensitivity of about 100 K for the snapshot image, a spatial resolution up to 13 arcseconds at 8 GHz and a polarization measurement accuracy about a few percent. First results with the ten-antenna prototype are presented of observations of solar microwave bursts. The prototype's abilities to estimate source size and locations at different frequencies are discussed.

  9. Developing Ill-defined problem-solving for the context of “South Sumatera”

    NASA Astrophysics Data System (ADS)

    Arifin, S.; Zulkardi; Putri, R. I. I.; Hartono, Y.; Susanti, E.

    2017-12-01

    This study aims to produce a valid and practical ill-defined problem-solving for context South Sumatera. The subject of the research is three students of the first semester of undergraduate students in the mathematics department of Raden Fatah State Islamic University. This study use development studies that consist of preliminary and prototyping. In preliminary stage have been analysis content curricula, indicator, and strategies of problem-solving. Meanwhile, in prototyping stage only consist of self-evaluation, expert review, and one-to-one. The data were collected through a walkthrough, interview, and test. The data were validated using expert review, but in practice, the data were obtained from test and interview to subject of the research. This studies produced two valid and practical problem-solving. The first problem is about “Benteng Kuto Besak”, and the second problem is about “Monpera”. From the expert review, the conclusion can be drawn that two problems which are developing are ill-defined problem-solving, and valid from content, construct, and its language. Besides that, the problems are practical because all students know and understand what the problems goal, but not the solutions.

  10. Remotely Accessed Vehicle Traffic Management System

    NASA Astrophysics Data System (ADS)

    Al-Alawi, Raida

    2010-06-01

    The ever increasing number of vehicles in most metropolitan cities around the world and the limitation in altering the transportation infrastructure, led to serious traffic congestion and an increase in the travelling time. In this work we exploit the emergence of novel technologies such as the internet, to design an intelligent Traffic Management System (TMS) that can remotely monitor and control a network of traffic light controllers located at different sites. The system is based on utilizing Embedded Web Servers (EWS) technology to design a web-based TMS. The EWS located at each intersection uses IP technology for communicating remotely with a Central Traffic Management Unit (CTMU) located at the traffic department authority. Friendly GUI software installed at the CTMU will be able to monitor the sequence of operation of the traffic lights and the presence of traffic at each intersection as well as remotely controlling the operation of the signals. The system has been validated by constructing a prototype that resembles the real application.

  11. Smart TV-Smartphone Multiscreen Interactive Middleware for Public Displays.

    PubMed

    Martinez-Pabon, Francisco; Caicedo-Guerrero, Jaime; Ibarra-Samboni, Jhon Jairo; Ramirez-Gonzalez, Gustavo; Hernández-Leo, Davinia

    2015-01-01

    A new generation of public displays demands high interactive and multiscreen features to enrich people's experience in new pervasive environments. Traditionally, research on public display interaction has involved mobile devices as the main characters during the use of personal area network technologies such as Bluetooth or NFC. However, the emergent Smart TV model arises as an interesting alternative for the implementation of a new generation of public displays. This is due to its intrinsic connection capabilities with surrounding devices like smartphones or tablets. Nonetheless, the different approaches proposed by the most important vendors are still underdeveloped to support multiscreen and interaction capabilities for modern public displays, because most of them are intended for domestic environments. This research proposes multiscreen interactive middleware for public displays, which was developed from the principles of a loosely coupled interaction model, simplicity, stability, concurrency, low latency, and the usage of open standards and technologies. Moreover, a validation prototype is proposed in one of the most interesting public display scenarios: the advertising.

  12. ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with ACTS. The ACTS experiments program proposed to validate Ka-band satellite and ground-station technology, demonstrate future telecommunication services, demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals and the lessons learned throughout their 6-year operation, including the inclined orbit phase-of-operations. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector-based offset-fed antenna systems with antennas ranging in size from 0.35 to 3.4 in. in diameter. Gateway earth stations included two systems referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET).

  13. Smart TV-Smartphone Multiscreen Interactive Middleware for Public Displays

    PubMed Central

    Martinez-Pabon, Francisco; Caicedo-Guerrero, Jaime; Ibarra-Samboni, Jhon Jairo; Ramirez-Gonzalez, Gustavo; Hernández-Leo, Davinia

    2015-01-01

    A new generation of public displays demands high interactive and multiscreen features to enrich people's experience in new pervasive environments. Traditionally, research on public display interaction has involved mobile devices as the main characters during the use of personal area network technologies such as Bluetooth or NFC. However, the emergent Smart TV model arises as an interesting alternative for the implementation of a new generation of public displays. This is due to its intrinsic connection capabilities with surrounding devices like smartphones or tablets. Nonetheless, the different approaches proposed by the most important vendors are still underdeveloped to support multiscreen and interaction capabilities for modern public displays, because most of them are intended for domestic environments. This research proposes multiscreen interactive middleware for public displays, which was developed from the principles of a loosely coupled interaction model, simplicity, stability, concurrency, low latency, and the usage of open standards and technologies. Moreover, a validation prototype is proposed in one of the most interesting public display scenarios: the advertising. PMID:25950018

  14. Usefulness of computed tomography in pre-surgical evaluation of maxillo-facial pathology with rapid prototyping and surgical pre-planning by virtual reality.

    PubMed

    Toso, Francesco; Zuiani, Chiara; Vergendo, Maurizio; Salvo, Iolanda; Robiony, Massimo; Politi, Massimo; Bazzocchi, Massimo

    2005-01-01

    To validate a protocol for creating virtual models to be used in the construction of solid prototypes useful for the planning-simulation of maxillo-facial surgery, in particular for very complex anatomic and pathologic problems. To optimize communications between the radiology, engineering and surgical laboratories. We studied 16 patients with different clinical problems of the maxillo-facial district. Exams were performed with multidetector computed tomography (MDCT) and single slice computed tomography (SDCT) with axial scans and collimation of 0.5-2 mm, and reconstruction interval of 1 mm. Subsequently we performed 2D multiplanar reconstructions and 3D volume-rendering reconstructions. We exported the DICOM images to the engineering laboratory, to recognize and isolate the bony structures by software. With these data the solid prototypes were generated using stereolitography. To date, surgery has been preformed on 12 patients after simulation of the procedure on the stereolithographyc model. The solid prototypes constructed in the difficult cases were sufficiently detailed despite problems related to the artefacts generated by dental fillings an d prostheses. In the remaining cases the MPR/3D images were sufficiently detailed for surgical planning. The surgical results were excellent in all patients who underwent surgery, and the surgeons were satisfied with the improvement in quality and the reduction in time required for the procedure. MDCT enables rapid prototyping using solid replication, which was very helpful in maxillo-facial surgery, despite problems related to artifacts due to dental fillings and prosthesis within the acquisition field; solutions for this problem are work in progress. The protocol used for communication between the different laboratories was valid and reproducible.

  15. ICE-Based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator

    NASA Astrophysics Data System (ADS)

    Bandura, K.; Cliche, J. F.; Dobbs, M. A.; Gilbert, A. J.; Ittah, D.; Mena Parra, J.; Smecher, G.

    2016-03-01

    New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2,048 digitizer inputs across 400MHz of bandwidth. Measured in N2× bandwidth, it is the largest radio correlator that is currently commissioning. Its digital back-end must exchange and reorganize the 6.6terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256 graphics processing unit (GPU) node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. ‘corner-turn’). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct, passive copper, full-mesh, high speed serial connections between sixteen circuit boards in a crate, to exchange data between crates, and to offload the data to a cluster of 256 GPU nodes using standard 10Gbit/s Ethernet links. The GPU nodes complete the corner-turn by combining data from all crates and then computing visibilities. Eye diagrams and frame error counters confirm error-free operation of the corner-turn network in both the currently operating CHIME Pathfinder telescope (a prototype for the full CHIME telescope) and a representative fraction of the full CHIME hardware providing an end-to-end system validation. An analysis of an equivalent corner-turn system built with Ethernet switches instead of custom passive data links is provided.

  16. A Decentralized VPN Service over Generalized Mobile Ad-Hoc Networks

    NASA Astrophysics Data System (ADS)

    Fujita, Sho; Shima, Keiichi; Uo, Yojiro; Esaki, Hiroshi

    We present a decentralized VPN service that can be built over generalized mobile ad-hoc networks (Generalized MANETs), in which topologies can be represented as a time-varying directed multigraph. We address wireless ad-hoc networks and overlay ad-hoc networks as instances of Generalized MANETs. We first propose an architecture to operate on various kinds of networks through a single set of operations. Then, we design and implement a decentralized VPN service on the proposed architecture. Through the development and operation of a prototype system we implemented, we found that the proposed architecture makes the VPN service applicable to each instance of Generalized MANETs, and that the VPN service makes it possible for unmodified applications to operate on the networks.

  17. The 40 Gbps cascaded bit-interleaving PON

    NASA Astrophysics Data System (ADS)

    Vyncke, A.; Torfs, G.; Van Praet, C.; Verbeke, M.; Duque, A.; Suvakovic, D.; Chow, H. K.; Yin, X.

    2015-12-01

    In this paper, a 40 Gbps cascaded bit-interleaving passive optical network (CBI-PON) is proposed to achieve power reduction in the network. The massive number of devices in the access network makes that power consumption reduction in this part of the network has a major impact on the total network power consumption. Starting from the proven BiPON technology, an extension to this concept is proposed to introduce multiple levels of bit-interleaving. The paper discusses the CBI protocol in detail, as well as an ASIC implementation of the required custom CBI Repeater and End-ONT. From the measurements of this first 40 Gbps ASIC prototype, power consumption reduction estimates are presented.

  18. Distributed intelligent control and status networking

    NASA Technical Reports Server (NTRS)

    Fortin, Andre; Patel, Manoj

    1993-01-01

    Over the past two years, the Network Control Systems Branch (Code 532) has been investigating control and status networking technologies. These emerging technologies use distributed processing over a network to accomplish a particular custom task. These networks consist of small intelligent 'nodes' that perform simple tasks. Containing simple, inexpensive hardware and software, these nodes can be easily developed and maintained. Once networked, the nodes can perform a complex operation without a central host. This type of system provides an alternative to more complex control and status systems which require a central computer. This paper will provide some background and discuss some applications of this technology. It will also demonstrate the suitability of one particular technology for the Space Network (SN) and discuss the prototyping activities of Code 532 utilizing this technology.

  19. Extending the multimedia patient record across the wide area network.

    PubMed Central

    Dayhoff, R. E.; Kuzmak, P. M.; Frank, S. A.; Kirin, G.; Saddler, C.

    1996-01-01

    The Dept. of Veterans Affairs is developing and testing a wide area medical network with multimedia capabilities for coordination and consolidation of medical services across locations. The system is composed of multimedia information systems at individual medical centers connected by a high speed wide area network. The DHCP Imaging System, which has been in clinical use for six years, provides storage management and workstation acquisition and display of the multimedia data. Teleconsulting capability using a variety of mechanisms' is being prototyped and tested to meet medical staffing and consultation needs. PMID:8947747

  20. Design and Implementation of a High-Power Resonant DC-DC Converter Module for a Reduced-Scale Prototype Integrated Power System

    DTIC Science & Technology

    2001-09-01

    damping RC network . The filter was designed to have a pole pair (~450 Hz) above the 360 Hz ripple of the six-pulse rectified DC supply but well below the...Circuit With Input Filtering Included. The damping network was designed using the guidance provided in reference [24] and its function is to lower the...converter as a linear network and estimated the spectrum envelope by multiplying the Fourier transform of the current waveform by the transfer

  1. Extending the multimedia patient record across the wide area network.

    PubMed

    Dayhoff, R E; Kuzmak, P M; Frank, S A; Kirin, G; Saddler, C

    1996-01-01

    The Dept. of Veterans Affairs is developing and testing a wide area medical network with multimedia capabilities for coordination and consolidation of medical services across locations. The system is composed of multimedia information systems at individual medical centers connected by a high speed wide area network. The DHCP Imaging System, which has been in clinical use for six years, provides storage management and workstation acquisition and display of the multimedia data. Teleconsulting capability using a variety of mechanisms' is being prototyped and tested to meet medical staffing and consultation needs.

  2. Effectiveness of the SmartMV prototype BeefCam System to sort beef carcasses into expected palatability groups.

    PubMed

    Wyle, A M; Vote, D J; Roeber, D L; Cannell, R C; Belk, K E; Scanga, J A; Goldberg, M; Tatum, J D; Smith, G C

    2003-02-01

    This study was conducted to determine the effectiveness of the SmartMV prototype BeefCam Video Imaging System (prototype BeefCam) for classifying beef carcasses into palatability ("certified" or "not certified" as palatable) groups. Carcasses (n = 769) were selected from four beef-packing plants to represent three USDA quality grade groups (Top Choice, TC; Low Choice, LC; and Select, SE). Following chilling, a prototype BeefCam image of the longissimus muscle was obtained for each carcass. Strip loins were collected from the left side of each carcass and aged for 10 d; Warner-Bratzler shear force (WBSF; n = 769) values and consumer panel ratings (hedonic, end-anchored, 9-point ratings for overall like/dislike; n = 500 carcasses) were obtained for cooked steaks. Using information from the images, two regression models were developed to predict the first principal component of WBSF and consumer panel ratings for sorting carcasses based on expected eating quality. Model I used only prototype BeefCam output, whereas Model II used prototype BeefCam output and a coded value for quality grade group. For both models, carcasses with a predicted value of less than 0.0 were certified as producing palatable beef Additional carcasses (n = 292) were evaluated at a fifth and separate packing plant by prototype BeefCam to validate Models I and II. A strip loin was collected from each carcass and WBSF was measured after 14 d of aging. The percentages of validation carcasses that generated tough (WBSF > or = 4.5 kg) steaks were 6.5,5.8,10.7, and 7.9% for, TC, LC, SE, and all carcasses, respectively. Use of Model I certified 51.9, 47.6, 43.8, and 47.3% of TC, LC, SE, and all carcasses, respectively. Of the carcasses certified by use of Model I, 0.0,0.0, 4.1, and 1.4% of TC, LC, SE, and all carcasses, respectively, generated tough steaks. Use of Model II certified 59.7, 47.6, 25.0, and 42.1% of TC, LC, SE, and all carcasses, respectively. Of the carcasses certified by use of Model II, 2.2, 0.0, 3.6, and 1.6% of TC, LC, SE, and all carcasses, respectively, generated tough steaks. For both models, the frequency of carcasses that produced tough steaks in the certified group was lower (P < 0.05) for all validation carcasses sampled compared with that of the original carcass population. Based on the decrease in the frequency of carcasses that produced tough steaks, further development of a commercial BeefCam system is warranted.

  3. A Multi-Center Space Data System Prototype Based on CCSDS Standards

    NASA Technical Reports Server (NTRS)

    Rich, Thomas M.

    2016-01-01

    Deep space missions beyond earth orbit will require new methods of data communications in order to compensate for increasing RF propagation delay. The Consultative Committee for Space Data Systems (CCSDS) standard protocols Spacecraft Monitor & Control (SM&C), Asynchronous Message Service (AMS), and Delay/Disruption Tolerant Networking (DTN) provide such a method. The maturity level of this protocol set is, however, insufficient for mission inclusion at this time. This prototype is intended to provide experience which will raise the Technical Readiness Level (TRL) of these protocols..

  4. Prototype of the novel CAMEA concept—A backend for neutron spectrometers

    NASA Astrophysics Data System (ADS)

    Markó, Márton; Groitl, Felix; Birk, Jonas Okkels; Freeman, Paul Gregory; Lefmann, Kim; Christensen, Niels Bech; Niedermayer, Christof; Jurányi, Fanni; Lass, Jakob; Hansen, Allan; Rønnow, Henrik M.

    2018-01-01

    The continuous angle multiple energy analysis concept is a backend for both time-of-flight and analyzer-based neutron spectrometers optimized for neutron spectroscopy with highly efficient mapping in the horizontal scattering plane. The design employs a series of several upward scattering analyzer arcs placed behind each other, which are set to different final energies allowing a wide angular coverage with multiple energies recorded simultaneously. For validation of the concept and the model calculations, a prototype was installed at the Swiss neutron source SINQ, Paul Scherrer Institut. The design of the prototype, alignment and calibration procedures, experimental results of background measurements, and proof-of-concept inelastic measurements on LiHoF4 and h-YMnO3 are presented here.

  5. RICIS Software Engineering 90 Symposium: Aerospace Applications and Research Directions Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers presented at RICIS Software Engineering Symposium are compiled. The following subject areas are covered: synthesis - integrating product and process; Serpent - a user interface management system; prototyping distributed simulation networks; and software reuse.

  6. Report on dynamic speed harmonization and queue warning algorithm design.

    DOT National Transportation Integrated Search

    2014-02-01

    This report provides a detailed description of the algorithms that will be used to generate harmonized recommended speeds and queue warning information in the proposed Intelligent Network Flow Optimization (INFLO) prototype. This document describes t...

  7. A Trustworthy Key Generation Prototype Based on DDR3 PUF for Wireless Sensor Networks

    PubMed Central

    Liu, Wenchao; Zhang, Zhenhua; Li, Miaoxin; Liu, Zhenglin

    2014-01-01

    Secret key leakage in wireless sensor networks (WSNs) is a high security risk especially when sensor nodes are deployed in hostile environment and physically accessible to attackers. With nowadays semi/fully-invasive attack techniques attackers can directly derive the cryptographic key from non-volatile memory (NVM) storage. Physically Unclonable Function (PUF) is a promising technology to resist node capture attacks, and it also provides a low cost and tamper-resistant key provisioning solution. In this paper, we designed a PUF based on double-data-rate SDRAM Type 3 (DDR3) memory by exploring its memory decay characteristics. We also described a prototype of 128-bit key generation based on DDR3 PUF with integrated fuzzy extractor. Due to the wide adoption of DDR3 memory in WSN, our proposed DDR3 PUF technology with high security levels and no required hardware changes is suitable for a wide range of WSN applications. PMID:24984058

  8. The application of integrated knowledge-based systems for the Biomedical Risk Assessment Intelligent Network (BRAIN)

    NASA Technical Reports Server (NTRS)

    Loftin, Karin C.; Ly, Bebe; Webster, Laurie; Verlander, James; Taylor, Gerald R.; Riley, Gary; Culbert, Chris

    1992-01-01

    One of NASA's goals for long duration space flight is to maintain acceptable levels of crew health, safety, and performance. One way of meeting this goal is through BRAIN, an integrated network of both human and computer elements. BRAIN will function as an advisor to mission managers by assessing the risk of inflight biomedical problems and recommending appropriate countermeasures. Described here is a joint effort among various NASA elements to develop BRAIN and the Infectious Disease Risk Assessment (IDRA) prototype. The implementation of this effort addresses the technological aspects of knowledge acquisition, integration of IDRA components, the use of expert systems to automate the biomedical prediction process, development of a user friendly interface, and integration of IDRA and ExerCISys systems. Because C language, CLIPS and the X-Window System are portable and easily integrated, they were chosen ss the tools for the initial IDRA prototype.

