Sample records for valley biomass power

  1. Biomass power in transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, D.K.

    1996-12-31

    Electricity production from biomass fuel has been hailed in recent years as an environmentally acceptable energy source that delivers on its promise of economically viable renewable energy. A Wall Street Journal article from three years ago proclaimed wood to be {open_quotes}moving ahead of costly solar panels and wind turbines as the leading renewable energy alternative to air-fouling fossils fuels and scary nuclear plants.{close_quotes} Biomass fuel largely means wood; about 90% of biomass generated electricity comes from burning waste wood, the remainder from agricultural wastes. Biomass power now faces an uncertain future. The maturing of the cogeneration and independent power plantmore » market, restructuring of the electric industry, and technological advances with power equipment firing other fuels have placed biomass power in a competitive disadvantage with other power sources.« less

  2. 76 FR 77963 - Oglethorpe Power Corporation; Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... Service Oglethorpe Power Corporation; Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA... construction of a 100 megawatt (MW) biomass plant and related facilities (Proposal) in Warren County, Georgia...

  3. 76 FR 20624 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... DEPARTMENT OF AGRICULTURE Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA. ACTION: Notice of Availability of a Draft...) biomass plant and related facilities (Proposal) in Warren County, Georgia. The purpose of the Proposal is...

  4. Competitiveness of biomass-fueled electrical power plants.

    Treesearch

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; John T. Chmelik

    2000-01-01

    One way countries like the United States can comply with suggested rollbacks in greenhouse gas emissions is by employing power plants fueled with biomass. We examine the competitiveness of biomass-based fuel for electrical power as opposed to coal using a mathematical programming structure. We consider fueling power plants from milling residues, whole trees, logging...

  5. Using airborne lidar as a sampling tool for estimating forest biomass resources in the upper Tanana Valley of interior Alaska

    Treesearch

    Hans-Erik Andersen; Jacob Strunk; Hailemariam Temesgen

    2011-01-01

    Airborne laser scanning, collected in a sampling mode, has the potential to be a valuable tool for estimating the biomass resources available to support bioenergy production in rural communities of interior Alaska. In this study, we present a methodology for estimating forest biomass over a 201,226-ha area (of which 163,913 ha are forested) in the upper Tanana valley...

  6. Evaluation on the Efficiency of Biomass Power Generation Industry in China

    PubMed Central

    Sun, Dong; Guo, Sen

    2014-01-01

    As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China's energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA) method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China. PMID:25093209

  7. EPA RE-Powering America's Lands: Kansas City Municipal Farm Site ₋ Biomass Power Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunsberger, R.; Mosey, G.

    2015-01-01

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing biomass at the Kansas City, Missouri, Municipal Farm site, a group of City-owned properties, is explored. The study that none of the technologies we reviewed--biomass heat, power and CHP--are economically viable options for the Municipal Farms site. However, if the site were to be developed around a future central biomass heating or CHP facility, biomass could be a good option for the site.

  8. Using airborne light detection and ranging as a sampling tool for estimating forest biomass resources in the upper Tanana Valley of interior Alaska

    Treesearch

    Hans-Erik Andersen; Jacob Strunk; Hailemariam Temesgen

    2011-01-01

    Airborne laser scanning, collected in a sampling mode, has the potential to be a valuable tool for estimating the biomass resources available to support bioenergy production in rural communities of interior Alaska. In this study, we present a methodology for estimating forest biomass over a 201,226-ha area (of which 163,913 ha are forested) in the upper Tanana valley...

  9. Logistics, Costs, and GHG Impacts of Utility Scale Cofiring with 20% Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boardman, Richard D.; Cafferty, Kara G.; Nichol, Corrie

    This report presents the results of an evaluation of utility-scale biomass cofiring in large pulverized coal power plants. The purpose of this evaluation is to assess the cost and greenhouse gas reduction benefits of substituting relatively high volumes of biomass in coal. Two scenarios for cofiring up to 20% biomass with coal (on a lower heating value basis) are presented; (1) woody biomass in central Alabama where Southern Pine is currently produced for the wood products and paper industries, and (2) purpose-grown switchgrass in the Ohio River Valley. These examples are representative of regions where renewable biomass growth rates aremore » high in correspondence with major U.S. heartland power production. While these scenarios may provide a realistic reference for comparing the relative benefits of using a high volume of biomass for power production, this evaluation is not intended to be an analysis of policies concerning renewable portfolio standards or the optimal use of biomass for energy production in the U.S.« less

  10. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    NASA Astrophysics Data System (ADS)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  11. Biomass power for rural development. Revised design report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, Edward

    The retrofit of Dunkirk Steam Station to fire biomass fuels is an important part of the Consortium's goal--demonstrating the viability of commercial scale willow energy crop production and conversion to power. The goal for th biomass facilities at Dunkirk is to reliably cofire a combination of wood wastes and willow biomass with coal at approximately 20% by heat input.

  12. Biomass to Liquid Fuels and Electrical Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Steven; McDonald, Timothy; Gallagher, Thomas

    This research program provided data on immediate applicability of forest biomass production and logistics models. Also, the research further developed and optimized fractionation techniques that can be used to separate biomass feedstocks into their basic chemical constituents. Finally, additional research established systematic techniques to determine economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program continued our efforts to educate the next generation of engineers and scientists needed to implement these technologies.

  13. Response of power systems to the San Fernando Valley earthquake of 9 February 1971. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiff, A.J.; Yao, J.T.P.

    1972-01-01

    The impact of the San Fernando Valley earthquake on electric power systems is discussed. Particular attention focused on the following three areas; (1) the effects of an earthquake on the power network in the Western States, (2) the failure of subsystems and components of the power system, and (3) the loss of power to hospitals. The report includes sections on the description and functions of major components of a power network, existing procedures to protect the network, safety devices within the system which influence the network, a summary of the effects of the San Fernando Valley earthquake on the Westernmore » States Power Network, and present efforts to reduce the network vulnerability to faults. Also included in the report are a review of design procedures and practices prior to the San Fernando Valley earthquake and descriptions of types of damage to electrical equipment, dynamic analysis of equipment failures, equipment surviving the San Fernando Valley earthquake and new seismic design specifications. In addition, some observations and insights gained during the study, which are not directly related to power systems are discussed.« less

  14. Drivers of biomass co-firing in U.S. coal-fired power plants

    Treesearch

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth Skog

    2013-01-01

    Substantial knowledge has been generated in the U.S. about the resource base for forest and other residue-derived biomass for bioenergy including co-firing in power plants. However, a lack of understanding regarding power plant-level operations and manager perceptions of drivers of biomass co-firing remains. This study gathered information from U.S. power plant...

  15. Forest biomass supply logistics for a power plant using the discrete-event simulation approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mobini, Mahdi; Sowlati, T.; Sokhansanj, Shahabaddine

    This study investigates the logistics of supplying forest biomass to a potential power plant. Due to the complexities in such a supply logistics system, a simulation model based on the framework of Integrated Biomass Supply Analysis and Logistics (IBSAL) is developed in this study to evaluate the cost of delivered forest biomass, the equilibrium moisture content, and carbon emissions from the logistics operations. The model is applied to a proposed case of 300 MW power plant in Quesnel, BC, Canada. The results show that the biomass demand of the power plant would not be met every year. The weighted averagemore » cost of delivered biomass to the gate of the power plant is about C$ 90 per dry tonne. Estimates of equilibrium moisture content of delivered biomass and CO2 emissions resulted from the processes are also provided.« less

  16. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    PubMed

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. 76 FR 13178 - Wabash Valley Power Association, Inc.; Notice of Petition for Declaratory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... (Formula Rate Tariff) and the related Wholesale Power Supply Contract between WVPA and Northeastern Rural... Power Association, Inc.; Notice of Petition for Declaratory Order Take notice that on March 3, 2011...), Wabash Valley Power Association, Inc. (WVPA) filed a Petition Declaratory Order that finds (i) the...

  18. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation.

    PubMed

    Rohr, Annette C; Campleman, Sharan L; Long, Christopher M; Peterson, Michael K; Weatherstone, Susan; Quick, Will; Lewis, Ari

    2015-07-22

    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios--pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended.

  19. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation

    PubMed Central

    Rohr, Annette C.; Campleman, Sharan L.; Long, Christopher M.; Peterson, Michael K.; Weatherstone, Susan; Quick, Will; Lewis, Ari

    2015-01-01

    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios—pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended. PMID:26206568

  20. Biomass "Green" Power Vs. Coal "Traditional" Power: Who is the Largest Emitter in Humboldt County and How Should Regulations be Addressed?

    NASA Astrophysics Data System (ADS)

    Zurawski, A. M.

    2016-12-01

    The objective of this research is to study how emissions from a fossil fuel power plant compare to emissions from a biomass power plant, and how these results can be used to improve current air-quality regulations. Outdoor air quality transcends national and political boundaries. Air pollution monitoring is essential to maintaining quality of life for humans and ecosystems. Due to anthropogenic disturbances (primarily related to burning of fossil fuels), air- quality management has become a priority on a long list of environmental issues. Quantifying and monitoring the largest emitters of greenhouse gases and toxic pollutants is crucial to the creation and enforcement of appropriate environmental protection regulations. Emissions data were collected from January 2010 to January 2016 from sensors installed close to a biomass power plant, and sensors installed close to a fossil fuel and natural gas power plant, in Humboldt County, California. In Humboldt County, where air quality serves as a baseline of air pollution in the United States, data showed that the "green" biomass power plant emitted higher levels of particulate matter compared to the fossil fuel power plant. Additionally, the biomass power plant showed levels of CO2, NOx, and SO2 emissions that suggest its place as a "green" power source should be reconsidered. Our research suggests that regulations need to be reconsidered given the potential for high pollutant emissions from biomass plants.

  1. Integrated biomass pyrolysis with organic Rankine cycle for power generation

    NASA Astrophysics Data System (ADS)

    Nur, T. B.; Syahputra, A. W.

    2018-02-01

    The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used to generate power from waste heat available in industrial processes. Biomass pyrolysis is one of the thermochemical technologies for converting biomass into energy and chemical products consisting of liquid bio-oil, solid biochar, and pyrolytic gas. In the application, biomass pyrolysis can be divided into three main categories; slow, fast and flash pyrolysis mainly aiming at maximizing the products of bio-oil or biochar. The temperature of synthesis gas generated during processes can be used for Organic Rankine Cycle to generate power. The heat from synthesis gas during pyrolysis processes was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. In this study, the potential of the palm oil empty fruit bunch, palm oil shell, and tree bark have been used as fuel from biomass to generate electricity by integrated with ORC. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC system. Through Aspen Plus, this study analyses the influences on performance of main thermodynamic parameters, showing the possibilities of reaching an optimum performance for different working conditions that are characteristics of different design parameters.

  2. Grey Comprehensive Evaluation of Biomass Power Generation Project Based on Group Judgement

    NASA Astrophysics Data System (ADS)

    Xia, Huicong; Niu, Dongxiao

    2017-06-01

    The comprehensive evaluation of benefit is an important task needed to be carried out at all stages of biomass power generation projects. This paper proposed an improved grey comprehensive evaluation method based on triangle whiten function. To improve the objectivity of weight calculation result of only reference comparison judgment method, this paper introduced group judgment to the weighting process. In the process of grey comprehensive evaluation, this paper invited a number of experts to estimate the benefit level of projects, and optimized the basic estimations based on the minimum variance principle to improve the accuracy of evaluation result. Taking a biomass power generation project as an example, the grey comprehensive evaluation result showed that the benefit level of this project was good. This example demonstrates the feasibility of grey comprehensive evaluation method based on group judgment for benefit evaluation of biomass power generation project.

  3. Energy values and estimation of power generation potentials of some non-woody biomass species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, M.; Patel, S.K.

    In view of high energy potentials in non-woody biomass species and an increasing interest in their utilization for power generation, an attempt has been made in this study to assess the proximate analysis and energy content of different components of Ocimum canum and Tridax procumbens biomass species (both non-woody), and their impact on power generation and land requirement for energy plantations. The net energy content in Ocimum canum was found to be slightly higher than that in Tridax procumbens. In spite of having higher ash contents, the barks from both the plant species exhibited higher calorific values. The results havemore » shown that approximately 650 and 1,270 hectares of land are required to generate 20,000 kWh/day electricity from Ocimum canum and Tridax procumbens biomass species. Coal samples, obtained from six different local mines, were also examined for their qualities, and the results were compared with those of studied biomass materials. This comparison reveals much higher power output with negligible emission of suspended particulate matters (SPM) from biomass materials.« less

  4. A consortium of three brings real geothermal power for California's Imperial valley -- at last

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehlage, E.F.

    1983-04-01

    Imperial Valley's geothermal history gets a whole new chapter with dedication ceremony for southern California's unusual 10,000 kilowatt power station-SCE in joint corporate venture with Southern Pacific and Union Oil. America's newest and unique electric power generation facility, The Salton Sea Geothermal-Electric Project, was the the site of a formal dedication ceremony while the sleek and stainless jacketed piping and machinery were displayed against a flawlessly brilliant January sky - blue and flecked with a few whisps of high white clouds, while plumes of geothermal steam rose across the desert. The occasion was the January 19, 1983, ceremonial dedication ofmore » the unique U.S.A. power generation facility constructed by an energy consortium under private enterprise, to make and deliver electricity, using geothermal steam released (with special cleaning and treatment) from magma-heated fluids produced at depths of 3,000 to 6,000 feet beneath the floor of the Imperial Valley near Niland and Brawley, California.« less

  5. Exergy analysis of biomass organic Rankine cycle for power generation

    NASA Astrophysics Data System (ADS)

    Nur, T. B.; Sunoto

    2018-02-01

    The study examines proposed small biomass-fed Organic Rankine Cycle (ORC) power plant through exergy analysis. The system consists of combustion burner unit to utilize biomass as fuel, and organic Rankine cycle unit to produce power from the expander. The heat from combustion burner was transfered by thermal oil heater to evaporate ORC working fluid in the evaporator part. The effects of adding recuperator into exergy destruction were investigated. Furthermore, the results of the variations of system configurations with different operating parameters, such as the evaporating pressures, ambient temperatures, and expander pressures were analyzed. It was found that the largest exergy destruction occurs during processes are at combustion part, followed by evaporator, condenser, expander, and pump. The ORC system equipped with a recuperator unit exhibited good operational characteristics under wide range conditions compared to the one without recuperator.

  6. Biomass Combustions and Burning Emissions Inferred from GOES Fire Radiative Power

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Kondragunta, S.; Schmidt, C.

    2007-12-01

    Biomass burning significantly affects air quality and climate changes. Current estimates of burning emissions are rather imprecise and vary markedly with different methodologies. This paper investigates biomass burning consumption and emissions using GOES (Geostationary Operational Environmental Satellites) WF_ABBA (Wildfire Automated Biomass Burning Algorithm) fire product. In doing this, we establish a set of representatives in diurnal patterns of half-hourly GOES Fire Radiative Power (FRP) for various ecosystems. The representative patterns are used to fill the missed and poor observations of half hourly FRP in GOES fire data for individual fire pixels. The simulated FRP is directly applied to the calculation of the biomass combusted during fire activities. The FRP-based biomass combustion is evaluated using the estimates using a traditional model which integrates burned area, fuel loading, and combustion factor. In the traditional model calculation, we derive burned areas from GOES WF_ABBA fire size. Fuel loading includes three different types (1) MODIS Vegetation Property-based Fuel System (MVPFS), (2) National Dangerous Rating Systems (NFDRS), and (3) the Fuel Characteristic Classification System (FCCS). By comparing the biomass combustions across the Contiguous United States (CONUS) from 2003-2005, we conclude that FRP is an effective tool to estimate the biomass burning emissions. Finally, we examine the temporal and spatial patterns in biomass combustions and emissions (PM2.5, CO, NH3) across the CONUS.

  7. Numerical simulation of a hybrid CSP/Biomass 5 MWel power plant

    NASA Astrophysics Data System (ADS)

    Soares, João; Oliveira, Armando

    2017-06-01

    The fundamental benefit of using renewable energy systems is undeniable since they rely on a source that will not run out. Nevertheless, they strongly depend on meteorological conditions (solar, wind, etc.), leading to uncertainty of instantaneous energy supply and consequently to grid connection issues. An interesting concept is renewable hybridisation. This consists in the strategic combination of different renewable sources in the power generation portfolio by taking advantage of each technology. Hybridisation of concentrating solar power with biomass denotes a powerful way of assuring system stability and reliability. The main advantage is dispatchability through the whole extent of the operating range. Regarding concentrating solar power heat transfer fluid, direct steam generation is one of the most interesting concepts. Nevertheless, it presents itself technical challenges that are mostly related to the two-phase fluid flow in horizontal pipes, as well as the design of an energy storage system. Also, the use of reheat within the turbine is usually indirectly addressed, hindering system efficiency. These challenges can be addressed through hybridisation with biomass. In this paper, a hybrid renewable electricity generation system is presented. The system relies on a combination of solar and biomass sources to drive a 5 MWel steam turbine. System performance is analysed through numerical simulation using Ebsilon professional software. The use of direct reheat in the turbine is addressed. Results show that hybridisation results in an enhancement of system dispatchability and generation stability. Furthermore, hybridisation enhanced the annual solar field and power block efficiencies, and thus the system annual efficiency (from 7.6% to 20%). The use of direct reheat eliminates steam wetness in the last turbine stage and also improves system efficiency.

