Sample records for vallecitos boiling water

  1. A water-quality monitoring network for Vallecitos Valley, Alameda County, California

    USGS Publications Warehouse

    Farrar, C.D.

    1980-01-01

    A water-quality monitoring network is proposed to detect the presence of and trace the movement of radioisotopes in the hydrologic system in the vicinity of the Vallecitos Nuclear Center. The source of the radioisotopes is treated industrial wastewater from the Vallecitos Nuclear Center that is discharged into an unnamed tributary of Vallecitos Creek. The effluent infiltrates the alluvium along the stream course, percolates downward to the water table, and mixes with the native ground water in the subsurface. The average daily discharge of effluent to the hydrologic system in 1978 was about 100,000 gallons. In Vallecitos Valley, the Livermore Gravel and the overlying alluvium constitute the ground-water reservoir. There is no subsurface inflow from adjacent ground-water basins. Ground-water flow in the Vallecitos subbasin is toward the southwest.The proposed network consists of four surface-water sampling sites and six wells to sample the ground-water system. Samples collected monthly at each site and analyzed for tritium and for alpha, beta, and gamma radiation would provide adequate data for monitoring.

  2. Water-Quality Data Collected from Vallecito Reservoir, Its Inflows and Outflow, Southwestern Colorado, 1999-2002

    USGS Publications Warehouse

    Ranalli, Anthony J.

    2008-01-01

    The Pine River Watershed Stakeholders Group was created in December 1997 to allow local participation in addressing water-quality issues in Los Pi?os River watershed, including Vallecito Reservoir in southwestern Colorado. One water-quality issue identified by the stakeholder group is to increase the understanding of the current water quality of Vallecito Reservoir, its two major inflows, and its outflow. The U.S. Geological Survey (USGS), in cooperation with volunteers from the Pine River Watershed Stakeholders Group and the U.S. Environmental Protection Agency (USEPA), U.S. Bureau of Reclamation (BOR), Colorado Department of Public Health and Environment (CDPHE), Pine River Irrigation District, Southern Ute Tribe, San Juan Basin Health Department, and San Juan Resource Conservation and Development, collected water-quality samples from Vallecito Reservoir, its two major inflows, and its outflow between August 1999 and November 2002 at about monthly intervals from April through November. The water-quality samples were analyzed for total and dissolved metals (aluminum, arsenic, cadmium, copper, chromium, iron, lead, manganese, mercury, nickel, silver, and zinc), dissolved major ions (calcium, magnesium, sodium, potassium, chloride, bicarbonate, and sulfate), dissolved silica, dissolved organic carbon (DOC), ultraviolet (UV) absorbance at 254 and 280 nanometers, nutrients (total organic nitrogen, dissolved organic nitrogen, dissolved ammonia, dissolved nitrate, total phosphorus, dissolved phosphorus, and orthophosphate), chlorophyll-a (reservoir only), and suspended sediment (inlets to the reservoir only). Measurements of field properties (pH, specific conductance, water temperature, and dissolved oxygen) were also made at each sampling site each time a water-quality sample was collected. This report documents (1) sampling sites and times of sample collection, (2) sample-collection methods, (3) laboratory analytical methods, and (4) responsibilities of each agency

  3. Vallecito Middle School's Educational Television.

    ERIC Educational Resources Information Center

    Dixie Elementary School District, San Rafael, CA.

    Vallecito Middle School in San Rafael (California) has been using video production techniques since 1981, and the staff has observed many positive changes in learning, attitudes, and behavior resulting from the use of television. Videotaping has facilitated learning in science, physical education, English, and social studies classes. Guest experts…

  4. When water does not boil at the boiling point.

    PubMed

    Chang, Hasok

    2007-03-01

    Every schoolchild learns that, under standard pressure, pure water always boils at 100 degrees C. Except that it does not. By the late 18th century, pioneering scientists had already discovered great variations in the boiling temperature of water under fixed pressure. So, why have most of us been taught that the boiling point of water is constant? And, if it is not constant, how can it be used as a 'fixed point' for the calibration of thermometers? History of science has the answers.

  5. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...

  6. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...

  7. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...

  8. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...

  9. PRELIMINARY HAZARDS SUMMARY REPORT FOR THE VALLECITOS SUPERHEAT REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, J.L.

    1961-02-01

    BS>The Vallecitos Superheat Reactor (VSR) is a light-watermoderated, thermal-spectrum reactor, cooled by a combination of moderator boiling and forced convection cooling with saturated steam. The reactor core consists of 32 fuel hurdles containing 5300 lb of UO/sub 2/ enriched in U/sub 235/ to 3.6%. The fuel elements are arranged in individual process tubes that direct the cooling steam flow and separate the steam from the water moderator. The reactor vessel is designed for 1250 psig and operates at 960 to 1000 psig. With the reactor operating at 12.5 Mw(t), the maximum fuel cladding temperature is 1250 deg F and themore » cooling steam is superheated to an average temperature of about 810 deg F at 905 psig. Nu clear operation of the reactor is controlled by 12 control rods, actuated by drives mounted on the bottom of the reactor vessel. The water moderator recirculates inside the reactor vessel and through the core region by natural convection. Inherent safety features of the reactor include the negative core reactivity effects upon heating the UO/sub 2/ fuel (Doppler effect), upon increasing the temperature or void content of the moderator in the operating condition, and upon unflooding the fuel process tubes in the hot condition. Snfety features designed into the reactor and plant systems include a system of sensors and devices to detect petentially unsafe operating conditions and to initiate automatically the appropriate countermeasures, a set of fast and reliable control rods for scramming the reactor if a potentially unsafe condition occurs, a manually-actuated liquid neutron poison system, and an emergency cooling system to provide continued steam flow through the reactor core in the event the reactor becomes isolated from either its normal source of steam supply or discharge. The release of radioactivity to unrestricted areas is maintained within permissible limits by monitoring the radioactivity of wastes and controlling their release. The reactor and

  10. SUPERHEATING IN A BOILING WATER REACTOR

    DOEpatents

    Treshow, M.

    1960-05-31

    A boiling-water reactor is described in which the steam developed in the reactor is superheated in the reactor. This is accomplished by providing means for separating the steam from the water and passing the steam over a surface of the fissionable material which is not in contact with the water. Specifically water is boiled on the outside of tubular fuel elements and the steam is superheated on the inside of the fuel elements.

  11. Environmental consequences of postulated plutonium releases from General Electric Company Vallecitos Nuclear Center, Vallecitos, California, as a result of severe natural phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamison, J.D.; Watson, E.C.

    1980-11-01

    Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the General Electric Company Vallecitos Nuclear Center, Vallecitos, California. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Maximum plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values likely to occur offsite are also given. The most likelymore » calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the earthquakes, and the 180-mph and 230-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 ..mu..Ci/m/sup 2/. The deposition values following the 135-mph tornado are below the EPA proposed guidelines.« less

  12. Microbiological effectiveness of disinfecting water by boiling in rural Guatemala.

    PubMed

    Rosa, Ghislaine; Miller, Laura; Clasen, Thomas

    2010-03-01

    Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water samples from self-reported boilers met the World Health Organization guidelines for safe drinking water (0 TTC/100 mL), and 10.7% fell within the commonly accepted low-risk category of (1-10 TTC/100 mL). As actually practiced in the study community, boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations.

  13. Microbiological Effectiveness of Disinfecting Water by Boiling in Rural Guatemala

    PubMed Central

    Rosa, Ghislaine; Miller, Laura; Clasen, Thomas

    2010-01-01

    Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water samples from self-reported boilers met the World Health Organization guidelines for safe drinking water (0 TTC/100 mL), and 10.7% fell within the commonly accepted low-risk category of (1–10 TTC/100 mL). As actually practiced in the study community, boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations. PMID:20207876

  14. Ground Water Rule - Boil Water Advisory - Public Notification Template

    EPA Pesticide Factsheets

    The Ground Water Rule - Boil Water Advisory - Public Notification Template can be use to issue a Tier 1 Public Notification when it has been determined that source ground water is contaminated with E. Coli bacteria.

  15. Water boiling inside carbon nanotubes: toward efficient drug release.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2011-07-26

    We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNTs) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting transition into an unusual phase, where pressure is gas-like and grows linearly with temperature, while the diffusion constant is temperature-independent. Precise control over boiling by CNT diameter, together with the rapid growth of inside pressure above the boiling point, suggests a novel drug delivery protocol. Polar drug molecules are packaged inside CNTs; the latter are delivered into living tissues and heated by laser. Solvent boiling facilitates drug release.

  16. NUCLEAR SUPERHEATER FOR BOILING WATER REACTOR

    DOEpatents

    Holl, R.J.; Klecker, R.W.; Graham, C.B.

    1962-05-15

    A description is given of a boiling water reactor having a superheating region integral with the core. The core consists essentially of an annular boiling region surrounding an inner superheating region. Both regions contain fuel elements and are separated by a cylindrical wall, perforations being provided in the lower portion of the cylindrical wall to permit circulation of a common water moderator between the two regions. The superheater region comprises a plurality of tubular fuel assemblies through which the steam emanating from the boiling region passes to the steam outlet. Each superheater fuel assembly has an outer double-walled cylinder, the double walls being concentrically spaced and connected together at their upper ends but open at the bottom to provide for differential thermal expansion of the inner and outer walls. Gas is entrapped in the annulus between the walls which acts as an insulating space between the fissionable material inside and the moderator outside. (AEC)

  17. CHIMNEY FOR BOILING WATER REACTOR

    DOEpatents

    Petrick, M.

    1961-08-01

    A boiling-water reactor is described which has vertical fuel-containing channels for forming steam from water. Risers above the channels increase the head of water radially outward, whereby water is moved upward through the channels with greater force. The risers are concentric and the radial width of the space between them is somewhat small. There is a relatively low rate of flow of water up through the radially outer fuel-containing channels, with which the space between the risers is in communication. (AE C)

  18. Predictors of Drinking Water Boiling and Bottled Water Consumption in Rural China: A Hierarchical Modeling Approach.

    PubMed

    Cohen, Alasdair; Zhang, Qi; Luo, Qing; Tao, Yong; Colford, John M; Ray, Isha

    2017-06-20

    Approximately two billion people drink unsafe water. Boiling is the most commonly used household water treatment (HWT) method globally and in China. HWT can make water safer, but sustained adoption is rare and bottled water consumption is growing. To successfully promote HWT, an understanding of associated socioeconomic factors is critical. We collected survey data and water samples from 450 rural households in Guangxi Province, China. Covariates were grouped into blocks to hierarchically construct modified Poisson models and estimate risk ratios (RR) associated with boiling methods, bottled water, and untreated water. Female-headed households were most likely to boil (RR = 1.36, p < 0.01), and among boilers those using electric kettles rather than pots had higher income proxies (e.g., per capita TV ownership RR = 1.42, p < 0.01). Higher-income households with younger, literate, and male heads were more likely to purchase (frequently contaminated) bottled water, or use electric kettles if they boiled. Our findings show that boiling is not an undifferentiated practice, but one with different methods of varying effectiveness, environmental impact, and adoption across socioeconomic strata. Our results can inform programs to promote safer and more efficient boiling using electric kettles, and suggest that if rural China's economy continues to grow then bottled water use will increase.

  19. The initiation of boiling during pressure transients. [water boiling on metal surfaces

    NASA Technical Reports Server (NTRS)

    Weisman, J.; Bussell, G.; Jashnani, I. L.; Hsieh, T.

    1973-01-01

    The initiation of boiling of water on metal surfaces during pressure transients has been investigated. The data were obtained by a new technique in which light beam fluctuations and a pressure signal were simultaneously recorded on a dual beam oscilloscope. The results obtained agreed with those obtained using high speed photography. It was found that, for water temperatures between 90-150 C, the wall superheat required to initiate boiling during a rapid pressure transient was significantly higher than required when the pressure was slowly reduced. This result is explained by assuming that a finite time is necessary for vapor to fill the cavity at which the bubble originates. Experimental measurements of this time are in reasonably good agreement with calculations based on the proposed theory. The theory includes a new procedure for estimating the coefficient of vaporization.

  20. Water inventory management in condenser pool of boiling water reactor

    DOEpatents

    Gluntz, Douglas M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  1. Water inventory management in condenser pool of boiling water reactor

    DOEpatents

    Gluntz, D.M.

    1996-03-12

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  2. Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes

    PubMed Central

    2011-01-01

    Experimental investigation of heat transfer during pool boiling of two nanofluids, i.e., water-Al2O3 and water-Cu has been carried out. Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight. The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater. The experiments have been performed to establish the influence of nanofluids concentration as well as tube surface material on heat transfer characteristics at atmospheric pressure. The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube. It seems that heater material did not affect the boiling heat transfer in 0.1 wt.% water-Cu nanofluid, nevertheless independent of concentration, distinctly higher heat transfer coefficient was recorded for stainless steel tube than for copper tube for the same heat flux density. PMID:21711741

  3. BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES

    DOEpatents

    Treshow, M.

    1963-04-30

    This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)

  4. Incorporating Water Boiling in the Numerical Modelling of Thermal Remediation by Electrical Resistance Heating

    NASA Astrophysics Data System (ADS)

    Molnar, I. L.; Krol, M.; Mumford, K. G.

    2017-12-01

    Developing numerical models for subsurface thermal remediation techniques - such as Electrical Resistive Heating (ERH) - that include multiphase processes such as in-situ water boiling, gas production and recovery has remained a significant challenge. These subsurface gas generation and recovery processes are driven by physical phenomena such as discrete and unstable gas (bubble) flow as well as water-gas phase mass transfer rates during bubble flow. Traditional approaches to multiphase flow modeling soil remain unable to accurately describe these phenomena. However, it has been demonstrated that Macroscopic Invasion Percolation (MIP) can successfully simulate discrete and unstable gas transport1. This has lead to the development of a coupled Electro Thermal-MIP Model2 (ET-MIP) capable of simulating multiple key processes in the thermal remediation and gas recovery process including: electrical heating of soil and groundwater, water flow, geological heterogeneity, heating-induced buoyant flow, water boiling, gas bubble generation and mobilization, contaminant mass transport and removal, and additional mechanisms such as bubble collapse in cooler regions. This study presents the first rigorous validation of a coupled ET-MIP model against two-dimensional water boiling and water/NAPL co-boiling experiments3. Once validated, the model was used to explore the impact of water and co-boiling events and subsequent gas generation and mobilization on ERH's ability to 1) generate, expand and mobilize gas at boiling and NAPL co-boiling temperatures, 2) efficiently strip contaminants from soil during both boiling and co-boiling. In addition, a quantification of the energy losses arising from steam generation during subsurface water boiling was examined with respect to its impact on the efficacy of thermal remediation. While this study specifically targets ERH, the study's focus on examining the fundamental mechanisms driving thermal remediation (e.g., water boiling) renders

  5. SELF-REGULATING BOILING-WATER NUCLEAR REACTORS

    DOEpatents

    Ransohoff, J.A.; Plawchan, J.D.

    1960-08-16

    A boiling-water reactor was designed which comprises a pressure vessel containing a mass of water, a reactor core submerged within the water, a reflector tank disposed within the reactor, the reflector tank being open at the top to the interior of the pressure vessel, and a surge tank connected to the reflector tank. In operation the reflector level changes as a function of the pressure witoin the reactor so that the reactivity of the reactor is automatically controlled.

  6. Assessing the microbiological performance and potential cost of boiling drinking water in urban Zambia.

    PubMed

    Psutka, Rebecca; Peletz, Rachel; Michelo, Sandford; Kelly, Paul; Clasen, Thomas

    2011-07-15

    Boiling is the most common method of disinfecting water in the home and the benchmark against which other point-of-use water treatment is measured. In a six-week study in peri-urban Zambia, we assessed the microbiological effectiveness and potential cost of boiling among 49 households without a water connection who reported "always" or "almost always" boiling their water before drinking it. Source and household drinking water samples were compared weekly for thermotolerant coliforms (TTC), an indicator of fecal contamination. Demographics, costs, and other information were collected through surveys and structured observations. Drinking water samples taken at the household (geometric mean 7.2 TTC/100 mL, 95% CI, 5.4-9.7) were actually worse in microbiological quality than source water (geometric mean 4.0 TTC/100 mL, 95% CI, 3.1-5.1) (p < 0.001), although both are relatively low levels of contamination. Only 60% of drinking water samples were reported to have actually been boiled at the time of collection from the home, suggesting over-reporting and inconsistent compliance. However, these samples were of no higher microbiological quality. Evidence suggests that water quality deteriorated after boiling due to lack of residual protection and unsafe storage and handling. The potential cost of fuel or electricity for boiling was estimated at 5% and 7% of income, respectively. In this setting where microbiological water quality was relatively good at the source, safe-storage practices that minimize recontamination may be more effective in managing the risk of disease from drinking water at a fraction of the cost of boiling.

  7. Unorthodox bubbles when boiling in cold water.

    PubMed

    Parker, Scott; Granick, Steve

    2014-01-01

    High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

  8. Microbiological effectiveness and cost of boiling to disinfect drinking water in rural Vietnam.

    PubMed

    Clasen, Thomas F; Thao, Do Hoang; Boisson, Sophie; Shipin, Oleg

    2008-06-15

    Despite certain shortcomings, boiling is still the most common means of treating water in the home and the benchmark against which alternative household-based disinfection and filtration methods must be measured. We assessed the microbiological effectiveness and cost of boiling among a vulnerable population relying on unimproved water sources and commonly practicing boiling as a means of disinfecting water. In a 12 week study among 50 households from a rural community in Vietnam, boiling was associated with a 97% reduction in geometric mean thermotolerant coliforms (TTCs) (p < 0.001). Despite high levels of faecal contamination in source water, 37% of stored water samples from self-reported boilers met the WHO standard for safe drinking water (0 TTC/100 mL), and 38.3% fell within the low risk category (1--10 TTC/100 mL). Nevertheless, 60.5% of stored drinking water samples were positive for TTC, with 22.2% falling into the medium risk category (11--100 TTC/100 mL). The estimated cost of wood used to boil water was US$ 0.272 per month for wood collectors and US$ 1.68 per month for wood purchasers, representing approximately 0.48% to 1.04%, respectively, of the average monthly income of participating households.

  9. (Boiling water reactor (BWR) CORA experiments)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, L.J.

    To participate in the 1990 CORA Workshop at Kernforschungszentrum Karlsruhe (KfK) GmbH, Karlsruhe, FRG, on October 1--4, and to participate in detailed discussions on October 5 with the KfK CORA Boiling Water Reactor (BWR) experiments. The traveler attended the 1990 CORA Workshop at KfK, FRG. Participation included the presentation of a paper on work performed by the Boiling Water Reactor Core Melt Progression Phenomena Program at Oak Ridge National Laboratory (ORNL) on posttest analyses of CORA BWR experiments. The Statement of Work (November 1989) for the BWR Core Melt Progression Phenomena Program provides for pretest and posttest analyses of themore » BWR CORA experiments performed at KfK. Additionally, it is intended that ORNL personnel participate in the planning process for future CORA BWR experiments. For these purposes, meetings were held with KfK staff to discuss such topics as (1) experimental test schedule, (2) BWR test conduct, (3) perceived BWR experimental needs, and (4) KfK operational staff needs with respect to ORNL support. 19 refs.« less

  10. Issue a Boil-Water Advisory or Wait for Definitive Information? A Decision Analysis

    PubMed Central

    Wagner, Michael M.; Wallstrom, Garrick L.; Onisko, Agnieszka

    2005-01-01

    Objective Study the decision to issue a boil-water advisory in response to a spike in sales of diarrhea remedies or wait 72 hours for the results of definitive testing of water and people. Methods Decision analysis. Results In the base-case analysis, the optimal decision is test-and-wait. If the cost of issuing a boil-water advisory is less than 13.92 cents per person per day, the optimal decision is to issue the boil-water advisory immediately. Conclusions Decisions based on surveillance data that are suggestive but not conclusive about the existence of a disease outbreak can be modeled. PMID:16779145

  11. Microbiological effectiveness and cost of disinfecting water by boiling in semi-urban India.

    PubMed

    Clasen, Thomas; McLaughlin, Catherine; Nayaar, Neeru; Boisson, Sophie; Gupta, Romesh; Desai, Dolly; Shah, Nimish

    2008-09-01

    Despite shortcomings, boiling is the most common means of treating water at home and the benchmark against which emerging point-of-use water treatment approaches are measured. In a 5-month study, we assessed the microbiological effectiveness and cost of the practice among 218 self-reported boilers relying on unprotected water supplies. Boiling was associated with a 99% reduction in geometric mean fecal coliforms (FCs; P < 0.001). Despite high levels of fecal contamination in source water, 59.6% of stored drinking water samples from self-reported boilers met the World Health Organization standard for safe drinking water (0 FC/100 mL), and 5.7% were between 1 and 10 FC/100 mL. Nevertheless, 40.4% of stored drinking water samples were positive for FCs, with 25.1% exceeding 100 FC/100 mL. The estimated monthly fuel cost for boiling was INR 43.8 (US$0.88) for households using liquid petroleum gas and INR 34.7 (US$0.69) for households using wood.

  12. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  13. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  14. DIRECT-CYCLE, BOILING-WATER NUCLEAR REACTOR

    DOEpatents

    Harrer, J.M.; Fromm, L.W. Jr.; Kolba, V.M.

    1962-08-14

    A direct-cycle boiling-water nuclear reactor is described that employs a closed vessel and a plurality of fuel assemblies, each comprising an outer tube closed at its lower end, an inner tube, fuel rods in the space between the tubes and within the inner tube. A body of water lying within the pressure vessel and outside the fuel assemblies is converted to saturated steam, which enters each fuel assembly at the top and is converted to superheated steam in the fuel assembly while it is passing therethrough first downward through the space between the inner and outer tubes of the fuel assembly and then upward through the inner tube. (AEC)

  15. Steady 10Be-derived paleoerosion rates across the Plio-Pleistocene climate transition, Fish Creek-Vallecito basin, California

    NASA Astrophysics Data System (ADS)

    Oskin, M. E.; Longinotti, N. E.; Peryam, T. C.; Dorsey, R. J.; DeBoer, C. J.; Housen, B. A.; Blisniuk, K. D.

    2017-09-01

    Rates of erosion over time provide a valuable tool for gauging tectonic and climatic drivers of landscape evolution. Here we measure 10Be archived in quartz sediment from the Fish Creek-Vallecito basin to resolve a time series of catchment-averaged erosion rates and to test the hypothesis that aridity and increased climate variation after approximately 3 Ma led to an increase in erosion rates in this semiarid, ice-free setting. The Fish Creek-Vallecito basin, located east of the Peninsular Ranges in Southern California, is an ideal setting to derive a Plio-Pleistocene paleoerosion rate record. The basin has a rapid sediment accumulation rate, a detailed magnetostratigraphic age record, and its stratigraphy has been exposed through recent, rapid uplift and erosion. A well-defined source region of uniform lithology and low erosion rate provides a high, reproducible 10Be signal. We find that paleoerosion rates were remarkably consistent between 1 and 4 Ma, averaging 38 ± 24 m/Myr (2σ). Modern catchment-averaged erosion rates are similar to the paleoerosion rates. The uniformity of erosion over the past 4 Myr indicates that the landscape was not significantly affected by late Pliocene global climate change, nor was it affected by a local long-term increase in aridity.

  16. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling....79.1, ``Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors.'' This... emergency core cooling systems (ECCSs) for boiling- water reactors (BWRs) whose licenses are issued after...

  17. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2016-09-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale

  18. The myth of the boiling point.

    PubMed

    Chang, Hasok

    2008-01-01

    Around 1800, many reputable scientists reported significant variations in the temperature of pure water boiling under normal atmospheric pressure. The reported variations included a difference of over 1 degree C between boiling in metallic and glass vessels (Gay-Lussac), and "superheating" up to 112 degrees C on extracting dissolved air out of water (De Luc). I have confirmed most of these observations in my own experiments, many of which are described in this paper. Water boils at the "boiling point" only under very particular circumstances. Our common-sense intuition about the fixedness of the boiling point is only sustained by our limited experience.

  19. 75 FR 26967 - Guidance for Industry: Use of Water by Food Manufacturers in Areas Subject to a Boil-Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ...The Food and Drug Administration (FDA) is announcing the availability of a guidance entitled ``Guidance for Industry: Use of Water by Food Manufacturers in Areas Subject to a Boil-Water Advisory.'' This guidance is intended to advise food manufacturers that once a boil-water advisory has been issued they should stop using the water subject to the advisory until the water again meets the applicable Federal and State drinking water quality standards. Further, this guidance is intended to assist food manufacturers in evaluating food that already was produced with water subject to the advisory. The guidance is in response to the recent major water pipe break in Massachusetts that interrupted service to 30 Massachusetts Water Resources Authority (MWRA) customer communities (serving approximately 2 million residents).

  20. Generation of shockwave and vortex structures at the outflow of a boiling water jet

    NASA Astrophysics Data System (ADS)

    Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.; Sorokin, A. L.

    2014-12-01

    Results of numerical simulation for shock waves and generation of vortex structures during unsteady outflow of boiling liquid jet are presented. The features of evolution of shock waves and vortex structures formation during unsteady outflow of boiling water are compared with corresponding structures during unsteady gas outflow.

  1. 10 CFR Appendix A to Part 52 - Design Certification Rule for the U.S. Advanced Boiling Water Reactor

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Water Reactor A Appendix A to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES... Rule for the U.S. Advanced Boiling Water Reactor I. Introduction Appendix A constitutes the standard design certification for the U.S. Advanced Boiling Water Reactor (ABWR) design, in accordance with 10 CFR...

  2. 10 CFR Appendix A to Part 52 - Design Certification Rule for the U.S. Advanced Boiling Water Reactor

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Water Reactor A Appendix A to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES... Rule for the U.S. Advanced Boiling Water Reactor I. Introduction Appendix A constitutes the standard design certification for the U.S. Advanced Boiling Water Reactor (ABWR) design, in accordance with 10 CFR...

  3. Experimental study on pool boiling of distilled water and HFE7500 fluid under microgravity

    NASA Astrophysics Data System (ADS)

    Yang, Yan-jie; Chen, Xiao-qian; Huang, Yi-yong; Li, Guang-yu

    2018-02-01

    The experimental study on bubble behavior and heat transfer of pool boiling for distilled water and HFE7500 fluid under microgravity has been conducted by using drop tower in the National Microgravity Laboratory of China (NMLC). Two MCH ceramic plates of 20 mm(L) × 10 mm(W) × 1.2 mm(H) were used as the heaters. The nucleate boiling evolution under microgravity was observed during the experiment. It has been found that at the same heat flux, the bubbles of HFE7500 (which has smaller contact angle) grew faster and bigger, moved quickly on the heater surface, and were easier to merge into a central big bubble with other bubbles than that of distilled water. The whole process of bubbles coalescence from seven to one was recorded by using video camera. For distilled water (with bigger contact angle), the bubbles tended to keep at the nucleate location on heater surface, and the central big bubble evolved at its nucleate cite by absorbing smaller bubbles nearby. Compared with the bubbles under normal gravity, bubble radius of distilled water under microgravity was about 1.4 times bigger and of HFE7500 was about more than 6 times bigger till the end of experiment. At the beginning, pool boiling heat transfer of distilled water was advanced and then impeded under microgravity. As to HFE7500, the pool boiling impedes the heat transfer from heater to liquid under microgravity throughout the experiment.

  4. Electrochemical study of aluminum corrosion in boiling high purity water

    NASA Technical Reports Server (NTRS)

    Draley, J. E.; Legault, R. A.

    1969-01-01

    Electrochemical study of aluminum corrosion in boiling high-purity water includes an equation relating current and electrochemical potential derived on the basis of a physical model of the corrosion process. The work involved an examination of the cathodic polarization behavior of 1100 aluminum during aqueous oxidation.

  5. Comparison of boiling and chlorination on the quality of stored drinking water and childhood diarrhoea in Indonesian households

    PubMed Central

    FAGERLI, K.; TRIVEDI, K. K.; SODHA, S. V.; BLANTON, E.; ATI, A.; NGUYEN, T.; DELEA, K. C.; AINSLIE, R.; FIGUEROA, M. E.; KIM, S.; QUICK, R.

    2018-01-01

    SUMMARY We compared the impact of a commercial chlorination product (brand name Air RahMat) in stored drinking water to traditional boiling practices in Indonesia. We conducted a baseline survey of all households with children <5 years in four communities, made 11 subsequent weekly home visits to assess acceptability and use of water treatment methods, measured Escherichia coli concentration in stored water, and determined diarrhoea prevalence among children <5 years. Of 281 households surveyed, boiling (83%) and Air RahMat (7%) were the principal water treatment methods. Multivariable log-binomial regression analyses showed lower risk of E. coli in stored water treated with Air RahMat than boiling (risk ratio (RR) 0·75, 95% confidence interval (CI) 0·56–1·00). The risk of diarrhoea in children <5 years was lower among households using Air RahMat (RR 0·43, 95% CI 0·19–0·97) than boiling, and higher in households with E. coli concentrations of 1–1000 MPN/100 ml (RR 1·54, 95% CI 1·04–2·28) or >1000 MPN/100 ml (RR 1·86, 95% CI 1·09–3·19) in stored water than in households without detectable E. coli. Although results suggested that Air RahMat water treatment was associated with lower E. coli contamination and diarrhoeal rates among children <5 years than water treatment by boiling, Air RahMat use remained low. PMID:28942755

  6. Technical Basis for Water Chemistry Control of IGSCC in Boiling Water Reactors

    NASA Astrophysics Data System (ADS)

    Gordon, Barry; Garcia, Susan

    Boiling water reactors (BWRs) operate with very high purity water. However, even the utilization of near theoretical conductivity water cannot prevent intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel, wrought nickel alloys and nickel weld metals under oxygenated conditions. IGSCC can be further accelerated by the presence of certain impurities dissolved in the coolant. The goal of this paper is to present the technical basis for controlling various impurities under both oxygenated, i.e., normal water chemistry (NWC) and deoxygenated, i.e., hydrogen water chemistry (HWC) conditions for mitigation of IGSCC. More specifically, the effects of typical BWR ionic impurities (e.g., sulfate, chloride, nitrate, borate, phosphate, etc.) on IGSCC propensities in both NWC and HWC environments will be discussed. The technical basis for zinc addition to the BWR coolant will also provided along with an in-plant example of the most severe water chemistry transient to date.

  7. The startup of the Dodewaard natural circulation boiling water reactor -- Experiences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissen, W.H.M.; Van Der Voet, J.; Karuza, J.

    1994-07-01

    Because of its similarity to the simplified boiling water reactor (SBWR), the Dodewaard natural circulation boiling water reactor (BWR) is of special interest to further development of the SBWR design. It has become especially important to gain more insight into the Dodewaard BWR behavior during startup, paying special attention to its stability. Therefore, special instrumentation was used by means of which a series of measurements were taken during the two startups in February and June 1992. The results obtained from these measurements are used to deepen insight into the recirculation flow and the stability of the reactor during startup undermore » conditions with a normal pressure/power trajectory. They have already shown a very early recirculation flow onset during low-power operation and no indication of reactor instability. Furthermore, they will be used as a basis for the research program investigating the reactor behavior under different pressure/power conditions, which is scheduled for next year.« less

  8. Can we remove iodine-131 from tap water in Japan by boiling? - Experimental testing in response to the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Tagami, K; Uchida, S

    2011-08-01

    Iodine-131 concentrations in tap water higher than 100 BqL(-1) were reported by several local governments in Japan following the Fukushima Daiichi Nuclear Power Plant accident. Some individuals in the emergency-response community recommended the boiling of tap water to remove iodine-131. However, the tap water boiling tests in this study showed no iodine-131 loss from the tap water with either short-term boiling (1-10 min) or prolonged boiling (up to 30 min) resulting in up to 3-fold volume reductions. In this situation, boiling was shown to be not effective in removing iodine-131 from tap water; indeed even higher concentrations may result from the liquid-volume reduction accompanying this process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Heat transfer enhancement at increasing water concentration in alcohol in the process of non-stationary film boiling

    NASA Astrophysics Data System (ADS)

    Kanin, P. K.; Ryazantsev, V. A.; Lexin, M. A.; Zabirov, A. R.; Yagov, V. V.

    2018-03-01

    New experimental data on heat transfer in pool film boiling of subcooled ethanol-water mixtures at spherical surfaces are considered. The water solutions with ethanol mass fraction from 10 to 91% and temperature of liquid 50°C were examined. All the experiments were conducted under atmospheric pressure, using the stainless steel sphere of 39 mm in diameter as a cooled body. The sphere was heated up to 450-750°C, depending on ethanol concentration, and immersed into the experimental vessel with subcooled mixture. As it is expected, boiling heat transfer intensifies with ethanol concentration decrease, and duration of cooling decreases. It means that stable film boiling duration decreases, and earlier transition to intensive heat transfer regime occurs.

  10. On the pulse boiling frequency in thermosyphons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.F.; Wang, J.C.Y.

    1992-02-01

    The unsteady periodic boiling phenomenon, pulse boiling, appearing in the evaporator of thermosyphons has been mentioned and investigated by many researchers. The heat transfer coefficient in evaporators was predicted according to different considerations of flow patterns. For instance, Shiraishi et al. proposed a method based on a combination flow pattern: the nucleate boiling in a liquid pool and the evaporation from a falling condensate film. Liu et al. only considered a pure pulse boiling flow pattern, and Xin et al. focused on the flow pattern of the continuous boiling process without pulse phenomenon. Besides, the forming conditions of pulse boilingmore » were also described differently. Xin et al. also reported that pulse boiling cannot occur in a carbon-steel/water heat pipe; Ma et al., however, observed this phenomenon in a carbon-steel/water thermosyphon. Nearly all researchers mentioned that this phenomenon indeed exists in glass/water thermosyphons. Although the influential factors have been discussed qualitatively, the quantitative analysis has yet to be conducted. This study focuses on the pulse boiling frequency as a criterion for the determination of flow patterns, and attempts are made to predict the frequency both experimentally and theoretically.« less

  11. Comparison of boiling and chlorination on the quality of stored drinking water and childhood diarrhoea in Indonesian households.

    PubMed

    Fagerli, K; Trivedi, K K; Sodha, S V; Blanton, E; Ati, A; Nguyen, T; Delea, K C; Ainslie, R; Figueroa, M E; Kim, S; Quick, R

    2017-11-01

    We compared the impact of a commercial chlorination product (brand name Air RahMat) in stored drinking water to traditional boiling practices in Indonesia. We conducted a baseline survey of all households with children 1000 MPN/100 ml (RR 1·86, 95% CI 1·09-3·19) in stored water than in households without detectable E. coli. Although results suggested that Air RahMat water treatment was associated with lower E. coli contamination and diarrhoeal rates among children <5 years than water treatment by boiling, Air RahMat use remained low.

  12. Characterizing preferential groundwater discharge through boils using temperature

    NASA Astrophysics Data System (ADS)

    Vandenbohede, A.; de Louw, P. G. B.; Doornenbal, P. J.

    2014-03-01

    In The Netherlands, preferential groundwater discharge trough boils is a key process in the salinization of deep polders. Previous work showed that boils also influence the temperature in the subsurface and of surface water. This paper elaborates on this process combining field observations with numerical modeling. As is the case for salinity, a distinct anomaly in the subsurface and surface water temperature can be attributed to boils. Lines of equal temperature are distorted towards the boil, which can be considered as an upconing of the temperature profile by analogy of the upconing of a fresh-saltwater interface. The zone of this distortion is limited to the immediate vicinity of the boil, being about 5 m in the aquitard which holds the boil's conduit, or maximum a few dozens of meters in the underlying aquifer. In the aquitard, heat transport is conduction dominated whereas this is convection dominated in the aquifer. The temperature anomaly differs from the salinity anomaly by the smaller radius of influence and faster time to reach a new steady-state of the former. Boils discharge water with a temperature equal to the mean groundwater temperature. This influences the yearly and diurnal variation of ditch water temperature in the immediate vicinity of the boil importantly but also the temperature in the downstream direction. Temporary nature of the boil (e.g. stability of the conduit, discharge rate), uncertainty on the 3D construction of the conduit and heterogeneity of the subsoil make it unlikely that temperature measurements can be interpreted further than a qualitative level.

  13. Experimental investigation of time and repeated cycles in nucleate pool boiling of alumina/water nanofluid on polished and machined surfaces

    NASA Astrophysics Data System (ADS)

    Rajabzadeh Dareh, F.; Haghshenasfard, M.; Nasr Esfahany, M.; Salimi Jazi, H.

    2018-06-01

    Pool boiling heat transfer of pure water and nanofluids on a copper block has been studied experimentally. Nanofluids with various concentrations of 0.0025, 0.005 and 0.01 vol.% are employed and two simple surfaces (polished and machined copper surface) are used as the heating surfaces. The results indicated that the critical heat flux (CHF) in boiling of fluids on the polished surface is 7% higher than CHF on the machined surface. In the case of machined surface, the heat transfer coefficient (HTC) of 0.01 vol.% nanofluid is about 37% higher than HTC of base fluid, while in the polished surface the average HTC of 0.01% nanofluid is about 19% lower than HTC of the pure water. The results also showed that the boiling time and boiling cycles on the polished surface changes the heat transfer performance. By increasing the boiling time from 5 to 10 min, the roughness enhances about 150%, but by increasing the boiling time to 15 min, the roughness enhancement is only 8%.

  14. Effect of nanostructure on rapid boiling of water on a hot copper plate: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Fu, Ting; Mao, Yijin; Tang, Yong; Zhang, Yuwen; Yuan, Wei

    2016-08-01

    Molecular dynamic simulations are performed to study the effects of nanostructure on rapid boiling of water that is suddenly heated by a hot copper plate. The results show that the nanostructure has significant effects on energy transfer from solid copper plate to liquid water and phase change process from liquid water to vapor. The liquid water on the solid surface rapidly boil after contacting with an extremely hot copper plate and consequently a cluster of liquid water moves upward during phase change. The temperature of the water film when it separates from solid surface and its final temperature when the system is at equilibrium strongly depend on the size of the nanostructure. These temperatures increase with increasing size of nanostructure. Furthermore, a non-vaporized molecular layer is formed on the surface of the copper plate even continuous heat flux is passing into water domain through the plate.

  15. Boiling water scarification plus stratification improves germination of Iliamna rivularis (Malvaceae) seeds

    Treesearch

    Katri Himanen; Markku Nygren; R. Kasten Dumroese

    2012-01-01

    Scarification with boiling water plus stratification was most effective in improving germination of Iliamna rivularis (Douglas ex Hook.) Greene (Malvaceae) in an experiment that compared 3 treatments. Seeds from 15 sites representing 5 western US states were used in the experiment. Initial response of the seedlots to the treatments was similar, apart from one seedlot....

  16. Correlational approach to turbulent saturated film boiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.

    A correlation method for saturated film boiling is proposed. The correlation is based on the analogy between film boiling and natural convection. As in the case of natural convection, the turbulent film boiling correlation takes the form of a Nusselt number versus the Raleigh number power law, Nu[sub B] [proportional to] Ra[sub B][sup 1.3]. The proposed correlation shows very good agreement with current data for film boiling of water from vertical surfaces. The general applicability of the correlation is established by comparisons with film boiling data from R-113 and cryogenic fluids. 25 refs., 8 figs.

  17. Production induced boiling and cold water entry in the Cerro Prieto geothermal reservoir indicated by chemical and physical measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, M.A.; Truesdell, A.H.; Manon, A.

    1981-01-01

    Chemical and physical data suggest that the relatively shallow western part of the Cerro Prieto reservoir is bounded below by low permeability rocks, and above and at the sides by an interface with cooler water. There is no continuous permeability barrier around or immediately above the reservoir. Permeability within the reservoir is dominantly intergranular. Mixture with cooler water rather than boiling is the dominant cooling process in the natural state, and production causes displacement of hot water by cooler water, not by vapor. Local boiling occurs near most wells in response to pressure decreases, but no general vapor zone hasmore » formed.« less

  18. The challenge of improving boiling: lessons learned from a randomized controlled trial of water pasteurization and safe storage in Peru.

    PubMed

    Heitzinger, K; Rocha, C A; Quick, R E; Montano, S M; Tilley, D H; Mock, C N; Carrasco, A J; Cabrera, R M; Hawes, S E

    2016-07-01

    Boiling is the most common method of household water treatment in developing countries; however, it is not always effectively practised. We conducted a randomized controlled trial among 210 households to assess the effectiveness of water pasteurization and safe-storage interventions in reducing Escherichia coli contamination of household drinking water in a water-boiling population in rural Peru. Households were randomized to receive either a safe-storage container or a safe-storage container plus water pasteurization indicator or to a control group. During a 13-week follow-up period, households that received a safe-storage container and water pasteurization indicator did not have a significantly different prevalence of stored drinking-water contamination relative to the control group [prevalence ratio (PR) 1·18, 95% confidence interval (CI) 0·92-1·52]. Similarly, receipt of a safe-storage container alone had no effect on prevalence of contamination (PR 1·02, 95% CI 0·79-1·31). Although use of water pasteurization indicators and locally available storage containers did not increase the safety of household drinking water in this study, future research could illuminate factors that facilitate the effective use of these interventions to improve water quality and reduce the risk of waterborne disease in populations that boil drinking water.

  19. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    PubMed Central

    Carrasco-Turigas, Glòria; Villanueva, Cristina M.; Goñi, Fernando; Rantakokko, Panu; Nieuwenhuijsen, Mark J.

    2013-01-01

    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies. PMID:23476675

  20. Infrared thermometry study of nanofluid pool boiling phenomena

    PubMed Central

    2011-01-01

    Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement. PMID:21711754

  1. Boiling local heat transfer enhancement in minichannels using nanofluids

    PubMed Central

    2013-01-01

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445

  2. Comparison of carbon monoxide levels during heating of ice and water to boiling point with a camping stove.

    PubMed

    Leigh-Smith, Simon; Watt, Ian; McFadyen, Angus; Grant, Stan

    2004-01-01

    To determine whether using a camping stove to bring a pan of ice to boiling point produces higher carbon monoxide (CO) concentration than would bringing a pan of water to boiling point. The hypothesis was that ice would cause greater CO concentration because of its greater flame-cooling effect and, consequently, more incomplete combustion. This was a randomized, prospective observational study. After an initial pilot study, CO concentration was monitored during 10 trials for each of ice and water. A partially ventilated 200-L cardboard box model was developed and then used inside a chamber at -6 degrees C. Ice temperature and volume, water temperature and volume, pan size, and flame characteristics were all standardized. Temperature of the heated medium was monitored to determine time to boiling point. Carbon monoxide concentration was monitored every 30 seconds for the first 3 minutes, then every minute until the end of each 10-minute trial. There was no significant difference (P > .05) in CO production levels between ice and water. Each achieved a similar mean plateau level of approximately 400 ppm CO concentration with a similar rate of rise. However, significantly higher (P = .014) CO concentration occurred at 4 and 5 minutes when the flame underwent a yellow flare; this occurred only on 3 occasions when ice was the medium. There were no significant differences for CO production between bringing a pan of ice or water to boiling point. In a small number of ice trials, the presence of a yellow flame resulted in high CO concentration. Yellow flares might occur more often with ice or snow melting, but this has not been proven.

  3. An investigation of transition boiling mechanisms of subcooled water under forced convective conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwang-Won, Lee; Sang-Yong, Lee

    1995-09-01

    A mechanistic model for forced convective transition boiling has been developed to investigate transition boiling mechanisms and to predict transition boiling heat flux realistically. This model is based on a postulated multi-stage boiling process occurring during the passage time of the elongated vapor blanket specified at a critical heat flux (CHF) condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling characterized by themore » frequent touches of the interface and the heated wall. The total heat transfer rates after the DNB is weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. The parametric effects of pressure, mass flux, inlet subcooling on the transition boiling heat transfer are also investigated. From these comparisons, it can be seen that this model can identify the crucial mechanisms of forced convective transition boiling, and that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are well predicted at low qualities/high pressures near 10 bar. In future, this model will be improved in the unstable film boiling stage and generalized for high quality and low pressure situations.« less

  4. Pool Boiling Experiment Has Five Successful Flights

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Fran

    1997-01-01

    The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many earthbound applications in steamgeneration power plants, petroleum plants, and other chemical plants. In addition, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

  5. Does pan diameter influence carbon monoxide levels during heating of water to boiling point with a camping stove?

    PubMed

    Leigh-Smith, Simon; Stevenson, Richard; Watt, Martin; Watt, Ian; McFadyen, Angus; Grant, Stan

    2004-01-01

    To determine whether pan diameter influences carbon monoxide (CO) concentration during heating of water to boiling point with a camping stove. The hypothesis was that increasing pan diameter increases CO concentration because of greater flame dispersal and a larger flame. This was a randomized, prospective study. A Coleman Dual Fuel 533 stove was used to heat pans of water to boiling point, with CO concentration monitored every 30 seconds for 5 minutes. The stove was inside a partially ventilated 200-L cardboard box model that was inside an environmental chamber at -6 degrees C. Water temperature, water volume, and flame characteristics were all standardized. Ten trials were performed for each of 2 pan diameters (base diameters of 165 mm [small] and 220 mm [large]). There was a significant difference (P = .002) between the pans for CO levels at each measurement interval from 60 seconds onward. These differences were markedly larger after 90 seconds, with a mean difference of 185 ppm (95% CI 115, 276 ppm) for all the results from 120 seconds onwards. This study has shown that there is significantly higher CO production with a large-diameter pan compared with a small-diameter pan. These findings were evident by using a camping stove to heat water to boiling point when a maximum blue flame was present throughout. Thus, in enclosed environments it is recommended that small-diameter pans be used in an attempt to prevent high CO levels.

  6. Effects of Boiling Drinking Water on Diarrhea and Pathogen-Specific Infections in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis

    PubMed Central

    Cohen, Alasdair; Colford, John M.

    2017-01-01

    Abstract. Globally, approximately 2 billion people lack microbiologically safe drinking water. Boiling is the most prevalent household water treatment method, yet evidence of its health impact is limited. To conduct this systematic review, we searched four online databases with no limitations on language or publication date. Studies were eligible if health outcomes were measured for participants who reported consuming boiled and untreated water. We used reported and calculated odds ratios (ORs) and random-effects meta-analysis to estimate pathogen-specific and pooled effects by organism group and nonspecific diarrhea. Heterogeneity and publication bias were assessed using I2, meta-regression, and funnel plots; study quality was also assessed. Of the 1,998 records identified, 27 met inclusion criteria and reported extractable data. We found evidence of a significant protective effect of boiling for Vibrio cholerae infections (OR = 0.31, 95% confidence interval [CI] = 0.13–0.79, N = 4 studies), Blastocystis (OR = 0.35, 95% CI = 0.17–0.69, N = 3), protozoal infections overall (pooled OR = 0.61, 95% CI = 0.43–0.86, N = 11), viral infections overall (pooled OR = 0.83, 95% CI = 0.7–0.98, N = 4), and nonspecific diarrheal outcomes (OR = 0.58, 95% CI = 0.45–0.77, N = 7). We found no evidence of a protective effect for helminthic infections. Although our study was limited by the use of self-reported boiling and non-experimental designs, the evidence suggests that boiling provides measureable health benefits for pathogens whose transmission routes are primarily water based. Consequently, we believe a randomized controlled trial of boiling adherence and health outcomes is needed. PMID:29016318

  7. Boiling heat transfer during flow of distilled water in an asymmetrically heated rectangular minichannel

    NASA Astrophysics Data System (ADS)

    Strąk, Kinga; Piasecka, Magdalena

    This paper discusses test results concerning flow boiling heat transfer in a minichannel 1.7 mm in depth, 16 mm in width and 180 mm in length. The essential part of the experimental stand was a vertically oriented rectangular minichannel, which was heated asymmetrically with a plate made of Haynes-230 alloy. Distilled water was used as the cooling fluid. Changes in the temperature on the outer side of the heated plate in the central, axially symmetric part of the channel were measured using infrared thermography. Simultaneously, the other side of the heated plate in contact with the fluid was observed through a glass pane to identify the two-phase flow patterns. The one-dimensional model used for the heat transfer analysis took into account the heat flow direction, which was perpendicular to the direction of the fluid flow in the minichannel. The study involved determining local values of the heat transfer coefficient and generating boiling curves. The data for water were compared with the findings reported for the FC-72 fluid.

  8. Does the public receive and adhere to boil water advisory recommendations? A cross-sectional study in Newfoundland and Labrador, Canada.

    PubMed

    Jones-Bitton, Andria; Gustafson, Diana L; Butt, Kelly; Majowicz, Shannon E

    2016-01-05

    Highly publicized water supply problems highlight the importance of safe drinking water to the public. Boil water advisories (BWAs) are an important precautionary measure meant to protect public health by ensuring drinking water safety. Newfoundland and Labrador, Canada is a prime location for exploring public notification practices and adherence to recommendations as there were a total of 215 BWAs, affecting 6 % of the provincial population, in 145 communities between April 2006 and March 2007 when data for the present study were collected. Residents who received household water from a public water supply were randomly selected for a telephone interview. Collected data included participants' notification of boil water advisory, satisfaction with information provided, and their adherence to recommendations. Most participants learned that a BWA had been issued or lifted in their community through radio, television, or word of mouth. BWAs were issued for a range of operational reasons. Almost all participants who had experienced a BWA reported wanting more information about the reasons a BWA had been issued. Low adherence to water use recommendations during a BWA was common. This study is first to report on public adherence to boil water advisory recommendations in Canada. The findings raise public health concerns, particularly given the high number of BWAs issued each year. Further studies in partnership with community stakeholders and government decision-makers responsible for overseeing public water systems are needed to assess the perceptions of BWAs, the reasons for non-adherence, and to identify information dissemination methods to increase information uptake and public adherence with acceptable uses of public drinking water during a BWA.

  9. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling.

    PubMed

    Lozowicka, Bozena; Jankowska, Magdalena; Hrynko, Izabela; Kaczynski, Piotr

    2016-01-01

    The effects of washing with tap and ozone water, ultrasonic cleaning and boiling on 16 pesticide (ten fungicides and six insecticides) residue levels in raw strawberries were investigated at different processing times (1, 2 and 5 min). An analysis of these pesticides was conducted using gas chromatography with nitrogen-phosphorous and electron capture detection (GC-NPD/ECD). The processing factor (PF) for each pesticide in each processing technique was determined. Washing with ozonated water was demonstrated to be more effective (reduction from 36.1 to 75.1 %) than washing with tap water (reduction from 19.8 to 68.1 %). Boiling decreased the residues of the most compounds, with reductions ranging from 42.8 to 92.9 %. Ultrasonic cleaning lowered residues for all analysed pesticides with removal of up to 91.2 %. The data indicated that ultrasonic cleaning and boiling were the most effective treatments for the reduction of 16 pesticide residues in raw strawberries, resulting in a lower health risk exposure. Calculated PFs for alpha-cypermethrin were used to perform an acute risk assessment of dietary exposure. To investigate the relationship between the levels of 16 pesticides in strawberry samples and their physicochemical properties, a principal component analysis (PCA) was performed. Graphical abstract ᅟ.

  10. 76 FR 14437 - Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0055] Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of Final Design Approval The U.S. Nuclear Regulatory Commission has issued a final design approval (FDA) to GE Hitachi Nuclear Energy (GEH) for the economic...

  11. Fundamental Boiling and RP-1 Freezing Experiments

    NASA Technical Reports Server (NTRS)

    Goode, Brian

    2002-01-01

    The prestart thermal conditioning of the hardware in LOX (liquid oxygen) systems involve heat transfer between LOX and metal where boiling plays a large role. Information is easily found on nucleate boiling, maximum heat flux, minimum heat flux and film boiling for common fluids like water. After looking at these standard correlations it was felt more data was needed for the cool down side transition boiling for the LN2 and LOX. In particular interest is the film boiling values, the temperature at which transition begins and the slope as peak heat flux is approached. The ultimate goal is an array of boiling heat transfer coefficient as a function of surface temperature which can be used in the chilldown model of the feed system, engine and bleed system for X-34. The first experiment consisted of an actual MC-1 LOX Impeller which had been machined backwards, that was instrumented with 17 surface thermocouples and submerged in liquid nitrogen. The thermocouples were installed on metal thicknesses varying from the thin inducer to the thick hub.

  12. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.

    PubMed

    Horn, Hans W; Swope, William C; Pitera, Jed W

    2005-11-15

    The liquid-vapor-phase equilibrium properties of the previously developed TIP4P-Ew water model have been studied using thermodynamic integration free-energy simulation techniques in the temperature range of 274-400 K. We stress that free-energy results from simulations need to be corrected in order to be compared to the experiment. This is due to the fact that the thermodynamic end states accessible through simulations correspond to fictitious substances (classical rigid liquids and classical rigid ideal gases) while experiments operate on real substances (liquids and real gases, with quantum effects). After applying analytical corrections the vapor pressure curve obtained from simulated free-energy changes is in excellent agreement with the experimental vapor pressure curve. The boiling point of TIP4P-Ew water under ambient pressure is found to be at 370.3+/-1.9 K, about 7 K higher than the boiling point of TIP4P water (363.7+/-5.1 K; from simulations that employ finite range treatment of electrostatic and Lennard-Jones interactions). This is in contrast to the approximately +15 K by which the temperature of the density maximum and the melting temperature of TIP4P-Ew are shifted relative to TIP4P, indicating that the temperature range over which the liquid phase of TIP4P-Ew is stable is narrower than that of TIP4P and resembles more that of real water. The quality of the vapor pressure results highlights the success of TIP4P-Ew in describing the energetic and entropic aspects of intermolecular interactions in liquid water.

  13. Physical quality of Simental Ongole crossbred silverside meat at various boiling times

    NASA Astrophysics Data System (ADS)

    Riyanto, J.; Cahyadi, M.; Guntari, W. S.

    2018-03-01

    This study aims to determine the physical quality of silverside beef meat at various boiling times. Samples that have been used are the back thigh or silverside meat. Treatment of boiling meat included TR (meat without boiled), R15 (boiled 15 minutes), and R30 (boiled for 30 minutes). The experimental design using Completely Randomized Design with 3 replications. Each replication was done in triple physical quality test. Determination of physical quality was performed at the Livestock Industry and Processing Laboratory at Sebelas Maret University Surakarta and the Meat Technology Laboratory at the Faculty of Animal Husbandry of Gadjah Mada University. The result of variance analysis showed that boiling affect cooking loss (P≥0.05) and but did not affect (P≤0,05) pH, water holding capacity and meat tenderness. The conclusions of the study showed that boiling for 15 minutes and 30 minutes decreased the cooking loss of Simental Ongole Crossbred silverside meat. Meat physical quality of pH, water holding capacity and the value of tenderness is not affected by boiling for 15 and 30 minutes.