  9. Reducing tensor magnetic gradiometer data for unexploded ordnance detection

    USGS Publications Warehouse

    Bracken, Robert E.; Brown, Philip J.

    2005-01-01

    We performed a survey to demonstrate the effectiveness of a prototype tensor magnetic gradiometer system (TMGS) for detection of buried unexploded ordnance (UXO). In order to achieve a useful result, we designed a data-reduction procedure that resulted in a realistic magnetic gradient tensor and devised a simple way of viewing complicated tensor data, not only to assess the validity of the final resulting tensor, but also to preview the data at interim stages of processing. The final processed map of the surveyed area clearly shows a sharp anomaly that peaks almost directly over the target UXO. This map agrees well with a modeled map derived from dipolar sources near the known target locations. From this agreement, it can be deduced that the reduction process is valid, making the prototype TMGS a foundation for development of future systems and processes.

  10. Engineering a Functional Small RNA Negative Autoregulation Network with Model-Guided Design.

    PubMed

    Hu, Chelsea Y; Takahashi, Melissa K; Zhang, Yan; Lucks, Julius B

    2018-05-22

    RNA regulators are powerful components of the synthetic biology toolbox. Here, we expand the repertoire of synthetic gene networks built from these regulators by constructing a transcriptional negative autoregulation (NAR) network out of small RNAs (sRNAs). NAR network motifs are core motifs of natural genetic networks, and are known for reducing network response time and steady state signal. Here we use cell-free transcription-translation (TX-TL) reactions and a computational model to design and prototype sRNA NAR constructs. Using parameter sensitivity analysis, we design a simple set of experiments that allow us to accurately predict NAR function in TX-TL. We transfer successful network designs into Escherichia coli and show that our sRNA transcriptional network reduces both network response time and steady-state gene expression. This work broadens our ability to construct increasingly sophisticated RNA genetic networks with predictable function.

  11. Translating expert system rules into Ada code with validation and verification

    NASA Technical Reports Server (NTRS)

    Becker, Lee; Duckworth, R. James; Green, Peter; Michalson, Bill; Gosselin, Dave; Nainani, Krishan; Pease, Adam

    1991-01-01

    The purpose of this ongoing research and development program is to develop software tools which enable the rapid development, upgrading, and maintenance of embedded real-time artificial intelligence systems. The goals of this phase of the research were to investigate the feasibility of developing software tools which automatically translate expert system rules into Ada code and develop methods for performing validation and verification testing of the resultant expert system. A prototype system was demonstrated which automatically translated rules from an Air Force expert system was demonstrated which detected errors in the execution of the resultant system. The method and prototype tools for converting AI representations into Ada code by converting the rules into Ada code modules and then linking them with an Activation Framework based run-time environment to form an executable load module are discussed. This method is based upon the use of Evidence Flow Graphs which are a data flow representation for intelligent systems. The development of prototype test generation and evaluation software which was used to test the resultant code is discussed. This testing was performed automatically using Monte-Carlo techniques based upon a constraint based description of the required performance for the system.

  12. Design of monocular head-mounted displays for increased indoor firefighting safety and efficiency

    NASA Astrophysics Data System (ADS)

    Wilson, Joel; Steingart, Dan; Romero, Russell; Reynolds, Jessica; Mellers, Eric; Redfern, Andrew; Lim, Lloyd; Watts, William; Patton, Colin; Baker, Jessica; Wright, Paul

    2005-05-01

    Four monocular Head-Mounted Display (HMD) prototypes from the Fire Information and Rescue Equipment (FIRE) project at UC Berkeley are presented. The FIRE project aims to give firefighters a system of information technology tools for safer and more efficient firefighting in large buildings. The paper begins by describing the FIRE project and its use of a custom wireless sensor network (WSN) called SmokeNet for personnel tracking. The project aims to address urban/industrial firefighting procedures in need of improvement. Two "user-needs" studies with the Chicago and Berkeley Fire Departments are briefly presented. The FIRE project"s initial HMD prototype designs are then discussed with regard to feedback from the user-needs studies. These prototypes are evaluated in their potential costs and benefits to firefighters and found to need improvement. Next, some currently available commercial HMDs are reviewed and compared in their cost, performance, and potential for use by firefighters. Feedback from the Berkeley Fire Department user-needs study, in which the initial prototypes were demonstrated, is compiled into a concept selection matrix for the next prototypes. This matrix is used to evaluate a variety of HMDs, including some of the commercial units presented, and to select the best design options. Finally, the current prototypes of the two best design options are presented and discussed.

  13. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    PubMed

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  14. Advances in the Lightweight Air-Liquid Composite Heat Exchanger Development for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel

    2011-01-01

    An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.

  15. Network testbed creation and validation

    DOEpatents

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.; Watts, Kristopher K.; Sweeney, Andrew John

    2017-03-21

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices, embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.

  16. Network testbed creation and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices,more » embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.« less

  17. Hyperswitch Communication Network Computer

    NASA Technical Reports Server (NTRS)

    Peterson, John C.; Chow, Edward T.; Priel, Moshe; Upchurch, Edwin T.

    1993-01-01

    Hyperswitch Communications Network (HCN) computer is prototype multiple-processor computer being developed. Incorporates improved version of hyperswitch communication network described in "Hyperswitch Network For Hypercube Computer" (NPO-16905). Designed to support high-level software and expansion of itself. HCN computer is message-passing, multiple-instruction/multiple-data computer offering significant advantages over older single-processor and bus-based multiple-processor computers, with respect to price/performance ratio, reliability, availability, and manufacturing. Design of HCN operating-system software provides flexible computing environment accommodating both parallel and distributed processing. Also achieves balance among following competing factors; performance in processing and communications, ease of use, and tolerance of (and recovery from) faults.

  18. Local Validation of Global Estimates of Biosphere Properties: Synthesis of Scaling Methods and Results Across Several Major Biomes

    NASA Technical Reports Server (NTRS)

    Cohen, Warren B.; Wessman, Carol A.; Aber, John D.; VanderCaslte, John R.; Running, Steven W.

    1998-01-01

    To assist in validating future MODIS land cover, LAI, IPAR, and NPP products, this project conducted a series of prototyping exercises that resulted in enhanced understanding of the issues regarding such validation. As a result, we have several papers to appear as a special issue of Remote Sensing of Environment in 1999. Also, we have been successful at obtaining a follow-on grant to pursue actual validation of these products over the next several years. This document consists of a delivery letter, including a listing of published papers.

  19. WE-A-17A-09: Exploiting Electromagnetic Technologies for Real-Time Seed Drop Position Validation in Permanent Implant Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Racine, E; Hautvast, G; Binnekamp, D

    Purpose: To report on preliminary results validating the performance of a specially designed LDR brachytherapy needle prototype possessing both electromagnetic (EM) tracking and seed drop detection abilities. Methods: An EM hollow needle prototype has been designed and constructed in collaboration with research partner Philips Healthcare. The needle possesses conventional 3D tracking capabilities, along with a novel seed drop detection mechanism exploiting local changes of electromagnetic properties generated by the passage of seeds in the needle's embedded sensor coils. These two capabilities are exploited by proprietary engineering and signal processing techniques to generate seed drop position estimates in real-time treatment delivery.more » The electromagnetic tracking system (EMTS) used for the experiment is the NDI Aurora Planar Field Generator. The experiment consisted of dropping a total of 35 seeds in a prismatic agarose phantom, and comparing the 3D seed drop positions of the EMTS to those obtained by an image analysis of subsequent micro-CT scans. Drop position error computations and statistical analysis were performed after a 3D registration of the two seed distributions. Results: Of the 35 seeds dropped in the phantom, 32 were properly detected by the needle prototype. Absolute drop position errors among the detected seeds ranged from 0.5 to 4.8 mm with mean and standard deviation values of 1.6 and 0.9 mm, respectively. Error measurements also include undesirable and uncontrollable effects such as seed motion upon deposition. The true accuracy performance of the needle prototype is therefore underestimated. Conclusion: This preliminary study demonstrates the potential benefits of EM technologies in detecting the passage of seeds in a hollow needle as a means of generating drop position estimates in real-time treatment delivery. Such tools could therefore represent a potentially interesting addition to existing brachytherapy protocols for rapid dosimetry validation. Equipments and fundings for this project were provided by Philips Medical.« less

  20. Design and pilot validation of A-gear: a novel wearable dynamic arm support.

    PubMed

    Kooren, Peter N; Dunning, Alje G; Janssen, Mariska M H P; Lobo-Prat, Joan; Koopman, Bart F J M; Paalman, Micha I; de Groot, Imelda J M; Herder, Just L

    2015-09-18

    Persons suffering from progressive muscular weakness, like those with Duchenne muscular dystrophy (DMD), gradually lose the ability to stand, walk and to use their arms. This hinders them from performing daily activities, social participation and being independent. Wheelchairs are used to overcome the loss of walking. However, there are currently few efficient functional substitutes to support the arms. Arm supports or robotic arms can be mounted to wheelchairs to aid in arm motion, but they are quite visible (stigmatizing), and limited in their possibilities due to their fixation to the wheelchair. The users prefer inconspicuous arm supports that are comfortable to wear and easy to control. In this paper the design, characterization, and pilot validation of a passive arm support prototype, which is worn on the body, is presented. The A-gear runs along the body from the contact surface between seat and upper legs via torso and upper arm to the forearm. Freedom of motion is accomplished by mechanical joints, which are nearly aligned with the human joints. The system compensates for the arm weight, using elastic bands for static balance, in every position of the arm. As opposed to existing devices, the proposed kinematic structure allows trunk motion and requires fewer links and less joint space without compromising balancing precision. The functional prototype has been validated in three DMD patients, using 3D motion analysis. Measurements have shown increased arm performance when the subjects were wearing the prototype. Upward and forward movements were easier to perform. The arm support is easy to put on and remove. Moreover, the device felt comfortable for the subjects. However, downward movements were more difficult, and the patients would prefer the device to be even more inconspicuous. The A-gear prototype is a step towards inconspicuousness and therefore well-received dynamic arm supports for people with muscular weakness.

  1. Multi-Modal Intelligent Traffic Signal Systems (MMITSS) impacts assessment.

    DOT National Transportation Integrated Search

    2015-08-01

    The study evaluates the potential network-wide impacts of the Multi-Modal Intelligent Transportation Signal System (MMITSS) based on a field data analysis utilizing data collected from a MMITSS prototype and a simulation analysis. The Intelligent Tra...

  2. Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber.

    PubMed

    Koch, Ina; Junker, Björn H; Heiner, Monika

    2005-04-01

    Because of the complexity of metabolic networks and their regulation, formal modelling is a useful method to improve the understanding of these systems. An essential step in network modelling is to validate the network model. Petri net theory provides algorithms and methods, which can be applied directly to metabolic network modelling and analysis in order to validate the model. The metabolism between sucrose and starch in the potato tuber is of great research interest. Even if the metabolism is one of the best studied in sink organs, it is not yet fully understood. We provide an approach for model validation of metabolic networks using Petri net theory, which we demonstrate for the sucrose breakdown pathway in the potato tuber. We start with hierarchical modelling of the metabolic network as a Petri net and continue with the analysis of qualitative properties of the network. The results characterize the net structure and give insights into the complex net behaviour.

  3. Controller Response to Conflict Resolution Advisory Prototype

    DOT National Transportation Integrated Search

    1991-01-01

    Conflict Resolution Advisory (CRA) is an automated software aid for air traffic : control specialists at air route traffic control centers (ARTCCs). CRA calculates, : validates, and displays to the en route controller a single resolution for predicte...

  4. Degrees of separation as a statistical tool for evaluating candidate genes.

    PubMed

    Nelson, Ronald M; Pettersson, Mats E

    2014-12-01

    Selection of candidate genes is an important step in the exploration of complex genetic architecture. The number of gene networks available is increasing and these can provide information to help with candidate gene selection. It is currently common to use the degree of connectedness in gene networks as validation in Genome Wide Association (GWA) and Quantitative Trait Locus (QTL) mapping studies. However, it can cause misleading results if not validated properly. Here we present a method and tool for validating the gene pairs from GWA studies given the context of the network they co-occur in. It ensures that proposed interactions and gene associations are not statistical artefacts inherent to the specific gene network architecture. The CandidateBacon package provides an easy and efficient method to calculate the average degree of separation (DoS) between pairs of genes to currently available gene networks. We show how these empirical estimates of average connectedness are used to validate candidate gene pairs. Validation of interacting genes by comparing their connectedness with the average connectedness in the gene network will provide support for said interactions by utilising the growing amount of gene network information available. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Benchmark Evaluation of Dounreay Prototype Fast Reactor Minor Actinide Depletion Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, J. D.; Gauld, I. C.; Gulliford, J.

    2017-01-01

    Historic measurements of actinide samples in the Dounreay Prototype Fast Reactor (PFR) are of interest for modern nuclear data and simulation validation. Samples of various higher-actinide isotopes were irradiated for 492 effective full-power days and radiochemically assayed at Oak Ridge National Laboratory (ORNL) and Japan Atomic Energy Research Institute (JAERI). Limited data were available regarding the PFR irradiation; a six-group neutron spectra was available with some power history data to support a burnup depletion analysis validation study. Under the guidance of the Organisation for Economic Co-Operation and Development Nuclear Energy Agency (OECD NEA), the International Reactor Physics Experiment Evaluation Projectmore » (IRPhEP) and Spent Fuel Isotopic Composition (SFCOMPO) Project are collaborating to recover all measurement data pertaining to these measurements, including collaboration with the United Kingdom to obtain pertinent reactor physics design and operational history data. These activities will produce internationally peer-reviewed benchmark data to support validation of minor actinide cross section data and modern neutronic simulation of fast reactors with accompanying fuel cycle activities such as transportation, recycling, storage, and criticality safety.« less

  6. Present-day deformation in Europe, as seen by the EPOS-GNSS prototype solution in double difference, and first co- and post-seismic displacements associated with 2016 Amatrice and Norcia earthquakes (Italy)

    NASA Astrophysics Data System (ADS)

    Socquet, Anne; Déprez, Aline; Cotte, Nathalie; Maubant, Louise; Walpersdorf, Andrea; Bato, Mary Grace

    2017-04-01

    We present here a new pan-European velocity field, obtained by processing 500+ cGPS stations in double difference, in the framework of the implementation phase of the European Plate Observing System (EPOS) project. This prototype solution spans the 2000-2016 period, and includes data from RING, NOA, RENAG and European Permanent Network (EPN) cGPS netwprks. The data set is first split into daily sub-networks (between 8 and 14 sub-networks). The sub-networks consist in about 40 stations, with 2 overlapping stations. For each day and for each sub-network, the GAMIT processing is conducted independently. Once each sub-network achieves satisfactory results, a daily combination is performed in order to produce SINEX files. The Chi square value associated with the combination allows us to evaluate its quality. Eventually, a multi year combination generates position time series for each station. Each time series is visualized and the jumps associated with material change (antenna or receiver) are estimated and corrected. This procedure allows us to generate daily solutions and position time series for all stations. The associated "interseismic" velocity field has then been estimated using a times series analysis using MIDAS software, and compared to another independent estimate obtained by Kalman filtering with globk software. In addition to this velocity field we made a specific zoom on Italy and present a strain rate map as well as time series showing co- and post- seismic movements associated with the 2016 Amatrice and Norcia earthquakes.

  7. Battery Performance Modelling ad Simulation: a Neural Network Based Approach

    NASA Astrophysics Data System (ADS)

    Ottavianelli, Giuseppe; Donati, Alessandro

    2002-01-01

    This project has developed on the background of ongoing researches within the Control Technology Unit (TOS-OSC) of the Special Projects Division at the European Space Operations Centre (ESOC) of the European Space Agency. The purpose of this research is to develop and validate an Artificial Neural Network tool (ANN) able to model, simulate and predict the Cluster II battery system's performance degradation. (Cluster II mission is made of four spacecraft flying in tetrahedral formation and aimed to observe and study the interaction between sun and earth by passing in and out of our planet's magnetic field). This prototype tool, named BAPER and developed with a commercial neural network toolbox, could be used to support short and medium term mission planning in order to improve and maximise the batteries lifetime, determining which are the future best charge/discharge cycles for the batteries given their present states, in view of a Cluster II mission extension. This study focuses on the five Silver-Cadmium batteries onboard of Tango, the fourth Cluster II satellite, but time restrains have allowed so far to perform an assessment only on the first battery. In their most basic form, ANNs are hyper-dimensional curve fits for non-linear data. With their remarkable ability to derive meaning from complicated or imprecise history data, ANN can be used to extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. ANNs learn by example, and this is why they can be described as an inductive, or data-based models for the simulation of input/target mappings. A trained ANN can be thought of as an "expert" in the category of information it has been given to analyse, and this expert can then be used, as in this project, to provide projections given new situations of interest and answer "what if" questions. The most appropriate algorithm, in terms of training speed and memory storage requirements, is clearly the Levenberg-Marquardt one. The ANN used is a three-layer one (2-4-1) with four inputs and one output. Having established all the ANN parameters and calculated all the input/target training data the ANN has been trained and validated. Afterwards, various simulations have been performed with BAPER to validate the performance of the software and test new alternative battery cycling strategies. Taking into account the small number of available training data for the ANN, and that the simulations have been carried out over a fairly extensive time frame (i.e. one year) the results obtained from the prototype tool must be considered more than satisfactory. It is found that the deliverable discharge capacity can be maintained circa 20% higher than the one obtained with the nominal cycling strategy if the batteries are left discharged for a longer period of time and the storage temperature is decreased. This ANN model has its limitations when asked to predict the discharge capacity deterioration that would be obtained with extraordinary cycling conditions (e.g. extremely low storage temperatures and continuous cycling). Hence, these results must be considered only approximate, as it is impossible to exactly state whether the ANN turn out to give extremely accurate realistic values or not, failing to extrapolate a correct pattern. One way to overcome the problem would be to do some parallel experiments in the laboratory, using the same battery and similar environment conditions (temperature, charge and discharge cycles) to the ones to be encounter in the spacecraft.