  8. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Yan, Yulong; Yang, Chao; Peng, Lin; Li, Rumei; Bai, Huiling

    2016-10-01

    Face the large electricity demand, thermal power generation still derives the main way of electricity supply in China, account for 78.19% of total electricity production in 2013. Three types of thermal power plants, including coal-fired power plant, coal gangue-fired power plant and biomass-fired power plant, were chosen to survey the source profile, chemical reactivity and emission factor of VOCs during the thermal power generation. The most abundant compounds generated during coal- and coal gangue-fired power generation were 1-Butene, Styrene, n-Hexane and Ethylene, while biomass-fired power generation were Propene, 1-Butenen, Ethyne and Ethylene. The ratios of B/T during thermal power generation in this study was 0.8-2.6, which could be consider as the characteristics of coal and biomass burning. The field tested VOCs emission factor from coal-, coal gangue- and biomass-fired power plant was determined to be 0.88, 0.38 and 3.49 g/GJ, or showed as 0.023, 0.005 and 0.057 g/kg, with the amount of VOCs emission was 44.07, 0.08, 0.45 Gg in 2013, respectively. The statistical results of previous emission inventory, which calculated the VOCs emission used previous emission factor, may overestimate the emission amount of VOCs from thermal power generation in China.

  9. Sewage sludge conditioning with the application of ash from biomass-fired power plant

    NASA Astrophysics Data System (ADS)

    Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam

    2018-02-01

    During biomass combustion, there are formed combustion products. Available data indicates that only 29.1 % of biomass ashes were recycled in Poland in 2013. Chemical composition and sorptive properties of ashes enable their application in the sewage sludge treatment. This paper analyses the impact of ashes from biomass-combustion power plant on sewage sludge dewatering and higienisation. The results obtained in laboratory tests proved the possitive impact of biomass ashes on sewage sludge hydration reduction after dewatering and the increase of filtrate volume. After sludge conditioning with the use of biomass combustion by-products, the final moisture content decreased by approximatelly 10÷25 % in comparison with raw sewage sludge depending on the method of dewatering. The application of biomass combustion products in sewage sludge management could provide an alternative method of their utilization according to law and environmental requirements.

  10. Efficient Biomass Fuel Cell Powered by Sugar with Photo- and Thermal-Catalysis by Solar Irradiation.

    PubMed

    Liu, Wei; Gong, Yutao; Wu, Weibing; Yang, Weisheng; Liu, Congmin; Deng, Yulin; Chao, Zi-Sheng

    2018-06-19

    The utilization of biomass sugars has received great interesting recently. Herein, we present a highly efficient hybrid solar biomass fuel cell that utilizes thermal- and photocatalysis of solar irradiation and converts biomass sugars into electricity with high power output. The fuel cell uses polyoxometalates (POMs) as photocatalyst to decompose sugars and capture their electrons. The reduced POMs have strong visible and near-infrared light adsorption, which can significantly increase the temperature of the reaction system and largely promotes the thermal oxidation of sugars by the POM. In addition, the reduced POM functions as charge carrier that can release electrons at the anode in the fuel cell to generate electricity. The electron-transfer rates from glucose to POM under thermal and light-irradiation conditions were investigated in detail. The power outputs of this solar biomass fuel cell are investigated by using different types of sugars as fuels, with the highest power density reaching 45 mW cm -2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Community Response to Concentrating Solar Power in the San Luis Valley: October 9, 2008 - March 31, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farhar, B. C.; Hunter, L. M.; Kirkland, T. M.

    2010-06-01

    This report is about the social acceptance of utility-scale concentrating solar power (CSP) plants in the San Luis Valley, approximately 200 miles southwest of Denver, Colorado. The research focused on social factors that may facilitate and impede the adoption and implementation of CSP. During the winter of 2008-2009, interviews were conducted with a purposive sample of 25 CSP-related stakeholders inside and outside the Valley. Interviews focused on the perceived advantages and disadvantages of siting a hypothetical 100-MW CSP facility in the Valley, the level of community support and opposition to CSP development, and related issues, such as transmission. State policymore » recommendations based on the findings include developing education programs for Valley residents, integrating Valley decision makers into an energy-water-land group, providing training for Valley decision makers, offering workforce training, evaluating models of taxation, and forming landholder energy associations. In addition, the SLV could become a laboratory for new approaches to CSP facility and transmission siting decision-making. The author recommends that outside stakeholders address community concerns and engage Valley residents in CSP decisions. Engaging the residents in CSP and transmission decisions, the author says, should take parallel significance with the investment in solar technology.« less

  12. Thermoelectric-Driven Autonomous Sensors for a Biomass Power Plant

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Astrain, D.; Martínez, A.; Gubía, E.; Sorbet, F. J.

    2013-07-01

    This work presents the design and development of a thermoelectric generator intended to harness waste heat in a biomass power plant, and generate electric power to operate sensors and the required electronics for wireless communication. The first objective of the work is to design the optimum thermoelectric generator to harness heat from a hot surface, and generate electric power to operate a flowmeter and a wireless transmitter. The process is conducted by using a computational model, presented in previous papers, to determine the final design that meets the requirements of electric power consumption and number of transmissions per minute. Finally, the thermoelectric generator is simulated to evaluate its performance. The final device transmits information every 5 s. Moreover, it is completely autonomous and can be easily installed, since no electric wires are required.

  13. DOE Biomass Power Program: Strategic Plan 1996-2015

    DTIC Science & Technology

    1996-12-01

    C P L A N 1 9 9 6 - 2 0 1 5 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...Operations and Reports , 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other...valid OMB control number. 1. REPORT DATE 1996 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE DOE Biomass Power Program 5a

  14. Process analysis of a molten carbonate fuel cell power plant fed with a biomass syngas

    NASA Astrophysics Data System (ADS)

    Tomasi, C.; Baratieri, M.; Bosio, B.; Arato, E.; Baggio, P.

    The coupling of renewable energy sources and innovative power generation technologies is of topical interest to meet demands for increased power generation and cleaner environmental performance. Accordingly, biomass is receiving considerable attention as a partial substitute for fossil fuels, as it is more environmentally friendly and provides a profitable way of disposing of waste. In addition, fuel cells are perceived as most promising electrical power generation systems. Today, many plants combining these two concepts are under study; they differ in terms of biomass type and/or power plant configuration. Even if the general feasibility of such applications has been demonstrated, there are still many associated problems to be resolved. This study examines a plant configuration based on a molten carbonate fuel cell (MCFC) and a recirculated fluidized-bed reactor which has been applied to the thermal conversion of many types of biomass. Process analysis is conducted by simulating the entire plant using a commercial code. In particular, an energy assessment is studied by taking account of the energy requirements of auxiliary equipment and the possibility of utilizing the exhaust gases for cogeneration.

  15. Biomass fuels update. TVAs biomass fuels program

    NASA Astrophysics Data System (ADS)

    1982-02-01

    Equipment was installed and tests were conducted on the ethanol from hardwood project. Location of hardwoods, to improve forest management, and to reduce the cost of harvesting woody biomass was assessed. Substantial underutilized cropland exists in the Valley, and a questionnaire survey was administered to supplement available cropland data. The potential liquid fuel yields and production management practices for alternative starch, sugar, and vegetable oil crops were determined to obtain benchmark data and to evaluate alcohol production from alternative agricultural feedstocks. Workshops were conducted to provide information on production of alcohol.

  16. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    PubMed Central

    Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2014-01-01

    There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China. PMID:25383383

  17. Comparative evaluation of biomass power generation systems in China using hybrid life cycle inventory analysis.

    PubMed

    Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2014-01-01

    There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.

  18. California's Central Valley Groundwater Study: A Powerful New Tool to Assess Water Resources in California's Central Valley

    USGS Publications Warehouse

    Faunt, Claudia C.; Hanson, Randall T.; Belitz, Kenneth; Rogers, Laurel

    2009-01-01

    Competition for water resources is growing throughout California, particularly in the Central Valley. Since 1980, the Central Valley's population has nearly doubled to 3.8 million people. It is expected to increase to 6 million by 2020. Statewide population growth, anticipated reductions in Colorado River water deliveries, drought, and the ecological crisis in the Sacramento-San Joaquin Delta have created an intense demand for water. Tools and information can be used to help manage the Central Valley aquifer system, an important State and national resource.

  19. Distributed renewable power from biomass and other waste fuels

    NASA Astrophysics Data System (ADS)

    Lyons, Chris

    2012-03-01

    The world population is continually growing and putting a burden on our fossil fuels. These fossil fuels such as coal, oil and natural gas are used for a variety of critical needs such as power production and transportation. While significant environmental improvements have been made, the uses of these fuels are still causing significant ecological impacts. Coal power production efficiency has not improved over the past thirty years and with relatively cheap petroleum cost, transportation mileage has not improved significantly either. With the demand for these fossil fuels increasing, ultimately price will also have to increase. This presentation will evaluate alternative power production methods using localized distributed generation from biomass, municipal solid waste and other waste sources of organic materials. The presentation will review various gasification processes that produce a synthetic gas that can be utilized as a fuel source in combustion turbines for clean and efficient combined heat and power. This fuel source can produce base load renewable power. In addition tail gases from the production of bio-diesel and methanol fuels can be used to produce renewable power. Being localized can reduce the need for long and costly transmission lines making the production of fuels and power from waste a viable alternative energy source for the future.

  20. Electricity from biomass: A development strategy

    NASA Astrophysics Data System (ADS)

    1992-04-01

    The purpose of this document is to review the current status of biomass power technology and to evaluate the future directions for development that could significantly enhance the contribution of biomass power to U.S. production of electricity. This document reviews the basic principles of biomass electric systems, the previous contributions of industry and the National Biomass Energy Programs to technology development, and the options for future technology development. It discusses the market for biomass electric technology and future needs for electric power production to help establish a market-oriented development strategy. It projects trends in the performance and cost of the technology and examines the changing dynamics of the power generation market place to evaluate specific opportunities for biomass power development. In a separate document, the Biomass Power Program Five Year R&D Plan, the details of schedules, funding, and roles of participating R&D organizations within the R&D program funded by the U.S. Department of Energy (DOE) are presented. In evaluating the future directions for research and development, two cases are examined.

  1. Process modelling of biomass conversion to biofuels with combined heat and power.

    PubMed

    Sharma, Abhishek; Shinde, Yogesh; Pareek, Vishnu; Zhang, Dongke

    2015-12-01

    A process model has been developed to study the pyrolysis of biomass to produce biofuel with heat and power generation. The gaseous and solid products were used to generate heat and electrical power, whereas the bio-oil was stored and supplied for other applications. The overall efficiency of the base case model was estimated for conversion of biomass into useable forms of bio-energy. It was found that the proposed design is not only significantly efficient but also potentially suitable for distributed operation of pyrolysis plants having centralised post processing facilities for production of other biofuels and chemicals. It was further determined that the bio-oil quality improved using a multi-stage condensation system. However, the recycling of flue gases coming from combustor instead of non-condensable gases in the pyrolyzer led to increase in the overall efficiency of the process with degradation of bio-oil quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions.

    PubMed

    Cao, Rui; Wu, Fu Zhong; Yang, Wan Qin; Xu, Zhen Feng; Tani, Bo; Wang, Bin; Li, Jun; Chang, Chen Hui

    2016-04-22

    In order to understand the variations of soil microbial biomass and soil enzyme activities with the change of altitude, a field incubation was conducted in dry valley, ecotone between dry valley and mountain forest, subalpine coniferous forest, alpine forest and alpine meadow from 1563 m to 3994 m of altitude in the alpine-gorge region of western Sichuan. The microbial biomass carbon and nitrogen, and the activities of invertase, urease and acid phosphorus were measured in both soil organic layer and mineral soil layer. Both the soil microbial biomass and soil enzyme activities showed the similar tendency in soil organic layer. They increased from 2158 m to 3028 m, then decreased to the lowest value at 3593 m, and thereafter increased until 3994 m in the alpine-gorge region. In contrast, the soil microbial biomass and soil enzyme activities in mineral soil layer showed the trends as, the subalpine forest at 3028 m > alpine meadow at 3994 m > montane forest ecotone at 2158 m > alpine forest at 3593 m > dry valley at 1563 m. Regardless of altitudes, soil microbial biomass and soil enzyme activities were significantly higher in soil organic layer than in mineral soil layer. The soil microbial biomass was significantly positively correlated with the activities of the measured soil enzymes. Moreover, both the soil microbial biomass and soil enzyme activities were significantly positively correlated with soil water content, organic carbon, and total nitrogen. The activity of soil invertase was significantly positively correlated with soil phosphorus content, and the soil acid phosphatase was so with soil phosphorus content and soil temperature. In brief, changes in vegetation and other environmental factors resulting from altitude change might have strong effects on soil biochemical properties in the alpine-gorge region.

  3. Research on the Intensive Material Management System of Biomass Power Plant

    NASA Astrophysics Data System (ADS)

    Zhang, Ruosi; Hao, Tianyi; Li, Yunxiao; Zhang, Fangqing; Ding, Sheng

    2017-05-01

    In view of the universal problem which the material management is loose, and lack of standardization and interactive real-time in the biomass power plant, a system based on the method of intensive management is proposed in this paper to control the whole process of power plant material. By analysing the whole process of power plant material management and applying the Internet of Things, the method can simplify the management process. By making use of the resources to maximize and data mining, material utilization, circulation rate and quality control management can be improved. The system has been applied in Gaotang power plant, which raised the level of materials management and economic effectiveness greatly. It has an important significance for safe, cost-effective and highly efficient operation of the plant.

  4. Method and apparatus for automated, modular, biomass power generation

    DOEpatents

    Diebold, James P; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor

    2013-11-05

    Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

  5. Method and apparatus for automated, modular, biomass power generation

    DOEpatents

    Diebold, James P [Lakewood, CO; Lilley, Arthur [Finleyville, PA; Browne, Kingsbury III [Golden, CO; Walt, Robb Ray [Aurora, CO; Duncan, Dustin [Littleton, CO; Walker, Michael [Longmont, CO; Steele, John [Aurora, CO; Fields, Michael [Arvada, CO; Smith, Trevor [Lakewood, CO

    2011-03-22

    Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

  6. Woody biomass-based bioenergy development at the Atikokan Power Generating Station: Local perceptions and public opinions

    NASA Astrophysics Data System (ADS)

    Baten, Cassia Sanzida

    To tackle climate change, reduce air pollution and promote development of renewable energy, the Ontario government is investing in the conversion of the coal-based Atikokan Power Generating Station (APGS) in Atikokan, Ontario, to woody biomass feedstock. This research offers one of the first looks at the perspectives of different individuals and groups on converting woody biomass to energy. Using a combination of study instruments which include literature review, surveys, interviews with key informants, semi-structured interviews, and focus group discussions, this dissertation uses qualitative research to provide a picture of the public's opinions and attitudes towards the APGS biomass energy development. Given Ontario's huge and sustainably managed forest resource, woody biomass is expected to be a major component of renewable energy production in Ontario. The move towards renewable energy that replaces fossil fuels with woody biomass will have considerable socio-economic implications for local and First Nation communities living in and around the bioenergy power generating station. Findings indicate that there is wide support for biomass utilization at the APGS by local people, especially since the project would create sustainable employment. The connection of woody biomass-based energy generation and rural community development provides opportunities and challenges for Atikokan's economic development. Respondents identified economic, environmental and social barriers to biomass utilization, and emphasized trust and transparency as key elements in the successful implementation of the APGS project. As demand for woody biomass-based energy increases, special attention will be needed to ensure and maintain the social, economic and environmental sustainability of biomass use at the APGS. In this research, respondents' views about biomass utilization for energy mainly focused on forest-related issues rather than energy. In Atikokan much of the project's social

  7. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined withmore » geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells

  8. Determining forage availability and use patterns for bison in the Hayden Valley of Yellowstone National Park

    USGS Publications Warehouse

    Olenicki, Thomas J.; Irby, Lynn R.