  14. Enabling Highly Effective Boiling from Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Allred, Taylor P.; Weibel, Justin A.; Garimella, Suresh V.

    2018-04-01

    A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.

  15. Estimating surface temperature in forced convection nucleate boiling - A simplified method

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Papell, S. S.

    1977-01-01

    A simplified expression to estimate surface temperatures in forced convection boiling was developed using a liquid nitrogen data base. Using the principal of corresponding states and the Kutateladze relation for maximum pool boiling heat flux, the expression was normalized for use with other fluids. The expression was applied also to neon and water. For the neon data base, the agreement was acceptable with the exclusion of one set suspected to be in the transition boiling regime. For the water data base at reduced pressure greater than 0.05 the agreement is generally good. At lower reduced pressures, the water data scatter and the calculated temperature becomes a function of flow rate.

  16. A Compilation of Boiling Water Reactor Operational Experience for the United Kingdom's Office for Nuclear Regulation's Advanced Boiling Water Reactor Generic Design Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, Timothy A.; Liao, Huafei

    2014-12-01

    United States nuclear power plant Licensee Event Reports (LERs), submitted to the United States Nuclear Regulatory Commission (NRC) under law as required by 10 CFR 50.72 and 50.73 were evaluated for reliance to the United Kingdom’s Health and Safety Executive – Office for Nuclear Regulation’s (ONR) general design assessment of the Advanced Boiling Water Reactor (ABWR) design. An NRC compendium of LERs, compiled by Idaho National Laboratory over the time period January 1, 2000 through March 31, 2014, were sorted by BWR safety system and sorted into two categories: those events leading to a SCRAM, and those events which constitutedmore » a safety system failure. The LERs were then evaluated as to the relevance of the operational experience to the ABWR design.« less

  17. Boiling incipience and convective boiling of neon and nitrogen

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. This design precludes nucleate boiling in the flow channels as they are too small to handle vapor flow. Consequently, it was necessary to determine boiling incipience under the operating conditions of the magnet system. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of plus or minus 15 percent

  18. Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-09-15

    This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

  19. Conceptual design for spacelab pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Lienhard, J. H.; Peck, R. E.

    1978-01-01

    A pool boiling heat transfer experiment to be incorporated with a larger two-phase flow experiment on Spacelab was designed to confirm (or alter) the results of earth-normal gravity experiments which indicate that the hydrodynamic peak and minimum pool boiling heat fluxes vanish at very low gravity. Twelve small sealed test cells containing water, methanol or Freon 113 and cylindrical heaters of various sizes are to be built. Each cell will be subjected to one or more 45 sec tests in which the surface heat flux on the heaters is increased linearly until the surface temperature reaches a limiting value of 500 C. The entire boiling process will be photographed in slow-motion. Boiling curves will be constructed from thermocouple and electric input data, for comparison with the motion picture records. The conduct of the experiment will require no more than a few hours of operator time.

  20. Boiling-Water Reactor internals aging degradation study. Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luk, K.H.

    1993-09-01

    This report documents the results of an aging assessment study for boiling water reactor (BWR) internals. Major stressors for BWR internals are related to unsteady hydrodynamic forces generated by the primary coolant flow in the reactor vessel. Welding and cold-working, dissolved oxygen and impurities in the coolant, applied loads and exposures to fast neutron fluxes are other important stressors. Based on results of a component failure information survey, stress corrosion cracking (SCC) and fatigue are identified as the two major aging-related degradation mechanisms for BWR internals. Significant reported failures include SCC in jet-pump holddown beams, in-core neutron flux monitor drymore » tubes and core spray spargers. Fatigue failures were detected in feedwater spargers. The implementation of a plant Hydrogen Water Chemistry (HWC) program is considered as a promising method for controlling SCC problems in BWR. More operating data are needed to evaluate its effectiveness for internal components. Long-term fast neutron irradiation effects and high-cycle fatigue in a corrosive environment are uncertainty factors in the aging assessment process. BWR internals are examined by visual inspections and the method is access limited. The presence of a large water gap and an absence of ex-core neutron flux monitors may handicap the use of advanced inspection methods, such as neutron noise vibration measurements, for BWR.« less

  1. 1 H NMR-based water-soluble lower molecule characterization and fatty acid composition of boiled Wuding chicken during processing.

    PubMed

    Xiao, Zhichao; Luo, Yuting; Wang, Guiying; Ge, Changrong; Zhou, Guanghong; Zhang, Wangang; Liao, Guozhou

    2018-06-13

    Boiled Wuding chicken was produced using whole chicken by washing, boiling 1 h with salt, deep frying and boiling 2 h. The effect of process on the WLOM (water-soluble lower molecule) profiles of products was characterized using proton nuclear magnetic resonance spectroscopy ( 1 H-NMR) and fatty acid composition of products was analyzed using gas chromatography-mass spectrometry (GC-MS). The metabonome was dominated by 49 WLOM and 22 fatty acid compounds were detected. PC1 and PC2 explained a total of 93.4% and 3% of variance, respectively. Compared with control group, the total WLOM and fatty acid content of the chicken breast were significantly decreased in other three processing stages (P<0.05). Comprehensive multivariate data analysis showed significant differences about precursor substance between the different processing including creatine, lactate, creatinine, glucose, taurine, anserine and acetate (P<0.05). These results contribute to a more accurate understanding of precursor substance changes of flavor in chicken meat during processing. Boiled treated chicken had significant effects on fatty acid and WLOM compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Steady State Vapor Bubble in Pool Boiling

    PubMed Central

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  3. Modeling acid-gas generation from boiling chloride brines

    PubMed Central

    2009-01-01

    Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation

  4. A Novel Role of Three Dimensional Graphene Foam to Prevent Heater Failure during Boiling

    PubMed Central

    Ahn, Ho Seon; Kim, Ji Min; Park, Chibeom; Jang, Ji-Wook; Lee, Jae Sung; Kim, Hyungdae; Kaviany, Massoud; Kim, Moo Hwan

    2013-01-01

    We report a novel boiling heat transfer (NBHT) in reduced graphene oxide (RGO) suspended in water (RGO colloid) near critical heat flux (CHF), which is traditionally the dangerous limitation of nucleate boiling heat transfer because of heater failure. When the heat flux reaches the maximum value (CHF) in RGO colloid pool boiling, the wall temperature increases gradually and slowly with an almost constant heat flux, contrary to the rapid wall temperature increase found during water pool boiling. The gained time by NBHT would provide the safer margin of the heat transfer and the amazing impact on the thermal system as the first report of graphene application. In addition, the CHF and boiling heat transfer performance also increase. This novel boiling phenomenon can effectively prevent heater failure because of the role played by the self-assembled three-dimensional foam-like graphene network (SFG). PMID:23743619

  5. Boiling incipience and convective boiling of neon and nitrogen

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of + or - 15 percent.

  6. Pool boiling of nanofluids on rough and porous coated tubes: experimental and correlation

    NASA Astrophysics Data System (ADS)

    Cieśliński, Janusz T.; Kaczmarczyk, Tomasz Z.

    2014-06-01

    The paper deals with pool boiling of water-Al2O3 and water- Cu nanofluids on rough and porous coated horizontal tubes. Commercially available stainless steel tubes having 10 mm outside diameter and 0.6 mm wall thickness were used to fabricate the test heater. The tube surface was roughed with emery paper 360 or polished with abrasive compound. Aluminium porous coatings of 0.15 mm thick with porosity of about 40% were produced by plasma spraying. The experiments were conducted under different absolute operating pressures, i.e., 200, 100, and 10 kPa. Nanoparticles were tested at the concentration of 0.01, 0.1, and 1% by weight. Ultrasonic vibration was used in order to stabilize the dispersion of the nanoparticles. It was observed that independent of operating pressure and roughness of the stainless steel tubes addition of even small amount of nanoparticles augments heat transfer in comparison to boiling of distilled water. Contrary to rough tubes boiling heat transfer coefficient of tested nanofluids on porous coated tubes was lower compared to that for distilled water while boiling on porous coated tubes. A correlation equation for prediction of the average heat transfer coefficient during boiling of nanofluids on smooth, rough and porous coated tubes is proposed. The correlation includes all tested variables in dimensionless form and is valid for low heat flux, i.e., below 100 kW/m2.

  7. 78 FR 35990 - All Operating Boiling-Water Reactor Licensees With Mark I And Mark II Containments; Docket Nos...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0128] All Operating Boiling-Water Reactor Licensees With Mark I And Mark II Containments; Docket Nos. (As Shown In Attachment 1), License Nos. (As Shown In Attachment 1), EA-13-109; Order Modifying Licenses With Regard to Reliable Hardened Containment Vents Capable of Operation Under Severe Accident...

  8. Secondary pool boiling effects

    NASA Astrophysics Data System (ADS)

    Kruse, C.; Tsubaki, A.; Zuhlke, C.; Anderson, T.; Alexander, D.; Gogos, G.; Ndao, S.

    2016-02-01

    A pool boiling phenomenon referred to as secondary boiling effects is discussed. Based on the experimental trends, a mechanism is proposed that identifies the parameters that lead to this phenomenon. Secondary boiling effects refer to a distinct decrease in the wall superheat temperature near the critical heat flux due to a significant increase in the heat transfer coefficient. Recent pool boiling heat transfer experiments using femtosecond laser processed Inconel, stainless steel, and copper multiscale surfaces consistently displayed secondary boiling effects, which were found to be a result of both temperature drop along the microstructures and nucleation characteristic length scales. The temperature drop is a function of microstructure height and thermal conductivity. An increased microstructure height and a decreased thermal conductivity result in a significant temperature drop along the microstructures. This temperature drop becomes more pronounced at higher heat fluxes and along with the right nucleation characteristic length scales results in a change of the boiling dynamics. Nucleation spreads from the bottom of the microstructure valleys to the top of the microstructures, resulting in a decreased surface superheat with an increasing heat flux. This decrease in the wall superheat at higher heat fluxes is reflected by a "hook back" of the traditional boiling curve and is thus referred to as secondary boiling effects. In addition, a boiling hysteresis during increasing and decreasing heat flux develops due to the secondary boiling effects. This hysteresis further validates the existence of secondary boiling effects.

  9. Science 101: Why Does It Take Longer to Boil Potatoes at High Altitudes?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2017-01-01

    Why Does It Take Longer to Boil Potatoes at High Altitudes? This column provides background science information for elementary teachers. This month's issue looks at why water boils at different temperatures at different altitudes.

  10. Communication, perception and behaviour during a natural disaster involving a 'Do Not Drink' and a subsequent 'Boil Water' notice: a postal questionnaire study.

    PubMed

    Rundblad, Gabriella; Knapton, Olivia; Hunter, Paul R

    2010-10-25

    During times of public health emergencies, effective communication between the emergency response agencies and the affected public is important to ensure that people protect themselves from injury or disease. In order to investigate compliance with public health advice during natural disasters, we examined consumer behaviour during two water notices that were issued as a result of serious flooding. During the summer of 2007, 140,000 homes in Gloucestershire, United Kingdom, that are supplied water from Mythe treatment works, lost their drinking water for up to 17 days. Consumers were issued a 'Do Not Drink' notice when the water was restored, which was subsequently replaced with a 'Boil Water' notice. The rare occurrence of two water notices provided a unique opportunity to compare compliance with public health advice. Information source use and other factors that may affect consumer perception and behaviour were also explored. A postal questionnaire was sent to 1,000 randomly selected households. Chi-square, ANOVA, MANOVA and generalised estimating equation (with and without prior factor analysis) were used for quantitative analysis. In terms of information sources, we found high use of and clear preference for the local radio throughout the incident, but family/friends/neighbours also proved crucial at the onset. Local newspapers and the water company were associated with clarity of advice and feeling informed, respectively. Older consumers and those in paid employment were particularly unlikely to read the official information leaflets. We also found a high degree of confusion regarding which notice was in place at which time, with correct recall varying between 23.2%-26.7%, and a great number of consumers believed two notices were in place simultaneously. In terms of behaviour, overall non-compliance levels were significantly higher for the 'Do Not Drink' notice (62.9%) compared to the 'Boil Water' notice (48.3%); consumers in paid employment were not likely to

  11. Communication, perception and behaviour during a natural disaster involving a 'Do Not Drink' and a subsequent 'Boil Water' notice: a postal questionnaire study

    PubMed Central

    2010-01-01

    Background During times of public health emergencies, effective communication between the emergency response agencies and the affected public is important to ensure that people protect themselves from injury or disease. In order to investigate compliance with public health advice during natural disasters, we examined consumer behaviour during two water notices that were issued as a result of serious flooding. During the summer of 2007, 140,000 homes in Gloucestershire, United Kingdom, that are supplied water from Mythe treatment works, lost their drinking water for up to 17 days. Consumers were issued a 'Do Not Drink' notice when the water was restored, which was subsequently replaced with a 'Boil Water' notice. The rare occurrence of two water notices provided a unique opportunity to compare compliance with public health advice. Information source use and other factors that may affect consumer perception and behaviour were also explored. Method A postal questionnaire was sent to 1,000 randomly selected households. Chi-square, ANOVA, MANOVA and generalised estimating equation (with and without prior factor analysis) were used for quantitative analysis. Results In terms of information sources, we found high use of and clear preference for the local radio throughout the incident, but family/friends/neighbours also proved crucial at the onset. Local newspapers and the water company were associated with clarity of advice and feeling informed, respectively. Older consumers and those in paid employment were particularly unlikely to read the official information leaflets. We also found a high degree of confusion regarding which notice was in place at which time, with correct recall varying between 23.2%-26.7%, and a great number of consumers believed two notices were in place simultaneously. In terms of behaviour, overall non-compliance levels were significantly higher for the 'Do Not Drink' notice (62.9%) compared to the 'Boil Water' notice (48.3%); consumers in paid

  12. HORIZONTAL BOILING REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  13. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOEpatents

    Hill, Paul R.

    1994-01-01

    A boiling water reactor having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit.

  14. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOEpatents

    Hill, P.R.

    1994-12-27

    A boiling water reactor is described having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit. 4 figures.

  15. New Folklore about Water.

    ERIC Educational Resources Information Center

    LeMaire, Peter; Waiveris, Charles

    1995-01-01

    Describes experiments designed to investigate the cooling rate of microwave-boiled water as compared to that of stove-boiled water. Concludes that within experimental limits, microwave-boiled water and stove-boiled water cool at the same rate. (JRH)

  16. Surface conditions of Nitinol wires, tubing, and as-cast alloys. The effect of chemical etching, aging in boiling water, and heat treatment.

    PubMed

    Shabalovskaya, S A; Anderegg, J; Laab, F; Thiel, P A; Rondelli, G

    2003-04-15

    The surface conditions of Nitinol wires and tubing were evaluated with the use of X-ray photoelectron spectroscopy, high-resolution Auger spectroscopy, electron backscattering, and scanning-electron microscopy. Samples were studied in the as-received state as well as after chemical etching, aging in boiling water, and heat treatment, and compared to a mechanically polished 600-grit-finish Nitinol surface treated similarly. General regularities in surface behavior induced by the examined surface treatments are similar for wires, tubing, and studied as-cast alloy, though certain differences in surface Ni concentration were observed. Nitinol wires and tubing from various suppliers demonstrated great variability in Ni surface concentration (0.5-15 at.%) and Ti/Ni ratio (0.4-35). The wires in the as-received state, with the exception of those with a black oxide originating in the processing procedure, revealed nickel and titanium on the surface in both elemental and oxidized states, indicating a nonpassive surface. Shape-setting heat treatment at 500 degrees C for 15 min resulted in tremendous increase in the surface Ni concentration and complete Ni oxidation. Preliminary chemical etching and boiling in water successfully prevented surface enrichment in Ni, initially resulting from heat treatment. A stoichiometric uniformly amorphous TiO(2) oxide generated during chemical etching and aging in boiling water was reconstructed at 700 degrees C, revealing rutile structure. Copyright 2003 Wiley Periodicals, Inc.

  17. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    NASA Astrophysics Data System (ADS)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed

  18. The Parable of the Boiled System Safety Professional: Drift to Failure

    NASA Technical Reports Server (NTRS)

    Shivers, C. Herbert

    2011-01-01

    Recall from the Parable of the Boiled Frog, that tossing a frog into boiling water causes the frog to jump out and hop away while placing a frog in suitable temperature water and slowly bringing the water to a boil results in the frog boiling due to not being aware of the slowly increasing danger, theoretically, of course. System safety professionals must guard against allowing dangers to creep unnoticed into their projects and be ever alert to notice signs of impending problems. People have used various phrases related to the idea, most notably, latent conditions, James Reason in Managing the Risks of Organizational Accidents (1, pp 10-11), Drift to Failure, Sydney Dekker (2, pp 82-86) in Resilience Engineering: Chronicling the Emergence of Confused Consensus in Resilience Engineering: Concepts and Precepts, Hollnagel, Woods and Leveson, and normalization of deviance, Diane Vaughan in The Challenger Launch Decision: Risky Technology, Culture, and Deviance at NASA (3). Reason also said, If eternal vigilance is the price of liberty, then chronic unease is the price of safety (1, p 37). Our challenge as system safety professionals is to be aware of the emergence of signals that warn us of slowly eroding safety margins. This paper will discuss how system safety professionals might better perform in that regard.

  19. Experimental investigation of nucleate pool boiling characteristics of high concentrated alumina/water nanofluids

    NASA Astrophysics Data System (ADS)

    Kshirsagar, Jagdeep M.; Shrivastava, Ramakant

    2018-06-01

    In Present study, the critical heat flux (CHF) and boiling heat transfer coefficient of alumina nanoparticles with the base fluid as deionised water is measured. The selected concentrations of nanofluids for the experimentation are from 0.3, 0.6, 0.9, 1.2 and 1.5 wt%. The main objective to select higher concentration is that to study the surface morphology of heater surface at higher concentrations and its effect on critical heat flux and heat transfer coefficient. It is observed that the critical heat flux enhancement rate decreases as concentration increases and surface roughness of heater surface decreases after 1.2 wt% concentration of nanofluids.

  20. Recent Work on Flow Boiling and Condensation in a Single Microchannel

    NASA Astrophysics Data System (ADS)

    Quan, Xiaojun; Wang, Guodong; Cheng, Ping; Wu, Huiying

    2007-06-01

    Recent visualization and measurements results on flow boiling of water and condensation of steam in a single microchannel, carried out at Shanghai Jiaotong University, is summarized in this paper. For flow boiling of water, experiments were conducted in a single microchannel with a trapezoidal cross-section having a hydraulic diameter of 186 μm and a length of 30 mm. A boiling flow pattern map in terms of heat flux versus mass flux, showing the unstable and stable boiling flow regimes in the microchannel, is obtained. For the investigation of condensation, experiments were carried out for steam condensing inside a single microchannel with a length of 60mm having a hydraulic diameter of 87 μm and 120μm respectively. The location of transition from annular flow to plug/slug flow in a microchannel is found to be dependent on both the dimensionless condensation heat transfer rate as well as the Reynolds number of the steam. The frequency for the occurrence of the injection flow is found to increase with the increasing mass flux.

  1. Boiling process modelling peculiarities analysis of the vacuum boiler

    NASA Astrophysics Data System (ADS)

    Slobodina, E. N.; Mikhailov, A. G.

    2017-06-01

    The analysis of the low and medium powered boiler equipment development was carried out, boiler units possible development directions with the purpose of energy efficiency improvement were identified. Engineering studies for the vacuum boilers applying are represented. Vacuum boiler heat-exchange processes where boiling water is the working body are considered. Heat-exchange intensification method under boiling at the maximum heat- transfer coefficient is examined. As a result of the conducted calculation studies, heat-transfer coefficients variation curves depending on the pressure, calculated through the analytical and numerical methodologies were obtained. The conclusion about the possibility of numerical computing method application through RPI ANSYS CFX for the boiling process description in boiler vacuum volume was given.

  2. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    DOE PAGES

    Li, Q.; Kang, Q. J.; Francois, M. M.; ...

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic featuresmore » and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.« less

  3. THE FREEZING POINT DEPRESSION OF MAMMALIAN TISSUES AFTER SUDDEN HEATING IN BOILING DISTILLED WATER

    PubMed Central

    Appelboom, Johannes W. Th.; Brodsky, William A.; Tuttle, William S.; Diamond, Israel

    1958-01-01

    The calculated freezing point depression of freshly excised boiled mammalian tissue is approximately the same as that of plasma. The boiling procedure was chosen to eliminate the influence of metabolism on the level of the freezing point depression. Problems created by the boiling, such as equilibrium between tissue and diluent, change in activity coefficient by dilution, and loss of CO2 content, are discussed. A frozen crushed tissue homogenate is hypertonic to plasma. Boiling and dilution of such hypertonic homogenate exposed to room temperature for 5 to 15 minutes did not produce significant or unexplicable decreases in its osmotic activity. Moreover, freezing and crushing of a boiled diluted tissue did not produce any increase of the isoosmotic level of freezing point depression. It is possible to explain these data either with the hypothesis of hypertonic cell fluid or with that of isotonic cell fluid. In the case of an assumed isotonic cell fluid, data can be explained with one assumption, experimentally backed. In the case of an assumed hypertonic theory data can be explained only with the help of at least three ad hoc postulates. The data support the validity of the classical concept which holds that cell fluid is isotonic to extracellular fluid. PMID:13563805

  4. BOILING SLURRY REACTOR AND METHOD FO CONTROL

    DOEpatents

    Petrick, M.; Marchaterre, J.F.

    1963-05-01

    The control of a boiling slurry nuclear reactor is described. The reactor consists of a vertical tube having an enlarged portion, a steam drum at the top of the vertical tube, and at least one downcomer connecting the steam drum and the bottom of the vertical tube, the reactor being filled with a slurry of fissionabie material in water of such concentration that the enlarged portion of the vertical tube contains a critical mass. The slurry boils in the vertical tube and circulates upwardly therein and downwardly in the downcomer. To control the reactor by controlling the circulation of the slurry, a gas is introduced into the downcomer. (AEC)

  5. Performance of Charcoal Cookstoves for Haiti Part 1: Results from the Water Boiling Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booker, Kayje; Han, Tae Won; Granderson, Jessica

    2011-06-01

    In April 2010, a team of scientists and engineers from Lawrence Berkeley National Lab (LBNL) and UC Berkeley, with support from the Darfur Stoves Project (DSP), undertook a fact-finding mission to Haiti in order to assess needs and opportunities for cookstove intervention. Based on data collected from informal interviews with Haitians and NGOs, the team, Scott Sadlon, Robert Cheng, and Kayje Booker, identified and recommended stove testing and comparison as a high priority need that could be filled by LBNL. In response to that recommendation, five charcoal stoves were tested at the LBNL stove testing facility using a modified formmore » of version 3 of the Shell Foundation Household Energy Project Water Boiling Test (WBT). The original protocol is available online. Stoves were tested for time to boil, thermal efficiency, specific fuel consumption, and emissions of CO, CO{sub 2}, and the ratio of CO/CO{sub 2}. In addition, Haitian user feedback and field observations over a subset of the stoves were combined with the experiences of the laboratory testing technicians to evaluate the usability of the stoves and their appropriateness for Haitian cooking. The laboratory results from emissions and efficiency testing and conclusions regarding usability of the stoves are presented in this report.« less

  6. Effect of dynamic load on water flow boiling CHF in rectangular channels

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Song, Baoyin; Li, Gang; Cao, Xi

    2018-06-01

    Experimental investigation into flow boiling critical heat flux (CHF) characteristics in narrow rectangular channels was performed under rotating state using distilled water as working fluids. The effects of mass velocity, inlet temperature and heating orientation on CHF under dynamic load were analyzed and discussed in this paper. The results show that the dynamic load obviously influences the CHF through enhancing two-phase mixing up and bubble separating. The greater the dynamic load, the higher the CHF values. The CHF values increase with the increase of mass velocity and inlet subcooling in the experimental range. The magnitude of CHF increase with the dynamic load for bottom heating is greater than that for up heating. The present study and its newly correlation may provide some technical supports in designing the airborne vapor cycle system.

  7. 3. RW Meyer Sugar Mill: 18761889. Sorghum pan and boiling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. RW Meyer Sugar Mill: 1876-1889. Sorghum pan and boiling range flue. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: South side of sorghum pan and boiling range flue. In the sorghum pan heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. Hot gasses moved through the flue underneath the entire copper bottom of the sorghum pan from the furnace (east) end to the smokestack (west) end of the boiling range. The sorghum pan sides are of redwood. The flue is built of fire-brick, masonry, and portland cement. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  8. Effect of soaking, boiling, and steaming on total phenolic contentand antioxidant activities of cool season food legumes.

    PubMed

    Xu, Baojun; Chang, Sam K C

    2008-09-01

    The effects of soaking, boiling and steaming processes on the total phenolic components and antioxidant activity in commonly consumed cool season food legumes (CSFL's), including green pea, yellow pea, chickpea and lentil were investigated. As compared to original unprocessed legumes, all processing steps caused significant (p<0.05) decreases in total phenolic content (TPC), DPPH free radical scavenging activity (DPPH) in all tested CSFL's. All soaking and atmospheric boiling treatments caused significant (p<0.05) decreases in oxygen radical absorbing capacity (ORAC). However, pressure boiling and pressure steaming caused significant (p<0.05) increases in ORAC values. Steaming treatments resulted in a greater retention of TPC, DPPH, and ORAC values in all tested CSFL's as compared to boiling treatments. To obtain cooked legumes with similar palatability and firmness, pressure boiling shortened processing time as compared to atmospheric boiling, resulted in insignificant differences in TPC, DPPH for green and yellow pea. However, TPC and DPPH in cooked lentils differed significantly between atmospheric and pressure boiling. As compared to atmospheric processes, pressure processes significantly increased ORAC values in both boiled and steamed CSFL's. Greater TPC, DPPH and ORAC values were detected in boiling water than that in soaking and steaming water. Boiling also caused more solid loss than steaming. Steam processing exhibited several advantages in retaining the integrity of the legume appearance and texture of the cooked product, shortening process time, and greater retention of antioxidant components and activities. Copyright © 2008 Elsevier Ltd. All rights reserved.

  9. Experiments on the effects of nanoparticles on subcooled nucleate pool boiling

    NASA Astrophysics Data System (ADS)

    Kangude, Prasad; Bhatt, Dhairya; Srivastava, Atul

    2018-05-01

    The effect of nanoparticles on a single bubble-based nucleate pool boiling phenomenon under subcooled conditions has been studied. Water (as the base fluid) and two different concentrations of water-silica nanofluids (0.005% and 0.01% V/V) have been employed as the working fluids. The boiling experiments have been conducted in a specially designed chamber, wherein an ITO-coated heater substrate has been used to induce single bubble nucleation. Measurements have been performed in a completely non-intrusive manner using one of the refractive index-based diagnostics techniques, namely, rainbow schlieren deflectometry. Thus, the thermal gradients prevailing in the boiling chamber have directly been mapped as a two-dimensional distribution of hue values that are recorded in the form of rainbow schlieren images. The schlieren-based measurements clearly revealed the plausible influence of nanoparticles on the strength of temperature gradients prevailing in the boiling chamber. As compared to the base fluid, the experiments with dilute nanofluids showed that the suspended nanoparticles tend to diffuse (homogenize) the strength of temperature gradients, both in the vicinity of the heated substrate and in the thermal boundary layer enveloping the vapor bubble. An overall reduction in the bubble volume and dynamic contact angle was seen with increasing concentrations of dilute nanofluids. In addition, the vapor bubble was found to assume a more spherical shape at higher concentrations of dilute nanofluids in comparison to its shape with water-based experiments. Clear oscillations of the vapor bubble in the subcooled pool of liquids (water and/or nanofluids) were observed, the frequency of which was found to be significantly reduced as the nanoparticle concentration was increased from 0% (water) to 0.01% (V/V). A force balance analysis has been performed to elucidate the plausible mechanisms explaining the observed trends of the oscillation frequencies of the vapor bubble.

  10. An Experimental Study of Boiling in Reduced and Zero Gravity Fields

    NASA Technical Reports Server (NTRS)

    Usiskin, C. M.; Siegel, R.

    1961-01-01

    A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.

  11. Boiling of the interface between two immiscible liquids below the bulk boiling temperatures of both components.

    PubMed

    Pimenova, Anastasiya V; Goldobin, Denis S

    2014-11-01

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems.

  12. Single-bubble boiling under Earth's and low gravity

    NASA Astrophysics Data System (ADS)

    Khusid, Boris; Elele, Ezinwa; Lei, Qian; Tang, John; Shen, Yueyang

    2017-11-01

    Miniaturization of electronic systems in terrestrial and space applications is challenged by a dramatic increase in the power dissipation per unit volume with the occurrence of localized hot spots where the heat flux is much higher than the average. Cooling by forced gas or liquid flow appears insufficient to remove high local heat fluxes. Boiling that involves evaporation of liquid in a hot spot and condensation of vapor in a cold region can remove a significantly larger amount of heat through the latent heat of vaporization than force-flow cooling can carry out. Traditional methods for enhancing boiling heat transfer in terrestrial and space applications focus on removal of bubbles from the heating surface. In contrast, we unexpectedly observed a new boiling regime of water under Earth's gravity and low gravity in which a bubble was pinned on a small heater up to 270°C and delivered a heat flux up to 1.2 MW/m2 that was as high as the critical heat flux in the classical boiling regime on Earth .Low gravity measurements conducted in parabolic flights in NASA Boeing 727. The heat flux in flight and Earth's experiments was found to rise linearly with increasing the heater temperature. We will discuss physical mechanisms underlying heat transfer in single-bubble boiling. The work supported by NASA Grants NNX12AM26G and NNX09AK06G.

  13. Single-Crystalline UiO-67-Type Porous Network Stable to Boiling Water, Solvent Loss, and Oxidation.

    PubMed

    Wong, Yan-Lung; Yee, Ka-Kit; Hou, Yun-Long; Li, Jiaqian; Wang, Zuankai; Zeller, Matthias; Hunter, Allen D; Xu, Zhengtao

    2018-06-04

    With methylthio groups flanking the carboxyl groups, the 3,3',5,5'-tetrakis(methylthio)biphenyl dicarboxylate (TMBPD) linker forms a zirconium(IV) carboxylate porous framework featuring the topology of the UiO-67 prototype, i.e., with a face-centered-cubic array of the Zr 6 O 4 (OH) 4 clusters. Thioether functionalization proves valuable because the ZrTMBPD crystal is found to be exceptionally stable not only upon long-term exposure to air but also in boiling water and a broad range of pH conditions. The hydrophobicity of the metal-organic framework can also be tuned by simple H 2 O 2 oxidation, as illustrated in the water contact-angle measurement of the pristine and H 2 O 2 -treated ZrTMBPD solid.

  14. New Departure from Nucleate Boiling model relying on first principle energy balance at the boiling surface

    NASA Astrophysics Data System (ADS)

    Demarly, Etienne; Baglietto, Emilio

    2017-11-01

    Predictions of Departure from Nucleate Boiling have been a longstanding challenge when designing heat exchangers such as boilers or nuclear reactors. Many mechanistic models have been postulated over more than 50 years in order to explain this phenomenon but none is able to predict accurately the conditions which trigger the sudden change of heat transfer mode. This work aims at demonstrating the pertinence of a new approach for detecting DNB by leveraging recent experimental insights. The new model proposed departs from all the previous models by making the DNB inception come from an energy balance instability at the heating surface rather than a hydrodynamic instability of the bubbly layer above the surface (Zuber, 1959). The main idea is to modulate the amount of heat flux being exchanged via the nucleate boiling mechanism by the wetted area fraction on the surface, thus allowing a completely automatic trigger of DNB that doesn't require any parameter prescription. This approach is implemented as a surrogate model in MATLAB in order to validate the principles of the model in a simple and controlled geometry. Good agreement is found with the experimental data leveraged from the MIT Flow Boiling at various flow regimes. Consortium for Advanced Simulation of Light Water Reactors (CASL).

  15. Assessment of correlations and models for the prediction of CHF in water subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Celata, G. P.; Cumo, M.; Mariani, A.

    1994-01-01

    The present paper provides an analysis of available correlations and models for the prediction of Critical Heat Flux (CHF) in subcooled flow boiling in the range of interest of fusion reactors thermal-hydraulic conditions, i.e. high inlet liquid subcooling and velocity and small channel diameter and length. The aim of the study was to establish the limits of validity of present predictive tools (most of them were proposed with reference to light water reactors (LWR) thermal-hydraulic studies) in the above conditions. The reference dataset represents almost all available data (1865 data points) covering wide ranges of operating conditions in the frame of present interest (0.1 less than p less than 8.4 MPa; 0.3 less than D less than 25.4 mm; 0.1 less than L less than 0.61 m; 2 less than G less than 90.0 Mg/sq m/s; 90 less than delta T(sub sub,in) less than 230 K). Among the tens of predictive tools available in literature four correlations (Levy, Westinghouse, modified-Tong and Tong-75) and three models (Weisman and Ileslamlou, Lee and Mudawar and Katto) were selected. The modified-Tong correlation and the Katto model seem to be reliable predictive tools for the calculation of the CHF in subcooled flow boiling.

  16. A Boiling-Water-Stable, Tunable White-Emitting Metal-Organic Framework from Soft-Imprint Synthesis.

    PubMed

    He, Jun; Huang, Jian; He, Yonghe; Cao, Peng; Zeller, Matthias; Hunter, Allen D; Xu, Zhengtao

    2016-01-26

    A new avenue for making porous frameworks has been developed by borrowing an idea from molecularly imprinted polymers (MIPs). In lieu of the small molecules commonly used as templates in MIPs, soft metal components, such as CuI, are used to orient the molecular linker and to leverage the formation of the network. Specifically, a linear dicarboxylate linker with thioether side groups reacted simultaneously with Ln(3+) ions and CuI, leading to a bimetallic net featuring strong, chemically hard Eu(3+) -carboxylate links, as well as soft, thioether-bound Cu2 I2 clusters. The CuI block imparts water stability to the host; with the tunable luminescence from the lanthanide ions, this creates the first white-emitting MOF that is stable in boiling water. The Cu2 I2 block also readily reacts with H2 S, and enables sensitive colorimetric detection while the host net remains intact. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nucleate Boiling Heat Transfer Studied Under Reduced-Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Hasan, Mohammad M.

    2000-01-01

    Boiling is known to be a very efficient mode of heat transfer, and as such, it is employed in component cooling and in various energy-conversion systems. In space, boiling heat transfer may be used in thermal management, fluid handling and control, power systems, and on-orbit storage and supply systems for cryogenic propellants and life-support fluids. Recent interest in the exploration of Mars and other planets and in the concept of in situ resource utilization on the Martian and Lunar surfaces highlights the need to understand how gravity levels varying from the Earth's gravity to microgravity (1g = or > g/g(sub e) = or > 10(exp -6)g) affect boiling heat transfer. Because of the complex nature of the boiling process, no generalized prediction or procedure has been developed to describe the boiling heat transfer coefficient, particularly at reduced gravity levels. Recently, Professor Vijay K. Dhir of the University of California at Los Angeles proposed a novel building-block approach to investigate the boiling phenomena in low-gravity to microgravity environments. This approach experimentally investigates the complete process of bubble inception, growth, and departure for single bubbles formed at a well-defined and controllable nucleation site. Principal investigator Professor Vijay K. Dhir, with support from researchers from the NASA Glenn Research Center at Lewis Field, is performing a series of pool boiling experiments in the low-gravity environments of the KC 135 microgravity aircraft s parabolic flight to investigate the inception, growth, departure, and merger of bubbles from single- and multiple-nucleation sites as a function of the wall superheat and the liquid subcooling. Silicon wafers with single and multiple cavities of known characteristics are being used as test surfaces. Water and PF5060 (an inert liquid) were chosen as test liquids so that the role of surface wettability and the magnitude of the effect of interfacial tension on boiling in reduced

  18. Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies.

    PubMed

    Ponce-Robles, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S

    2017-03-01

    Industrial preparation of cork consists of its immersion for approximately 1 hour in boiling water. The use of herbicides and pesticides in oak tree forests leads to absorption of these compounds by cork; thus, after boiling process, they are present in wastewater. Cork boiling wastewater shows low biodegradability and high acute toxicity involving partial inhibition of their biodegradation when conventional biological treatment is applied. In this work, a treatment line strategy based on the combination of advanced physicochemical technologies is proposed. The final objective is the reuse of wastewater in the cork boiling process; thus, reducing consumption of fresh water in the industrial process itself. Coagulation pre-treatment with 0.5 g/L of FeCl 3 attained the highest turbidity elimination (86 %) and 29 % of DOC elimination. Similar DOC removal was attained when using 1 g/L of ECOTAN BIO (selected for ozonation tests), accompanied of 64 % of turbidity removal. Ozonation treatments showed less efficiency in the complete oxidation of cork boiling wastewater, compared to solar photo-Fenton process, under the studied conditions. Nanofiltration system was successfully employed as a final purification step with the aim of obtaining a high-quality reusable permeate stream. Monitoring of unknown compounds by LC-QTOF-MS allowed the qualitative evaluation of the whole process. Acute and chronic toxicity as well as biodegradability assays were performed throughout the whole proposed treatment line.

  19. Big Bubbles in Boiling Liquids: Students' Views

    ERIC Educational Resources Information Center

    Costu, Bayram

    2008-01-01

    The aim of this study was to elicit students' conceptions about big bubbles in boiling liquids (water, ethanol and aqueous CuSO[subscript 4] solution). The study is based on twenty-four students at different ages and grades. The clinical interviews technique was conducted to solicit students' conceptions and the interviews were analyzed to…

  20. Nucleate pool boiling heat transfer characteristics of TiO{sub 2}-water nanofluids at very low concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suriyawong, Adirek; Wongwises, Somchai

    2010-11-15

    A study of nucleate pool boiling heat transfer of TiO{sub 2}-water nanofluids is experimentally conducted. Nanofluids with various concentrations of 0.00005, 0.0001, 0.0005, 0.005, and 0.01 vol.% are employed. Horizontal circular plates made from copper and aluminium with different roughness values of 0.2 and 4 {mu}m are used as heating surfaces. The experiments are performed to explore the effects of nanofluids concentration as well as heating surface material and roughness on nucleate pool boiling characteristics and the heat transfer coefficient under ambient pressure. The results show that based on the copper heated surface which is tested with a concentration ofmore » 0.0001 vol.%, higher nucleate pool boiling heat transfer coefficient is obtained when compared with the base fluid. A 15% increase is obtained for the surface roughness of 0.2 {mu}m and a 4% increase is obtained for roughness of 4 {mu}m. For concentrations higher than 0.0001 vol.%, however, the higher the concentration, the lower the heat transfer coefficient. In the case of aluminium heated surface, the corresponding heat transfer coefficients are larger than for the copper surface by around 30% with a roughness of 0.2 {mu}m and around 27% with a roughness of 4 {mu}m. Moreover, the results also indicate that the heat transfer coefficient obtained based on a roughness of 4 {mu}m is higher than that for a roughness of 0.2 {mu}m by around 12% for aluminium and by around 13% for copper. (author)« less

  1. Nucleate boiling performance on nano/microstructures with different wetting surfaces

    PubMed Central

    2012-01-01

    A study of nucleate boiling phenomena on nano/microstructures is a very basic and useful study with a view to the potential application of modified surfaces as heating surfaces in a number of fields. We present a detailed study of boiling experiments on fabricated nano/microstructured surfaces used as heating surfaces under atmospheric conditions, employing identical nanostructures with two different wettabilities (silicon-oxidized and Teflon-coated). Consequently, enhancements of both boiling heat transfer (BHT) and critical heat flux (CHF) are demonstrated in the nano/microstructures, independent of their wettability. However, the increment of BHT and CHF on each of the different wetting surfaces depended on the wetting characteristics of heating surfaces. The effect of water penetration in the surface structures by capillary phenomena is suggested as a plausible mechanism for the enhanced CHF on the nano/microstructures regardless of the wettability of the surfaces in atmospheric condition. This is supported by comparing bubble shapes generated in actual boiling experiments and dynamic contact angles under atmospheric conditions on Teflon-coated nano/microstructured surfaces. PMID:22559173

  2. Full evaporation headspace gas chromatography for sensitive determination of high boiling point volatile organic compounds in low boiling matrices.

    PubMed

    Mana Kialengila, Didi; Wolfs, Kris; Bugalama, John; Van Schepdael, Ann; Adams, Erwin

    2013-11-08

    Determination of volatile organic components (VOC's) is often done by static headspace gas chromatography as this technique is very robust and combines easy sample preparation with good selectivity and low detection limits. This technique is used nowadays in different applications which have in common that they have a dirty matrix which would be problematic in direct injection approaches. Headspace by nature favors the most volatile compounds, avoiding the less volatile to reach the injector and column. As a consequence, determination of a high boiling solvent in a lower boiling matrix becomes challenging. Determination of VOCs like: xylenes, cumene, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), benzyl alcohol (BA) and anisole in water or water soluble products are an interesting example of the arising problems. In this work, a headspace variant called full evaporation technique is worked out and validated for the mentioned solvents. Detection limits below 0.1 μg/vial are reached with RSD values below 10%. Mean recovery values ranged from 92.5 to 110%. The optimized method was applied to determine residual DMSO in a water based cell culture and DMSO and DMA in tetracycline hydrochloride (a water soluble sample). Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1988-01-01

    Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.

  4. Preliminary phenomena identification and ranking tables for simplified boiling water reactor Loss-of-Coolant Accident scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroeger, P.G.; Rohatgi, U.S.; Jo, J.H.

    1998-04-01

    For three potential Loss-of-Coolant Accident (LOCA) scenarios in the General Electric Simplified Boiling Water Reactors (SBWR) a set of Phenomena Identification and Ranking Tables (PIRT) is presented. The selected LOCA scenarios are typical for the class of small and large breaks generally considered in Safety Analysis Reports. The method used to develop the PIRTs is described. Following is a discussion of the transient scenarios, the PIRTs are presented and discussed in detailed and in summarized form. A procedure for future validation of the PIRTs, to enhance their value, is outlined. 26 refs., 25 figs., 44 tabs.

  5. Nutrition content of brisket point end of part Simental Ongole Crossbred meat in boiled various temperature

    NASA Astrophysics Data System (ADS)

    Riyanto, J.; Sudibya; Cahyadi, M.; Aji, A. P.

    2018-01-01

    This aim of this study was to determine the quality of nutritional contents of beef brisket point end of Simental Ongole Crossbred meat in various boiling temperatures. Simental Ongole Crossbred had been fattened for 9 months. Furthermore, they were slaughtered at slaughterhouse and brisket point end part of meat had been prepared to analyse its nutritional contents using Food Scan. These samples were then boiled at 100°C for 0 (TR), 15 (R15), and 30 (R30) minutes, respectively. The data was analysed using Randomized Complete Design (CRD) and Duncan’s multiple range test (DMRT) had been conducted to differentiate among three treatments. The results showed that boiling temperatures significantly affected moisture, and cholesterol contents of beef (P<0.05) while fat content was not significantly affected by boiling temperatures. The boiling temperature decreased beef water contents from 72.77 to 70.84%, on the other hand, the treatment increased beef protein and cholesterol contents from 20.77 to 25.14% and 47.55 to 50.45 mg/100g samples, respectively. The conclusion of this study was boiling of beef at 100°C for 15 minutes and 30 minutes decreasing water content and increasing protein and cholesterol contents of brisket point end of Simental Ongole Crossbred beef.

  6. Marangoni Effects in the Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    Ahmed, Sayeed; Carey, Van P.; Motil, Brian

    1996-01-01

    Results of very recent experimental studies indicate that during nucleate boiling in some binary mixture, Marangoni effects augment the gravity driven flow of liquid towards the heated surface. With gravity present, it is impossible to separate the two effects. The reduced gravity environment gives an unique opportunity to explore th role of Marangoni effects on the boiling mechanisms free of gravitational body forces that obscure the role of such effects. However, recent experimental results suggest that under reduced gravity conditions, Marangoni effects is the dominant mechanism of vapor-liquid exchange at the surface for some binary mixture. To further explore such effects, experiments have been conducted with water/2-propanol mixtures at three different concentrations under normal gravity with different orientations of the heater surface and under reduce gravity aboard the DC-9 aircraft at NASA Lewis Research Center. The system pressure was sub atmospheric (approx. 8 kP at 1g(n)) and the bulk liquid temperature varied from low subcooling to near saturation. The molar concentrations of 2-propanol tested were 0.015, 0.025, and 0.1. Boiling curves were obtained both for high gravity (approx. 2g(n)) and reduce gravity (approx. 0.01g(n)). For each concentration of 2-propanol, the critical heat flux has been determined in the flight experiments only for reduced gravity conditions. Comparison of boiling curves and CHF obtained under l-g(n) an reduced gravity indicates that boiling mechanism in this mixtures is nearly independent of gravity. The results also indicate that the Marangoni mechanism is strong enough in these mixtures to sustain the boiling under reduced gravity conditions.

  7. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    PubMed

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Overnight soaking or boiling of "Matooke" to reduce potassium content for patients with chronic kidney disease: does it really work?

    PubMed

    Asiimwe, J; Sembajwe, L F; Senoga, A; Bakiika, E; Muwonge, H; Kalyesubula, R

    2013-09-01

    There is an increase in number of patients with chronic kidney disease (CKD) in Uganda's health facilities looking for different options of preparing matooke (bananas), their staple food. To establish and evaluate an effective method of removing potassium from bananas (matooke). Bananas were sampled from 5 markets in Kampala, Uganda. Deionized water was used to soak the bananas and the potassium concentration was determined using an atomic absorption spectrophotometer in both the bananas and water after soaking for varying time intervals. We also determined the potassium concentrations in the bananas and the water after boiling the bananas at 200 degrees Celsius at intervals of 10 minutes (for 60 minutes). The potassium concentration did not appear to change on soaking alone without boiling. However, on boiling, the concentration in the bananas decreased from about 1.4 ppm to approx. 1 ppm after 60 min; yet the concentration of potassium released into deionized water increased steadily from 0.0 ppm to about 1.2 ppm after 60 min of boiling. This study demonstrates that boiling the bananas is a more effective way of removing the potassium from bananas than simply soaking them.

  9. Subcooled forced convection boiling of trichlorotrifluoroethane

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Panian, D. J.

    1972-01-01

    Experimental heat-transfer data were obtained for the forced-convection boiling of trichlorotrifluoroethane (R-113 or Freon-113) in a vertical annular test annular test section. The 97 data points obtained covered heat transfer by forced convection, local boiling, and fully-developed boiling. Correlating methods were obtained which accurately predicted the heat flux as a function of wall superheat (boiling curve) over the range of parameters studied.

  10. Optimizing the Combination of Smoking and Boiling on Quality of Korean Traditional Boiled Loin (M. longissimus dorsi)

    PubMed Central

    Choi, Yun-Sang; Kim, Hyun-Wook; Kim, Young-Boong; Kim, Cheon-Jei

    2015-01-01

    The combined effects of smoking and boiling on the proximate composition, technological quality traits, shear force, and sensory characteristics of the Korean traditional boiled loin were studied. Cooking loss, processing loss, and shear force were lower in the smoked/boiled samples than those in the control (without smoking treatment) (p<0.05). The results showed that the boiled loin samples between the control and treatment did not differ significantly in protein, fat, or ash contents, or pH values (p>0.05). The treated samples had higher score for overall acceptability than the control (p<0.05). Thus, these results show that the Korean traditional boiled loin treated with smoking for 60 min before boiling had improved physicochemical properties and sensory characteristics. PMID:26761822

  11. Universality of oscillating boiling in Leidenfrost transition

    NASA Astrophysics Data System (ADS)

    Tran, Tuan; Khavari, Mohammad

    2017-11-01

    The Leidenfrost transition leads a boiling system to the boiling crisis, a state in which the liquid loses contact with the heated surface due to excessive vapor generation. Here, using experiments of liquid droplets boiling on a heated surface, we report a new phenomenon, termed oscillating boiling, at the Leidenfrost transition. We show that oscillating boiling results from the competition between two effects: separation of liquid from the heated surface due to localized boiling, and rewetting. We argue theoretically that the Leidenfrost transition can be predicted based on its link with the oscillating boiling phenomenon, and verify the prediction experimentally for various liquids. This work was funded by Nanyang Technological University and A*STAR, Singapore.

  12. Hydrolysis of Glycosidic Flavonoids during the Preparation of Danggui Buxue Tang: An Outcome of Moderate Boiling of Chinese Herbal Mixture

    PubMed Central

    Zhang, Wendy Li; Chen, Jian-Ping; Lam, Kelly Yin-Ching; Zhan, Janis Ya-Xian; Yao, Ping; Dong, Tina Ting-Xia; Tsim, Karl Wah-Keung

    2014-01-01

    Chemical change during boiling of herbal mixture is a puzzle. By using Danggui Buxue Tang (DBT), a herbal decoction that contains Astragali Radix (AR) and Angelicae Sinensis Radix (ASR), we developed a model in analyzing the hydrolysis of flavonoid glycosides during the boiling of herbal mixture in water. A proper preparation of DBT is of great benefit to the complete extraction of bioactive ingredients. Boiling of DBT in water increased the solubility of AR-derived astragaloside IV, calycosin, formononetin, calycosin-7-O-β-D-glucoside, and ononin in a time- and temperature-dependent manner: the amounts of these chemicals reached a peak at 2 h. The glycosidic resides of AR, calycosin-7-O-β-D-glucoside, and ononin could be hydrolyzed during the moderate boiling process to form calycosin and formononetin, respectively. The hydrolysis efficiency was strongly affected by pH, temperature, and amount of herbs. Interestingly, the preheated herbs were not able to show this hydrolytic activity. The current results supported the rationality of ancient preparation of DBT in boiling water by moderate heat. PMID:24744813

  13. BOILING HOUSE, GROUND FLOOR. WAREHOUSE TO LEFT REAR, MASSECUITTE HEATERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, GROUND FLOOR. WAREHOUSE TO LEFT REAR, MASSECUITTE HEATERS ABOVE RIGHT, LOW GRADE CENTRIFUGALS BELOW. CRYSTALLIZER HOT WATER TANK TO REAR. VIEW FROM NORTHEAST - Lihue Plantation Company, Sugar Mill Building, Haleko Road, Lihue, Kauai County, HI

  14. Enhanced Droplet Control by Transition Boiling

    PubMed Central

    Grounds, Alex; Still, Richard; Takashina, Kei

    2012-01-01

    A droplet of water on a heated surface can levitate over a film of gas produced by its own evaporation in the Leidenfrost effect. When the surface is prepared with ratchet-like saw-teeth topography, these droplets can self-propel and can even climb uphill. However, the extent to which the droplets can be controlled is limited by the physics of the Leidenfrost effect. Here, we show that transition boiling can be induced even at very high surface temperatures and provide additional control over the droplets. Ratchets with acute protrusions enable droplets to climb steeper inclines while ratchets with sub-structures enable their direction of motion to be controlled by varying the temperature of the surface. The droplets' departure from the Leidenfrost regime is assessed by analysing the sound produced by their boiling. We anticipate these techniques will enable the development of more sophisticated methods for controlling small droplets and heat transfer. PMID:23056912

  15. Enhanced Droplet Control by Transition Boiling

    NASA Astrophysics Data System (ADS)

    Grounds, Alex; Still, Richard; Takashina, Kei

    2012-10-01

    A droplet of water on a heated surface can levitate over a film of gas produced by its own evaporation in the Leidenfrost effect. When the surface is prepared with ratchet-like saw-teeth topography, these droplets can self-propel and can even climb uphill. However, the extent to which the droplets can be controlled is limited by the physics of the Leidenfrost effect. Here, we show that transition boiling can be induced even at very high surface temperatures and provide additional control over the droplets. Ratchets with acute protrusions enable droplets to climb steeper inclines while ratchets with sub-structures enable their direction of motion to be controlled by varying the temperature of the surface. The droplets' departure from the Leidenfrost regime is assessed by analysing the sound produced by their boiling. We anticipate these techniques will enable the development of more sophisticated methods for controlling small droplets and heat transfer.

  16. Technical support to the Nuclear Regulatory Commission for the boiling water reactor blowdown heat transfer program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, R.E.

    Results are presented of studies conducted by Aerojet Nuclear Company (ANC) in FY 1975 to support the Nuclear Regulatory Commission (NRC) on the boiling water reactor blowdown heat transfer (BWR-BDHT) program. The support provided by ANC is that of an independent assessor of the program to ensure that the data obtained are adequate for verification of analytical models used for predicting reactor response to a postulated loss-of-coolant accident. The support included reviews of program plans, objectives, measurements, and actual data. Additional activity included analysis of experimental system performance and evaluation of the RELAP4 computer code as applied to the experiments.

  17. Controlled boiling on Enceladus. 2. Model of the liquid-filled cracks

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.; Nakajima, Miki

    2016-07-01

    Controlled boiling will occur on Enceladus whenever a long, narrow conduit connects liquid water to the vacuum of space. In a companion paper we focus on the upward flow of the vapor and show how it controls the evaporation rate through backpressure, which arises from friction on the walls. In this paper we focus on the liquid and show how it flows through the conduit up to its level of neutral buoyancy. For an ice shell 20 km thick, the liquid water interface could be 2 km below the surface. We find that the evaporating surface can be narrow. There is no need for a large vapor chamber that acts as a plume source. Freezing on the icy walls and the evaporating surface is avoided if the crack width averaged over the length of the tiger stripes is greater than 1 m and the salinity of the liquid is greater than 20 g kg-1. Controlled boiling plays a crucial role in our model, which makes it different from earlier published models. The liquids on Enceladus are boiling because there is no overburden pressure-the saturation vapor pressure is equal to the total pressure. Salinity plays a crucial role in preventing freezing, and we argue that the subsurface oceans of icy satellites can have water vapor plumes only if their salinities are greater than about 20 g kg-1.