  8. CATO: a CAD tool for intelligent design of optical networks and interconnects

    NASA Astrophysics Data System (ADS)

    Chlamtac, Imrich; Ciesielski, Maciej; Fumagalli, Andrea F.; Ruszczyk, Chester; Wedzinga, Gosse

    1997-10-01

    Increasing communication speed requirements have created a great interest in very high speed optical and all-optical networks and interconnects. The design of these optical systems is a highly complex task, requiring the simultaneous optimization of various parts of the system, ranging from optical components' characteristics to access protocol techniques. Currently there are no computer aided design (CAD) tools on the market to support the interrelated design of all parts of optical communication systems, thus the designer has to rely on costly and time consuming testbed evaluations. The objective of the CATO (CAD tool for optical networks and interconnects) project is to develop a prototype of an intelligent CAD tool for the specification, design, simulation and optimization of optical communication networks. CATO allows the user to build an abstract, possible incomplete, model of the system, and determine its expected performance. Based on design constraints provided by the user, CATO will automatically complete an optimum design, using mathematical programming techniques, intelligent search methods and artificial intelligence (AI). Initial design and testing of a CATO prototype (CATO-1) has been completed recently. The objective was to prove the feasibility of combining AI techniques, simulation techniques, an optical device library and a graphical user interface into a flexible CAD tool for obtaining optimal communication network designs in terms of system cost and performance. CATO-1 is an experimental tool for designing packet-switching wavelength division multiplexing all-optical communication systems using a LAN/MAN ring topology as the underlying network. The two specific AI algorithms incorporated are simulated annealing and a genetic algorithm. CATO-1 finds the optimal number of transceivers for each network node, using an objective function that includes the cost of the devices and the overall system performance.

  9. Development of a Distributed, Adaptive, Direction and Control (Civil Preparedness Communications) Network within the State of Rhode Island, Which May Serve as a Prototype Model for the Design of State Area Networks in Other States.

    DTIC Science & Technology

    1981-03-01

    realize that a Civil Defense Communications capabil- ity existed, even in the best equipped communities. Notably, Town Council Presidents, Mayors ...5) B-; (6) AUDIO INPUT. Radios shall be furnished with mating conectors to accomplish , i.e.:(Molex male and female 10 PIN, or similar plugs.) All

  10. Development of Automated Moment Tensor Software at the Prototype International Data Center

    DTIC Science & Technology

    2000-09-01

    Berkeley Digital Seismic Network stations in the 100 to 500 km distance range. With sufficient azimuthal coverage this method is found to perform...the solution reported by NIED (http://argent.geo.bosai.go.jp/ freesia /event/hypo/joho.html). The normal mechanism obtained by the three-component...Digital Seismic Network stations. These stations provide more than 100 degrees of azimuthal coverage, which is an adequate sampling of the focal

  11. Secure Networks for First Responders and Special Forces

    NASA Technical Reports Server (NTRS)

    2005-01-01

    When NASA needed help better securing its communications with orbiting satellites, the Agency called on Western DataCom Co., Inc., to help develop a prototype Internet Protocol (IP) router. Westlake, Ohio-based Western DataCom designs, develops, and manufactures hardware that secures voice, video, and data transmissions over any IP-based network. The technology that it jointly developed with NASA is now serving as a communications solution in military and first-response situations.

  12. Cyber Situational Awareness through Operational Streaming Analysis

    DTIC Science & Technology

    2011-04-07

    Our system makes use of two specific data sources from network traffic: raw packet data and NetFlow connection summary records (de- scribed below...implemented an operational prototype system using the following two data feeds. a) NetFlow Data: Our system processes the NetFlow records of all...Internet gateway traffic for a large enterprise network. It uses the standard Cisco NetFlow version 5 proto- col, which defines a flow as a

  13. Method comparison and validation of a prototype device for measurement of ionized calcium concentrations cow-side against a point-of-care instrument and a benchtop blood-gas analyzer reference method.

    PubMed

    Neves, R C; Stokol, T; Bach, K D; McArt, J A A

    2018-02-01

    The objective of this study was to assess an optimized ion-selective electrode Ca-module prototype as a potential cow-side device for ionized Ca (iCa) measurements in bovine blood. A linearity experiment showed no deviation from linearity over a range of iCa concentrations compared with a commercial point-of-care (POC) device commonly used in the field (POC VS ; VetScan i-STAT, Abaxis North America, Union City, CA) and a laboratory gold standard benchtop blood-gas analyzer [reference analyzer (RA); ABL-800 FLEX, Radiometer Medical, Copenhagen, Denmark]. Coefficient of variation on 3 samples with high, within-range, and low iCa concentrations ranged from 1.0 to 3.9% for the prototype. A follow-up validation experiment was performed, in which our objectives were to (1) assess the performance of the prototype cow-side against the POC VS (farm gold-standard) using fresh non-anticoagulated whole-blood samples; (2) assess the performance of the prototype and the POC VS against the RA in a diagnostic laboratory using blood collected in a heparin-balanced syringe; and (3) assess the agreement of the prototype and POC VS on-farm (fresh non-anticoagulated whole blood) against the RA on heparin-balanced blood. Finally, sensitivity and specificity of the results obtained by the prototype and the POC VS cow-side compared with the results obtained by the laboratory RA using 3 different iCa cut points for classification of subclinical hypocalcemia were calculated. A total of 101 periparturient Holstein cows from 3 dairy farms in New York State were used for the second experiment. Ionized Ca results from the prototype cow-side were, on average, 0.06 mmol/L higher than the POC VS . With heparin-balanced samples under laboratory conditions, the prototype and POC VS measured an average 0.04 mmol/L higher and lower, respectively, compared with the RA. Results from the prototype and POC VS cow-side were 0.01 mmol/L higher and 0.05 mmol/L lower, respectively, compared with results from the laboratory RA on heparinized blood. Sensitivity and specificity for the prototype and the POC VS under farm conditions at 3 potential subclinical hypocalcemia cut points were 100 and ≥93.5%, respectively. This novel ion-selective electrode Ca-module could become a rapid low-cost tool for assessing iCa cow-side, while qualitatively allowing classification of subclinical hypocalcemia on-farm. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  14. A review method for UML requirements analysis model employing system-side prototyping.

    PubMed

    Ogata, Shinpei; Matsuura, Saeko

    2013-12-01

    User interface prototyping is an effective method for users to validate the requirements defined by analysts at an early stage of a software development. However, a user interface prototype system offers weak support for the analysts to verify the consistency of the specifications about internal aspects of a system such as business logic. As the result, the inconsistency causes a lot of rework costs because the inconsistency often makes the developers impossible to actualize the system based on the specifications. For verifying such consistency, functional prototyping is an effective method for the analysts, but it needs a lot of costs and more detailed specifications. In this paper, we propose a review method so that analysts can verify the consistency among several different kinds of diagrams in UML efficiently by employing system-side prototyping without the detailed model. The system-side prototype system does not have any functions to achieve business logic, but visualizes the results of the integration among the diagrams in UML as Web pages. The usefulness of our proposal was evaluated by applying our proposal into a development of Library Management System (LMS) for a laboratory. This development was conducted by a group. As the result, our proposal was useful for discovering the serious inconsistency caused by the misunderstanding among the members of the group.

  15. Non-Intrusive, Distributed Gas Sensing Technology for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Delgado, Jesus; Phillips, Straun; Rubtsov, Vladimir; Chullen, Cinda

    2015-01-01

    Chemical sensors for monitoring gas composition, including oxygen, humidity, carbon dioxide, and trace contaminants are needed to characterize and validate spacesuit design and operating parameters. This paper reports on the first prototypes of a non-intrusive gas sensing technology based on flexible sensitive patches positioned inside spacesuit prototypes and interrogated by optical fibers routed outside the suit, taking advantage of the transparent materials of the suit prototypes. The sensitive patches are based on luminescent materials whose emission parameters vary with the partial pressure of a specific gas. Patches sensitive to carbon dioxide, humidity, oxygen, and ammonia have been developed, and their preliminary characterization in the laboratory using Mark III-like helmet parts is described. The first prototype system consists of a four-channel fiber optic luminescent detector that can be used to monitor any of the selected target gases at four locations. To switch from one gas to another we replace the (disposable) sensor patches and adjust the system settings. Repeatability among sensitive patches and of sensor performance from location to location has been confirmed, assuring that suit engineers will have flexibility in selecting multiple sensing points, fitting the sensor elements into the spacesuit, and easily repositioning the sensor elements as desired. The evaluation of the first prototype for monitoring carbon dioxide during washout studies in a space suit prototype is presented.

  16. Non-Intrusive, Distributed Gas Sensing Technology for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Delgado, Jesus; Phillips, Straun; Rubtsov, Vladimir; Chullen, Cinda

    2015-01-01

    Chemical sensors for monitoring gas composition, including oxygen, humidity, carbon dioxide, and trace contaminants, are needed to characterize and validate spacesuit design and operating parameters. This paper reports on the first prototypes of a non-intrusive gas sensing technology based on flexible sensitive patches positioned inside spacesuit prototypes and interrogated via optical fibers routed outside the suit, taking advantage of the transparent materials of the suit prototypes. The sensitive patches are based on luminescent materials whose emission parameters vary with the partial pressure of a specific gas. Patches sensitive to carbon dioxide, humidity, and temperature have been developed, and their preliminary laboratory characterization in Mark III-like helmet parts is described. The first prototype system consists of a four-channel fiber optic luminescent detector that can be used to monitor any of the selected target gases at four locations. To switch from one gas to another we replace the (disposable) sensor patches and adjust the system settings. Repeatability among sensitive patches and of sensor performance from location to location has been confirmed, assuring that suit engineers will have flexibility in selecting multiple sensing points, fitting the sensor elements into the spacesuit, and easily repositioning the sensor elements as desired. The evaluation of the first prototype for monitoring carbon dioxide during washout studies in a spacesuit prototype is presented.

  17. Development of module for neural network identification of attacks on applications and services in multi-cloud platforms

    NASA Astrophysics Data System (ADS)

    Parfenov, D. I.; Bolodurina, I. P.

    2018-05-01

    The article presents the results of developing an approach to detecting and protecting against network attacks on the corporate infrastructure deployed on the multi-cloud platform. The proposed approach is based on the combination of two technologies: a softwareconfigurable network and virtualization of network functions. The approach for searching for anomalous traffic is to use a hybrid neural network consisting of a self-organizing Kohonen network and a multilayer perceptron. The study of the work of the prototype of the system for detecting attacks, the method of forming a learning sample, and the course of experiments are described. The study showed that using the proposed approach makes it possible to increase the effectiveness of the obfuscation of various types of attacks and at the same time does not reduce the performance of the network

  18. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  19. Prototype development and implementation of picture archiving and communications systems based on ISO-OSI standard

    NASA Astrophysics Data System (ADS)

    Martinez, Ralph; Nam, Jiseung

    1992-07-01

    Picture Archiving and Communication Systems (PACS) is an integration of digital image formation in a hospital, which encompasses various imaging equipment, image viewing workstations, image databases, and a high speed network. The integration requires a standardization of communication protocols to connect devices from different vendors. The American College of Radiology and the National Electrical Manufacturers Association (ACR- NEMA) standard Version 2.0 provides a point-to-point hardware interface, a set of software commands, and a consistent set of data formats for PACS. But, it is inadequate for PACS networking environments, because of its point-to-point nature and its inflexibility to allow other services and protocols in the future. Based on previous experience of PACS developments in The University of Arizona, a new communication protocol for PACS networks and an approach were proposed to ACR-NEMA Working Group VI. The defined PACS protocol is intended to facilitate the development of PACS''s capable of interfacing with other hospital information systems. Also, it is intended to allow the creation of diagnostic information data bases which can be interrogated by a variety of distributed devices. A particularly important goal is to support communications in a multivendor environment. The new protocol specifications are defined primarily as a combination of the International Organization for Standardization/Open Systems Interconnection (ISO/OSI), TCP/IP protocols, and the data format portion of ACR-NEMA standard. This paper addresses the specification and implementation of the ISO-based protocol into a PACS prototype. The protocol specification, which covers Presentation, Session, Transport, and Network layers, is summarized briefly. The protocol implementation is discussed based on our implementation efforts in the UNIX Operating System Environment. At the same time, results of performance comparison between the ISO and TCP/IP implementations are presented to demonstrate the implementation of defined protocol. The testing of performance analysis is done by prototyping PACS on available platforms, which are Micro VAX II, DECstation and SUN Workstation.

  20. Development of a prototype version of an embeddable corrosivity measuring instrument for reinforced concrete.

    DOT National Transportation Integrated Search

    2002-01-01

    To address the problem of safely and quantifiably detecting corrosion in a cost-effective and timely manner, the University of Virginia and Virginia Technologies, Inc. have developed a remotely accessible, networked, embedded corrosion instrument. Th...

  1. Prototype mobile luminance measurement system and level of service for evaluating rural high-speed nighttime delineation.

    DOT National Transportation Integrated Search

    2013-02-01

    Transportation agencies routinely travel their extensive roadway networks conducting subjective roadway : assessments of traffic control devices both day and night. Retroreflectivity is a good tool for product testing : but can provide false positive...

  2. Radiation Pattern of Chair Armed Microstrip Antenna

    NASA Astrophysics Data System (ADS)

    Mishra, Rabindra Kishore; Sahu, Kumar Satyabrat

    2016-12-01

    This work analyzes planar antenna conformable to chair arm shaped surfaces for WLAN application. Closed form expressions for its radiation pattern are developed and validated using measurements on prototype and commercial EM code at 2.4 GHz.

  3. Safety assessment of ultra-wideband antennas for microwave breast imaging.

    PubMed

    De Santis, Valerio; Sill, Jeff M; Bourqui, Jeremie; Fear, Elise C

    2012-04-01

    This article deals with the safety assessment of several ultra-wideband (UWB) antenna designs for use in prototype microwave breast imaging systems. First, the performances of the antennas are validated by comparison of measured and simulated data collected for a simple test case. An efficient approach to estimating the specific energy absorption (SA) is introduced and validated. Next, SA produced by the UWB antennas inside more realistic breast models is computed. In particular, the power levels and pulse repetition periods adopted for the SA evaluation follow the measurement protocol employed by a tissue sensing adaptive radar (TSAR) prototype system. Results indicate that the SA for the antennas examined is below limits prescribed in standards for exposure of the general population; however, the difficulties inherent in applying such standards to UWB exposures are discussed. The results also suggest that effective tools for the rapid evaluation of new sensors have been developed. © 2011 Wiley Periodicals, Inc.

  4. Fiber Optic Thermo-Hygrometers for Soil Moisture Monitoring.

    PubMed

    Leone, Marco; Principe, Sofia; Consales, Marco; Parente, Roberto; Laudati, Armando; Caliro, Stefano; Cutolo, Antonello; Cusano, Andrea

    2017-06-20

    This work deals with the fabrication, prototyping, and experimental validation of a fiber optic thermo-hygrometer-based soil moisture sensor, useful for rainfall-induced landslide prevention applications. In particular, we recently proposed a new generation of fiber Bragg grating (FBGs)-based soil moisture sensors for irrigation purposes. This device was realized by integrating, inside a customized aluminum protection package, a FBG thermo-hygrometer with a polymer micro-porous membrane. Here, we first verify the limitations, in terms of the volumetric water content (VWC) measuring range, of this first version of the soil moisture sensor for its exploitation in landslide prevention applications. Successively, we present the development, prototyping, and experimental validation of a novel, optimized version of a soil VWC sensor, still based on a FBG thermo-hygrometer, but able to reliably monitor, continuously and in real-time, VWC values up to 37% when buried in the soil.

  5. Fiber Optic Thermo-Hygrometers for Soil Moisture Monitoring

    PubMed Central

    Leone, Marco; Principe, Sofia; Consales, Marco; Parente, Roberto; Laudati, Armando; Caliro, Stefano; Cutolo, Antonello; Cusano, Andrea

    2017-01-01

    This work deals with the fabrication, prototyping, and experimental validation of a fiber optic thermo-hygrometer-based soil moisture sensor, useful for rainfall-induced landslide prevention applications. In particular, we recently proposed a new generation of fiber Bragg grating (FBGs)-based soil moisture sensors for irrigation purposes. This device was realized by integrating, inside a customized aluminum protection package, a FBG thermo-hygrometer with a polymer micro-porous membrane. Here, we first verify the limitations, in terms of the volumetric water content (VWC) measuring range, of this first version of the soil moisture sensor for its exploitation in landslide prevention applications. Successively, we present the development, prototyping, and experimental validation of a novel, optimized version of a soil VWC sensor, still based on a FBG thermo-hygrometer, but able to reliably monitor, continuously and in real-time, VWC values up to 37% when buried in the soil. PMID:28632172

  6. [Information technology in learning sign language].