    2005-01-01

    4. Estimate annual production and standing crop available during non-growing seasons for herbaceous and shrub layers in major habitat types in the Hayden Valley. Our efforts to describe forage use by bison focused on assessing finer scale habitat use is a core summer range for bison in YNP. We also collected information on bison food habits and forage quality to begin to explain the “whys” of bison distribution. Short-term impacts of bison forage utilization were addressed by comparing standing biomass in plots protected from grazing with plots exposed to grazing. Historical data were not available to directly address long-term effects of ungulate foraging in the Hayden Valley, but we were able to indirectly assess some aspects of this question by determining the frequency of repeat grazing over a 3-year period and the rate at which trees along the margins of the Hayden Valley were being killed by bison rubbing The third objective, determining the relative efficacy of different vegetation monitoring approaches, was accomplished by comparing estimates of standing biomass and biomas: utilization obtained via conventional exclosure techniques with estimates based on remote sensing techniques (ground-based and satellite-borne multi-spectral radiometry|[MSR]). We addressed efficacy in terms of precision and accuracy of estimates, reliability, and logistical costs at different coverage scales. The fourth objective, estimation of forage available for ungulates in the Hayden Valley, was achieved using conventional exclosure methodology and remote sensing. We were able to estimate herbaceous biomass production during 3 different years. Exclosures allowed us to estimated changes instanding crop of herbaceous vegetation at the plant community (conventional cover types, moisture plant growth form groups, and communities defined by dominant graminoids) and catena (a repeating sequence of communities tied to landscape physiognomy) scales. We developed empirical approaches

  9. A comparative study of biomass integrated gasification combined cycle power systems: Performance analysis.

    PubMed

    Zang, Guiyan; Tejasvi, Sharma; Ratner, Albert; Lora, Electo Silva

    2018-05-01

    The Biomass Integrated Gasification Combined Cycle (BIGCC) power system is believed to potentially be a highly efficient way to utilize biomass to generate power. However, there is no comparative study of BIGCC systems that examines all the latest improvements for gasification agents, gas turbine combustion methods, and CO 2 Capture and Storage options. This study examines the impact of recent advancements on BIGCC performance through exergy analysis using Aspen Plus. Results show that the exergy efficiency of these systems is ranged from 22.3% to 37.1%. Furthermore, exergy analysis indicates that the gas turbine with external combustion has relatively high exergy efficiency, and Selexol CO 2 removal method has low exergy destruction. Moreover, the sensitivity analysis shows that the system exergy efficiency is more sensitive to the initial temperature and pressure ratio of the gas turbine, whereas has a relatively weak dependence on the initial temperature and initial pressure of the steam turbine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Joseph; Divan, Deepak; Brumsickle, William

    2004-02-01

    Power-quality events are of increasing concern for the economy because today's equipment, particularly computers and automated manufacturing devices, is susceptible to these imperceptible voltage changes. A small variation in voltage can cause this equipment to shut down for long periods, resulting in significant business losses. Tiny variations in power quality are difficult to detect except with expensive monitoring equipment used by trained technicians, so many electricity customers are unaware of the role of power-quality events in equipment malfunctioning. This report describes the findings from a pilot study coordinated through the Silicon Valley Manufacturers Group in California to explore the capabilitiesmore » of I-Grid(R), a new power-quality monitoring system. This system is designed to improve the accessibility of power-quality in formation and to increase understanding of the growing importance of electricity reliability and power quality to the economy. The study used data collected by I-Grid sensors at seven Silicon Valley firms to investigate the impacts of power quality on individual study participants as well as to explore the capabilities of the I-Grid system to detect events on the larger electricity grid by means of correlation of data from the sensors at the different sites. In addition, study participants were interviewed about the value they place on power quality, and their efforts to address electricity-reliability and power-quality problems. Issues were identified that should be taken into consideration in developing a larger, potentially nationwide, network of power-quality sensors.« less

  11. Thermodynamic analyses of a biomass-coal co-gasification power generation system.

    PubMed

    Yan, Linbo; Yue, Guangxi; He, Boshu

    2016-04-01

    A novel chemical looping power generation system is presented based on the biomass-coal co-gasification with steam. The effects of different key operation parameters including biomass mass fraction (Rb), steam to carbon mole ratio (Rsc), gasification temperature (Tg) and iron to fuel mole ratio (Rif) on the system performances like energy efficiency (ηe), total energy efficiency (ηte), exergy efficiency (ηex), total exergy efficiency (ηtex) and carbon capture rate (ηcc) are analyzed. A benchmark condition is set, under which ηte, ηtex and ηcc are found to be 39.9%, 37.6% and 96.0%, respectively. Furthermore, detailed energy Sankey diagram and exergy Grassmann diagram are drawn for the entire system operating under the benchmark condition. The energy and exergy efficiencies of the units composing the system are also predicted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, M.; Mai, T.; Newes, E.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompetemore » biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  13. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, M.; Mai, T.; Newes, E.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompetemore » biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  14. Use Of limestone resources in flue-gas desulfurization power plants in the Ohio River Valley

    USGS Publications Warehouse

    Foose, M.P.; Barsotti, A.F.

    1999-01-01

    In 1994, more than 41 of the approximately 160 coal-fired, electrical- power plants within the six-state Ohio River Valley region used flue-gas desulfurization (FGD) units to desulfurize their emissions, an approximately 100% increase over the number of plants using FGD units in 1989. This increase represents a trend that may continue with greater efforts to meet Federal Clean Air Act standards. Abundant limestone resources exist in the Ohio River Valley and are accessed by approximately 975 quarries. However, only 35 of these are believed to have supplied limestone for FGD electrical generating facilities. The locations of these limestone suppliers do not show a simple spatial correlation with FGD facilities, and the closest quarries are not being used in most cases. Thus, reduction in transportation costs may be possible in some cases. Most waste generated by FGD electrical-generating plants is not recycled. However, many FGD sites are relatively close to gypsum wallboard producers that may be able to process some of their waste.

  15. Reduction of CO2 emission by INCAM model in Malaysia biomass power plants during the year 2016.

    PubMed

    Amin, Nor Aishah Saidina; Talebian-Kiakalaieh, Amin

    2018-03-01

    As the world's second largest palm oil producer and exporter, Malaysia could capitalize on its oil palm biomass waste for power generation. The emission factors from this renewable energy source are far lower than that of fossil fuels. This study applies an integrated carbon accounting and mitigation (INCAM) model to calculate the amount of CO 2 emissions from two biomass thermal power plants. The CO 2 emissions released from biomass plants utilizing empty fruit bunch (EFB) and palm oil mill effluent (POME), as alternative fuels for powering steam and gas turbines, were determined using the INCAM model. Each section emitting CO 2 in the power plant, known as the carbon accounting center (CAC), was measured for its carbon profile (CP) and carbon index (CI). The carbon performance indicator (CPI) included electricity, fuel and water consumption, solid waste and waste-water generation. The carbon emission index (CEI) and carbon emission profile (CEP), based on the total monthly carbon production, were determined across the CPI. Various innovative strategies resulted in a 20%-90% reduction of CO 2 emissions. The implementation of reduction strategies significantly reduced the CO 2 emission levels. Based on the model, utilization of EFB and POME in the facilities could significantly reduce the CO 2 emissions and increase the potential for waste to energy initiatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fiscalini Farms Biomass Energy Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the projectmore » were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of

  17. Waterbird communities and seed biomass in managed and reference-restored wetlands in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Tapp, Jessica L.; Weegman, Matthew M.; Webb, Elisabeth B.; Kaminski, Richard M.; Davis, J. Brian

    2018-01-01

    The Natural Resources Conservation Service (NRCS) commenced the Migratory Bird Habitat Initiative (MBHI) in summer 2010 after the April 2010 Deepwater Horizon oil spill in the Gulf of Mexico. The MBHI enrolled in the program 193,000 ha of private wet- and cropland inland from potential oil-impaired wetlands. We evaluated waterfowl and other waterbird use and potential seed/tuber food resources in NRCS Wetland Reserve Program easement wetlands managed via MBHI funding and associated reference wetlands in the Mississippi Alluvial Valley of Arkansas, Louisiana, Mississippi, and Missouri. In Louisiana and Mississippi, nearly three times more dabbling ducks and all ducks combined were observed on managed than reference wetlands. Shorebirds and waterbirds other than waterfowl were nearly twice as abundant on managed than referenced wetlands. In Arkansas and Missouri, managed wetlands had over twice more dabbling ducks and nearly twice as many duck species than reference wetlands. Wetlands managed via MBHI in Mississippi and Louisiana contained ≥1.3 times more seed and tuber biomass known to be consumed by waterfowl than reference wetlands. Seed and tuber resources did not differ between wetlands in Arkansas and Missouri. While other studies have documented greater waterbird densities on actively than nonmanaged wetlands, our results highlighted the potential for initiatives focused on managing conservation easements to increase waterbird use and energetic carrying capacity of restored wetlands for waterbirds.

  18. Valley dynamics of intravalley and intervalley multiexcitonic states in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Fu, Jiyong; Bezerra, Andre; Qu, Fanyao

    2018-03-01

    We present a comprehensive model comprising of a complete set of rate equations, which account for charge transfer among multiexcitonic channels including excitons, trions, and biexcitons, to investigate valley (locked with spin) dynamics in monolayer WS2. The steady-state photoluminescence (PL) spectra, underlying the laser power dependence of excitonic populations, are also determined. Our computed PL for all excitonic states agrees with the experimental data of Paradisanos et al. [Appl. Phys. Lett. 110, 193102 (2017), 10.1063/1.4983285]. We find that the relative weight of PL, stemmed from different excitonic channels, strongly depends on the laser power even under dynamical conditions. Remarkably, the biexciton channel, having the weakest PL intensity at low laser powers, tends to prevail in PL over other excitonic states as the power strengthens. In addition, by accounting for intervalley scatterings, which enable transfer of excitonic states from one valley to the other, we determine the valley polarization, which strongly depends on intervalley scatterings and the exciton generation rates in the two valleys. On the other hand, the valley polarization for all excitonic channels is found almost independent of the laser power, consistent with experimental measurements as well. Finally, the valley dynamics involving both intra- and intervalley trions is discussed. Our model and numerical outcome should be beneficial to experiments especially featuring the interplay of multiexcitonic channels in, e.g., elucidating experimental data, estimating central excitonic quantities including recombination times and transition rates, and in widening possible new experimental scopes.

  19. NREL: International Activities - Biomass Resource Assessment

    Science.gov Websites

    Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies . Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass biomass resources could be used to produce power, heat, transportation fuels, and various chemical

  20. Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica.

    PubMed

    Goordial, Jacqueline; Davila, Alfonso; Lacelle, Denis; Pollard, Wayne; Marinova, Margarita M; Greer, Charles W; DiRuggiero, Jocelyn; McKay, Christopher P; Whyte, Lyle G

    2016-07-01

    Some of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature -23 °C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable. Our results contrast with reports from the lower-elevation Dry Valleys and Arctic permafrost soils where active microbial populations are found, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival.

  1. Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica

    PubMed Central

    Goordial, Jacqueline; Davila, Alfonso; Lacelle, Denis; Pollard, Wayne; Marinova, Margarita M; Greer, Charles W; DiRuggiero, Jocelyn; McKay, Christopher P; Whyte, Lyle G

    2016-01-01

    Some of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature −23 °C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable. Our results contrast with reports from the lower-elevation Dry Valleys and Arctic permafrost soils where active microbial populations are found, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival. PMID:27323892

  2. The Relative Cost of Biomass Energy Transport

    NASA Astrophysics Data System (ADS)

    Searcy, Erin; Flynn, Peter; Ghafoori, Emad; Kumar, Amit

    Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for small- and large-project sizes, the relative cost of transportation by truck, rail, ship, and pipeline for three biomass feedstocks, by truck and pipeline for ethanol, and by transmission line for electrical power. Distance fixed costs (loading and unloading) and distance variable costs (transport, including power losses during transmission), are calculated for each biomass type and mode of transportation. Costs are normalized to a common basis of a giga Joules of biomass. The relative cost of moving products vs feedstock is an approximate measure of the incentive for location of biomass processing at the source of biomass, rather than at the point of ultimate consumption of produced energy. In general, the cost of transporting biomass is more than the cost of transporting its energy products. The gap in cost for transporting biomass vs power is significantly higher than the incremental cost of building and operating a power plant remote from a transmission grid. The cost of power transmission and ethanol transport by pipeline is highly dependent on scale of project. Transport of ethanol by truck has a lower cost than by pipeline up to capacities of 1800 t/d. The high cost of transshipment to a ship precludes shipping from being an economical mode of transport for distances less than 800 km (woodchips) and 1500 km (baled agricultural residues).

  3. Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds.

    PubMed

    Zhu, Baohua; Sun, Faqiang; Yang, Miao; Lu, Lin; Yang, Guanpin; Pan, Kehou

    2014-12-01

    The potential use of microalgal biomass as a biofuel source has raised broad interest. Highly effective and economically feasible biomass generating techniques are essential to realize such potential. Flue gas from coal-fired power plants may serve as an inexpensive carbon source for microalgal culture, and it may also facilitate improvement of the environment once the gas is fixed in biomass. In this study, three strains of the genus Nannochloropsis (4-38, KA2 and 75B1) survived this type of culture and bloomed using flue gas from coal-fired power plants in 8000-L open raceway ponds. Lower temperatures and solar irradiation reduced the biomass yield and lipid productivities of these strains. Strain 4-38 performed better than the other two as it contained higher amounts of triacylglycerols and fatty acids, which are used for biodiesel production. Further optimization of the application of flue gas to microalgal culture should be undertaken. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Biomass CHP Catalog of Technologies

    EPA Pesticide Factsheets

    This report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated CHP systems.

  5. Alkali deposits found in biomass power plants: A preliminary investigation of their extent and nature. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, T.R.; Miles, T.R. Jr.; Baxter, L.L.

    1995-04-15

    Alkali in the ash of annual crop biomass fuels creates serious fouling and slagging in conventional boilers. Even with the use of sorbents and other additives, power plants can only fire limited amounts of these fuels in combination with wood. The National Renewable Energy Laboratory (NREL), US Department of Energy, and the biomass power industry carried out eight full-scale firing tests and several laboratory experiments to study the nature and occurrence of deposits with the goal of increasing the quantities of these biofuels that can be used. This report describes the results of the laboratory and power plant tests thatmore » included: tracking and analyzing fuels and deposits by various methods; recording operating conditions; and extensive laboratory testing. The paper describes the occurrence of deposits, fuel and deposit analyses, boiler design and operation, fouling and slagging indicators, and recommendations. 37 refs., 41 figs., 17 tabs.« less

  6. Dixie Valley Binary Cycle Production Data 2013 YTD

    DOE Data Explorer

    Lee, Vitaly

    2013-10-18

    Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

  7. Power generation based on biomass by combined fermentation and gasification--a new concept derived from experiments and modelling.

    PubMed

    Methling, Torsten; Armbrust, Nina; Haitz, Thilo; Speidel, Michael; Poboss, Norman; Braun-Unkhoff, Marina; Dieter, Heiko; Kempter-Regel, Brigitte; Kraaij, Gerard; Schliessmann, Ursula; Sterr, Yasemin; Wörner, Antje; Hirth, Thomas; Riedel, Uwe; Scheffknecht, Günter

    2014-10-01

    A new concept is proposed for combined fermentation (two-stage high-load fermenter) and gasification (two-stage fluidised bed gasifier with CO2 separation) of sewage sludge and wood, and the subsequent utilisation of the biogenic gases in a hybrid power plant, consisting of a solid oxide fuel cell and a gas turbine. The development and optimisation of the important processes of the new concept (fermentation, gasification, utilisation) are reported in detail. For the gas production, process parameters were experimentally and numerically investigated to achieve high conversion rates of biomass. For the product gas utilisation, important combustion properties (laminar flame speed, ignition delay time) were analysed numerically to evaluate machinery operation (reliability, emissions). Furthermore, the coupling of the processes was numerically analysed and optimised by means of integration of heat and mass flows. The high, simulated electrical efficiency of 42% including the conversion of raw biomass is promising for future power generation by biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The effect of topography on arctic-alpine aboveground biomass and NDVI patterns

    NASA Astrophysics Data System (ADS)

    Riihimäki, Henri; Heiskanen, Janne; Luoto, Miska

    2017-04-01

    Topography is a key factor affecting numerous environmental phenomena, including Arctic and alpine aboveground biomass (AGB) distribution. Digital Elevation Model (DEM) is a source of topographic information which can be linked to local growing conditions. Here, we investigated the effect of DEM derived variables, namely elevation, topographic position, radiation and wetness on AGB and Normalized Difference Vegetation Index (NDVI) in a Fennoscandian forest-alpine tundra ecotone. Boosted regression trees were used to derive non-parametric response curves and relative influences of the explanatory variables. Elevation and potential incoming solar radiation were the most important explanatory variables for both AGB and NDVI. In the NDVI models, the response curves were smooth compared with AGB models. This might be caused by large contribution of field and shrub layer to NDVI, especially at the treeline. Furthermore, radiation and elevation had a significant interaction, showing that the highest NDVI and biomass values are found from low-elevation, high-radiation sites, typically on the south-southwest facing valley slopes. Topographic wetness had minor influence on AGB and NDVI. Topographic position had generally weak effects on AGB and NDVI, although protected topographic position seemed to be more favorable below the treeline. The explanatory power of the topographic variables, particularly elevation and radiation demonstrates that DEM-derived land surface parameters can be used for exploring biomass distribution resulting from landform control on local growing conditions.

  9. Biomass enables the transition to a carbon-negative power system across western North America

    NASA Astrophysics Data System (ADS)

    Sanchez, Daniel L.; Nelson, James H.; Johnston, Josiah; Mileva, Ana; Kammen, Daniel M.