  18. Effects of Hull Scratching, Soaking, and Boiling on Antinutrients in Japanese Red Sword Bean (Canavalia gladiata).

    PubMed

    Une, Satsuki; Nonaka, Koji; Akiyama, Junich

    2016-10-01

    The effects of hull processing, soaking, and boiling on the content or activity of antinutrients in the red sword bean (RSB; Canavalia gladiata) were investigated. RSB seeds were compared with kidney bean (KB; Phaseolus vulgaris) seeds that are starch based and often used as processed products in Japan. RSB seeds had higher weight, thicker hull, and higher protein content, but lower moisture content compared with KB seeds. Because of the strong and thick hull, the relative water absorption of untreated RSB seeds was very low after soaking. Seeds were soaked after dehulling, scratching, and roasting. The results showed that hull scratching was the optimal method for increasing water absorption during soaking compared with dehulling and roasting. After soaking, the water used for soaking was discarded, since it had a high content of polyphenols and bitter taste, and RSB seeds were boiled in fresh water for 20, 40, and 60 min. The results showed that polyphenol and tannin contents, antioxidant activity, and hemagglutinating activity, as well as maltase, sucrase, and trypsin inhibitor activities in scratched RSB seeds decreased significantly after boiling compared with those in raw seeds, whereas amylase inhibitor activity showed no significant change. Overall, it was concluded that the combination of hull scratching, soaking, and boiling in fresh water can reduce thermal-stable or sensitive antinutrients in RSB and thus, significantly improve its nutritional value. © 2016 Institute of Food Technologists®.

  19. Evolution of steam-water flow structure under subcooled water boiling at smooth and structured heating surfaces

    NASA Astrophysics Data System (ADS)

    Vasiliev, N. V.; Zeigarnik, Yu A.; Khodakov, K. A.

    2017-11-01

    Experimentally studying of subcooled water boiling in rectangular channel electrically heated from one side was conducted. Flat surfaces, both smooth and coated by microarc oxidation technology, were used as heating surfaces. The tests were conducted at atmospheric pressure in the range of mass flow rate from 650 to 1300 kg/(m2 s) and water subcooling relative to saturation temperature from 23 to 75 °C. Using high-speed filming a change in the two-phase flow structure and its statistic characteristics (nucleation sites density, vapor bubble distribution by size, etc.) were studied. With an increase in the heat flux density (with the mass flow rate and subcooling being the same) and amount and size of the vapor bubbles increased also. At a relatively high heat flux density, non-spherical vapor agglomerates appeared at the heating surface as a result of coalescence of small bubbles. They originated in chaotic manner in arbitrary points of the heating surface and then after random evolution in form and size collapsed. The agglomerate size reached several millimeters and their duration of life was several milliseconds. After formation of large vapor agglomerates, with a further small increase in heat flux density a burnout of the heating surface occurred. In most cases the same effect took place if the large agglomerates were retained for several minutes.

  20. Characteristics of Pool Boiling on Graphite-Copper Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2002-01-01

    Nucleate pool boiling performance of different liquids on graphite-copper composite (Gr-Cu) surfaces has been experimentally studied and modeled. Both highly wetting fluids, such as freon-113 and pentane, and a moderately wetting fluid (water) were tested on the Gr-Cu surfaces with different graphite-fiber volume fractions to reveal the enhancement effects of the composite surfaces on the nucleate pool boiling. Results of the experiments show that the graphite-fiber volume fraction has an optimum value. The Gr-Cu composite surface with 25 percent graphite-fiber volume (f=0.25) has a maximum enhancement effect on the nucleate boiling heat transfer comparing to the pure copper surface. For the highly wetting fluid, the nucleate boiling heat transfer is generally enhanced on the Gr- Cu composite surfaces by 3 to 6 times shown. In the low heat flux region, the enhancement is over 6 times, but in the high heat flux region, the enhancement is reduced to about 40%. For the moderately wetting fluid (water), stronger enhancement of nucleate boiling heat transfer is achieved on the composite surface. It shown the experimental results in which one observes the nucleate boiling heat transfer enhancement of 5 to 10 times in the low heat flux region and an enhancement of 3 to 5 times in the high heat flux region. Photographs of bubble departure during the initial stage of nucleate boiling indicate that the bubbles detached from the composite surface are much smaller in diameter than those detached from the pure copper surface. Typical photographs are presented.It shows that the bubbles departed from the composite surface have diameters of only O(0.1) mm, while those departed from the pure copper surface have diameters of O(1) mm. It is also found that the bubbles depart from the composite surface at a much higher frequency, thus forming vapor columns. These two phenomena combined with high thermal conductivity of the graphite fiber are considered the mechanisms for such a

  1. Preliminary design and hazards report. Boiling Reactor Experiment V (BORAX V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, R. E.

    1960-02-01

    The preliminary objectives of the proposed BORAX V program are to test nuclear superheating concepts and to advance the technology of boiling-water-reactor design by performing experiments which will improve the understanding of factors limiting the stability of boiling reactors at high power densities. The reactor vessel is a cylinder with ellipsoidal heads, made of carbon steel clad internally with stainless steel. Each of the three cores is 24 in. high and has an effective diameter of 39 in. This is a preliminary report. (W.D.M.)

  2. Boiling water reactor radiation shielded Control Rod Drive Housing Supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baversten, B.; Linden, M.J.

    1995-03-01

    The Control Rod Drive (CRD) mechanisms are located in the area below the reactor vessel in a Boiling Water Reactor (BWR). Specifically, these CRDs are located between the bottom of the reactor vessel and above an interlocking structure of steel bars and rods, herein identified as CRD Housing Supports. The CRD Housing Supports are designed to limit the travel of a Control Rod and Control Rod Drive in the event that the CRD vessel attachement went to fail, allowing the CRD to be ejected from the vessel. By limiting the travel of the ejected CRD, the supports prevent a nuclearmore » overpower excursion that could occur as a result of the ejected CRD. The Housing Support structure must be disassembled in order to remove CRDs for replacement or maintenance. The disassembly task can require a significant amount of outage time and personnel radiation exposure dependent on the number and location of the CRDs to be changed out. This paper presents a way to minimize personal radiation exposure through the re-design of the Housing Support structure. The following paragraphs also delineate a method of avoiding the awkward, manual, handling of the structure under the reactor vessel during a CRD change out.« less

  3. Odd-Boiled Eggs

    ERIC Educational Resources Information Center

    Kaminsky, Kenneth; Scheman, Naomi

    2010-01-01

    At a Shabbat lunch in Madrid not long ago, the conversation turned to the question of boiling eggs. One of the guests mentioned that a Dutch rabbi he knew had heard that in order to make it more likely that boiled eggs be kosher, you should add an egg to the pot if the number you began with was even. According to the laws of Kashruth, Jews may not…

  4. Confinement by carbon nanotubes drastically alters the boiling and critical behavior of water droplets.

    PubMed

    Chaban, Vitaly V; Prezhdo, Victor V; Prezhdo, Oleg V

    2012-03-27

    Vapor pressure grows rapidly above the boiling temperature, and past the critical point liquid droplets disintegrate. Our atomistic simulations show that this sequence of events is reversed inside carbon nanotubes (CNT). Droplets disintegrate first and at low temperature, while pressure remains low. The droplet disintegration temperature is independent of the CNT diameter. In contrast, depending on CNT diameter, a temperature that is much higher than the bulk boiling temperature is required to raise the internal pressure. The control over pressure by CNT size can be useful for therapeutic drug delivery. © 2012 American Chemical Society

  5. Experimental Study on Flow Boiling of Deionized Water in a Horizontal Long Small Channel

    NASA Astrophysics Data System (ADS)

    Huang, Qian; Jia, Li; Dang, Chao; Yang, Lixin

    2018-04-01

    In this paper, an experimental investigation on the flow boiling heat transfer in a horizontal long mini-channel was carried out. The mini-channel was with 2 mm wide and 1 mm deep and 900 mm long. The material of the mini-channel was stainless. The working fluid was deionized water. The experiments were conducted with the conditions of inlet pressure in the range of 0.2 0.5 MPa, mass flux in the range of 196.57-548.96 kg/m2s, and the outlet vapor quality in the range of 0.2 to 1. The heat flux was in the range of 292.86 kW/m2 to 788.48 kW/m2, respectively. The influences of mass flux and heat flux were studied. At a certain mass flow rate, the local heat transfer coefficient increased with the increase of the heat flux. If dry-out occurred in the mini-channel, the heat transfer coefficient decreased. At the same heat flux, the local heat transfer coefficient would depend on the mass flux. It would increase with the mass flux in a certain range, and then decrease if the mass flux was beyond this range. Experimental data were compared with the results of previous studies. Flow visualization and measurements were conducted to identify flow regime transitions. Results showed that there were eight different kinds of flow patterns occurring during the flow boiling. It was found that flow pattern had a significant effect on heat transfer.

  6. Boils

    MedlinePlus

    ... boil is an infection that affects groups of hair follicles and nearby skin tissue. Related conditions include: Carbunculosis ... found on the skin's surface. Damage to the hair follicle allows the infection to grow deeper into the ...

  7. Emergency Disinfection of Drinking Water

    EPA Pesticide Factsheets

    How to boil and disinfect water to kill most disease-causing microorganisms during emergency situations where regular water service has been interrupted and local authorities recommend using only bottled water, boiled water, or disinfected water.

  8. Cryogenic Boil-Off Reduction System

    NASA Astrophysics Data System (ADS)

    Plachta, David W.; Guzik, Monica C.

    2014-03-01

    A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.

  9. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature

    PubMed Central

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-01-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255

  10. Optimization of a Boiling Water Reactor Loading Pattern Using an Improved Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2003-08-15

    A search method based on genetic algorithms (GA) using deterministic operators has been developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). The search method uses an Improved GA operator, that is, crossover, mutation, and selection. The handling of the encoding technique and constraint conditions is designed so that the GA reflects the peculiar characteristics of the BWR. In addition, some strategies such as elitism and self-reproduction are effectively used to improve the search speed. LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and three-dimensional-dependent constraints have alwaysmore » necessitated the use of three-dimensional core simulators for BWRs, so that an optimization method is required for computational efficiency. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant applying the Haling technique. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained.« less

  11. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  12. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  13. Effect of boiling, frying, and baking on recovery of aflatoxin from naturally contaminated corn grits or cornmeal.

    PubMed

    Stoloff, L; Trucksess, M W

    1981-05-01

    Corn grits naturally contaminated with aflatoxins were used for making boiled grits, and portions of the boiled grits were used for making pan-fried grits; cornmeal naturally contaminated with aflatoxins was used for making corn muffins. Procedures and recipes were derived from cookbook and market package recommendations. From analyses of the products for aflatoxins before and after preparation of the table-ready products, it was determined that 72 +/- 9% (n = 15) of the aflatoxin found in the original grits could be recovered after the grits were boiled. The recovery of aflatoxin B1 after the grits were fried was either 66 +/- 10% (n = 6) or 47 +/- 8% (n = 9), depending on whether 3 cups of water or 4 cups of water per cup of grits, respectively, were used for preparing the boiled grits before frying. Similarly, it was determined that 87 +/- 4% (n = 9) of the aflatoxin B1 found in the original cornmeal could be recovered from the baked muffins. No detectable aflatoxin B2 a was present in the extracts from any of the table-ready products.

  14. Effect of ice contamination on liquid-nitrogen drops in film boiling

    NASA Technical Reports Server (NTRS)

    Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.

    1977-01-01

    Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. This paper presents experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.

  15. Effect of ice contamination of liquid-nitrogen drops in film boiling

    NASA Technical Reports Server (NTRS)

    Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.

    1977-01-01

    Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. Experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation is presented. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.

  16. Noise analysis of nucleate boiling

    NASA Technical Reports Server (NTRS)

    Mcknight, R. D.; Ram, K. S.

    1971-01-01

    The techniques of noise analysis have been utilized to investigate nucleate pool boiling. A simple experimental setup has been developed for obtaining the power spectrum of a nucleate boiling system. These techniques were first used to study single bubbles, and a method of relating the two-dimensional projected size and the local velocity of the bubbles to the auto-correlation functions is presented. This method is much less time consuming than conventional methods of measurement and has no probes to disturb the system. These techniques can be used to determine the contribution of evaporation to total heat flux in nucleate boiling. Also, these techniques can be used to investigate the effect of various parameters upon the frequency response of nucleate boiling. The predominant frequencies of the power spectrum correspond to the frequencies of bubble generation. The effects of heat input, degree of subcooling, and liquid surface tension upon the power spectra of a boiling system are presented. It was found that the degree of subcooling has a more pronounced effect upon bubble size than does heat flux. Also the effect of lowering surface tension can be sufficient to reduce the effect of the degree of subcooling upon the size of the bubbles.

  17. Large-scale boiling experiments of the flooded cavity concept for in-vessel core retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Slezak, S.E.; Bentz, J.H.

    1994-03-01

    This paper presents results of ex-vessel boiling experiments performed in the CYBL (CYlindrical BoiLing) facility. CYBL is a reactor-scale facility for confirmatory research of the flooded cavity concept for accident management. CYBL has a tank-within-a-tank design; the inner tank simulates the reactor vessel and the outer tank simulates the reactor cavity. Experiments with uniform and edge-peaked heat flux distributions up to 20 W/cm{sup 2} across the vessel bottom were performed. Boiling outside the reactor vessel was found to be subcooled nucleate boiling. The subcooling is mainly due to the gravity head which results from flooding the sides of the reactormore » vessel. The boiling process exhibits a cyclic pattern with four distinct phases: direct liquid/solid contact, bubble nucleation and growth, coalescence, and vapor mass dispersion (ejection). The results suggest that under prototypic heat load and heat flux distributions, the flooded cavity in a passive pressurized water reactor like the AP-600 should be capable of cooling the reactor pressure vessel in the central region of the lower head that is addressed by these tests.« less

  18. Magnetic resonance imaging of boiling induced by high intensity focused ultrasound

    PubMed Central

    Khokhlova, Tatiana D.; Canney, Michael S.; Lee, Donghoon; Marro, Kenneth I.; Crum, Lawrence A.; Khokhlova, Vera A.; Bailey, Michael R.

    2009-01-01

    Both mechanically induced acoustic cavitation and thermally induced boiling can occur during high intensity focused ultrasound (HIFU) medical therapy. The goal was to monitor the temperature as boiling was approached using magnetic resonance imaging (MRI). Tissue phantoms were heated for 20 s in a 4.7-T magnet using a 2-MHz HIFU source with an aperture and radius of curvature of 44 mm. The peak focal pressure was 27.5 MPa with corresponding beam width of 0.5 mm. The temperature measured in a single MRI voxel by water proton resonance frequency shift attained a maximum value of only 73 °C after 7 s of continuous HIFU exposure when boiling started. Boiling was detected by visual observation, by appearance on the MR images, and by a marked change in the HIFU source power. Nonlinear modeling of the acoustic field combined with a heat transfer equation predicted 100 °C after 7 s of exposure. Averaging of the calculated temperature field over the volume of the MRI voxel (0.3×0.5×2 mm3) yielded a maximum of 73 °C that agreed with the MR thermometry measurement. These results have implications for the use of MRI-determined temperature values to guide treatments with clinical HIFU systems. PMID:19354416

  19. Boiling Experiment Facility for Heat Transfer Studies in Microgravity

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; McQuillen, John; Chao, David

    2008-01-01

    Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.

  20. Multiphysics modeling of two-phase film boiling within porous corrosion deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Miaomiao, E-mail: mmjin@mit.edu; Short, Michael, E-mail: hereiam@mit.edu

    2016-07-01

    Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits.more » Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys. - Highlights: • A two-phase model of CRUD's effects on fuel cladding is developed and improved. • This model eliminates the formerly erroneous assumption of wick boiling. • Higher fuel cladding temperatures are predicted when accounting for two-phase flow. • Double-peaks in thermal conductivity vs. heat flux in experiments are explained. • A “double dryout” mechanism in CRUD is proposed based on the model and experiments.« less

  1. Expert system for maintenance management of a boiling water reactor power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Shen; Liou, L.W.; Levine, S.

    1992-01-01

    An expert system code has been developed for the maintenance of two boiling water reactor units in Berwick, Pennsylvania, that are operated by the Pennsylvania Power and Light Company (PP and L). The objective of this expert system code, where the knowledge of experienced operators and engineers is captured and implemented, is to support the decisions regarding which components can be safely and reliably removed from service for maintenance. It can also serve as a query-answering facility for checking the plant system status and for training purposes. The operating and maintenance information of a large number of support systems, whichmore » must be available for emergencies and/or in the event of an accident, is stored in the data base of the code. It identifies the relevant technical specifications and management rules for shutting down any one of the systems or removing a component from service to support maintenance. Because of the complexity and time needed to incorporate a large number of systems and their components, the first phase of the expert system develops a prototype code, which includes only the reactor core isolation coolant system, the high-pressure core injection system, the instrument air system, the service water system, and the plant electrical system. The next phase is scheduled to expand the code to include all other systems. This paper summarizes the prototype code and the design concept of the complete expert system code for maintenance management of all plant systems and components.« less

  2. Pool and flow boiling in variable and microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1994-01-01

    As is well known, boiling is an effective mode of heat transfer in that high heat flux levels are possible with relatively small temperature differences. Its optimal application requires that the process be adequately understood. A measure of the understanding of any physical event lies in the ability to predict its behavior in terms of the relevant parameters. Despite many years of research the predictability of boiling is currently possible only for quite specialized circumstances, e.g., the critical heat flux and film boiling for the pool boiling case, and then only with special geometries. Variable gravity down to microgravity provides the opportunity to test this understanding, but possibly more important, by changing the dimensional and time scales involved permits more detailed observations of elements involved in the boiling process, and perhaps discloses phenomena heretofore unknown. The focus here is on nucleate boiling although, as will be demonstrated below, under but certain circumstances in microgravity it can take place concurrently with the dryout process. In the presence of earth gravity or forced convection effects, the latter process is usually referred to as film boiling. However, no vapor film as such forms with pool boiling in microgravity, only dryout. Initial results are presented here for pool boiling in microgravity, and were made possible at such an early date by the availability of the Get-Away-Specials (GAS). Also presented here are some results of ground testing of a flow loop for the study of low velocity boiling, eventually to take place also in microgravity. In the interim, variable buoyancy normal to the heater surface is achieved by rotation of the entire loop relative to earth gravity. Of course, this is at the expense of varying the buoyancy parallel to the heater surface. Two questions which must be resolved early in the study of flow boiling in microgravity are (1) the lower limits of liquid flow velocity where buoyancy

  3. Pool boiling on surfaces with mini-fins and micro-cavities

    NASA Astrophysics Data System (ADS)

    Pastuszko, Robert; Piasecka, Magdalena

    2012-11-01

    The experimental studies presented here focused on pool boiling heat transfer on mini-fin arrays, mini-fins with perforated covering and surfaces with micro-cavities. The experiments were carried out for water and fluorinert FC-72 at atmospheric pressure. Mini-fins of 0.5 and 1 mm in height were uniformly spaced on the base surface. The copper foil with holes of 0.1 mm in diameter (pitch 0.2/0.4 mm), sintered with the fin tips, formed a system of connected perpendicular and horizontal tunnels. The micro-cavities were obtained through spark erosion. The maximal depth of the craters of these cavities was 15 - 30 μm and depended on the parameters of the branding-pen settings. At medium and small heat fluxes, structures with mini-fins showed the best boiling heat transfer performance both for water and FC-72. At medium and high heat fluxes (above 70 kW/m2 for water and 25 kW/m2 for FC-72), surfaces with mini-fins without porous covering and micro-cavities produced the highest heat transfer coefficients. The surfaces obtained with spark erosion require a proper selection of geometrical parameters for particular liquids - smaller diameters of cavities are suitable for liquids with lower surface tension (FC-72).

  4. 15. RW Meyer Sugar Mill: 18761889. Sorghum pan and boiling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. RW Meyer Sugar Mill: 1876-1889. Sorghum pan and boiling range flue. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: North side of sorghum pan and boiling range flue, with furnace-end in background. In the sorghum pan heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. Hot gasses moved through the flue underneath the entire copper bottom of the sorghum pan from the furnace end (in background) to the smokestack end (in foreground). After the hot cane juice moved through the separate compartments until it reached the final compartment (now missing two sides) where it was drawn out from the copper lip in the corner. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  5. Marangoni Effects on Near-Bubble Microscale Transport During Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    V. Carey; Sun, C.; Carey, V. P.

    2000-01-01

    In earlier investigations, Marangoni effects were observed to be the dominant mechanism of boiling transport in 2-propanol/water mixtures under reduced gravity conditions. In this investigation we have examined the mechanisms of binary mixture boiling by exploring the transport near a single bubble generated in a binary mixture between a heated surface and cold surface. The temperature field created in the liquid around the bubble produces vaporization over the portion of its interface near the heated surface and condensation over portions of its interface near the cold surface. Experiments were conducted using different mixtures of water and 2-propanol under 1g conditions and under reduced gravity conditions aboard the KC135 aircraft. Since 2-propanol is more volatile than water, there is a lower concentration of 2-propanol near the hot surface and a higher concentration of 2-propanol near the cold plate relative to the bulk quantity. This difference in interface concentration gives rise to strong Marangoni effects that move liquid toward the hot plate in the near bubble region for 2-propanol and water mixtures. In the experiments in this study, the pressure of the test system was maintained at about 5 kPa to achieve the full spectrum of boiling behavior (nucleate boiling, critical heat flux and film boiling) at low temperature and heat flux levels. Heat transfer data and visual documentation of the bubble shape were extracted from the experimental results. In the 1-g experiments at moderate to high heat flux levels, the bubble was observed to grow into a mushroom shape with a larger top portion near the cold plate due to the buoyancy effect. The shape of the bubble was somewhat affected by the cold plate subcooling and the superheat of the heated surface. At low superheat levels for the heated surface, several active nucleation sites were observed, and the vapor stems from them merged to form a larger bubble. The generation rate of vapor is moderate in this

  6. Structural changes of malt proteins during boiling.

    PubMed

    Jin, Bei; Li, Lin; Liu, Guo-Qin; Li, Bing; Zhu, Yu-Kui; Liao, Liao-Ning

    2009-03-09

    Changes in the physicochemical properties and structure of proteins derived from two malt varieties (Baudin and Guangmai) during wort boiling were investigated by differential scanning calorimetry, SDS-PAGE, two-dimensional electrophoresis, gel filtration chromatography and circular dichroism spectroscopy. The results showed that both protein content and amino acid composition changed only slightly during boiling, and that boiling might cause a gradual unfolding of protein structures, as indicated by the decrease in surface hydrophobicity and free sulfhydryl content and enthalpy value, as well as reduced alpha-helix contents and markedly increased random coil contents. It was also found that major component of both worts was a boiling-resistant protein with a molecular mass of 40 kDa, and that according to the two-dimensional electrophoresis and SE-HPLC analyses, a small amount of soluble aggregates might be formed via hydrophobic interactions. It was thus concluded that changes of protein structure caused by boiling that might influence beer quality are largely independent of malt variety.

  7. Enhanced Boiling on Micro-Configured Composite Surfaces Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chai, An-Ti

    1999-01-01

    bubble detachment manifests itself by a necking process which should not be weakened by reduced gravity. In addition, the composite surfaces introduce no extra pressure drop, no fouling and do not impose significant primary or maintenance costs. All of these suggest that this type of composite is an ideal material for the challenge of accounting for both reliability and economy of the relevant components applied in the ATCSs, the DPSs and other devices in future space missions. The aim of the proposed work is to experimentally investigate high nucleate pool boiling performance on a micro-configured metal-graphite composite surface and to determine the mechanisms of the nucleate boiling heat transfer both experimentally and theoretically. Freon-113 and water will be used as the test liquids to investigate wettability effects on boiling characteristics. The Cu-Gr and Al-Gr composites with various volume fractions of graphite fibers will be tested to obtain the heat transfer characteristic data in the nucleate boiling region and in the CHF regime. In the experiments, the bubble emission and coalescence processes will be recorded by a video camera with a magnifying borescope probe immersed in the working fluid. The temperature profile in the thermal boundary layer on the composite surfaces will be measured by a group of micro thermocouples consisting of four ultra fine micro thermocouples. This instrument was developed and successfully used to measure the temperature profile of evaporating liquid thin layers by the proposers in a study performed at the NASA/Lewis Research Center. A two tier model to explain the nucleate boiling process and the performance enhancement on the composite surfaces has been suggested by the authors. According to the model, the thicknesses of the microlayer and the macrolayer underneath the bubbles and mushrooms, can be estimated by the geometry of the composite surface. The experimental results will be compared to the predictions from the model

  8. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boing, L.E.; Henley, D.R.; Manion, W.J.

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document inmore » their evaluation process. 73 refs., 26 figs., 69 tabs.« less

  9. Passive gamma analysis of the boiling-water-reactor assemblies

    NASA Astrophysics Data System (ADS)

    Vo, D.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S.; Trellue, H.; Vaccaro, S.

    2016-09-01

    This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden's Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative-Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.

  10. Passive gamma analysis of the boiling-water-reactor assemblies

    DOE PAGES

    Vo, D.; Favalli, A.; Grogan, B.; ...

    2016-09-01

    This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden’s Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative–Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in themore » past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.« less

  11. A review on boiling heat transfer enhancement with nanofluids

    PubMed Central

    2011-01-01

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement. PMID:21711794

  12. Influence of the heater material on the critical heat load at boiling of liquids on surfaces with different sizes

    NASA Astrophysics Data System (ADS)

    Anokhina, E. V.

    2010-05-01

    Data on critical heat loads q cr for the saturated and unsaturated pool boiling of water and ethanol under atmospheric pressure are reported. It is found experimentally that the critical heat load does not necessarily coincide with the heat load causing burnout of the heater, which should be taken into account. The absolute values of q cr for the boiling of water and ethanol on copper surfaces 65, 80, 100, 120, and 200 μm in diameter; tungsten surface 100 μm in diameter; and nichrome surface 100 μm in diameter are obtained experimentally.

  13. Transition boiling heat transfer and the film transition regime

    NASA Technical Reports Server (NTRS)

    Ramilison, J. M.; Lienhard, J. H.

    1987-01-01

    The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.

  14. Annotated bibliography of safety-related occurrences in boiling-water nuclear power plants as reported in 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, R.L.; Gallaher, R.B.

    1977-08-02

    This bibliography contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at boiling-water reactor nuclear power plants in 1976. The report includes 1,253 abstracts that describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. They are arranged alphabetically by reactor name and then chronologically for each reactor. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables that summarize the information contained in the bibliography are provided. The information listed in the tables includes instrument failures, equipment failures, system failures, causes ofmore » failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). Three of the unique events that occurred during the year are reviewed in detail.« less

  15. Annotated bibliography of safety-related occurrences in boiling-water nuclear power plants as reported in 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, R.L.; Gallaher, R.B.

    1976-07-01

    The bibliography presented contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at boiling-water reactor nuclear power plants in 1975. The report includes 1169 abstracts, arranged alphabetically by reactor name and then chronologically for each reactor, that describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables that summarize the information contained in the bibliography are provided. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures,more » deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). Seven of the unique events that occurred during the year are reviewed in detail.« less

  16. A Review of Boiling Heat Transfer Processes at High Heat Flux

    DTIC Science & Technology

    1991-04-01

    Hydrogen on Burnout for Water Flowing Vertically Upward in Round Tubes at 2000 psia," WAPD - TH-318, April 1957. 100. Doroschuck, V. E. and Lantsman, F. P...34Forced-Convection Heat Transfer Burnout Studies for Water in Rectangular Channels and Round Tubes at Pressures above 500 psia," USAEC Rept. WAPD ...Volumes in Subcooled Boiling Systems, ASME Paper 58-HT-19, 1958. 264 . Core, T. C. and Sato, K., "Determination of Burnout Limits of Polyphenyl Coolants

  17. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities

    PubMed Central

    Cole, Jessica K; Peacock, Joseph P; Dodsworth, Jeremy A; Williams, Amanda J; Thompson, Daniel B; Dong, Hailiang; Wu, Geng; Hedlund, Brian P

    2013-01-01

    Great Boiling Spring is a large, circumneutral, geothermal spring in the US Great Basin. Twelve samples were collected from water and four different sediment sites on four different dates. Microbial community composition and diversity were assessed by PCR amplification of a portion of the small subunit rRNA gene using a universal primer set followed by pyrosequencing of the V8 region. Analysis of 164 178 quality-filtered pyrotags clearly distinguished sediment and water microbial communities. Water communities were extremely uneven and dominated by the bacterium Thermocrinis. Sediment microbial communities grouped according to temperature and sampling location, with a strong, negative, linear relationship between temperature and richness at all taxonomic levels. Two sediment locations, Site A (87–80 °C) and Site B (79 °C), were predominantly composed of single phylotypes of the bacterial lineage GAL35 (p̂=36.1%), Aeropyrum (p̂=16.6%), the archaeal lineage pSL4 (p̂=15.9%), the archaeal lineage NAG1 (p̂=10.6%) and Thermocrinis (p̂=7.6%). The ammonia-oxidizing archaeon ‘Candidatus Nitrosocaldus' was relatively abundant in all sediment samples <82 °C (p̂=9.51%), delineating the upper temperature limit for chemolithotrophic ammonia oxidation in this spring. This study underscores the distinctness of water and sediment communities in GBS and the importance of temperature in driving microbial diversity, composition and, ultimately, the functioning of biogeochemical cycles. PMID:23235293

  18. A Ghost Fluid/Level Set Method for boiling flows and liquid evaporation: Application to the Leidenfrost effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rueda Villegas, Lucia; Alis, Romain; Lepilliez, Mathieu

    2016-07-01

    The development of numerical methods for the direct numerical simulation of two-phase flows with phase change, in the framework of interface capturing or interface tracking methods, is the main topic of this study. We propose a novel numerical method, which allows dealing with both evaporation and boiling at the interface between a liquid and a gas. Indeed, in some specific situations involving very heterogeneous thermodynamic conditions at the interface, the distinction between boiling and evaporation is not always possible. For instance, it can occur for a Leidenfrost droplet; a water drop levitating above a hot plate whose temperature is muchmore » higher than the boiling temperature. In this case, boiling occurs in the film of saturated vapor which is entrapped between the bottom of the drop and the plate, whereas the top of the water droplet evaporates in contact of ambient air. The situation can also be ambiguous for a superheated droplet or at the contact line between a liquid and a hot wall whose temperature is higher than the saturation temperature of the liquid. In these situations, the interface temperature can locally reach the saturation temperature (boiling point), for instance near a contact line, and be cooler in other places. Thus, boiling and evaporation can occur simultaneously on different regions of the same liquid interface or occur successively at different times of the history of an evaporating droplet. Standard numerical methods are not able to perform computations in these transient regimes, therefore, we propose in this paper a novel numerical method to achieve this challenging task. Finally, we present several accuracy validations against theoretical solutions and experimental results to strengthen the relevance of this new method.« less

  19. IR-thermography-based investigation of critical heat flux in subcooled flow boiling of water at atmospheric and high pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucci, Matteo; Seong, Jee H.; Buongiorno, Jdacopo

    Here we report on MIT’s THM work in Q4 2016 and Q1 2017. The goal of this project is to design, construct and execute tests of flow boiling critical heat flux (CHF) at high-pressure using high-resolution and high-speed video and infrared (IR) thermometry, to generate unique data to inform the development of and validate mechanistic boiling heat transfer and CHF models. In FY2016, a new test section was designed and fabricated. Data was collected at atmospheric conditions at 10, 25 and 50 K subcoolings, and three mass fluxes, i.e. 500, 750 and 1000 kg/m2/s. Starting in Q4 2016 and continuingmore » forward, new post-processing techniques have been developed to analyze the data collected. These new algorithms analyze the time-dependent temperature and heat flux distributions to calculate nucleation site density, nucleation frequency, growth and wait time, dry area fraction, and the complete heat flux partitioning. In Q1 2017 a new flow boiling loop was designed and constructed to support flow boiling tests up 10 bar pressure and 180 °C. Initial shakedown and testing has been completed. The flow loop and test section are now ready to begin high-pressure flow boiling testing.« less

  20. Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns.

    PubMed

    Kumar C S, Sujith; Chang, Yao Wen; Chen, Ping-Hei

    2017-04-10

    In this study, pool-boiling heat-transfer experiments were performed to investigate the effect of the number of interlines and the orientation of the hybrid wettable pattern. Hybrid wettable patterns were produced by coating superhydrophilic SiO2 on a masked, hydrophobic, cylindrical copper surface. Using de-ionized (DI) water as the working fluid, pool-boiling heat-transfer studies were conducted on the different surface-treated copper cylinders of a 25-mm diameter and a 40-mm length. The experimental results showed that the number of interlines and the orientation of the hybrid wettable pattern influenced the wall superheat and the HTC. By increasing the number of interlines, the HTC was enhanced when compared to the plain surface. Images obtained from the charge-coupled device (CCD) camera indicated that more bubbles formed on the interlines as compared to other parts. The hybrid wettable pattern with the lowermost section being hydrophobic gave the best heat-transfer coefficient (HTC). The experimental results indicated that the bubble dynamics of the surface is an important factor that determines the nucleate boiling.

  1. Impact of boiling conditions on the molecular and sensory profile of a vegetable broth.

    PubMed

    Mougin, Alice; Mauroux, Olivier; Matthey-Doret, Walter; Barcos, Eugenia Maria; Beaud, Fernand; Bousbaine, Ahmed; Viton, Florian; Smarrito-Menozzi, Candice

    2015-02-11

    Low-pressure cooking has recently been identified as an alternative to ambient and high-pressure cooking to provide food with enhanced organoleptic properties. This work investigates the impact of the cooking process at different pressures on the molecular and sensory profile of a vegetable broth. Experimental results showed similar sensory and chemical profiles of vegetable broths when boiling at 0.93 and 1.5 bar, while an enhancement of sulfur volatile compounds correlated with a greater leek content and savory aroma was observed when boiling at low pressure (80 °C/0.48 bar). Thus, low-pressure cooking would allow preserving the most labile volatiles likely due to the lower water boiling temperature and the reduced level of oxygen. This study evidenced chemical and sensory impact of pressure during cooking and demonstrated that the flavor profile of culinary preparations can be enhanced by applying low-pressure conditions.

  2. Household Water Disinfection in Hurricane-Affected Communities of Louisiana: Implications for Disaster Preparedness for the General Public

    PubMed Central

    Ram, Pavani K.; Blanton, Elizabeth; Klinghoffer, Debra; Platek, Mary; Piper, Janet; Straif-Bourgeois, Susanne; Bonner, Matthew R.; Mintz, Eric D.

    2007-01-01

    Objectives. Thousands of Louisiana residents were asked to boil water because of widespread disruptions in electricity and natural gas services after Hurricane Rita. We sought to assess awareness of boil water orders and familiarity with household water disinfection techniques other than boiling. Methods. We conducted a cross-sectional survey in randomly selected mobile home communities in Louisiana. Results. We interviewed 196 respondents from 8 communities, which had boil water orders instituted. Of 97 who were home while communities were still under orders to boil water, 30 (31%) were aware of the orders and, of those, 24 (80%) said the orders were active while they were living at home; of the 24, 10 (42%) reported boiling water. Overall, 163 (83%) respondents were aware of a method of water disinfection at the household level: boiling (78%), chlorination (27%), and filtration (25%); 87% had a container of chlorine bleach at home. Conclusions. Few hurricane-affected respondents were aware of boil water orders and of alternate water disinfection techniques. Most had access to chlorine and could have practiced household chlorination if disruption in natural gas and electricity made boiling impossible. PMID:17413065

  3. Boiling on Microconfigured Composite Surfaces Enhanced

    NASA Technical Reports Server (NTRS)

    Chao, David F.

    2000-01-01

    Boiling heat transfer is one of the key technologies for the two-phase active thermal-control system used on space platforms, as well as for the dynamic power systems aboard the International Space Station. Because it is an effective heat transfer mode, boiling is integral to many space applications, such as heat exchangers and other cooling devices. Nucleate boiling near the critical heat flux (CHF) can transport very large thermal loads with a much smaller device and much lower pumping power than for single-phase heat exchangers. However, boiling performance sharply deteriorates in a reduced-gravity environment, and operation in the CHF regime is somewhat perilous because of the risk of burnout to the device surface. New materials called microconfigured metal-graphite composites can enhance boiling. The photomicrograph shows the microconfiguration (x3000) of the copper-graphite (Cu-Gr) surface as viewed by scanning electronic microscope. The graphite fiber tips appear as plateaus with rugged surfaces embedded in the copper matrix. It has been experimentally demonstrated that this type of material manifests excellent boiling heat transfer performance characteristics and an increased CHF. Nonisothermal surfaces were less sensitive to variations of wall superheat in the CHF regime. Because of the great difference in conductivity between the copper base and the graphite fiber, the composite surfaces have a nonisothermal surface characteristic and, therefore, will have a much larger "safe" operating region in the CHF regime. In addition, the thermocapillary forces induced by the temperature differences between the fiber tips and the metal matrix play an important role in bubble detachment, and may not be adversely affected in a reduced-gravity environment. All these factors indicate that microconfigured composites may improve the reliability and economy (dominant factors in all space applications) of various thermal components found on spacecraft during future

  4. BOILING HEAT TRANSFER IN ZERO GRAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zara, E.A.

    1964-01-01

    The preliminary results of a research program to determine the effects of zero and near zero gravity on boiling heat transfer are presented. Zero gravity conditions were obtained on the ASD KC-135 zero gravity test aircraft, capable of providing 30-seconds of zero gravity. Results of the program to date indicate that nucleate (bubble) boiling heat transfer rates are not greatly affected by the absence of gravity forces. However, radical pressure increases were observed that will dictate special design considerations to space vehicle systems utilizing pool boiling processes, such as cryogenic or other fluid storage vessels where thermal input to themore » fluid is used for vessel pressurization. (auth)« less

  5. Enhancements of Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, W. J.

    2000-01-01

    This paper presents two means for enhancing nucleate boiling and critical heat flux under microgravity conditions: using micro-configured metal-graphite composites as the boiling surface and dilute aqueous solutions of long-chain alcohols as the working fluid. In the former, thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix plays an important role in bubble detachment. Thus boiling-heat transfer performance does not deteriorate in a reduced-gravity environment. In the latter cases, the surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. This feature is most favorable in microgravity. As a result, the bubble size of departure is substantially reduced at higher frequencies. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. In addition, performance equations for nucleate boiling and critical heat flux in dilute aqueous solutions of long-chain alcohols are obtained.

  6. Boils and Carbuncles

    MedlinePlus

    ... body. The spreading infection, commonly known as blood poisoning (sepsis), can lead to infections deep within your body, such as your heart (endocarditis) and bone (osteomyelitis). Prevention It's not always possible to prevent boils, especially ...

  7. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readilymore » achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.« less

  8. Determination of Sodium, Potassium, Magnesium, and Calcium Minerals Level in Fresh and Boiled Broccoli and Cauliflower by Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Nerdy

    2018-01-01

    Vegetables from the cabbage family vegetables consumed by many people, which is known healthful, by eaten raw, boiled, or cooked (stir fry or soup). Vegetables like broccoli and cauliflower contain vitamins, minerals, and fiber. This study aims to determine the decrease percentage of sodium, potassium, magnesium, and calcium minerals level caused by boiled broccoli and cauliflower by atomic absorption spectrometry. Boiled broccoli and cauliflower prepared by given boiled treatment in boiling water for 3 minutes. Fresh and boiled broccoli and cauliflower carried out dry destruction, followed by quantitative analysis of sodium, potassium, magnesium, and calcium minerals respectively at a wavelength of 589.0 nm; 766.5 nm; 285.2 nm; and 422.7 nm, using atomic absorption spectrometry methods. After the determination of the sodium, potassium, magnesium, and calcium minerals level followed by validation of analytical methods with accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) parameters. Research results show a decrease in the sodium, potassium, magnesium, and calcium minerals level in boiled broccoli and cauliflower compared with fresh broccoli and cauliflower. Validation of analytical methods gives results that spectrometry methods used for determining sodium, potassium, magnesium, and calcium minerals level are valid. It concluded that the boiled gives the effect of decreasing the minerals level significantly in broccoli and cauliflower.

  9. Optimization of Boiling Water Reactor Loading Pattern Using Two-Stage Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2002-10-15

    A new two-stage optimization method based on genetic algorithms (GAs) using an if-then heuristic rule was developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). In the first stage, the LP is optimized using an improved GA operator. In the second stage, an exposure-dependent control rod pattern (CRP) is sought using GA with an if-then heuristic rule. The procedure of the improved GA is based on deterministic operators that consist of crossover, mutation, and selection. The handling of the encoding technique and constraint conditions by that GA reflects the peculiar characteristics of the BWR. In addition, strategies suchmore » as elitism and self-reproduction are effectively used in order to improve the search speed. The LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and constraints dependent on three dimensions have always necessitated the use of three-dimensional core simulators for BWRs, so that optimization of computational efficiency is required. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant in two phases. One phase is only LP optimization applying the Haling technique. The other phase is an LP optimization that considers the CRP during reactor operation. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained.« less

  10. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized intomore » six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.« less

  11. Conversion of direct process high-boiling residue to monosilanes

    DOEpatents

    Brinson, Jonathan Ashley; Crum, Bruce Robert; Jarvis, Jr., Robert Frank

    2000-01-01

    A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

  12. A fundamental study of nucleate pool boiling under microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1991-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, and the bulk liquid temperatures. High speed photography was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  13. A sub-tank water-saving drinking water station

    NASA Astrophysics Data System (ADS)

    Zhang, Ting

    2017-05-01

    "Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small

  14. Explosive Boiling at Very Low Heat Fluxes: A Microgravity Phenomenon

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.

    1993-01-01

    The paper presents experimental observations of explosive boiling from a large (relative to bubble sizes) flat heating surface at very low heat fluxes in microgravity. The explosive boiling is characterized as either a rapid growth of vapor mass over the entire heating surface due to the flashing of superheated liquid or a violent boiling spread following the appearance of single bubbles on the heating surface. Pool boiling data with saturated Freon 113 was obtained in the microgravity environment of the space shuttle. The unique features of the experimental results are the sustainability of high liquid superheat for long periods and the occurrence of explosive boiling at low heat fluxes (0.2 to 1.2 kW/sq m). For a heat flux of 1.0 kW/sq m a wall superheat of 17.9 degrees C was attained in ten minutes of heating. This was followed by an explosive boiling accompanied with a pressure spike and a violent bulk liquid motion. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Stable nucleate boiling continued following the explosive boiling.

  15. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudawar, I.; Galloway, J.E.; Gersey, C.O.

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling.more » Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.« less

  16. A Fundamental Study of Nucleate Pool Boiling Under Microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1996-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal-resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- 1 experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, the bulk liquid temperatures. High speed photography (up to 1,000 frames per second) was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface, some observed here for the first time, are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels (on the order of 5 W/cm(exp 2)) is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  17. Heat Transfer Performances of Pool Boiling on Metal-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2000-01-01

    Nucleate boiling, especially near the critical heat flux (CHF), can provide excellent economy along with high efficiency of heat transfer. However, the performance of nucleate boiling may deteriorate in a reduced gravity environment and the nucleate boiling usually has a potentially dangerous characteristic in CHF regime. That is, any slight overload can result in burnout of the boiling surface because the heat transfer will suddenly move into the film-boiling regime. Therefore, enhancement of nucleate boiling heat transfer becomes more important in reduced gravity environments. Enhancing nucleate boiling and critical heat flux can be reached using micro-configured metal-graphite composites as the boiling surface. Thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix, which is independent of gravity, will play an important role in bubble detachment. Thus boiling heat transfer performance does not deteriorate in a reduced-gravity environment. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. Experimental studies were performed on nucleate pool boiling of pentane on cooper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composite surfaces with various fiber volume concentrations for heat fluxes up to 35 W per square centimeter. It is revealed that a significant enhancement in boiling heat transfer performance on the composite surfaces is achieved, due to the presence of micro-graphite fibers embedded in the matrix. The onset of nucleate boiling (the isolated bubble regime) occurs at wall superheat of about 10 C for the Cu-Gr surface and 15 C for the Al-Gr surface, much lower than their respective pure metal surfaces. Transition from an isolated bubble regime to a coalesced bubble regime in boiling occurs at a superheat of

  18. Fecal contamination of drinking water within peri-urban households, Lima, Peru.

    PubMed

    Oswald, William E; Lescano, Andrés G; Bern, Caryn; Calderon, Maritza M; Cabrera, Lilia; Gilman, Robert H

    2007-10-01

    We assessed fecal contamination of drinking water in households in 2 peri-urban communities of Lima, Peru. We measured Escherichia coli counts in municipal source water and, within households, water from principal storage containers, stored boiled drinking water, and water in a serving cup. Source water was microbiologically clean, but 26 (28%) of 93 samples of water stored for cooking had fecal contamination. Twenty-seven (30%) of 91 stored boiled drinking water samples grew E. coli. Boiled water was more frequently contaminated when served in a drinking cup than when stored (P < 0.01). Post-source contamination increased successively through the steps of usage from source water to the point of consumption. Boiling failed to ensure safe drinking water at the point of consumption because of easily contaminated containers and poor domestic hygiene. Hygiene education, better point-of-use treatment and storage options, and in-house water connections are urgently needed.

  19. Noise source and reactor stability estimation in a boiling water reactor using a multivariate autoregressive model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanemoto, S.; Andoh, Y.; Sandoz, S.A.

    1984-10-01

    A method for evaluating reactor stability in boiling water reactors has been developed. The method is based on multivariate autoregressive (M-AR) modeling of steady-state neutron and process noise signals. In this method, two kinds of power spectral densities (PSDs) for the measured neutron signal and the corresponding noise source signal are separately identified by the M-AR modeling. The closed- and open-loop stability parameters are evaluated from these PSDs. The method is applied to actual plant noise data that were measured together with artificial perturbation test data. Stability parameters identified from noise data are compared to those from perturbation test data,more » and it is shown that both results are in good agreement. In addition to these stability estimations, driving noise sources for the neutron signal are evaluated by the M-AR modeling. Contributions from void, core flow, and pressure noise sources are quantitatively evaluated, and the void noise source is shown to be the most dominant.« less

  20. Numerical study on the effect of configuration of a simple box solar cooker for boiling water

    NASA Astrophysics Data System (ADS)

    Ambarita, H.

    2018-02-01

    In this work, a numerical study is carried out to investigate the effect of configuration of a simple box solar cooker. In order to validate the numerical results, a simple a simple solar box cooker with absorber area of 0.835 m × 0.835 m is designed and fabricated. The solar box cooker is employed to boil water by exposing to the solar radiation in Medan city of Indonesia. In the numerical method, a set of transient governing equations are developed. The governing equations are solved using forward time step marching technique. The main objective is to explore the effect of double glasses cover, dimensions of the cooking vessel, and depth of the box cooker to the performance of the solar box cooker. The results show that the experimental and numerical results show good agreement. The performance of the solar box cooker strongly affected by the distance of the double glass cover, the solar cooker depth, and the solar collector length.

  1. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; hide

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and

  2. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffrey R.

    2014-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to the high specific impulse that can be achieved using engines suitable for moving 10's to 100's of metric tons of payload mass to destinations outside of low earth orbit. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several days. The losses can be greatly reduced by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and by the integration of self-supporting multi-layer insulation. The active thermal control technology under development is the integration of the reverse turbo- Brayton cycle cryocooler to the propellant tank through a distributed cooling network of tubes coupled to a shield in the tank insulation and to the tank wall itself. Also, the self-supporting insulation technology was utilized under the shield to obtain needed tank applied LH2 performance. These elements were recently tested at NASA Glenn Research Center in a series of three tests, two that reduced LH2 boil-off and one to eliminate LO2 boil-off. This test series was conducted in a vacuum chamber that replicated the vacuum of space and the temperatures of low Earth orbit. The test results show that LH2 boil-off was reduced 60% by the cryocooler system operating at 90K and that robust LO2 zero boil-off storage, including full tank pressure control was achieved.

  3. Electromagnetic Control of High Heat-Flux Spray Impingement Boiling Under Microgravity Conditions

    DTIC Science & Technology

    2007-03-01

    impingement boiling ( Mudawar , 2000; Chow et al., 1997; Tilton, 1989). With water as the working fluid, spray cooling has achieved a heat flux on the...Stebbins, C. J., and Mudawar , I., 1996. "Mapping of Impact and Heat Transfer Regimes of Water Drops Impinging on a Polished Surface," Int. J. Heat and Mass...34 Proceedings of SAE 2004 Power Systems Conference, 2004-01-3204, Reno NV, November, pp. 309-317. Mudawar , 1., 2000. "Assessment of High-heat Flux

  4. Feasibility study of a brine boiling machine by solar energy

    NASA Astrophysics Data System (ADS)

    Phayom, W.

    2018-06-01

    This study presented the technical and operational feasibility of brine boiling machine by using solar energy instead of firewood or husk for salt production. The solar salt brine boiling machine consisted of a boiling chamber with an enhanced thermal efficiency through use of a solar brine heater. The stainless steel solar salt brine boiling chamber had dimensions of 60 cm x 70 cm x 20 cm. The steel brine heater had dimensions of 70 cm x 80 cm x 20 cm. The tilt angle of both the boiling chamber and brine heater was 20 degrees from horizontal. The brine temperature in the reservoir tank was 42°C with a flow rate of 6.64 L/h discharging into the solar boiling machine. It was found that the thermal efficiency and overall efficiency of the solar salt brine boiling machine were 0.63 and 0.38, respectively at a solar irradiance of 787.6 W/m2. The results shows that the potential of using solar energy for salt production system is feasible.

  5. A two-step method for developing a control rod program for boiling water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taner, M.S.; Levine, S.H.; Hsiao, M.Y.

    1992-01-01

    This paper reports on a two-step method that is established for the generation of a long-term control rod program for boiling water reactors (BWRs). The new method assumes a time-variant target power distribution in core depletion. In the new method, the BWR control rod programming is divided into two steps. In step 1, a sequence of optimal, exposure-dependent Haling power distribution profiles is generated, utilizing the spectral shift concept. In step 2, a set of exposure-dependent control rod patterns is developed by using the Haling profiles generated at step 1 as a target. The new method is implemented in amore » computer program named OCTOPUS. The optimization procedure of OCTOPUS is based on the method of approximation programming, in which the SIMULATE-E code is used to determine the nucleonics characteristics of the reactor core state. In a test in cycle length over a time-invariant, target Haling power distribution case because of a moderate application of spectral shift. No thermal limits of the core were violated. The gain in cycle length could be increased further by broadening the extent of the spetral shift.« less

  6. Liquid metal boiling inception

    NASA Technical Reports Server (NTRS)

    Sabin, C. M.; Poppendiek, H. F.; Mouritzen, G.; Meckel, P. T.; Cloakey, J. E.

    1972-01-01

    An experimental study of the inception of boiling in potassium in forced convection is reported. The boiler consisted of a 0.19-inch inside diameter, niobium-1% zirconium boiler tube approximately six feet long. Heating was accomplished by direct electrical tube wall conduction. Experiments were performed with both all-liquid fill and two-phase fill startup sequences and with a range of flow rates, saturation temperatures, inert gas levels, and fill liquid temperatures. Superheat of the liquid above the equilibrium saturation temperature was observed in all the experiments. Incipient boiling liquid superheat ranged from a few degrees to several hundred. Comparisons of these data with other data and with several analytical treatments are presented.

  7. The influence of surface roughness and solution concentration on pool boiling process in Diethanolamine aqueous solution

    NASA Astrophysics Data System (ADS)

    Khoshechin, Mohsen; Salimi, Farhad; Jahangiri, Alireza

    2018-04-01

    In this research, the effect of surface roughness and concentration of solution on bubble departing frequency and nucleation site density for pool boiling of water/diethanolamine (DEA) binary solution were investigated experimentally. In this investigation, boiling heat transfer coefficient, bubble departing frequency and nucleation site density have been experimentally investigated in various concentrations and heat fluxes. Microstructured surfaces with a wide range of well-defined surface roughness were fabricated, and a heat flux between 1.5-86 kW/m2 was achieved under atmospheric conditions. The Results indicated that surface roughness and concentration of solution increase the bubble departing frequency and nucleation site density with increasing heat flux. The boiling heat transfer coefficient in mixtures of water/DEA increases with increasing concentration of DEA in water. The experimental results were compared with predictions of several used correlations in the literatures. Results showed that the boiling heat transfer coefficients of this case study are much higher than the predicted values by major existing correlations and models. The excellent agreement for bubble departing frequency found between the models of Jackob and Fritz (1966) and experimental data and also the nucleation site density were in close agreement with the model of Paul (1983) data. f bubble departure frequency, 1/s or Hz N Number of nucleation sites per area per time R c Minimum cavity size, m D c critical diameter, m g gravitational acceleration, m/s2 ρ density, kg/m3 T temperature, °c ΔT temperature difference, °c d d vapor bubble diameter, m h fg enthalpy of vaporization, J/kg R Roughness, μm Ja Jakob number cp specific heat, J/kg °c Pr Prandtl number Ar Archimedes number h Heat transfer coefficient, J/(m2 °c) tg time it takes to grow a bubble, s q/A heat flux (kW/m2) tw time required to heat the layer, s gc Correction coefficient of incompatible units R a Surface

  8. The decrease of cylindrical pempek quality during boiling

    NASA Astrophysics Data System (ADS)

    Karneta, R.; Gultom, N. F.

    2017-09-01

    The research objective was to study the effects of temperature and formulation on quality of pempek lenjer during boiling. Treatments in this study were four levels of pempek formulation and five levels of temperature. Data was processed by using analysis of variance (Anova). If test results showed that samples were significantly different or highly significantly different, then further test was conducted by using Honestly Significant Different. The results showed that chemical analysis showed that fish dominant formula of cylindrical pempek had higher water content, protein content, lipid content and ash content than that of tapioca starch dominant formula, but it had lower carbohydrate content and fibre content than that of tapioca starch dominant formula.The higher the temperature at center point of cylindrical pempek, the lower the chemical quality of cylindrical pempek. The effect of formula on physical quality of cylindrical pempek showed that tapioca starch dominant formula had more rubbery texture, more neutral pH and brighter color than that of fish dominant formula.The temperature change had no significant effect on texture and pH of cylindrical pempek, but it had significant effect on lightness, intensity and chromatic color especially after exceeding optimum time of boiling.

  9. Transient nucleate pool boiling in microgravity: Some initial results

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.; Lee, H. S.; Ervin, J. S.