    PubMed

    Hernández, Cesar; Pulido, Jose L; Arias, Jorge E

    2015-01-01

    To develop a technological tool that improves the initial learning of sign language in hearing impaired children. The development of this research was conducted in three phases: the lifting of requirements, design and development of the proposed device, and validation and evaluation device. Through the use of information technology and with the advice of special education professionals, we were able to develop an electronic device that facilitates the learning of sign language in deaf children. This is formed mainly by a graphic touch screen, a voice synthesizer, and a voice recognition system. Validation was performed with the deaf children in the Filadelfia School of the city of Bogotá. A learning methodology was established that improves learning times through a small, portable, lightweight, and educational technological prototype. Tests showed the effectiveness of this prototype, achieving a 32 % reduction in the initial learning time for sign language in deaf children.

  7. A preliminary evaluation of a reusable digital sterilization indicator prototype.

    PubMed

    Puttaiah, R; Griggs, J; D'Onofrio, M

    2014-09-01

    Sterilization of critical and semicritical instruments used in patient care must undergo a terminal process of sterilization. Use of chemical and physical indicators are important in providing information on the sterilizer's performance during each cycle. Regular and periodic monitoring of sterilizers using biological indicators is necessary in periodically validating performance of sterilizers. Data loggers or independent digital parametric indicators are innovative devices that provide more information than various classes chemical indicators. In this study we evaluated a prototype of an independent digital parametric indicator's use in autoclaves. The purpose of this study was to evaluate the performance of an independent digital indicator/data logger prototype (DS1922F) that could be used for multiple cycles within an autoclave.MG Materials and methods: Three batches of the DS1922F (150 samples) were used in this study that was conducted in a series. The first batch was challenged with 300 sterilization cycles within an autoclave and the data loggers evaluated to study failures and the reason for failure, make corrections and improve the prototype design. After changes made based on studying the first batch, the second batch of the prototype (150 samples) were challenged once again with 300 sterilization cycles within an autoclave and failure studied again in further improvement of the prototype. The final batch (3rd batch) of the prototype (150 samples) was challenged again but with 600 cycles to see how long they would last. Kaplan-Meier survival analysis analyses of all three batches was conducted (α = 0.05) and failed samples qualitatively studied in understanding the variables involved in the failure of the prototype, and in improving quality. Each tested batch provided crucial information on device failure and helped in improvement of the prototype. Mean lifetime survival of the final batch (Batch 3) of prototype was 498 (480, 516) sterilization cycles in an autoclave. In this study, the final batch of the DS1922F prototype data logger was found to be robust in withstanding the challenge of 600 autoclave cycles, with a mean lifetime of more than 450 cycles, multiple times more than prescribed number of cycles. Instrument reprocessing is among the important aspects of infection control. While stringent procedures are followed in instrument reprocessing within the clinic in assuring patient safety, regular use of sterilization process indicators and periodic biological validation of the sterilizer's performance is necessary. Chemical indicators for use in Autoclaves provide information on whether the particular cycle's parameters were achieved but do not provide at what specific point in time or temperature the failure occurred. Data loggers and associated reader software as the tested prototype in this evaluation (DS1922F), are designed to provide continuous information on time and temperature of the prescribed cycle. Data loggers provide immediate information on the process as opposed to Biological Indicators that take from days to a week in obtaining a confirmatory result. Further, many countries do not have the sterilization monitoring service infrastructure to meet the demands of the end users. In the absence of sterilization monitoring services, use of digital data loggers for each sterilization cycle is more pragmatic.

  8. The Interplanetary Overlay Networking Protocol Accelerator

    NASA Technical Reports Server (NTRS)

    Pang, Jackson; Torgerson, Jordan L.; Clare, Loren P.

    2008-01-01

    A document describes the Interplanetary Overlay Networking Protocol Accelerator (IONAC) an electronic apparatus, now under development, for relaying data at high rates in spacecraft and interplanetary radio-communication systems utilizing a delay-tolerant networking protocol. The protocol includes provisions for transmission and reception of data in bundles (essentially, messages), transfer of custody of a bundle to a recipient relay station at each step of a relay, and return receipts. Because of limitations on energy resources available for such relays, data rates attainable in a conventional software implementation of the protocol are lower than those needed, at any given reasonable energy-consumption rate. Therefore, a main goal in developing the IONAC is to reduce the energy consumption by an order of magnitude and the data-throughput capability by two orders of magnitude. The IONAC prototype is a field-programmable gate array that serves as a reconfigurable hybrid (hardware/ firmware) system for implementation of the protocol. The prototype can decode 108,000 bundles per second and encode 100,000 bundles per second. It includes a bundle-cache static randomaccess memory that enables maintenance of a throughput of 2.7Gb/s, and an Ethernet convergence layer that supports a duplex throughput of 1Gb/s.

  9. Deep learning application: rubbish classification with aid of an android device

    NASA Astrophysics Data System (ADS)

    Liu, Sijiang; Jiang, Bo; Zhan, Jie

    2017-06-01

    Deep learning is a very hot topic currently in pattern recognition and artificial intelligence researches. Aiming at the practical problem that people usually don't know correct classifications some rubbish should belong to, based on the powerful image classification ability of the deep learning method, we have designed a prototype system to help users to classify kinds of rubbish. Firstly the CaffeNet Model was adopted for our classification network training on the ImageNet dataset, and the trained network was deployed on a web server. Secondly an android app was developed for users to capture images of unclassified rubbish, upload images to the web server for analyzing backstage and retrieve the feedback, so that users can obtain the classification guide by an android device conveniently. Tests on our prototype system of rubbish classification show that: an image of one single type of rubbish with origin shape can be better used to judge its classification, while an image containing kinds of rubbish or rubbish with changed shape may fail to help users to decide rubbish's classification. However, the system still shows promising auxiliary function for rubbish classification if the network training strategy can be optimized further.

  10. Wireless Sensor Network Deployment for Monitoring Wildlife Passages

    PubMed Central

    Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Losilla, Fernando; Kulakowski, Pawel; Garcia-Haro, Joan; Rodríguez, Alejandro; López-Bao, José-Vicente; Palomares, Francisco

    2010-01-01

    Wireless Sensor Networks (WSNs) are being deployed in very diverse application scenarios, including rural and forest environments. In these particular contexts, specimen protection and conservation is a challenge, especially in natural reserves, dangerous locations or hot spots of these reserves (i.e., roads, railways, and other civil infrastructures). This paper proposes and studies a WSN based system for generic target (animal) tracking in the surrounding area of wildlife passages built to establish safe ways for animals to cross transportation infrastructures. In addition, it allows target identification through the use of video sensors connected to strategically deployed nodes. This deployment is designed on the basis of the IEEE 802.15.4 standard, but it increases the lifetime of the nodes through an appropriate scheduling. The system has been evaluated for the particular scenario of wildlife monitoring in passages across roads. For this purpose, different schemes have been simulated in order to find the most appropriate network operational parameters. Moreover, a novel prototype, provided with motion detector sensors, has also been developed and its design feasibility demonstrated. Original software modules providing new functionalities have been implemented and included in this prototype. Finally, main performance evaluation results of the whole system are presented and discussed in depth. PMID:22163601

  11. Software Defined Networking challenges and future direction: A case study of implementing SDN features on OpenStack private cloud

    NASA Astrophysics Data System (ADS)

    Shamugam, Veeramani; Murray, I.; Leong, J. A.; Sidhu, Amandeep S.

    2016-03-01

    Cloud computing provides services on demand instantly, such as access to network infrastructure consisting of computing hardware, operating systems, network storage, database and applications. Network usage and demands are growing at a very fast rate and to meet the current requirements, there is a need for automatic infrastructure scaling. Traditional networks are difficult to automate because of the distributed nature of their decision making process for switching or routing which are collocated on the same device. Managing complex environments using traditional networks is time-consuming and expensive, especially in the case of generating virtual machines, migration and network configuration. To mitigate the challenges, network operations require efficient, flexible, agile and scalable software defined networks (SDN). This paper discuss various issues in SDN and suggests how to mitigate the network management related issues. A private cloud prototype test bed was setup to implement the SDN on the OpenStack platform to test and evaluate the various network performances provided by the various configurations.

  12. Management and development of local area network upgrade prototype

    NASA Technical Reports Server (NTRS)

    Fouser, T. J.

    1981-01-01

    Given the situation of having management and development users accessing a central computing facility and given the fact that these same users have the need for local computation and storage, the utilization of a commercially available networking system such as CP/NET from Digital Research provides the building blocks for communicating intelligent microsystems to file and print services. The major problems to be overcome in the implementation of such a network are the dearth of intelligent communication front-ends for the microcomputers and the lack of a rich set of management and software development tools.

  13. Demonstration and field trial of a resilient hybrid NG-PON test-bed

    NASA Astrophysics Data System (ADS)

    Prat, Josep; Polo, Victor; Schrenk, Bernhard; Lazaro, Jose A.; Bonada, Francesc; Lopez, Eduardo T.; Omella, Mireia; Saliou, Fabienne; Le, Quang T.; Chanclou, Philippe; Leino, Dmitri; Soila, Risto; Spirou, Spiros; Costa, Liliana; Teixeira, Antonio; Tosi-Beleffi, Giorgio M.; Klonidis, Dimitrios; Tomkos, Ioannis

    2014-10-01

    A multi-layer next generation PON prototype has been built and tested, to show the feasibility of extended hybrid DWDM/TDM-XGPON FTTH networks with resilient optically-integrated ring-trees architecture, supporting broadband multimedia services. It constitutes a transparent common platform for the coexistence of multiple operators sharing the optical infrastructure of the central metro ring, passively combining the access and the metropolitan network sections. It features 32 wavelength connections at 10 Gbps, up to 1000 users distributed in 16 independent resilient sub-PONs over 100 km. This paper summarizes the network operation, demonstration and field trial results.

  14. 3-DIMENSIONAL Optoelectronic

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Ashok Venketaraman

    This thesis covers the design, analysis, optimization, and implementation of optoelectronic (N,M,F) networks. (N,M,F) networks are generic space-division networks that are well suited to implementation using optoelectronic integrated circuits and free-space optical interconnects. An (N,M,F) networks consists of N input channels each having a fanout F_{rm o}, M output channels each having a fanin F_{rm i}, and Log_{rm K}(N/F) stages of K x K switches. The functionality of the fanout, switching, and fanin stages depends on the specific application. Three applications of optoelectronic (N,M,F) networks are considered. The first is an optoelectronic (N,1,1) content -addressable memory system that achieves associative recall on two-dimensional images retrieved from a parallel-access optical memory. The design and simulation of the associative memory are discussed, and an experimental emulation of a prototype system using images from a parallel-readout optical disk is presented. The system design provides superior performance to existing electronic content-addressable memory chips in terms of capacity and search rate, and uses readily available optical disk and VLSI technologies. Next, a scalable optoelectronic (N,M,F) neural network that uses free-space holographic optical interconnects is presented. The neural architecture minimizes the number of optical transmitters needed, and provides accurate electronic fanin with low signal skew, and dendritic-type fan-in processing capability in a compact layout. Optimal data-encoding methods and circuit techniques are discussed. The implementation of an prototype optoelectronic neural system, and its application to a simple recognition task is demonstrated. Finally, the design, analysis, and optimization of a (N,N,F) self-routing, packet-switched multistage interconnection network is described. The network is suitable for parallel computing and broadband switching applications. The tradeoff between optical and electronic interconnects is examined quantitatively by varying the electronic switch size K. The performance of the (N,N,F) network versus the fanning parameter F, is also analyzed. It is shown that the optoelectronic (N,N,F) networks provide a range of performance-cost alternatives, and offer superior performance-per-cost to fully electronic switching networks and to previous networks designs.

  15. Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization.

    PubMed

    Karayiannis, N B; Pai, P I

    1999-02-01

    This paper evaluates a segmentation technique for magnetic resonance (MR) images of the brain based on fuzzy algorithms for learning vector quantization (FALVQ). These algorithms perform vector quantization by updating all prototypes of a competitive network through an unsupervised learning process. Segmentation of MR images is formulated as an unsupervised vector quantization process, where the local values of different relaxation parameters form the feature vectors which are represented by a relatively small set of prototypes. The experiments evaluate a variety of FALVQ algorithms in terms of their ability to identify different tissues and discriminate between normal tissues and abnormalities.

  16. Shortwave surface radiation network for observing small-scale cloud inhomogeneity fields

    NASA Astrophysics Data System (ADS)

    Lakshmi Madhavan, Bomidi; Kalisch, John; Macke, Andreas

    2016-03-01

    As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high-density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km × 12 km area) from April to July 2013 to capture the small-scale variability of cloud-induced radiation fields at the surface. In this paper, we provide the details of this unique setup of the pyranometer network, data processing, quality control, and uncertainty assessment under variable conditions. Some exemplary days with clear, broken cloudy, and overcast skies were explored to assess the spatiotemporal observations from the network along with other collocated radiation and sky imager measurements available during the HOPE period.

  17. On effectiveness of network sensor-based defense framework

    NASA Astrophysics Data System (ADS)

    Zhang, Difan; Zhang, Hanlin; Ge, Linqiang; Yu, Wei; Lu, Chao; Chen, Genshe; Pham, Khanh

    2012-06-01

    Cyber attacks are increasing in frequency, impact, and complexity, which demonstrate extensive network vulnerabilities with the potential for serious damage. Defending against cyber attacks calls for the distributed collaborative monitoring, detection, and mitigation. To this end, we develop a network sensor-based defense framework, with the aim of handling network security awareness, mitigation, and prediction. We implement the prototypical system and show its effectiveness on detecting known attacks, such as port-scanning and distributed denial-of-service (DDoS). Based on this framework, we also implement the statistical-based detection and sequential testing-based detection techniques and compare their respective detection performance. The future implementation of defensive algorithms can be provisioned in our proposed framework for combating cyber attacks.

  18. Implementation of a Prototype Generalized Network Technology for Hospitals *

    PubMed Central

    Tolchin, S. G.; Stewart, R. L.; Kahn, S. A.; Bergan, E. S.; Gafke, G. P.; Simborg, D. W.; Whiting-O'Keefe, Q. E.; Chadwick, M. G.; McCue, G. E.

    1981-01-01

    A demonstration implementation of a distributed data processing hospital information system using an intelligent local area communications network (LACN) technology is described. This system is operational at the UCSF Medical Center and integrates four heterogeneous, stand-alone minicomputers. The applications systems are PID/Registration, Outpatient Pharmacy, Clinical Laboratory and Radiology/Medical Records. Functional autonomy of these systems has been maintained, and no operating system changes have been required. The LACN uses a fiber-optic communications medium and provides extensive communications protocol support within the network, based on the ISO/OSI Model. The architecture is reconfigurable and expandable. This paper describes system architectural issues, the applications environment and the local area network.

  19. The automated ground network system

    NASA Technical Reports Server (NTRS)

    Smith, Miles T.; Militch, Peter N.

    1993-01-01

    The primary goal of the Automated Ground Network System (AGNS) project is to reduce Ground Network (GN) station life-cycle costs. To accomplish this goal, the AGNS project will employ an object-oriented approach to develop a new infrastructure that will permit continuous application of new technologies and methodologies to the Ground Network's class of problems. The AGNS project is a Total Quality (TQ) project. Through use of an open collaborative development environment, developers and users will have equal input into the end-to-end design and development process. This will permit direct user input and feedback and will enable rapid prototyping for requirements clarification. This paper describes the AGNS objectives, operations concept, and proposed design.

  20. Plug-and-Play Environmental Monitoring Spacecraft Subsystem

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish; Brinza, David E.; Tran, Tuan A.; Blaes, Brent R.

    2011-01-01

    A Space Environment Monitor (SEM) subsystem architecture has been developed and demonstrated that can benefit future spacecraft by providing (1) real-time knowledge of the spacecraft state in terms of exposure to the environment; (2) critical, instantaneous information for anomaly resolution; and (3) invaluable environmental data for designing future missions. The SEM architecture consists of a network of plug-and- play (PnP) Sensor Interface Units (SIUs), each servicing one or more environmental sensors. The SEM architecture is influenced by the IEEE Smart Transducer Interface Bus standard (IEEE Std 1451) for its PnP functionality. A network of PnP Spacecraft SIUs is enabling technology for gathering continuous real-time information critical to validating spacecraft health in harsh space environments. The demonstrated system that provided a proof-of-concept of the SEM architecture consisted of three SIUs for measurement of total ionizing dose (TID) and single event upset (SEU) radiation effects, electromagnetic interference (EMI), and deep dielectric charging through use of a prototype Internal Electro-Static Discharge Monitor (IESDM). Each SIU consists of two stacked 2X2 in. (approximately 5X5 cm) circuit boards: a Bus Interface Unit (BIU) board that provides data conversion, processing and connection to the SEM power-and-data bus, and a Sensor Interface Electronics (SIE) board that provides sensor interface needs and data path connection to the BIU.

  1. Spacelab data processing facility (SLDPF) quality assurance (QA)/data accounting (DA) expert systems - Transition from prototypes to operational systems

    NASA Technical Reports Server (NTRS)

    Basile, Lisa

    1988-01-01

    The SLDPF is responsible for the capture, quality monitoring processing, accounting, and shipment of Spacelab and/or Attached Shuttle Payloads (ASP) telemetry data to various user facilities. Expert systems will aid in the performance of the quality assurance and data accounting functions of the two SLDPF functional elements: the Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS). Prototypes were developed for each as independent efforts. The SIPS Knowledge System Prototype (KSP) used the commercial shell OPS5+ on an IBM PC/AT; the SOPS Expert System Prototype used the expert system shell CLIPS implemented on a Macintosh personal computer. Both prototypes emulate the duties of the respective QA/DA analysts based upon analyst input and predetermined mission criteria parameters, and recommended instructions and decisions governing the reprocessing, release, or holding for further analysis of data. These prototypes demonstrated feasibility and high potential for operational systems. Increase in productivity, decrease of tedium, consistency, concise historical records, and a training tool for new analyses were the principal advantages. An operational configuration, taking advantage of the SLDPF network capabilities, is under development with the expert systems being installed on SUN workstations. This new configuration in conjunction with the potential of the expert systems will enhance the efficiency, in both time and quality, of the SLDPF's release of Spacelab/AST data products.