    2015-03-01

    Sustainable biomass can play a transformative role in the transition to a decarbonized economy, with potential applications in electricity, heat, chemicals and transportation fuels. Deploying bioenergy with carbon capture and sequestration (BECCS) results in a net reduction in atmospheric carbon. BECCS may be one of the few cost-effective carbon-negative opportunities available should anthropogenic climate change be worse than anticipated or emissions reductions in other sectors prove particularly difficult. Previous work, primarily using integrated assessment models, has identified the critical role of BECCS in long-term (pre- or post-2100 time frames) climate change mitigation, but has not investigated the role of BECCS in power systems in detail, or in aggressive time frames, even though commercial-scale facilities are starting to be deployed in the transportation sector. Here, we explore the economic and deployment implications for BECCS in the electricity system of western North America under aggressive (pre-2050) time frames and carbon emissions limitations, with rich technology representation and physical constraints. We show that BECCS, combined with aggressive renewable deployment and fossil-fuel emission reductions, can enable a carbon-negative power system in western North America by 2050 with up to 145% emissions reduction from 1990 levels. In most scenarios, the offsets produced by BECCS are found to be more valuable to the power system than the electricity it provides. Advanced biomass power generation employs similar system design to advanced coal technology, enabling a transition strategy to low-carbon energy.

  10. Feasibility study for biomass power plants in Thailand. Volume 1. Main report. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This study, conducted by Black & Veatch, was funded by the U.S. Trade and Development Agency. The report presents a technical and commercial analysis for the development of three nearly identical electricity generating facilities (biomass steam power plants) in the towns of Chachoengsao, Suphan Buri, and Pichit in Thailand. The Main Report is divided into the following sections: (1.0) Executive Study; (2.0) Project Objectives; (3.0) Review of Combustion Technology for Biomass Fueled Steam Generator Units; (4.0) Conceptual Design; (5.0) Plant Descriptions; (6.0) Plant Operations Staffing; (7.0) Project Schedule; (8.0) Project Cost Estimate; (9.0) Financial Analysis; Appendix - Financial Analysis.

  11. Economic analysis of biomass power generation schemes under renewable energy initiative with Renewable Portfolio Standards (RPS) in Korea.

    PubMed

    Moon, Ji-Hong; Lee, Jeung-Woo; Lee, Uen-Do

    2011-10-01

    An economic analysis of biomass power generation was conducted. Two key technologies--direct combustion with a steam turbine and gasification with a syngas engine--were mainly examined. In view of the present domestic biomass infrastructure of Korea, a small and distributed power generation system ranging from 0.5 to 5 MW(e) was considered. It was found that gasification with a syngas engine becomes more economically feasible as the plant size decreases. Changes in the economic feasibilities with and without RPS or heat sales were also investigated. A sensitivity analysis of each system was conducted for representative parameters. Regarding the cost of electricity generation, electrical efficiency and fuel cost significantly affect both direct combustion and gasification systems. Regarding the internal rate of return (IRR), the heat sales price becomes important for obtaining a higher IRR, followed by power generation capacity and electrical efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Black carbon concentrations in the highly polluted Kathmandu Valley, Nepal: a three year monitoring with a dual-spot Aethalometer

    NASA Astrophysics Data System (ADS)

    Rupakheti, Maheswar; Drinovec, Luka; Puppala, SivaPraveen; Mahata, Khadak; Rupakheti, Dipesh; Kathayat, Bhogendra; Singdan, Pratik; Panday, Arnico; Lawrence, Mark

    2016-04-01

    Our knowledge about ambient black carbon (BC) in the vast Himalayan region, a region vulnerable to impacts of global warming, is very limited due to unavailability of a long-term ambient monitoring. Here we present results from a continuous monitoring of ambient BC concentrations, with a new generation Aethalometer (AE33), over a three year period (January 2013- January 2016) at a semi-urban site in the highly polluted Kathmandu Valley in the foothills of the central Himalaya, one of the most polluted cities in the world. This is the longest time series of BC concentrations that have been monitored with AE33 (which uses the dual-spot technique for a real-time filter loading compensation) in highly polluted ambient environment. The measurements were carried out under the framework of project SusKat (Sustainable Atmosphere for the Kathmandu Valley). BC concentrations were found to be extremely high, especially in winter and the pre-monsoon period, with the hourly-averaged values often exceeding 50 μg/m3. BC concentrations showed a clear diurnal cycle with a prominent peak around 8-9 am and a second peak around 8-9 pm local time in all four seasons. Night-time BC was also fairly high. The diurnal cycle was driven by a combination of increased emissions from traffic, cooking activities, garbage burning, and lower mixing heights (˜200 m) and reduced horizontal ventilation in the mornings and evenings. BC concentrations showed significant seasonal variations - a maximum in winter season and minimum during the monsoon (rainy) season, with monthly average values in the range 5-30 μg/m3. An increase in emissions from the operation of over 100 brick kilns in winter and spring, and an increase in the use of small but numerous diesel power generators during hours with power cuts contributed significantly to ambient BC concentrations in the valley. Fractional contributions of biomass burning and fossil fuel combustion to BC was estimated based on a real-time method for

  13. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, S., E-mail: suman.mech09@gmail.com; Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR)more » cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (r{sub p}) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure

  14. Biofuels and bioenergy production from municipal solid waste commingled with agriculturally-derived biomass

    USDA-ARS?s Scientific Manuscript database

    The USDA in partnership with Salinas Valley Solid Waste Authority (SVSWA) and CR3, a technology holding company from Reno, NV, has introduced a biorefinery concept whereby agriculturally- derived biomass is commingled with municipal solid waste (MSW) to produce bioenergy. This team, which originally...

  15. Spin and Valley Noise in Two-Dimensional Dirac Materials

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Saxena, A.; Smith, D. L.; Sinitsyn, N. A.

    2014-07-01

    We develop a theory for optical Faraday rotation noise in two-dimensional Dirac materials. In contrast to spin noise in conventional semiconductors, we find that the Faraday rotation fluctuations are influenced not only by spins but also the valley degrees of freedom attributed to intervalley scattering processes. We illustrate our theory with two-dimensional transition-metal dichalcogenides and discuss signatures of spin and valley noise in the Faraday noise power spectrum. We propose optical Faraday noise spectroscopy as a technique for probing both spin and valley relaxation dynamics in two-dimensional Dirac materials.

  16. Biomass energy: Sustainable solution for greenhouse gas emission

    NASA Astrophysics Data System (ADS)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    sustainable carbon sink will be developed. Clean energy production from biomass (such as ethanol, biodiesel, producer gas, bio-methane) could be viable option to reduce fossil fuel consumption. Electricity generation from biomass is increasing throughout the world. Co-firing of biomass with coal and biomass combustion in power plant and CHP would be a viable option for clean energy development. Biomass can produce less emission in the range of 14% to 90% compared to emission from fossil for electricity generation. Therefore, biomass could play a vital role for generation of clean energy by reducing fossil energy to reduce greenhouse gas emissions. The main barriers to expansion of power generation from biomass are cost, low conversion efficiency and availability of feedstock. Internationalization of external cost in power generation and effective policies to improve energy security and carbon dioxide reduction is important to boost up the bio-power. In the long run, bio-power will depend on technological development and on competition for feedstock with food production and arable land use.

  17. Assessment of Biomass Resources in Afghanistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milbrandt, A.; Overend, R.

    2011-01-01

    Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistanmore » for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.« less

  18. Microbiological Contamination at Workplaces in a Combined Heat and Power (CHP) Station Processing Plant Biomass

    PubMed Central

    Szulc, Justyna; Otlewska, Anna; Okrasa, Małgorzata; Majchrzycka, Katarzyna; Sulyok, Michael; Gutarowska, Beata

    2017-01-01

    The aim of the study was to evaluate the microbial contamination at a plant biomass processing thermal power station (CHP). We found 2.42 × 103 CFU/m3 of bacteria and 1.37 × 104 CFU/m3 of fungi in the air; 2.30 × 107 CFU/g of bacteria and 4.46 × 105 CFU/g of fungi in the biomass; and 1.61 × 102 CFU/cm2 bacteria and 2.39 × 101 CFU/cm2 fungi in filtering facepiece respirators (FFRs). Using culture methods, we found 8 genera of mesophilic bacteria and 7 of fungi in the air; 10 genera each of bacteria and fungi in the biomass; and 2 and 5, respectively, on the FFRs. Metagenomic analysis (Illumina MiSeq) revealed the presence of 46 bacterial and 5 fungal genera on the FFRs, including potential pathogens Candida tropicalis, Escherichia coli, Prevotella sp., Aspergillus sp., Penicillium sp.). The ability of microorganisms to create a biofilm on the FFRs was confirmed using scanning electron microscopy (SEM). We also identified secondary metabolites in the biomass and FFRs, including fumigaclavines, quinocitrinines, sterigmatocistin, and 3-nitropropionic acid, which may be toxic to humans. Due to the presence of potential pathogens and mycotoxins, the level of microbiological contamination at workplaces in CHPs should be monitored. PMID:28117709

  19. Potential for Coal Power Plants to Co-Fire with Woody Biomass in the U. S. North, 2010-2030: A Technical Document Supporting the Northern Forest Futures Project

    Treesearch

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth E. Skog

    2015-01-01

    Future use of woody biomass to produce electric power in the U.S. North can have an important influence on timber production, carbon storage in forests, and net carbon emissions from producing electric power. The Northern Forest Futures Project (NFFP) has provided regional- and state-level projections of standing forest biomass, land-use change, and timber harvest,...

  20. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.

    PubMed

    Zhang, Yifei; Kang, Jian

    2017-11-01

    The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity

  1. LIFAC demonstration at Richmond Power and Light Whitewater Valley Unit No. 2. Final report, Volume 1 - public design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report discusses the demonstration of LIFAC sorbent injection technology at Richmond Power and Light`s (RP&L) Whitewater Valley Unit No. 2 under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North American (LIFAC NA), a joint venture partnership ofmore » Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and several other organizations including the Electric Power Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Final Report Volume 1: Public Design is to consolidate, for public use, all design and cost information regarding the LIFAC Desulfurization Facility at the completion of construction and startup.« less

  2. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers

    NASA Astrophysics Data System (ADS)

    Tong, Wen-Yi; Duan, Chun-Gang

    2017-08-01

    In analogy to all-electric spintronics, all-electric valleytronics, i.e., valley manipulation via electric means, becomes an exciting new frontier as it may bring revolutions in the field of data storage with ultra-high speed and ultra-low power consumption. The existence of the anomalous valley Hall effect in ferrovalley materials demonstrates the possibility of electrical detection for valley polarization. However, in previously proposed valley-polarized monolayers, the anomalous valley Hall effect is controlled by external magnetic fields. Here, through elaborate structural design, we propose the antiferrovally bilayer as an ideal candidate for realizing all-electric valleytronic devices. Using the minimal k.p model, we show that the energy degeneracy between valley indexes in such system can be lifted by electric approaches. Subsequently, the anomalous valley Hall effect strongly depends on the electric field as well. Taking the bilayer VSe2 as an example, all-electric tuning and detecting of anomalous valley Hall effect is confirmed by density-functional theory calculations, indicating that the valley information in such antiferrovalley bilayer can be reversed by an electric field perpendicular to the plane of the system and easily probed through the sign of the Hall voltage.

  3. BIOMASS-FUELED, SMALL-SCALE, INTEGRATED-GASIFIER, GAS-TURBINE POWER PLANT: PROGRESS REPORT ON THE PHASE 2 DEVELOPMENT

    EPA Science Inventory

    The paper reports the latest efforts to complete development of Phase 2 of a three-phase effort to develop a family of small-scale (1 to 20 MWe) biomass-fueled power plants. The concept envisioned is an air-blown pressurized fluidized-bed gasifier followed by a dry hot gas clean...

  4. A new powerful parameterization tool for managing groundwater resources and predicting land subsidence in Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Nunes, V. D.; Burbey, T. J.; Borggaard, J.

    2012-12-01

    More than 1.5 m of subsidence has been observed in Las Vegas Valley since 1935 as a result of groundwater pumping that commenced in 1905 (Bell, 2002). The compaction of the aquifer system has led to several large subsidence bowls and deleterious earth fissures. The highly heterogeneous aquifer system with its variably thick interbeds makes predicting the magnitude and location of subsidence extremely difficult. Several numerical groundwater flow models of the Las Vegas basin have been previously developed; however none of them have been able to accurately simulate the observed subsidence patterns or magnitudes because of inadequate parameterization. To better manage groundwater resources and predict future subsidence we have updated and developed a more accurate groundwater management model for Las Vegas Valley by developing a new adjoint parameter estimation package (APE) that is used in conjunction with UCODE along with MODFLOW and the SUB (subsidence) and HFB (horizontal flow barrier) packages. The APE package is used with UCODE to automatically identify suitable parameter zonations and inversely calculate parameter values from hydraulic head and subsidence measurements, which are highly sensitive to both elastic (Ske) and inelastic (Skv) storage coefficients. With the advent of InSAR (Interferometric synthetic aperture radar), distributed spatial and temporal subsidence measurements can be obtained, which greatly enhance the accuracy of parameter estimation. This automation process can remove user bias and provide a far more accurate and robust parameter zonation distribution. The outcome of this work yields a more accurate and powerful tool for managing groundwater resources in Las Vegas Valley to date.

  5. Transport of regional pollutants through a remote trans-Himalayan valley in Nepal

    NASA Astrophysics Data System (ADS)

    Dhungel, Shradda; Kathayat, Bhogendra; Mahata, Khadak; Panday, Arnico

    2018-01-01

    Anthropogenic emissions from the combustion of fossil fuels and biomass in Asia have increased in recent years. High concentrations of reactive trace gases and light-absorbing and light-scattering particles from these sources form persistent haze layers, also known as atmospheric brown clouds, over the Indo-Gangetic plains (IGP) from December through early June. Models and satellite imagery suggest that strong wind systems within deep Himalayan valleys are major pathways by which pollutants from the IGP are transported to the higher Himalaya. However, observational evidence of the transport of polluted air masses through Himalayan valleys has been lacking to date. To evaluate this pathway, we measured black carbon (BC), ozone (O3), and associated meteorological conditions within the Kali Gandaki Valley (KGV), Nepal, from January 2013 to July 2015. BC and O3 varied over both diurnal and seasonal cycles. Relative to nighttime, mean BC and O3 concentrations within the valley were higher during daytime when the up-valley flow (average velocity of 17 m s-1) dominated. BC and O3 concentrations also varied seasonally with minima during the monsoon season (July to September). Concentrations of both species subsequently increased post-monsoon and peaked during March to May. Average concentrations for O3 during the seasonally representative months of April, August, and November were 41.7, 24.5, and 29.4 ppbv, respectively, while the corresponding BC concentrations were 1.17, 0.24, and 1.01 µg m-3, respectively. Up-valley fluxes of BC were significantly greater than down-valley fluxes during all seasons. In addition, frequent episodes of BC concentrations 2-3 times higher than average persisted from several days to a week during non-monsoon months. Our observations of increases in BC concentration and fluxes in the valley, particularly during pre-monsoon, provide evidence that trans-Himalayan valleys are important conduits for transport of pollutants from the IGP to the

  6. Putney Basketville Site Biomass CHP Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunsberger, Randolph; Mosey, Gail

    2013-10-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response Center for Program Analysis developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The Putney, Vermont, Basketville site, formerly the location of a basket-making facility and a paper mill andwoolen mill, was selected for a feasibility study under the program. Biomass was chosen as the renewable energy resource based on abundant woody-biomass resources available in the area. Biomass combined heat and power (CHP) was selected as the technology due to nearby loads, includingmore » Putney Paper and Landmark College.« less

  7. Cold air drainage flows subsidize montane valley ecosystem productivity.

    PubMed

    Novick, Kimberly A; Oishi, A Christopher; Miniat, Chelcy Ford

    2016-12-01

    In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro-climate condition, drainage flows, local microclimate, and ecosystem carbon cycling in a southern Appalachian valley. Data from multiple long-running climate stations and multiple eddy covariance flux towers are combined with simple models for ecosystem carbon fluxes. We show that cold air drainage into the valley suppresses local temperature by several degrees at night and for several hours before and after sunset, leading to reductions in growing season respiration on the order of ~8%. As a result, we estimate that drainage flows increase growing season and annual net carbon uptake in the valley by >10% and >15%, respectively, via effects on microclimate that are not be adequately represented in regional- and global-scale terrestrial ecosystem models. Analyses driven by chamber-based estimates of soil and plant respiration reveal cold air drainage effects on ecosystem respiration are dominated by reductions to the respiration of aboveground biomass. We further show that cold air drainage proceeds more readily when cloud cover and humidity are low, resulting in the greatest enhancements to net carbon uptake in the valley under clear, cloud-free (i.e., drought-like) conditions. This is a counterintuitive result that is neither observed nor predicted outside of the valley, where nocturnal temperature and respiration increase during dry periods. This result should motivate efforts to explore how topographic flows may buffer eco-physiological processes from macroscale climate change. © 2016 John Wiley & Sons Ltd.