    1994-01-01

    Variable gravity provides an opportunity to test the understanding of phenomena which are considered to depend on buoyancy, such as nucleate pool boiling. The active fundamental research in nucleate boiling has sought to determine the mechanisms or physical processes responsible for its high effectiveness, manifested by the high heat flux levels possible with relatively low temperature differences. Earlier research on nucleate pool boiling at high gravity levels under steady conditions demonstrated quantitatively that the heat transfer is degraded as the buoyancy normal to the heater surfaced increases. Correspondingly, it was later shown, qualitatively for short periods of time only, that nucleate boiling heat transfer is enhanced as the buoyancy normal to the heater surface is reduced. It can be deduced that nucleate pool boiling can be sustained as a quasi-steady process provided that some means is available to remove the vapor generated from the immediate vicinity of the heater surface. One of the objectives of the research, the initial results of which are presented here, is to quantify the heat transfer associated with boiling in microgravity. Some quantitative results of nucleate pool boiling in high quality microgravity (a/g approximately 10(exp -5)) of 5s duration, obtained in an evacuated drop tower, are presented here. These experiments were conducted as precursors of longer term space experiments. A transient heating technique is used, in which the heater surface is a transparent gold film sputtered on a qua rtz substrate, simultaneously providing the mean surface temperature from resistance thermometry and viewing of the boiling process both from beneath and across the surface. The measurement of the transient mean heater surface temperature permits the computation, by numerical means, of the transient mean heat transfer coefficient. The preliminary data obtained demonstrates that a quasi-steady boiling process can occur in microgravity if the bulk

  10. Electrically Driven Liquid Film Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation presents the science background and ground based results that form the basis of the Electrically Driven Liquid Film Boiling Experiment. This is an ISS experiment that is manifested for 2021. Objective: Characterize the effects of gravity on the interaction of electric and flow fields in the presence of phase change specifically pertaining to: a) The effects of microgravity on the electrically generated two-phase flow. b) The effects of microgravity on electrically driven liquid film boiling (includes extreme heat fluxes). Electro-wetting of the boiling section will repel the bubbles away from the heated surface in microgravity environment. Relevance/Impact: Provides phenomenological foundation for the development of electric field based two-phase thermal management systems leveraging EHD, permitting optimization of heat transfer surface area to volume ratios as well as achievement of high heat transfer coefficients thus resulting in system mass and volume savings. EHD replaces buoyancy or flow driven bubble removal from heated surface. Development Approach: Conduct preliminary experiments in low gravity and ground-based facilities to refine technique and obtain preliminary data for model development. ISS environment required to characterize electro-wetting effect on nucleate boiling and CHF in the absence of gravity. Will operate in the FIR - designed for autonomous operation.

  11. Spectral measurements of direct and scattered gamma radiation at a boiling-water reactor site

    NASA Astrophysics Data System (ADS)

    Block, R. C.; Preiss, I. L.; Ryan, R. M.; Vargo, G. J.

    1990-12-01

    Quantitative surveys of direct and scattered gamma radiation emitted from the steam-power conversion systems of a boiling-water reactor and other on-site radiation sources were made using a directionally shielded HPGe gamma spectrometry system. The purpose of this study was to obtain data on the relative contributions and energy distributions of direct and scattered gamma radiation in the site environs. The principal radionuclide of concern in this study is 16N produced by the 16O(n,p) 16N reaction in the reactor coolant. Due to changes in facility operation resulting from the implementation of hydrogen water chemistry (HWC), the amount of 16N transported from the reactor to the main steam system under full power operation is excepted to increase by a factor of 1.2 to 5.0. This increase in the 16N source term in the nuclear steam must be considered in the design of new facilities to be constructed on site as well as the evaluation of existing facilities with repect to ALARA (As Low As Reasonably Achievable) dose limits in unrestricted areas. This study consisted of base-line measurements taken under normal BWR chemistry conditions in October, 1987 and a corresponding set taken under HWC conditions in July, 1988. Ground-level and elevated measurements, corresponding to second-story building height, were obtained. The primary conclusion of this study is that direct radiation from the steam-power conversion system is the predominant source of radiation in the site environs of this reactor and that air scattering (i.e. skyshine) does not appear to be significant.

  12. Proteomic Investigation of Protein Profile Changes and Amino Acid Residue Level Modification in Cooked Lamb Meat: The Effect of Boiling.

    PubMed

    Yu, Tzer-Yang; Morton, James D; Clerens, Stefan; Dyer, Jolon M

    2015-10-21

    Hydrothermal treatment (heating in water) is a common method of general food processing and preparation. For red-meat-based foods, boiling is common; however, how the molecular level effects of this treatment correlate to the overall food properties is not yet well-understood. The effects of differing boiling times on lamb meat and the resultant cooking water were here examined through proteomic evaluation. The longer boiling time was found to result in increased protein aggregation involving particularly proteins such as glyceraldehyde-3-phosphate dehydrogenase, as well as truncation in proteins such as in α-actinin-2. Heat-induced protein backbone cleavage was observed adjacent to aspartic acid and asparagine residues. Side-chain modifications of amino acid residues resulting from the heating, including oxidation of phenylalanine and formation of carboxyethyllysine, were characterized in the cooked samples. Actin and myoglobin bands from the cooked meat per se remained visible on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, even after significant cooking time. These proteins were also found to be the major source of observed heat-induced modifications. This study provides new insights into molecular-level modifications occurring in lamb meat proteins during boiling and a protein chemistry basis for better understanding the effect of this common treatment on the nutritional and functional properties of red-meat-based foods.

  13. A genetic algorithm-based optimization model for pool boiling heat transfer on horizontal rod heaters at isolated bubble regime

    NASA Astrophysics Data System (ADS)

    Alavi Fazel, S. Ali

    2017-09-01

    A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.

  14. Criticality in the slowed-down boiling crisis at zero gravity.

    PubMed

    Charignon, T; Lloveras, P; Chatain, D; Truskinovsky, L; Vives, E; Beysens, D; Nikolayev, V S

    2015-05-01

    Boiling crisis is a transition between nucleate and film boiling. It occurs at a threshold value of the heat flux from the heater called CHF (critical heat flux). Usually, boiling crisis studies are hindered by the high CHF and short transition duration (below 1 ms). Here we report on experiments in hydrogen near its liquid-vapor critical point, in which the CHF is low and the dynamics slow enough to be resolved. As under such conditions the surface tension is very small, the experiments are carried out in the reduced gravity to preserve the conventional bubble geometry. Weightlessness is created artificially in two-phase hydrogen by compensating gravity with magnetic forces. We were able to reveal the fractal structure of the contour of the percolating cluster of the dry areas at the heater that precedes the boiling crisis. We provide a direct statistical analysis of dry spot areas that confirms the boiling crisis at zero gravity as a scale-free phenomenon. It was observed that, in agreement with theoretical predictions, saturated boiling CHF tends to zero (within the precision of our thermal control system) in zero gravity, which suggests that the boiling crisis may be observed at any heat flux provided the experiment lasts long enough.

  15. Summary and bibliography of safety-related events at boiling-water nuclear power plants as reported in 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormack, K.E.; Gallaher, R.B.

    1982-03-01

    This document presents a bibliography that contains 100-word abstracts of event reports submitted to the US Nuclear Regulatory Commission concerning operational events that occurred at boiling-water-reactor nuclear power plants in 1980. The 1547 abstracts included on microfiche in this bibliography describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. These abstracts are arranged alphabetically by reactor name and then chronologically for each reactor. Full-size keyword and permuted-title indexes to facilitate location of individual abstracts are provided following the text. Tables that summarize the information contained in the bibliography are also provided. The information in themore » tables includes a listing of the equipment items involved in the reported events and the associated number of reports for each item. Similar information is given for the various kinds of instrumentation and systems, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction).« less

  16. Nuclear-coupled thermal-hydraulic stability analysis of boiling water reactors

    NASA Astrophysics Data System (ADS)

    Karve, Atul A.

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model we developed from: the space-time modal neutron kinetics equations based on spatial omega-modes, the equations for two-phase flow in parallel boiling channels, the fuel rod heat conduction equations, and a simple model for the recirculation loop. The model is represented as a dynamical system comprised of time-dependent nonlinear ordinary differential equations, and it is studied using stability analysis, modern bifurcation theory, and numerical simulations. We first determine the stability boundary (SB) in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value and then transform the SB to the practical power-flow map. Using this SB, we show that the normal operating point at 100% power is very stable, stability of points on the 100% rod line decreases as the flow rate is reduced, and that points are least stable in the low-flow/high-power region. We also determine the SB when the modal kinetics is replaced by simple point reactor kinetics and show that the first harmonic mode has no significant effect on the SB. Later we carry out the relevant numerical simulations where we first show that the Hopf bifurcation, that occurs as a parameter is varied across the SB is subcritical, and that, in the important low-flow/high-power region, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line. Hence, a point on the 100% rod line in the low-flow/high-power region, although stable, may nevertheless be a point at which a BWR should not be operated. Numerical simulations are then done to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is determined that the NRC requirement of DR < 0.75-0.8 is not rigorously satisfied in the low

  17. 40 CFR 180.1056 - Boiled linseed oil; exemption from requirement of tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... “boiled linseed oil.” This exemption is limited to use on rice before edible parts form. [46 FR 33270... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Boiled linseed oil; exemption from... From Tolerances § 180.1056 Boiled linseed oil; exemption from requirement of tolerance. Boiled linseed...

  18. Indoor Particulate Matter Concentration, Water Boiling Time, and Fuel Use of Selected Alternative Cookstoves in a Home-Like Setting in Rural Nepal

    PubMed Central

    Ojo, Kristen D.; Soneja, Sutyajeet I.; Scrafford, Carolyn G.; Khatry, Subarna K.; LeClerq, Steven C.; Checkley, William; Katz, Joanne; Breysse, Patrick N.; Tielsch, James M.

    2015-01-01

    Alternative cookstoves are designed to improve biomass fuel combustion efficiency to reduce the amount of fuel used and lower emission of air pollutants. The Nepal Cookstove Trial (NCT) studies effects of alternative cookstoves on family health. Our study measured indoor particulate matter concentration (PM2.5), boiling time, and fuel use of cookstoves during a water-boiling test in a house-like setting in rural Nepal. Study I was designed to select a stove to be used in the NCT; Study II evaluated stoves used in the NCT. In Study I, mean indoor PM2.5 using wood fuel was 4584 μg/m3, 1657 μg/m3, and 2414 μg/m3 for the traditional, alternative mud brick stove (AMBS-I) and Envirofit G-series, respectively. The AMBS-I reduced PM2.5 concentration but increased boiling time compared to the traditional stove (p-values < 0.001). Unlike AMBS-I, Envirofit G-series did not significantly increase overall fuel consumption. In Phase II, the manufacturer altered Envirofit stove (MAES) and Nepal Nutrition Intervention Project Sarlahi (NNIPS) altered Envirofit stove (NAES), produced lower mean PM2.5, 1573 μg/m3 and 1341 μg/m3, respectively, relative to AMBS-II 3488 μg/m3 for wood tests. The liquid propane gas stove had the lowest mean PM2.5 concentrations, with measurements indistinguishable from background levels. Results from Study I and II showed significant reduction in PM2.5 for all alternative stoves in a controlled setting. In study I, the AMBS-I stove required more fuel than the traditional stove. In contrast, in study II, the MAES and NAES stoves required statistically less fuel than the AMBS-II. Reductions and increases in fuel use should be interpreted with caution because the composition of fuels was not standardized—an issue which may have implications for generalizability of other findings as well. Boiling times for alternative stoves in Study I were significantly longer than the traditional stove—a trade-off that may have implications for acceptability of

  19. Indoor Particulate Matter Concentration, Water Boiling Time, and Fuel Use of Selected Alternative Cookstoves in a Home-Like Setting in Rural Nepal.

    PubMed

    Ojo, Kristen D; Soneja, Sutyajeet I; Scrafford, Carolyn G; Khatry, Subarna K; LeClerq, Steven C; Checkley, William; Katz, Joanne; Breysse, Patrick N; Tielsch, James M

    2015-07-07

    Alternative cookstoves are designed to improve biomass fuel combustion efficiency to reduce the amount of fuel used and lower emission of air pollutants. The Nepal Cookstove Trial (NCT) studies effects of alternative cookstoves on family health. Our study measured indoor particulate matter concentration (PM2.5), boiling time, and fuel use of cookstoves during a water-boiling test in a house-like setting in rural Nepal. Study I was designed to select a stove to be used in the NCT; Study II evaluated stoves used in the NCT. In Study I, mean indoor PM2.5 using wood fuel was 4584 μg/m3, 1657 μg/m3, and 2414 μg/m3 for the traditional, alternative mud brick stove (AMBS-I) and Envirofit G-series, respectively. The AMBS-I reduced PM2.5 concentration but increased boiling time compared to the traditional stove (p-values < 0.001). Unlike AMBS-I, Envirofit G-series did not significantly increase overall fuel consumption. In Phase II, the manufacturer altered Envirofit stove (MAES) and Nepal Nutrition Intervention Project Sarlahi (NNIPS) altered Envirofit stove (NAES), produced lower mean PM2.5, 1573 μg/m3 and 1341 μg/m3, respectively, relative to AMBS-II 3488 μg/m3 for wood tests. The liquid propane gas stove had the lowest mean PM2.5 concentrations, with measurements indistinguishable from background levels. Results from Study I and II showed significant reduction in PM2.5 for all alternative stoves in a controlled setting. In study I, the AMBS-I stove required more fuel than the traditional stove. In contrast, in study II, the MAES and NAES stoves required statistically less fuel than the AMBS-II. Reductions and increases in fuel use should be interpreted with caution because the composition of fuels was not standardized--an issue which may have implications for generalizability of other findings as well. Boiling times for alternative stoves in Study I were significantly longer than the traditional stove--a trade-off that may have implications for acceptability of the

  20. Water evaporation in silica colloidal deposits.

    PubMed

    Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier

    2013-10-15

    The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. CONTINUOUS ANALYZER UTILIZING BOILING POINT DETERMINATION

    DOEpatents

    Pappas, W.S.

    1963-03-19

    A device is designed for continuously determining the boiling point of a mixture of liquids. The device comprises a distillation chamber for boiling a liquid; outlet conduit means for maintaining the liquid contents of said chamber at a constant level; a reflux condenser mounted above said distillation chamber; means for continuously introducing an incoming liquid sample into said reflux condenser and into intimate contact with vapors refluxing within said condenser; and means for measuring the temperature of the liquid flowing through said distillation chamber. (AEC)

  2. The Effect of Boiling on Seismic Properties of Water-Saturated Fractured Rock

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Quintal, Beatriz; Caspari, Eva; Deuber, Claudia; Maurer, Hansruedi; Greenhalgh, Stewart

    2017-11-01

    Seismic campaigns for exploring geothermal systems aim at detecting permeable formations in the subsurface and evaluating the energy state of the pore fluids. High-enthalpy geothermal resources are known to contain fluids ranging from liquid water up to liquid-vapor mixtures in regions where boiling occurs and, ultimately, to vapor-dominated fluids, for instance, if hot parts of the reservoir get depressurized during production. In this study, we implement the properties of single- and two-phase fluids into a numerical poroelastic model to compute frequency-dependent seismic velocities and attenuation factors of a fractured rock as a function of fluid state. Fluid properties are computed while considering that thermodynamic interaction between the fluid phases takes place. This leads to frequency-dependent fluid properties and fluid internal attenuation. As shown in a first example, if the fluid contains very small amounts of vapor, fluid internal attenuation is of similar magnitude as attenuation in fractured rock due to other mechanisms. In a second example, seismic properties of a fractured geothermal reservoir with spatially varying fluid properties are calculated. Using the resulting seismic properties as an input model, the seismic response of the reservoir is then computed while the hydrothermal structure is assumed to vary over time. The resulting seismograms demonstrate that anomalies in the seismic response due to fluid state variability are small compared to variations caused by geological background heterogeneity. However, the hydrothermal structure in the reservoir can be delineated from amplitude anomalies when the variations due to geology can be ruled out such as in time-lapse experiments.

  3. Occurrence and potential causes of androgenic activities in source and drinking water in China.

    PubMed

    Hu, Xinxin; Shi, Wei; Wei, Si; Zhang, Xiaowei; Feng, Jianfang; Hu, Guanjiu; Chen, Sulan; Giesy, John P; Yu, Hongxia

    2013-09-17

    The increased incidences of disorders of male reproductive tract as well as testicular and prostate cancers have been attributed to androgenic pollutants in the environment. Drinking water is one pathway of exposure through which humans can be exposed. In this study, both potencies of androgen receptor (AR) agonists and antagonists were determined in organic extracts of raw source water as well as finished water from waterworks, tap water, boiled water, and poured boiled water in eastern China. Ten of 13 samples of source water exhibited detectable AR antagonistic potencies with AR antagonist equivalents (Ant-AR-EQs) ranging from <15.3 (detection limit) to 140 μg flutamide/L. However, no AR agonistic activity was detected in any source water. All finished water from waterworks, tap water, boiled water, and poured boiled water exhibited neither AR agonistic nor antagonistic activity. Although potential risks are posed by source water, water treatment processes effectively removed AR antagonists. Boiling and pouring of water further removed these pollutants. Phthalate esters (PAEs) including diisobutyl phthalate (DIBP) and dibutyl phthalate (DBP) were identified as major contributors to AR antagonistic potencies in source waters. Metabolites of PAEs exhibited no AR antagonistic activity and did not increase potencies of PAEs when they coexist.

  4. Cooling of hot bubbles by surface texture during the boiling crisis

    NASA Astrophysics Data System (ADS)

    Dhillon, Navdeep; Buongiorno, Jacopo; Varanasi, Kripa

    2015-11-01

    We report the existence of maxima in critical heat flux (CHF) enhancement for pool boiling on textured hydrophilic surfaces and reveal the interaction mechanism between bubbles and surface texture that governs the boiling crisis phenomenon. Boiling is a process of fundamental importance in many engineering and industrial applications but the maximum heat flux that can be absorbed by the boiling liquid (or CHF) is limited by the boiling crisis. Enhancing the CHF of industrial boilers by surface texturing can lead to substantial energy savings and reduction in greenhouse gas emissions on a global scale. However, the fundamental mechanisms behind this enhancement are not well understood, with some previous studies indicating that CHF should increase monotonically with increasing texture density. However, using pool boiling experiments on a parametrically designed set of plain and nano-textured micropillar surfaces, we show that there is an optimum intermediate texture density that maximizes CHF and further that the length scale of this texture is of fundamental significance. Using imbibition experiments and high-speed optical and infrared imaging, we reveal the fundamental mechanisms governing the CHF enhancement maxima in boiling crisis. We acknowledge funding from the Chevron corporation.

  5. New insight from noble gas and stable isotopes of geothermal/hydrothermal fluids at Caviahue-Copahue Volcanic Complex: Boiling steam separation and water-rock interaction at shallow depth

    NASA Astrophysics Data System (ADS)

    Roulleau, Emilie; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; Vinet, Nicolas; Bravo, Francisco; Muñoz, Carlos; Sanchez, Juan

    2016-12-01

    We measured noble gas and stable isotopes of the geothermal and hydrothermal fluids of the Caviahue-Copahue Volcanic Complex (CCVC), one of the most important geothermal systems in Argentina/Chile, in order to provide new insights into fluid circulation and origin. With the exception of Anfiteatro and Chancho-co geothermal systems, mantle-derived helium dominates in the CCVC fluids, with measured 3He/4He ratios up to 7.86Ra in 2015. Their positive δ15N is an evidence for subducted sediment-derived nitrogen, which is commonly observed in subduction settings. Both He-N2-Ar composition and positive correlation between δD-H2O and δ18O-H2O suggest that the fluids from Anfiteatro and Chancho-co (and partly from Pucon-Mahuida as well, on the southern flank of Copahue volcano) represent a meteoric water composition with a minor magmatic contribution. The Ne, Kr and Xe isotopic compositions are entirely of atmospheric origin, but processes of boiling and steam separation have led to fractionation of their elemental abundances. We modeled the CCVC fluid evolution using Rayleigh distillation curves, considering an initial air saturated geothermal water (ASGW) end-member at 250 and 300 °C, followed by boiling and steam separation at lower temperatures (from 200 °C to 150 °C). Between 2014 and 2015, the CCVC hydrogen and oxygen isotopes shifted from local meteoric water-dominated to andesitic water-dominated signature. This shift is associated with an increase of δ13C values and Stotal, HCl and He contents. These characteristics are consistent with a change in the gas ascent pathway between 2014 and 2015, which in turn induced higher magmatic-hydrothermal contribution in the fluid signature. The composition of the magmatic source of the CCVC fluids is: 3He/4He = 7.7Ra, δ15N = + 6‰, and δ13C = - 6.5‰. Mixing models between air-corrected He and N suggest the involvement of 0.5% to 5% of subducted sediments in the magmatic source. The magmatic sulfur isotopic

  6. 75 FR 10840 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Subcommittee on Advanced Boiling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Subcommittee on Advanced Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on ABWR will... would result in major inconvenience. Dated: March 3, 2010. Antonio F. Dias, Chief, Reactor Safety Branch...

  7. [Aconitine analogues in wild Aconitum plants: contents toxicity to mice and decrease by boiling].

    PubMed

    Kasahara, Yoshimasa; Itou, Takeshi; Numazawa, Toshiaki; Wada, Akinobu

    2013-01-01

    Simultaneous determination of four aconitine analogues (ACs) (AC; aconitine, HA; hypaconitine, JA; jesaconitine, MA; mesaconitine) in leaves and roots of wild Aconitum plants (Aconitum japonicum THUNBERG, Aconitum okuyamae Nakai) was carried out to elucidate the relation between toxicity to mice and ACs content determind by liquid chromatography tandem mass spectrometry. The total amounts of ACs in leaves, roots, petals and nectaries of Aconitum japonicum collected at Sagae-shi Tashiro were 5.9 μg/g, 928.1 μg/g, 46.1 μg/g, and 69.8 μg/g, respectively. Despite the high contents in nectary, commercial honey contained no ACs. Extract of wild Aconitum japonicum roots which contained ACs (2.69 mg/g) was administered to 5 mice orally at 1.0 g/kg (fresh root equivalent), and 2 mice died. On the other hand, 3 of 5 mice died after being given the standard AC (3.0 mg/kg, p.o.). These findings confirmed good coincidence between toxicity and quantitative values. Mice given extract of Aconitum okuyamae root (100 g/kg, p.o.) without ACs showed no toxic symptoms. Residual ACs in Aconitum leaves were examined after boiling. The remaining percentage of ACs in leaves after 0.5 minutes boiling was 31.6%, and the amount in the boiling water was 54.5%. MA is converted into benzoylmesaconine by hydrolysis (by boiling). Therefore food poisoning caused by Aconitum plants is explained by detection of benzoylmesaconine formed during food preparation.

  8. Energy-efficient drinking water disinfection for greenhouse gas mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadgil, A.J.; Greene, D.M.; Rosenfeld, A.

    Anecdotal evidence suggests that approximately one billion people worldwide use cookstoves to boil their drinking water. About half of this population is in China. Some populations (e.g. Jakarta) spend 1% of their GDP on boiling drinking water. Impoverished and/or ignorant populations not yet boiling their drinking water will do so when they can both afford it and understand the risks of unsafe drinking water. A recently developed water disinfection technology (UV Waterworks) can produce safe drinking water while earning tradable carbon credits (or credit as a clean development mechanism) when implemented as part of national energy, health, and carbon emissionsmore » trading policy, UV Waterworks uses approximately 6,000 times less energy than boiling over a biomass cookstove. Each unit that replaces boiling may save up to 175 or 300 tons/year of carbon-equivalent GHG emissions, depending on if it replaces sustainably harvested biomass (SHB) or non-SHB. For the approximately 500M Chinese boiling their drinking water over biomass (assumed SHB), this suggests a technical potential (that is, potential under the limiting case of 100% market adoption) of saving 87M tons/year of carbon-equivalent non-CO{sub 2} GHG emissions. The energy savings and corresponding emissions reductions will vary with cookstove fuels and stove efficiency: non-SHB and kerosene represent the most and least GHG-producing cookstove fuels, respectively, among those readily available to the populations of interest. The authors bracket the global technical potential for carbon emission reductions resulting from implementation of UV Waterworks, and estimate the value of tradable carbon credits earned from these reductions.« less

  9. The boiling point of stratospheric aerosols.

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  10. BOILING REACTORS

    DOEpatents

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  11. Numerical investigation of saturated upward flow boiling of water in a vertical tube using VOF model: effect of different boundary conditions

    NASA Astrophysics Data System (ADS)

    Hasanpour, B.; Irandoost, M. S.; Hassani, M.; Kouhikamali, R.

    2018-01-01

    In this paper a numerical simulation of upward two-phase flow evaporation in a vertical tube has been studied by considering water as working fluid. To this end, the computational fluid dynamic simulations of this system are performed with heat and mass transfer mechanisms due to energy transfer during the phase change interaction near the heat transfer surface. The volume of fluid model in an available Eulerian-Eulerian approach based on finite volume method is utilized and the mass source term in conservation of mass equation is implemented using a user defined function. The characteristics of water flow boiling such as void fraction and heat transfer coefficient distribution are investigated. The main cause of fluctuations on heat transfer coefficient and volume fraction is velocity increment in the vapor phase rather than the liquid phase. The case study of this research including convective heat transfer coefficient and tube diameter are considered as a parametric study. The operating conditions are considered at high pressure in saturation temperature and the physical properties of water are determined by considering system's inlet temperature and pressure in saturation conditions. Good agreement is achieved between the numerical and the experimental values of heat transfer coefficients.

  12. Numerical investigation of saturated upward flow boiling of water in a vertical tube using VOF model: effect of different boundary conditions

    NASA Astrophysics Data System (ADS)

    Hasanpour, B.; Irandoost, M. S.; Hassani, M.; Kouhikamali, R.

    2018-07-01

    In this paper a numerical simulation of upward two-phase flow evaporation in a vertical tube has been studied by considering water as working fluid. To this end, the computational fluid dynamic simulations of this system are performed with heat and mass transfer mechanisms due to energy transfer during the phase change interaction near the heat transfer surface. The volume of fluid model in an available Eulerian-Eulerian approach based on finite volume method is utilized and the mass source term in conservation of mass equation is implemented using a user defined function. The characteristics of water flow boiling such as void fraction and heat transfer coefficient distribution are investigated. The main cause of fluctuations on heat transfer coefficient and volume fraction is velocity increment in the vapor phase rather than the liquid phase. The case study of this research including convective heat transfer coefficient and tube diameter are considered as a parametric study. The operating conditions are considered at high pressure in saturation temperature and the physical properties of water are determined by considering system's inlet temperature and pressure in saturation conditions. Good agreement is achieved between the numerical and the experimental values of heat transfer coefficients.

  13. Experimental evidence of the vapor recoil mechanism in the boiling crisis.

    PubMed

    Nikolayev, V S; Chatain, D; Garrabos, Y; Beysens, D

    2006-11-03

    Boiling crisis experiments are carried out in the vicinity of the liquid-gas critical point of H2. A magnetic gravity compensation setup is used to enable nucleate boiling at near critical pressure. The measurements of the critical heat flux that defines the threshold for the boiling crisis are carried out as a function of the distance from the critical point. The obtained power law behavior and the boiling crisis dynamics agree with the predictions of the vapor recoil mechanism and disagree with the classical vapor column mechanism.

  14. Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification

    NASA Astrophysics Data System (ADS)

    Ha, Minseok; Graham, Samuel

    2017-08-01

    Experimental studies have shown that microporous surfaces induce one of the highest enhancements in critical heat flux (CHF) during pool boiling. However, microporous surfaces may also induce a very large surface superheat (>100 °C) which is not desirable for applications such as microelectronics cooling. While the understanding of the CHF mechanism is the key to enhancing boiling heat transfer, a comprehensive understanding is not yet available. So far, three different theories for the CHF of microporous surfaces have been suggested: viscous-capillary model, hydrodynamic instability model, and dryout of the porous coatings. In general, all three theories account for some aspects of boiling phenomena. In this study, the theories are examined through their correlations with experimental data on microporous surfaces during pool boiling using deionized (DI) water. It was found that the modulation of the vapor-jet through the pore network enables a higher CHF than that of a flat surface based on the hydrodynamic instability theory. In addition, it was found that as the heat flux increases, a vapor layer grows in the porous coatings described by a simple thermal resistance model which is responsible for the large surface superheat. Once the vapor layer grows to fill the microporous structure, transition to film boiling occurs and CHF is reached. By disrupting the formation of this vapor layer through the fabrication of channels to allow vapor escape, an enhancement in the CHF and heat transfer coefficient was observed, allowing CHF greater than 3500 kW/m2 at a superheat less than 50 °C.

  15. Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy.

    PubMed

    Pahk, Ki Joo; Gélat, Pierre; Sinden, David; Dhar, Dipok Kumar; Saffari, Nader

    2017-12-01

    The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal ablation for therapeutic applications. In general, the shape of a lesion produced by boiling histotripsy is tadpole like, consisting of a head and a tail. Although many studies have demonstrated the efficacy of boiling histotripsy for fractionating solid tumors, the exact mechanisms underpinning this phenomenon are not yet well understood, particularly the interaction of a boiling vapor bubble with incoming incident shockwaves. To investigate the mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation detection system was used to observe the dynamics of bubbles produced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0-MHz high-intensity focused ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a localized heated region and cavitation clouds were subsequently induced ahead of the expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a tadpole-shaped lesion. A simplified numerical model describing the scattering of the incident ultrasound wave by a vapor bubble was developed to help interpret the experimental observations. Together with the numerical results, these observations suggest that the overall size of a lesion induced by boiling histotripsy is dependent on the sizes of (i) the heated region at the HIFU focus and (ii) the backscattered acoustic field by the original vapor bubble. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  16. Observations of the boiling process from a downward-facing torispherical surface: Confirmatory testing of the heavy water new production reactor flooded cavity design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Bentz, J.H.; Simpson, R.B.

    1995-06-01

    Reactor-scale ex-vessel boiling experiments were performed in the CYBL facility at Sandia National Laboratories. The boiling flow pattern outside the RPV bottom head shows a center pulsating region and an outer steady two-phase boundary layer region. The local heat transfer data can be correlated in terms of a modified Rohsenow correlation.

  17. Acoustic emission feedback control for control of boiling in a microwave oven

    DOEpatents

    White, Terry L.

    1991-01-01

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  18. Boiling-induced formation of colloidal gold in black smoker hydrothermal fluids

    USGS Publications Warehouse

    Gartman, Amy; Hannington, Mark; Jamieson, John W.; Peterkin, Ben; Garbe-Schönberg, Dieter; Findlay, Alyssa J; Fuchs, Sebastian; Kwasnitschka, Tom

    2017-01-01

    Gold colloids occur in black smoker fluids from the Niua South hydrothermal vent field, Lau Basin (South Pacific Ocean), confirming the long-standing hypothesis that gold may undergo colloidal transport in hydrothermal fluids. Six black smoker vents, varying in temperature from 250 °C to 325 °C, were sampled; the 325 °C vent was boiling at the time of sampling and the 250 °C fluids were diffusely venting. Native gold particles ranging from <50 nm to 2 µm were identified in 4 of the fluid samples and were also observed to precipitate on the sampler during collection from the boiling vent. Total gold concentrations (dissolved and particulate) in the fluid samples range from 1.6 to 5.4 nM in the high-temperature, focused flow vents. Although the gold concentrations in the focused flow fluids are relatively high, they are lower than potential solubilities prior to boiling and indicate that precipitation was boiling induced, with sulfide lost upon boiling to exsolution and metal sulfide formation. Gold concentrations reach 26.7 nM in the 250 °C diffuse flow sample, and abundant native gold particles were also found in the fluids and associated sulfide chimney and are interpreted to be a product of colloid accumulation and growth following initial precipitation upon boiling. These results indicate that colloid-driven precipitation as a result of boiling, the persistence of colloids after boiling, and the accumulation of colloids in diffuse flow fluids are important mechanisms for the enrichment of gold in seafloor hydrothermal systems.

  19. Water absorption characteristic of interlocking compressed earth brick units

    NASA Astrophysics Data System (ADS)

    Bakar, B. H. Abu; Saari, S.; Surip, N. A.

    2017-10-01

    This study aims to investigate the water absorption characteristic of interlocking compressed earth brick (ICEB) units. Apart from compressive strength, water absorption is an important property in masonry. This property can affect the quality of the brick itself and the bond strength between the brick and mortar in masonry structures and can result in reducing its strength properties. The units were tested for 24 h water absorption and 5 h boiling water absorption. A total of 170 ICEB units from four ICEB types underwent both tests. For the 24 h water absorption, the ICEB units were dried in the oven for 24 h and then cooled before being weighed. Thereafter, each brick was immersed in water for 24 h and weighed. The same specimens used for the 24 h water absorption test were re-used for the 5 h boiling water absorption test. After completing the 24 h water absorption test, the brick was boiled for 5-hours and weighed. The highest water absorption for the ICEBs in the 24-hour water absorption and 5 h boiling water absorption tests are 15.09% and 17.18%, respectively. The half brick has the highest water absorption (15.87%), whereas the beam brick has the lowest (13.20%). The water absorption of an ICEB unit is higher than that of normal bricks, although the water absorption of the former remains below the maximum rate of the brick water absorption (21%).

  20. Steady State Film Boiling Heat Transfer Simulated With Trace V4.160

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audrius Jasiulevicius; Rafael Macian-Juan

    2006-07-01

    This paper presents the results of the assessment and analysis of TRACE v4.160 heat transfer predictions in the post-CHF (critical heat flux) region and discusses the possibilities to improve the TRACE v4.160 code predictions in the film boiling heat transfer when applying different film boiling correlations. For this purpose, the TRACE v4.160-calculated film boiling heat flux and the resulting maximum inner wall temperatures during film boiling in single tubes were compared with experimental data obtained at the Royal Institute of Technology (KTH) in Stockholm, Sweden. The experimental database included measurements for pressures ranging from 30 to 200 bar and coolantmore » mass fluxes from 500 to 3000 kg/m{sup 2}s. It was found that TRACE v4.160 does not produce correct predictions of the film boiling heat flux, and consequently of the maximum inner wall temperature in the test section, under the wide range of conditions documented in the KTH experiments. In particular, it was found that the standard TRACE v4.160 under-predicts the film boiling heat transfer coefficient at low pressure-low mass flux and high pressure-high mass flux conditions. For most of the rest of the investigated range of parameters, TRACE v4.160 over-predicts the film boiling heat transfer coefficient, which can lead to non-conservative predictions in applications to nuclear power plant analyses. Since no satisfactory agreement with the experimental database was obtained with the standard TRACE v4.160 film boiling heat transfer correlations, we have added seven film boiling correlations to TRACE v4.160 in order to investigate the possibility to improve the code predictions for the conditions similar to the KTH tests. The film boiling correlations were selected among the most commonly used film boiling correlations found in the open literature, namely Groeneveld 5.7, Bishop (2 correlations), Tong, Konkov, Miropolskii and Groeneveld-Delorme correlations. The only correlation among the

  1. 20. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Remains of south wall. The molasses storage pits are below the floor in the foreground. The remaining piece of floor indicates the form of the entire floor. The sorghum pan and boiling range flue slope from left to right (east to west) and permitted batches of cane juice to flow through the boiling pan by gravity. The beams, joists, truss work are built of northwest pine. The sides and floor boards are built of redwood. The boiling range flue is built of fire-brick, masonry, and portland cement. The corrugated roof appears to be a later addition, not contemporary with mill operation. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  2. Preliminary design study of small long life boiling water reactor (BWR) with tight lattice thorium nitride fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trianti, Nuri, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id; Su'ud, Zaki, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id; Arif, Idam, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id

    2014-09-30

    Neutronic performance of small long-life boiling water reactors (BWR) with thorium nitride based fuel has been performed. A recent study conducted on BWR in tight lattice environments (with a lower moderator percentage) produces small power reactor which has some specifications, i.e. 10 years operation time, power density of 19.1 watt/cc and maximum excess reactivity of about 4%. This excess reactivity value is smaller than standard reactivity of conventional BWR. The use of hexagonal geometry on the fuel cell of BWR provides a substantial effect on the criticality of the reactor to obtain a longer operating time. Supported by a tightmore » concept lattice where the volume fraction of the fuel is greater than the moderator and fuel, Thorium Nitride give good results for fuel cell design on small long life BWR. The excess reactivity of the reactor can be reduced with the addition of gadolinium as burnable poisons. Therefore the hexagonal tight lattice fuel cell design of small long life BWR that has a criticality more than 20 years of operating time has been obtained.« less

  3. Early Onset of Nucleate Boiling on Gas-covered Biphilic Surfaces.

    PubMed

    Shen, Biao; Yamada, Masayuki; Hidaka, Sumitomo; Liu, Jiewei; Shiomi, Junichiro; Amberg, Gustav; Do-Quang, Minh; Kohno, Masamichi; Takahashi, Koji; Takata, Yasuyuki

    2017-05-17

    For phase-change cooling schemes for electronics, quick activation of nucleate boiling helps safeguard the electronics components from thermal shocks associated with undesired surface superheating at boiling incipience, which is of great importance to the long-term system stability and reliability. Previous experimental studies show that bubble nucleation can occur surprisingly early on mixed-wettability surfaces. In this paper, we report unambiguous evidence that such unusual bubble generation at extremely low temperatures-even below the boiling point-is induced by a significant presence of incondensable gas retained by the hydrophobic surface, which exhibits exceptional stability even surviving extensive boiling deaeration. By means of high-speed imaging, it is revealed that the consequently gassy boiling leads to unique bubble behaviour that stands in sharp contrast with that of pure vapour bubbles. Such findings agree qualitatively well with numerical simulations based on a diffuse-interface method. Moreover, the simulations further demonstrate strong thermocapillary flows accompanying growing bubbles with considerable gas contents, which is associated with heat transfer enhancement on the biphilic surface in the low-superheat region.

  4. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...

  5. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...

  6. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...

  7. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...

  8. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...

  9. Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection

    NASA Astrophysics Data System (ADS)

    Horie, Y.; Shirai, Y.; Shiotsu, M.; Matsuzawa, T.; Yoneda, K.; Shigeta, H.; Tatsumoto, H.; Hata, K.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    Film boiling heat transfer properties of LH2 for various pressures and subcooling conditions were measured by applying electric current to give an exponential heat input to a PtCo wire with a diameter of 1.2 mm submerged in LH2. The heated wire was set to be horizontal to the ground. The heat transfer coefficient in the film boiling region was higher for higher pressure and higher subcooling. The experimental results are compared with the equation of pool film boiling heat transfer. It is confirmed that the pool film boiling heat transfer coefficients in LH2 can be expressed by this equation.

  10. Reduced Boil-Off System Sizing

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Plachta, David W.; Feller, Jeffrey R.

    2015-01-01

    NASA is currently developing cryogenic propellant storage and transfer systems for future space exploration and scientific discovery missions by addressing the need to raise the technology readiness level of cryogenic fluid management technologies. Cryogenic propellants are baselined in many propulsion systems due to their inherently high specific impulse; however, their low boiling points can cause substantial boil-off losses over time. Recent efforts such as the Reduced Boil-off Testing and the Active Thermal Control Scaling Study provide important information on the benefit of an active cooling system applied to LH2 propellant storage. Findings show that zero-boil off technologies can reduce overall mass in LH2 storage systems when low Earth orbit loiter periods extend beyond two months. A significant part of this mass reduction is realized by integrating two stages of cooling: a 20 K stage to intercept heat at the tank surface, and a 90 K stage to reduce the heat entering the less efficient 20 K stage. A missing element in previous studies, which is addressed in this paper, is the development of a direct method for sizing the 90 K cooling stage. Such a method requires calculation of the heat entering both the 90 K and 20 K stages as compared to the overall system masses, and is reliant upon the temperature distribution, performance, and unique design characteristics of the system in question. By utilizing the known conductance of a system without active thermal control, the heat being intercepted by a 90 K stage can be calculated to find the resultant lift and mass of each active thermal control stage. Integral to this is the thermal conductance of the cooling straps and the broad area cooling shield, key parts of the 90 K stage. Additionally, a trade study is performed to show the ability of the 90 K cooling stage to reduce the lift on the 20 K cryocooler stage, which is considerably less developed and efficient than 90 K cryocoolers.

  11. Comparison of vapor formation of water at the solid/water interface to colloidal solutions using optically excited gold nanostructures.

    PubMed

    Baral, Susil; Green, Andrew J; Livshits, Maksim Y; Govorov, Alexander O; Richardson, Hugh H

    2014-02-25

    The phase transformation properties of liquid water to vapor is characterized by optical excitation of the lithographically fabricated single gold nanowrenches and contrasted to the phase transformation properties of gold nanoparticles located and optically excited in a bulk solution system [two and three dimensions]. The 532 nm continuous wave excitation of a single gold nanowrench results in superheating of the water to the spinodal decomposition temperature of 580 ± 20 K with bubble formation below the spinodal decomposition temperature being a rare event. Between the spinodal decomposition temperature and the boiling point liquid water is trapped into a metastable state because a barrier to vapor nucleation exists that must be overcome before the thermodynamically stable state is realized. The phase transformation for an optically heated single gold nanowrench is different from the phase transformation of optically excited colloidal gold nanoparticles solution where collective heating effects dominates and leads to the boiling of the solution exactly at the boiling point. In the solution case, the optically excited ensemble of nanoparticles collectively raises the ambient temperature of water to the boiling point where liquid is converted into vapor. The striking difference in the boiling properties of the single gold nanowrench and the nanoparticle solution system can be explained in terms of the vapor-nucleation mechanism, the volume of the overheated liquid, and the collective heating effect. The interpretation of the observed regimes of heating and vaporization is consistent with our theoretical modeling. In particular, we explain with our theory why the boiling with the collective heating in a solution requires 3 orders of magnitude less intensity compared to the case of optically driven single nanowrench.

  12. Effect of chemical etching and aging in boiling water on the corrosion resistance of Nitinol wires with black oxide resulting from manufacturing process.

    PubMed

    Shabalovskaya, S; Rondelli, G; Anderegg, J; Simpson, B; Budko, S

    2003-07-15

    The effect of chemical etching in a HF/HNO(3) acid solution and aging in boiling water on the corrosion resistance of Nitinol wires with black oxide has been evaluated with the use of potentiodynamic, modified potentiostatic ASTM F746, and scratch tests. Scanning-electron microscopy, elemental XPS, and Auger analysis were employed to characterize surface alterations induced by surface treatment and corrosion testing. The effect of aging in boiling water on the temperatures of martensitic transformations and shape recovery was evaluated by means of measuring the wire electroresistance. After corrosion tests, as-received wires revealed uniformly cracked surfaces reminiscent of the stress-corrosion-cracking phenomenon. These wires exhibited negative breakdown potentials in potentiostatic tests and variable breakdown potentials in potentiodynamic tests (- 100 mV to + 400 mV versus SCE). Wires with treated surfaces did not reveal cracking or other traces of corrosion attacks in potentiodynamic tests up to + 900-1400-mV potentials and no pitting after stimulation at + 800 mV in potentiostatic tests. They exhibited corrosion behavior satisfactory for medical applications. Significant improvement of corrosion parameters was observed on the reverse scans in potentiodynamic tests after exposure of treated wires to potentials > 1000 mV. In scratch tests, the prepared surfaces repassivated only at low potentials, comparable to that of stainless steel. Tremendous improvement of the corrosion behavior of treated Nitinol wires is associated with the removal of defect surface material and the growth of stable TiO(2) oxide. The role of precipitates in the corrosion resistance of Nitinol-scratch repassivation capacity in particular-is emphasized in the discussion. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 66B: 331-340, 2003

  13. Nucleate pool boiling in subcooled liquid under microgravity: Results of TEXUS experimental investigations

    NASA Astrophysics Data System (ADS)

    Zell, M.; Straub, J.; Weinzierl, A.

    1984-12-01

    Experiments on subcooled nucleate pool boiling in microgravity were carried out to separate gravity driven effects on heat transfer within the boiling process. A ballistic trajectory by sounding rocket flight (TEXUS 5 and 10) achieved a gravity level of a/g = 0.0001 for 360 sec. For determination of geometrical effects on heat transport two different experimental configurations (platinum wire and flat plate) were employed. Boiling curves and bubble dynamics recorded by cinematography lead to gravity independent modelling of the boiling phenomena. The results ensure the applicability and high efficiency of nucleate pool boiling for heat exchangers in space laboratories.

  14. Zero Boil-OFF Tank Hardware Setup

    NASA Image and Video Library

    2017-09-19

    iss053e027051 (Sept. 19, 2017) --- Flight Engineer Joe Acaba works in the U.S. Destiny laboratory module setting up hardware for the Zero Boil-Off Tank (ZBOT) experiment. ZBOT uses an experimental fluid to test active heat removal and forced jet mixing as alternative means for controlling tank pressure for volatile fluids. Rocket fuel, spacecraft heating and cooling systems, and sensitive scientific instruments rely on very cold cryogenic fluids. Heat from the environment around cryogenic tanks can cause their pressures to rise, which requires dumping or "boiling off" fluid to release the excess pressure, or actively cooling the tanks in some way.

  15. The Boiling eXperiment Facility (BXF) for the Microgravity Science Glovebox (MSG)

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Chao, David; Vergilii, Frank

    2006-01-01

    Boiling is an effective means of cooling by removing heat from surfaces through vaporization of a working fluid. It is also affected by both the magnitude and direction of gravity. By conducting pool boiling tests in microgravity, the effect of buoyancy n the overall boiling process and the relative magnitude of other phenomena can be assessed. The Boiling eXperiment Facility (BXF) is being built for the Microgravity Science Glovebox. This facility will conduct two pool boiling studies. The first study the Microheater Array Boiling Experiment (MABE) uses two 96 element microheater arrays, 2.7 mm and 7.0 mm in size, to measure localized hear fluxes while operating at a constant temperature. The other experiment, the Nucleate Pool Boiling eXperiment (NPBX) uses a 85 mm diameter heater wafer that has been "seeded" with five individually-controlled nucleation sites to study bubble nucleation, growth, coalescence and departure. The BXF uses normal-perfluorohexane as the test fluid and will operate between pressures of 60 to 244 Pa. and temperatures of 35 to 60 C. Both sets of experimental heaters are highly instrumented. Pressure and bulk fluid temperature measurements will be made with standard rate video. A high speed video system will be used to visualize the boiling process through the bottom of the MABE heater arrays. The BXF is currently scheduled to fly on Utilization Flight-13A.1 to the ISS with facility integration into the MSG and operation during Increment 15

  16. An Investigation of Graduate Scientists' Understandings of Evaporation and Boiling.

    ERIC Educational Resources Information Center

    Goodwin, Alan; Orlik, Yuri

    2000-01-01

    Uses a video presentation of six situations relating to the evaporation and boiling of liquids and the escape of dissolved gases from solution and investigates graduate scientists' understanding of the concepts of boiling and evaporation. (Author/YDS)

  17. Pretest thermal analysis of the Tuff Water Migration/In-Situ Heater Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulmer, B.M.

    This report describes the pretest thermal analysis for the Tuff Water Migration/In-Situ Heater Experiment to be conducted in welded tuff in G-tunnel, Nevada Test Site. The parametric thermal modeling considers variable boiling temperature, tuff thermal conductivity, tuff emissivity, and heater operating power. For nominal tuff properties, some near field boiling is predicted for realistic operating power. However, the extent of boiling will be strongly determined by the ambient (100% water saturated) rock thermal conductivity. In addition, the thermal response of the heater and of the tuff within the dry-out zone (i.e., bounded by boiling isotherm) is dependent on the temperaturemore » variation of rock conductivity as well as the extent of induced boiling.« less

  18. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  19. A numerical investigation of the effect of surface wettability on the boiling curve.

    PubMed

    Hsu, Hua-Yi; Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A

    2017-01-01

    Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° - 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights.

  20. A numerical investigation of the effect of surface wettability on the boiling curve

    PubMed Central

    Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A.

    2017-01-01

    Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° − 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights. PMID:29125847

  1. The purity of water at hospital and at home as a problem of intercultural understanding.

    PubMed

    Burghart, R

    1996-03-01

    Women in a provincial town in southern Nepal were instructed by medical doctors and compounders to boil water, and to keep it boiling for 15 minutes before mixing it with infant formula or oral rehydration salts. Most women ignored the advice. Those who seemed to follow it merely brought the water to boil. This report describes how and why women boil water and assesses the health implications of their practices. The failure of women to adopt "proper" procedures procedures provides a point of entry into an analysis of the role of intercultural dialogue in exposing one's presuppositions about health and empowering one to change them.

  2. A high-fidelity approach towards simulation of pool boiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios

    2016-01-15

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms atmore » early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces.« less

  3. A study of forced convection boiling under reduced gravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1992-01-01

    This report presents the results of activities conducted over the period 1/2/85-12/31/90, in which the study of forced convection boiling under reduced gravity was initiated. The study seeks to improve the understanding of the basic processes that constitute forced convection boiling by removing the buoyancy effects which may mask other phenomena. Specific objectives may also be expressed in terms of the following questions: (1) what effects, if any, will the removal of body forces to the lowest possible levels have on the forced convection boiling heat transfer processes in well-defined and meaningful circumstances? (this includes those effects and processes associated with the nucleation or onset of boiling during the transient increase in heater surface temperature, as well as the heat transfer and vapor bubble behaviors with established or steady-state conditions); and (2) if such effects are present, what are the boundaries of the relevant parameters such as heat flux, heater surface superheat, fluid velocity, bulk subcooling, and geometric/orientation relationships within which such effects will be produced?

  4. Water preparation practices in south Kalimantan, Indonesia.

    PubMed

    Prihartono, N; Adisasmita, A; Costello, C; Damayanti, R; Prasetyo, S; Syarif, S

    1994-12-01

    This study investigated water preparation practices, water sources, and sanitation measures in 400 households in four villages in Banjar district of South Kalimantan, Indonesia. A survey of randomly selected households in each of the four villages was undertaken during the season of low prevalence of diarrhoeal disease (February-March 1989). A follow-up survey of the same households was conducted 6 months later to measure prevalence during the peak season. Twenty-three in-depth interviews were carried out with key persons in local villages. Observations on behaviour in the local food stalls were recorded. The results of the study indicate that 97% of the households report that they regularly boil their drinking water. However, 37% of the households regularly or occasionally mix boiled with unboiled water for drinking, or use unboiled water alone. The mixing of boiled with unboiled water is particularly frequent in the preparation of 'cold tea', a popular drink in households and food stalls. The occasional or regular use of unboiled water varies by ethnicity, education and literacy, and economic status. The use of unboiled water is associated with higher rates of childhood diarrhoeas in the households studied.

  5. Thermal performance of a prototype plate heat exchanger with minichannels under boiling conditions

    NASA Astrophysics Data System (ADS)

    Wajs, J.; Mikielewicz, D.; Fornalik-Wajs, E.

    2016-09-01

    To solve the problem and to meet the requirements of customers in the field of high heat fluxes transfer in compact units, a new design of plate heat exchanger with minichannels (minichannels PHE) was proposed. The aim was to construct a compact heat exchanger of high effectiveness for the purpose of household cogeneration ORC system. In this paper the experimental analysis of an assembled prototype of such compact heat exchanger was described. The attention was paid to its thermal performance and the heat transfer coefficients under the boiling conditions. Water and ethanol were chosen as working fluids. The maximal value of transferred heat flux was about 84 kW/m2, while of the overall heat transfer coefficient was about 4000 W/(m2K). Estimated values of heat transfer coefficient on the ethanol (boiling) side reached the level of 7500 W/(m2K). The results are promising in the light of future applications, for example in cogeneration ORC systems, however further systematic investigations are necessary.

  6. 17. RW Meyer Sugar Mill: 18761889. Boiling House, 1878. View: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. RW Meyer Sugar Mill: 1876-1889. Boiling House, 1878. View: Southwest corner of boiling house. The amimal-powered cane mill is located in the undergrowth in the right foreground, - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  7. Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes

    NASA Technical Reports Server (NTRS)

    Linehard, J. H.; Dhir, V. K.

    1973-01-01

    The hydrodynamic theory of the extreme pool boiling heat fluxes is expanded to embrace a variety of problems that have not previously been analyzed. These problems include the prediction of the peak heat flux on a variety of finite heaters, the influence of viscosity on the Taylor and Helmoltz instability mechanisms with application to film boiling and to the peak heat flux in viscous liquids, the formalization of the analogy between high-current-density electrolysis and boiling, and the description of boiling in the low-gravity limit. The predictions are verified with a large number of new data.

  8. Development of a three-dimensional core dynamics analysis program for commercial boiling water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessho, Yasunori; Yokomizo, Osamu; Yoshimoto, Yuichiro

    1997-03-01

    Development and qualification results are described for a three-dimensional, time-domain core dynamics analysis program for commercial boiling water reactors (BWRs). The program allows analysis of the reactor core with a detailed mesh division, which eliminates calculational ambiguity in the nuclear-thermal-hydraulic stability analysis caused by reactor core regional division. During development, emphasis was placed on high calculational speed and large memory size as attained by the latest supercomputer technology. The program consists of six major modules, namely a core neutronics module, a fuel heat conduction/transfer module, a fuel channel thermal-hydraulic module, an upper plenum/separator module, a feedwater/recirculation flow module, and amore » control system module. Its core neutronics module is based on the modified one-group neutron kinetics equation with the prompt jump approximation and with six delayed neutron precursor groups. The module is used to analyze one fuel bundle of the reactor core with one mesh (region). The fuel heat conduction/transfer module solves the one-dimensional heat conduction equation in the radial direction with ten nodes in the fuel pin. The fuel channel thermal-hydraulic module is based on separated three-equation, two-phase flow equations with the drift flux correlation, and it analyzes one fuel bundle of the reactor core with one channel to evaluate flow redistribution between channels precisely. Thermal margin is evaluated by using the GEXL correlation, for example, in the module.« less

  9. Turning bubbles on and off during boiling using charged surfactants

    PubMed Central

    Cho, H. Jeremy; Mizerak, Jordan P.; Wang, Evelyn N.