  2. Spacelab data processing facility (SLDPF) Quality Assurance (QA)/Data Accounting (DA) expert systems: Transition from prototypes to operational systems

    NASA Technical Reports Server (NTRS)

    Basile, Lisa

    1988-01-01

    The SLDPF is responsible for the capture, quality monitoring processing, accounting, and shipment of Spacelab and/or Attached Shuttle Payloads (ASP) telemetry data to various user facilities. Expert systems will aid in the performance of the quality assurance and data accounting functions of the two SLDPF functional elements: the Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS). Prototypes were developed for each as independent efforts. The SIPS Knowledge System Prototype (KSP) used the commercial shell OPS5+ on an IBM PC/AT; the SOPS Expert System Prototype used the expert system shell CLIPS implemented on a Macintosh personal computer. Both prototypes emulate the duties of the respective QA/DA analysts based upon analyst input and predetermined mission criteria parameters, and recommended instructions and decisions governing the reprocessing, release, or holding for further analysis of data. These prototypes demonstrated feasibility and high potential for operational systems. Increase in productivity, decrease of tedium, consistency, concise historial records, and a training tool for new analyses were the principal advantages. An operational configuration, taking advantage of the SLDPF network capabilities, is under development with the expert systems being installed on SUN workstations. This new configuration in conjunction with the potential of the expert systems will enhance the efficiency, in both time and quality, of the SLDPF's release of Spacelab/AST data products.

  3. Development, Content Validity, and User Review of a Web-based Multidimensional Pain Diary for Adolescent and Young Adults With Sickle Cell Disease.

    PubMed

    Bakshi, Nitya; Stinson, Jennifer N; Ross, Diana; Lukombo, Ines; Mittal, Nonita; Joshi, Saumya V; Belfer, Inna; Krishnamurti, Lakshmanan

    2015-06-01

    Vaso-occlusive pain, the hallmark of sickle cell disease (SCD), is a major contributor to morbidity, poor health-related quality of life, and health care utilization associated with this disease. There is wide variation in the burden, frequency, and severity of pain experienced by patients with SCD. As compared with health care utilization for pain, a daily pain diary captures the breadth of the pain experience and is a superior measure of pain burden and its impact on patients. Electronic pain diaries based on real-time data capture methods overcome methodological barriers and limitations of paper pain diaries, but their psychometric properties have not been formally established in patients with SCD. To develop and establish the content validity of a web-based multidimensional pain diary for adolescents and young adults with SCD and conduct an end-user review to refine the prototype. Following identification of items, a conceptual model was developed. Interviews with adolescents and young adults with SCD were conducted. Subsequently, end-user review with use of the electronic pain diary prototype was conducted. Two iterative cycles of in-depth cognitive interviews in adolescents and young adults with SCD informed the design and guided the addition, removal, and modification of items in the multidimensional pain diary. Potential end-users provided positive feedback on the design and prototype of the electronic diary. A multidimensional web-based electronic pain diary for adolescents and young adults with SCD has been developed and content validity and initial end-user reviews have been completed.

  4. Software platform for simulation of a prototype proton CT scanner.

    PubMed

    Giacometti, Valentina; Bashkirov, Vladimir A; Piersimoni, Pierluigi; Guatelli, Susanna; Plautz, Tia E; Sadrozinski, Hartmut F-W; Johnson, Robert P; Zatserklyaniy, Andriy; Tessonnier, Thomas; Parodi, Katia; Rosenfeld, Anatoly B; Schulte, Reinhard W

    2017-03-01

    Proton computed tomography (pCT) is a promising imaging technique to substitute or at least complement x-ray CT for more accurate proton therapy treatment planning as it allows calculating directly proton relative stopping power from proton energy loss measurements. A proton CT scanner with a silicon-based particle tracking system and a five-stage scintillating energy detector has been completed. In parallel a modular software platform was developed to characterize the performance of the proposed pCT. The modular pCT software platform consists of (1) a Geant4-based simulation modeling the Loma Linda proton therapy beam line and the prototype proton CT scanner, (2) water equivalent path length (WEPL) calibration of the scintillating energy detector, and (3) image reconstruction algorithm for the reconstruction of the relative stopping power (RSP) of the scanned object. In this work, each component of the modular pCT software platform is described and validated with respect to experimental data and benchmarked against theoretical predictions. In particular, the RSP reconstruction was validated with both experimental scans, water column measurements, and theoretical calculations. The results show that the pCT software platform accurately reproduces the performance of the existing prototype pCT scanner with a RSP agreement between experimental and simulated values to better than 1.5%. The validated platform is a versatile tool for clinical proton CT performance and application studies in a virtual setting. The platform is flexible and can be modified to simulate not yet existing versions of pCT scanners and higher proton energies than those currently clinically available. © 2017 American Association of Physicists in Medicine.

  5. SANDS: an architecture for clinical decision support in a National Health Information Network.

    PubMed

    Wright, Adam; Sittig, Dean F

    2007-10-11

    A new architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support) is introduced and its performance evaluated. The architecture provides a method for performing clinical decision support across a network, as in a health information exchange. Using the prototype we demonstrated that, first, a number of useful types of decision support can be carried out using our architecture; and, second, that the architecture exhibits desirable reliability and performance characteristics.

  6. Report on Partial Findings of an Ongoing Research: Social Networking Sites (SNS) as a Platform to Support Teaching and Learning in Secondary Schools

    ERIC Educational Resources Information Center

    Bt. Ubaidullah, Nor Hasbiah; Samsuddin, Khairulanuar; Bt. Fabil, Norsikin; Bt. Mahadi, Norhayati

    2011-01-01

    This paper reports the partial findings of a survey that was carried out in the analysis phase of an ongoing research for the development of a prototype of a Social Networking Site (SNS) to support teaching and learning in secondary schools. For the initial phase of the study, a quantitative research method was used based on a survey involving 383…

  7. Validation of a station-prototype designed to integrate temporally soil N2O fluxes: IPNOA Station prototype.

    NASA Astrophysics Data System (ADS)

    Laville, Patricia; Volpi, Iride; Bosco, Simona; Virgili, Giorgio; Neri, Simone; Continanza, Davide; Bonari, Enrico

    2016-04-01

    Nitrous oxide (N2O) flux measurements from agricultural soil surface still accounts for the scientific community as major challenge. The evaluations of integrated soil N2O fluxes are difficult because these emissions are lower than for the other greenhouse gases sources (CO2, CH4). They are also sporadic, because highly dependent on few environmental conditions acting as limiting factors. Within a LIFE project (IPNOA: LIFE11 ENV/IT/00032) a station prototype was developed to integrate annually N2O and CO2 emissions using automatically chamber technique. Main challenge was to develop a device enough durable to be able of measuring in continuous way CO2 and N2O fluxes with sufficient sensitivity to allow make reliable assessments of soil GHG measurements with minimal technical field interventions. The IPNOA station prototype was developed by West System SRL and was set up during 2 years (2014 -2015) in an experimental maize field in Tuscan. The prototype involved six automatic chambers; the complete measurement cycle was of 2 hours. Each chamber was closing during 20 min and biogas accumulations were monitoring in line with IR spectrometers. Auxiliary's measurements including soil temperatures and water contents as weather data were also monitoring. All data were managed remotely with the same acquisition software installed in the prototype control unit. The operation of the prototype during the two cropping years allowed testing its major features: its ability to evaluate the temporal variation of N2O soil fluxes during a long period with weather conditions and agricultural managements and to prove the interest to have continuous measurements of fluxes. The temporal distribution of N2O fluxes indicated that emissions can be very large and discontinuous over short periods less ten days and that during about 70% of the time N2O fluxes were around detection limit of the instrumentation, evaluated to 2 ng N ha-1 day-1. N2O emission factor assessments were 1.9% in 2014 and 1.7 % in 2015, in the range of IPCC ones. The instrumentation was working almost permanently during these two years. The proximity sensors fitted on the chambers allowed showing that the chambers were functioning normally for about 90% of the time. A cross-comparison carried out in September 2015 with the "mobile IPNOA prototype"; a high-sensibility transportable instrument (previously validated), allowed showing a good agreement between the 2 instrumentations.

  8. Biomechanical investigation of prolonged driving in an ergonomically designed truck seat prototype.

    PubMed

    Cardoso, Michelle; McKinnon, Colin; Viggiani, Dan; Johnson, Michel J; Callaghan, Jack P; Albert, Wayne J

    2018-03-01

    A postural evaluation during a prolonged driving task was conducted to determine the ergonomic validity of a new freely adjustable truck seat prototype. Twenty participants were recruited to perform two 2-h simulated driving sessions. Postures were assessed using motion capture, accelerometers and pressure pads. Subjective discomfort was also monitored in 15-min increments using ratings of perceived discomfort (RPD) and the Automotive Seating Discomfort Questionnaire. Participants had a more neutral spine posture during the first hour of the drive and reported lower RPDs while sitting in the prototype. Pairing the gluteal backrest panel with the adjustable seat pan helped reduce the average sitting pressure. The industry-standard truck seat may lead to the development of poor whole body posture, and the proposed ergonomic redesign of a new truck seat helped improve sitting posture and reduce perceived discomfort. Practitioner Summary: A new freely adjustable truck seat prototype was compared to an Industry standard seat to assess hypothesised improvements to sitting posture and discomfort for long haul driving. It was found that the adjustable panels in the prototype helped promote spine posture, reduce sitting pressure and improved discomfort ratings.

  9. Real-time application of knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Brumbaugh, Randal W.; Duke, Eugene L.

    1989-01-01

    The Rapid Prototyping Facility (RPF) was developed to meet a need for a facility which allows flight systems concepts to be prototyped in a manner which allows for real-time flight test experience with a prototype system. This need was focused during the development and demonstration of the expert system flight status monitor (ESFSM). The ESFSM was a prototype system developed on a LISP machine, but lack of a method for progressive testing and problem identification led to an impractical system. The RPF concept was developed, and the ATMS designed to exercise its capabilities. The ATMS Phase 1 demonstration provided a practical vehicle for testing the RPF, as well as a useful tool. ATMS Phase 2 development continues. A dedicated F-18 is expected to be assigned for facility use in late 1988, with RAV modifications. A knowledge-based autopilot is being developed using the RPF. This is a system which provides elementary autopilot functions and is intended as a vehicle for testing expert system verification and validation methods. An expert system propulsion monitor is being prototyped. This system provides real-time assistance to an engineer monitoring a propulsion system during a flight.

  10. A heuristic neural network initialization scheme for modeling nonlinear functions in engineering mechanics: continuous development

    NASA Astrophysics Data System (ADS)

    Pei, Jin-Song; Mai, Eric C.

    2007-04-01

    This paper introduces a continuous effort towards the development of a heuristic initialization methodology for constructing multilayer feedforward neural networks to model nonlinear functions. In this and previous studies that this work is built upon, including the one presented at SPIE 2006, the authors do not presume to provide a universal method to approximate arbitrary functions, rather the focus is given to the development of a rational and unambiguous initialization procedure that applies to the approximation of nonlinear functions in the specific domain of engineering mechanics. The applications of this exploratory work can be numerous including those associated with potential correlation and interpretation of the inner workings of neural networks, such as damage detection. The goal of this study is fulfilled by utilizing the governing physics and mathematics of nonlinear functions and the strength of the sigmoidal basis function. A step-by-step graphical procedure utilizing a few neural network prototypes as "templates" to approximate commonly seen memoryless nonlinear functions of one or two variables is further developed in this study. Decomposition of complex nonlinear functions into a summation of some simpler nonlinear functions is utilized to exploit this prototype-based initialization methodology. Training examples are presented to demonstrate the rationality and effciency of the proposed methodology when compared with the popular Nguyen-Widrow initialization algorithm. Future work is also identfied.

  11. Smith-Putnam wind turbine experiment

    NASA Technical Reports Server (NTRS)

    Smith, B. E.

    1973-01-01

    A brief outline of the many problems encountered during testing of a wind turbine generator prototype unit is given. Its feasibility was demonstrated by the generation of electricity in commercial quantities with delivery to a utility transmission network. The experiment was terminated after blade failure occurred.

  12. A Computer-Aided Abstracting Tool Kit.

    ERIC Educational Resources Information Center

    Craven, Timothy C.

    1993-01-01

    Reports on the development of a prototype computerized abstractor's assistant called TEXNET, a text network management system. Features of the system discussed include semantic dependency links; displays of text structure; basic text editing; extracting; weighting methods; and listings of frequent words. (Contains 25 references.) (LRW)

  13. SIMULATING FISH ASSEMBLAGE DYNAMICS IN RIVER NETWORKS

    EPA Science Inventory

    My recently retired colleague, Joan Baker, and I have developed a prototype computer simulation model for studying the effects of human and non-human alterations of habitats and species availability on fish assemblage populations. The fish assemblage model, written in R, is a sp...

  14. SU-C-209-05: Monte Carlo Model of a Prototype Backscatter X-Ray (BSX) Imager for Projective and Selective Object-Plane Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolison, L; Samant, S; Baciak, J

    Purpose: To develop a Monte Carlo N-Particle (MCNP) model for the validation of a prototype backscatter x-ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object-plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x-ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection inmore » industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x-ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x-ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object-plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material is based upon work supported under an Integrated University Program Graduate Fellowship sponsored by the Department of Energy Office of Nuclear Energy.« less

  15. The Measurement of Aerosol Optical Properties using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, Rene; Owano, Thomas; Baer, Douglas S.; Paldus, Barbara A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in situ measurements of extinction coefficient and single-scattering albedo. This paper describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5 M/m). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  16. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  17. Usefulness of temporal bone prototype for drilling training: A prospective study.

    PubMed

    Aussedat, C; Venail, F; Nguyen, Y; Lescanne, E; Marx, M; Bakhos, D

    2017-12-01

    Dissection of cadaveric temporal bones (TBs) is considered the gold standard for surgical training in otology. For many reasons, access to the anatomical laboratory and cadaveric TBs is difficult for some facilities. The aim of this prospective and comparative study was to evaluate the usefulness of a physical TB prototype for drilling training in residency. Prospective study. Tertiary referral centre. Thirty-four residents were included. Seventeen residents (mean age 26.7±1.6) drilled on only cadaveric TBs ("traditional" group), in the traditional training method, while seventeen residents (mean age 26.5±1.7) drilled first on a prototype and then on a cadaveric TB ("prototype" group). Drilling performance was assessed using a validated scale. Residents completed a mastoid image before and after each drilling to enable evaluation of mental representations of the mastoidectomy. No differences were observed between the groups with respect to age, drilling experience and level of residency. Regarding drilling performance, we found a significant difference across the groups, with a better score in the prototype group (P=.0007). For mental representation, the score was statistically improved (P=.0003) after drilling in both groups, suggesting that TB drilling improves the mental representation of the mastoidectomy whether prototype or cadaveric TB is used. The TB prototype improves the drilling performance and mental representation of the mastoidectomy in the young resident population. A drilling simulation with virtual or physical systems seems to be a beneficial tool to improve TB drilling. © 2017 John Wiley & Sons Ltd.

  18. SP-100 GES/NAT radiation shielding systems design and development testing

    NASA Astrophysics Data System (ADS)

    Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank

    1991-01-01

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.

  19. Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning

    NASA Astrophysics Data System (ADS)

    Sherwood, R.; Mutz, D.; Estlin, T.; Chien, S.; Backes, P.; Norris, J.; Tran, D.; Cooper, B.; Rabideau, G.; Mishkin, A.; Maxwell, S.

    2001-07-01

    This article discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from high-level science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This artificial intelligence (AI)-based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules. An automated planning and scheduling system encodes rover design knowledge and uses search and reasoning techniques to automatically generate low-level command sequences while respecting rover operability constraints, science and engineering preferences, environmental predictions, and also adhering to hard temporal constraints. This prototype planning system has been field-tested using the Rocky 7 rover at JPL and will be field-tested on more complex rovers to prove its effectiveness before transferring the technology to flight operations for an upcoming NASA mission. Enabling goal-driven commanding of planetary rovers greatly reduces the requirements for highly skilled rover engineering personnel. This in turn greatly reduces mission operations costs. In addition, goal-driven commanding permits a faster response to changes in rover state (e.g., faults) or science discoveries by removing the time-consuming manual sequence validation process, allowing rapid "what-if" analyses, and thus reducing overall cycle times.

  20. Implementation and Validation of 3-D Ice Accretion Measurement Methodology

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy P.; Kreeger, Richard E.; Potapczuk, Mark; Utt, Lloyd

    2014-01-01

    A research program has been implemented to develop and validate the use of a commercial 3-D laser scanning system to record ice accretion geometry in the NASA Icing Research Tunnel. A main component of the program was the geometric assessment of the 3- D laser scanning system on a 2-D (straight wing) and a 3-D (swept wing) airfoil geometries. This exercise consisted of comparison of scanned ice accretion to castings of the same ice accretion. The scan data were also used to create rapid prototype artificial ice shapes that were scanned and compared to the original ice accretion. The results from geometric comparisons on the straight wing showed that the ice shape models generated through the scan/rapid prototype process compared reasonably well with the cast shapes. Similar results were obtained with the geometric comparisons on the swept wing. It was difficult to precisely compare the scans of the cast shapes to the original ice accretion scans because the cast shapes appear to have shrunk during the mold/casting process by as much as 0.10-inch. However the comparison of the local ice-shape features were possible and produced better results. The rapid prototype manufacturing process was shown to reproduce the original ice accretion scan normally within 0.01-inch.

  1. Modeling, construction and experimental validation of actuated rolling dynamics of the cylindrical Transforming Roving-Rolling Explorer (TRREx)

    NASA Astrophysics Data System (ADS)

    Edwin, L.; Mazzoleni, A.; Gemmer, T.; Ferguson, S.