  8. [Aboveground biomass of three conifers in Qianyanzhou plantation].

    PubMed

    Li, Xuanran; Liu, Qijing; Chen, Yongrui; Hu, Lile; Yang, Fengting

    2006-08-01

    In this paper, the regressive models of the aboveground biomass of Pinus elliottii, P. massoniana and Cunninghamia lanceolata in Qianyanzhou of subtropical China were established, and the regression analysis on the dry weight of leaf biomass and total biomass against branch diameter (d), branch length (L), d3 and d2L was conducted with linear, power and exponent functions. Power equation with single parameter (d) was proved to be better than the rests for P. massoniana and C. lanceolata, and linear equation with parameter (d3) was better for P. elliottii. The canopy biomass was derived by the regression equations for all branches. These equations were also used to fit the relationships of total tree biomass, branch biomass and foliage biomass with tree diameter at breast height (D), tree height (H), D3 and D2H, respectively. D2H was found to be the best parameter for estimating total biomass. For foliage-and branch biomass, both parameters and equation forms showed some differences among species. Correlations were highly significant (P <0.001) for foliage-, branch-and total biomass, with the highest for total biomass. By these equations, the aboveground biomass and its allocation were estimated, with the aboveground biomass of P. massoniana, P. elliottii, and C. lanceolata forests being 83.6, 72. 1 and 59 t x hm(-2), respectively, and more stem biomass than foliage-and branch biomass. According to the previous studies, the underground biomass of these three forests was estimated to be 10.44, 9.42 and 11.48 t x hm(-2), and the amount of fixed carbon was 47.94, 45.14 and 37.52 t x hm(-2), respectively.

  9. Coexistence Possibility of Biomass Industries

    NASA Astrophysics Data System (ADS)

    Jingchun, Sun; Junhu, Hou

    This research aims to shed light on the mechanism of agricultural biomass material competition between the power generation and straw pulp industries and the impact on their coexistence. A two-stage game model is established to analyze including factors such as unit transportation cost, and profit spaces for the firms. The participants in the competition are a biomass supplier, a power plant and a straw pulp plant. From the industrial economics perspective, our analysis shows that raw material competition will bring about low coexistence possibility of the two industries based on agricultural residues in a circular collection area.

  10. Cofiring biomass with coal: Opportunities for Malaysia

    NASA Astrophysics Data System (ADS)

    Rahman, A. A.; Shamsuddin, A. H.

    2013-06-01

    Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.

  11. Aquatic invertebrate abundance and biomass in Arkansas, Mississippi, and Missouri bottomland hardwood forests during winter

    Treesearch

    Justyn R. Foth; Jacob N. Straub; Richard M. Kaminski; J. Brian Davis; Theodor D. Leininger

    2014-01-01

    The Mississippi Alluvial Valley once had extensive bottomland hardwood forests, but less than 25% of the original area remains. Impounded bottomland hardwood forests, or greentree reservoirs, and naturally flooded forests are important sources of invertebrate or other prey for waterfowl, but no previous studies of invertebrate abundance and biomass have been at the...

  12. Comparative efficiency and driving range of light- and heavy-duty vehicles powered with biomass energy stored in liquid fuels or batteries

    PubMed Central

    Laser, Mark; Lynd, Lee R.

    2014-01-01

    This study addresses the question, “When using cellulosic biomass for vehicular transportation, which field-to-wheels pathway is more efficient: that using biofuels or that using bioelectricity?” In considering the question, the level of assumed technological maturity significantly affects the comparison, as does the intended transportation application. Results from the analysis indicate that for light-duty vehicles, over ranges typical in the United States today (e.g., 560–820 miles), field-to-wheels performance is similar, with some scenarios showing biofuel to be more efficient, and others indicating the two pathways to be essentially the same. Over the current range of heavy-duty vehicles, the field-to-wheels efficiency is higher for biofuels than for electrically powered vehicles. Accounting for technological advances and range, there is little basis to expect mature bioelectricity-powered vehicles to have greater field-to-wheels efficiency (e.g., kilometers per gigajoule biomass or per hectare) compared with mature biofuel-powered vehicles. PMID:24550477

  13. Valley-dependent band structure and valley polarization in periodically modulated graphene

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  14. Geomorphic effects, flood power, and channel competence of a catastrophic flood in confined and unconfined reaches of the upper Lockyer valley, southeast Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Thompson, Chris; Croke, Jacky

    2013-09-01

    Flooding is a persistent natural hazard, and even modest changes in future climate are believed to lead to large increases in flood magnitude. Previous studies of extreme floods have reported a range of geomorphic responses from negligible change to catastrophic channel change. This paper provides an assessment of the geomorphic effects of a rare, high magnitude event that occurred in the Lockyer valley, southeast Queensland in January 2011. The average return interval of the resulting flood was ~ 2000 years in the upper catchment and decreased to ~ 30 years downstream. A multitemporal LiDAR-derived DEM of Difference (DoD) is used to quantify morphological change in two study reaches with contrasting valley settings (confined and unconfined). Differences in geomorphic response between reaches are examined in the context of changes in flood power, channel competence and degree of valley confinement using a combination of one-dimensional (1-D) and two-dimensional (2-D) hydraulic modelling. Flood power peaked at 9800 W m- 2 along the confined reach and was 2-3 times lower along the unconfined reach. Results from the DoD confirm that the confined reach was net erosional, exporting ~ 287,000 m3 of sediment whilst the unconfined reach was net depositional gaining ~ 209,000 m3 of sediment, 70% of the amount exported from the upstream, confined reach. The major sources of eroded sediment in the confined reach were within channel benches and macrochannel banks resulting in a significant increase of channel width. In the unconfined reach, the benches and floodplains were the major loci for deposition, whilst the inner channel exhibited minor width increases. The presence of high stream power values, and resultant high erosion rates, within the confined reach is a function of the higher energy gradient of the steeper channel that is associated with knickpoint development. Dramatic differences in geomorphic responses were observed between the two adjacent reaches of

  15. Modeling integrated biomass gasification business concepts

    Treesearch

    Peter J. Ince; Ted Bilek; Mark A. Dietenberger

    2011-01-01

    Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...

  16. A review on biomass classification and composition, cofiring issues and pretreatment methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright

    Presently around the globe there is a significant interest in using biomass for power generation as power generation from coal continues to raise environmental concerns. Biomass alone can be used for generation of power which can bring lot of environmental benefits. However the constraints of using biomass alone can include high investments costs for biomass feed systems and also uncertainty in the security of the feedstock supply due to seasonal variations and in most of the countries biomass is dispersed and the infrastructure for biomass supply is not well established. Alternatively cofiring biomass along with coal offer advantages like (a)more » reducing the issues related to biomass quality and buffers the system when there is insufficient feedstock quantity and (b) costs of adapting the existing coal power plants will be lower than building new systems dedicated only to biomass. However with the above said advantages there exists some technical constrains including low heating and energy density values, low bulk density, lower grindability index, higher moisture and ash content to successfully cofire biomass with coal. In order to successfully cofire biomass with coal, biomass feedstock specifications need to be established to direct pretreatment options that may include increasing the energy density, bulk density, stability during storage and grindability. Impacts on particle transport systems, flame stability, pollutant formation and boiler tube fouling/corrosion must also be minimized by setting feedstock specifications including composition and blend ratios if necessary. Some of these limitations can be overcome by using pretreatment methods. This paper discusses the impact of feedstock pretreatment methods like sizing, baling, pelletizing, briquetting, washing/leaching, torrefaction, torrefaction and pelletization and steam explosion in attainment of optimum feedstock characteristics to successfully cofire biomass with coal.« less

  17. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vladimir Zamansky; Chris Lindsey; Vitali Lissianski

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the ninth reporting period (September 27--December 31, 1999), EER prepared a paper Kinetic Model of Biomass Reburning and submitted it for publication and presentation at the 28th Symposium (International) on Combustion, University of Edinburgh, Scotland, July 30--August 4, 2000. Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. A preliminary report is included in this quarterly report.

  18. Soils of wet valleys in the Larsemann Hills and Vestfold Hills oases (Princess Elizabeth Land, East Antarctica)

    NASA Astrophysics Data System (ADS)

    Mergelov, N. S.

    2014-09-01

    The properties and spatial distribution of soils and soil-like bodies in valleys of the coastal Larsemann Hills and Vestfold Hills oases—poorly investigated in terms of the soil areas of East Antarctica—are discussed. In contrast to Dry Valleys—large continental oases of Western Antarctica—the studied territory is characterized by the presence of temporarily waterlogged sites in the valleys. It is argued that the deficit of water rather than the low temperature is the major limiting factor for the development of living organisms and the pedogenesis on loose substrates. The moisture gradients in the surface soil horizons explain the spatial distribution of the different soils and biotic complexes within the studied valleys. Despite the permanent water-logging of the deep suprapermafrost horizons of most of the soils in the valleys, no gley features have been identified in them. The soils of the wet valleys in the Larsemann Hills oasis do not contain carbonates. They have a slightly acid or neutral reaction. The organic carbon and nitrogen contents are mainly controlled by the amount of living and dead biomass rather than by the humic substances proper. The larger part of the biomass is concentrated inside the mineral soil matrix rather than on the soil surface. The stresses caused by surface drying, strong winds, and ultraviolet radiation prevent the development of organisms on the surface of the soil and necessitate the search for shelter within the soil fine earth material (endoedaphic niche) or under the gravelly pavement (hypolithic niche). In the absence of higher plants, humified products of their decomposition, and rainwater that can wash the soil profile and upon the low content of silt and clay particles in the soil material, "classical" soil horizons are not developed. The most distinct (and, often, the only diagnosed) products of pedogenesis in these soils are represented by organomineral films on the surface of mineral particles.

  19. A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

    A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

  20. Occupational exposure to gases, polycyclic aromatic hydrocarbons and volatile organic compounds in biomass-fired power plants.

    PubMed

    Jumpponen, M; Rönkkömäki, H; Pasanen, P; Laitinen, J

    2013-01-01

    The combustion of fuels produces air pollutants in the form of gases, organic compounds, and particulate matter. However, although the environmental aspect of these agents has been examined, workers' exposure to them is still a neglected issue. The purpose of this study was to measure maintenance and ash removal workers' multiple exposures to gases, volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) during their work tasks in biomass-fired power plants. Our hygienic measurements revealed that carbon monoxide, nitric oxide, ammonia and sulfur dioxide were the most common gases that the workers were exposed to during their tasks. Their average concentrations were 0.45 ppm, 0.06 ppm, 0.11 ppm and 0.42 ppm, respectively. Phenanthrene and naphthalene were the most prominent PAHs. At the same sampling points, the most commonly found VOCs were aromatic and aliphatic hydrocarbons and turpentines. The calculated total PAH concentrations were less than 7% of benzo[a]pyrene's eight-hour occupational exposure limit, and the total VOC concentrations were below the Finnish reference value for the normal industrial level in all measured work tasks. The most evident health effect caused by multiple exposures to gases was upper respiratory track irritation, followed by the disruption of oxygen transport, and finally central nervous system disorders. We recommend powered air respirators with ABEK+P3 cartridges and carbon monoxide gas detectors as the minimum requirement for those working inside biomass-fired power plant boilers, and compressed air breathing apparatus as the best form of protection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. 76 FR 4147 - Putnam-Cumberland, TN-Improve Power Supply

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... TENNESSEE VALLEY AUTHORITY Putnam-Cumberland, TN--Improve Power Supply AGENCY: Tennessee Valley... proposed electrical power supply improvements in the Putnam and Cumberland region of east-central Tennessee... supplies bulk electric power to Cumberland and Putnam counties and the immediately surrounding areas in...

  2. Nocturnal insect availability in bottomland hardwood forests managed for wildlife in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Loraine Ketzler,; Christopher Comer,; Twedt, Daniel J.

    2017-01-01

    Silviculture used to alter forest structure and thereby enhance wildlife habitat has been advocated for bottomland hardwood forest management on public conservation lands in the Mississippi Alluvial Valley. Although some songbirds respond positively to these management actions to attain desired forest conditions for wildlife, the response of other species, is largely unknown. Nocturnal insects are a primary prey base for bats, thereby influencing trophic interactions within hardwood forests. To better understand how silviculture influences insect availability for bats, we conducted vegetation surveys and sampled insect biomass within silviculturally treated bottomland hardwood forest stands. We used passive blacklight traps to capture nocturnal flying insects in 64 treated and 64 untreated reference stands, located on 15 public conservation areas in Arkansas, Louisiana, and Mississippi. Dead wood and silvicultural treatments were positively associated with greater biomass of macro-Lepidoptera, macro-Coleoptera, and all insect taxa combined. Biomass of micro-Lepidoptera was negatively associated with silvicultural treatment but comprised only a small proportion of total biomass. Understanding the response of nocturnal insects to wildlife-forestry silviculture provides insight for prescribed silvicultural management affecting bat species.

  3. Light-absorbing Aerosol Properties in the Kathmandu Valley during SusKat-ABC Field Campaign

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yoon, S.; Kim, J.; Cho, C.; Jung, J.

    2013-12-01

    Light-absorbing aerosols, such as black carbon (BC), are major contributors to the atmospheric heating and the reduction of solar radiation reaching at the earth's surface. In this study, we investigate light-absorption and scattering properties of aerosols (i.e., BC mass concentration, aerosol solar-absorption/scattering efficiency) in the Kathmandu valley during Sustainable atmosphere for the Kathmandu valley (SusKat)-ABC campaign, from December 2012 to February 2013. Kathmandu City is among the most polluted cities in the world. However, there are only few past studies that provide basic understanding of air pollution in the Kathmandu Valley, which is not sufficient for designing effective mitigation measures (e.g., technological, financial, regulatory, legal and political measures, planning strategies). A distinct diurnal variation of BC mass concentration with two high peaks observed during wintertime dry monsoon period. BC mass concentration was found to be maximum around 09:00 and 20:00 local standard time (LST). Increased cars and cooking activities including substantial burning of wood and other biomass in the morning and in the evening contributed to high BC concentration. Low BC concentrations during the daytime can be explain by reduced vehicular movement and cooking activities. Also, the developmements of the boundary layer height and mountain-valley winds in the Kathmandu Valley paly a crucial role in the temproal variation of BC mass concentrations. Detailed radiative effects of light-absorbing aerosols will be presented.

  4. Chemical characterization of microbial-dominated soil organic matter in the Garwood Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Feng, Xiaojuan; Simpson, André J.; Gregorich, Edward G.; Elberling, Bo; Hopkins, David W.; Sparrow, Ashley D.; Novis, Philip M.; Greenfield, Lawrence G.; Simpson, Myrna J.

    2010-11-01

    Despite its harsh environmental conditions, terrestrial Antarctica contains a relatively large microbial biomass. Natural abundance carbon and nitrogen stable isotope signatures of organic materials in the dry valleys indicate mixed provenance of the soil organic matter (SOM) with varying proportions of contributions from lichens, mosses, lake-derived algae and cyanobacteria. Here we employed two complementary analytical techniques, biomarker measurements by gas chromatography/mass spectrometry and solution-state 1H nuclear magnetic resonance spectroscopy, to provide further information at a molecular-level about the composition and possible source of SOM in the Garwood Valley, Antarctica. The predominance of branched alkanes and short-chain lipids in the solvent extracts indicates that the primary contribution to the SOM was microbial-derived. Chemical structures in the NaOH extracts from soils were also dominated by amide, peptides, and a CH 3-dominating aliphatic region that were characteristic of microbial signatures. Furthermore, the SOM in the Garwood Valley contained compounds that were different from those in the cyanobacteria-dominated mat from a nearby lake (including monoethyl alkanes and enriched side-chain protons). This observation suggests that easily degradable carbon sources from the nearby lake did not dominate the SOM, which is consistent with a fast turnover of the mat-derived organic matter found in the valley. This study highlights the important role of native soil microbes in the carbon transformation and biogeochemistry in terrestrial Antarctica.

  5. Technologies for Energy from Biomass by Direct Combustion, Gasification, and Liquefaction.

    DTIC Science & Technology

    1981-05-01

    1980 1982 1984 Development Alberta Industrial Dev. X American Fyr. Feeder X Andco, Inc. X Applied Engineering Co., Inc. X Biomass Corp. X Bio-Solar x...Feeder ANDCO, Inc. Applied Engineering Company Biomass Corporation Bio-Solar Research and Development Corporation Combustion Power Company, Inc. Davy...Andco. Inc. X Applied Engineering Co., Inc. X Biomass Corp. X , Big-Solar .X I Combustion Power .. XI Davy Powergas X j Dekalb Acresearch, Inc.- x Duvant

  6. Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power.