    2015-01-01

    Boiling—a process that has powered industries since the steam age—is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles ‘on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications. PMID:26486275

  10. Zero Boil Off Cryogen Storage for Future Launchers

    NASA Technical Reports Server (NTRS)

    Valentian, D.; Plachta, D.; Kittel, P.; Hastings, L. J.; Salerno, Louis J.; Arnold, James O. (Technical Monitor)

    2001-01-01

    Zero boil off (ZBO) cryogen storage using both cryocoolers and passive insulation technologies will enable long-term exploration missions by allowing designers to optimize tankage without the need for excess cryogen storage to account for boil off. Studies of ZBO (zero boil off) have been on-going in the USA for several years. More recently, a review of the needs of advanced space propulsion took place in Europe. This showed the interest of the European community in cryogenic propulsion for planetary missions as well as the use of liquid hydrogen for large power electric propulsion (manned Mars missions). Although natural boiling could be acceptable for single leg missions, passive insulation techniques yield roughly a I% per month cryogen loss and this would not be cost effective for robotic planetary missions involving storage times greater than one year. To make economic sense, long-term exploration missions require lower tank capacity and longer storage times. Recent advances in cryocooler technology, resulting in vast improvements in both cooler efficiency and reliability, make ZBO is a clear choice for planetary exploration missions. Other, more near term applications of ZBO include boil-off reduction or elimination applied to first and upper stages of future earth-to-orbit (ETO) launchers. This would extend launch windows and reduce infrastructure costs. Successors to vehicles like Ariane 5 could greatly benefit by implementing ZBO. Zero Boil Off will only be successful in ETO launcher applications if it makes economic sense to implement. The energy cost is only a fraction of the total cost of buying liquid cryogen, the rest being transportation and other overhead. Because of this, higher boiling point cryogens will benefit more from on-board liquefaction, thus reducing the infrastructure costs. Since hydrogen requires a liquefier with at least a 17% efficiency just to break even from a cost standpoint, one approach for implementing ZBO in upper stages would

  11. Physicochemical and sensory evaluation of some cooking banana (Musa spp.) for boiling and frying process.

    PubMed

    Belayneh, M; Workneh, T S; Belew, D

    2014-12-01

    Experiments were conducted to study physicochemical properties of four cooking banana varieties (Cardaba, Nijiru, Matoke and Kitawira) and to determine their suitability for chips processing and boiling quality. A randomized complete block design with three replications was employed. Pulp to peel ratio, pulp firmness (before and after), total soluble solids, pH, titratable acidity, ascorbic acid, ease of peeling, pulp water absorption, duration of cooking (or boiling) and dry matter are the most important parameters to evaluate the quality of cooking banana including plantain. The different variety affected the fruit physical characteristics significantly (P ≤ 0.05). The Cardaba varieties fruit was found to be the heaviest and the longest. The Kitawira and Nijiru varieties had the smallest, shortest and thinnest fruit. The Cardaba contained 88 % more edible portions per unit fresh weight than the peel. The Nijiru, Matoke and Kitawira contained more pulp weight than peel weight. Most fruit chemical quality parameters were significantly (P ≤ 0.05) affected by the varieties. Similarly, the boiling and chips qualities were significantly (P ≤ 0.05) affected by varieties. Among others, the Cardaba variety was found to have high fruit weight, fruit length, fruit girth, fruit volume, total soluble solids, ascorbic acid, dry matter and low total titratable acidity. Thus, Cardaba provided the best quality boiled pulp which can serve for diversified culinary purposes. Generally, the Nijiru, Kitawira and Matoke varieties were found to be superior to produce acceptable quality chips. These varieties are recommended for chips development by food processors in Ethiopia.

  12. Boiling regimes of impacting drops on a heated substrate under reduced pressure

    NASA Astrophysics Data System (ADS)

    van Limbeek, Michiel A. J.; Hoefnagels, Paul B. J.; Shirota, Minori; Sun, Chao; Lohse, Detlef

    2018-05-01

    We experimentally investigate the boiling behavior of impacting ethanol drops on a heated smooth sapphire substrate at pressures ranging from P =0.13 bar to atmospheric pressure. We employ frustrated total internal reflection imaging to study the wetting dynamics of the contact between the drop and the substrate. The spreading drop can be in full contact (contact boiling), it can partially touch (transition boiling), or the drop can be fully levitated (Leidenfrost boiling). We show that the temperature of the boundary between contact and transition boiling shows at most a weak dependence on the impact velocity, but a significant decrease with decreasing ambient gas pressure. A striking correspondence is found between the temperature of this boundary and the static Leidenfrost temperature for all pressures. We therefore conclude that both phenomena share the same mechanism and are dominated by the dynamics taking place at the contact line. On the other hand, the boundary between transition boiling and Leidenfrost boiling, i.e., the dynamic Leidenfrost temperature, increases for increasing impact velocity for all ambient gas pressures. Moreover, the dynamic Leidenfrost temperature coincides for pressures between P =0.13 and 0.54 bar, whereas for atmospheric pressure the dynamic Leidenfrost temperature is slightly elevated. This indicates that the dynamic Leidenfrost temperature is at most weakly dependent on the enhanced evaporation by the lower saturation temperature of the liquid.

  13. An Analytical Approach for Relating Boiling Points of Monofunctional Organic Compounds to Intermolecular Forces

    ERIC Educational Resources Information Center

    Struyf, Jef

    2011-01-01

    The boiling point of a monofunctional organic compound is expressed as the sum of two parts: a contribution to the boiling point due to the R group and a contribution due to the functional group. The boiling point in absolute temperature of the corresponding RH hydrocarbon is chosen for the contribution to the boiling point of the R group and is a…

  14. Pool boiling with high heat flux enabled by a porous artery structure

    NASA Astrophysics Data System (ADS)

    Bai, Lizhan; Zhang, Lianpei; Lin, Guiping; Peterson, G. P.

    2016-06-01

    A porous artery structure utilizing the concept of "phase separation and modulation" is proposed to enhance the critical heat flux of pool boiling. A series of experiments were conducted on a range of test articles in which multiple rectangular arteries were machined directly into the top surface of a 10.0 mm diameter copper rod. The arteries were then covered by a 2.0 mm thickness microporous copper plate through silver brazing. The pool wall was fabricated from transparent Pyrex glass to allow a visualization study, and water was used as the working fluid. Experimental results confirmed that the porous artery structure provided individual flow paths for the liquid supply and vapor venting, and avoided the detrimental effects of the liquid/vapor counter flow. As a result, a maximum heat flux of 610 W/cm2 over a heating area of 0.78 cm2 was achieved with no indication of dryout, prior to reaching the heater design temperature limit. Following the experimental tests, the mechanisms responsible for the boiling critical heat flux and performance enhancement of the porous artery structure were analyzed.

  15. Effects of thermal treatments during cooking, microwave oven and boiling, on the unconjugated microcystin concentration in muscle of fish (Oreochromis niloticus).

    PubMed

    Guzmán-Guillén, Remedios; Prieto, Ana I; Moreno, Isabel; Soria, Ma Eugenia; Cameán, Ana M

    2011-09-01

    Understanding the factors that contribute to the risk from fish consumption is a relevant public health concern due to potential adverse effects of cyanobacterial toxins. The aim of this work was to study the influence of two usual cooking practices, microwave oven and boiling, on the microcystin (MCs) concentration in fish muscle (Tilapia, Oreochromis niloticus) spiked with a stock solution (500 μL) containing a mixture of three toxins (MC-LR, MC-RR, and MC-YR) (1.5 μg/mL of each toxin). Two different variables were investigated: time of cooking in the microwaves treatment (1 or 5 min), and way of boiling, "boiled muscle" or "continuously heated muscle". All samples were then lyophilized and MCs were extracted and purified (Oasis HLB cartridge) and quantified by HPLC-MS. Furthermore, the waters in which the samples boiled were also analyzed after their purification. The results suggest a reduction on MC-LR (36%) and MC-YR (24.6%) in samples cooked in the microwave for 5 min. Major changes were found when the fish was cooked by the continuous boiling, with a decrease of 45.0% (MC-RR), 56.4% (MC-YR) and 59.3% (MC-LR). More studies are necessary to elucidate the mechanisms involved when aquatic food is submitted to usual cooking practices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Definition of hydraulic stability of KVGM-100 hot-water boiler and minimum water flow rate

    NASA Astrophysics Data System (ADS)

    Belov, A. A.; Ozerov, A. N.; Usikov, N. V.; Shkondin, I. A.

    2016-08-01

    In domestic power engineering, the methods of quantitative and qualitative-quantitative adjusting the load of the heat supply systems are widely distributed; furthermore, during the greater part of the heating period, the actual discharge of network water is less than estimated values when changing to quantitative adjustment. Hence, the hydraulic circuits of hot-water boilers should ensure the water velocities, minimizing the scale formation and excluding the formation of stagnant zones. The results of the calculations of hot-water KVGM-100 boiler and minimum water flow rate for the basic and peak modes at the fulfillment of condition of the lack of surface boil are presented in the article. The minimal flow rates of water at its underheating to the saturation state and the thermal flows in the furnace chamber were defined. The boiler hydraulic calculation was performed using the "Hydraulic" program, and the analysis of permissible and actual velocities of the water movement in the pipes of the heating surfaces was carried out. Based on the thermal calculations of furnace chamber and thermal- hydraulic calculations of heating surfaces, the following conclusions were drawn: the minimum velocity of water movement (by condition of boiling surface) at lifting movement of environment increases from 0.64 to 0.79 m/s; it increases from 1.14 to 1.38 m/s at down movement of environmental; the minimum water flow rate by the boiler in the basic mode (by condition of the surface boiling) increased from 887 t/h at the load of 20% up to 1074 t/h at the load of 100%. The minimum flow rate is 1074 t/h at nominal load and is achieved at the pressure at the boiler outlet equal to 1.1 MPa; the minimum water flow rate by the boiler in the peak mode by condition of surface boiling increases from 1669 t/h at the load of 20% up to 2021 t/h at the load of 100%.

  17. Zero Boil-Off System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffrey R.

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to their high specific impulse for rocket motors of upper stages suitable for transporting 10s to 100s of metric tons of payload mass to destinations outside of low earth orbit and for their return. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several months. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler to control tank pressure. The active thermal control technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center, in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. Testing consisted of three passive tests with the active cryocooler system off, and 7 active tests, with the cryocooler powered up. The test matrix included zero boil-off tests performed at 90 full and 25 full, and several demonstrations at excess cooling capacity and reduced cooling capacity. From this, the tank pressure response with varied cryocooler power inputs was determined. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  18. Length Scale and Gravity Effects on Microgravity Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-01-01

    Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. In earth gravity, buoyancy is an important parameter that affects boiling heat transfer through the rate at which bubbles are removed from the surface. A simple model describing the bubble departure size based on a quasistatic force balance between buoyancy and surface tension is given by the Fritz [I] relation: Bo(exp 1/2) = 0.0208 theta where Bo is the ratio between buoyancy and surface tension forces. For small, rapidly growing bubbles, inertia associated with the induced liquid motion can also cause bubble departure. In microgravity, the magnitude of effects related to natural convection and buoyancy are small and physical mechanisms normally masked by natural convection in earth gravity such as Marangoni convection can substantially influence the boiling and vapor bubble dynamics. CHF (critical heat transfer) is also substantially affected by microgravity. In 1 g environments, Bo has been used as a correlating parameter for CHF. Zuber's CHF model for an infinite horizontal surface assumes that vapor columns formed by the merger of bubbles become unstable due to a Helmholtz instability blocking the supply of liquid to the surface. The jets are spaced lambda(sub D) apart, where lambda(sub D) = 2pi square root of 3[(sigma)/(g(rho(sub l) - rho(sub v)](exp 1/2) = 2pi square root of 3 L Bo(exp -1/2) = square root of 3 lambda(sub c

  19. The mathematical model that describes the periodic spouting of a geyser induced by boiling

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2017-04-01

    We have derived and modified the dynamical model of a geyser induced by gas inflow and regular or irregular spouting dynamics of geysers induced by gas inflow has been reproduced by the model. On the other hand, though we have derived the dynamical model of a geyser induced by boiling, periodic change between the spouting state and the pause state has not been adequately modeled by the model. In this connection, concerning a geyser induced by gas inflow we have proposed the model as described below. Because pressure in the spouting tube decreases obeying to the Bernoulli's theorem when the spouting state begins and water in the spouting tube begins to flow, inflow of groundwater into the spouting tube occurs. When the amount of this inflow reaches a certain amount, the spouting state transforms to the pause state. In this study, by applying this idea to the dynamical model of a geyser induced by boiling, the periodic change between the spouting state and the pause state could be reappeared. As a result, the whole picture of the spouting mechanism of a geyser induced by boiling became clear. This research results would give hints on engineering repair in order to prevent the weakening or the depletion of the geyser. And this study would be also useful for protection of geysers as tourism and environmental resources.

  20. Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling

    PubMed Central

    Bigham, Sajjad; Fazeli, Abdolreza; Moghaddam, Saeed

    2017-01-01

    Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τd), the heating length scale of the liquid film (δH) and the area fraction of the evaporating liquid film (Ar). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics. PMID:28303952

  1. QSPR using MOLGEN-QSPR: the challenge of fluoroalkane boiling points.

    PubMed

    Rücker, Christoph; Meringer, Markus; Kerber, Adalbert

    2005-01-01

    By means of the new software MOLGEN-QSPR, a multilinear regression model for the boiling points of lower fluoroalkanes is established. The model is based exclusively on simple descriptors derived directly from molecular structure and nevertheless describes a broader set of data more precisely than previous attempts that used either more demanding (quantum chemical) descriptors or more demanding (nonlinear) statistical methods such as neural networks. The model's internal consistency was confirmed by leave-one-out cross-validation. The model was used to predict all unknown boiling points of fluorobutanes, and the quality of predictions was estimated by means of comparison with boiling point predictions for fluoropentanes.

  2. Teaching Structure-Property Relationships: Investigating Molecular Structure and Boiling Point

    ERIC Educational Resources Information Center

    Murphy, Peter M.

    2007-01-01

    A concise, well-organized table of the boiling points of 392 organic compounds has facilitated inquiry-based instruction in multiple scientific principles. Many individual or group learning activities can be derived from the tabulated data of molecular structure and boiling point based on the instructor's education objectives and the students'…

  3. On mechanism of explosive boiling in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Çelen, Serap

    2016-06-01

    Today laser-based machining is used to manufacture vital parts for biomedical, aviation and aerospace industries. The aim of the paper is to report theoretical, numerical and experimental investigations of explosive boiling under nanosecond pulsed ytterbium fiber laser irradiation. Experiments were performed in an effective peak power density range between 1397 and 1450 MW/cm2 on pure titanium specimens. The threshold laser fluence for phase explosion, the pressure and temperature at the target surface and the velocity of the expulsed material were reported. A narrow transition zone was realized between the normal vaporization and phase explosion fields. The proof of heterogeneous boiling was given with detailed micrographs. A novel thermal model was proposed for laser-induced splashing at high fluences. Packaging factor and scattering arc radius terms were proposed to state the level of the melt ejection process. Results of the present investigation explain the explosive boiling during high-power laser interaction with metal.

  4. Study to evaluate the impact of heat treatment on water soluble vitamins in milk.

    PubMed

    Asadullah; Khair-un-nisa; Tarar, Omer Mukhtar; Ali, Syed Abdul; Jamil, Khalid; Begum, Askari

    2010-11-01

    To evaluate the effect of domestic boiling practice on the contents of water soluble vitamins of loose milk and quantitative comparison of these vitamins in Ultra High Temperature (UHT) treated packaged milk with that of boiled loose milk. Loose milk samples were collected from various localities of Karachi city (Pakistan). These samples were boiled in simulated household conditions for 5, 10 and 15 minutes. Ultra High Temperature (UHT) treated packaged milk samples of various brands were obtained from the local market. The aliquots were analyzed for water-soluble vitamins using High Performance Liquid Chromatography (HPLC) technique. The mean values and standard deviations for data were computed and compared as well as level of variations were also determined. Conventional boiling caused destruction of water soluble vitamins in milk i.e. vitamin 81 content in fresh milk decreased from 0.037 mg/100 g to 0.027 mg/100 g after 15 min boiling, whereas vitamin B2 from 0.115 to 0.084 mg/100 g, vitamin B3 0.062 to 0.044 mg/100 g, vitamin B6 0.025 to 0.019 mg/100 g and folic acid 3.38 to 2.40 microg/100 g. This accounted for a post-boiling decrease of about 27, 27, 29, 24 and 36% in vitamins B1, B2, B3, B6 and folic acid respectively. The values for vitamins B1, B2, B3, B6 and folic acid determined in boiled milk were significantly lower than UHT treated packaged milk samples by 25.9, 75.0, 54.5, 63.16 and 38.1% respectively. Conventional boiling caused drastic reduction in vitamin levels of loose milk samples. In comparison to this, UHT milk retained high levels of water soluble B-vitamins. Thus it could be envisaged that UHT treated milk provides better water soluble vitamins' nourishment than conventionally boiled milk (JPMA 60:909; 2010).

  5. Reasons for the lack of chemical stability of treated water rich in magnesium.

    PubMed

    Swietlik, Joanna; Raczyk-Stanisławiak, Urszula; Piszora, Paweł; Nawrocki, Jacek

    2011-12-01

    Chemical stability of water should be high enough to ensure that the water reaching the consumers would have the same composition as at the treatment plant. The drinking water supplied by one of the water treatment plants for the city of Poznań was observed to produce periodically white non-sedimenting precipitate on boiling, deteriorating its organoleptic properties. The phenomenon was found to be related to a high content of magnesium in the water taken for treatment and low content of other ions besides bicarbonates. XRD and SEM analyses have shown that a low ratio of calcium ions to magnesium ions leads to formation of calcite crystals on water boiling in which a fraction of cationic crystallographic sites are substituted with Mg(2+) ions giving (Ca(1-x)Mg(x))CO(3) crystallites. Such crystallites have smaller size than those of calcite formed on boiling water coming from other Poznań suppliers. The smaller size of the crystallites is responsible for their slower sedimentation and hence the observed increase in the water turbidity on its boiling. It has been proved that the appearance of precipitates in drinking water at the consumers can be achieved by reduction of the Mg/(Mg + Ca) ratio to below 3, which would inhibit peptisation of the precipitate and prevent water opacity and/or adjustment of pH of the raw water and removal of the carbon dioxide released to convert some carbonate hardness into non-carbonate one. These measures will limit the amount of the precipitate forming upon water boiling and change its microcrystalline type into an easier sedimenting one. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. A Study of Nucleate Boiling with Forced Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1999-01-01

    The ultimate objective of basic studies of flow boiling in microgravity is to improve the understanding of the processes involved, as manifested by the ability to predict its behavior. This is not yet the case for boiling heat transfer even in earth gravity, despite the considerable research activity over the past 30 years. The elements that constitute the nucleate boiling process - nucleation, growth, motion, and collapse of the vapor bubbles (if the bulk liquid is subcooled) - are common to both pool and flow boiling. It is well known that the imposition of bulk liquid motion affects the vapor bubble behavior relative to pool boiling, but does not appear to significantly influence the heat transfer. Indeed, it has been recommended in the past that empirical correlations or experimental data of pool boiling be used for design purposes with forced convection nucleate boiling. It is anticipated that such will most certainly not be possible for boiling in microgravity, based on observations made with pool boiling in microgravity. In earth gravity buoyancy will act to remove the vapor bubbles from the vicinity of the heater surface regardless of how much the imposed bulk velocity is reduced, depending, of course, on the geometry of the system. Vapor bubbles have been observed to dramatically increase in size in pool boiling in microgravity, and the heat flux at which dryout took place was reduced considerably below what is generally termed the critical heat flux (CHF) in earth gravity, depending on the bulk liquid subcooling. However, at heat flux levels below dryout, the nucleate pool boiling process was enhanced considerably over that in earth gravity, in spite of the large vapor bubbles formed in microgravity and perhaps as a consequence. These large vapor bubbles tended to remain in the vicinity of the heater surface, and the enhanced heat transfer appeared to be associated with the presence of what variously has been referred to as a liquid microlayer between the

  7. The behavior of breached boiling water reactor fuel rods on long-term exposure to air and argon at 598 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohli, R.; Gilbert, E.R.; Johnson, A.B.

    1985-05-01

    Two irradiated boiling water reactor fuel rods with breached cladding were exposed to argon and to air at 598 K for 7.56 Ms (2100 h). These tests were conducted to determine fuel swelling and cladding crack propagation under conditions that promote UO/sub 2/ fuel oxidation and to observe the behavior of water-logged breached fuel in an inert gas environment. The two rods were selected for testing after extensive hot cell examination had shown the cladding of both rods to be breached with several centimetres of open cracks; the cracks were characterized in detail before the test. As part of themore » experiment, the amount of the readily removable water contained in the fuel rods was determined. To oxidize the fuel to a significant level ( about10%), the air in the annealine capsule was replenished approximately daily. The depletion of oxygen available in the air capsule due to fuel oxidation occurred in about0.036 Ms (10 h). At the end of the test period, about6% of the fuel is estimated to have oxidized. Posttest examination of the rods showed that cladding degradation resulted from swelling due to oxidation of the fuel in the air environment. The cladding degradation was localized and fuel oxidation did not measurably extend beyond the cladding breach. No cladding degradation was measurable in the breached fuel rod tested in argon.« less

  8. Development of a three-dimensional transient code for reactivity-initiated events of BWRs (boiling water reactors) - Models and code verifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uematsu, Hitoshi; Yamamoto, Toru; Izutsu, Sadayuki

    1990-06-01

    A reactivity-initiated event is a design-basis accident for the safety analysis of boiling water reactors. It is defined as a rapid transient of reactor power caused by a reactivity insertion of over $1.0 due to a postulated drop or abnormal withdrawal of the control rod from the core. Strong space-dependent feedback effects are associated with the local power increase due to control rod movement. A realistic treatment of the core status in a transient by a code with a detailed core model is recommended in evaluating this event. A three-dimensional transient code, ARIES, has been developed to meet this need.more » The code simulates the event with three-dimensional neutronics, coupled with multichannel thermal hydraulics, based on a nonequilibrium separated flow model. The experimental data obtained in reactivity accident tests performed with the SPERT III-E core are used to verify the entire code, including thermal-hydraulic models.« less

  9. Fundamental Boiling and RP-1 Freezing Experiments

    NASA Technical Reports Server (NTRS)

    Goode, Brian; Turner, Larry D. (Technical Monitor)

    2001-01-01

    This paper describes results from experiments performed to help understand certain aspects of the MC-1 engine prestart thermal conditioning procedure. The procedure was constrained by the fact that the engine must chill long enough to get quality LOX at the LOX pump inlet but must be short enough to prevent freezing of RP-1 in the fuel pump. A chill test of an MC-1 LOX impeller was performed in LN2 to obtain data on film boiling, transition boiling and impeller temperature histories. The transition boiling data was important to the chill time so a subsequent experiment was performed chilling simple steel plates in LOX to obtain similar data for LOX. To address the fuel freezing concern, two experiments were performed. First, fuel was frozen in a tray and its physical characteristics were observed and temperatures of the fuel were measured. The result was physical characteristics as a function of temperature. Second was an attempt to measure the frozen thickness of RP-1 on a cold wall submerged in warm RP-1 and to develop a method for calculating that thickness for other conditions.

  10. Zero boil-off system testing

    NASA Astrophysics Data System (ADS)

    Plachta, D. W.; Johnson, W. L.; Feller, J. R.

    2016-03-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  11. Zero Boil-Off System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, D. W.; Johnson, W. L.; Feller, J. R.

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  12. Nucleate pool boiling in the long duration low gravity environment of the space shuttle

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.; Meserole, J. S.

    1993-01-01

    The results are presented of an experimental study of nucleate pool boiling performed in the low gravity environment of the space shuttle. Photographic observations of pool boiling in Freon 113 were obtained during the 'Tank Pressure Control Experiment', flown on the Space Transportation System STS-43 in August 1991. Nucleate boiling data from large (relative to bubble size) flat heating surfaces (0.1046 by 0.0742 m) was obtained at very low heat fluxes (0.22 to 1.19 kw/so m). The system pressure and the bulk liquid subcooling varied in the range of 40 to 60 kPa and 3 to 5 C respectively. Thirty-eight boiling tests, each of 10 min duration for a given heat flux, were conducted. Measurements included the heater power, heater surface temperature, the liquid temperature and the system pressure as functions of heating time. Video data of the first 2 min of heating was recorded for each test. In some tests the video clearly shows the inception of boiling and the growth and departure of bubbles from the surface during the first 2 min of heating. In the absence of video data, the heater temperature variation during heating shows the inception of boiling and stable nucleate boiling. During the stable nucleate boiling, the wall superheat varied between 2.8 to 3.8 C for heat fluxes in the range of 0.95 to 1.19 kw/so m. The wall superheat at the inception of boiling varied between 2 to 13 C.

  13. Nucleate pool boiling in the long duration low gravity environment of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.; Meserole, J. S.

    1993-01-01

    The results are presented of an experimental study of nucleate pool boiling performed in the low gravity environment of the space shuttle. Photographic observations of pool boiling in Freon 113 were obtained during the 'Tank Pressure Control Experiment,' flown on the Space Transportation System, STS-43 in August 1991. Nucleate boiling data from large (relative to bubble size) flat heating surfaces (0.1046 by 0.0742 m) was obtained at very low heat fluxes (0.22 to 1.19 kW/sq m). The system pressure and the bulk liquid subcooling varied in the range of 40 to 60 kPa and 3 to 5 C respectively. Thirty-eight boiling tests, each of 10-min duration for a given heat flux, were conducted. Measurements included the heater power, heater surface temperature, the liquid temperature and the system pressure as functions of heating time. Video data of the first 2 min of heating was recorded for each test. In some tests the video clearly shows the inception of boiling and the growth and departure of bubbles from the surface during the first 2 min of heating. In the absence of video data, the heater temperature variation during heating shows the inception of boiling and stable nucleate boiling. During the stable nucleate boiling, the wall superheat varied between 2.8 to 3.8 C for heat fluxes in the range of 0.95 to 1.19 kW/sq m. The wall superheat at the inception of boiling varied between 2 to 13 C.

  14. Science at Home: Measuring a Thermophysical Property of Water with a Microwave Oven

    ERIC Educational Resources Information Center

    Levine, Zachary H.

    2018-01-01

    An attempt to calibrate a conventional oven led to making a measurement of a thermophysical property of water using items found in the author's home. Specifically, the ratio of the energy required to heat water from the melting point to boiling to the energy required to completely boil away the water is found to be 5.7. This may be compared to the…

  15. Exploring the Role of Intertextuality in Concept Construction: Urban Second Graders Make Sense of Evaporation, Boiling, and Condensation

    ERIC Educational Resources Information Center

    Varelas, Maria; Pappas, Christine C.; Rife, Amy

    2006-01-01

    The study explores urban second graders' thinking and talking about the concepts of evaporation, boiling, and condensation that emerged in the context of intertextuality within an integrated science-literacy unit on the topic of States of Matter, which emphasized the water cycle. In that unit, children and teacher engaged in a variety of…

  16. Microbiological Evaluation of Household Drinking Water Treatment in Rural China Shows Benefits of Electric Kettles: A Cross-Sectional Study

    PubMed Central

    Cohen, Alasdair; Tao, Yong; Luo, Qing; Zhong, Gemei; Romm, Jeff; Colford, John M.; Ray, Isha

    2015-01-01

    Background In rural China ~607 million people drink boiled water, yet little is known about prevailing household water treatment (HWT) methods or their effectiveness. Boiling, the most common HWT method globally, is microbiologically effective, but household air pollution (HAP) from burning solid fuels causes cardiovascular and respiratory disease, and black carbon emissions exacerbate climate change. Boiled water is also easily re-contaminated. Our study was designed to identify the HWT methods used in rural China and to evaluate their effectiveness. Methods We used a geographically stratified cross-sectional design in rural Guangxi Province to collect survey data from 450 households in the summer of 2013. Household drinking water samples were collected and assayed for Thermotolerant Coliforms (TTC), and physicochemical analyses were conducted for village drinking water sources. In the winter of 2013–2104, we surveyed 120 additional households and used remote sensors to corroborate self-reported boiling data. Findings Our HWT prevalence estimates were: 27.1% boiling with electric kettles, 20.3% boiling with pots, 34.4% purchasing bottled water, and 18.2% drinking untreated water (for these analyses we treated bottled water as a HWT method). Households using electric kettles had the lowest concentrations of TTC (73% lower than households drinking untreated water). Multilevel mixed-effects regression analyses showed that electric kettles were associated with the largest Log10TTC reduction (-0.60, p<0.001), followed by bottled water (-0.45, p<0.001) and pots (-0.44, p<0.01). Compared to households drinking untreated water, electric kettle users also had the lowest risk of having TTC detected in their drinking water (risk ratio, RR = 0.49, 0.34–0.70, p<0.001), followed by bottled water users (RR = 0.70, 0.53–0.93, p<0.05) and households boiling with pots (RR = 0.74, 0.54–1.02, p = 0.06). Conclusion As far as we are aware, this is the first HWT-focused study in

  17. Microbiological Evaluation of Household Drinking Water Treatment in Rural China Shows Benefits of Electric Kettles: A Cross-Sectional Study.

    PubMed

    Cohen, Alasdair; Tao, Yong; Luo, Qing; Zhong, Gemei; Romm, Jeff; Colford, John M; Ray, Isha

    2015-01-01

    In rural China ~607 million people drink boiled water, yet little is known about prevailing household water treatment (HWT) methods or their effectiveness. Boiling, the most common HWT method globally, is microbiologically effective, but household air pollution (HAP) from burning solid fuels causes cardiovascular and respiratory disease, and black carbon emissions exacerbate climate change. Boiled water is also easily re-contaminated. Our study was designed to identify the HWT methods used in rural China and to evaluate their effectiveness. We used a geographically stratified cross-sectional design in rural Guangxi Province to collect survey data from 450 households in the summer of 2013. Household drinking water samples were collected and assayed for Thermotolerant Coliforms (TTC), and physicochemical analyses were conducted for village drinking water sources. In the winter of 2013-2104, we surveyed 120 additional households and used remote sensors to corroborate self-reported boiling data. Our HWT prevalence estimates were: 27.1% boiling with electric kettles, 20.3% boiling with pots, 34.4% purchasing bottled water, and 18.2% drinking untreated water (for these analyses we treated bottled water as a HWT method). Households using electric kettles had the lowest concentrations of TTC (73% lower than households drinking untreated water). Multilevel mixed-effects regression analyses showed that electric kettles were associated with the largest Log10TTC reduction (-0.60, p<0.001), followed by bottled water (-0.45, p<0.001) and pots (-0.44, p<0.01). Compared to households drinking untreated water, electric kettle users also had the lowest risk of having TTC detected in their drinking water (risk ratio, RR = 0.49, 0.34-0.70, p<0.001), followed by bottled water users (RR = 0.70, 0.53-0.93, p<0.05) and households boiling with pots (RR = 0.74, 0.54-1.02, p = 0.06). As far as we are aware, this is the first HWT-focused study in China, and the first to quantify the

  18. Phase relations and adiabats in boiling seafloor geothermal systems

    USGS Publications Warehouse

    Bischoff, J.L.; Pitzer, Kenneth S.

    1985-01-01

    Observations of large salinity variations and vent temperatures in the range of 380-400??C suggest that boiling or two-phase separation may be occurring in some seafloor geothermal systems. Consideration of flow rates and the relatively small differences in density between vapors and liquids at the supercritical pressures at depth in these systems suggests that boiling is occurring under closed-system conditions. Salinity and temperature of boiling vents can be used to estimate the pressure-temperature point in the subsurface at which liquid seawater first reached the two-phase boundary. Data are reviewed to construct phase diagrams of coexisting brines and vapors in the two-phase region at pressures corresponding to those of the seafloor geothermal systems. A method is developed for calculating the enthalpy and entropy of the coexisting mixtures, and results are used to construct adiabats from the seafloor to the P-T two-phase boundary. Results for seafloor vents discharging at 2300 m below sea level indicate that a 385??C vent is composed of a brine (7% NaCl equivalent) in equilibrium with a vapor (0.1% NaCl). Brine constitutes 45% by weight of the mixture, and the fluid first boiled at approximately 1 km below the seafloor at 415??C, 330 bar. A 400??C vent is primarily vapor (88 wt.%, 0.044% NaCl) with a small amount of brine (26% NaCl) and first boiled at 2.9 km below the seafloor at 500??C, 520 bar. These results show that adiabatic decompression in the two-phase region results in dramatic cooling of the fluid mixture when there is a large fraction of vapor. ?? 1985.

  19. Critical heat flux in subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Hall, David Douglas

    The critical heat flux (CHF) phenomenon was investigated for water flow in tubes with particular emphasis on the development of methods for predicting CHF in the subcooled flow boiling regime. The Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL) CHF database for water flow in a uniformly heated tube was compiled from the world literature dating back to 1949 and represents the largest CHF database ever assembled with 32,544 data points from over 100 sources. The superiority of this database was proven via a detailed examination of previous databases. The PU-BTPFL CHF database is an invaluable tool for the development of CHF correlations and mechanistic models that are superior to existing ones developed with smaller, less comprehensive CHF databases. In response to the many inaccurate and inordinately complex correlations, two nondimensional, subcooled CHF correlations were formulated, containing only five adjustable constants and whose unique functional forms were determined without using a statistical analysis but rather using the parametric trends observed in less than 10% of the subcooled CHF data. The correlation based on inlet conditions (diameter, heated length, mass velocity, pressure, inlet quality) was by far the most accurate of all known subcooled CHF correlations, having mean absolute and root-mean-square (RMS) errors of 10.3% and 14.3%, respectively. The outlet (local) conditions correlation was the most accurate correlation based on local CHF conditions (diameter, mass velocity, pressure, outlet quality) and may be used with a nonuniform axial heat flux. Both correlations proved more accurate than a recent CHF look-up table commonly employed in nuclear reactor thermal hydraulic computer codes. An interfacial lift-off, subcooled CHF model was developed from a consideration of the instability of the vapor-liquid interface and the fraction of heat required for liquid-vapor conversion as opposed to that for bulk liquid heating. Severe

  20. The sudden coalescene model of the boiling crisis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrica, P.M.; Clausse, A.

    1995-09-01

    A local two-phase flow integral model of nucleate boiling and crisis is presented. The model is based on average balances on a control volume, yielding to a set of three nonlinear differential equations for the local void fraction, bubble number density and velocity. Boiling crisis as critical heat flux is interpreted as a dynamic transition caused by the coalescence of bubbles near the heater. The theoretical dynamic model is compared with experimental results obtained for linear power ramps in a horizontal plate heater in R-113, showing an excellent qualitative agreement.

  1. On Boiling of Crude Oil under Elevated Pressure

    NASA Astrophysics Data System (ADS)

    Pimenova, Anastasiya V.; Goldobin, Denis S.

    2016-02-01

    We construct a thermodynamic model for theoretical calculation of the boiling process of multicomponent mixtures of hydrocarbons (e.g., crude oil). The model governs kinetics of the mixture composition in the course of the distillation process along with the boiling temperature increase. The model heavily relies on the theory of dilute solutions of gases in liquids. Importantly, our results are applicable for modelling the process under elevated pressure (while the empiric models for oil cracking are not scalable to the case of extreme pressure), such as in an oil field heated by lava intrusions.

  2. Boiling points of halogenated ethanes: an explanatory model implicating weak intermolecular hydrogen-halogen bonding.

    PubMed

    Beauchamp, Guy

    2008-10-23

    This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.

  3. Effect of High Hydrostatic Pressure Combined with Moderate Heat to Inactivate Pressure-Resistant Bacteria in Water-Boiled Salted Duck.

    PubMed

    Ye, Keping; Feng, Yulin; Wang, Kai; Bai, Yun; Xu, Xinglian; Zhou, Guanghong

    2015-06-01

    The objective of this work was to study the effect of high hydrostatic pressure combined with moderate heat to inactivate pressure-resistant bacteria in water-boiled salted duck meat (WBSDM), and to establish suitable procedures to improve the quality of WBSDM. The conditions (300 MPa/60 °C, 400 MPa/60 °C, and 500 MPa/50 °C) effectively inactivated the pressure-resistant bacteria (Bacillus cereus and Staphylococcus warneri) in WBSDM. Although more pressure-resistant than S. warneri, the above treatment conditions inactivated B. cereus more than 10(7) CFU/mL in buffer, and more than 10(6) CFU/g in WBSDM, and did not cause any changes in color, texture, or moisture content of products. The interaction between pressure and temperature is a more significant factor than only pressure in inactivating both B. cereus and S. warneri, the treatment of WBSDM at 400 MPa/ 60 °C/ 10 min is the most practical condition for postprocess of WBSDM after cooking. © 2015 Institute of Food Technologists®

  4. Effects of storage temperature on tyramine production by Enterococcus faecalis R612Z1 in water-boiled salted ducks.

    PubMed

    Liu, Fang; Du, Lihui; Wu, Haihong; Wang, Daoying; Zhu, Yongzhi; Geng, Zhiming; Zhang, Muhan; Xu, Weimin

    2014-10-01

    Tyramine production by Enterococcus faecalis R612Z1 in water-boiled salted ducks was evaluated during storage at different temperatures. The results showed that E. faecalis R612Z1 could produce tyramine in meat samples when the storage temperature was no less than 4°C. The E. faecalis R612Z1 counts of the meat samples reached 10(8) CFU/g on day 7 at 4°C and on day 4 at 10°C. However, the tyramine content of the meat samples stored at 10°C increased to 23.73 μg/g (on day 10), which was greater than the level in the samples stored at 4°C (7.56 μg/g). Reverse transcription quantitative PCR detection of the expression level of the tyrDC gene in E. faecalis R612Z1 in the meat samples revealed no significant changes at different storage temperatures. Thus, the changes in tyramine production of E. faecalis R612Z1 may be due to the different enzymatic activities at different storage temperatures.

  5. Stability and potency of raw and boiled shrimp extracts for skin prick test.

    PubMed

    Pariyaprasert, Wipada; Piboonpocanun, Surapon; Jirapongsananuruk, Orathai; Visitsunthorn, Nualanong

    2015-06-01

    The difference of stability between raw and boiled shrimp extracts used in prick tests has never been investigated despite its potential consequences in tests development. The aim of this study was to compare the raw and boiled shrimp extracts of two species; Macrobrachium rosenbergii (freshwater shrimp) and Penaeus monodon (seawater shrimp) held at 4 ?C for different periods of time for their stability and potency in vivo by using the skin prick test (SPT) method. Raw and boiled M. rosenbergii and P. monodon extracts were prepared and stored at 4 ?C for 1, 7, 14 and 30 days. Thirty patients were pricked with raw and boiled shrimp extracts at all storage times, as well as prick to prick skin test (PTP) to fresh raw and boiled shrimps of both species. The mean wheal diameter (MWD) resulting from prick tests for all shrimp extracts was measured and compared. The shrimp extracts of all storage times yielded positive skin test results in the range of 90% - 100%. Raw P. monodon extracts induced larger wheals than boiled extracts at all storage times. There was no significant difference of MWD between raw and boiled M. rosenbergii extracts on day 1, 7, and 14. Significant correlations between MWD of PTP to fresh shrimps and SPT to all shrimp extracts were observed. All shrimp extracts were sterile at all storage times. Raw and boiled M. rosenbergii and P. monodon extracts were stable and sterile at 4 ?C for at most 30 days. SPT with these extracts induced more than 10 mm in shrimp allergy patients and the results were comparable with PTP to fresh shrimps.

  6. Identification of quantitative trait loci associated with boiled seed hardness in soybean

    PubMed Central

    Hirata, Kaori; Masuda, Ryoichi; Tsubokura, Yasutaka; Yasui, Takeshi; Yamada, Tetsuya; Takahashi, Koji; Nagaya, Taiko; Sayama, Takashi; Ishimoto, Masao; Hajika, Makita

    2014-01-01

    Boiled seed hardness is an important factor in the processing of soybean food products such as nimame and natto. Little information is available on the genetic basis for boiled seed hardness, despite the wide variation in this trait. DNA markers linked to the gene controlling this trait should be useful in soybean breeding programs because of the difficulty of its evaluation. In this report, quantitative trait locus (QTL) analysis was performed to reveal the genetic factors associated with boiled seed hardness using a recombinant inbred line population developed from a cross between two Japanese cultivars, ‘Natto-shoryu’ and ‘Hyoukei-kuro 3’, which differ largely in boiled seed hardness, which in ‘Natto-shoryu’ is about twice that of ‘Hyoukei-kuro 3’. Two significantly stable QTLs, qHbs3-1 and qHbs6-1, were identified on chromosomes 3 and 6, for which the ‘Hyoukei-kuro 3’ alleles contribute to decrease boiled seed hardness for both QTLs. qHbs3-1 also showed significant effects in progeny of a residual heterozygous line and in a different segregating population. Given its substantial effect on boiled seed hardness, SSR markers closely linked to qHbs3-1, such as BARCSOYSSR_03_0165 and BARCSOYSSR_03_0185, could be useful for marker-assisted selection in soybean breeding. PMID:25914591

  7. Flow Boiling and Condensation Experiment (FBCE) for the International Space Station

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; O'Neill, Lucas; Hasan, Mohammad; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey

    2016-01-01

    An effective means to reducing the size and weight of future space vehicles is to replace present mostly single-phase thermal management systems with two-phase counterparts. By capitalizing upon both latent and sensible heat of the coolant rather than sensible heat alone, two-phase thermal management systems can yield orders of magnitude enhancement in flow boiling and condensation heat transfer coefficients. Because the understanding of the influence of microgravity on two-phase flow and heat transfer is quite limited, there is an urgent need for a new experimental microgravity facility to enable investigators to perform long-duration flow boiling and condensation experiments in pursuit of reliable databases, correlations and models. This presentation will discuss recent progress in the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS) in collaboration between Purdue University and NASA Glenn Research Center. Emphasis will be placed on the design of the flow boiling module and on new flow boiling data that were measured in parabolic flight, along with extensive flow visualization of interfacial features at heat fluxes up to critical heat flux (CHF). Also discussed a theoretical model that will be shown to predict CHF with high accuracy.

  8. Numerical Modeling of Propellant Boil-Off in a Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.; Sass, J. P.; Fesmire, J. E.

    2007-01-01

    A numerical model to predict boil-off of stored propellant in large spherical cryogenic tanks has been developed. Accurate prediction of tank boil-off rates for different thermal insulation systems was the goal of this collaboration effort. The Generalized Fluid System Simulation Program, integrating flow analysis and conjugate heat transfer for solving complex fluid system problems, was used to create the model. Calculation of tank boil-off rate requires simultaneous simulation of heat transfer processes among liquid propellant, vapor ullage space, and tank structure. The reference tank for the boil-off model was the 850,000 gallon liquid hydrogen tank at Launch Complex 39B (LC- 39B) at Kennedy Space Center, which is under study for future infrastructure improvements to support the Constellation program. The methodology employed in the numerical model was validated using a sub-scale model and tank. Experimental test data from a 1/15th scale version of the LC-39B tank using both liquid hydrogen and liquid nitrogen were used to anchor the analytical predictions of the sub-scale model. Favorable correlations between sub-scale model and experimental test data have provided confidence in full-scale tank boil-off predictions. These methods are now being used in the preliminary design for other cases including future launch vehicles

  9. Bubble dynamics, two-phase flow, and boiling heat transfer in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1994-01-01

    The two-phase bubbly flow and boiling heat transfer in microgravity represents a substantial challenge to scientists and engineers and yet there is an urgent need to seek fundamental understanding in this area for future spacecraft design and space missions. At Washington State University, we have successfully designed, built and tested a 2.1 second drop tower with an innovation airbag deceleration system. Microgravity boiling experiments performed in our 0.6 second Drop Tower produced data flow visualizations that agree with published results and also provide some new understanding concerning flow boiling and microgravity bubble behavior. On the analytical and numerical work, the edge effects of finite divergent electrode plates on the forces experienced by bubbles were investigated. Boiling in a concentric cylinder microgravity and an electric field was numerically predicted. We also completed a feasibility study for microgravity boiling in an acoustic field.

  10. Boiling behavior of sodium-potassium alloy in a bench-scale solar receiver

    NASA Astrophysics Data System (ADS)

    Moreno, J. B.; Andraka, C. E.; Moss, T. A.

    During 1989-90, a 75-kW(sub t) sodium reflux pool-boiler solar receiver was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver include the following: (1) boiling sodium as the heat transfer medium, and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Since this first demonstration, design of a second-generation pool-boiler receiver that will bring the concept closer to commercialization has begun. For long life, the new receiver uses Haynes Alloy 230. For increased safety factors against film boiling and flooding, it has a refined shape and somewhat larger dimensions. To eliminate the need for trace heating, the receiver will boil the sodium-potassium alloy NaK-78 instead of sodium. To reduce manufacturing costs, it will use one of a number of alternatives to EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it will contain a small amount of inert gas. Before the new receiver design could be finalized, bench-scale tests of some of the proposed changes were necessary. A series of bench-scale pool boilers were built from Haynes Alloy 230 and filled with NaK-78. Various boiling-stabilizer candidates were incorporated into them, including laser-drilled cavities and a number of different sintered-powder-metal coatings. These bench-scale pool boilers have been operated at temperatures up to 750 C, heated by quartz lamps with incident radiant fluxes up to 95 W/sq cm. The effects of various orientations and added gases have been studied. Results of these studies are presented.

  11. Critical Heat Flux in Pool Boiling on Metal-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Yang, Wen-Jei; Chao, David F.; Chao, David F. (Technical Monitor)

    2000-01-01

    A study is conducted on high heat-flux pool boiling of pentane on micro-configured composite surfaces. The boiling surfaces are copper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composites with a fiber volume concentration of 50%. The micro-graphite fibers embedded in the matrix contribute to a substantial enhancement in boiling heat-transfer performance. Correlation equations are obtained for both the isolated and coalesced bubble regimes, utilizing a mathematical model based on a metal-graphite, two-tier configuration with the aid of experimental data. A new model to predict the critical heat flux (CHF) on the composites is proposed to explain the fundamental aspects of the boiling phenomena. Three different factors affecting the CHF are considered in the model. Two of them are expected to become the main agents driving vapor volume detachment under microgravity conditions, using the metal-graphite composite surfaces as the heating surface and using liquids with an unusual Marangoni effect as the working fluid.

  12. Radon depletion in xenon boil-off gas

    NASA Astrophysics Data System (ADS)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T. Marrodán; Simgen, H.

    2017-03-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of ^{222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of ≳ 4 for the ^{222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α -detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10^{-15} mol/mol level.

  13. 18. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Detail of floor with molasses pits below floor level. The remaining floor boards indicate the structure of the floor covering the entire inside of the boiling house. In the left background the base of the centrifugals are in view. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  14. Forced convection flow boiling and two-phase flow phenomena in a microchannel

    NASA Astrophysics Data System (ADS)

    Na, Yun Whan

    2008-07-01

    The present study was performed to numerically analyze the evaporation phenomena through the liquid-vapor interface and to investigate bubble dynamics and heat transfer behavior during forced convective flow boiling in a microchannel. Flow instabilities of two-phase flow boiling in a microchannel were studied as well. The main objective of this research is to investigate the fundamental mechanisms of two-phase flow boiling in a microchannel and provide predictive tools to design thermal management systems, for example, microchannel heat sinks. The numerical results obtained from this study were qualitatively and quantitatively compared with experimental results in the open literature. Physical and mathematical models, accounting for evaporating phenomena through the liquid-vapor interface in a microchannel at constant heat flux and constant wall temperature, have been developed, respectively. The heat transfer mechanism is affected by the dominant heat conduction through the thin liquid film and vaporization at the liquid-vapor interface. The thickness of the liquid film and the pressure of the liquid and vapor phases were simultaneously solved by the governing differential equations. The developed semi-analytical evaporation model that takes into account of the interfacial phenomena and surface tension effects was used to obtain solutions numerically using the fourth-order Runge-Kutta method. The effects of heat flux 19 and wall temperature on the liquid film were evaluated. The obtained pressure drops in a microchannel were qualitatively consistent with the experimental results of Qu and Mudawar (2004). Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation to investigate bubble dynamics, flow patterns, and heat transfer. The momentum and energy equations were solved using the finite volume method while the liquid-vapor interface of a bubble is captured using the VOF (Volume of Fluid

  15. Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1998-01-01

    This report contains two independent sections. Part one is titled "Terrestrial and Microgravity Pool Boiling Heat Transfer and Critical heat flux phenomenon in an acoustic standing wave." Terrestrial and microgravity pool boiling heat transfer experiments were performed in the presence of a standing acoustic wave from a platinum wire resistance heater using degassed FC-72 Fluorinert liquid. The sound wave was created by driving a half wavelength resonator at a frequency of 10.15 kHz. Microgravity conditions were created using the 2.1 second drop tower on the campus of Washington State University. Burnout of the heater wire, often encountered with heat flux controlled systems, was avoided by using a constant temperature controller to regulate the heater wire temperature. The amplitude of the acoustic standing wave was increased from 28 kPa to over 70 kPa and these pressure measurements were made using a hydrophone fabricated with a small piezoelectric ceramic. Cavitation incurred during experiments at higher acoustic amplitudes contributed to the vapor bubble dynamics and heat transfer. The heater wire was positioned at three different locations within the acoustic field: the acoustic node, antinode, and halfway between these locations. Complete boiling curves are presented to show how the applied acoustic field enhanced boiling heat transfer and increased critical heat flux in microgravity and terrestrial environments. Video images provide information on the interaction between the vapor bubbles and the acoustic field. Part two is titled, "Design and qualification of a microscale heater array for use in boiling heat transfer." This part is summarized herein. Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of

  16. Massive Lumbar Disk Herniation Following "Therapeutic" Water Boiling of the Lower Extremities: Case Report and Literature Review.

    PubMed

    Spallone, Aldo; Çelniku, Megi

    2017-01-01

    Legs burning for treating lumbar radicular pain are still in use nowadays in low socioeconomical environments. They are dangerous as the case we report shows clearly. A 49-year-old man came to our attention with severe flaccid paraparesis occurred 10 days before, almost immediately after he had immersed his legs in boiling water to treat his severe left lumbocrural pain. This was known to be due to a right L3/4 herniated disk diagnosed by magnetic resonance imaging. At the examination he showed severe motor paresis and absent reflexes of his lower limbs, while crural pain was mild and sensation and urinary function were unaffected. The results of his neurologic examination led us to suspect an acute motor axon degeneration related to thermal shock. Lumbar magnetic resonance imaging, performed before the planned electromyogram as an exception to the established routine, showed instead a giant 5- × 5.5-cm, herniated disk compressing the dural sac at L3. Prompt surgical decompression led to rapid improvement. We discuss here the pathophysiology of this unusual case and point out how medieval practices for treating sciatica-like pain are not only unjustified from a medical viewpoint but also potentially dangerous. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Daily variations in effluent water turbidity and diarrhoeal illness in a Russian city.

    PubMed

    Egorov, Andrey I; Naumova, Elena N; Tereschenko, Andrey A; Kislitsin, Victor A; Ford, Timothy E

    2003-03-01

    To assess an association between temporal variations in drinking water quality and gastrointestinal (GI) illness, a cohort study involving 100 randomly selected families (367 individuals) was conducted in the city of Cherepovets, Russia from June through November 1999. Participants maintained daily diaries of gastrointestinal symptoms, water consumption and other behavioural exposure variables, while daily effluent water quality data were provided by the water utility. The cumulative incidence rate of self-reported gastrointestinal diseases, 1.7 cases per person-year, was almost two orders of magnitude higher than that of officially reported GI infections in the city. An interquartile range increase in effluent water turbidity of 0.8 Nephelometric Turbidity Units was associated with a relative risk of self-reported GI illness of 1.47 (95% Confidence Interval 1.16, 1.86) at a lag of 2 days after control for daily rate of consumption of non-boiled tap water, behavioural covariates, day of the week and a seasonally-related linear trend. In the analysis by subsets of study participants stratified by non-boiled tap water consumption, no statistically significant associations between turbidity and GI illness were found for the study participants who always boiled their drinking water. For individuals who drank non-boiled tap water, statistically significant associations between turbidity and GI illness were detected at lags 1, 2 and 7 days.

  18. How Does Boiling in the Earth's Crust Influence Metal Speciation and Transport?

    NASA Astrophysics Data System (ADS)

    Kam, K.; Lemke, K.

    2014-12-01

    The presence of large quantities of precious metals, such as gold and copper, near the Earth's surface (upper crust) is commonly attributed to transport in aqueous solution and precipitation upon variations in temperature and pressure. As a consequence, gold exploration is closely linked to solution chemistry, i.e. hydrothermal processes involving aqueous fluids with densities of around unity. However, as crustal fluids buoyantly ascend, boiling produces a coexisting low-density aqueous liquid with fundamentally different physical and chemical properties, and a, most importantly, a high affinity for coinage metals (Heinrich et al., Econ Geol., 1992, 87, 1566). From recent experimental studies of Au (Hurtig and Williams-Jones, 2014, Geochim. Cosmochim. Acta,, 127, 304), we know that metal speciation in this low-density phase differs fundamentally from that observed in bulk solution, clearly, with important implications for Au, and metal speciation in general, transport and ore concentrations processes (these processes would also be operable in industrial geothermal plants given the quite special solvent properties of steam). In brief, this study focuses on the speciation of select metal halides in bulk solution as well as in water vapor, and is driven by our need to understand the solvent properties of around 2.0x109 cubic kilometers of free water (or 2,500 times as much water as stored in all lakes and rivers) present in the Earth's crust. The scope of this study has particular applications in the geothermal and oil industries, as both deal with high temperature low-density aqueous fluids. Understanding how metal halide species behave upon boiling can also provide insight into how metals, such as copper and silver, coat turbine equipment and steam piping in geothermal plants, ultimately rendering these components inoperable. This study will also provide preliminary results from mass spectrometric experiments of transition metal halides, and will be augmented with

  19. Revisiting the structure of the anti-neoplastic glucans of Mycobacterium bovis Bacille Calmette-Guerin. Structural analysis of the extracellular and boiling water extract-derived glucans of the vaccine substrains.

    PubMed

    Dinadayala, Premkumar; Lemassu, Anne; Granovski, Pierre; Cérantola, Stéphane; Winter, Nathalie; Daffé, Mamadou

    2004-03-26

    The attenuated strain of Mycobacterium bovis Bacille Calmette-Guérin (BCG), used worldwide to prevent tuberculosis and leprosy, is also clinically used as an immunotherapeutic agent against superficial bladder cancer. An anti-tumor polysaccharide has been isolated from the boiling water extract of the Tice substrain of BCG and tentatively characterized as consisting primarily of repeating units of 6-linked-glucosyl residues. Mycobacterium tuberculosis and other mycobacterial species produce a glycogen-like alpha-glucan composed of repeating units of 4-linked glucosyl residues substituted at some 6 positions by short oligoglucosyl units that also exhibits an anti-tumor activity. Therefore, the impression prevails that mycobacteria synthesize different types of anti-neoplastic glucans or, alternatively, the BCG substrains are singular in producing a unique type of glucan that may confer to them their immunotherapeutic property. The present study addresses this question through the comparative analysis of alpha-glucans purified from the extracellular materials and boiling water extracts of three vaccine substrains. The polysaccharides were purified, and their structural features were established by mono- and two-dimensional NMR spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of the enzymatic and chemical degradation products of the purified compounds. The glucans isolated by the two methods from the three substrains of BCG were shown to exhibit identical structural features shared with the glycogen-like alpha-glucan of M. tuberculosis and other mycobacteria. Incidentally, we observed an occasional release of dextrans from Sephadex columns that may explain the reported occurrence of 6-substituted alpha-glucans in mycobacteria.