    2017-03-01

    Planetary surface exploration technology over the past few years has seen significant advancements on multiple fronts. Robotic exploration platforms are becoming more sophisticated and capable of embarking on more challenging missions. More unconventional designs, particularly transforming architectures that have multiple modes of locomotion, are being studied. This work explores the capabilities of one such novel transforming rover called the Transforming Roving-Rolling Explorer (TRREx). Biologically inspired by the armadillo and the golden-wheel spider, the TRREx has two modes of locomotion: it can traverse on six wheels like a conventional rover on benign terrain, but can transform into a sphere when necessary to negotiate steep rugged slopes. The ability to self-propel in the spherical configuration, even in the absence of a negative gradient, increases the TRREx's versatility and its concept value. This paper describes construction and testing of a prototype cylindrical TRREx that demonstrates that "actuated rolling" can be achieved, and also presents a dynamic model of this prototype version of the TRREx that can be used to investigate the feasibility and value of such self-propelled locomotion. Finally, we present results that validate our dynamic model by comparing results from computer simulations made using the dynamic model to experimental results acquired from test runs using the prototype.

  2. Infusion of innovative technologies for mission operations

    NASA Astrophysics Data System (ADS)

    Donati, Alessandro

    2010-11-01

    The Advanced Mission Concepts and Technologies Office (Mission Technologies Office, MTO for short) at the European Space Operations Centre (ESOC) of ESA is entrusted with research and development of innovative mission operations concepts systems and provides operations support to special projects. Visions of future missions and requests for improvements from currently flying missions are the two major sources of inspiration to conceptualize innovative or improved mission operations processes. They include monitoring and diagnostics, planning and scheduling, resource management and optimization. The newly identified operations concepts are then proved by means of prototypes, built with embedded, enabling technology and deployed as shadow applications in mission operations for an extended validation phase. The technology so far exploited includes informatics, artificial intelligence and operational research branches. Recent outstanding results include artificial intelligence planning and scheduling applications for Mars Express, advanced integrated space weather monitoring system for the Integral space telescope and a suite of growing client applications for MUST (Mission Utilities Support Tools). The research, development and validation activities at the Mission technologies office are performed together with a network of research institutes across Europe. The objective is narrowing the gap between enabling and innovative technology and space mission operations. The paper first addresses samples of technology infusion cases with their lessons learnt. The second part is focused on the process and the methodology used at the Mission technologies office to fulfill its objectives.

  3. A Multi-Center Space Data System Prototype Based on CCSDS Standards

    NASA Technical Reports Server (NTRS)

    Rich, Thomas M.

    2016-01-01

    Deep space missions beyond earth orbit will require new methods of data communications in order to compensate for increasing Radio Frequency (RF) propagation delay. The Consultative Committee for Space Data Systems (CCSDS) standard protocols Spacecraft Monitor & Control (SM&C), Asynchronous Message Service (AMS), and Delay/Disruption Tolerant Networking (DTN) provide such a method. However, the maturity level of this protocol stack is insufficient for mission inclusion at this time. This Space Data System prototype is intended to provide experience which will raise the Technical Readiness Level (TRL) of this protocol set. In order to reduce costs, future missions can take advantage of these standard protocols, which will result in increased interoperability between control centers. This prototype demonstrates these capabilities by implementing a realistic space data system in which telemetry is published to control center applications at the Jet Propulsion Lab (JPL), the Marshall Space Flight Center (MSFC), and the Johnson Space Center (JSC). Reverse publishing paths for commanding from each control center are also implemented. The target vehicle consists of realistic flight computer hardware running Core Flight Software (CFS) in the integrated Power, Avionics, and Power (iPAS) Pathfinder Lab at JSC. This prototype demonstrates a potential upgrade path for future Deep Space Network (DSN) modification, in which the automatic error recovery and communication gap compensation capabilities of DTN would be exploited. In addition, SM&C provides architectural flexibility by allowing new service providers and consumers to be added efficiently anywhere in the network using the common interface provided by SM&C's Message Abstraction Layer (MAL). In FY 2015, this space data system was enhanced by adding telerobotic operations capability provided by the Robot API Delegate (RAPID) family of protocols developed at NASA. RAPID is one of several candidates for consideration and inclusion in a new international standard being developed by the CCSDS Telerobotic Operations Working Group. Software gateways for the purpose of interfacing RAPID messages with the existing SM&C based infrastructure were developed. Telerobotic monitor, control, and bridge applications were written in the RAPID framework, which were then tailored to the NAO telerobotic test article hardware, a product of Aldebaran Robotics.

  4. Satellite image analysis using neural networks

    NASA Technical Reports Server (NTRS)

    Sheldon, Roger A.

    1990-01-01

    The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.

  5. Evolution of the social network of scientific collaborations

    NASA Astrophysics Data System (ADS)

    Barabasi, Albert-Laszlo; Jeong, Hawoong; Neda, Zoltan; Ravasz, Erzsebet; Schubert, Andras; Vicsek, Tamas

    2002-03-01

    The co-authorship network of scientists represents a prototype of complex evolving networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an eight-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically.

  6. Wireless Sensor Networks for Developmental and Flight Instrumentation

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Figueroa, Fernando; Becker, Jeffrey; Foster, Mark; Wang, Ray; Gamudevelli, Suman; Studor, George

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network and ZigBee Pro 2007 standards are finding increasing use in home automation and smart energy markets providing a framework for interoperable software. The Wireless Connections in Space Project, funded by the NASA Engineering and Safety Center, is developing technology, metrics and requirements for next-generation spacecraft avionics incorporating wireless data transport. The team from Stennis Space Center and Mobitrum Corporation, working under a NASA SBIR grant, has developed techniques for embedding plug-and-play software into ZigBee WSN prototypes implementing the IEEE 1451 Transducer Electronic Datasheet (TEDS) standard. The TEDS provides meta-information regarding sensors such as serial number, calibration curve and operational status. Incorporation of TEDS into wireless sensors leads directly to building application level software that can recognize sensors at run-time, dynamically instantiating sensors as they are added or removed. The Ames Research Center team has been experimenting with this technology building demonstration prototypes for on-board health monitoring. Innovations in technology, software and process can lead to dramatic improvements for managing sensor systems applied to Developmental and Flight Instrumentation (DFI) aboard aerospace vehicles. A brief overview of the plug-and-play ZigBee WSN technology is presented along with specific targets for application within the aerospace DFI market. The software architecture for the sensor nodes incorporating the TEDS information is described along with the functions of the Network Capable Gateway processor which bridges 802.15.4 PAN to the TCP/IP network. Client application software connects to the Gateway and is used to display TEDS information and real-time sensor data values updated every few seconds, incorporating error detection and logging to help measure performance and reliability in relevant target environments. Test results from our prototype WSN running the Mobitrum software system are summarized and the implications to the scalability and reliability for DFI applications are discussed. Our demonstration system, incorporating sensors for life support system and structural health monitoring is described along with test results obtained by running the demonstration prototype in relevant environments such as the Wireless Habitat Testbed at Johnson Space Center in Houston. An operations concept for improved sensor process flow from design to flight test is outlined specific to the areas of Environmental Control and Life Support System performance characterization and structural health monitoring of human-rated spacecraft. This operations concept will be used to highlight the areas where WSN technology, particularly plug-and-play software based on IEEE 1451, can improve the current process, resulting in significant reductions in the technical effort, overall cost and schedule for providing DFI capability for future spacecraft. RELEASED -

  7. Construct and concurrent validity of a Nintendo Wii video game made for training basic laparoscopic skills.

    PubMed

    Jalink, M B; Goris, J; Heineman, E; Pierie, J P E N; ten Cate Hoedemaker, H O

    2014-02-01

    Virtual reality (VR) laparoscopic simulators have been around for more than 10 years and have proven to be cost- and time-effective in laparoscopic skills training. However, most simulators are, in our experience, considered less interesting by residents and are often poorly accessible. Consequently, these devices are rarely used in actual training. In an effort to make a low-cost and more attractive simulator, a custom-made Nintendo Wii game was developed. This game could ultimately be used to train the same basic skills as VR laparoscopic simulators ought to. Before such a video game can be implemented into a surgical training program, it has to be validated according to international standards. The main goal of this study was to test construct and concurrent validity of the controls of a prototype of the game. In this study, the basic laparoscopic skills of experts (surgeons, urologists, and gynecologists, n = 15) were compared to those of complete novices (internists, n = 15) using the Wii Laparoscopy (construct validity). Scores were also compared to the Fundamentals of Laparoscopy (FLS) Peg Transfer test, an already established assessment method for measuring basic laparoscopic skills (concurrent validity). Results showed that experts were 111 % faster (P = 0.001) on the Wii Laparoscopy task than novices. Also, scores of the FLS Peg Transfer test and the Wii Laparoscopy showed a significant, high correlation (r = 0.812, P < 0.001). The prototype setup of the Wii Laparoscopy possesses solid construct and concurrent validity.

  8. Comparison of Biophysical Characteristics and Predicted Thermophysiological Responses of Three Prototype Body Armor Systems Versus Baseline U.S. Army Body Armor Systems

    DTIC Science & Technology

    2015-06-19

    effective and scientifically valid method of making comparisons of clothing and equipment changes prior to conducting human research. predictive modeling...valid method of making comparisons of clothing and equipment changes prior to conducting human research. 2 INTRODUCTION Modern day...clothing and equipment changes prior to conducting human research. METHODS Ensembles Three different body armor (BA) plus clothing ensembles were

  9. Monitoring of physiological parameters from multiple patients using wireless sensor network.

    PubMed

    Yuce, Mehmet R; Ng, Peng Choong; Khan, Jamil Y

    2008-10-01

    This paper presents a wireless sensor network system that has the capability to monitor physiological parameters from multiple patient bodies. The system uses the Medical Implant Communication Service band between the sensor nodes and a remote central control unit (CCU) that behaves as a base station. The CCU communicates with another network standard (the internet or a mobile network) for a long distance data transfer. The proposed system offers mobility to patients and flexibility to medical staff to obtain patient's physiological data on demand basis via Internet. A prototype sensor network including hardware, firmware and software designs has been implemented and tested. The developed system has been optimized for power consumption by having the nodes sleep when there is no communication via a bidirectional communication.

  10. A novel cuffless device for self-measurement of blood pressure: concept, performance and clinical validation.

    PubMed

    Boubouchairopoulou, N; Kollias, A; Chiu, B; Chen, B; Lagou, S; Anestis, P; Stergiou, G S

    2017-07-01

    A pocket-size cuffless electronic device for self-measurement of blood pressure (BP) has been developed (Freescan, Maisense Inc., Zhubei, Taiwan). The device estimates BP within 10 s using three embedded electrodes and one force sensor that is applied over the radial pulse to evaluate the pulse wave. Before use, basic anthropometric characteristics are recorded on the device, and individualized initial calibration is required based on a standard BP measurement performed using an upper-arm BP monitor. The device performance in providing valid BP readings was evaluated in 313 normotensive and hypertensive adults in three study phases during which the device sensor was upgraded. A formal validation study of a prototype device against mercury sphygmomanometer was performed according to the American National Standards Institute/Association for the Advancement of Medical Instrumentation/International Organization for Standardization (ANSI/AAMI/ISO) 2013 protocol. The test device succeeded in obtaining a valid BP measurement (three successful readings within up to five attempts) in 55-72% of the participants, which reached 87% with device sensor upgrade. For the validation study, 125 adults were recruited and 85 met the protocol requirements for inclusion. The mean device-observers BP difference was 3.2±6.7 (s.d.) mm Hg for systolic and 2.6±4.6 mm Hg for diastolic BP (criterion 1). The estimated s.d. (inter-subject variability) were 5.83 and 4.17 mm Hg respectively (criterion 2). These data suggest that this prototype cuffless BP monitor provides valid self-measurements in the vast majority of adults, and satisfies the BP measurement accuracy criteria of the ANSI/AAMI/ISO 2013 validation protocol.

  11. The Buffer Diagnostic Prototype: A fault isolation application using CLIPS

    NASA Technical Reports Server (NTRS)

    Porter, Ken

    1994-01-01

    This paper describes problem domain characteristics and development experiences from using CLIPS 6.0 in a proof-of-concept troubleshooting application called the Buffer Diagnostic Prototype. The problem domain is a large digital communications subsystems called the real-time network (RTN), which was designed to upgrade the launch processing system used for shuttle support at KSC. The RTN enables up to 255 computers to share 50,000 data points with millisecond response times. The RTN's extensive built-in test capability but lack of any automatic fault isolation capability presents a unique opportunity for a diagnostic expert system application. The Buffer Diagnostic Prototype addresses RTN diagnosis with a multiple strategy approach. A novel technique called 'faulty causality' employs inexact qualitative models to process test results. Experimental knowledge provides a capability to recognize symptom-fault associations. The implementation utilizes rule-based and procedural programming techniques, including a goal-directed control structure and simple text-based generic user interface that may be reusable for other rapid prototyping applications. Although limited in scope, this project demonstrates a diagnostic approach that may be adapted to troubleshoot a broad range of equipment.

  12. Engineering Design of ITER Prototype Fast Plant System Controller

    NASA Astrophysics Data System (ADS)

    Goncalves, B.; Sousa, J.; Carvalho, B.; Rodrigues, A. P.; Correia, M.; Batista, A.; Vega, J.; Ruiz, M.; Lopez, J. M.; Rojo, R. Castro; Wallander, A.; Utzel, N.; Neto, A.; Alves, D.; Valcarcel, D.

    2011-08-01

    The ITER control, data access and communication (CODAC) design team identified the need for two types of plant systems. A slow control plant system is based on industrial automation technology with maximum sampling rates below 100 Hz, and a fast control plant system is based on embedded technology with higher sampling rates and more stringent real-time requirements than that required for slow controllers. The latter is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and, if necessary, high performance networks. Two prototypes of a fast plant system controller specialized for data acquisition and constrained by ITER technological choices are being built using two different form factors. This prototyping activity contributes to the Plant Control Design Handbook effort of standardization, specifically regarding fast controller characteristics. Envisaging a general purpose fast controller design, diagnostic use cases with specific requirements were analyzed and will be presented along with the interface with CODAC and sensors. The requirements and constraints that real-time plasma control imposes on the design were also taken into consideration. Functional specifications and technology neutral architecture, together with its implications on the engineering design, were considered. The detailed engineering design compliant with ITER standards was performed and will be discussed in detail. Emphasis will be given to the integration of the controller in the standard CODAC environment. Requirements for the EPICS IOC providing the interface to the outside world, the prototype decisions on form factor, real-time operating system, and high-performance networks will also be discussed, as well as the requirements for data streaming to CODAC for visualization and archiving.

  13. A data storage and retrieval model for Louisiana traffic operations data : technical summary.

    DOT National Transportation Integrated Search

    1996-08-01

    The overall goal of this research study was to develop a prototype computer-based indexing model for traffic operation data in DOTD. The methodology included: 1) extraction of state road network, 2) development of geographic reference model, 3) engin...

  14. Presentation of Repeated Phrases in a Computer-Assisted Abstracting Tool Kit.

    ERIC Educational Resources Information Center

    Craven, Timothy C.

    2001-01-01

    Discusses automatic indexing methods and describes the development of a prototype computerized abstractor's assistant. Highlights include the text network management system, TEXNET; phrase selection that follows indexing; phrase display, including Boolean capabilities; results of preliminary testing; and availability of TEXNET software. (LRW)

  15. Impacts assessment of dynamic speed harmonization with queue warning : task 3, impacts assessment report.

    DOT National Transportation Integrated Search

    2015-06-01

    This report assesses the impacts of a prototype of Dynamic Speed Harmonization (SPD-HARM) with Queue Warning (Q-WARN), which are two component applications of the Intelligent Network Flow Optimization (INFLO) bundle. The assessment is based on an ext...

  16. Archive interoperability in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Genova, Françoise

    2003-02-01

    Main goals of Virtual Observatory projects are to build interoperability between astronomical on-line services, observatory archives, databases and results published in journals, and to develop tools permitting the best scientific usage from the very large data sets stored in observatory archives and produced by large surveys. The different Virtual Observatory projects collaborate to define common exchange standards, which are the key for a truly International Virtual Observatory: for instance their first common milestone has been a standard allowing exchange of tabular data, called VOTable. The Interoperability Work Area of the European Astrophysical Virtual Observatory project aims at networking European archives, by building a prototype using the CDS VizieR and Aladin tools, and at defining basic rules to help archive providers in interoperability implementation. The prototype is accessible for scientific usage, to get user feedback (and science results!) at an early stage of the project. ISO archive participates very actively to this endeavour, and more generally to information networking. The on-going inclusion of the ISO log in SIMBAD will allow higher level links for users.

  17. Comparison of Oral Lichen Planus and Systemic Lupus Erythematosus in Interleukins Level.

    PubMed

    Agha-Hosseini, Farzaneh; Moosavi, Mahdieh-Sadat; Hajifaraj Tabrizi, Mina

    2015-10-01

    Lichen planus (LP) is a chronic inflammatory mucocutaneous disorder with unknown etiology. Systemic lupus erythematosus (SLE) is known as a prototypic autoimmune disease. Cytokines play a key role in the pathogenesis of both diseases. Various cytokines, such as interleukin 6 (IL-6), interleukin 10 (IL-10), interferon alpha (INF-a), and Tumor Necrosis Factor-alpha (TNF-a) can serve as biomarkers to predict SLE severity and monitor disease activity. In this review, we compare interleukins in oral lichen planus and lupus erythematosus as an autoimmune disease prototype. So, this review may provide insight for researchers in completing the cytokine network in OLP. Among the etiologic factors, the imbalance between Th-1 and Th-2 cytokine production plays an important role in the development of both diseases. By understanding cytokines and immunoregulatory networks of cytokines in these patients, appropriate treatment can be offered. There are many limitations in cytokine studies, which we have described in this article.

  18. Electronic Patient Reported Outcomes in Paediatric Oncology - Applying Mobile and Near Field Communication Technology.