    PubMed

    Wyman, Charles E

    2003-01-01

    Lignocellulosic biomass such as agricultural and forestry residues and dedicated crops provides a low-cost and uniquely sustainable resource for production of many organic fuels and chemicals that can reduce greenhouse gas emissions, enhance energy security, improve the economy, dispose of problematic solid wastes, and improve air quality. A technoeconomic analysis of biologically processing lignocellulosics to ethanol is adapted to project the cost of making sugar intermediates for producing a range of such products, and sugar costs are predicted to drop with plant size as a result of economies of scale that outweigh increased biomass transport costs for facilities processing less than about 10,000 dry tons per day. Criteria are then reviewed for identifying promising chemicals in addition to fuel ethanol to make from these low cost cellulosic sugars. It is found that the large market for ethanol makes it possible to achieve economies of scale that reduce sugar costs, and coproducing chemicals promises greater profit margins or lower production costs for a given return on investment. Additionally, power can be sold at low prices without a significant impact on the selling price of sugars. However, manufacture of multiple products introduces additional technical, marketing, risk, scale-up, and other challenges that must be considered in refining of lignocellulosics.

  7. Feasibility study for biomass power plants in Thailand. Volume 2. appendix: Detailed financial analysis results. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This study, conducted by Black & Veatch, was funded by the U.S. Trade and Development Agency. The report presents a technical and commercial analysis for the development of three nearly identical electricity generating facilities (biomass steam power plants) in the towns of Chachgoengsao, Suphan Buri, and Pichit in Thailand. Volume 2 of the study contains the following appendix: Detailed Financial Analysis Results.

  8. Remote monitoring and Tennessee Valley Authority programs

    NASA Technical Reports Server (NTRS)

    Stevens, A. R.; Voss, A. W.

    1977-01-01

    The Tennessee Valley Authority was created in 1933 as a resource development agency and was charged with the basic mission of improving the economy of a depressed region through power production, flood control, and navigation. Those programs which availed themselves of remotely monitored data, either directly or indirectly supporting this mission, were examined.

  9. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vladimir Zamansky; Chris Lindsey

    This project is designed to develop engineering and modeling tools for a family of NO{sub x}control technologies utilizing biomass as a reburning fuel. During the eighth reporting period (July 1--September 26, 1999), Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. This report includes summary of the findings; complete information will be submitted in the next Quarterly Report.

  10. Using endmembers in AVIRIS images to estimate changes in vegetative biomass

    NASA Technical Reports Server (NTRS)

    Smith, Milton O.; Adams, John B.; Ustin, Susan L.; Roberts, Dar A.

    1992-01-01

    Field techniques for estimating vegetative biomass are labor intensive, and rarely are used to monitor changes in biomass over time. Remote-sensing offers an attractive alternative to field measurements; however, because there is no simple correspondence between encoded radiance in multispectral images and biomass, it is not possible to measure vegetative biomass directly from AVIRIS images. Ways to estimate vegetative biomass by identifying community types and then applying biomass scalars derived from field measurements are investigated. Field measurements of community-scale vegetative biomass can be made, at least for local areas, but it is not always possible to identify vegetation communities unambiguously using remote measurements and conventional image-processing techniques. Furthermore, even when communities are well characterized in a single image, it typically is difficult to assess the extent and nature of changes in a time series of images, owing to uncertainties introduced by variations in illumination geometry, atmospheric attenuation, and instrumental responses. Our objective is to develop an improved method based on spectral mixture analysis to characterize and identify vegetative communities, that can be applied to multi-temporal AVIRIS and other types of images. In previous studies, multi-temporal data sets (AVIRIS and TM) of Owens Valley, CA were analyzed and vegetation communities were defined in terms of fractions of reference (laboratory and field) endmember spectra. An advantage of converting an image to fractions of reference endmembers is that, although fractions in a given pixel may vary from image to image in a time series, the endmembers themselves typically are constant, thus providing a consistent frame of reference.

  11. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National Park, Inyo... an Environmental Impact Statement for the Saline Valley Warm Springs Management Plan, Death Valley... analysis process for the Saline Valley Warm Springs Management Plan for Death Valley [[Page 33238...

  12. Biomass power for rural development. Technical progress report, January 1, 1997--March 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    Detailed task progress reports and schedules are provided for the DOE/USDA sponsored Biomass Power for Rural Development project. The focus of the project is on developing commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firingmore » tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-II of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is under way. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-III will represent fullscale commercialization of the energy crop and power generation on a sustainable basis.« less

  13. Biomass power for rural development. Technical progress report, April 1, 1997--June 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    Detailed task progress reports and schedules are provided for the DOE/USDA sponsored Biomass Power for Rural Development project. The focus of the project is on developing commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-I, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firingmore » tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-H of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is under way. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-III will represent fullscale commercialization of the energy crop and power generation on a sustainable basis.« less

  14. Assessment of Biomass Resources in Liberia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milbrandt, A.

    2009-04-01

    Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policymore » makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.« less

  15. BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature.

    PubMed

    Tuorto, Steven J; Brown, Chris M; Bidle, Kay D; McGuinness, Lora R; Kerkhof, Lee J

    2015-01-01

    This report describes BioDry (patent pending), a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc.), freezing, or bulky storage/sampling equipment. Gel electrophoresis analysis of nucleic acid extracts from samples treated in the lab with the BioDry method indicated that molecular integrity was protected in samples stored at room temperature for up to 30 days. Analysis of 16S/18S rRNA genes for presence/absence and relative abundance of microorganisms using both 454-pyrosequencing and TRFLP profiling revealed statistically indistinguishable communities from control samples that were frozen in liquid nitrogen immediately after collection. Seawater and river water biomass samples collected with a portable BioDry "field unit", constructed from off-the-shelf materials and a battery-operated pumping system, also displayed high levels of community rRNA preservation, despite a slight decrease in nucleic acid recovery over the course of storage for 30 days. Functional mRNA and protein pools from the field samples were also effectively conserved with BioDry, as assessed by respective RT-PCR amplification and western blot of ribulose-1-5-bisphosphate carboxylase/oxygenase. Collectively, these results demonstrate that BioDry can adequately preserve a suite of biomolecules from aquatic biomass at ambient temperatures for up to a month, giving it great potential for high resolution sampling in remote locations or on autonomous platforms where space and power are limited.

  16. BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature

    PubMed Central

    Tuorto, Steven J.; Brown, Chris M.; Bidle, Kay D.; McGuinness, Lora R.; Kerkhof, Lee J.

    2015-01-01

    This report describes BioDry (patent pending), a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc.), freezing, or bulky storage/sampling equipment. Gel electrophoresis analysis of nucleic acid extracts from samples treated in the lab with the BioDry method indicated that molecular integrity was protected in samples stored at room temperature for up to 30 days. Analysis of 16S/18S rRNA genes for presence/absence and relative abundance of microorganisms using both 454-pyrosequencing and TRFLP profiling revealed statistically indistinguishable communities from control samples that were frozen in liquid nitrogen immediately after collection. Seawater and river water biomass samples collected with a portable BioDry “field unit", constructed from off-the-shelf materials and a battery-operated pumping system, also displayed high levels of community rRNA preservation, despite a slight decrease in nucleic acid recovery over the course of storage for 30 days. Functional mRNA and protein pools from the field samples were also effectively conserved with BioDry, as assessed by respective RT-PCR amplification and western blot of ribulose-1-5-bisphosphate carboxylase/oxygenase. Collectively, these results demonstrate that BioDry can adequately preserve a suite of biomolecules from aquatic biomass at ambient temperatures for up to a month, giving it great potential for high resolution sampling in remote locations or on autonomous platforms where space and power are limited. PMID:26710122

  17. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  18. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  19. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  20. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  1. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  2. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    EPA Science Inventory

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  3. Technical challenges and opportunities in cogasification of coal and biomass

    Treesearch

    Jagpinder Singh Brar; Kaushlendra Singh; John Zondlo

    2013-01-01

    Biomass gasification manufacturers are beginning to market 5 to 100 kW capacity gasifiers (e.g., Community Power Corporation (CPC), Littleton, CO and gasifier experimenters kit (GEK), AllPower Labs, Berkeley, CA) for producing electricity and synthetic gas (syngas). These gasifiers operate at 900 to 1000 °C, consuming 1.3 kg of biomass per hour for every kW...

  4. Biomass Energy Data Book: Edition 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Lynn L; Boundy, Robert Gary; Perlack, Robert D

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format.more » There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.« less

  5. Biomass Energy Data Book: Edition 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boundy, Robert Gary; Davis, Stacy Cagle

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sectionsmore » to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.« less

  6. Biomass Energy Data Book: Edition 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boundy, Robert Gary; Diegel, Susan W; Wright, Lynn L

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sectionsmore » to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.« less

  7. Morphology of large valleys on Hawaii - Evidence for groundwater sapping and comparisons with Martian valleys

    NASA Technical Reports Server (NTRS)

    Kochel, R. Craig; Piper, Jonathan F.

    1986-01-01

    Morphometric data on the runoff and sapping valleys on the slopes of Hawaii and Molokai in Hawaii are analyzed. The analysis reveals a clear distinction between the runoff valleys and sapping valleys. The Hawaiian sapping valleys are characterized by: (1) steep valley walls and flat floors, (2) amphitheater heads, (3) low drainage density, (4) paucity of downstream tributaries, (5) low frequency of up-dip tributaries, and (6) structural and stratigraphic control on valley patterns. The characteristics of the Hawaiian sapping valleys are compared to Martian valleys and experimental systems, and good correlation between the data is detected. Flume experiments were also conducted to study the evolution of sapping valleys in response to variable structure and stratigraphy.

  8. Experimental Study and Optimization of Thermoelectricity-Driven Autonomous Sensors for the Chimney of a Biomass Power Plant

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Astrain, D.; Martínez, A.; Aranguren, P.

    2014-06-01

    In the work discussed in this paper a thermoelectric generator was developed to harness waste heat from the exhaust gas of a boiler in a biomass power plant and thus generate electric power to operate a flowmeter installed in the chimney, to make it autonomous. The main objective was to conduct an experimental study to optimize a previous design obtained after computational work based on a simulation model for thermoelectric generators. First, several places inside and outside the chimney were considered as sites for the thermoelectricity-driven autonomous sensor. Second, the thermoelectric generator was built and tested to assess the effect of the cold-side heat exchanger on the electric power, power consumption by the flowmeter, and transmission frequency. These tests provided the best configuration for the heat exchanger, which met the transmission requirements for different working conditions. The final design is able to transmit every second and requires neither batteries nor electric wires. It is a promising application in the field of thermoelectric generation.

  9. Impacts of nuclear plant shutdown on coal-fired power generation and infant health in the Tennessee Valley in the 1980s

    NASA Astrophysics Data System (ADS)

    Severnini, Edson

    2017-04-01

    The Fukushima nuclear accident in March 2011 generated deep public anxiety and uncertainty about the future of nuclear energy. However, differently to fossil fuel plants, nuclear plants produce virtually no greenhouse gas emissions or air pollutants during power generation. Here we show the effect on air pollution and infant health in the context of the temporary closure of nuclear plants by the Tennessee Valley Authority (TVA) in the 1980s. After the Three Mile Island accident in 1979, the US Nuclear Regulatory Commission intensified inspections throughout the nation, leading to the shutdown of two large nuclear power plants in the TVA area. In response to that shutdown, electricity generation shifted one to one to coal-fired power plants within TVA, increasing particle pollution in counties where they were located. Consequently, infant health may have deteriorated in the most affected places, indicating deleterious effects to public health.

  10. Optimizing pneumatic conveying of biomass materials

    NASA Astrophysics Data System (ADS)

    DiCianni, Matthew Edward Michael

    2011-12-01

    Biomass is a readily available but underutilized energy resource. One of the main challenges is the inability of biomass feed stocks like corn stover or wood chips to flow freely without intermittent jamming. This research integrated an automated pneumatic conveying system to efficiently transport biomass into a biomass reactor. Material was held in a storage container until an end effector attached to a 3-axis controller engaged the material to flow through pneumatic vacuum in the carrier fluid of air. The material was disengaged from the carrier fluid through centripetal forces induced by a cyclone separator. As the air was pulled out of the cyclone, the biomass drops out the bottom due to gravitational forces and fell into a secondary storage hopper. The second storage container was for testing purposes only, where the actual apparatus would use a vertically oriented lock hopper to feed material into the biomass reactor. In the experimental test apparatus, sensors measured the storage hopper weight (mass-flow rate), pressure drop from the blower, and input power consumption of the motor. Parameters that were adjusted during testing include pipe diameter, material type, and motor speed. Testing indicated that decreasing the motor speed below its maximum still allows for conveyance of the material without blockage forming in the piping. The data shows that the power consumption of the system can be reduced based on the size and weight of the material introduced to the conveying pipe. Also, conveying certain materials proved to be problematic with particular duct diameters. Ultimately, an optimal duct diameter that can perform efficiently for a broad range of materials was chosen for the given system. Through these improvements, the energy return on investment will be improved for biomass feed stocks, which is taking a step in the right direction to secure the nation's energy independence.

  11. Biomass power for rural development. Technical progress report, October 1--December 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC).more » Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill Power Station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the fourth quarter of 1997 the Consortium submitted a Phase-2 proposal. A few of the other more important milestones are outlined below. The first quarter of 1998 will be dominated by pre-planting activity in the spring.« less

  12. Environmental implications of increased biomass energy use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, T.R. Sr.; Miles, T.R. Jr.

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range ofmore » studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.« less

  13. Biomass analysis at palm oil factory as an electric power plant

    NASA Astrophysics Data System (ADS)

    Yusniati; Parinduri, Luthfi; Krianto Sulaiman, Oris

    2018-04-01

    Biomassa found in palm oil mill industryis a by-product such as palm shell, fiber, empty fruit bunches and pome. The material can be used as an alternative fuel for fossil fuel. On PTPN IVpalm oil millDolokSinumbah with a capacity of 30 tons tbs/hour of palm fruit fiber and palm shells has been utilized as boiler fuel to produce steam to supplyboilers power plant. With this utilization, the use of generators that using fossil fuel can be reduced, this would provide added value for the company. From the analysis, the fiber and shell materials were sufficient to supply 18 tons/hoursteam for the boiler. Shell material even excess as much as 441,5 tons per month. By utilizing the 2 types of biomass that is available alone, the electricity needs of the factory of 734 Kwh can be met. While other materials such as empty bunches and pome can be utilized to increase the added value and profitability for the palm oil mill.

  14. 76 FR 58256 - Notice of Application Tendered for Filing With the Commission; Copper Valley Electric Association...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... Application Tendered for Filing With the Commission; Copper Valley Electric Association, Inc. Take notice that..., 2011. d. Applicant: Copper Valley Electric Association, Inc.. e. Name of Project: Allison Creek...: Federal Power Act 16 U.S.C. 791 (a)--825(r) . h. Applicant Contact: Robert A. Wilkinson, CEO, Copper...

  15. Closed loop biomass in Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, R.M.

    1995-11-01

    Kenetech Energy Systems, Inc., began to explore the opportunities for power generation in Puerto Rico in 1993. Among the projects investigated was the development of a power plant that uses biomass for fuel. Through the assistance of a grant from the National Renewable Energy Laboratory, a preliminary study was undertaken to explore various possibilities in biomass production and conversion. The existing sugar cane industry was examined, and various species and regimes of cane species, grass species, and other types of crops were studied. Among the other issues were the political and economic situation, and the uncertainty of the sugar industrymore » in Puerto Rico. A current status of the project is provided.« less

  16. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    NASA Astrophysics Data System (ADS)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  17. The structure of fungal biomass and diversity of cultivated micromycetes in Antarctic soils (progress and Russkaya Stations)

    NASA Astrophysics Data System (ADS)

    Marfenina, O. E.; Nikitin, D. A.; Ivanova, A. E.

    2016-08-01

    The distribution of the fungal biomass and diversity of cultivated microscopic fungi in the profiles of some soils from East (Progress Station, valleys of the Larsemann Hills oasis) and West (Russkaya Station, the Marie Byrd Land) Antarctica regions were studied. The structure of the biomass (spore/mycelium and live cells/dead cells) was analyzed by fluorescence microscopy with staining using a set of coloring agents: calcofluor white, ethidium bromide, and fluorescein diacetate. The species composition of the cultivated microscopic fungi was determined on Czapek's medium. The fungal biomass in the soils studied is not high (on the average, 0.3 mg/g of soil); the greatest biomass (0.6 mg/g) was found in the soil samples with plant residues. The fungal biomass is mainly (to 70%) represented by small (to 2.5 μm) spores. About half of the fungal biomass is composed of living cells. There are differences in the distribution of the fungal biomass within the profiles of different primitive soils. In the soil samples taken under mosses and lichens, the maximal biomass was registered in the top soil horizons. In the soils with the peat horizon under stone pavements, the greatest fungal biomass was registered in the subsurface horizons. Thirty-eight species of cultivated microscopic fungi were isolated from the soils studied. Species of the genus Penicillium and Phoma herbarum predominated.