  20. Effect of surface oxidation on the onset of nucleate boiling in a materials test reactor coolant channel

    DOE PAGES

    Forrest, Eric C.; Don, Sarah M.; Hu, Lin -Wen; ...

    2016-02-29

    The onset of nucleate boiling (ONB) serves as the thermal-hydraulic operating limit for many research and test reactors. However, boiling incipience under forced convection has not been well-characterized in narrow channel geometries or for oxidized surface conditions. This study presents experimental data for the ONB in vertical upflow of deionized (DI) water in a simulated materials test reactor (MTR) coolant channel. The channel gap thickness and aspect ratio were 1.96 mm and 29:1, respectively. Boiling surface conditions were carefully controlled and characterized, with both heavily oxidized and native oxide surfaces tested. Measurements were performed for mass fluxes ranging from 750more » to 3000 kg/m 2s and for subcoolings ranging from 10 to 45°C. ONB was identified using a combination of high-speed visual observation, surface temperature measurements, and channel pressure drop measurements. Surface temperature measurements were found to be most reliable in identifying the ONB. For the nominal (native oxide) surface, results indicate that the correlation of Bergles and Rohsenow, when paired with the appropriate single-phase heat transfer correlation, adequately predicts the ONB heat flux. Furthermore, incipience on the oxidized surface occurred at a higher heat flux and superheat than on the plain surface.« less

  1. Critical heat flux for free convection boiling in thin rectangular channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lap Y.; Tichler, P.R.

    A review of the experimental data on free convection boiling critical heat flux (CHF) in vertical rectangular channels reveals three mechanisms of burnout. They are the pool boiling limit, the circulation limit, and the flooding limit associated with a transition in flow regime from churn to annular flow. The dominance of a particular mechanism depends on the dimensions of the channel. Analytical models were developed for each free convection boiling limit. Limited agreement with data is observed. A CHF correlation, which is valid for a wide range of gap sizes, was constructed from the CHFs calculated according to the threemore » mechanisms of burnout. 17 refs., 7 figs.« less

  2. Sensory quality and appropriateness of raw and boiled Jerusalem artichoke tubers (Helianthus tuberosus L.).

    PubMed

    Bach, Vibe; Kidmose, Ulla; Thybo, Anette K; Edelenbos, Merete

    2013-03-30

    The aim of the present study was to investigate the sensory attributes, dry matter and sugar content of five varieties of Jerusalem artichoke tubers and their relation to the appropriateness of the tubers for raw and boiled preparation. Sensory evaluation of raw and boiled Jerusalem artichoke tubers was performed by a trained sensory panel and a semi-trained consumer panel of 49 participants, who also evaluated the appropriateness of the tubers for raw and boiled preparation. The appropriateness of raw Jerusalem artichoke tubers was related to Jerusalem artichoke flavour, green nut flavour, sweetness and colour intensity, whereas the appropriateness of boiled tubers was related to celeriac aroma, sweet aroma, sweetness and colour intensity. In both preparations the variety Dwarf stood out from the others by being the least appropriate tuber. A few sensory attributes can be used as predictors of the appropriateness of Jerusalem artichoke tubers for raw and boiled consumption. Knowledge on the quality of raw and boiled Jerusalem artichoke tubers can be used to inform consumers on the right choice of raw material and thereby increase the consumption of the vegetable. © 2012 Society of Chemical Industry.

  3. Increasing Boiling Heat Transfer using Low Conductivity Materials

    PubMed Central

    Mahamudur Rahman, Md; Pollack, Jordan; McCarthy, Matthew

    2015-01-01

    We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches. PMID:26281890

  4. Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.

    PubMed

    Zhou, Zhanru; Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.

  5. Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing

    NASA Astrophysics Data System (ADS)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2018-03-01

    Recently, controlling the wettability of a metallic surface so that it is either superhydrophobic or superhydrophilic has become important for many applications. However, conventional techniques require long fabrication times or involve toxic chemicals. Herein, through a combination of pulse laser ablation and simple post-processing, the surface of aluminum was controlled to either superhydrophobic or superhydrophilic in a short time of only a few hours. In this study, grid patterns were first fabricated on aluminum using a nanosecond pulsed laser, and then additional post-processing without any chemicals was used. Under heat treatment, the surface became superhydrophobic with a contact angle (CA) greater than 150° and a sliding angle (SA) lower than 10°. Conversely, when immersed in boiling water, the surface became superhydrophilic with a low contact angle. The mechanism for wettability change was also explained. The surfaces, obtained in a short time with environmentally friendly fabrication and without the use of toxic chemicals, could potentially be applied in various industry and manufacturing applications such as self-cleaning, anti-icing, and biomedical devices.

  6. Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling

    NASA Technical Reports Server (NTRS)

    Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA

  7. On the Application of Image Processing Methods for Bubble Recognition to the Study of Subcooled Flow Boiling of Water in Rectangular Channels

    PubMed Central

    Paz, Concepción; Conde, Marcos; Porteiro, Jacobo; Concheiro, Miguel

    2017-01-01

    This work introduces the use of machine vision in the massive bubble recognition process, which supports the validation of boiling models involving bubble dynamics, as well as nucleation frequency, active site density and size of the bubbles. The two algorithms presented are meant to be run employing quite standard images of the bubbling process, recorded in general-purpose boiling facilities. The recognition routines are easily adaptable to other facilities if a minimum number of precautions are taken in the setup and in the treatment of the information. Both the side and front projections of subcooled flow-boiling phenomenon over a plain plate are covered. Once all of the intended bubbles have been located in space and time, the proper post-process of the recorded data become capable of tracking each of the recognized bubbles, sketching their trajectories and size evolution, locating the nucleation sites, computing their diameters, and so on. After validating the algorithm’s output against the human eye and data from other researchers, machine vision systems have been demonstrated to be a very valuable option to successfully perform the recognition process, even though the optical analysis of bubbles has not been set as the main goal of the experimental facility. PMID:28632158

  8. Boiling Water at Hot Creek - The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera

    USGS Publications Warehouse

    Farrar, Christopher D.; Evans, William C.; Venezky, Dina Y.; Hurwitz, Shaul; Oliver, Lynn K.

    2007-01-01

    The beautiful blue pools and impressive boiling fountains along Hot Creek in east-central California have provided enjoyment to generations of visitors, but they have also been the cause of injury or death to some who disregarded warnings and fences. The springs and geysers in the stream bed and along its banks change location, temperature, and flow rates frequently and unpredictably. The hot springs and geysers of Hot Creek are visible signs of dynamic geologic processes in this volcanic region, where underground heat drives thermal spring activity.

  9. Flow-Boiling Critical Heat Flux Experiments Performed in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Mudawar, Issam

    2005-01-01

    Poor understanding of flow boiling in microgravity has recently emerged as a key obstacle to the development of many types of power generation and advanced life support systems intended for space exploration. The critical heat flux (CHF) is perhaps the most important thermal design parameter for boiling systems involving both heatflux-controlled devices and intense heat removal. Exceeding the CHF limit can lead to permanent damage, including physical burnout of the heat-dissipating device. The importance of the CHF limit creates an urgent need to develop predictive design tools to ensure both the safe and reliable operation of a two-phase thermal management system under the reduced-gravity (like that on the Moon and Mars) and microgravity environments of space. At present, very limited information is available on flow-boiling heat transfer and the CHF under these conditions.

  10. Water, something peculiar.

    USGS Publications Warehouse

    Van Hylckama, T. E. A.

    1979-01-01

    Some chemical and physical properties of water are discussed and compared with those of other fluids. For instance, the boiling point is much higher than one would expect considering the molecular weight of water. The heat capacity is also much higher but the viscosity is not. The dielectric constant is exceptionally high. These and other properties of water can be explained by the geometry of the water molecule and the structure of water or ice. -Author

  11. 16. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Looking from west to east through boiling house. The sorghum pan is on the right. The beams; joists, and trusses are of northwest pine; side boards are of redwood. A foundation line of a loading dock and smokestack are in the foreground. Both end walls have deteriorated completely. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  12. REFLECTOR CONTROL OF A BOILING-WATER REACTOR

    DOEpatents

    Treshow, M.

    1962-05-22

    A line connecting the reactor with a spent steam condenser contains a valve set to open when the pressure in the reactor exceeds a predetermined value and an orifice on the upstream side of the valve. Another line connects the reflector with this line between the orifice and the valve. An excess steam pressure causes the valve to open and the flow of steam through the line draws water out of the reflector. Provision is also made for adding water to the reflector when the steam pressure drops. (AEC)

  13. Evaluation of Correlations of Flow Boiling Heat Transfer of R22 in Horizontal Channels

    PubMed Central

    Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels. PMID:23956695

  14. Asymmetrical, inversely graded, upstream-migrating cyclic steps in marine settings: Late Miocene-early Pliocene Fish Creek-Vallecito Basin, southern California

    NASA Astrophysics Data System (ADS)

    Gong, Chenglin; Chen, Liuqin; West, Logan

    2017-10-01

    Cyclic steps are ubiquitous in modern sedimentary environments, yet their recognition remains sparse in the rock record. Here, we interpret three sets of undulating backsets (1 to 3) recognized in the late Miocene-early Pliocene Latrania Formation in the Anza-Borrego Desert, the Fish Creek-Vallecito Basin, southern California, USA as the first cm- to dm-scale outcrop record of cyclic steps, based on asymmetrical cross-sections, upstream migration, and inversely graded laminae. Upstream migration and asymmetrical cross-sections of backsets and concomitant backset laminae are attributed to supercritical-to-subcritical flow transitions through weak hydraulic jumps, which are composed of: (i) thin (tens of centimetres) and slower (reported as flow velocities (Ū) of 0.45 to 1.45 m s- 1, with mean value of Ū = 0.89 m s- 1) subcritical (represented by internal Froude numbers (Fr) of 0.67 to 0.99, with mean value of Fr = 0.84) turbidity currents on the stoss sides, and (ii) thin (tens of centimetres) and faster (reported as Ū of 0.99 to 4.03 m s- 1, with mean value of Ū = 2.24 m s- 1) supercritical (represented by Fr of 1.84 to 3.07, with mean value of Fr = 2.42) turbidity flows on the lee sides. The inversely graded laminae in the troughs of backsets are 2 to 5 cm thick, and consist of two discrete divisions: (i) 1 to 2 cm thick, lower finer-grained divisions made up of parallel laminated siltstones, overlain by very fine- to fine-grained sandstones, and (ii) 2 to 3 cm thick, upper divisions composed of medium- to coarse-grained sandstones, with sporadic occurrence of subrounded pebbles. These inversely graded laminae are related to stratified, collisional and/or frictional traction carpets under conditions of high fall-out rates. Due to the poor preservation potential of cyclic steps, the rock record of cyclic steps is generally considered to be rare. The present outcrop-based study presents a detailed analysis of sedimentary facies, growth patterns, and flow

  15. Bench-scale screening tests for a boiling sodium-potassium alloy solar receiver

    NASA Astrophysics Data System (ADS)

    Moreno, J. B.; Moss, T. A.

    1993-06-01

    Bench-scale tests were carried out in support of the design of a second-generation 75-kW(sub t) reflux pool-boiler solar receiver. The receiver will be made from Haynes Alloy 230 and will contain the sodium-potassium alloy NaK-78. The bench-scale tests used quartz lamp heated boilers to screen candidate boiling stabilization materials and methods at temperatures up to 750 degree C. Candidates that provided stable boiling were tested for hot-restart behavior. Poor stability was obtained with single 1/4-inch diameter patches of powdered metal hot press sintered onto the wetted side of the heat-input area. Laser-drilled and electric discharge machined cavities in the heated surface also performed poorly. Small additions of xenon, and heated-surface tilt out of the vertical, dramatically improved poor boiling stability; additions of helium or oxygen did not. The most stable boiling was obtained when the entire heat-input area was covered by a powdered-metal coating. The effect of heated-area size was assessed for one coating: at low incident fluxes, when even this coating performed poorly, increasing the heated-area size markedly improved boiling stability. Good hot-restart behavior was not observed with any candidate, although results were significantly better with added xenon in a boiler shortened from 3 to 2 feet. In addition to the screening tests, flash-radiography imaging of metal-vapor bubbles during boiling was attempted. Contrary to the Cole-Rohsenow correlation, these bubble-size estimates did not vary with pressure; instead they were constant, consistent with the only other alkali metal measurements, but about 1/2 their size.

  16. Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling

    PubMed Central

    Khokhlova, Tatiana D.; Canney, Michael S.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.; Crum, Lawrence A.; Bailey, Michael R.

    2011-01-01

    In high intensity focused ultrasound (HIFU) applications, tissue may be thermally necrosed by heating, emulsified by cavitation, or, as was recently discovered, emulsified using repetitive millisecond boiling caused by shock wave heating. Here, this last approach was further investigated. Experiments were performed in transparent gels and ex vivo bovine heart tissue using 1, 2, and 3 MHz focused transducers and different pulsing schemes in which the pressure, duty factor, and pulse duration were varied. A previously developed derating procedure to determine in situ shock amplitudes and the time-to-boil was refined. Treatments were monitored using B-mode ultrasound. Both inertial cavitation and boiling were observed during exposures, but emulsification occurred only when shocks and boiling were present. Emulsified lesions without thermal denaturation were produced with shock amplitudes sufficient to induce boiling in less than 20 ms, duty factors of less than 0.02, and pulse lengths shorter than 30 ms. Higher duty factors or longer pulses produced varying degrees of thermal denaturation combined with mechanical emulsification. Larger lesions were obtained using lower ultrasound frequencies. The results show that shock wave heating and millisecond boiling is an effective and reliable way to emulsify tissue while monitoring the treatment with ultrasound. PMID:22088025

  17. Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uddin, Rizwan

    2012-01-01

    This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during themore » third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.« less

  18. Giardia and Drinking Water from Private Wells

    MedlinePlus

    ... boiling water is using a point-of-use filter. Not all home water filters remove Giardia . Filters that are designed to remove the parasite should ... learn more, visit CDC’s A Guide to Water Filters page. As you consider ways to disinfect your ...

  19. Transient boiling in two-phase helium natural circulation loops

    NASA Astrophysics Data System (ADS)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2014-01-01

    Two-phase helium natural circulation loops are used for cooling large superconducting magnets, as CMS for LHC. During normal operation or in the case of incidents, transients are exerted on the cooling system. Here a cooling system of this type is studied experimentally. Sudden power changes are operated on a vertical-heated-section natural convection loop, simulating a fast increase of heat deposition on magnet cooling pipes. Mass flow rate, heated section wall temperature and pressure drop variations are measured as a function of time, to assess the time behavior concerning the boiling regime according to the values of power injected on the heated section. The boiling curves and critical heat flux (CHF) values have been obtained in steady state. Temperature evolution has been observed in order to explore the operating ranges where heat transfer is deteriorated. Premature film boiling has been observed during transients on the heated section in some power ranges, even at appreciably lower values than the CHF. A way of attenuating these undesired temperature excursions has been identified through the application of high enough initial heating power.

  20. Boiling of an emulsion in a yield stress fluid.

    PubMed

    Guéna, Geoffroy; Wang, Ji; d'Espinose, Jean-Baptiste; Lequeux, François; Talini, Laurence

    2010-11-01

    We report the boiling behavior of pentane emulsified in a yield stress fluid, a colloidal clay (Laponite) suspension. We have observed that a superheated state is easily reached: the emulsion, heated more than 50 °C above the alkane boiling point, does not boil. Superheating is made possible by the suppression of heterogeneous nucleation in pentane, resulting from the emulsification process, a phenomenon evidenced decades ago in studies of the superheating of two phase fluids. We have furthermore studied the growth of isolated bubbles nucleated in the emulsion. The rate of increase of the bubble radius with time depends on both the temperature and emulsion volume fraction but, rather unexpectedly, does not depend on the fluid rheology. We show that the bubbles grow by diffusion of the alkane through the aqueous phase between liquid droplets and bubbles, analogously to an Ostwald ripening process. The peculiarity of the process reported here is that a layer depleted in oil droplets forms around the bubble, layer to which the alkane concentration gradient is confined. We successfully describe our experimental results with a simple transfer model.

  1. Stability of film boiling on inclined plates and spheres

    NASA Astrophysics Data System (ADS)

    Aursand, Eskil; Hammer, Morten; Munkejord, Svend Tollak; Müller, Bernhard; Ytrehus, Tor

    2017-11-01

    In film boiling, a continuous sub-millimeter vapor film forms between a liquid and a heated surface, insulating the two from each other. While quite accurate steady state solutions are readily obtained, the intermediate Reynolds numbers can make transient analysis challenging. The present work is a theoretical study of film boiling instabilities. We study the formation of travelling waves that are a combination of Kelvin-Helmholtz and the Rayleigh-Taylor instabilities. In particular, we study how the nature of this process depends on the Reynolds number, the Bond number, and the inclination of the submerged heated plate. In addition we extend the analysis to the case of a submerged heated sphere. Modelling of the transient dynamics of such films is important for answering practical questions such as how instabilities affect the overall heat transfer, and whether they can lead to complete film boiling collapse (Leidenfrost point). This work has been financed under the MAROFF program. We acknowledge the Research Council of Norway (244076/O80) and The Gas Technology Centre NTNU-SINTEF (GTS) for support.

  2. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces

    PubMed Central

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung

    2016-01-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255

  3. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-Hung

    2016-04-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.

  4. Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity

    NASA Technical Reports Server (NTRS)

    Oker, E.; Merte, H., Jr.

    1973-01-01

    Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.

  5. [Study of long-term water quality of stocked drinking water].

    PubMed

    Kataoka, Hiromi; Kanaoka, Miki; Yamamura, Sayo; Mine, Takanori; Nishikawa, Jun-ichi; Semma, Masanori

    2013-01-01

    We examined changes in the quality of drinking water stockpiled under various conditions for emergency use. The results indicated that the change in the quality of the stocked water was influenced mainly by the preservation period and not by the amount of water in the bottle. To maintain water quality, the amount of residual chlorine is less important than using sufficiently sterilized water, bottles and caps in the bottling process. Washing the bottles with a small amount of boiling water was not sufficient to ensure complete inhibition of microbial growth.

  6. Single-bubble dynamics in pool boiling of one-component fluids.

    PubMed

    Xu, Xinpeng; Qian, Tiezheng

    2014-06-01

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  7. Performance Evaluation of the International Space Station Flow Boiling and Condensation Experiment (FBCE) Test Facility

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad; Balasubramaniam, R.; Nahra, Henry; Mackey, Jeff; Hall, Nancy; Frankenfield, Bruce; Harpster, George; May, Rochelle; Mudawar, Issam; Kharangate, Chirag R.; hide

    2016-01-01

    A ground-based experimental facility to perform flow boiling and condensation experiments is built in support of the development of the long duration Flow Boiling and Condensation Experiment (FBCE) destined for operation on board of the International Space Station (ISS) Fluid Integrated Rack (FIR). We performed tests with the condensation test module oriented horizontally and vertically. Using FC-72 as the test fluid and water as the cooling fluid, we evaluated the operational characteristics of the condensation module and generated ground based data encompassing the range of parameters of interest to the condensation experiment to be performed on the ISS. During this testing, we also evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, and the heat loss from different components. In this presentation, we discuss representative results of performance testing of the FBCE flow loop. These results will be used in the refinement of the flight system design and build-up of the FBCE which is scheduled for flight in 2019.

  8. Microgravity Boiling Enhancement Using Vibration-Based Fluidic Technologies

    NASA Astrophysics Data System (ADS)

    Smith, Marc K.; Glezer, Ari; Heffington, Samuel N.

    2002-11-01

    Thermal management is an important subsystem in many devices and technologies used in a microgravity environment. The increased power requirements of new Space technologies and missions mean that the capacity and efficiency of thermal management systems must be improved. The current work addresses this need through the investigation and development of a direct liquid immersion heat transfer cell for microgravity applications. The device is based on boiling heat transfer enhanced by two fluidic technologies developed at Georgia Tech. The first of these fluidic technologies, called vibration-induced bubble ejection, is shown in Fig. 1. Here, an air bubble in water is held against a vibrating diaphragm by buoyancy. The vibrations at 440 Hz induce violent oscillations of the air/water interface that can result in small bubbles being ejected from the larger air bubble (Fig. 1a) and, simultaneously, the collapse of the air/water interface against the solid surface (Fig. 1b). Both effects would be useful during a heat transfer process. Bubble ejection would force vapor bubbles back into the cooler liquid so that they can condense. Interfacial collapse would tend to keep the hot surface wet thereby increasing liquid evaporation and heat transfer to the bulk liquid. Figure 2 shows the effect of vibrating the solid surface at 7.6 kHz. Here, small-scale capillary waves appear on the surface of the bubble near the attachment point on the solid surface (the grainy region). The vibration produces a net force on the bubble that pushes it away from the solid surface. As a result, the bubble detaches from the solid and is propelled into the bulk liquid. This force works against buoyancy and so it would be even more effective in a microgravity environment. The benefit of the force in a boiling process would be to push vapor bubbles off the solid surface, thus helping to keep the solid surface wet and increasing the heat transfer. The second fluidic technology to be employed in this

  9. Insulation of Nitrocellulose Boiling Tubs at Radford Army Ammunition Plant

    DTIC Science & Technology

    1982-03-01

    control system. The amount of steam usea for the on-boil cycle with the single-sensor autocontrol averaged 647 kg/hr (1426 lb/hr) (test 1, table 2...This was a reduc- tion of 210 kg/hr (463 lb/hr) over the manually controlled uninsulated tub. Steam usage with the single sensor autocontrol and...uninsulated tub. At times durin)g the on- boil cycle of tests I and 2, the temperature of the manual sensor was different from the autocontrol sensor indicating

  10. Optimizations of packed sorbent and inlet temperature for large volume-direct aqueous injection-gas chromatography to determine high boiling volatile organic compounds in water.

    PubMed

    Yu, Bofan; Song, Yonghui; Han, Lu; Yu, Huibin; Liu, Yang; Liu, Hongliang

    2014-08-22

    For the expanded application area, fast trace analysis of certain high boiling point (i.e., 150-250 °C) volatile organic compounds (HVOCs) in water, a large volume-direct aqueous injection-gas chromatography (LV-DAI-GC) method was optimized for the following parameters: packed sorbent for sample on-line pretreatment, inlet temperature and detectors configuration. Using the composite packed sorbent self-prepared with lithium chloride and a type of diatomite, the method enabled safe injection of an approximately 50-100 μL sample at an inlet temperature of 150 °C in the splitless mode and separated HVOCs from water matrix in 2 min. Coupled with a flame ionization detector (FID), an electron capture detector (ECD) and a flame photometric detector (FPD), the method could simultaneously quantify 27 HVOCs that belong to seven subclasses (i.e., halogenated aliphatic hydrocarbons, chlorobenzenes, nitrobenzenes, anilines, phenols, polycyclic aromatic hydrocarbons and organic sulfides) in 26 min. Injecting a 50 μL sample without any enrichment step, such as cryotrap focusing, the limits of quantification (LOQs) for the 27 HVOCs was 0.01-3 μg/L. Replicate analyses of the 27 HVOCs spiked source and river water samples exhibited good precision (relative standard deviations ≤ 11.3%) and accuracy (relative errors ≤ 17.6%). The optimized LV-DAI-GC was robust and applicable for fast determination and automated continuous monitoring of HVOCs in surface water. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1996-01-01

    The objective of the research is to study the feasibility of employing an external force to replace the buoyancy force in order to maintain nucleate boiling in microgravity. We have found that a bulk velocity field, an electric field and an acoustic field could each play the role of the gravity field in microgravity. Nucleate boiling could be maintained by any one of the three external force fields in space.

  12. 23. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: North Wall of boiling house. In the original structure the three windows on the right admitted light and air from the outside. A shed occupied the left side of the wall outside (hence no windows). in 1881 the construction of the cooling shed closed in the right three windows. The sorghum is in the foreground. The centrifugals are in the left rear. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  13. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffery

    2014-01-01

    The Cryogenic Boil-Off Reduction System was tested with LH2 and LOX in a vacuum chamber to simulate space vacuum and the temperatures of low Earth orbit. Testing was successful and results validated the scaling study model that predicts active cooling reduces upper stage cryogenic propulsion mass for loiter periods greater than 2 weeks.

  14. Zero Boil-Off Tank (ZBOT) Experiment

    NASA Technical Reports Server (NTRS)

    Mcquillen, John

    2016-01-01

    The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.

  15. Experimental study of flash boiling spray vaporization through quantitative vapor concentration and liquid temperature measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Gaoming; Hung, David L. S.; Xu, Min

    2014-08-01

    Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information

  16. Pool Boiling Heat Transfer on structured Surfaces

    NASA Astrophysics Data System (ADS)

    Addy, J.; Olbricht, M.; Müller, B.; Luke, A.

    2016-09-01

    The development in the process and energy sector shows the importance of efficient utilization of available resources to improve thermal devices. To achieve this goal, all thermal components have to be optimized continuously. Various applications of multi-phase heat and mass transfer have to be improved. Therefore, the heat transfer and the influence of surface roughness in nucleate boiling with the working fluid propane is experimentally investigated on structured mild steel tubes, because only few data are available in the literature. The mild steel tube is sandblasted to obtain different surface roughness. The measurements are carried out over wide ranges of heat flux and pressure. The experimental results are compared with correlations from literature and the effect of surface roughness on the heat transfer is discussed. It is shown that the heat transfer coefficient increases with increasing surface roughness, heat flux and reduced pressure at nucleate pool boiling.

  17. Single-bubble dynamics in pool boiling of one-component fluids

    NASA Astrophysics Data System (ADS)

    Xu, Xinpeng; Qian, Tiezheng

    2014-06-01

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007), 10.1103/PhysRevE.75.036304], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013), 10.1016/j.ijheatmasstransfer.2012.10.080]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  18. Equalization of energy density in boiling water reactors (as exemplified by WB-50). Development and testing of WB -50 computational model on the basis of MCU-RR code

    NASA Astrophysics Data System (ADS)

    Chertkov, Yu B.; Disyuk, V. V.; Pimenov, E. Yu; Aksenova, N. V.

    2017-01-01

    Within the framework of research in possibility and prospects of power density equalization in boiling water reactors (as exemplified by WB-50) a work was undertaken to improve prior computational model of the WB-50 reactor implemented in MCU-RR software. Analysis of prior works showed that critical state calculations have deviation of calculated reactivity exceeding ±0.3 % (ΔKef/Kef) for minimum concentrations of boric acid in the reactor water and reaching 2 % for maximum concentration values. Axial coefficient of nonuniform burnup distribution reaches high values in the WB-50 reactor. Thus, the computational model needed refinement to take into account burnup inhomogeneity along the fuel assembly height. At this stage, computational results with mean square deviation of less than 0.7 % (ΔKef/Kef) and dispersion of design values of ±1 % (ΔK/K) shall be deemed acceptable. Further lowering of these parameters apparently requires root cause analysis of such large values and paying more attention to experimental measurement techniques.

  19. Science at Home: Measuring a Thermophysical Property of Water with a Microwave Oven

    PubMed Central

    Levine, Zachary H.

    2018-01-01

    A measurement of a thermophysical property of water is made using items found in the author’s home. Specifically, the ratio of the energy required to heat water from the melting point to boiling to the energy required to completely boil away the water is found to be 5.7. This may be compared to the standard value of 5.5. The close agreement is not representative of the actual uncertainties in this simple experiment. Heating water in a microwave oven can let a student apply the techniques of quantitative science based on questions generated by his or her scientific curiosity. PMID:29542737

  20. Estimation of boiling points using density functional theory with polarized continuum model solvent corrections.

    PubMed

    Chan, Poh Yin; Tong, Chi Ming; Durrant, Marcus C

    2011-09-01

    An empirical method for estimation of the boiling points of organic molecules based on density functional theory (DFT) calculations with polarized continuum model (PCM) solvent corrections has been developed. The boiling points are calculated as the sum of three contributions. The first term is calculated directly from the structural formula of the molecule, and is related to its effective surface area. The second is a measure of the electronic interactions between molecules, based on the DFT-PCM solvation energy, and the third is employed only for planar aromatic molecules. The method is applicable to a very diverse range of organic molecules, with normal boiling points in the range of -50 to 500 °C, and includes ten different elements (C, H, Br, Cl, F, N, O, P, S and Si). Plots of observed versus calculated boiling points gave R²=0.980 for a training set of 317 molecules, and R²=0.979 for a test set of 74 molecules. The role of intramolecular hydrogen bonding in lowering the boiling points of certain molecules is quantitatively discussed. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  1. Transition from Pool to Flow Boiling: The Effect of Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Dhir, Vijay K.

    2004-01-01

    Applications of boiling heat transfer in space can be found in the areas of thermal management, fluid handling and control, power systems, on-orbit storage and supply systems for cryogenic propellants and life support fluids, and for cooling of electronic packages for power systems associated with various instrumentation and control systems. Recent interest in exploration of Mars and other planets, and the concepts of in-situ resource utiliLation on Mars highlights the need to understand the effect of gravity on boiling heat transfer at gravity levels varying from 1>= g/g(sub e) >=10(exp -6). The objective of the proposed work was to develop a mechanistic understanding of nucleate boiling and critical heat flux under low and micro-gravity conditions when the velocity of the imposed flow is small. For pool boiling, the effect of reduced gravity is to stretch both the length scale as well as the time scale for the boiling process. At high flow velocities, the inertia of the liquid determines the time and the length scales and as such the gravitational acceleration plays little role. However, at low velocities and at low gravity levels both liquid inertia and buoyancy are of equal importance. At present, we have little understanding of the interacting roles of gravity and liquid inertia on the nucleate boiling process. Little data that has been reported in the literature does not have much practical value in that it can not serve as a basis for design of heat exchange components to be used in space. Both experimental and complete numerical simulations of the low velocity, low-gravity nucleate boiling process were carried out. A building block type of approach was used in that first the growth and detachment process of a single bubble and flow and heat transfer associated with the sliding motion of the bubble over the heater surface after detachment was studied. Liquid subcooling and flow velocity were varied parametrically. The experiments were conducted at 1 g(sub e

  2. Kinetics-based phase change approach for VOF method applied to boiling flow

    NASA Astrophysics Data System (ADS)

    Cifani, Paolo; Geurts, Bernard; Kuerten, Hans

    2014-11-01

    Direct numerical simulations of boiling flows are performed to better understand the interaction of boiling phenomena with turbulence. The multiphase flow is simulated by solving a single set of equations for the whole flow field according to the one-fluid formulation, using a VOF interface capturing method. Interface terms, related to surface tension, interphase mass transfer and latent heat, are added at the phase boundary. The mass transfer rate across the interface is derived from kinetic theory and subsequently coupled with the continuum representation of the flow field. The numerical model was implemented in OpenFOAM and validated against 3 cases: evaporation of a spherical uniformly heated droplet, growth of a spherical bubble in a superheated liquid and two dimensional film boiling. The computational model will be used to investigate the change in turbulence intensity in a fully developed channel flow due to interaction with boiling heat and mass transfer. In particular, we will focus on the influence of the vapor bubble volume fraction on enhancing heat and mass transfer. Furthermore, we will investigate kinetic energy spectra in order to identify the dynamics associated with the wakes of vapor bubbles. Department of Applied Mathematics, 7500 AE Enschede, NL.

  3. The effect of post-mortem ageing and heating on water retention in bovine muscles.

    PubMed

    Kołczak, Tadeusz; Krzysztoforski, Krzysztof; Palka, Krystyna

    2007-04-01

    The muscles semitendinosus (ST) and psoas major (PM) were removed from chilled young bull carcasses 24h after slaughter and stored at 4°C. At the 1st, 6th and 12th day of post-mortem ageing the chemical composition (moisture, fat, protein, collagen) and contents of free, immobilized and unfreezable water in the muscles were estimated. The muscle steaks were boiled at 100°C, roasted at 170°C or fried at 160°C to an internal temperature of 75°C, and the amounts of total, free, immobilized, and unfreezable water in heated muscles were evaluated. The unfreezable water was estimated by DSC. In the raw muscles immobilized water constituted 74-75%, free water 16.6-17.6% and unfreezable water 7-8% of the total water. Independent of time of ageing, PM muscle contained significantly more free water than ST muscle. During post-mortem ageing, changes in free, immobilized and unfreezable water in muscles were not significant. The level of free water was highest in boiled and least in fried meat, however the amount of immobilized water was highest in fried and lowest in boiled meat. The amount of unfreezable water in muscles heated after 12 days of post-mortem ageing decreased.

  4. Nucleate Pool Boiling Performance of Smooth and Finned Tube Bundles in R-113 and R-114/Oil Mixtures

    DTIC Science & Technology

    1989-06-01

    tfilm Film thermodynamic temperature (K) Tfilm Film Celcius temperature (C) Tldl Liquid temperature (C) Tld2 Liquid temperature (C) Tn Tube wall local...surface immersed in a pool of saturated liquid is the most thoroughly studied boiling heat-transfer mechanism, when compared to partial film boiling and... film boiling. Figure 2.1 shows the characteristic boiling curve of a heated surface immersed in a froon. As the surface is heated up, heat is

  5. Prediction of boiling points of organic compounds by QSPR tools.

    PubMed

    Dai, Yi-min; Zhu, Zhi-ping; Cao, Zhong; Zhang, Yue-fei; Zeng, Ju-lan; Li, Xun

    2013-07-01

    The novel electro-negativity topological descriptors of YC, WC were derived from molecular structure by equilibrium electro-negativity of atom and relative bond length of molecule. The quantitative structure-property relationships (QSPR) between descriptors of YC, WC as well as path number parameter P3 and the normal boiling points of 80 alkanes, 65 unsaturated hydrocarbons and 70 alcohols were obtained separately. The high-quality prediction models were evidenced by coefficient of determination (R(2)), the standard error (S), average absolute errors (AAE) and predictive parameters (Qext(2),RCV(2),Rm(2)). According to the regression equations, the influences of the length of carbon backbone, the size, the degree of branching of a molecule and the role of functional groups on the normal boiling point were analyzed. Comparison results with reference models demonstrated that novel topological descriptors based on the equilibrium electro-negativity of atom and the relative bond length were useful molecular descriptors for predicting the normal boiling points of organic compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. A Study of Nucleate Boiling with Forced Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1996-01-01

    Boiling is a rather imprecise term applied to the process of evaporation in which the rate of liquid-vapor phase change is large. In seeking to determine the role and significance of body forces on the process, of which buoyancy or gravity is just one agent, it becomes necessary to define the term more precisely. It is generally characterized by the formation and growth of individual vapor bubbles arising from heat transfer to the liquid, either at a solid/liquid or liquid/liquid interface, or volumetrically. The terms 'bubble' boiling and 'nucleate' boiling are frequently used, in recognition of the interactions of surface tension and other forces in producing discrete bubbles at distinctive locations (although not always). Primary considerations are that evaporation can occur only at existing liquid-vapor interfaces, so that attention must be given to the formation of an interface (the nucleation process), and that the latent heat for this evaporation can come only from the superheated liquid, so that attention must also be given to the temperature distributions in the liquid.

  7. Micro-bubble emission boiling with the cavitation bubble blow pit

    PubMed Central

    Inada, Shigeaki; Shinagawa, Kazuaki; Illias, Suhaimi Bin; Sumiya, Hiroyuki; Jalaludin, Helmisyah A.

    2016-01-01

    The miniaturization boiling (micro-bubble emission boiling [MEB]) phenomenon, with a high heat removal capacity that contributes considerably to the cooling of the divertor of the nuclear fusion reactor, was discovered in the early 1980s. Extensive research on MEB has been performed since its discovery. However, the progress of the application has been delayed because the generation mechanism of MEB remains unclear. Reasons for this lack of clarity include the complexity of the phenomenon itself and the high-speed phase change phenomenon in which boiling and condensation are rapidly generated. In addition, a more advanced thermal technique is required to realize the MEB phenomenon at the laboratory scale. To the authors’ knowledge, few studies have discussed the rush mechanism of subcooled liquid to the heating surface, which is critical to elucidating the mechanism behind MEB. This study used photographic images to verify that the cavitation phenomenon spreads to the inside of the superheated liquid on the heating surface and thus clarify the mechanism of MEB. PMID:27628271

  8. Occurrence of thyroid hormone activities in drinking water from eastern China: contributions of phthalate esters.

    PubMed

    Shi, Wei; Hu, Xinxin; Zhang, Fengxian; Hu, Guanjiu; Hao, Yingqun; Zhang, Xiaowei; Liu, Hongling; Wei, Si; Wang, Xinru; Giesy, John P; Yu, Hongxia

    2012-02-07

    Thyroid hormone is essential for the development of humans. However, some synthetic chemicals with thyroid disrupting potentials are detectable in drinking water. This study investigated the presence of thyroid active chemicals and their toxicity potential in drinking water from five cities in eastern China by use of an in vitro CV-1 cell-based reporter gene assay. Waters were examined from several phases of drinking water processing, including source water, finished water from waterworks, tap water, and boiled tap water. To identify the responsible compounds, concentrations and toxic equivalents of a list of phthalate esters were quantitatively determined. None of the extracts exhibited thyroid receptor (TR) agonist activity. Most of the water samples exhibited TR antagonistic activities. None of the boiled water displayed the TR antagonistic activity. Dibutyl phthalate accounted for 84.0-98.1% of the antagonist equivalents in water sources, while diisobutyl phthalate, di-n-octyl phthalate and di-2-ethylhexyl phthalate also contributed. Approximately 90% of phthalate esters and TR antagonistic activities were removable by waterworks treatment processes, including filtration, coagulation, aerobic biodegradation, chlorination, and ozonation. Boiling water effectively removed phthalate esters from tap water. Thus, this process was recommended to local residents to reduce certain potential thyroid related risks through drinking water.

  9. Acoustically enhanced boiling heat transfer on a heated surface containing open microchannels

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas R.; Smith, Marc K.; Glezer, Ari

    2011-11-01

    Acoustic actuation is used to enhance boiling heat transfer on a submerged heated surface containing an array of open microchannels by controlling the formation and evolution of vapor bubbles and inhibiting the instability that leads to film boiling at the critical heat flux. The effect of actuation at millimeter and micrometer scales is investigated with emphasis on the behavior of bubble nucleation, growth, contact-line motion, condensation, and detachment. The results show that microchannels control the location of boiling and reduce the mean surface superheat. In addition, acoustic actuation increases the heat flux at a given surface temperature and leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. Supported by ONR.

  10. Design and test of a compact optics system for the pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Ling, Jerri S.; Laubenthal, James R.

    1990-01-01

    The experiment described seeks to improve the understanding of the fundamental mechanisms that constitute nucleate pool boiling. The vehicle for accomplishing this is an investigation, including tests to be conducted in microgravity and coupled with appropriate analyses, of the heat transfer and vapor bubble dynamics associated with nucleation, bubble growth/collapse and subsequent motion, considering the interrelations between buoyancy, momentum and surface tension which will govern the motion of the vapor and surrounding liquid, as a function of the heating rate at the heat transfer surface and the temperature level and distribution in the bulk liquid. The experiment is designed to be contained within the confines of a Get-Away-Special Canister (GAS Can) installed in the bay of the space shuttle. When the shuttle reaches orbit, the experiment will be turned on and testing will proceed automatically. In the proposed Pool Boiling Experiment a pool of liquid, initially at a precisely defined pressure and temperature, will be subjected to a step imposed heat flux from a semitransparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. Transient measurements of the heater surface and fluid temperatures near the surface will be made, noting especially the conditions at the onset of boiling, along with motion photography of the boiling process in two simultaneous views, from beneath the heating surface and from the side. The conduct of the experiment and the data acquisition will be completely automated and self-contained. For the initial flight, a total of nine tests are proposed, with three levels of heat flux and three levels of subcooling. The design process used in the development and check-out of the compact photographic/optics system for the Pool Boiling Experiment is documented.

  11. Boiling enriches the linear polysulfides and the hydrogen sulfide-releasing activity of garlic.

    PubMed

    Tocmo, Restituto; Wu, Yuchen; Liang, Dong; Fogliano, Vincenzo; Huang, Dejian

    2017-04-15

    Garlic is rich in polysulfides, and some of them can be H 2 S donors. This study was conducted to explore the effect of cooking on garlic's organopolysulfides and H 2 S-releasing activity. Garlic bulbs were crushed and boiled for a period ranging from 3 to 30min and the solvent extracts were analyzed by GC-MS/FID and HPLC. A cell-based assay was used to measure the H 2 S-releasing activity of the extracts. Results showed that the amounts of allyl polysulfides increased in crushed garlic boiled for 6-10min; however, prolonging the thermal treatment to 20 or 30min decreased their concentrations. Data of the H 2 S-releasing activity, expressed as diallyl trisulfide equivalents (DATS-E), parallel this trend, being significantly higher at 6 and 10min boiling. Our results showed enhancement of H 2 S-releasing activity upon moderate boiling, suggesting that shorter cooking time may maximize its health benefits as a dietary source of natural H 2 S donors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Investigation into flow boiling heat transfer in a minichannel with enhanced heating surface

    NASA Astrophysics Data System (ADS)

    Piasecka, Magdalena

    2012-04-01

    The paper presents results of flow boiling in a minichannel of 1.0 mm depth. The heating element for the working fluid (FC-72) that flows along the minichannel is a single-sided enhanced alloy foil made from Haynes-230. Microrecesses were formed on the selected area of the heating foil by laser technology. The observations of the flow structure were carried out through a piece of glass. Simultaneously, owing to the liquid crystal layer placed on the opposite side of the enhanced foil surface, it was possible to measure temperature distribution on the heating wall through another piece of glass. The experimental research has been focused on the transition from single phase forced convection to nucleate boiling, i.e. the zone of boiling incipience and further development of boiling. The objective of the paper is determining of the void fraction for some cross-sections of selected images for increasing heat fluxes supplied to the heating surface. The flow structure photos were processed in Corel graphics software and binarized. The analysis of phase volumes was developed in Techystem Globe software.

  13. A New Theory of Nucleate Pool Boiling in Arbitrary Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Y. A.; Webbon, Bruce W.

    1995-01-01

    Heat transfer rates specific to nucleate pool boiling under various conditions are determined by the dynamics of vapour bubbles that are originated and grow at nucleation sites of a superheated surface. A new dynamic theory of these bubbles has been recently developed on the basis of the thermodynamics of irreversible processes. In contrast to other existing models based on empirically postulated equations for bubble growth and motion, this theory does not contain unwarrantable assumptions, and both the equations are rigorously derived within the framework of a unified approach. The conclusions of the theory are drastically different from those of the conventional models. The bubbles are shown to detach themselves under combined action of buoyancy and a surface tension force that is proven to add to buoyancy in bubble detachment, but not the other way round as is commonly presumed. The theory ensures a sound understanding of a number of so far unexplained phenomena, such as effect caused by gravity level and surface tension on the bubble growth rate and dependence of the bubble characteristics at detachment on the liquid thermophysical parameters and relevant temperature differences. The theoretical predictions are shown to be in a satisfactory qualitative and quantitative agreement with observations. When being applied to heat transfer at nucleate pool boiling, this bubble dynamic theory offers an opportunity to considerably improve the main formulae that are generally used to correlate experimental findings and to design boiling heat removal in various industrial applications. Moreover, the theory makes possible to pose and study a great deal of new problems of essential impact in practice. Two such problems are considered in detail. One problem concerns the development of a principally novel physical model for the first crisis of boiling. This model allows for evaluating critical boiling heat fluxes under various conditions, and in particular at different

  14. Nano-inspired fluidic interactivity for boiling heat transfer: impact and criteria

    PubMed Central

    Kim, Beom Seok; Choi, Geehong; Shin, Sangwoo; Gemming, Thomas; Cho, Hyung Hee

    2016-01-01

    The enhancement of boiling heat transfer, the most powerful energy-transferring technology, will lead to milestones in the development of high-efficiency, next-generation energy systems. Perceiving nano-inspired interface functionalities from their rough morphologies, we demonstrate interface-induced liquid refreshing is essential to improve heat transfer by intrinsically avoiding Leidenfrost phenomenon. High liquid accessibility of hemi-wicking and catalytic nucleation, triggered by the morphological and hydrodynamic peculiarities of nano-inspired interfaces, contribute to the critical heat flux (CHF) and the heat transfer coefficient (HTC). Our experiments show CHF is a function of universal hydrodynamic characteristics involving interfacial liquid accessibility and HTC is improved with a higher probability of smaller nuclei with less superheat. Considering the interface-induced and bulk liquid accessibility at boiling, we discuss functionalizing the interactivity between an interface and a counteracting fluid seeking to create a novel interface, a so-called smart interface, for a breakthrough in boiling and its pragmatic application in energy systems. PMID:27708341

  15. The Gibbs Energy Basis and Construction of Boiling Point Diagrams in Binary Systems

    ERIC Educational Resources Information Center

    Smith, Norman O.

    2004-01-01

    An illustration of how excess Gibbs energies of the components in binary systems can be used to construct boiling point diagrams is given. The underlying causes of the various types of behavior of the systems in terms of intermolecular forces and the method of calculating the coexisting liquid and vapor compositions in boiling point diagrams with…

  16. The use of preservatives consist of green tea, piper betel and potassium sorbate on boiled salted fish processing

    NASA Astrophysics Data System (ADS)

    Ariyani, F.; Hermana, I.; Hidayah, I.

    2018-03-01

    The main problem in boiled salted fish ikan pindang is mucus and mold on the surface of the fish which is produced relatively fast as well as the high level of histamine content especially when scombroid fish species are used as raw material. This study was performed to evaluate the effectiveness of various preservatives to overcome such problems. Three combinations of preservatives P1 (green tea and sorbate), P3 (green tea, piper betel, sorbate), P4 (green tea and piper betel) and P0 (no preservative/control) resulted from the previous study were used in this study. Before being used, the preservatives were tested against deteriorating microorganisms commonly found in boiled salted products, of which the result showed that all microorganisms were inhibited. The preservatives were then applied at three different stages of the process of boiled salted fish, i.e. before boiling, during boiling and after boiling. Sensory attributes and microbial characteristics of the products were then evaluated. The results showed that the performance of all tested preservatives against deteriorating microorganisms was relatively similar. It was also shown that the application before and during boiling performed better.

  17. Science at Home: Measuring a Thermophysical Property of Water with a Microwave Oven

    NASA Astrophysics Data System (ADS)

    Levine, Zachary H.

    2018-02-01

    An attempt to calibrate a conventional oven led to making a measurement of a thermophysical property of water using items found in the author's home. Specifically, the ratio of the energy required to heat water from the melting point to boiling to the energy required to completely boil away the water is found to be 5.7. This may be compared to the standard value of 5.5. The close agreement is not representative of the actual uncertainties in this simple experiment (Fig. 1). Heating water in a microwave oven can let a student apply the techniques of quantitative science based on questions generated by his or her scientific curiosity.

  18. Taking a fresh look at boiling heat transfer on the road to improved nuclear economics and efficiency

    DOE PAGES

    Pointer, William David; Baglietto, Emilio

    2016-05-01

    Here, in the effort to reinvigorate innovation in the way we design, build, and operate the nuclear power generating stations of today and tomorrow, nothing can be taken for granted. Not even the seemingly familiar physics of boiling water. The Consortium for the Advanced Simulation of Light Water Reactors, or CASL, is focused on the deployment of advanced modeling and simulation capabilities to enable the nuclear industry to reduce uncertainties in the prediction of multi-physics phenomena and continue to improve the performance of today’s Light Water Reactors and their fuel. An important part of the CASL mission is the developmentmore » of a next generation thermal hydraulics simulation capability, integrating the history of engineering models based on experimental experience with the computing technology of the future.« less

  19. Study on Fins' Effect of Boiling Flow in Millimeter Channel Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi

    2005-11-01

    Recently, a lot of researches about compact heat exchangers with mini-channels have been carried out with the hope of obtaining a high-efficiency heat transfer, due to the higher ratio of surface area than existing heat exchangers. However, there are many uncertain phenomena in fields such as boiling flow in mini-channels. Thus, in order to understand the boiling flow in mini-channels to design high-efficiency heat exchangers, this work focused on the visualization measurement of boiling flow in a millimeter channel. A transparent acrylic channel (heat exchanger form), high-speed camera (2000 fps at 1024 x 1024 pixels), and halogen lamp (backup light) were used as the visualization system. The channel's depth is 2 mm, width is 30 mm, and length is 400 mm. In preparation for commercial use, two types of channels were experimented on: a fins type and a normal slit type (without fins). The fins are circular cylindrical obstacles (diameter is 5 mm) to promote heat transfer, set in a triangular array (distance between each center point is 10 mm). Especially in this work, boiling flow and heat transfer promotion in the millimeter channel heat exchanger with fins was evaluated using a high-speed camera.

  20. Anti-obesity effects of boiled tuna extract in mice with obesity induced by a high-fat diet.

    PubMed

    Kim, Youngmin; Kwon, Mi-Jin; Choi, Jeong-Wook; Lee, Min-Kyeong; Kim, Chorong; Jung, Jaehun; Aprianita, Heny; Nam, Heesop; Nam, Taek-Jeong

    2016-10-01

    The aim of this study was to examine the anti-obesity effects of boiled tuna extract in C57BL/6N mice with obesity induced by a high-fat diet (HFD). We determined the anti-obesity effects of boiled tuna extract (100, 200, or 400 mg/kg) on the progression of HFD-induced obesity for 10 weeks. The mice were divided into 5 groups as follows: the normal diet (ND) group (n=10); the HFD group (n=10); the mice fed HFD and 100 mg/kg boiled tuna extract group (n=10); those fed a HFD and 200 mg/kg boiled tuna extract group (n=10); and those fed a HFD and 400 mg/kg boiled tuna extract group (n=10). Changes in body weight, fat content, serum lipid levels and lipogenic enzyme levels were measured. The consumption of boiled tuna extract lowered epididymal tissue weight and exerted anti-obesity effects, as reflected by the serum glucose, triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL‑C), low-density lipoprotein cholesterol (LDL-C), insulin and leptin levels. In addition, we demonstrated changes in liver adipogenic- and lipogenic-related protein expression by western blot analysis. Boiled tuna extract downregulated the levels of the CCAAT/enhancer-binding protein α, β and δ (C/EBPα, β, δ), and peroxisome proliferator-activated receptor-γ (PPAR-γ) adipocyte marker genes. Boiled tuna extract also attenuated adipogenic and lipogenic gene expression, namely the levels of fatty acid synthase (FAS), lipoprotein lipase (LPL), acetyl-CoA carboxylase (ACC), glucose transporter type 4 (Glut4) and phosphorylated adenosine monophosphate-activated protein kinase α and β (AMPKα, β) in a dose-dependent manner. Moreover, the consumption of boiled tuna extract restored the levels of superoxide dismutase (SOD), catalase (CAT), glutamic oxaloacetic transaminase (GOT), glutamic-pyruvate transaminase (GPT), aspartate transaminase (AST) and alanine transaminase (ALT) to those of the control group. These results

  1. Raw milk from vending machines: Effects of boiling, microwave treatment, and refrigeration on microbiological quality.

    PubMed

    Tremonte, Patrizio; Tipaldi, Luca; Succi, Mariantonietta; Pannella, Gianfranco; Falasca, Luisa; Capilongo, Valeria; Coppola, Raffaele; Sorrentino, Elena

    2014-01-01

    In Italy, the sale of raw milk from vending machines has been allowed since 2004. Boiling treatment before its use is mandatory for the consumer, because the raw milk could be an important source of foodborne pathogens. This study fits into this context with the aim to evaluate the microbiological quality of 30 raw milk samples periodically collected (March 2013 to July 2013) from 3 vending machines located in Molise, a region of southern Italy. Milk samples were stored for 72 h at 4 °C and then subjected to different treatments, such as boiling and microwaving, to simulate domestic handling. The results show that all the raw milk samples examined immediately after their collection were affected by high microbial loads, with values very close to or even greater than those acceptable by Italian law. The microbial populations increased during refrigeration, reaching after 72 h values of about 8.0 log cfu/mL for Pseudomonas spp., 6.5 log cfu/mL for yeasts, and up to 4.0 log cfu/mL for Enterobacteriaceae. Boiling treatment, applied after 72 h to refrigerated milk samples, caused complete decontamination, but negatively affected the nutritional quality of the milk, as demonstrated by a drastic reduction of whey proteins. The microwave treatment at 900 W for 75 s produced microbiological decontamination similar to that of boiling, preserving the content in whey proteins of milk. The microbiological characteristics of raw milk observed in this study fully justify the obligation to boil the raw milk from vending machines before consumption. However, this study also showed that domestic boiling causes a drastic reduction in the nutritional value of milk. Microwave treatment could represent a good alternative to boiling, on the condition that the process variables are standardized for safe domestic application. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Trihalomethane hydrolysis in drinking water at elevated temperatures.

    PubMed

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F

    2015-07-01

    Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Boiling point measurement of a small amount of brake fluid by thermocouple and its application.

    PubMed

    Mogami, Kazunari

    2002-09-01

    This study describes a new method for measuring the boiling point of a small amount of brake fluid using a thermocouple and a pear shaped flask. The boiling point of brake fluid was directly measured with an accuracy that was within approximately 3 C of that determined by the Japanese Industrial Standards method, even though the sample volume was only a few milliliters. The method was applied to measure the boiling points of brake fluid samples from automobiles. It was clear that the boiling points of brake fluid from some automobiles dropped to approximately 140 C from about 230 C, and that one of the samples from the wheel cylinder was approximately 45 C lower than brake fluid from the reserve tank. It is essential to take samples from the wheel cylinder, as this is most easily subjected to heating.

  4. Effects of boiling on chlorogenic acid and the liver protective effects of its main products against CCl₄-induced toxicity in vitro.

    PubMed

    Kan, Shidong; Cheung, Matt Wan Man; Zhou, Yanling; Ho, Wing Shing

    2014-02-01

    Chlorogenic acid (3-O-caffeoylquinic acid, CA) is the active component in several botanical beverage, vegetables, fruits, and herbal drugs. The effect of water boiling on the bioactivity of CA was studied. CA could be isomerized to 4-O-caffeoylquinic acid (4-O-CA) and 5-O-caffeoylquinic acid (5-O-CA) in decoctive extraction, and each of the isomers occupied about one-third of the total caffeoylquinic acids. A novel method, using water elution of microsphere resin, was used to purify CA and its 2 isomers. The yield of CA, 4-O-CA, and 5-O-CA was 82%, 5.6%, and 50%, with the purity of 98%, 97%, and 99%, respectively. The DPPH radical scavenging assay showed that 4-O-CA, 5-O-CA, and CA exhibited similar activity. However, there was no significant difference between 4-O-CA and 5-O-CA when used against CCl₄-induced toxicity in hepG2 cells. Our studies show that isomerization is the main transformation of CA in boiling, and the decoction could not decrease the anti-oxidant activity of CA. © 2014 Institute of Food Technologists®

  5. Heterogeneous boiling-up of superheated liquid at achievable superheat threshold.

    PubMed

    Ermakov, G V; Lipnyagov, E V; Perminov, S A; Gurashkin, A L

    2009-07-21

    The classical theory of homogeneous nucleation describes well the superheat threshold observed in experiments. It may be assumed therefore that homogeneous boiling-up of a liquid takes place in experiments, and the theory has been verified experimentally well. The streak photography used in this study showed that boiling-up of a superheated liquid at the threshold of the achievable superheat occurs at a limited number of surface fluctuation centers in a vessel, rather than in the bulk as one would expect with homogeneous nucleation. Thus, the homogeneous theory, which rather accurately describes the heterogeneous threshold of the achievable superheat, obviously is not confirmed in experiments.