    PubMed

    Duregger, Katharina; Hayn, Dieter; Nitzlnader, Michael; Kropf, Martin; Falgenhauer, Markus; Ladenstein, Ruth; Schreier, Günter

    2016-01-01

    Electronic Patient Reported Outcomes (ePRO) gathered using telemonitoring solutions might be a valuable source of information in rare cancer research. The objective of this paper was to develop a concept and implement a prototype for introducing ePRO into the existing neuroblastoma research network by applying Near Field Communication and mobile technology. For physicians, an application was developed for registering patients within the research network and providing patients with an ID card and a PIN for authentication when transmitting telemonitoring data to the Electronic Data Capture system OpenClinica. For patients, a previously developed telemonitoring system was extended by a Simple Object Access Protocol (SOAP) interface for transmitting nine different health parameters and toxicities. The concept was fully implemented on the front-end side. The developed application for physicians was prototypically implemented and the mobile application of the telemonitoring system was successfully connected to OpenClinica. Future work will focus on the implementation of the back-end features.

  19. Prototype test article verification of the Space Station Freedom active thermal control system microgravity performance

    NASA Technical Reports Server (NTRS)

    Chen, I. Y.; Ungar, E. K.; Lee, D. Y.; Beckstrom, P. S.

    1993-01-01

    To verify the on-orbit operation of the Space Station Freedom (SSF) two-phase external Active Thermal Control System (ATCS), a test and verification program will be performed prior to flight. The first system level test of the ATCS is the Prototype Test Article (PTA) test that will be performed in early 1994. All ATCS loops will be represented by prototypical components and the line sizes and lengths will be representative of the flight system. In this paper, the SSF ATCS and a portion of its verification process are described. The PTA design and the analytical methods that were used to quantify the gravity effects on PTA operation are detailed. Finally, the gravity effects are listed, and the applicability of the 1-g PTA test results to the validation of on-orbit ATCS operation is discussed.

  20. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

    1988-01-01

    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  1. Some Further Notes on the OCDQ

    ERIC Educational Resources Information Center

    Hoy, Wayne K.

    1972-01-01

    A validity study of the OCD Questionnaire instrument for assessing organizational climate in the schools concludes that (1) the prototypic profile is not useful, and (2) subtests of the OCDQ tap and measure important aspects of the organizational climate of secondary schools. (Author)

  2. Coral Reef Early Warning System (CREWS) RPC Experiment

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.; Hall, Callie

    2007-01-01

    This viewgraph document reviews the background, objectives, methodology, validation, and present status of the Coral Reef Early Warning System (CREWS) Rapid Prototyping Capability (RPC) experiment. The potential NASA contribution to CREWS Decision Support Tool (DST) centers on remotely sensed imagery products.

  3. First validation of the PASSPORT training environment for arthroscopic skills.

    PubMed

    Tuijthof, Gabriëlle J M; van Sterkenburg, Maayke N; Sierevelt, Inger N; van Oldenrijk, Jakob; Van Dijk, C Niek; Kerkhoffs, Gino M M J

    2010-02-01

    The demand for high quality care is in contrast to reduced training time for residents to develop arthroscopic skills. Thereto, simulators are introduced to train skills away from the operating room. In our clinic, a physical simulation environment to Practice Arthroscopic Surgical Skills for Perfect Operative Real-life Treatment (PASSPORT) is being developed. The PASSPORT concept consists of maintaining the normal arthroscopic equipment, replacing the human knee joint by a phantom, and integrating registration devices to provide performance feedback. The first prototype of the knee phantom allows inspection, treatment of menisci, irrigation, and limb stressing. PASSPORT was evaluated for face and construct validity. Construct validity was assessed by measuring the performance of two groups with different levels of arthroscopic experience (20 surgeons and 8 residents). Participants performed a navigation task five times on PASSPORT. Task times were recorded. Face validity was assessed by completion of a short questionnaire on the participants' impressions and comments for improvements. Construct validity was demonstrated as the surgeons (median task time 19.7 s [8.0-37.6]) were more efficient than the residents (55.2 s [27.9-96.6]) in task completion for each repetition (Mann-Whitney U test, P < 0.05). The prototype of the knee phantom sufficiently imitated limb outer appearance (79%), portal resistance (82%), and arthroscopic view (81%). Improvements are required for the stressing device and the material of cruciate ligaments. Our physical simulation environment (PASSPORT) demonstrates its potential to evolve as a training modality. In future, automated performance feedback is aimed for.

  4. An experimentally validated network of nine haematopoietic transcription factors reveals mechanisms of cell state stability

    PubMed Central

    Schütte, Judith; Wang, Huange; Antoniou, Stella; Jarratt, Andrew; Wilson, Nicola K; Riepsaame, Joey; Calero-Nieto, Fernando J; Moignard, Victoria; Basilico, Silvia; Kinston, Sarah J; Hannah, Rebecca L; Chan, Mun Chiang; Nürnberg, Sylvia T; Ouwehand, Willem H; Bonzanni, Nicola; de Bruijn, Marella FTR; Göttgens, Berthold

    2016-01-01

    Transcription factor (TF) networks determine cell-type identity by establishing and maintaining lineage-specific expression profiles, yet reconstruction of mammalian regulatory network models has been hampered by a lack of comprehensive functional validation of regulatory interactions. Here, we report comprehensive ChIP-Seq, transgenic and reporter gene experimental data that have allowed us to construct an experimentally validated regulatory network model for haematopoietic stem/progenitor cells (HSPCs). Model simulation coupled with subsequent experimental validation using single cell expression profiling revealed potential mechanisms for cell state stabilisation, and also how a leukaemogenic TF fusion protein perturbs key HSPC regulators. The approach presented here should help to improve our understanding of both normal physiological and disease processes. DOI: http://dx.doi.org/10.7554/eLife.11469.001 PMID:26901438

  5. iSAFT Protocol Validation Platform for On-Board Data Networks

    NASA Astrophysics Data System (ADS)

    Tavoularis, Antonis; Kollias, Vangelis; Marinis, Kostas

    2014-08-01

    iSAFT is an integrated powerful HW/SW environmentfor the simulation, validation & monitoring of satellite/spacecraft on-board data networks supporting simultaneously a wide range of protocols (RMAP, PTP, CCSDS Space Packet, TM/TC, CANopen, etc.) and network interfaces (SpaceWire, ECSS MIL-STD-1553, ECSS CAN). It is based on over 20 years of TELETEL's experience in the area of protocol validation in the telecommunications and aeronautical sectors, and it has been fully re-engineered in cooperation of TELETEL with ESA & space Primes, to comply with space on-board industrial validation requirements (ECSS, EGSE, AIT, AIV, etc.). iSAFT is highly modular and expandable to support new network interfaces & protocols and it is based on the powerful iSAFT graphical tool chain (Protocol Analyser / Recorder, TestRunner, Device Simulator, Traffic Generator, etc.).

  6. Analysis and Design of a Double-Divert Spiral Groove Seal

    NASA Technical Reports Server (NTRS)

    Zheng, Xiaoqing; Berard, Gerald

    2007-01-01

    This viewgraph presentation describes the design and analysis of a double spiral groove seal. The contents include: 1) Double Spiral Design Features; 2) Double Spiral Operational Features; 3) Mating Ring/Rotor Assembly; 4) Seal Ring Assembly; 5) Insert Segment Joints; 6) Rotor Assembly Completed Prototype Parts; 7) Seal Assembly Completed Prototype Parts; 8) Finite Element Analysis; 9) Computational Fluid Dynamics (CFD) Analysis; 10) Restrictive Orifice Design; 11) Orifice CFD Model; 12) Orifice Results; 13) Restrictive Orifice; 14) Seal Face Coning; 15) Permanent Magnet Analysis; 16) Magnetic Repulsive Force; 17) Magnetic Repulsive Test Results; 18) Spin Testing; and 19) Testing and Validation.

  7. Development of the prototype pneumatic transfer system for ITER neutron activation system.

    PubMed

    Cheon, M S; Seon, C R; Pak, S; Lee, H G; Bertalot, L

    2012-10-01

    The neutron activation system (NAS) measures neutron fluence at the first wall and the total neutron flux from the ITER plasma, providing evaluation of the fusion power for all operational phases. The pneumatic transfer system (PTS) is one of the key components of the NAS for the proper operation of the system, playing a role of transferring encapsulated samples between the capsule loading machine, irradiation stations, counting stations, and disposal bin. For the validation and the optimization of the design, a prototype of the PTS was developed and capsule transfer tests were performed with the developed system.

  8. Research on modeling and motion simulation of a spherical space robot with telescopic manipulator based on virtual prototype technology

    NASA Astrophysics Data System (ADS)

    Shi, Chengkun; Sun, Hanxu; Jia, Qingxuan; Zhao, Kailiang

    2009-05-01

    For realizing omni-directional movement and operating task of spherical space robot system, this paper describes an innovated prototype and analyzes dynamic characteristics of a spherical rolling robot with telescopic manipulator. Based on the Newton-Euler equations, the kinematics and dynamic equations of the spherical robot's motion are instructed detailedly. Then the motion simulations of the robot in different environments are developed with ADAMS. The simulation results validate the mathematics model of the system. And the dynamic model establishes theoretical basis for the latter job.

  9. Parental authority questionnaire.

    PubMed

    Buri, J R

    1991-08-01

    A questionnaire was developed for the purpose of measuring Baumrind's (1971) permissive, authoritarian, and authoritative parental authority prototypes. It consists of 30 items per parent and yields permissive, authoritarian, and authoritative scores for both the mother and the father; each of these scores is derived from the phenomenological appraisals of the parents' authority by their son or daughter. The results of several studies have supported the Parental Authority Questionnaire as a psychometrically sound and valid measure of Baumrind's parental authority prototypes, and they have suggested that this questionnaire has considerable potential as a valuable tool in the investigation of correlates of parental permissiveness, authoritarianism, and authoritativeness.

  10. Testing of the box transformer 10/04.4 kV in the network of the electricity supply company

    NASA Astrophysics Data System (ADS)

    Cichowski, R.; Nickling, G.

    1983-08-01

    Applications of a 10/0.4 kV box transformer are studied. Single phase and triple phase prototypes were tested in a distribution network. Test results show that heat loss, hence ground desiccation danger is eliminated by using lean concrete as bedding material (ratio of weight sand: cement: water = 19:1:2). Redistribution of no-load losses and winding losses reduces the total loss from 460 to 324 W, and improves the connection technique.

  11. Electronic health record - public health (EHR-PH) system prototype for interoperability in 21st century healthcare systems.

    PubMed

    Orlova, Anna O; Dunnagan, Mark; Finitzo, Terese; Higgins, Michael; Watkins, Todd; Tien, Allen; Beales, Steven

    2005-01-01

    Information exchange, enabled by computable interoperability, is the key to many of the initiatives underway including the development of Regional Health Information Exchanges, Regional Health Information Organizations, and the National Health Information Network. These initiatives must include public health as a full partner in the emerging transformation of our nation's healthcare system through the adoption and use of information technology. An electronic health record - public health (EHR-PH)system prototype was developed to demonstrate the feasibility of electronic data transfer from a health care provider, i.e. hospital or ambulatory care settings, to multiple customized public health systems which include a Newborn Metabolic Screening Registry, a Newborn Hearing Screening Registry, an Immunization Registry and a Communicable Disease Registry, using HL7 messaging standards. Our EHR-PH system prototype can be considered a distributed EHR-based RHIE/RHIO model - a principal element for a potential technical architecture for a NHIN.

  12. Progress and recent developments in the GAINS program

    NASA Astrophysics Data System (ADS)

    Girz, C. M. I. R.:; MacDonald, A. E.; Caracena, F.; Collander, R. S.; Jamison, B. D.; Anderson, R. L.; Latsch, D.; Lachenmeier, T.; Moody, R. A.; Mares, S.; Cooper, J.; Ganoe, G.; Katzberg, S.; Johnson, T.; Russ, B.

    2001-08-01

    The GAINS (Global Air-ocean IN-situ System) network of long-duration, high-altitude vehicles is proposed as a means to provide critically needed in-situ observations worldwide. This need is increasingly apparent, for example, in the Arctic where there is growing concern around the shrinking of the ice cap and sea ice extent with concomitant decreases in habitat for animal and plant species. In the mid-latitudes, the sustainability of sufficient soil moisture in grain producing regions is questionable under several climate change scenarios. Preparatory steps using smaller balloons and prototype payloads have been taken toward demonstrating the GAINS balloon concept. The balloon envelope recovery system (BERS) has been tested and radio frequency interference, compatibility and distance checks of the prototype command and communication systems were performed. Electronic and mechanical systems have been integrated in preparation for a 48-h flight of an 18-m diameter prototype.

  13. Combinatorial semantics strengthens angular-anterior temporal coupling.

    PubMed

    Molinaro, Nicola; Paz-Alonso, Pedro M; Duñabeitia, Jon Andoni; Carreiras, Manuel

    2015-04-01

    The human semantic combinatorial system allows us to create a wide number of new meanings from a finite number of existing representations. The present study investigates the neural dynamics underlying the semantic processing of different conceptual constructions based on predictions from previous neuroanatomical models of the semantic processing network. In two experiments, participants read sentences for comprehension containing noun-adjective pairs in three different conditions: prototypical (Redundant), nonsense (Anomalous) and low-typical but composable (Contrastive). In Experiment 1 we examined the processing costs associated to reading these sentences and found a processing dissociation between Anomalous and Contrastive word pairs, compared to prototypical (Redundant) stimuli. In Experiment 2, functional connectivity results showed strong co-activation across conditions between inferior frontal gyrus (IFG) and posterior middle temporal gyrus (MTG), as well as between these two regions and middle frontal gyrus (MFG), anterior temporal cortex (ATC) and fusiform gyrus (FG), consistent with previous neuroanatomical models. Importantly, processing of low-typical (but composable) meanings relative to prototypical and anomalous constructions was associated with a stronger positive coupling between ATC and angular gyrus (AG). Our results underscore the critical role of IFG-MTG co-activation during semantic processing and how other relevant nodes within the semantic processing network come into play to handle visual-orthographic information, to maintain multiple lexical-semantic representations in working memory and to combine existing representations while creatively constructing meaning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Can MODIS Data Calibrate and Validate Coastal Sediment Transport Models? Rapid Prototyping Using 250 m Data and the ECOMSED Model for Lake Pontchartrain, LA USA

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Georgiou, Ioannis; Glorioso, Mark V.; McCorquodale, J. Alex; Crowder, Keely

    2006-01-01

    Field measurements from small boats and sparse arrays of instrumented buoys often do not provide sufficient data to capture the dynamic nature of biogeophysical parameters in may coastal aquatic environments. Several investigators have shown the MODIS 250 m images can provide daily synoptic views of suspended sediment concentration in coastal waters to determine sediment transport and fate. However, the use of MODIS for coastal environments can be limited due to a lack of cloud-free images. Sediment transport models are not constrained by sky conditions but often suffer from a lack of in situ observations for model calibration or validation. We demonstrate here the utility of MODIS 250 m to calibrate (set model parameters), validate output, and set or reset initial conditions of a hydrodynamic and sediment transport model (ECOMSED) developed for Lake Pontchartrain, LA USA. We present our approach in the context of how to quickly assess of 'prototype' an application of NASA data to support environmental managers and decision makers. The combination of daily MODIS imagery and model simulations offer a more robust monitoring and prediction system of suspended sediments than available from either system alone.

  15. Human Factors and Technical Considerations for a Computerized Operator Support System Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrich, Thomas Anthony; Lew, Roger Thomas; Medema, Heather Dawne

    2015-09-01

    A prototype computerized operator support system (COSS) has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Departmentmore » of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment. A COSS demonstration scenario has been developed for the prototype involving the Chemical & Volume Control System (CVCS) of the PWR simulator. It involves a primary coolant leak outside of containment that would require tripping the reactor if not mitigated in a very short timeframe. The COSS prototype presents a series of operator screens that provide the needed information and soft controls to successfully mitigate the event.« less

  16. Reverse Engineering Validation using a Benchmark Synthetic Gene Circuit in Human Cells

    PubMed Central

    Kang, Taek; White, Jacob T.; Xie, Zhen; Benenson, Yaakov; Sontag, Eduardo; Bleris, Leonidas

    2013-01-01

    Multi-component biological networks are often understood incompletely, in large part due to the lack of reliable and robust methodologies for network reverse engineering and characterization. As a consequence, developing automated and rigorously validated methodologies for unraveling the complexity of biomolecular networks in human cells remains a central challenge to life scientists and engineers. Today, when it comes to experimental and analytical requirements, there exists a great deal of diversity in reverse engineering methods, which renders the independent validation and comparison of their predictive capabilities difficult. In this work we introduce an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network. PMID:23654266

  17. Reverse engineering validation using a benchmark synthetic gene circuit in human cells.

    PubMed

    Kang, Taek; White, Jacob T; Xie, Zhen; Benenson, Yaakov; Sontag, Eduardo; Bleris, Leonidas

    2013-05-17

    Multicomponent biological networks are often understood incompletely, in large part due to the lack of reliable and robust methodologies for network reverse engineering and characterization. As a consequence, developing automated and rigorously validated methodologies for unraveling the complexity of biomolecular networks in human cells remains a central challenge to life scientists and engineers. Today, when it comes to experimental and analytical requirements, there exists a great deal of diversity in reverse engineering methods, which renders the independent validation and comparison of their predictive capabilities difficult. In this work we introduce an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network.

  18. Using Social Network Methods to Study School Leadership

    ERIC Educational Resources Information Center

    Pitts, Virginia M.; Spillane, James P.

    2009-01-01

    Social network analysis is increasingly used in the study of policy implementation and school leadership. A key question that remains is that of instrument validity--that is, the question of whether these social network survey instruments measure what they purport to measure. In this paper, we describe our work to examine the validity of the…

  19. Information technology feasibility study for the Washington State commercial vehicle information systems and networks (CVISN) pilot project

    DOT National Transportation Integrated Search

    1998-01-08

    The CVISN Pilot Project will prototype the use of a comprehensive interface to state and federal motor carrier data systems and will deliver real-time, decision-making information to weigh stations and commercial vehicle enforcement officers. In addi...