  18. Biomass Energy Data Book: Edition 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Lynn L; Boundy, Robert Gary; Badger, Philip C

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sectionsmore » to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.« less

  19. 23. POWER ROOM INTERIOR, DETAIL OF FAIRBANKSMORSE DIESEL ENGINE, DIRECTLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. POWER ROOM INTERIOR, DETAIL OF FAIRBANKS-MORSE DIESEL ENGINE, DIRECTLY CONNECTED TO FAIRBANKS-MORSE 30 KW DC GENERATOR, 125 VOLTS, 240 AMPS, 800 RPM. INSTALLED 1930. - Death Valley Ranch, Power House, Death Valley Junction, Inyo County, CA

  20. 21. POWER ROOM INTERIOR, DETAIL OF CATERPILLAR DIESEL ENGINE DIRECTLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. POWER ROOM INTERIOR, DETAIL OF CATERPILLAR DIESEL ENGINE DIRECTLY CONNECTED TO GENERAL ELECTRIC 15 KW DC GENERATOR (ON LEFT), 110 VOLTS, 136 AMPS, 1200 RPM. INSTALLED 1942. - Death Valley Ranch, Power House, Death Valley Junction, Inyo County, CA

  1. Valley Fever (Coccidioidomycosis) Statistics

    MedlinePlus

    ... Valley fever may be under-recognized. 2 , 3 Public health surveillance for Valley fever Valley fever is reportable ... MMWR) . Check with your local, state, or territorial public health department for more information about disease reporting requirements ...

  2. Valley polarization in bismuth

    NASA Astrophysics Data System (ADS)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  3. Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctica.

    PubMed

    Schmidt, S K; Lynch, R C; King, A J; Karki, D; Robeson, M S; Nagy, L; Williams, M W; Mitter, M S; Freeman, K R

    2011-03-07

    High-elevation valleys in dry areas of the Himalayas are among the most extreme, yet least explored environments on Earth. These barren, rocky valleys are subjected to year-round temperature fluctuations across the freezing point and very low availability of water and nutrients, causing previous workers to hypothesize that no photoautotrophic life (primary producers) exists in these locations. However, there has been no work using modern biogeochemical or culture-independent molecular methods to test the hypothesis that photoautotrophs are absent from high Himalayan soil systems. Here, we show that although microbial biomass levels are as low as those of the Dry Valleys of Antarctica, there are abundant microbial photoautotrophs, displaying unexpected phylogenetic diversity, in barren soils from just below the permanent ice line of the central Himalayas. Furthermore, we discovered that one of the dominant algal clades from the high Himalayas also contains the dominant algae in culture-independent surveys of both soil and ice samples from the Dry Valleys of Antarctica, revealing an unexpected link between these environmentally similar but geographically very distant systems. Phylogenetic and biogeographic analyses demonstrated that although this algal clade is globally distributed to other high-altitude and high-latitude soils, it shows significant genetic isolation by geographical distance patterns, indicating local adaptation and perhaps speciation in each region. Our results are the first to demonstrate the remarkable similarities of microbial life of arid soils of Antarctica and the high Himalayas. Our findings are a starting point for future comparative studies of the dry valleys of the Himalayas and Antarctica that will yield new insights into the cold and dry limits to life on Earth.

  4. 19. POWER ROOM INTERIOR, PELTON WATER TURBINE AND FLYBALL GOVERNOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. POWER ROOM INTERIOR, PELTON WATER TURBINE AND FLYBALL GOVERNOR DIRECTLY CONNECTED TO 7 KW AC GENERATOR (ON RIGHT), 125 VOLTS, 56 AMPS. INSTALLED IN 1926, STILL IN USE FOR OUTSIDE LIGHTING. - Death Valley Ranch, Power House, Death Valley Junction, Inyo County, CA

  5. Sustainable Sources of Biomass for Bioremediation of Heavy Metals in Waste Water Derived from Coal-Fired Power Generation

    PubMed Central

    Saunders, Richard J.; Paul, Nicholas A.; Hu, Yi; de Nys, Rocky

    2012-01-01

    Biosorption of heavy metals using dried algal biomass has been extensively described but rarely implemented. We contend this is because available algal biomass is a valuable product with a ready market. Therefore, we considered an alternative and practical approach to algal bioremediation in which algae were cultured directly in the waste water stream. We cultured three species of algae with and without nutrient addition in water that was contaminated with heavy metals from an Ash Dam associated with coal-fired power generation and tested metal uptake and bioremediation potential. All species achieved high concentrations of heavy metals (to 8% dry mass). Two key elements, V and As, reached concentrations in the biomass of 1543 mg.kg−1 DW and 137 mg.kg−1 DW. Growth rates were reduced by more than half in neat Ash Dam water than when nutrients were supplied in excess. Growth rate and bioconcentration were positively correlated for most elements, but some elements (e.g. Cd, Zn) were concentrated more when growth rates were lower, indicating the potential to tailor bioremediation depending on the pollutant. The cosmopolitan nature of the macroalgae studied, and their ability to grow and concentrate a suite of heavy metals from industrial wastes, highlights a clear benefit in the practical application of waste water bioremediation. PMID:22590550

  6. Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation.

    PubMed

    Saunders, Richard J; Paul, Nicholas A; Hu, Yi; de Nys, Rocky

    2012-01-01

    Biosorption of heavy metals using dried algal biomass has been extensively described but rarely implemented. We contend this is because available algal biomass is a valuable product with a ready market. Therefore, we considered an alternative and practical approach to algal bioremediation in which algae were cultured directly in the waste water stream. We cultured three species of algae with and without nutrient addition in water that was contaminated with heavy metals from an Ash Dam associated with coal-fired power generation and tested metal uptake and bioremediation potential. All species achieved high concentrations of heavy metals (to 8% dry mass). Two key elements, V and As, reached concentrations in the biomass of 1543 mg.kg(-1) DW and 137 mg.kg(-1) DW. Growth rates were reduced by more than half in neat Ash Dam water than when nutrients were supplied in excess. Growth rate and bioconcentration were positively correlated for most elements, but some elements (e.g. Cd, Zn) were concentrated more when growth rates were lower, indicating the potential to tailor bioremediation depending on the pollutant. The cosmopolitan nature of the macroalgae studied, and their ability to grow and concentrate a suite of heavy metals from industrial wastes, highlights a clear benefit in the practical application of waste water bioremediation.

  7. Wind Generator & Biomass No-draft Gasification Hybrid

    NASA Astrophysics Data System (ADS)

    Hein, Matthew R.

    The premise of this research is that underutilized but vast intermittent renewable energy resources, such as wind, can become more market competitive by coupling with storable renewable energy sources, like biomass; thereby creating a firm capacity resource. Specifically, the Midwest state of South Dakota has immense wind energy potential that is not used because of economic and logistic barriers of electrical transmission or storage. Coupling the state's intermittent wind resource with another of the state's energy resources, cellulosic non-food biomass, by using a wind generator and no-draft biomass gasification hybrid system will result in a energy source that is both firm and storable. The average energy content of common biomass feedstock was determined, 14.8 MJ/kg (7.153 Btu/lb), along with the assumed typical biomass conversion efficiency of the no-draft gasifier, 65%, so that an average electrical energy round trip efficiency (RTE) of 214% can be expected (i.e. One unit of wind electrical energy can produce 2.14 kWh of electrical energy stored as syngas.) from a wind generator and no-draft biomass gasification system. Wind characteristics are site specific so this analysis utilizes a synthetic wind resource to represent a statistically sound gross representation of South Dakota's wind regime based on data from the Wind Resource Assessment Network (WRAN) locations. A synthetic wind turbine generated from common wind turbine power curves and scaled to 1-MW rated capacity was utilized for this analysis in order to remove equipment bias from the results. A standard 8,760-hour BIN Analysis model was constructed within HOMER, powerful simulation software developed by the National Renewable Energy Laboratory (NREL) to model the performance of renewable power systems. It was found that the optimum configuration on a per-megawatt-transmitted basis required a wind generator (wind farm) rated capacity of 3-MW with an anticipated annual biomass feedstock of 26,132 GJ

  8. The dark side of the tradition: the polluting effect of Epiphany folk fires in the eastern Po Valley (Italy).

    PubMed

    Masiol, Mauro; Formenton, Gianni; Giraldo, Giorgia; Pasqualetto, Alberto; Tieppo, Paulo; Pavoni, Bruno

    2014-03-01

    In the Veneto Region (Po Valley, Northeastern Italy) on the eve of Epiphany, an important religious celebration, during the night between January 5th and 6th thousands of folk fires traditionally burn wooden material. The object of this study is to characterize the 2013 episode, by monitoring the effects on the air quality in the region's lowlands. The daily concentrations of PM2.5 and PM10 exceeded 250 and 300 μg m(-3), respectively and the PM10 hourly values were above 600 μg m(-3) in many sites. The levels of total carbon, major inorganic ions, polycyclic aromatic hydrocarbons and biomass burning tracers (levoglucosan and K(+)) were measured in 84 samples of PM10 and 38 of PM2.5 collected at 32 sites between January 4th and 7th. Total carbon ranged from 11 μg m(-3) before the pollution episode to 131 μg m(-3) a day afterwards, K(+) from 0.6 to 5.1μg m(-3), benzo(a)pyrene from 2 to 23 ng m(-3), and levoglucosan from 0.5 to 8.3 μg m(-3). The dispersion of the particulate matter was traced by analyzing the levels of PM10 and PM2.5 in 133 and 51 sites, respectively, in the Veneto and neighboring regions. In addition to biomass burning the formation of secondary inorganic aerosol was revealed to be a key factor on a multivariate statistical data processing. By providing direct information on the effects of an intense and widespread biomass burning episode in the Po Valley, this study also enables some general considerations on biomass burning practices. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Optical manipulation of valley pseudospin

    DOE PAGES

    Ye, Ziliang; Sun, Dezheng; Heinz, Tony F.

    2016-09-19

    The coherent manipulation of spin and pseudospin underlies existing and emerging quantum technologies, including quantum communication and quantum computation. Valley polarization, associated with the occupancy of degenerate, but quantum mechanically distinct valleys in momentum space, closely resembles spin polarization and has been proposed as a pseudospin carrier for the future quantum electronics. Valley exciton polarization has been created in the transition metal dichalcogenide monolayers using excitation by circularly polarized light and has been detected both optically and electrically. In addition, the existence of coherence in the valley pseudospin has been identified experimentally. The manipulation of such valley coherence has, however,more » remained out of reach. In this paper, we demonstrate all-optical control of the valley coherence by means of the pseudomagnetic field associated with the optical Stark effect. Using below-bandgap circularly polarized light, we rotate the valley exciton pseudospin in monolayer WSe 2 on the femtosecond timescale. Both the direction and speed of the rotation can be manipulated optically by tuning the dynamic phase of excitons in opposite valleys. Finally, this study unveils the possibility of generation, manipulation, and detection of the valley pseudospin by coupling to photons.« less

  10. Development of a black willow improvement program for biomass production in the Lower Mississippi River Alluvial Valley

    Treesearch

    Randell J. Rousseau; Emile S. Gardiner; Theodor D. Leininger

    2012-01-01

    Black willow (Salix nigra Marsh.) has the potential to be a significant feedstock source for bioenergy and biofuels production in the Lower Mississippi Alluvial Valley (LMAV). This potential is based on a number of primary factors including rapid growth, ease of vegetative propagation, excellent rooting, and the ability to regenerate from coppice...

  11. PowerStep - Wastewater as source of biomass for renewable energy

    NASA Astrophysics Data System (ADS)

    Loderer, Christian; Lesjean, Boris; Krampe, Jörg

    2017-04-01

    at operating WWTP sites of different sizes (up to 350,000 pe) and involving various and representative state-of-the-art treatment processes, which underlines both the realistic nature of testing conditions and also the interest of associated partners and utilities in the innovative potential of the investigated technologies and concepts. Within the next three years the following goals should be achieved: • Breakthough innovation: the WWTP will be net energy producer. Wastewater as the last forgotten source of biomass for renewable energy. • No additional needs for power infrastructure, as WWTPs are already well connected in energy supply network and close to power demand (big cities). • First coordinated European project demonstrating energy positive WWTPs as cost effective combination of technological solutions. • Demonstration with first large-scale references: Best practices for next generation WWTPs integrated with global assessment. • Outstanding market and environment impact: Global yearly market value of up 30 Billion, energy cost savings for WWTP operators in Europe of at least €1.7 Billion per year and 5.9 Million tCO2 reduction per year.

  12. Activated Biomass-derived Graphene-based Carbons for Supercapacitors with High Energy and Power Density.

    PubMed

    Jung, SungHoon; Myung, Yusik; Kim, Bit Na; Kim, In Gyoo; You, In-Kyu; Kim, TaeYoung

    2018-01-30

    Here, we present a facile and low-cost method to produce hierarchically porous graphene-based carbons from a biomass source. Three-dimensional (3D) graphene-based carbons were produced through continuous sequential steps such as the formation and transformation of glucose-based polymers into 3D foam-like structures and their subsequent carbonization to form the corresponding macroporous carbons with thin graphene-based carbon walls of macropores and intersectional carbon skeletons. Physical and chemical activation was then performed on this carbon to create micro- and meso-pores, thereby producing hierarchically porous biomass-derived graphene-based carbons with a high Brunauer-Emmett-Teller specific surface area of 3,657 m 2  g -1 . Owing to its exceptionally high surface area, interconnected hierarchical pore networks, and a high degree of graphitization, this carbon exhibited a high specific capacitance of 175 F g -1 in ionic liquid electrolyte. A supercapacitor constructed with this carbon yielded a maximum energy density of 74 Wh kg -1 and a maximum power density of 408 kW kg -1 , based on the total mass of electrodes, which is comparable to those of the state-of-the-art graphene-based carbons. This approach holds promise for the low-cost and readily scalable production of high performance electrode materials for supercapacitors.

  13. Roll splitting as an alternative intermediate process for wood fuel

    Treesearch

    Paul E. Barnett; Donald L. Sirois

    1985-01-01

    In an effort to develop mobile equipment for harvesting and processing woody biomass from power line rights-of-way and precommerial thinnings, numerous alternative concepts were evaluated by Tennessee Valley Authority's Timber Harvesting Project.

  14. Biomass power for rural development. Technical progress report, July 1--September 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC).more » Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the third quarter of 1997, much of the Consortium`s effort has focused on outreach activities, continued feedstock development, fuel supply planning, and fuel contract development, and preparation for 1998 scale-up activities. The Consortium also submitted a Phase-1 extension proposal during this period. A few of the more important milestones are outlined below. The fourth quarter of 1997 is expected to be dominated by Phase-II proposal efforts and planning for 1998 activities.« less

  15. LIFAC Demonstration at Richmond Power and Light Whitewater Valley Unit No. 2 Volume II: Project Performance and Economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The C1ean Coal Technology (CCT) Program has been recognized in the National Energy Strategy as a major initiative whereby coal will be able to reach its full potential as a source of energy for the nation and the international marketplace. Attainment of this goal depends upon the development of highly efficient, environmentally sound, competitive coal utilization technologies responsive to diverse energy markets and varied consumer needs. The CCT Program is an effort jointly funded by government and industry whereby the most promising of the advanced coal-based technologies are being moved into the marketplace through demonstration. The CCT Program is beingmore » implemented through a total of five competitive solicitations. LIFAC North America, a joint venture partnership of ICF Kaiser Engineers, Inc., and Tampella Power Corporation, is currently demonstrating the LIFAC flue gas desulfurization technology developed by Tampella Power. This technology provides sulfur dioxide emission control for power plants, especially existing facilities with tight space limitations. Sulfur dioxide emissions are expected to be reduced by up to 85% by using limestone as a sorbent. The LIFAC technology is being demonstrated at Whitewater Valley Unit No. 2, a 60-MW coal-fired power plant owned and operated by Richmond Power and Light (RP&L) and located in Richmond, Indiana. The Whitewater plant consumes high-sulfur coals, with sulfur contents ranging from 2.0-2.9 $ZO. The project, co-funded by LIFAC North America and DOE, is being conducted with the participation of Richmond Power and Light, the State of Indiana, the Electric Power Research Institute (EPRI), and the Black Beauty Coal Company. The project has a total cost of $21.4 million and a duration of 48 months from the preliminary design phase through the testing program.« less

  16. Feasibility Study of Economics and Performance of Biomass Power Generation at the Former Farmland Industries Site in Lawrence, Kansas. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomberlin, G.; Mosey, G.

    2013-03-01

    Under the RE-Powering America's Land initiative, the U.S. Environmental Protection Agency (EPA) provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of biomass renewable energy generation at the former Farmland Industries site in Lawrence, Kansas. Feasibility assessment team members conducted a site assessment to gather information integral to this feasibility study. Information such as biomass resources, transmission availability, on-site uses for heat and power, community acceptance, and ground conditions were considered.

  17. Gram-negative Biomass in Clay Minerals Analogs: Testing Habitability Potential for the 2011 Mars Science Laboratory Mission

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, R.; McKay, C. P.