  6. Influence of Boiling Duration of GCSB-5 on Index Compound Content and Antioxidative and Anti-inflammatory Activity.

    PubMed

    Lee, In-Hee; Chung, Hwa-Jin; Shin, Joon-Shik; Ha, In-Hyuk; Kim, Me-Riong; Koh, Wonil; Lee, Jinho

    2017-01-01

    GCSB-5, an herbal drug composition with an anti-inflammatory effect, is prepared by boiling, which is the most common herbal extraction method in traditional Korean medicine. Several parameters are involved in the process, i.e., extractant type, herb-to-extractant ratio, extraction temperature and pressure, and total boiling time. The aim of this study was to examine the influence of boiling time on index compound amount and the antioxidative and anti-inflammatory activities of GCSB-5. Different samples of GCSB-5 were obtained by decocting for 30, 60, 90, 120, 150, and 240 min. Each sample was tested for hydrogen ion concentration (pH), total soluble solid content (TSSC), marker compound profiles, and antioxidative and anti-inflammatory activity. pH was found to decrease while TSSC increased with extended decoction. Marker compound contents for GCSB-5 (acanthoside D for Acanthopanax sessiliflorus Seem, 20-hydroxyecdysone for Achyranthes japonica Nakai, and pinoresinol diglucoside for Eucommia ulmoides Oliver) remained relatively constant regardless of the length of boiling. Total D-glucose amount increased with longer boiling. The antioxidative and anti-inflammatory potentials of GCSB-5 were not substantially affected by decoction duration. Biological characteristics and marker compound content of GCSB-5 were not altered significantly in prolonged boiling. Longer boiling duration of GCSB-5 did not increase yield in a time-dependent manner, but yields of 210 and 240 min samples were significantly higherHydrogen ion concentration of GCSB-5 samples decreased while total soluble solid content and D-glucose concentration levels increased with boiling durationAlthough concentrations of some index compounds increased with extended boiling duration of GCSB-5, increase was small and not in a direct proportional relationshipAntioxidative and anti-inflammatory properties of GCSB-5 were not substantially affected by decoction duration. Abbreviations used: CAM: Complementary

  7. High-yield exfoliation of tungsten disulphide nanosheets by rational mixing of low-boiling-point solvents

    NASA Astrophysics Data System (ADS)

    Sajedi-Moghaddam, Ali; Saievar-Iranizad, Esmaiel

    2018-01-01

    Developing high-throughput, reliable, and facile approaches for producing atomically thin sheets of transition metal dichalcogenides is of great importance to pave the way for their use in real applications. Here, we report a highly promising route for exfoliating two-dimensional tungsten disulphide sheets by using binary combination of low-boiling-point solvents. Experimental results show significant dependence of exfoliation yield on the type of solvents as well as relative volume fraction of each solvent. The highest yield was found for appropriate combination of isopropanol/water (20 vol% isopropanol and 80 vol% water) which is approximately 7 times higher than that in pure isopropanol and 4 times higher than that in pure water. The dramatic increase in exfoliation yield can be attributed to perfect match between the surface tension of tungsten disulphide and binary solvent system. Furthermore, solvent molecular size also has a profound impact on the exfoliation efficiency, due to the steric repulsion.

  8. Experimental Study of Subcooled Flow Boiling Heat Transfer on a Smooth Surface in Short-Term Microgravity

    NASA Astrophysics Data System (ADS)

    Zhang, Yonghai; Liu, Bin; Zhao, Jianfu; Deng, Yueping; Wei, Jinjia

    2018-06-01

    The flow boiling heat transfer characteristics of subcooled air-dissolved FC-72 on a smooth surface (chip S) were studied in microgravity by utilizing the drop tower facility in Beijing. The heater, with dimensions of 40 × 10 × 0.5 mm3 (length × width × thickness), was combined with two silicon chips with the dimensions of 20 × 10 × 0.5 mm3. High-speed visualization was used to supplement observation in the heat transfer and vapor-liquid two-phase flow characteristics. In the low and moderate heat fluxes region, the flow boiling of chip S at inlet velocity V = 0.5 m/s shows almost the same regulations as that in pool boiling. All the wall temperatures at different positions along the heater in microgravity are slightly lower than that in normal gravity, which indicates slight heat transfer enhancement. However, in the high heat flux region, the pool boiling of chip S shows much evident deterioration of heat transfer compared with that of flow boiling in microgravity. Moreover, the bubbles of flow boiling in microgravity become larger than that in normal gravity due to the lack of buoyancy Although the difference of the void fraction in x-y plain becomes larger with increasing heat flux under different gravity levels, it shows nearly no effect on heat transfer performance except for critical heat flux (CHF). Once the void fraction in y-z plain at the end of the heater equals 1, the vapor blanket will be formed quickly and transmit from downstream to upstream along the heater, and CHF occurs. Thus, the height of channel is an important parameter to determine CHF in microgravity at a fixed velocity. The flow boiling of chip S at inlet velocity V = 0.5 m/s shows higher CHF than that of pool boiling because of the inertia force, and the CHF under microgravity is about 78-92% of that in normal gravity.

  9. Fluid inclusion from drill hole DW-5, Hohi geothermal area, Japan: Evidence of boiling and procedure for estimating CO2 content

    USGS Publications Warehouse

    Sasada, M.; Roedder, E.; Belkin, H.E.

    1986-01-01

    Fluid inclusion studies have been used to derive a model for fluid evolution in the Hohi geothermal area, Japan. Six types of fluid inclusions are found in quartz obtained from the drill core of DW-5 hole. They are: (I) primary liquid-rich with evidence of boiling; (II) primary liquid-rich without evidence of boiling; (III) primary vapor-rich (assumed to have been formed by boiling); (IV) secondary liquid-rich with evidence of boiling; (V) secondary liquid-rich without evidence of boiling; (VI) secondary vapor-rich (assumed to have been formed by boiling). Homogenization temperatures (Th) range between 196 and 347??C and the final melting point of ice (Tm) between -0.2 and -4.3??C. The CO2 content was estimated semiquantitatively to be between 0 and 0.39 wt. % based on the bubble behavior on crushing. NaCl equivalent solid solute salinity of fluid inclusions was determined as being between 0 and 6.8 wt. % after minor correction for CO2 content. Fluid inclusions in quartz provide a record of geothermal activity of early boiling and later cooling. The CO2 contents and homogenization temperatures of fluid inclusions with evidence of boiling generally increase with depth; these changes, and NaCl equivalent solid solute salinity of the fluid can be explained by an adiabatic boiling model for a CO2-bearing low-salinity fluid. Some high-salinity inclusions without CO2 are presumed to have formed by a local boiling process due to a temperature increase or a pressure decrease. The liquid-rich primary and secondary inclusions without evidence of boiling formed during the cooling process. The salinity and CO2 content of these inclusions are lower than those in the boiling fluid at the early stage, probably as a result of admixture with groundwater. ?? 1986.

  10. FILM-30: A Heat Transfer Properties Code for Water Coolant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MARSHALL, THERON D.

    2001-02-01

    A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function ofmore » temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating.« less

  11. Consumers' perception and acceptance of boiled and fermented sausages from strongly boar tainted meat.

    PubMed

    Meier-Dinkel, Lisa; Gertheiss, Jan; Schnäckel, Wolfram; Mörlein, Daniel

    2016-08-01

    Characteristic off-flavours may occur in uncastrated male pigs depending on the accumulation of androstenone and skatole. Feasible processing of strongly tainted carcasses is challenging but gains in importance due to the European ban on piglet castration in 2018. This paper investigates consumers' acceptability of two sausage types: (a) emulsion-type (BOILED) and (b) smoked raw-fermented (FERM). Liking (9 point scales) and flavour perception (check-all-that-apply with both, typical and negatively connoted sensory terms) were evaluated by 120 consumers (within-subject design). Proportion of tainted boar meat (0, 50, 100%) affected overall liking of BOILED, F (2, 238)=23.22, P<.001, but not of FERM sausages, F (2, 238)=0.89, P=.414. Consumers described the flavour of BOILED-100 as strong and sweaty. In conclusion, FERM products seem promising for processing of tainted carcasses whereas formulations must be optimized for BOILED in order to eliminate perceptible off-flavours. Boar taint rejection thresholds may be higher for processed than those suggested for unprocessed meat cuts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point.

    PubMed

    Dearden, John C

    2003-08-01

    Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.

  13. Enhancement of Pool Boiling Heat Transfer and Control of Bubble Motion in Microgravity Using Electric Fields - BCOEL

    NASA Technical Reports Server (NTRS)

    Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Sankaran, Subramanian; Taylor, Al; Julian, Ed; Robinson, Dale; hide

    2001-01-01

    The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from thc heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in space-based applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curvcs for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental appararus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.

  14. Enhancement of Pool Boiling Heat Transfer and Control of Bubble Motion in Microgravity Using Electric Fields (BCOEL)

    NASA Technical Reports Server (NTRS)

    Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Taylor, Al; Julian, Ed; Robinson, Dale; VanZandt, Dave

    2001-01-01

    The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from the heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in spacebased applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curves for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental apparatus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.

  15. Effect of Running Parameters on Flow Boiling Instabilities in Microchannels.

    PubMed

    Zong, Lu-Xiang; Xu, Jin-Liang; Liu, Guo-Hua

    2015-04-01

    Flow boiling instability (FBI) in microchannels is undesirable because they can induce the mechanical vibrations and disturb the heat transfer characteristics. In this study, the synchronous optical visualization experimental system was set up. The pure acetone liquid was used as the working fluid, and the parallel triangle silicon microchannel heat sink was designed as the experimental section. With the heat flux ranging from 0-450 kW/m2 the microchannel demand average pressure drop-heater length (Δp(ave)L) curve for constant low mass flux, and the demand pressure drop-mass flux (Δp(ave)G) curve for constant length on main heater surface were obtained and studied. The effect of heat flux (q = 188.28, 256.00, and 299.87 kW/m2), length of main heater surface (L = 4.5, 6.25, and 8.00 mm), and mass flux (G = 188.97, 283.45, and 377.94 kg/m2s) on pressure drops (Ap) and temperatures at the central point of the main heater surface (Twc) were experimentally studied. The results showed that, heat flux, length of the main heater surface, and mass flux were identified as the important parameters to the boiling instability process. The boiling incipience (TBI) and critical heat flux (CHF) were early induced for the lower mass flux or the main heater surface with longer length. With heat flux increasing, the pressure drops were linearly and slightly decreased in the single liquid region but increased sharply in the two phase flow region, in which the flow boiling instabilities with apparent amplitude and long period were more easily triggered at high heat flux. Moreover, the system pressure was increased with the increase of the heat flux.

  16. Superfund record of decision (EPA region 10): Idaho National Engineering Lab, (USDOE) Operable Unit 26 (Stationary Low-Power Reactor-1 and Boiling Water Reactor Experiment-I Burial Grounds), Idaho Falls, ID, December 1, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-03-01

    This document presents the selected remedial action for the Stationary Low-Power Reactor-1 (SL-1) burial ground, the Boiling Water Reactor Experiment-I (BORAX-I) burial ground, and 10 no action sites in Waste Area Group 5. Actual or threatened releases of hazardous substances from the SL-1 and BORAX-I burial grounds, if not addressed by implementing the response action selected in this Record of Decision, may present a current or potential threat to public health, welfare, or the environment. The 10 no action sites do not present a threat to human health or the environment.

  17. Experimental investigation on the phenomena around the onset nucleate boiling during the impacting of a droplet on the hot surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrakusuma, Windy H., E-mail: windyhm@polban.ac.id; Refrigeration and Airconditioning Department, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ds. Ciwaruga Kotak Pos 1234 Bandung; Deendarlianto,

    2016-06-03

    Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO{sub 2} coating (UVN), and stainless steel with TiO{sub 2} coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussionmore » will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.« less

  18. Determination of the boiling-point distribution by simulated distillation from n-pentane through n-tetratetracontane in 70 to 80 seconds.

    PubMed

    Lubkowitz, Joaquin A; Meneghini, Roberto I

    2002-01-01

    This work presents the carrying out of boiling-point distributions by simulated distillation with direct-column heating rather than oven-column heating. Column-heating rates of 300 degrees C/min are obtained yielding retention times of 73 s for n-tetratetracontane. The calibration curves of the retention time versus the boiling point, in the range of n-pentane to n-tetratetracontane, are identical to those obtained by slower oven-heating rates. The boiling-point distribution of the reference gas oil is compared with that obtained with column oven heating at rates of 15 to 40 degrees C/min. The results show boiling-point distribution values nearly the same (1-2 degrees F) as those obtained with oven column heating from the initial boiling point to 80% distilled off. Slightly higher differences are obtained (3-4 degrees F) for the 80% distillation to final boiling-point interval. Nonetheless, allowed consensus differences are never exceeded. Precision of the boiling-point distributions (expressed as standard deviations) are 0.1-0.3% for the data obtained in the direct column-heating mode.

  19. Experimental investigation on the phenomena around the onset nucleate boiling during the impacting of a droplet on the hot surface

    NASA Astrophysics Data System (ADS)

    Mitrakusuma, Windy H.; Deendarlianto, Kamal, Samsul; Indarto, Nuriyadi, M.

    2016-06-01

    Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO2 coating (UVN), and stainless steel with TiO2 coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussion will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.

  20. Quantifying the Regional Extent and Magnitude of Interbasin Groundwater Flow and Its Role in Climatic Perturbations in Northern New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Stewart-Maddox, Noah

    Interbasin groundwater flow (IGF) occurs when water that is recharged in one watershed or basin discharges into an adjacent watershed or basin. This contributes additional water and solute mass to the receiving watershed complicating water and solute mass-balance estimates. Additionally, IGF can alter the response time of a watershed in two primary ways, where response time is defined as the amount of time it takes for a watershed to respond to some perturbation that causes a change in recharge. First, changes that occur outside the watershed in the contributing watershed can impact process behavior in the receiving watershed. Secondly, the response time of these external perturbations will be longer than the response time of perturbations that occur solely inside the watershed since the flowpath lengths of IGF are much greater than the flowpaths originating solely inside the watershed, thus an integrated response time arises between the watersheds. Changes in land-use and climate are causing changes in groundwater systems throughout the world, especially with respect to groundwater recharge. Understanding the timing and magnitude of these changes is critically important for future management strategies, sustainability, and adaptation. While progress has been made in identifying IGF in the field, it remains extremely difficult to determine the regional (spatial) extent of IGF. Typically, extensive sampling over a large spatial and temporal scale is required to conclusively determine the extent and magnitude of IGF. Unfortunately, high spatial-resolution datasets are not always available in ungauged or mountainous basins. In this thesis, I examine new methods to determine the extent of IGF, and develop a conceptual model that describes the effect of IGF on watershed response times. First, I present a new methodology using mixing models constrained by inverse geochemical modeling to determine the extent and magnitude of IGF in three watersheds (Canjilon, El Rito, and

  1. Water induced sediment levitation enhances downslope transport on Mars.

    PubMed

    Raack, Jan; Conway, Susan J; Herny, Clémence; Balme, Matthew R; Carpy, Sabrina; Patel, Manish R

    2017-10-27

    On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: "levitation" of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought.

  2. RUBI -a Reference mUltiscale Boiling Investigation for the Fluid Science Laboratory

    NASA Astrophysics Data System (ADS)

    Schweizer, Nils; Stelzer, Marco; Schoele-Schulz, Olaf; Picker, Gerold; Ranebo, Hans; Dettmann, Jan; Minster, Olivier; Toth, Balazs; Winter, Josef; Tadrist, Lounes; Stephan, Peter; Grassi, Walter; di Marco, Paolo; Colin, Catherine; Piero Celata, Gian; Thome, John; Kabov, Oleg

    Boiling is a two-phase heat transfer process where large heat fluxes can be transferred with small driving temperature differences. The high performance of boiling makes the process very interesting for heat transfer applications and it is widely used in industry for example in power plants, refrigeration systems, and electronics cooling. Nevertheless, due to the large number of involved phenomena and their often highly dynamic nature a fundamental understanding and closed theoretical description is not yet accomplished. The design of systems incorporating the process is generally based on empirical correlations, which are commonly accompanied by large uncertainties and, thus, has to be verified by expensive test campaigns. Hence, strong efforts are currently made to develop applicable numerical tools for a reliable prediction of the boiling heat transfer performance and limits. In order to support and validate this development and, in particular as a precondition, to enhance the basic knowledge about boiling the comprehensive multi-scale experiment RUBI (Reference mUlti-scale Boiling Investigation) for the Fluid Science Laboratory on board the ISS is currently in preparation. The scientific objectives and requirements of RUBI have been defined by the members of the ESA topical team "Boiling and Multiphase Flow" and addresses fundamental aspects of boiling phenomena. The main objectives are the measurement of wall temperature and heat flux distribution underneath vapour bubbles with high spatial and tem-poral resolution by means of IR thermography accompanied by the synchronized high-speed observation of the bubble shapes. Furthermore, the fluid temperature in the vicinity and inside of the bubbles will be measured by a micro sensor array. Additional stimuli are the generation of an electric field above the heating surface and a shear flow created by a forced convection loop. The objective of these stimuli is to impose forces on the bubbles and investigate the

  3. Exfoliating and Dispersing Few-Layered Graphene in Low-Boiling-Point Organic Solvents towards Solution-Processed Optoelectronic Device Applications.

    PubMed

    Zhang, Lu; Miao, Zhongshuo; Hao, Zhen; Liu, Jun

    2016-05-06

    With normal organic surfactants, graphene can only be dispersed in water and cannot be dispersed in low-boiling-point organic solvents, which hampers its application in solution-processed organic optoelectronic devices. Herein, we report the exfoliation of graphite into graphene in low-boiling-point organic solvents, for example, methanol and acetone, by using edge-carboxylated graphene quantum dots (ECGQD) as the surfactant. The great capability of ECGQD for graphene dispersion is due to its ultralarge π-conjugated unit that allows tight adhesion on the graphene surface through strong π-π interactions, its edge-carboxylated structure that diminishes the steric effects of the oxygen-containing functional groups on the basal plane of ECGQD, and its abundance of carboxylic acid groups for solubility. The graphene dispersion in methanol enables the application of graphene:ECGQD as a cathode interlayer in polymer solar cells (PSCs). Moreover, the PSC device performance of graphene:ECGQD is better than that of Ca, the state-of-the-art cathode interlayer material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Application of reliability-centered maintenance to boiling water reactor emergency core cooling systems fault-tree analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Y.A.; Feltus, M.A.

    1995-07-01

    Reliability-centered maintenance (RCM) methods are applied to boiling water reactor plant-specific emergency core cooling system probabilistic risk assessment (PRA) fault trees. The RCM is a technique that is system function-based, for improving a preventive maintenance (PM) program, which is applied on a component basis. Many PM programs are based on time-directed maintenance tasks, while RCM methods focus on component condition-directed maintenance tasks. Stroke time test data for motor-operated valves (MOVs) are used to address three aspects concerning RCM: (a) to determine if MOV stroke time testing was useful as a condition-directed PM task; (b) to determine and compare the plant-specificmore » MOV failure data from a broad RCM philosophy time period compared with a PM period and, also, compared with generic industry MOV failure data; and (c) to determine the effects and impact of the plant-specific MOV failure data on core damage frequency (CDF) and system unavailabilities for these emergency systems. The MOV stroke time test data from four emergency core cooling systems [i.e., high-pressure coolant injection (HPCI), reactor core isolation cooling (RCIC), low-pressure core spray (LPCS), and residual heat removal/low-pressure coolant injection (RHR/LPCI)] were gathered from Philadelphia Electric Company`s Peach Bottom Atomic Power Station Units 2 and 3 between 1980 and 1992. The analyses showed that MOV stroke time testing was not a predictor for eminent failure and should be considered as a go/no-go test. The failure data from the broad RCM philosophy showed an improvement compared with the PM-period failure rates in the emergency core cooling system MOVs. Also, the plant-specific MOV failure rates for both maintenance philosophies were shown to be lower than the generic industry estimates.« less

  5. System of closing relations of a two-fluid model for the HYDRA-IBRAE/LM/V1 code for calculation of sodium boiling in channels of power equipment

    NASA Astrophysics Data System (ADS)

    Usov, E. V.; Butov, A. A.; Dugarov, G. A.; Kudasov, I. G.; Lezhnin, S. I.; Mosunova, N. A.; Pribaturin, N. A.

    2017-07-01

    The system of equations from a two-fluid model is widely used in modeling thermohydraulic processes during accidents in nuclear reactors. The model includes conservation equations governing the balance of mass, momentum, and energy in each phase of the coolant. The features of heat and mass transfer, as well as of mechanical interaction between phases or with the channel wall, are described by a system of closing relations. Properly verified foreign and Russian codes with a comprehensive system of closing relations are available to predict processes in water coolant. As to the sodium coolant, only a few open publications on this subject are known. A complete system of closing relations used in the HYDRA-IBRAE/LM/V1 thermohydraulic code for calculation of sodium boiling in channels of power equipment is presented. The selection of these relations is corroborated on the basis of results of analysis of available publications with an account taken of the processes occurring in liquid sodium. A comparison with approaches outlined in foreign publications is presented. Particular attention has been given to the calculation of the sodium two-phase flow boiling. The flow regime map and a procedure for the calculation of interfacial friction and heat transfer in a sodium flow with account taken of high conductivity of sodium are described in sufficient detail. Correlations are presented for calculation of heat transfer for a single-phase sodium flow, sodium flow boiling, and sodium flow boiling crisis. A method is proposed for prediction of flow boiling crisis initiation.

  6. Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons.

    PubMed

    Sheeran, Paul S; Luois, Samantha H; Mullin, Lee B; Matsunaga, Terry O; Dayton, Paul A

    2012-04-01

    Recently, an interest has developed in designing biomaterials for medical ultrasonics that can provide the acoustic activity of microbubbles, but with improved stability in vivo and a smaller size distribution for extravascular interrogation. One proposed alternative is the phase-change contrast agent. Phase-change contrast agents (PCCAs) consist of perfluorocarbons (PFCs) that are initially in liquid form, but can then be vaporized with acoustic energy. Crucial parameters for PCCAs include their sensitivity to acoustic energy, their size distribution, and their stability, and this manuscript provides insight into the custom design of PCCAs for balancing these parameters. Specifically, the relationship between size, thermal stability and sensitivity to ultrasound as a function of PFC boiling point and ambient temperature is illustrated. Emulsion stability and sensitivity can be 'tuned' by mixing PFCs in the gaseous state prior to condensation. Novel observations illustrate that stable droplets can be generated from PFCs with extremely low boiling points, such as octafluoropropane (b.p. -36.7 °C), which can be vaporized with acoustic parameters lower than previously observed. Results demonstrate the potential for low boiling point PFCs as a useful new class of compounds for activatable agents, which can be tailored to the desired application. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    PubMed

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  8. Description of saturation curves and boiling process of dry air

    NASA Astrophysics Data System (ADS)

    Vestfálová, Magda; Petříková, Markéta; Šimko, Martin

    2018-06-01

    Air is a mixture of gases forming the gas wrap of Earth. It is formed by dry air, moisture and other pollutants. Dry air is a substance whose thermodynamic properties in gaseous state, as well as the thermodynamic properties of its main constituents in gaseous state, are generally known and described in detail in the literature. The liquid air is a bluish liquid and is industrially used to produce oxygen, nitrogen, argon and helium by distillation. The transition between the gaseous and liquid state (the condensation process, resp. boiling process), is usually displayed in the basic thermodynamic diagrams using the saturation curves. The saturation curves of all pure substances are of a similar shape. However, since the dry air is a mixture, the shapes of its saturation curves are modified relative to the shapes corresponding to the pure substances. This paper deals with the description of the dry air saturation curves as a mixture, i.e. with a description of the process of phase change of dry air (boiling process). The dry air saturation curves are constructed in the basic thermodynamic charts based on the values obtained from the literature. On the basis of diagrams, data appearing in various publications are interpreted and put into context with boiling process of dry air.

  9. Incidence and recurrence of boils and abscesses within the first year: a cohort study in UK primary care

    PubMed Central

    Shallcross, Laura J; Hayward, Andrew C; Johnson, Anne M; Petersen, Irene

    2015-01-01

    Background Boils and abscesses are common in primary care but the burden of recurrent infection is unknown. Aim To investigate the incidence of and risk factors for recurrence of boil or abscess for individuals consulting primary care. Design and setting Cohort study using electronic health records from primary care in the UK. Method The Health Improvement Network (THIN) database was used to identify patients who had consulted their GP for a boil or abscess. Poisson regression was used to examine the relationship between age, sex, social deprivation, and consultation and to calculate the incidence of, and risk factors for, repeat consultation for a boil or abscess. Results Overall, 164 461 individuals were identified who consulted their GP for a boil or abscess between 1995 and 2010. The incidence of first consultation for a boil or abscess was 512 (95% CI = 509 to 515) per 100 000 person-years in females and 387 (95% CI = 385 to 390) per 100 000 person-years in males. First consultations were most frequent in younger age groups (16–34 years) and those with the greatest levels of social deprivation. The rate of repeat consultation for a new infection during follow up was 107.5 (95% confidence interval [CI] = 105.6 to 109.4) per 1000 person-years. Obesity (relative risk [RR] 1.3, 95% CI = 1.2 to 1.3), diabetes (RR 1.3, 95% CI = 1.2 to 1.3), smoking (RR 1.3, 95% CI = 1.2 to 1.4), age <30 years (RR 1.2, 95% CI = 1.2 to 1.3), and prior antibiotic use (RR 1.4, 95% CI = 1.3–1.4) were all associated with repeat consultation for a boil or abscess. Conclusion Ten percent of patients with a boil or abscess develop a repeat boil or abscess within 12 months. Obesity, diabetes, young age, smoking, and prescription of an antibiotic in the 6 months before initial presentation were independently associated with recurrent infection, and may represent options for prevention. PMID:26412844

  10. Nucleate boiling performance evaluation of cavities at mesoscale level

    DOE PAGES

    Mu, Yu-Tong; Chen, Li; He, Ya-Ling; ...

    2016-09-29

    Nucleate boiling heat transfer (NBHT) from enhanced structures is an effective way to dissipate high heat flux. Here, a 3D multi-relaxation-time (MRT) phase-change lattice Boltzmann method in conjunction with conjugated heat transfer treatment is proposed and then applied to the study of cavities behaviours for nucleation on roughened surfaces for an entire ebullition cycle without introducing any artificial disturbance. The bubble departure diameter, departure frequency and total boiling heat transfer rate are also explored. We demonstrate that the cavity shapes show significant influence on the features of NBHT. The total heat transfer rate increases with the cavity mouth and cavitymore » base area while decreases with the increase in cavity bottom wall thickness. The cavity with low wetting can enhance the heat transfer and improve the bubble release frequency.« less

  11. Development of a fully-consistent reduced order model to study instabilities in boiling water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykin, V.; Demaziere, C.

    2012-07-01

    A simple nonlinear Reduced Order Model to study global, regional and local instabilities in Boiling Water Reactors is described. The ROM consists of three submodels: neutron-kinetic, thermal-hydraulic and heat-transfer models. The neutron-kinetic model allows representing the time evolution of the three first neutron kinetic modes: the fundamental, the first and the second azimuthal modes. The thermal-hydraulic model describes four heated channels in order to correctly simulate out-of-phase behavior. The coupling between the different submodels is performed via both void and Doppler feedback mechanisms. After proper spatial homogenization, the governing equations are discretized in the time-domain. Several modifications, compared to othermore » existing ROMs, have been implemented, and are reported in this paper. One novelty of the ROM is the inclusion of both azimuthal modes, which allows to study combined instabilities (in-phase and out-of-phase), as well as to investigate the corresponding interference effects between them. The second modification concerns the precise estimation of so-called reactivity coefficients or C{sub mn}{sup *V,D} - coefficients by using direct cross-section data from SIMULATE-3 combined with the CORE SIM core simulator in order to calculate Eigenmodes. Furthermore, a non-uniform two-step axial power profile is introduced to simulate the separate heat production in the single and two-phase regions, respectively. An iterative procedure was developed to calculate the solution to the coupled neutron-kinetic/thermal-hydraulic static problem prior to solving the time-dependent problem. Besides, the possibility of taking into account the effect of local instabilities is demonstrated in a simplified manner. The present ROM is applied to the investigation of an actual instability that occurred at the Swedish Forsmark-1 BWR in 1996/1997. The results generated by the ROM are compared with real power plant measurements performed during stability

  12. 8. Innovative Technologies: Two-Phase Heat Transfer in Water-Based Nanofluids for Nuclear Applications Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buongiorno, Jacopo; Hu, Lin-wen

    2009-07-31

    Nanofluids are colloidal dispersions of nanoparticles in water. Many studies have reported very significant enhancement (up to 200%) of the Critical Heat Flux (CHF) in pool boiling of nanofluids (You et al. 2003, Vassallo et al. 2004, Bang and Chang 2005, Kim et al. 2006, Kim et al. 2007). These observations have generated considerable interest in nanofluids as potential coolants for more compact and efficient thermal management systems. Potential Light Water Reactor applications include the primary coolant, safety systems and severe accident management strategies, as reported in other papers (Buongiorno et al. 2008 and 2009). However, the situation of interestmore » in reactor applications is often flow boiling, for which no nanofluid data have been reported so far. In this project we investigated the potential of nanofluids to enhance CHF in flow boiling. Subcooled flow boiling heat transfer and CHF experiments were performed with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (≤ 0.1 % by volume) at atmospheric pressure. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient (HTC) are similar (within ±20%). The HTC increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500, 2000, 2500 kg/m2s) under subcooled conditions. The maximum CHF enhancement was 53%, 53% and 38% for alumina, zinc oxide and diamond, respectively, always obtained at the highest mass flux. A post-mortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during nanofluids boiling. A confocal-microscopy-based examination of the test section revealed that nanoparticles deposition not only changes the number of micro-cavities on the surface, but also the surface wettability. A simple model was used to estimate the ensuing nucleation

  13. Measurement of Key Pool BOiling Parameters in nanofluids for Nuclerar Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, In C; Buongiorno, Jdacopo; Hu, Lin-wen

    Nanofluids, colloidal dispersions of nanoparticles in a base fluid such as water, can afford very significant Critical Heat Flux (CHF) enhancement. Such engineered fluids potentially could be employed in reactors as advanced coolants in safety systems with significant safety and economic advantages. However, a satisfactory explanation of the CHF enhancement mechanism in nanofluids is lacking. To close this gap, we have identified the important boiling parameters to be measured. These are the properties (e.g., density, viscosity, thermal conductivity, specific heat, vaporization enthalpy, surface tension), hydrodynamic parameters (i.e., bubble size, bubble velocity, departure frequency, hot/dry spot dynamics) and surface conditions (i.e.,more » contact angle, nucleation site density). We have also deployed a pool boiling facility in which many such parameters can be measured. The facility is equipped with a thin indium-tin-oxide heater deposited over a sapphire substrate. An infra-red high-speed camera and an optical probe are used to measure the temperature distribution on the heater and the hydrodynamics above the heater, respectively. The first data generated with this facility already provide some clue on the CHF enhancement mechanism in nanofluids. Specifically, the progression to burnout in a pure fluid (ethanol in this case) is characterized by a smoothly-shaped and steadily-expanding hot spot. By contrast, in the ethanol-based nanofluid the hot spot pulsates and the progression to burnout lasts longer, although the nanofluid CHF is higher than the pure fluid CHF. The presence of a nanoparticle deposition layer on the heater surface seems to enhance wettability and aid hot spot dissipation, thus delaying burnout.« less

  14. Impact of different thickness of the smooth heated surface on flow boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Strąk, Kinga; Piasecka, Magdalena

    2018-06-01

    This paper presents a comparison of the performance of three smooth heated surfaces with different thicknesses. Analysis was carried out on an experimental setup for flow boiling heat transfer. The most important element of the setup was the test section with a rectangular minichannel, 1.7 mm deep, 16 mm wide and 180 mm long, oriented vertically. The heated element for the FC-72 Fluorinert flowing in the minichannel was designated as a Haynes-230 alloy plate (0.10 mm and 0.45 mm thick) or a Hastelloy X alloy plate (0.65 mm thick). Infrared thermography was used to measure the temperature of the outer plate surface. The local values of the heat transfer coefficient for stationary state conditions were calculated using a simple one-dimensional method. The experimental results were presented as the relationship between the heat transfer coefficients in the subcooled boiling region and the distance along the minichannel length and boiling curves. The highest local heat transfer coefficients were recorded for the surface of 0.10 mm thick heated plate at the outlet and 0.45 mm thick plate at the minichannel inlet. All boiling curves were typical in shape.

  15. Criteria for approximating certain microgravity flow boiling characteristics in Earth gravity.

    PubMed

    Merte, Herman; Park, Jaeseok; Shultz, William W; Keller, Robert B

    2002-10-01

    The forces governing flow boiling, aside from system pressure, are buoyancy, liquid momentum, interfacial surface tensions, and liquid viscosity. Guidance for approximating certain aspects of the flow boiling process in microgravity can be obtained in Earth gravity research by the imposition of a liquid velocity parallel to a flat heater surface in the inverted position, horizontal, or nearly horizontal, by having buoyancy hold the heated liquid and vapor formed close to the heater surface. Bounds on the velocities of interest are obtained from several dimensionless numbers: a two-phase Richardson number, a two-phase Weber number, and a Bond number. For the fluid used in the experimental work here, liquid velocities in the range U = 5-10cm/sec are judged to be critical for changes in behavior of the flow boiling process. Experimental results are presented for flow boiling heat transfer, concentrating on orientations that provide the largest reductions in buoyancy parallel to the heater surface, varying +/-5 degrees from facing horizontal downward. Results are presented for velocity, orientation, and subcooling effects on nucleation, dryout, and heat transfer. Two different heater surfaces were used: a thin gold film on a polished quartz substrate, acting as a heater and resistance thermometer, and a gold-plated copper heater. Both transient and steady measurements of surface heat flux and superheat were made with the quartz heater; only steady measurements were possible with the copper heater. R-113 was the fluid used; the velocity varied over the interval 4-16cm/sec; bulk liquid subcooling varied over 2-20 degrees C; heat flux varied over 4-8W/cm(2).

  16. 46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a) A...

  17. 46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a) A...

  18. 46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a) A...

  19. 46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a) A...

  20. 46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a) A...

  1. Entropy generation analysis for film boiling: A simple model of quenching

    NASA Astrophysics Data System (ADS)

    Lotfi, Ali; Lakzian, Esmail

    2016-04-01

    In this paper, quenching in high-temperature materials processing is modeled as a superheated isothermal flat plate. In these phenomena, a liquid flows over the highly superheated surfaces for cooling. So the surface and the liquid are separated by the vapor layer that is formed because of the liquid which is in contact with the superheated surface. This is named forced film boiling. As an objective, the distribution of the entropy generation in the laminar forced film boiling is obtained by similarity solution for the first time in the quenching processes. The PDE governing differential equations of the laminar film boiling including continuity, momentum, and energy are reduced to ODE ones, and a dimensionless equation for entropy generation inside the liquid boundary and vapor layer is obtained. Then the ODEs are solved by applying the 4th-order Runge-Kutta method with a shooting procedure. Moreover, the Bejan number is used as a design criterion parameter for a qualitative study about the rate of cooling and the effects of plate speed are studied in the quenching processes. It is observed that for high speed of the plate the rate of cooling (heat transfer) is more.

  2. Specific interface area and self-stirring in a two-liquid system experiencing intense interfacial boiling below the bulk boiling temperatures of both components

    NASA Astrophysics Data System (ADS)

    Goldobin, Denis S.; Pimenova, Anastasiya V.

    2017-04-01

    We present an approach to theoretical assessment of the mean specific interface area (δ S/δ V) for a well-stirred system of two immiscible liquids experiencing interfacial boiling. The assessment is based on the balance of transformations of mechanical energy and the laws of the momentum and heat transfer in the turbulent boundary layer. The theory yields relations between the specific interface area and the characteristics of the system state. In particular, this allows us to derive the equations of self-cooling dynamics of the system in the absence of external heat supply. The results provide possibility for constructing a self-contained mathematical description of the process of interfacial boiling. In this study, we assume the volume fractions of two components to be similar as well as the values of their kinematic viscosity and molecular heat diffusivity.

  3. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound

    PubMed Central

    Canney, Michael S.; Khokhlova, Vera A.; Bessonova, Olga V.; Bailey, Michael R.; Crum, Lawrence A.

    2009-01-01

    Nonlinear propagation causes high intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have previously been investigated and found not to significantly alter high intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm2 was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector, and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared to calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and from measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating due to shock waves is therefore important to HIFU and clinicians should be aware of the potential for very rapid boiling since it alters treatments. PMID:20018433

  4. Preparation of 99mTc-TRODAT-1 with high labeling yield in boiling water bath: a new formulation.

    PubMed

    Erfani, Mostafa; Shafiei, Mohammad

    2014-04-01

    A new formulation for preparation of (99m)Tc-labeled tropane derivative, (99m)Tc-TRODAT-1, which is useful as a potential CNS dopamine transporter imaging agent, was evaluated and characterized. Preparation of (99m)Tc-TRODAT-1 was attained previously by a formulation in which vial has to be autoclaved at 121 °C for 30 min. It is highly desirable to further improve the preparation method by developing a simplified one vial formulation which will be labeled in boiling water bath (95 °C) for 15 min and a high labeling yield will be achieved. A formulation contained 10 μg of TRODAT-1, 20 μg tricine, 40 μg SnCl2 and 20mg manitol was prepared. Labeling was performed at 95 °C for 15 min and radiochemical analysis involved ITLC and HPLC methods. The stability of radioconjugate was checked in the presence of human serum at 37 °C up to 24h. (99m)Tc-TRODAT-1 was prepared with a radiochemical purity of more than 95% and specific activity of 64.3 MBq/nmol. Biodistribution studies of this new formulation in rats revealed similar regional brain distribution as compared with those obtained with the previous preparation in which brain uptake was high in striatum and striatum to cerebellum ratio was high. Requiring no autoclave facility for labeling, this new formulation will significantly improve the using feasibility of this radiopharmaceutical in clinic. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Gravity Effects in Microgap Flow Boiling

    NASA Technical Reports Server (NTRS)

    Robinson, Franklin; Bar-Cohen, Avram

    2017-01-01

    Increasing integration density of electronic components has exacerbated the thermal management challenges facing electronic system developers. The high power, heat flux, and volumetric heat generation of emerging devices are driving the transition from remote cooling, which relies on conduction and spreading, to embedded cooling, which facilitates direct contact between the heat-generating device and coolant flow. Microgap coolers employ the forced flow of dielectric fluids undergoing phase change in a heated channel between devices. While two phase microcoolers are used routinely in ground-based systems, the lack of acceptable models and correlations for microgravity operation has limited their use for spacecraft thermal management. Previous research has revealed that gravitational acceleration plays a diminishing role as the channel diameter shrinks, but there is considerable variation among the proposed gravity-insensitive channel dimensions and minimal research on rectangular ducts. Reliable criteria for achieving gravity-insensitive flow boiling performance would enable spaceflight systems to exploit this powerful thermal management technique and reduce development time and costs through reliance on ground-based testing. In the present effort, the authors have studied the effect of evaporator orientation on flow boiling performance of HFE7100 in a 218 m tall by 13.0 mm wide microgap cooler. Similar heat transfer coefficients and critical heat flux were achieved across five evaporator orientations, indicating that the effect of gravity was negligible.

  6. Effect of boiling and roasting on the fermentation of soybeans into dawadawa (soy-dawadawa).

    PubMed

    Dakwa, Sarah; Sakyi-Dawson, Esther; Diako, Charles; Annan, Nana Takyiwa; Amoa-Awua, Wisdom Kofi

    2005-09-25

    Soybeans which had initially been dehulled by either boiling (boiled/dehulled) or roasting (roasted/dehulled) before peeling, were cooked and fermented into dawadawa, a traditional food condiment. The micropopulation, enzymatic activities, proximate composition, amino acid, and aroma profiles of the two types of soybean dawadawa were evaluated during fermentation. Only minor differences were found in the microbial profiles of the two types of soy-dawadawa. Although boiled/dehulled soy-dawadawa initially had lower microbial counts, it recorded higher counts at the advanced stages of fermentation. Proteolytic and amylolytic Bacillus species including Bacillus subtilis, Bacillus pumilus, Bacillus licheniformis, Bacillus cereus, and Bacillus firmus dominated the micropopulation of the two types of soy-dawadawa with Bacillus subtilis accounting for about 50% of the Bacillus species in all samples. Lactic acid bacteria and yeasts occurred in low numbers in the two types of soy-dawadawa. The proximate composition of the two types of soy-dawadawa were similar, and their contents of moisture and protein increased whilst fat and ash decreased during fermentation. Both types of fermenting soy-dawadawa recorded similar levels of alpha-amylase activity, but boiled/dehulled soy-dawadawa showed slightly higher protease activity. The levels of isoleucine, leucine, lysine, phenylalanine, arginine and proline increased significantly with fermentation time in both types of soy-dawadawa. With respect to differences in their aroma profiles, hexanodecanol, octadecyl acetate, 1,2-dimethyl benzene, tetradecene, (E)-5-eicosene, cyclohexadecane, and hexacosane were found only in the roasted/dehulled samples, whilst 1,2-ethanediol, ethyl acetate, dimethyl disulfide, cyclotetradecane, decene, indole , 2 butyl-octenal, acetophenone, and toluene were found only in the boiled/dehulled samples. A market focus group showed preference for roasted/dehulled soy-dawadawa over boiled/dehulled soy

  7. Skin whitening and anti-corrugation activities of glycoprotein fractions from liquid extracts of boiled sea cucumber.

    PubMed

    Kim, So Jung; Park, So Yun; Hong, Sun-Mee; Kwon, Eun-Hye; Lee, Taek-Kyun

    2016-10-01

    To determine skin whitening and wrinkle improvement efficacy, glycoprotein fractions were extracted from liquid extracts of boiled sea cucumber and their effects on tyrosine and elastase inhibitory activities were assayed. Fractions above and below 50 kDa (>50 kDa and <50 kDa) were extracted via a series of steps involving: boiling, filtering, desalting and freeze drying. Cytotoxicity, skin whitening and wrinkle-removing effects of boiled liquid were determined. Our MTT data showed that neither glycoprotein fraction of boiled liquid induces cellular cytotoxicity up to a concentration of 10 mg/mL treatment of the mouse melanoma cell line, B16F10, with 10 mg/mL >50 kDa enhanced tyrosinase and elastase inhibitory activities by 50.84% and 28.78%, respectively. Correlations of the >50 kDa concentration with tyrosinase inhibitory (R2 = 0.968) and elastase inhibitory (R2 = 0.983) efficacy were significant. >50 kDa glycoprotein fraction isolated from liquid extracts of boiled sea cucumber, which can serve as a functional cosmetic ingredient for whitening and wrinkle improvement of skin. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  8. BOILING HOUSE, INTERIOR, SECOND FLOOR, GARVER CLARIFIER IN FOREGROUND, TOPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, INTERIOR, SECOND FLOOR, GARVER CLARIFIER IN FOREGROUND, TOPS OF LONG TUBE EVAPORATORS IN BACKGROUND. VIEW FROM NORTHWEST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  9. An experimental study of the flow boiling of refrigerant-based nanofluids

    NASA Astrophysics Data System (ADS)

    Kolekar, Rahul Dadasaheb

    The use of nanofluids for various heat transfer applications has been a topic of intense research over the last decade. A number of studies to evaluate the thermophysical properties and single-phase heat transfer behavior of nanofluids have been reported. The current study is focused on the use of nanofluids in flow boiling applications, with CO2 and R134a used as the base refrigerants. CuO nanoparticles 40nm in size, and TiO2 nanoparticles 200nm in size are used to create partially stable CO2-based nanofluids. Stable nanofluids are created in R134a by mixing it with dispersions of surface-treated nanoparticles in polyolester (POE) oil (RL22H and RL68H). The particles (Al 2O3, ZnO, CuO, and ATO) at particle mass fractions from 0.08% to 1.34%, with particle sizes of 20nm and 40nm are coated with polar and non-polar surface treatments. The thermal properties of R134a-based nanofluids are measured. Thermal conductivity shows limited improvements; the largest increase of 13% is observed with CuO nanoparticles. Significant increases in viscosity, as high as 2147%, are observed due to CuO nanoparticles. Only the ATO nanofluid exhibited a decrease in the measured viscosity. Heat transfer coefficients during flow boiling of nanofluids are measured over a range of mass flux from 100 to 1000 kg/m2s, with a heat flux from 5 to 25kW/m2, and vapor quality up to 1. The test section is a smooth copper tube, 6.23mm in diameter and 1.8m in length. Average decreases of 5% and 28% are observed in heat transfer coefficients during flow boiling of CuO/CO2 and TiO2/CO2 nanofluids, respectively. For the R134a-based nanofluids, average decreases in heat transfer during flow boiling at the highest particle mass fraction are 15% and 22% for Al2O3 and ZnO nanoparticles, respectively. CuO nanoparticles exhibit an average decrease of 7% for particle mass fraction of 0.08%. An average increase of 10% is observed with ATO nanoparticles at a 0.22% mass fraction. Heat transfer performance

  10. Lead, cadmium and chromium in raw and boiled portions of Norway lobster.

    PubMed

    Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Abete, Maria Cesarina; Tarasco, Renata; Amorena, Michele

    2014-01-01

    Lead, cadmium and chromium levels were determined in different raw and boiled portions of Norway lobster caught in the central Adriatic Sea (Italy). In raw specimens, the lowest concentrations were always detected in the white meat. Lead and cadmium content in the edible portion never exceeded the maximum levels set by European legislation. The highest cadmium and chromium values (0.47 ± 0.04 and 0.62 ± 0.13 mg/kg wet weight, respectively) were detected in the brown meat, while the highest lead concentrations were found in the exoskeleton (0.21 ± 0.01 mg/kg wet weight). Also, the boiled samples showed the lowest metal levels in the white meat, even if a significant increase (p < 0.01) was found for lead and cadmium compared to the corresponding raw portions. Among metals, chromium showed the highest concentrations in both raw and boiled portions, but up to now, the European legislation did not envisage any limits in seafood.

  11. Evaporation of a sessile water drop and a drop of aqueous salt solution.

    PubMed

    Misyura, S Y

    2017-11-07

    The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.

  12. Contamination of different portions of raw and boiled specimens of Norway lobster by mercury and selenium.

    PubMed

    Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Abete, Maria Cesarina; Gavinelli, Stefania; Amorena, Michele

    2013-11-01

    The aim of this study was to evaluate mercury and selenium distribution in different portions (exoskeleton, white meat and brown meat) of Norway lobster (Nephrops norvegicus). Some samples were also analysed as whole specimens. The same portions were also examined after boiling, in order to observe if this cooking practice could affect mercury and selenium concentrations. The highest mercury concentrations were detected in white meat, exceeding in all cases the maximum levels established by European legislation. The brown meat reported the highest selenium concentrations. In all boiled samples, mercury levels showed a statistically significant increase compared to raw portions. On the contrary, selenium concentrations detected in boiled samples of white meat, brown meat and whole specimen showed a statistically significant decrease compared to the corresponding raw samples. These results indicate that boiling modifies mercury and selenium concentrations. The high mercury levels detected represent a possible risk for consumers, and the publication and diffusion of specific advisories concerning seafood consumption is recommended.

  13. Design, Construction, and Qualification of a Microscale Heater Array for Use in Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Rule, T. D.; Kim, J.; Kalkur, T. S.

    1998-01-01

    Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of wall temperature and heat flux near the wall would add to the database of knowledge which is necessary to understand the mechanisms of nucleate boiling. A heater array has been developed which contains 96 heater elements within a 2.5 mm square area. The temperature of each heater element is held constant by an electronic control system similar to a hot-wire anemometer. The voltage that is being applied to each heater element can be measured and digitized using a high-speed A/D converter, and this digital information can be compiled into a series of heat-flux maps. Information for up to 10,000 heat flux maps can be obtained each second. The heater control system, the A/D system and the heater array construction are described in detail. Results are presented which show that this is an effective method of measuring the local heat flux during nucleate and transition boiling. Heat flux maps are obtained for pool boiling in FC-72 on a horizontal surface. Local heat flux variations are shown to be three to six times larger than variations in the spatially averaged heat flux.

  14. High heat flux burnout in subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Celata, G. P.; Cumo, M.; Mariani, A.

    1995-09-01

    The paper reports the results of an experimental research carried out at the Heat Transfer Division of the Energy Department, C.R. Casaccia, on the thermal hydraulic characterization of subcooled flow boiling CHF under typical conditions of thermonuclear fusion reactors, i.e. high liquid velocity and subcooling. The experiment was carried out exploring the following parameters: channel diameter (from 2.5 to 8.0 mm), heated length (10 and 15 cm), liquid velocity (from 2 to 40 m/s), exit pressure (from atmospheric to 5.0 MPa), inlet temperature (from 30 to 80 °C), channel orientation (vertical and horizontal). A maximum CHF value of 60.6 MW/m2 has been obtained under the following conditions: T in=30°, p=2.5 MPa, u=40 m/s, D=2.5 mm (smooth channel) Turbulence promoters (helically coiled wires) have been employed to further enhance the CHF attainable with subcooled flow boiling. Helically coiled wires allow an increase of 50% of the maximum CHF obtained with smooth channels.

  15. Possible Mechanism for Formation of Nonwettable "Dry Spots" on a Heated Surface during Nucleate Pool Boiling: II. Feedwater Stop Regime

    NASA Astrophysics Data System (ADS)

    Zhukov, Yu. M.; Urtenov, D. S.

    2017-12-01

    The problems of simulation of heterogeneous nucleate pool boiling on a horizontal surface on the ascending branch of the boiling curve from the formation of a steam lens (SL) to the boiling crisis are considered. The proposed hypothesis provides in a number of cases a logically consistent interpretation of experiments and outlines the organizational principle of transferring the wall-liquid-steam system into the regime of nonwettable "dry spot" formation. The model includes the following types of nucleate boiling: (a) cyclic boiling with the contact line reverse to the bubble bottom center and bubble departure from the surface (at low heat flux q and the contact angle θ < 90°); (b) single steam bubble conversion into a steam lens, i.e., local film boiling with the possibility of spreading of a single "dry spot" at the variation of the contact angle θ ≥ 90°, and substantial growth of the departure diameter D d and SL lifetime τd; (c) formation of a single steam cluster of four SLs at a given pressure, the liquid underheating, and the average wall overheating.

  16. Effects of frying and boiling on the formation of heterocyclic amines in braised chicken.

    PubMed

    Yao, Y; Peng, Z Q; Shao, B; Wan, K H; Wang, F L; Zhang, Y W; Li, J K; Hui, T

    2013-11-01

    Braised chicken is a traditional ready-to-eat poultry product produced by frying chicken coated with maltose or honey and then boiling it in a soup that is circularly used. This study examined the effects of the frying time, honey concentration, boiling time, and cycle times of the soup on the formation of heterocyclic amines (HA), a class of mutagenic/carcinogenic compounds generated in heated muscle meat. Nine HA in chicken and recycled soups were analyzed by HPLC with UV and fluorescence detection. 1-Methyl-9H-pyrido[3,4-b]indole (Harman), 9H-pyrido[3,4-b]indole (Norharman), and 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) were detected in most samples, and the amount of each HA increased with the frying or boiling time. Chicken skin was found to have higher HA content than chicken meat. More HA were detected in the soup than in the chicken, in most cases. 2-Amino-3-methylimidazo[4,5-f]quinoline and 2-amino-3,4,8-trimethylimidazoquinoxaline (4,8-DiMeIQx) were also detected in chicken and soup circularly boiled 20 times, and the total amount of HA reached 68.80 and 96.98 ng/g in chicken and soup, respectively.

  17. Thermal Design of Vapor Cooling of Flight Vehicle Structures Using LH2 Boil-Off

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Zoeckler, Joseph

    2015-01-01

    Using hydrogen boil-off vapor to cool the structure of a flight vehicle cryogenic upper stage can reduce heat loads to the stage and increase the usable propellant in the stage or extend the life of the stage. The hydrogen vapor can be used to absorb incoming heat as it increases in temperature before being vented overboard. In theory, the amount of heat leaking into the hydrogen tank from the structure will be reduced if the structure is cooled using the propellant boil-off vapor. However, the amount of boil-off vapor available to be used for cooling and the reduction in heat leak to the propellant tank are dependent to each other. The amount of heat leak reduction to the LH2 tank also depends on the total heat load on the stage and the vapor cooling configurations.

  18. BOILING HOUSE, INTERIOR, SECOND FLOOR, SYRUP TANKS IN RIGHT FOREGROUND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, INTERIOR, SECOND FLOOR, SYRUP TANKS IN RIGHT FOREGROUND, HIGH GRADE VACUUM PANS BEYOND THE SYRUP TANKS. VIEW FROM THE SOUTH - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  19. Flow Boiling Critical Heat Flux in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Zhang, Hui; Hasan, Mohammad M.

    2004-01-01

    This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met

  20. The Influence of a Lower Heated Tube on Nucleate Pool Boiling from a Horizontal Tube

    DTIC Science & Technology

    1992-06-01

    9 C. CONDENSER SECTION .................................... 12 D. COOLING SECTION...lower tube kc thermal conductivity of copper L active boiling tube length Lu non-boiling tube length x Nu Nusselt number p tube outside wall perimeter Pr...teflon endplates. 2. A condenser , assembled using a similar Pyrex-glass tee with aluminum endplates. 3. A reservoir for R- 114 liquid storage. 4. A

  1. Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review

    PubMed Central

    2011-01-01

    Nanofluids (suspensions of nanometer-sized particles in base fluids) have recently been shown to have nucleate boiling critical heat flux (CHF) far superior to that of the pure base fluid. Over the past decade, numerous experimental and analytical studies on the nucleate boiling CHF of nanofluids have been conducted. The purpose of this article is to provide an exhaustive review of these studies. The characteristics of CHF enhancement in nanofluids are systemically presented according to the effects of the primary boiling parameters. Research efforts to identify the effects of nanoparticles underlying irregular enhancement phenomena of CHF in nanofluids are then presented. Also, attempts to explain the physical mechanism based on available CHF theories are described. Finally, future research needs are identified. PMID:21711949

  2. Physico-Chemical and Structural Characteristics of Vegetables Cooked Under Sous-Vide, Cook-Vide, and Conventional Boiling.