  20. Development of a Zigbee platform for bioinstrumentation.

    PubMed

    Cifuentes, Carlos A; Gentiletti, Gabriel G; Suarez, Marco J; Rodriguez, Luis E

    2010-01-01

    This paper presents the development of a network platform which allows connecting multiple individual wireless devices for transmitting bioelectrics and biomechanics signals for application in a hospital network, or continuous monitoring in a patient's diary life. The Zigbee platform development proposal was made in three stages: 1) Hardware development, including the construction of a prototype network node and the integration of sensors, (2) Evaluation, in order to define the specifications of each node and scope of communication and (3) The Zigbee Network Implementation for bioinstrumentation based on ZigBee Health Care public application profile (ZHC). Finally, this work presents the experimental results based on measurements of Lost Packets and LQI (Link Quality Indicator), and the Zigbee Platform configuration for Bioinstrumentation in operation.

  1. Adjustable Nyquist-rate System for Single-Bit Sigma-Delta ADC with Alternative FIR Architecture

    NASA Astrophysics Data System (ADS)

    Frick, Vincent; Dadouche, Foudil; Berviller, Hervé

    2016-09-01

    This paper presents a new smart and compact system dedicated to control the output sampling frequency of an analogue-to-digital converters (ADC) based on single-bit sigma-delta (ΣΔ) modulator. This system dramatically improves the spectral analysis capabilities of power network analysers (power meters) by adjusting the ADC's sampling frequency to the input signal's fundamental frequency with a few parts per million accuracy. The trade-off between straightforwardness and performance that motivated the choice of the ADC's architecture are preliminary discussed. It particularly comes along with design considerations of an ultra-steep direct-form FIR that is optimised in terms of size and operating speed. Thanks to compact standard VHDL language description, the architecture of the proposed system is particularly suitable for application-specific integrated circuit (ASIC) implementation-oriented low-power and low-cost power meter applications. Field programmable gate array (FPGA) prototyping and experimental results validate the adjustable sampling frequency concept. They also show that the system can perform better in terms of implementation and power capabilities compared to dedicated IP resources.

  2. Development and coupling analysis of active skin antenna

    NASA Astrophysics Data System (ADS)

    Zhou, Jinzhu; Huang, Jin; He, Qingqang; Tang, Baofu; Song, Liwei

    2017-02-01

    An active skin antenna is a multifunctional composite structure that can provide load-bearing structure and steerable beam pointing functions, and is usually installed in the structural surface of aircraft, warships, and armored vehicles. This paper presents an innovative design of the active skin antenna, which consists of a package layer, control and signal processing layer, and RF (radio frequency) layer. The RF layer is fabricated by low temperature co-fired ceramics, with 64 microstrip antenna elements, tile transmitting and receiving modules, microchannel heat sinks, and feeding networks integrated into a functional block 2.8 mm thick. In this paper, a full-sized prototype of an active skin antenna was designed, fabricated, and tested. Moreover, a coupling analysis method was presented to evaluate the mechanical and electromagnetic performance of the active skin antenna subjected to aerodynamic loads. A deformed experimental system was built to validate the effectiveness of the coupling analysis method, which was also implemented to evaluate the performance of the active skin antenna when subjected to aerodynamic pressure. The fabricated specimen demonstrated structural configuration feasibility, and superior environmental load resistance.

  3. Active C4 Electrodes for Local Field Potential Recording Applications

    PubMed Central

    Wang, Lu; Freedman, David; Sahin, Mesut; Ünlü, M. Selim; Knepper, Ronald

    2016-01-01

    Extracellular neural recording, with multi-electrode arrays (MEAs), is a powerful method used to study neural function at the network level. However, in a high density array, it can be costly and time consuming to integrate the active circuit with the expensive electrodes. In this paper, we present a 4 mm × 4 mm neural recording integrated circuit (IC) chip, utilizing IBM C4 bumps as recording electrodes, which enable a seamless active chip and electrode integration. The IC chip was designed and fabricated in a 0.13 μm BiCMOS process for both in vitro and in vivo applications. It has an input-referred noise of 4.6 μVrms for the bandwidth of 10 Hz to 10 kHz and a power dissipation of 11.25 mW at 2.5 V, or 43.9 μW per input channel. This prototype is scalable for implementing larger number and higher density electrode arrays. To validate the functionality of the chip, electrical testing results and acute in vivo recordings from a rat barrel cortex are presented. PMID:26861324

  4. Automated 3D-Printed Unibody Immunoarray for Chemiluminescence Detection of Cancer Biomarker Proteins

    PubMed Central

    Tang, C. K.; Vaze, A.; Rusling, J. F.

    2017-01-01

    A low cost three-dimensional (3D) printed clear plastic microfluidic device was fabricated for fast, low cost automated protein detection. The unibody device features three reagent reservoirs, an efficient 3D network for passive mixing, and an optically transparent detection chamber housing a glass capture antibody array for measuring chemiluminescence output with a CCD camera. Sandwich type assays were built onto the glass arrays using a multi-labeled detection antibody-polyHRP (HRP = horseradish peroxidase). Total assay time was ~30 min in a complete automated assay employing a programmable syringe pump so that the protocol required minimal operator intervention. The device was used for multiplexed detection of prostate cancer biomarker proteins prostate specific antigen (PSA) and platelet factor 4 (PF-4). Detection limits of 0.5 pg mL−1 were achieved for these proteins in diluted serum with log dynamic ranges of four orders of magnitude. Good accuracy vs ELISA was validated by analyzing human serum samples. This prototype device holds good promise for further development as a point-of-care cancer diagnostics tool. PMID:28067370

  5. Coral Reef Remote Sensing Using Simulated VIIRS and LDCM Imagery

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.; Blonski, Slawomir; Moore, Roxzana

    2008-01-01

    The Rapid Prototyping Capability (RPC) node at NASA Stennis Space Center, MS, was used to simulate NASA next-generation sensor imagery over well-known coral reef areas: Looe Key, FL, and Kaneohe Bay, HI. The objective was to assess the degree to which next-generation sensor systems-the Visible/Infrared Imager/Radiometer Suite (VIIRS) and the Landsat Data Continuity Mission (LDCM)- might provide key input to the National Oceanographic and Atmospheric Administration (NOAA) Integrated Coral Observing Network (ICON)/Coral Reef Early Warning System (CREWS) Decision Support Tool (DST). The DST data layers produced from the simulated imagery concerned water quality and benthic classification map layers. The water optical parameters of interest were chlorophyll (Chl) and the absorption coefficient (a). The input imagery used by the RPC for simulation included spaceborne (Hyperion) and airborne (AVIRIS) hyperspectral data. Specific field data to complement and aid in validation of the overflight data was used when available. The results of the experiment show that the next-generation sensor systems are capable of providing valuable data layer resources to NOAA s ICON/CREWS DST.

  6. Coral Reef Remote Sensing using Simulated VIIRS and LDCM Imagery

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    The Rapid Prototyping Capability (RPC) node at NASA Stennis Space Center, MS, was used to simulate NASA next-generation sensor imagery over well-known coral reef areas: Looe Key, FL, and Kaneohe Bay, HI. The objective was to assess the degree to which next-generation sensor systems the Visible/Infrared Imager/Radiometer Suite (VIIRS) and the Landsat Data Continuity Mission (LDCM) might provide key input to the National Oceanographic and Atmospheric Administration (NOAA) Integrated Coral Observing Network (ICON)/Coral Reef Early Warning System (CREWS) Decision Support Tool (DST). The DST data layers produced from the simulated imagery concerned water quality and benthic classification map layers. The water optical parameters of interest were chlorophyll (Chl) and the absorption coefficient (a). The input imagery used by the RPC for simulation included spaceborne (Hyperion) and airborne (AVIRIS) hyperspectral data. Specific field data to complement and aid in validation of the overflight data was used when available. The results of the experiment show that the next-generation sensor systems are capable of providing valuable data layer resources to NOAA's ICON/CREWS DST.

  7. WDM PONs based on colorless technology

    NASA Astrophysics Data System (ADS)

    Saliou, Fabienne; Simon, Gael; Chanclou, Philippe; Pizzinat, Anna; Lin, Huafeng; Zhou, Enyu; Xu, Zhiguang

    2015-12-01

    Wavelength Division Multiplexing (WDM) Passive Optical Network (PON) is foreseen to be part of the Next Generation Passive Optical Networks. Business and mobile fronthaul networks already express the need to develop WDM PONs in the access segment. Fixed wavelength transceivers based on Coarse WDM are already available to respond to today's market needs but Dense WDM technologies will be needed and colorless technologies are essential to provide simple and cost-effective WDM PON systems. We propose in this paper to demonstrate the capabilities of a DWDM PON system prototype based on self-seeded RSOAs and designed to transmit CPRI over 60 km of fiber at 2.5 Gbit/s.

  8. Hardware implementation of an adaptive resonance theory (ART) neural network using compensated operational amplifiers

    NASA Astrophysics Data System (ADS)

    Ho, Ching S.; Liou, Juin J.; Georgiopoulos, Michael; Christodoulou, Christos G.

    1994-03-01

    This paper presents an analog circuit design and implementation for an adaptive resonance theory neural network architecture called the augmented ART1 neural network (AART1-NN). Practical monolithic operational amplifiers (Op-Amps) LM741 and LM318 are selected to implement the circuit, and a simple compensation scheme is developed to adjust the Op-Amp electrical characteristics to meet the design requirement. A 7-node prototype circuit has been designed and verified using the Pspice circuit simulator run on a Sun workstation. Results simulated from the AART1-NN circuit using the LM741, LM318, and ideal Op-Amps are presented and compared.

  9. Time Synchronization Prototype, Server Upgrade Procedure Support and Remote Software Development

    NASA Technical Reports Server (NTRS)

    Sanders, Shania R.

    2014-01-01

    Networks are roadways of communication that connect devices. Like all roadways, there are rules and regulations that govern whatever (information in this case) travels along them. One type of rule that is commonly used is called a protocol. More specifically, a protocol is a standard that specifies how data should be transmitted over a network. The project outlined in this document seeks to implement one protocol in particular, Precision Time Protocol, within the Kennedy Ground Control Subsystem network at Kennedy Space Center. This document also summarizes work completed for server upgrades, remote software developer training and how all three assignments demonstrated the importance of accountability and security.

  10. A feedforward artificial neural network based on quantum effect vector-matrix multipliers.

    PubMed

    Levy, H J; McGill, T C

    1993-01-01

    The vector-matrix multiplier is the engine of many artificial neural network implementations because it can simulate the way in which neurons collect weighted input signals from a dendritic arbor. A new technology for building analog weighting elements that is theoretically capable of densities and speeds far beyond anything that conventional VLSI in silicon could ever offer is presented. To illustrate the feasibility of such a technology, a small three-layer feedforward prototype network with five binary neurons and six tri-state synapses was built and used to perform all of the fundamental logic functions: XOR, AND, OR, and NOT.

  11. Prism-assembly for dual-band short-wave infrared region line-scan camera

    NASA Astrophysics Data System (ADS)

    Chassagne, Bruno; de Laulanié, Lucie; Pommiès, Matthieu

    2018-02-01

    A simple dichroic splitter for dual-band line scanning is described. It comprises prisms elements that enable cheapness of the whole prototype by using only one linear detector. Validity of the design is demonstrated via in-line moisture measurement.

  12. Optimization of Synthetic Jet Actuators

    DTIC Science & Technology

    2003-01-01

    Gallas et al.8 have experimentally validated the lumped element model for two different prototypical synthetic jet actuators using phase-locked Laser ...DNS of Microjets for Turbulent Boundary Layer Control,” AIAA paper 2001-1013, 2001. 8 7. Cattafesta, L., Garg, S., and Shukla, D

  13. Use of Bayesian Networks to Probabilistically Model and Improve the Likelihood of Validation of Microarray Findings by RT-PCR

    PubMed Central

    English, Sangeeta B.; Shih, Shou-Ching; Ramoni, Marco F.; Smith, Lois E.; Butte, Atul J.

    2014-01-01

    Though genome-wide technologies, such as microarrays, are widely used, data from these methods are considered noisy; there is still varied success in downstream biological validation. We report a method that increases the likelihood of successfully validating microarray findings using real time RT-PCR, including genes at low expression levels and with small differences. We use a Bayesian network to identify the most relevant sources of noise based on the successes and failures in validation for an initial set of selected genes, and then improve our subsequent selection of genes for validation based on eliminating these sources of noise. The network displays the significant sources of noise in an experiment, and scores the likelihood of validation for every gene. We show how the method can significantly increase validation success rates. In conclusion, in this study, we have successfully added a new automated step to determine the contributory sources of noise that determine successful or unsuccessful downstream biological validation. PMID:18790084

  14. Cascade Back-Propagation Learning in Neural Networks

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    2003-01-01

    The cascade back-propagation (CBP) algorithm is the basis of a conceptual design for accelerating learning in artificial neural networks. The neural networks would be implemented as analog very-large-scale integrated (VLSI) circuits, and circuits to implement the CBP algorithm would be fabricated on the same VLSI circuit chips with the neural networks. Heretofore, artificial neural networks have learned slowly because it has been necessary to train them via software, for lack of a good on-chip learning technique. The CBP algorithm is an on-chip technique that provides for continuous learning in real time. Artificial neural networks are trained by example: A network is presented with training inputs for which the correct outputs are known, and the algorithm strives to adjust the weights of synaptic connections in the network to make the actual outputs approach the correct outputs. The input data are generally divided into three parts. Two of the parts, called the "training" and "cross-validation" sets, respectively, must be such that the corresponding input/output pairs are known. During training, the cross-validation set enables verification of the status of the input-to-output transformation learned by the network to avoid over-learning. The third part of the data, termed the "test" set, consists of the inputs that are required to be transformed into outputs; this set may or may not include the training set and/or the cross-validation set. Proposed neural-network circuitry for on-chip learning would be divided into two distinct networks; one for training and one for validation. Both networks would share the same synaptic weights.

  15. A DBMS-based medical teleconferencing system.

    PubMed

    Chun, J; Kim, H; Lee, S; Choi, J; Cho, H

    2001-01-01

    This article presents the design of a medical teleconferencing system that is integrated with a multimedia patient database and incorporates easy-to-use tools and functions to effectively support collaborative work between physicians in remote locations. The design provides a virtual workspace that allows physicians to collectively view various kinds of patient data. By integrating the teleconferencing function into this workspace, physicians are able to conduct conferences using the same interface and have real-time access to the database during conference sessions. The authors have implemented a prototype based on this design. The prototype uses a high-speed network test bed and a manually created substitute for the integrated patient database.

  16. A DBMS-based Medical Teleconferencing System

    PubMed Central

    Chun, Jonghoon; Kim, Hanjoon; Lee, Sang-goo; Choi, Jinwook; Cho, Hanik

    2001-01-01

    This article presents the design of a medical teleconferencing system that is integrated with a multimedia patient database and incorporates easy-to-use tools and functions to effectively support collaborative work between physicians in remote locations. The design provides a virtual workspace that allows physicians to collectively view various kinds of patient data. By integrating the teleconferencing function into this workspace, physicians are able to conduct conferences using the same interface and have real-time access to the database during conference sessions. The authors have implemented a prototype based on this design. The prototype uses a high-speed network test bed and a manually created substitute for the integrated patient database. PMID:11522766

  17. Mining for Data

    NASA Technical Reports Server (NTRS)

    1998-01-01

    AbTech Corporation used an F-18 HARV (High Alpha Research Vehicle) simulation developed by NASA to create an interactive computer-based prototype of the MQ (Model Quest) SV (System Validator) tool. Dryden Flight Research Center provided support to develop, test, and rapidly reprogram the validation function. AbTech's ModelQuest Enterprises highly automated and outperforms other modeling techniques to quickly discover meaningful relationships, patterns, and trends in databases. Applications include technical and business professionals in finance, marketing, business, banking, retail, healthcare, and aerospace.

  18. Study on hydraulic characteristics of mine dust-proof water supply network

    NASA Astrophysics Data System (ADS)

    Deng, Quanlong; Jiang, Zhongan; Han, Shuo; Fu, Enqi

    2018-01-01

    In order to study the hydraulic characteristics of mine dust-proof water supply network and obtain the change rule of water consumption and water pressure, according to the similarity principle and the fluid continuity equation and energy equation, the similarity criterion of mine dust-proof water supply network is deduced, and a similar model of dust-proof water supply network is established based on the prototype of Kailuan Group, the characteristics of hydraulic parameters in water supply network are studied experimentally. The results show that water pressure at each point is a dynamic process, and there is a negative correlation between water pressure and water consumption. With the increase of water consumption, the pressure of water points show a decreasing trend. According to the structure of the pipe network and the location of the water point, the influence degree on the pressure of each point is different.

  19. Characterization of thermal-hydraulic and ignition phenomena in prototypic, full-length boiling water reactor spent fuel pool assemblies after a complete loss-of-coolant accident.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindgren, Eric Richard; Durbin, Samuel G

    2007-04-01

    The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program providedmore » data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.« less

  20. REBCO tape performance under high magnetic field

    NASA Astrophysics Data System (ADS)

    Benkel, Tara; Miyoshi, Yasuyuki; Chaud, Xavier; Badel, Arnaud; Tixador, Pascal

    2017-08-01

    New improvements in high temperature superconductors (HTS) make them a promising candidate for building the next generation of high field magnets. As the conductors became recently available in long length, new projects such as NOUGAT (new magnet generation to generate Tesla at low cost) were started. This project aims at designing and building an HTS magnet prototype generating 10 T inside a 20 T resistive magnet. In this configuration, severe mechanical stress is applied on the insert and its extremities are subject to a high transverse component of the field. Because the conductor has anisotropic properties, it has to be studied carefully under similar conditions as the final prototype. First, this paper presents both the NOUGAT project and its context. Then, it shows the experimental results on short HTS tapes studied under high magnetic field up to 23 T with varying orientation. These results allow validating the current margin of the prototype. Finally, a first wound prototype is presented with experimental results up to 200 A under 16 T. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

Top