    PubMed

    Iborra-Bernad, C; García-Segovia, P; Martínez-Monzó, J

    2015-08-01

    In this paper, physico-chemical and structural properties of cut and cooked purple-flesh potato, green bean pods, and carrots have been studied. Three different cooking methods have been applied: traditional cooking (boiling water at 100 °C), cook-vide (at 80 and 90 °C) and sous-vide (at 80 °C and 90 °C). Similar firmness was obtained in potato applying the same cooking time using traditional cooking (100 °C), and cook-vide and sous-vide at 90 °C, while in green beans and carrots the application of the sous-vide (90 °C) required longer cooking times than cook-vide (90 °C) and traditional cooking (100 °C). Losses in anthocyanins (for purple-flesh potatoes) and ascorbic acid (for green beans) were higher applying traditional cooking. β-Carotene extraction increased in carrots with traditional cooking and cook-vide (P < 0.05). Cryo-SEM micrographs suggested higher swelling pressure of starch in potatoes cells cooked in contact with water, such as traditional cooking and cook-vide. Traditional cooking was the most aggressive treatment in green beans because the secondary walls were reduced compared with sous-vide and cook-vide. Sous-vide preserved organelles in the carrot cells, which could explain the lower extraction of β-carotene compared with cook-vide and traditional cooking. Sous-vide cooking of purple-flesh potato is recommended to maintain its high anthocyanin content. Traditional boiling could be recommended for carrots because increase β-carotenes availability. For green beans, cook-vide, and sous-vide provided products with higher ascorbic acid content. © 2015 Institute of Food Technologists®

  3. Henry`s law constant for selected volatile organic compounds in high-boiling oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poddar, T.K.; Sirkar, K.K.

    Absorption systems are often used to remove and recover organic vapors from process air/gas streams. A high boiling and inert liquid like silicone oil is an excellent absorbent for volatile organic compounds in air. Henry`s law constants of four different volatile organic compounds, namely, acetone, methanol, methylene chloride, and toluene between air and high-boiling oils were determined experimentally by the headspace-GC technique over a temperature range. The Henry`s law constants were fitted as a function of temperature to an equation.

  4. Apparatus for draining lower drywell pool water into suppresion pool in boiling water reactor

    DOEpatents

    Gluntz, Douglas M.

    1996-01-01

    An apparatus which mitigates temperature stratification in the suppression pool water caused by hot water drained into the suppression pool from the lower drywell pool. The outlet of a spillover hole formed in the inner bounding wall of the suppression pool is connected to and in flow communication with one end of piping. The inlet end of the piping is above the water level in the suppression pool. The piping is routed down the vertical downcomer duct and through a hole formed in the thin wall separating the downcomer duct from the suppression pool water. The piping discharge end preferably has an elevation at or near the bottom of the suppression pool and has a location in the horizontal plane which is removed from the point where the piping first emerges on the suppression pool side of the inner bounding wall of the suppression pool. This enables water at the surface of the lower drywell pool to flow into and be discharged at the bottom of the suppression pool.

  5. Analysis of moving surface structures at a laser-induced boiling front

    NASA Astrophysics Data System (ADS)

    Matti, R. S.; Kaplan, A. F. H.

    2014-10-01

    Recently ultra-high speed imaging enabled to observe moving wave patterns on metal melts that experience laser-induced boiling. In laser materials processing a vertical laser-induced boiling front governs processes like keyhole laser welding, laser remote fusion cutting, laser drilling or laser ablation. The observed waves originate from temperature variations that are closely related to the melt topology. For improved understanding of the essential front mechanisms and of the front topology, for the first time a deeper systematic analysis of the wave patterns was carried out. Seven geometrical shapes of bright or dark domains were distinguished and categorized, in particular bright peaks of three kinds and dark valleys, often inclined. Two categories describe special flow patterns at the top and bottom of the front. Dynamic and statistical analysis has revealed that the shapes often combine or separate from one category to another when streaming down the front. The brightness of wave peaks typically fluctuates during 20-50 μs. This variety of thermal wave observations is interpreted with respect to the accompanying surface topology of the melt and in turn for governing local mechanisms like absorption, shadowing, boiling, ablation pressure and melt acceleration. The findings can be of importance for understanding the key process mechanisms and for optimizing laser materials processing.

  6. Determination of the δ2H and δ18O of soil water and water in plant matter; RSIL lab code 1700

    USGS Publications Warehouse

    Revesz, Kinga M.; Buck, Bryan; Coplen, Tyler B.

    2012-01-01

    The purpose of the Reston Stable Isotope Laboratory lab code 1700 is to determine the δ2H/1H), abbreviated as δ2H, and the δ18O/16O), abbreviated as δ18O, of soil water and water in plant matter. This method is based on the observation that water and toluene form an azeotropic mixture at 84.1 °C. This temperature is substantially lower than the boiling points of water (100 °C) and toluene (110 °C), but water and toluene are immiscible at ambient temperature. The water content of a soil or plant is determined by weighing, drying, and reweighing a small amount of sample. Sufficient sample to collect 3 to 5 milliliters of water after distillation is loaded into a distillation flask. Sufficient toluene is added so that the sample is immersed throughout the entire distillation to minimize evaporation of water, which would affect the δ2H and δ18O values. The mixture of sample and toluene is heated in a flask to its boiling point (84.1 °C) so that water from the sample and toluene can distill together into a specially designed collection funnel. The temperature of 84.1 °C is maintained until the water has been quantitatively transferred to the collection funnel, at which time the temperature is raised to the boiling point of the remaining component (toluene, 110 °C). The collection funnel is maintained at ambient temperature so that the sample water and toluene can be separated physically. After separation, the sample water is purified by addition of paraffin wax to the container with the sample water, capping the container, and heating to approximately 60 °C to melt the wax. Trace amounts of toluene will dissolve in the wax, purifying the sample water for isotopic analysis. The isotopic composition of the purified water is then determined by equilibration with gaseous hydrogen or carbon dioxide, followed by dual-inlet isotope-ratio mass spectrometry. Because laser-absorption spectrometry is sensitive to organic compounds, such as trace toluene remaining in

  7. Effects of thermal treatment on halogenated disinfection by-products in drinking water.

    PubMed

    Wu, W W; Benjamin, M M; Korshin, G V

    2001-10-01

    The influence of heating or boiling on the formation and behavior of disinfection by-products (DBPs) was investigated in DBP-spiked reagent water, municipal tap water, and synthetic water containing chlorinated aquatic humic substances. Thermal cleavage of larger halogenated species leads to both formation of smaller chlorinated molecules (including THMs and HAAs) and dechlorination of organics. In parallel with their formation from larger molecules, THMs can be volatilized, and this latter process dominates the change in their concentration when water is boiled. HAAs are not volatile, but they can be destroyed by chemical reactions at elevated temperatures, with the net effect being loss of trihalogenated HAAs and either formation or loss of less chlorinated HAAs. Although other identifiable DBPs can be generated at slightly elevated temperatures, in most cases their concentrations decline dramatically when the solution is heated.

  8. Zero boil-off methods for large-scale liquid hydrogen tanks using integrated refrigeration and storage

    NASA Astrophysics Data System (ADS)

    Notardonato, W. U.; Swanger, A. M.; E Fesmire, J.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multilayer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  9. Zero Boil-Off Methods for Large Scale Liquid Hydrogen Tanks Using Integrated Refrigeration and Storage

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-01-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multi-layer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  10. Bubble Departure from Metal-Graphite Composite Surfaces and Its Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Yang, W-J.; Zhang, Nengli

    2010-01-01

    The formation and growth processes of a bubble in the vicinity of graphite micro-fiber tips on metal-graphite composite boiling surfaces and their effects on boiling behavior are investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the metal matrix in pool boiling. By virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the end of the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each spanning several tips. The necking process of a detaching macro bubble is analyzed. It is revealed that a liquid jet is produced by sudden break-off of the bubble throat. The composite surfaces not only have higher temperatures in micro- and macrolayers but also make higher frequency of the bubble departure, which increase the average heat fluxes in both the bubble growth stage and in the bubble departure period. Based on these analyses, the enhancement mechanism of pool boiling heat transfer on composite surfaces is clearly revealed.

  11. Evaporation of oil-water emulsion drops when heated at high temperature

    NASA Astrophysics Data System (ADS)

    Strizhak, P. A.; Piskunov, M. V.; Kuznetsov, G. V.; Voytkov, I. S.

    2017-10-01

    An experimental study on conditions and main characteristics for high-temperature (more than 700 K) evaporation of oil-water drops is presented. The high-temperature water purification from impurities can be the main practical application of research results. Thus, the heating of drops is implemented by the two typical schemes: on a massive substrate (the heating conditions are similar to those achieved in a heating chamber) and in a flow of the heated air. In the latter case, the heating conditions correspond to those attained while moving water drops with impurities in a counter high-temperature gaseous flow in the process of water purification. Evaporation time as function of heating temperature is presented. The influence of oil product concentration in an emulsion drop on evaporation characteristics is discussed. The conditions for intensive flash boiling of an emulsion drop and its explosive breakup with formation of the fine droplets cloud are pointed out. Heat fluxes required for intensive flash boiling and explosive breakup of a drop with further formation of the fine aerosol are determined in the boundary layer of a drop. The fundamental differences between flash boiling and explosive breakup of an emulsion drop when heated on a substrate and in a flow of the heated air are described. The main prospects for the development of the high-temperature water purification technology are detailed taking into account the fast emulsion drop breakup investigated in the paper.

  12. Investigation on Active Thermal Control Method with Pool Boiling Heat Transfer at Low Pressure

    NASA Astrophysics Data System (ADS)

    Sun, Chuang; Guo, Dong; Wang, Zhengyu; Sun, Fengxian

    2018-06-01

    In order to maintain a desirable temperature level of electronic equipment at low pressure, the thermal control performance with pool boiling heat transfer of water was examined based on experimental measurement. The total setup was designed and performed to accomplish the experiment with the pressure range from 4.5 kPa to 20 kPa and the heat flux between 6 kW/m2 and 20 kW/m2. The chosen material of the heat surface was aluminium alloy and the test cavity had the capability of varying the direction for the heat surface from vertical to horizontal directions. Through this study, the steady and transient temperature of the heat surface at different pressures and directions were obtained. Although the temperature non-uniformity of the heat surface from the centre to the edge could reach 10°C for the aluminium alloy due to the varying pressures, the whole temperature results successfully satisfied with the thermal control requirements for electronic equipment, and the temperature control effect of the vertically oriented direction was better than that of the horizontally oriented direction. Moreover, the behaviour of bubbles generating and detaching from the heat surface was recorded by a high-resolution camera, so as to understand the pool boiling heat transfer mechanism at low-load heat flux. These pictures showed that the bubbles departure diameter becomes larger, and departure frequency was slower at low pressure, in contrast to 1.0 atm.

  13. Chemical Characterization of Simulated Boiling Water Reactor Coolant

    DTIC Science & Technology

    1990-05-01

    33 Table 3. 1: BCCL Sample Block Design Calculations ........................................... 45 Table 5.1: Gas Absorption...cover gas . The cool, degassed pure water is pumped through a regenerative heat exchanger and then through an electric feedwater heater. The feedwater is...POINTS DWCMRHEAT DOWNOMER---EXCHANGER CHEMICAL GAHP INJECTIOIN PUMP SYSTEM COIVER GAS IN-CLIRE SECTION CAGN TANK RECOMBINER! ______ DEMINERALIZER (Cic

  14. Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes.

    PubMed

    Wang, Qingyang; Chen, Renkun

    2018-05-09

    Phase change heat transfer is fundamentally important for thermal energy conversion and management, such as in electronics with power density over 1 kW/cm 2 . The critical heat flux (CHF) of phase change heat transfer, either evaporation or boiling, is limited by vapor flux from the liquid-vapor interface, known as the upper limit of heat flux. This limit could in theory be greater than 1 kW/cm 2 on a planar surface, but its experimental realization has remained elusive. Here, we utilized nanoporous membranes to realize a new "thin film boiling" regime that resulted in an unprecedentedly high CHF of over 1.2 kW/cm 2 on a planar surface, which is within a factor of 4 of the theoretical limit, and can be increased to a higher value if mechanical strength of the membranes can be improved (demonstrated with 1.85 kW/cm 2 CHF in this work). The liquid supply is achieved through a simple nanoporous membrane that supports the liquid film where its thickness automatically decreases as heat flux increases. The thin film configuration reduces the conductive thermal resistance, leads to high frequency bubble departure, and provides separate liquid-vapor pathways, therefore significantly enhances the heat transfer. Our work provides a new nanostructuring approach to achieve ultrahigh heat flux in phase change heat transfer and will benefit both theoretical understanding and application in thermal management of high power devices of boiling heat transfer.

  15. Doppler signals observed during high temperature thermal ablation are the result of boiling.

    PubMed

    Nahirnyak, Volodymyr M; Moros, Eduardo G; Novák, Petr; Suzanne Klimberg, V; Shafirstein, Gal

    2010-01-01

    To elucidate the causation mechanism of Spectral Doppler ultrasound signals (DUS) observed during high temperature thermal ablation and evaluate their potential for image-guidance. Sixteen ex vivo ablations were performed in fresh turkey breast muscle, eight with radiofrequency ablation (RFA) devices, and eight with a conductive interstitial thermal therapy (CITT) device. Temperature changes in the ablation zone were measured with thermocouples located at 1 to 10 mm away from the ablation probes. Concomitantly, DUS were recorded using a standard diagnostic ultrasound scanner. Retrospectively, sustained observations of DUS were correlated with measured temperatures. Sustained DUS was arbitrarily defined as the Doppler signals lasting more than 10 s as observed in the diagnostic ultrasound videos captured from the scanner. For RFA experiments, minimum average temperature (T1 +/- SD) at which sustained DUS were observed was 97.2 +/- 7.3 degrees C, while the maximum average temperature (T2 +/- SD) at which DUS were not seen was 74.3 +/- 9.1 degrees C. For CITT ablation, T1 and T2 were 95.7 +/- 5.9 degrees C and 91.6 +/- 7.2 degrees C, respectively. It was also observed, especially during CITT ablation, that temperatures remained relatively constant during Doppler activity. The value of T1 was near the standard boiling point of water (99.61 degrees C) while T2 was below it. Together, T1 and T2 support the conclusion that DUS during high temperature thermal ablation are the result of boiling (phase change). This conclusion is also supported by the nearly constant temperature histories maintained at locations from which DUS emanated.

  16. Experimental study of the structure of vapor phase during boiling of R134a on heat exchange surfaces of heat pump

    NASA Astrophysics Data System (ADS)

    Ustinov, D. A.; Sukhikh, A. A.; Sidenkov, D. V.; Ustinov, V. A.

    2017-10-01

    The heat supply by means of heat pumps is considered now as a rational method of local heating which can lead to economy of primary fuel. At use of low-potential heat, for example, the heat of a ground (5 … 18 °C) or ground waters (8 … 10°C) only small depressing of temperature of these sources (on 3 … 5°C) is possible that demands application of heat exchangers with intensified heatmass transfer surfaces. In thermal laboratory of TOT department the 200 W experimental installation has been developed for research of process of boiling of freon R134a. The principle of action of the installation consists in realisation of reverse thermodynamic cycle and consecutive natural measurement of characteristics of elements of surfaces of heat exchangers of real installations at boiling points of freon from-10°C to +10°C and condensing temperatures from 15°C to 50 °C. The evaporator casing has optical windows for control of process of boiling of freon on ribbed on technology of distorting cut tubes. Temperature measurement in characteristic points of a cycle is provided by copper-constantan thermocouples which by means of ADT are connected to the computer that allows treat results of measurements in a real time mode. The structure of a two-phase flow investigated by means of the optical procedure based on laser technique.

  17. The changes of astaxanthin content and chemical characteristics of tiger prawn (Penaeus monodon) due to processing: boiling, smoking and frying

    NASA Astrophysics Data System (ADS)

    Swastawati, F.

    2018-03-01

    Food processing using high temperatures can cause changes in pigment color and chemical characteristics in food stuffs, including prawn. The aim of this research was to evaluate the changes in pigment and chemical characteristics of tiger prawn caused by boiling, smoking and frying. Ten kg of tiger prawn was boiled, smoked and fried at the temperature of ± 100 °C for ± 10 min. The results showed that boiling, smoking and frying gave a significant effect (P < 0.05) on the astaxanthin pigment, pH, moisture, protein, salt content, Aw and color. The content of astaxanthin pigments in fresh prawn, boiled prawn, smoked prawn and fried prawn was: 132.79 ± 1.5 μg·g-1 82.89 ± 0.92 μg·g-1 78.28 ± 0.1 μg·g-1 and 91.35 ± 2.59 μg·g-1, respectively. The value of °Hue on fresh prawn, boiled prawn, smoked prawn and fried prawn was: 87.85° 52.5° 55.94° and 53.98°. The tiger prawn processed by the smoking method has preferable by panelist rather than processed by boiling and frying.

  18. Impact of Fe powder sintering and soldering in production of porous heating surface on flow boiling heat transfer in minichannels

    NASA Astrophysics Data System (ADS)

    Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga

    2017-10-01

    This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.

  19. Distribution of volatile organic compounds (VOCs) in surface water, soil, and groundwater within a chemical industry park in Eastern China.

    PubMed

    Liu, Benhua; Chen, Liang; Huang, Linxian; Wang, Yongseng; Li, Yuehua

    2015-01-01

    This paper focuses on the distribution of volatile organic compounds (VOCs) in the surface water, soil, and groundwater within a chemical industry park in Eastern China. At least one VOC was detected in each of the 20 sampling sites, and the maximum number of VOCs detected in the surface water, groundwater, and soil were 13, 16, and 14, respectively. Two of the 10 VOCs with elevated concentrations detected in surface water, groundwater, and soil were chloroform and 1,2-dichloroethane. The characteristics of VOCs, which include volatility, boiling point, and solubility, could significantly affect their distribution in surface water, soil, and groundwater. However, due to the direct discharging of chemical industry wastewater into surface water, higher concentrations of VOCs (except chloroform) were detected in surface water than in soil and groundwater. Fortunately, the higher volatility of VOCs prevents the VOCs from impacting groundwater, which helps to maintain a lower concentration of VOCs in the groundwater than in both surface water and soil. This is because pollutants with relatively higher boiling points and lower solubilities have higher detection frequencies in soil, and contaminants with relatively lower boiling points and higher solubilities have higher detection frequencies in water, notably in surface water.

  20. Characterization of laser-tissue interaction processes by low-boiling emitted substances

    NASA Astrophysics Data System (ADS)

    Weigmann, Hans-Juergen; Lademann, Juergen; Serfling, Ulrike; Lehnert, W.; Sterry, Wolfram; Meffert, H.

    1996-01-01

    Main point in this study was the investigation of the gaseous and low-boiling substances produced in the laser plume during cw CO2 laser and XeCl laser irradiation of tissue by gas chromatography (GC)/mass spectrometry. The characteristic emitted amounts of chemicals were determined quantitatively using porcine muscular tissue. The produced components were used to determine the character of the chemical reaction conditions inside the interaction zone. It was found that the temperature, and the water content of the tissue are the main parameter determining kind and amount of the emitted substances. The relative intensity of the GC peak of benzene corresponds to a high temperature inside the interaction area while a relative strong methylbutanal peak is connected with a lower temperature which favors Maillard type reaction products. The water content of the tissue determines the extent of oxidation processes during laser tissue interaction. For that reason the moisture in the tissue is the most important parameter to reduce the emission of harmful chemicals in the laser plume. The same methods of investigation are applicable to characterize the interaction of a controlled and an uncontrolled rf electrosurgery device with tissue. The results obtained with model tissue are in agreement with the situation characteristic in laser surgery.

  1. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila

    1996-01-01

    Boiling is an effective mode of heat transfer since high heat flux levels are possible driven by relatively small temperature differences. The high heat transfer coefficients associated with boiling have made the use of these processes increasingly attractive to aerospace engineering. Applications of this type include compact evaporators in the thermal control of aircraft avionics and spacecraft environments, heat pipes, and use of boiling to cool electronic equipment. In spite of its efficiency, cooling based on liquid-vapor phase change processes has not yet found wide application in aerospace engineering due to specific problems associated with the low gravity environment. After a heated surface has reached the superheat required for the initiation of nucleate boiling, bubbles will start forming at nucleation sites along the solid interface by evaporation of the liquid. Bubbles in contact with the wall will continue growing by this mechanism until they detach. In terrestrial conditions, bubble detachment is determined by the competition between body forces (e.g. buoyancy) and surface tension forces that act to anchor the bubble along the three phase contact line. For a given body force potential and a balance of tensions along the three phase contact line, bubbles must reach a critical size before the body force can cause them to detach from the wall. In a low gravity environment the critical bubble size for detachment is much larger than under terrestrial conditions, since buoyancy is a less effective means of bubble removal. Active techniques of heat transfer enhancement in single phase and phase change processes by utilizing electric fields have been the subject of intensive research during recent years. The field of electrohydrodynamics (EHD) deals with the interactions between electric fields, flow fields and temperature fields. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50 as

  2. A Boiling-Potassium Fluoride Reactor for an Artificial-Gravity NEP Vehicle

    NASA Technical Reports Server (NTRS)

    Sorensen, Kirk; Juhasz, Albert

    2007-01-01

    Several years ago a rotating manned spacecraft employing nuclear-electric propulsion was examined for Mars exploration. The reactor and its power conversion system essentially served as the counter-mass to an inflatable manned module. A solid-core boiling potassium reactor based on the MPRE concept of the 1960s was baselined in that study. This paper proposes the use of a liquid-fluoride reactor, employing direct boiling of potassium in the core, as a means to overcome some of the residual issues with the MPRE reactor concept. Several other improvements to the rotating Mars vehicle are proposed as well, such as Canfield joints to enable the electric engines to track the inertial thrust vector during rotation, and innovative "cold-ion" engine technologies to improve engine performance.

  3. Large outbreaks of Clostridium perfringens food poisoning associated with the consumption of boiled salmon.

    PubMed Central

    Hewitt, J. H.; Begg, N.; Hewish, J.; Rawaf, S.; Stringer, M.; Theodore-Gandi, B.

    1986-01-01

    Five large outbreaks of food poisoning are described in which clinical, epidemiological or laboratory data indicated Clostridium perfringens as the causative organism. The foodstuff common to all incidents was boiled salmon served cold as an hors d 'oeuvre. In all cases the fish had been subject to a long period of cooling or storage between boiling and consumption. It is thought that multiplication of the organism occurred during this time. Recommendations are made for the avoidance of further similar incidents. PMID:2874173

  4. An efficient reliable method to estimate the vaporization enthalpy of pure substances according to the normal boiling temperature and critical properties.

    PubMed

    Mehmandoust, Babak; Sanjari, Ehsan; Vatani, Mostafa

    2014-03-01

    The heat of vaporization of a pure substance at its normal boiling temperature is a very important property in many chemical processes. In this work, a new empirical method was developed to predict vaporization enthalpy of pure substances. This equation is a function of normal boiling temperature, critical temperature, and critical pressure. The presented model is simple to use and provides an improvement over the existing equations for 452 pure substances in wide boiling range. The results showed that the proposed correlation is more accurate than the literature methods for pure substances in a wide boiling range (20.3-722 K).

  5. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.; Smith, Alvin

    1990-01-01

    The use of flow boiling for thermal energy transport is intended to provide an alternative for accommodating higher heat fluxes in commercial space systems. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls, spiral fins, or both spiral fins and a twisted tape; (2) examine the effects of channel diameter and subcooling; and (3) develop an improved reduction analysis and/or suggest possible heat transfer correlation of the present data. Freon-11 is the working fluid. Two-dimensional (circumferential and axial) wall temperature distributions were measured for coolant channels with the above noted internal geometries. The flow regimes which are being studied are: (1) single phase; (2) subcooled flow boiling; and (3) stratified flow boiling. The inside diameter of all test sections is near 1.0 cm. Cicumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a mass velocity of 210 kg/sq m s, an exit pressure of 0.19 MPa (absolute), and an inlet subcooling of 20.8 C. Overall (averaged over the entire channel) heat transfer coefficients were compared for the above channel geometries. This comparison showed that the channel with large pitch spiral fins had higher heat transfer coefficients at all power levels.

  6. Investigation on the heat transfer characteristics during flow boiling of liquefied natural gas in a vertical micro-fin tube

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Shi, Yumei; Chen, Dongsheng

    2014-03-01

    This paper presents an experimental investigation on the heat transfer characteristics of liquefied natural gas flow boiling in a vertical micro-fin tube. The effect of heat flux, mass flux and inlet pressure on the flow boiling heat transfer coefficients was analyzed. The Kim, Koyama, and two kinds of Wellsandt correlations with different Ftp coefficients were used to predict the flow boiling heat transfer coefficients. The predicted results showed that the Koyama correlation was the most accurate over the range of experimental conditions.

  7. Effects of two different domestic boiling practices on the allergenicity of cow's milk proteins.

    PubMed

    Lamberti, Cristina; Baro, Cristina; Giribaldi, Marzia; Napolitano, Lorenzo; Cavallarin, Laura; Giuffrida, Maria Gabriella

    2018-04-01

    The sale of raw drinking milk through automatic dispensers is permitted in some EU member states, but consumers are usually advised to boil the milk before consumption. The present study has been conducted to evaluate the effects of two common domestic boiling techniques on the proteins of raw milk and, in particular, on their potential allergenicity. Native one-dimensional electrophoresis, N-terminal amino acid sequencing and immunoblotting have been used to characterize the protein pattern and to evaluate the possible changes in the allergenic properties of the processed milk. The main result of this investigation is that heating induces the aggregation of β-lactoglobulin in higher-molecular-weight products, while caseins seem to be more resistant to the treatments. β-Lactoglobulin aggregates have been found to be non-immunoreactive with the sera of subjects suffering from cow's milk protein allergy. Domestic boiling modifies the milk protein profile, causing a minor reduction in milk allergenicity. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. The application of the high-speed photography in the experiments of boiling liquid expanding vapor explosions

    NASA Astrophysics Data System (ADS)

    Chen, Sining; Sun, Jinhua; Chen, Dongliang

    2007-01-01

    The liquefied-petroleum gas tank in some failure situations may release its contents, and then a series of hazards with different degrees of severity may occur. The most dangerous accident is the boiling liquid expanding vapor explosion (BLEVE). In this paper, a small-scale experiment was established to experimentally investigate the possible processes that could lead to a BLEVE. As there is some danger in using LPG in the experiments, water was used as the test fluid. The change of pressure and temperature was measured during the experiment. The ejection of the vapor and the sequent two-phase flow were recorded by a high-speed video camera. It was observed that two pressure peaks result after the pressure is released. The vapor was first ejected at a high speed; there was a sudden pressure drop which made the liquid superheated. The superheated liquid then boiled violently causing the liquid contents to swell, and also, the vapor pressure in the tank increased rapidly. The second pressure peak was possibly due to the swell of this two-phase flow which was likely to violently impact the wall of the tank with high speed. The whole evolution of the two-phase flow was recorded through photos captured by the high-speed video camera, and the "two step" BLEVE process was confirmed.

  9. Broadening the interpretive framework of deepwater deposits: 3D characterization of outcrop scale bedforms within supercritical dominated slope deposits of the Fish Creek-Vallecito Basin, Late-Miocene Gulf of California

    NASA Astrophysics Data System (ADS)

    West, L. M.; Steel, R.; Olariu, C.

    2017-12-01

    Study of seafloor bathymetry, numerical and physical modeling, and direct observation of turbidity currents increasingly suggests that sediment gravity flows over moderately steep basin slopes commonly reach Froude supercritical states. However, interpretation of supercritical features in deepwater outcrops remains limited in both quantity and scope, leaving stratigraphic qualities of supercritical deposits poorly understood. Slope turbidites on along steep margins of the early Gulf of California are exposed in seismic scale outcrops of the Late Miocene Lycium Member in the Fish Creek-Vallecito Basin of south-central California where they build 100s m-thick slopes. Measured sections, bedding orientation, and facies descriptions collected both for strike- and dip-oriented sections are combined with photogrammetric to characterize selected bedforms in three-dimensions. Analysis shows upflow accreting stacks of 10s of beds into a variety of bedforms with wavelengths and widths tens to hundreds of meters in scale and heights of 5-15 m. Beds have low-angle sinusoidal to sigmoidal down dip geometries and lens or lobate strike geometries. Bedding facies are dominated by 5-50 cm thick, normally graded, laminated sandstones capped by 1-3 cm bioturbated muds. Sandstones transition into interbedded sandstones and silty mudstones or 1-2 m thick silty mudstones. In places, Present also are incisional, steeply dipping backsets of 0.5-3 m-thick boulder-rich, amalgamated, structureless sandtones with abundant soft sediment deformation. that can transition downflow into arching, thinning, normally-graded sandstones. These bedforms are interpreted here as large-scale, long-lived supercritical deposits that represent preserved antidune and possibly cyclic steps bedforms or as-yet undefined bedforms incorporating by not bound by hydraulic jumps. This characterization provides new understanding of the nature of supercritical deposits and an important framework criteria for recognizing

  10. The causes and circumstances of drinking water incidents impact consumer behaviour: Comparison of a routine versus a natural disaster incident.

    PubMed

    Rundblad, Gabriella; Knapton, Olivia; Hunter, Paul R

    2014-11-18

    When public health is endangered, the general public can only protect themselves if timely messages are received and understood. Previous research has shown that the cause of threats to public health can affect risk perception and behaviours. This study compares compliance to public health advice and consumer behaviour during two "Boil Water" notices issued in the UK due to a routine incident versus a natural disaster incident. A postal questionnaire was sent to 1000 randomly selected households issued a routine "Boil Water" notice. Findings were then compared to a previous study that explored drinking water behaviour during a "Boil Water" notice issued after serious floods. Consumers affected by the routine incident showed a significant preference for official water company information, whereas consumers affected by the natural disaster preferred local information sources. Confusion over which notice was in place was found for both incidents. Non-compliance was significantly higher for the natural disaster (48.3%) than the routine incident (35.4%). For the routine incident, compliance with advice on drinking as well as preparing/cooking food and brushing teeth was positively associated with receiving advice from the local radio, while the opposite was true for those receiving advice from the water company/leaflet through the post; we suggest this may largely be due to confusion over needing boiled tap water for brushing teeth. No associations were found for demographic factors. We conclude that information dissemination plans should be tailored to the circumstances under which the advice is issued. Water companies should seek to educate the general public about water notices and which actions are safe and unsafe during which notice, as well as construct and disseminate clearer advice on brushing teeth and preparing/cooking food.

  11. Net vapor generation point in boiling flow of trichlorotrifluoroethane at high pressures

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Lippert, T. E.

    1973-01-01

    The conditions at which the void in subcooled boiling starts to undergo a rapid increase were studied experimentally. The experiments were performed in a 12.7 x 9.5 mm rectangular channel. Heating was from a 3.2 mm wide strip embedded in one wall. The pressure ranged from 9.45 to 20.7 bar, mass velocity from 600 to 7000 kg/sq m sec, and subcooling from 16 to 67 C. Photographs were used to determine when detached bubbles first appeared in the bulk flow. Measurements of bubble layer thickness along the wall were also made. Results showed that the point of net vapor generation is close to the occurrence of fully-developed boiling.

  12. An efficient reliable method to estimate the vaporization enthalpy of pure substances according to the normal boiling temperature and critical properties

    PubMed Central

    Mehmandoust, Babak; Sanjari, Ehsan; Vatani, Mostafa

    2013-01-01

    The heat of vaporization of a pure substance at its normal boiling temperature is a very important property in many chemical processes. In this work, a new empirical method was developed to predict vaporization enthalpy of pure substances. This equation is a function of normal boiling temperature, critical temperature, and critical pressure. The presented model is simple to use and provides an improvement over the existing equations for 452 pure substances in wide boiling range. The results showed that the proposed correlation is more accurate than the literature methods for pure substances in a wide boiling range (20.3–722 K). PMID:25685493

  13. Does boiling affect the bioaccessibility of selenium from cabbage?

    PubMed

    Funes-Collado, Virginia; Rubio, Roser; López-Sánchez, J Fermín

    2015-08-15

    The bioaccessible selenium species from cabbage were studied using an in vitro physiologically-based extraction test (PBET) which establishes conditions that simulate the gastric and gastrointestinal phases of human digestion. Samples of cabbage (Brassica oleracea) grown in peat fortified with different concentrations of Se(IV) and Se(VI) were analysed, and several enzymes (pepsin, pancreatin and amylase) were used in the PBET. The effect of boiling before extraction was also assayed. Selenium speciation in the PBET extracts was determined using anionic exchange and LC-ICP/MS. The selenocompounds in the extracts were Se(IV), SeMet and, mostly, Se(VI) species. The results show that the activity of the enzymes increased the concentration of the selenocompounds slightly, although the use of amylase had no effect on the results. The PBET showed the concentration of inorganic selenium in the extracts from boiled cabbage decreased as much as 4-fold while the release of SeMet and its concentration increased (up to 6-fold), with respect to raw cabbage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Numerical Modeling of Saturated Boiling in a Heated Tube

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Hartwig, Jason

    2017-01-01

    This paper describes a mathematical formulation and numerical solution of boiling in a heated tube. The mathematical formulation involves a discretization of the tube into a flow network consisting of fluid nodes and branches and a thermal network consisting of solid nodes and conductors. In the fluid network, the mass, momentum and energy conservation equations are solved and in the thermal network, the energy conservation equation of solids is solved. A pressure-based, finite-volume formulation has been used to solve the equations in the fluid network. The system of equations is solved by a hybrid numerical scheme which solves the mass and momentum conservation equations by a simultaneous Newton-Raphson method and the energy conservation equation by a successive substitution method. The fluid network and thermal network are coupled through heat transfer between the solid and fluid nodes which is computed by Chen's correlation of saturated boiling heat transfer. The computer model is developed using the Generalized Fluid System Simulation Program and the numerical predictions are compared with test data.

  15. The effect of vapor polarity and boiling point on breakthrough for binary mixtures on respirator carbon.

    PubMed

    Robbins, C A; Breysse, P N

    1996-08-01

    This research evaluated the effect of the polarity of a second vapor on the adsorption of a polar and a nonpolar vapor using the Wheeler model. To examine the effect of polarity, it was also necessary to observe the effect of component boiling point. The 1% breakthrough time (1% tb), kinetic adsorption capacity (W(e)), and rate constant (kv) of the Wheeler model were determined for vapor challenges on carbon beds for both p-xylene and pyrrole (referred to as test vapors) individually, and in equimolar binary mixtures with the polar and nonpolar vapors toluene, p-fluorotoluene, o-dichlorobenzene, and p-dichlorobenzene (referred to as probe vapors). Probe vapor polarity (0 to 2.5 Debye) did not systematically alter the 1% tb, W(e), or kv of the test vapors. The 1% tb and W(e) for test vapors in binary mixtures can be estimated reasonably well, using the Wheeler model, from single-vapor data (1% tb +/- 30%, W(e) +/- 20%). The test vapor 1% tb depended mainly on total vapor concentration in both single and binary systems. W(e) was proportional to test vapor fractional molar concentration (mole fraction) in mixtures. The kv for p-xylene was significantly different (p < or = 0.001) when compared according to probe boiling point; however, these differences were apparently of limited importance in estimating 1% tb for the range of boiling points tested (111 to 180 degrees C). Although the polarity and boiling point of chemicals in the range tested are not practically important in predicting 1% tb with the Wheeler model, an effect due to probe boiling point is suggested, and tests with chemicals of more widely ranging boiling point are warranted. Since the 1% tb, and thus, respirator service life, depends mainly on total vapor concentration, these data underscore the importance of taking into account the presence of other vapors when estimating respirator service life for a vapor in a mixture.

  16. Flow Boiling and Condensation Experiment (FBCE) for the International Space Station

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Hasan, Mohammad M.; Kharangate, Chirag; O'Neill, Lucas; Konishi, Chris; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey

    2015-01-01

    The proposed research aims to develop an integrated two-phase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.

  17. Boiling Heat Transfer Measurements on Highly Conductive Surfaces Using Microscale Heater and Temperature Arrays

    NASA Technical Reports Server (NTRS)

    Kim, J.; Bae, S. W.; Whitten, M. W.; Mullen, J. D.; Quine, R. W.; Kalkur, T. S.

    1999-01-01

    Two systems have been developed to study boiling heat transfer on the microscale. The first system utilizes a 32 x 32 array of diodes to measure the local temperature fluctuations during boiling on a silicon wafer heated from below. The second system utilizes an array of 96 microscale heaters each maintained at constant surface temperature using electronic feedback loops. The power required to keep each heater at constant temperature is measured, enabling the local heat transfer coefficient to be determined. Both of these systems as well as some preliminary results are discussed.

  18. Critical heat flux maxima during boiling crisis on textured surfaces

    PubMed Central

    Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K.

    2015-01-01

    Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima. PMID:26346098

  19. Pool boiling from rotating and stationary spheres in liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Cuan, Winston M.; Schwartz, Sidney H.

    1988-01-01

    Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.

  20. Some investigations on the enhancement of boiling heat transfer from planer surface embedded with continuous open tunnels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, A.K.; Das, P.K.; Saha, P.

    2010-11-15

    Boiling heat transfer from a flat surface can be enhanced if continuous open tunnel type structures are embedded in it. Further, improvement of boiling heat transfer from such surfaces has been tried by two separate avenues. At first, inclined tunnels are embedded over the solid surface and an effort is made to optimize the tunnel inclination for boiling heat transfer. Surfaces are manufactured in house with four different inclinations of the tunnels with or without a reentrant circular pocket at the end of the tunnel. Experiments conducted in the nucleate boiling regime showed that 45 deg inclination of the tunnelsmore » for both with and without base geometry provides the highest heat transfer coefficient. Next, active fluid rotation was imposed to enhance the heat transfer from tunnel type surfaces with and without the base geometry. Rotational speed imparted by mechanical stirrer was varied over a wide range. It was observed that fluid rotation enhances the heat transfer coefficient only up to a certain value of stirrer speed. Rotational speed values, beyond this limit, reduce the boiling heat transfer severely. A comparison shows that embedding continuous tunnel turns out to be a better option for the increase of heat transfer coefficient compared to the imposition of fluid rotation. But the behavior of inclined tunnels under the action of fluid rotation is yet to be established and can be treated as a future scope of the work. (author)« less

  1. Ingestion Exposure to Nitrosamines in Chlorinated Drinking Water

    PubMed Central

    Han, Kichan

    2011-01-01

    Objectives N-Nitrosodimethylamine (NDMA) is classified as a probable human carcinogen by the United States Environmental Protection Agency (US EPA) and is formed during the chlorination of municipal drinking water. In this study, selected nitrosamines were measured in chlorinated drinking water collected from Chuncheon, Kangwon-do, Republic of Korea, and a risk assessment for NDMA was conducted. Methods Twelve water samples were collected from 2 treatment plants and 10 household taps. Samples were analyzed for 6 nitrosamines via solid-phase extraction cleanup followed by conversion to dansyl derivatives and high-performance liquid chromatography-fluorescence detection (HPLC-FLD). Considering the dietary patterns of Korean people and the concentration change of NDMA by boiling, a carcinogenic risk assessment from ingestion exposure was conducted following the US EPA guidelines. Results NDMA concentrations ranged between 26.1 and 112.0 ng/L. NDMA in water was found to be thermally stable, and thus its concentration at the end of boiling was greater than before thermal treatment owing to the decrease in water volume. The estimated excess lifetime carcinogenic risk exceeded the regulatory baseline risk of 10-5. Conclusions This result suggests that more extensive studies need to be conducted on nitrosamine concentration distributions over the country and the source of relatively high nitrosamine concentrations. PMID:22125764

  2. Enhanced boiling in microchannels due to recirculation induced by repeated saw-toothed cross-sectional geometry

    NASA Astrophysics Data System (ADS)

    Gao, Le; Bhavnani, Sushil H.

    2017-10-01

    A saw-toothed shaped microchannel heat sink is investigated for enhancing flow boiling heat transfer. Tests are conducted at mass fluxes of 444-1776 kg/m2 s and an inlet subcooling of 15 °C. The effects of channel geometry on boiling curves, flow patterns, pressure drops, and heat transfer coefficient are discussed in this letter. It is found that heat transfer performance is enhanced by up to 50% especially at heat flux levels associated with the current generation of microprocessors.

  3. BOILING WATER REACTOR TECHNOLOGY STATUS OF THE ART REPORT. VOLUME II. WATER CHEMISTRY AND CORROSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breden, C.R.

    1963-02-01

    Information concerning the corrosive effects of water in power reactor moderator-coolant systems is presented. The information is based on investigations reported in the unclassified literature believed to be fairly complete to 1959, but less complete since then. The material is presented in sections on water decomposition, water chemistry, materials corrosion, corrosion product deposits, and radioactivity. It is noted that the report is presented as a part of a continuing program in development of less expensive materials for use in reactors. (J.R.D.)

  4. Proposal of experimental setup on boiling two-phase flow on-orbit experiments onboard Japanese experiment module "KIBO"

    NASA Astrophysics Data System (ADS)

    Baba, S.; Sakai, T.; Sawada, K.; Kubota, C.; Wada, Y.; Shinmoto, Y.; Ohta, H.; Asano, H.; Kawanami, O.; Suzuki, K.; Imai, R.; Kawasaki, H.; Fujii, K.; Takayanagi, M.; Yoda, S.

    2011-12-01

    Boiling is one of the efficient modes of heat transfer due to phase change, and is regarded as promising means to be applied for the thermal management systems handling a large amount of waste heat under high heat flux. However, gravity effects on the two-phase flow phenomena and corresponding heat transfer characteristics have not been clarified in detail. The experiments onboard Japanese Experiment Module "KIBO" in International Space Station on boiling two-phase flow under microgravity conditions are proposed to clarify both of heat transfer and flow characteristics under microgravity conditions. To verify the feasibility of ISS experiments on boiling two-phase flow, the Bread Board Model is assembled and its performance and the function of components installed in a test loop are examined.

  5. Research on radiation detectors, boiling transients, and organic lubricants

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The accomplishments of a space projects research facility are presented. The subjects discussed are: (1) a study of radiation resistant semiconductor devices, (2) synthesis of high temperature organic lubricants, (3) departure from phase equilibrium during boiling transients, (4) effects of neutron irradiation on defect state in tungsten, and (5) determination of photon response function of NE-213 liquid scintillation detectors.

  6. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid.

  7. Water System Resiliency: Lessons from Boston's 2010 Water Emergency

    NASA Astrophysics Data System (ADS)

    Phillips, N.; Boston Urban Metabolism Ultra-Ex Team

    2010-12-01

    On May 1, 2010, a ten foot diameter water pipe, the sole pipe supplying potable water to 2.2 million residents of Greater Boston, burst. Categorized as a "catastrophic" leak by the Massachusetts Water Resources Authority, Governor Deval Patrick declared a State of Emergency, mobilizing local, state and federal disaster responses. By May 4, 2010, a boil-water order was lifted after the leak was fixed. This event has provided many lessons about the resiliency of municipal water system infrastructure, the level of human understanding of reliability and vulnerability of resource distribution systems, and the human capacity to adapt in short and longer terms to disturbances in resource distribution systems, and to learn. This talk will use a narrative of the events during May 2010 in Boston to explore the broader question of the nature of resilient resource distribution networks, and describe a heuristic, semi-quantitative model for resilient urban resource distribution networks, including water.

  8. The Influences of Geologic Depositional Environments on Sand Boil Development, Tara Wildlife Lodge Area in Mississippi

    DTIC Science & Technology

    2016-03-01

    ER D C/ G SL T R- 16 -7 The Influences of Geologic Depositional Environments on Sand Boil Development, Tara Wildlife Lodge Area in...client/default. ERDC/GSL TR-16-7 March 2016 The Influences of Geologic Depositional Environments on Sand Boil Development, Tara Wildlife Lodge...Army Corps of Engineers Washington, DC 20314-1000 ERDC/GSL TR-16-7 ii Abstract A comprehensive study of the subsurface geology in the Tara Wildlife

  9. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas consuming equipment must have two fail-closed automatic valves in series. A third valve, designed to fail...

  10. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas consuming equipment must have two fail-closed automatic valves in series. A third valve, designed to fail...

  11. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas consuming equipment must have two fail-closed automatic valves in series. A third valve, designed to fail...

  12. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas consuming equipment must have two fail-closed automatic valves in series. A third valve, designed to fail...

  13. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas consuming equipment must have two fail-closed automatic valves in series. A third valve, designed to fail...

  14. The effect of heating direction on flow boiling heat transfer of R134a in micro-channels

    NASA Astrophysics Data System (ADS)

    Xu, Mingchen; Jia, Li; Dang, Chao; Peng, Qi

    2017-04-01

    This paper presents effects of heating directions on heat transfer performance of R134a flow boiling in micro- channel heat sink. The heat sink has 30 parallel rectangular channels with cross-sectional dimensions of 500μm width 500μm depth and 30mm length. The experimental operation condition ranges of the heat flux and the mass flux were 13.48 to 82.25 W/cm2 and 373.3 to 1244.4 kg/m2s respectively. The vapor quality ranged from 0.07 to 0.93. The heat transfer coefficients of top heating and bottom heating both were up to 25 kW/m2 K. Two dominate transfer mechanisms of nucleate boiling and convection boiling were observed according to boiling curves. The experimental results indicated that the heat transfer coefficient of bottom heating was 13.9% higher than top heating in low heat flux, while in high heat flux, the heat transfer coefficient of bottom heating was 9.9%.higher than the top heating, because bubbles were harder to divorce the heating wall. And a modified correlation was provided to predict heat transfer of top heating.

  15. Four phases of the Flint Water Crisis: Evidence from blood lead levels in children.

    PubMed

    Zahran, Sammy; McElmurry, Shawn P; Sadler, Richard C

    2017-08-01

    The Flint Water Crisis (FWC) is divisible into four phases of child water-lead exposure risk: Phase A) before the switch in water source to the Flint River (our baseline); Phase B) after the switch in water source, but before boil water advisories; Phase C) after boil water advisories, but before the switch back to the baseline water source of the Detroit Water and Sewerage Department (DWSD); and Phase D) after the switch back to DWSD. The objective of this work is to estimate water-lead attributable movements in child blood lead levels (BLLs) that correspond with the four phases in the FWC. With over 21,000 geo-referenced and time-stamped blood lead samples from children in Genesee County drawn from January 01, 2013 to July 19, 2016, we develop a series of quasi-experimental models to identify the causal effect of water-lead exposure on child BLLs in Flint. We find that the switch in water source (transitioning from phase A to B) caused mean BLLs to increase by about 0.5μg/dL, and increased the likelihood of a child presenting with a BLL ≥ 5μg/dL by a factor of 1.91-3.50, implying an additional 561 children exceeding 5μg/dL. We conservatively estimate cohort social costs (through lost earnings alone) of this increase in water-lead exposed children at $65 million, contrasted with expected annual savings of $2 million from switching water source. On the switch from Phase B to C, we find BLLs decreased about 50% from their initial rise following boil water advisories and subsequent water avoidance behaviors by households. Finally, the return to the baseline source water (Phase D) returned child BLLs to pre-FWC levels further implicating water-lead exposure as a causal source of child BLLs throughout the FWC. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Comparison of direct boiling method with commercial kits for extracting fecal microbiome DNA by Illumina sequencing of 16S rRNA tags.

    PubMed

    Peng, Xin; Yu, Ke-Qiang; Deng, Guan-Hua; Jiang, Yun-Xia; Wang, Yu; Zhang, Guo-Xia; Zhou, Hong-Wei

    2013-12-01

    Low cost and high throughput capacity are major advantages of using next generation sequencing (NGS) techniques to determine metagenomic 16S rRNA tag sequences. These methods have significantly changed our view of microorganisms in the fields of human health and environmental science. However, DNA extraction using commercial kits has shortcomings of high cost and time constraint. In the present study, we evaluated the determination of fecal microbiomes using a direct boiling method compared with 5 different commercial extraction methods, e.g., Qiagen and MO BIO kits. Principal coordinate analysis (PCoA) using UniFrac distances and clustering showed that direct boiling of a wide range of feces concentrations gave a similar pattern of bacterial communities as those obtained from most of the commercial kits, with the exception of the MO BIO method. Fecal concentration by boiling method affected the estimation of α-diversity indices, otherwise results were generally comparable between boiling and commercial methods. The operational taxonomic units (OTUs) determined through direct boiling showed highly consistent frequencies with those determined through most of the commercial methods. Even those for the MO BIO kit were also obtained by the direct boiling method with high confidence. The present study suggested that direct boiling could be used to determine the fecal microbiome and using this method would significantly reduce the cost and improve the efficiency of the sample preparation for studying gut microbiome diversity. © 2013 Elsevier B.V. All rights reserved.

  17. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision.

    PubMed

    Gwenzi, Willis; Chaukura, Nhamo; Noubactep, Chicgoua; Mukome, Fungai N D

    2017-07-15

    Approximately 600 million people lack access to safe drinking water, hence achieving Sustainable Development Goal 6 (Ensure availability and sustainable management of water and sanitation for all by 2030) calls for rapid translation of recent research into practical and frugal solutions within the remaining 13 years. Biochars, with excellent capacity to remove several contaminants from aqueous solutions, constitute an untapped technology for drinking water treatment. Biochar water treatment has several potential merits compared to existing low-cost methods (i.e., sand filtration, boiling, solar disinfection, chlorination): (1) biochar is a low-cost and renewable adsorbent made using readily available biomaterials and skills, making it appropriate for low-income communities; (2) existing methods predominantly remove pathogens, but biochars remove chemical, biological and physical contaminants; (3) biochars maintain organoleptic properties of water, while existing methods generate carcinogenic by-products (e.g., chlorination) and/or increase concentrations of chemical contaminants (e.g., boiling). Biochars have co-benefits including provision of clean energy for household heating and cooking, and soil application of spent biochar improves soil quality and crop yields. Integrating biochar into the water and sanitation system transforms linear material flows into looped material cycles, consistent with terra preta sanitation. Lack of design information on biochar water treatment, and environmental and public health risks constrain the biochar technology. Seven hypotheses for future research are highlighted under three themes: (1) design and optimization of biochar water treatment; (2) ecotoxicology and human health risks associated with contaminant transfer along the biochar-soil-food-human pathway, and (3) life cycle analyses of carbon and energy footprints of biochar water treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Investigation of Body Force Effects on Flow Boiling Critical Heat Flux

    NASA Technical Reports Server (NTRS)

    Zhang, Hui; Mudawar, Issam; Hasan, Mohammad M.

    2002-01-01

    The bubble coalescence and interfacial instabilities that are important to modeling critical heat flux (CHF) in reduced-gravity systems can be sensitive to even minute body forces. Understanding these complex phenomena is vital to the design and safe implementation of two-phase thermal management loops proposed for space and planetary-based thermal systems. While reduced gravity conditions cannot be accurately simulated in 1g ground-based experiments, such experiments can help isolate the effects of the various forces (body force, surface tension force and inertia) which influence flow boiling CHF. In this project, the effects of the component of body force perpendicular to a heated wall were examined by conducting 1g flow boiling experiments at different orientations. FC-72 liquid was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface at conditions approaching CHF. High-speed video imaging was employed to capture dominant CHF mechanisms. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed great sensitivity to orientation for flow velocities below 0.2 m/s, where very small CHF values where measured, especially with downflow and downward-facing heated wall orientations. High flow velocities dampened the effects of orientation considerably. Figure I shows representative images for the different CHF regimes. The Wavy Vapor Layer regime was dominant for all high velocities and most orientations, while all other regimes were encountered at low velocities, in the downflow and/or downward-facing heated wall orientations. The Interfacial Lift-off model was modified to predict the effects of orientation on CHF for the dominant Wavy Vapor Layer regime. The photographic study captured a fairly continuous wavy vapor layer travelling along the heated wall while permitting liquid

  19. Boiling heat transfer to LN2 and LH2 - Influence of surface orientation and reduced body forces

    NASA Technical Reports Server (NTRS)

    Merte, H., Jr.; Oker, E.; Littles, J. W.

    1973-01-01

    The quantitative determination of the influence of heater surface orientation and gravity on nucleate pool boiling of liquid nitrogen and liquid hydrogen is described. A transient calorimeter technique, well suited for obtaining pool boiling data under reduced gravity and used earlier by Clark and Merte (1963), was employed after being adapted to flat a surface whose orientation could be varied. The obtained determination results are reviewed.

  20. Life Depends upon Two Kinds of Water

    PubMed Central

    Wiggins, Philippa

    2008-01-01

    Background Many well-documented biochemical processes lack a molecular mechanism. Examples are: how ATP hydrolysis and an enzyme contrive to perform work, such as active transport; how peptides are formed from amino acids and DNA from nucleotides; how proteases cleave peptide bonds, how bone mineralises; how enzymes distinguish between sodium and potassium; how chirality of biopolymers was established prebiotically. Methodology/Principal Findings It is shown that involvement of water in all these processes is mandatory, but the water must be of the simplified configuration in which there are only two strengths of water-water hydrogen bonds, and in which these two types of water coexist as microdomains throughout the liquid temperature range. Since they have different strengths of hydrogen bonds, the microdomains differ in all their physical and chemical properties. Solutes partition asymmetrically, generating osmotic pressure gradients which must be compensated for or abolished. Displacement of the equilibrium between high and low density waters incurs a thermodynamic cost which limits solubility, depresses ionisation of water, drives protein folding and prevents high density water from boiling at its intrinsic boiling point which appears to be below 0°C. Active processes in biochemistry take place in sequential partial reactions, most of which release small amounts of free energy as heat. This ensures that the system is never far from equilibrium so that efficiency is extremely high. Energy transduction is neither possible and nor necessary. Chirality was probably established in prebiotic clays which must have carried stable populations of high density and low density water domains. Bioactive enantiomorphs partition into low density water in which they polymerise spontaneously. Conclusions/Significance The simplified model of water has great explanatory power. PMID:18183287