    2009-12-01

    Landing sites of next missions to Mars i.e., the US 2011 Mars Science Laboratory (MSL11) and the ESA2016 Pasteur ExoMars, will include phyllosilicate outcrops as targets for investigating the geological and biological history of that planet. In this context, we present a study assessing the living biomass and habitability potential in mineralogical Mars analogs such as phyllosilicates and hematite-rich deposits encompassing a broad arid-hyper-arid climate range (annual rainfall <0.2 to ~700mm/y). Samples from the Atacama Desert (Chile), the Death Valley (CA), and the California Coast (USA) were analyzed for microbial lipopolysaccharide (LPS) as proxy for Gram-negatives biomass with the Limulus-Amebocite-Lysate (LAL) assay. Mineral phases were identified using X-Ray-Diffraction (XRD). These samples resulted to contain phyllosilicate phases similar to those identified, or inferred [1], on the surface of Mars by the OMEGA-Mars/Express [e.g., 2], the Mars Reconnaissance Orbiter (MRO) instruments (HiRISE and CRISM) [3]. Basic observations were: 1) there is no systematic pattern in biomass content of clays vs. non-clays (oxidized) materials from the study sites; 2) Atacama desiccation polygons (muscovite and kaolinite) and contiguous hematite-rich hyper-arid deposits contain the lowest biomass, i.e., ~104to-105 cells/g, respectively; 3) the hyper-arid clays contain three-order magnitude lower Gram-negative biomass than those (montmorillonite, illite, and chlorite) from the arid Death Valley site (~107cells/g); and 4) finally, the Gram-negative (~107cells/g) of clay minerals-rich materials from the arid site is about the same than that (~1.5 to ~3.0 x 107cells/g) of water-saturated massive deposits (kaolinite, illite, and vermiculite) from the wetter California coast. Results from this investigation will help testing for the habitability potential of phyllosilicate deposits sampled by the MSL11 Mission. REFERENCES:[1] Bibring et al., 2006, Science 312:400-404; [2] Wang et

  18. Geophysical Surveys of the Hydrologic Basin Underlying Yosemite Valley, California.

    NASA Astrophysics Data System (ADS)

    Maher, E. L.; Shaw, K. A.; Carey, C.; Dunn, M. E.; Whitman, S.; Bourdeau, J.; Eckert, E.; Louie, J. N.; Stock, G. M.

    2017-12-01

    UNR students in an Applied Geophysics course conducted geophysical investigations in Yosemite Valley during the months of March and August 2017. The goal of the study is to understand better the depth to bedrock, the geometry of the bedrock basin, and the properties of stratigraphy- below the valley floor. Gutenberg and others published the only prior geophysical investigation in 1956, to constrain the depth to bedrock. We employed gravity, resistivity, and refraction microtremor(ReMi) methods to investigate the interface between valley fill and bedrock, as well as shallow contrasts. Resistivity and ReMi arrays along three north-south transects investigated the top 50-60m of the basin fill. Gravity results constrained by shallow measurements suggest a maximum depth of 1000 m to bedrock. ReMi and resistivity techniques identified shallow contrasts in shear velocity and electrical resistivity that yielded information about the location of the unconfined water table, the thickness of the soil zone, and spatial variation in shallow sediment composition. The upper several meters of sediment commonly showed shear velocities below 200 m/s, while biomass-rich areas and sandy river banks could be below 150 m/s. Vs30 values consistently increased towards the edge of the basin. The general pattern for resistivity profiles was a zone of relatively high resistivity, >100 ohm-m, in the top 4 meters, followed by one or more layers with decreased resistivity. According to gravity measurements, assuming either -0.5 g/cc or -0.7 g/cc density contrast between bedrock and basin sediments, a maximum depth to bedrock is found south of El Capitan at respectively, 1145 ± 215 m or 818 ± 150 m. Longitudinal basin geometry coincides with the basin depth geometry discussed by Gutenberg in 1956. Their results describe a "double camel" shape where the deepest points are near El Capitan and the Ahwahnee Hotel and is shallowest near Yosemite Falls, in a wider part of the valley. An August Deep

  19. Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley

    NASA Astrophysics Data System (ADS)

    Sarkar, C.; Sinha, V.; Kumar, V.; Rupakheti, M.; Panday, A.; Mahata, K. S.; Rupakheti, D.; Kathayat, B.; Lawrence, M. G.

    2015-09-01

    acid in the atmosphere, are reported in this study along with nitromethane (a tracer for diesel exhaust) which has only recently been detected in ambient studies. Two distinct periods were selected during the campaign for detailed analysis: the first was associated with high wintertime emissions of biogenic isoprene, and the second with elevated levels of ambient acetonitrile, benzene and isocyanic acid from biomass burning activities. Emissions from biomass burning and biomass co-fired brick kilns were found to be the dominant sources for compounds such as propyne, propene, benzene and propanenitrile which correlated strongly with acetonitrile (r2 > 0.7), a chemical tracer for biomass burning. The calculated total VOC OH reactivity was dominated by acetaldehyde (24.0 %), isoprene (20.2 %) and propene (18.7 %), while oxygenated VOCs and isoprene collectively contributed to more than 68 % of the total ozone production potential. Based on known SOA yields and measured ambient concentrations in the Kathmandu Valley, the relative SOA production potential of VOCs were: benzene > naphthalene > toluene > xylenes > monoterpenes > trimethyl-benzenes > styrene > isoprene. The first ambient measurements from any site in South Asia of compounds with significant health effects such as isocyanic acid, formamide, acetamide, naphthalene and nitromethane have been reported in this study. Our results suggest that mitigation of intense wintertime biomass burning activities, in particular point sources such biomass co-fired brick kilns, would be important to reduce the emission and formation of toxic VOCs (such as benzene and isocyanic acid) in the Kathmandu Valley and improve its air quality.

  20. Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley

    NASA Astrophysics Data System (ADS)

    Sarkar, Chinmoy; Sinha, Vinayak; Kumar, Vinod; Rupakheti, Maheswar; Panday, Arnico; Mahata, Khadak S.; Rupakheti, Dipesh; Kathayat, Bhogendra; Lawrence, Mark G.

    2016-03-01

    = 60.051), which can photochemically produce isocyanic acid in the atmosphere, are reported in this study along with nitromethane (a tracer for diesel exhaust), which has only recently been detected in ambient studies. Two distinct periods were selected during the campaign for detailed analysis: the first was associated with high wintertime emissions of biogenic isoprene and the second with elevated levels of ambient acetonitrile, benzene and isocyanic acid from biomass burning activities. Emissions from biomass burning and biomass co-fired brick kilns were found to be the dominant sources for compounds such as propyne, propene, benzene and propanenitrile, which correlated strongly with acetonitrile (r2 > 0.7), a chemical tracer for biomass burning. The calculated total VOC OH reactivity was dominated by acetaldehyde (24.0 %), isoprene (20.2 %) and propene (18.7 %), while oxygenated VOCs and isoprene collectively contributed to more than 68 % of the total ozone production potential. Based on known secondary organic aerosol (SOA) yields and measured ambient concentrations in the Kathmandu Valley, the relative SOA production potential of VOCs were benzene > naphthalene > toluene > xylenes > monoterpenes > trimethylbenzenes > styrene > isoprene. The first ambient measurements from any site in South Asia of compounds with significant health effects such as isocyanic acid, formamide, acetamide, naphthalene and nitromethane have been reported in this study. Our results suggest that mitigation of intense wintertime biomass burning activities, in particular point sources such biomass co-fired brick kilns, would be important to reduce the emission and formation of toxic VOCs (such as benzene and isocyanic acid) in the Kathmandu Valley.

  1. Aerosol Properties Downwind of Biomass Burns Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buseck, Peter R

    We determined the morphological, chemical, and thermal properties of aerosol particles generated by biomass burning during the Biomass Burning Observation Project (BBOP) campaign during the wildland fire season in the Pacific Northwest from July to mid-September, 2013, and in October, 2013 from prescribed agricultural burns in the lower Mississippi River Valley. BBOP was a field campaign of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility. The morphological information was both two-dimensional, as is typical of most microscopy images and that have many of the characteristic of shadows in that they lack depth data, and three-dimensionalmore » (3D). The electron tomographic measurements will provided 3D data, including the presence and nature of pores and interstices, and whether the individual particles are coated by or embedded within other materials. These microphysical properties were determined for particles as a function of time and distance from the respective sources in order to obtain detailed information regarding the time evolution of changes during aging.« less

  2. San Diego Gas and Electric Company Imperial Valley geothermal activities

    NASA Technical Reports Server (NTRS)

    Hinrichs, T. C.

    1974-01-01

    San Diego Gas and Electric and its wholly owned subsidiary New Albion Resources Co. have been affiliated with Magma Power Company, Magma Energy Inc. and Chevron Oil Company for the last 2-1/2 years in carrying out geothermal research and development in the private lands of the Imperial Valley. The steps undertaken in the program are reviewed and the sequence that must be considered by companies considering geothermal research and development is emphasized. Activities at the south end of the Salton Sea and in the Heber area of Imperial Valley are leading toward development of demonstration facilities within the near future. The current status of the project is reported.

  3. Chuckwalla Valley multiple-well monitoring site, Chuckwalla Valley, Riverside County

    USGS Publications Warehouse

    Everett, Rhett

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, is evaluating the geohydrology and water availability of the Chuckwalla Valley, California. As part of this evaluation, the USGS installed the Chuckwalla Valley multiple-well monitoring site (CWV1) in the southeastern portion of the Chuckwalla Basin. Data collected at this site provide information about the geology, hydrology, geophysics, and geochemistry of the local aquifer system, thus enhancing the understanding of the geohydrologic framework of the Chuckwalla Valley. This report presents construction information for the CWV1 multiple-well monitoring site and initial geohydrologic data collected from the site.

  4. Sacramento Valley, CA, USA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Sacramento Valley (40.5N, 121.5W) of California is the northern extension of the Central Valley, main agriculture region of the state. Hundreds of truck farms, vineyards and orchards can be seen throughout the length and breadth of the valley which was reclaimed from the desert by means of intensive and extensive irrigation projects.

  5. Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Saarikoski, S.; Carbone, S.; Decesari, S.; Giulianelli, L.; Angelini, F.; Canagaratna, M.; Ng, N. L.; Trimborn, A.; Facchini, M. C.; Fuzzi, S.; Hillamo, R.; Worsnop, D.

    2012-09-01

    The chemistry of submicron particles was investigated at San Pietro Capofiume (SPC) measurement station in the Po Valley, Italy, in spring 2008. The measurements were performed by using both off-line and on-line instruments. Organic carbon (OC) and elemental carbon, organic acids and biomass burning tracers were measured off-line by using a 24-h PM1 filter sampling. More detailed particle chemistry was achieved by using a Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and analyzing the data by positive matrix factorization (PMF). Oxalic acid had the highest concentrations of organic acids (campaign-average 97.4 ng m-3) followed by methane sulfonic, formic, malonic, and malic acids. Samples were also analyzed for glyoxylic, succinic, azelaic and maleic acids. In total, the nine acids composed 1.9 and 3.8% of OC and water-soluble OC, respectively (average), in terms of carbon atoms. Levoglucosan concentration varied from 17.7 to 495 ng m-3 with the concentration decreasing in the course of the campaign most likely due to the reduced use of domestic heating with wood. Six factors were found for organic aerosol (OA) at SPC by PMF: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), nitrogen-containing OA (N-OA) and three different oxygenated OAs (OOA-a, OOA-b and OOA-c). Most of the OA mass was composed of OOA-a, HOA and OOA-c (26, 24 and 22%, respectively) followed by OOA-b (13%), BBOA (8%) and N-OA (7%). As expected, OOAs were the most oxygenated factors with organic matter:organic carbon (OM : OC) ratios ranging from 1.9 to 2.2. The diurnal variability of the aerosol chemical composition was greatly affected by the boundary layer meteorology. Specifically, the effect of the nocturnal layer break-up in morning hours was most evident for nitrate and N-OA indicating that these compounds originated mainly from the local sources in the Po Valley. For sulfate and OOA-a the concentration did not change during the break-up suggesting their

  6. Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Saarikoski, S.; Carbone, S.; Decesari, S.; Giulianelli, L.; Angelini, F.; Teinilä, K.; Canagaratna, M.; Ng, N. L.; Trimborn, A.; Facchini, M. C.; Fuzzi, S.; Hillamo, R.; Worsnop, D.

    2012-03-01

    The chemistry of submicron particles was investigated at San Pietro Capofiume (SPC) measurement station in the Po Valley, Italy, in spring 2008. The measurements were performed by using both off-line and on-line instruments. Organic carbon (OC) and elemental carbon, organic acids and biomass burning tracers were measured off-line by using a 24-h PM1 filter sampling. More detailed particle chemistry was achieved by using an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and analyzing the data by positive matrix factorization (PMF). Oxalic acid had the highest concentrations of organic acids (campaign-average 97.4 ng m-3) followed by methane sulfonic, formic, malonic, and malic acids. Samples were also analyzed for glyoxylic, succinic, azelaic and maleic acids. In total, the nine acids composed 1.9 and 3.8% of OC and water-soluble OC, respectively (average), in terms of carbon atoms. Levoglucosan concentration varied from 17.7 to 495 ng m-3 with the concentration decreasing in the course of the campaign most likely due to the reduced use of domestic heating with wood. Six factors were found for organic aerosol (OA) at SPC by PMF: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), nitrogen-containing OA (N-OA) and three different oxygenated OAs (OOA-a, OOA-b and OOA-c). Most of the OA mass was composed of OOA-a, HOA and OOA-c (26, 24 and 22%, respectively) followed by OOA-b (13%), BBOA (8%) and N-OA (7%). As expected, OOAs were the most oxygenated factors with organic matter:organic carbon (OM:OC) ratios ranging from 1.9 to 2.2. The diurnal variability of the aerosol chemical composition was greatly affected by the boundary layer meteorology. Specifically, the effect of the nocturnal layer break-up in morning hours was most evident for nitrate and N-OA indicating that these compounds originated mainly from the local sources in the Po Valley. For sulfate and OOA-a the concentration did not change during the break-up suggesting their

  7. Influence of diligent disintegration on anaerobic biomass and performance of microbial fuel cell.

    PubMed

    Divyalakshmi, Palanisamy; Murugan, Devaraj; Rai, Chockalingam Lajapathi

    2017-12-01

    To enhance the performance of microbial fuel cells (MFC) by increasing the surface area of cathode and diligent mechanical disintegration of anaerobic biomass. Tannery effluent and anaerobic biomass were used. The increase in surface area of the cathode resulted in 78% COD removal, with the potential, current density, power density and coulombic efficiency of 675 mV, 147 mA m -2 , 33 mW m -2 and 3.5%, respectively. The work coupled with increased surface area of the cathode with diligent mechanical disintegration of the biomass, led to a further increase in COD removal of 82% with the potential, current density, power density and coulombic efficiency of 748 mV, 229 mA m -2 , 78 mW m -2 and 6% respectively. Mechanical disintegration of the biomass along with increased surface area of cathode enhances power generation in vertical MFC reactors using tannery effluent as fuel.

  8. Engineering the Pores of Biomass-Derived Carbon: Insights for Achieving Ultrahigh Stability at High Power in High-Energy Supercapacitors.

    PubMed

    Thangavel, Ranjith; Kaliyappan, Karthikeyan; Ramasamy, Hari Vignesh; Sun, Xueliang; Lee, Yun-Sung

    2017-07-10

    Electrochemical supercapacitors with high energy density are promising devices due to their simple construction and long-term cycling performance. The development of a supercapacitor based on electrical double-layer charge storage with high energy density that can preserve its cyclability at higher power presents an ongoing challenge. Herein, we provide insights to achieve a high energy density at high power with an ultrahigh stability in an electrical double-layer capacitor (EDLC) system by using carbon from a biomass precursor (cinnamon sticks) in a sodium ion-based organic electrolyte. Herein, we investigated the dependence of EDLC performance on structural, textural, and functional properties of porous carbon engineered by using various activation agents. The results demonstrate that the performance of EDLCs is not only dependent on their textural properties but also on their structural features and surface functionalities, as is evident from the electrochemical studies. The electrochemical results are highly promising and revealed that the porous carbon with poor textural properties has great potential to deliver high capacitance and outstanding stability over 300 000 cycles compared with porous carbon with good textural properties. A very low capacitance degradation of around 0.066 % per 1000 cycles, along with high energy density (≈71 Wh kg -1 ) and high power density, have been achieved. These results offer a new platform for the application of low-surface-area biomass-derived carbons in the design of highly stable high-energy supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Black willow tree improvement: development of a biomass species for marginal agricultural land in the lower Mississippi alluvial valley

    Treesearch

    Rochelle Brazas Bailey; Randall J. Rousseau; Emile Gardiner; Jason C. Mack

    2014-01-01

    Short rotation woody crops, such as willows (Salix spp.), continue to be examined as biomass species because of their fast growth, ease of vegetative propagation, and ability to be coppice regenerated. Black willow (Salix nigra Marsh.) fits well into a biomass program for the southern United States because of its ability to grow on...

  10. Biomass fly ash incorporation in cement based materials =

    NASA Astrophysics Data System (ADS)

    Rajamma, Rejini

    In recent years, pressures on global environment and energy security have led to an increasing demand on renewable energy sources, and diversification of Europe's energy supply. Among these resources the biomass could exert an important role, since it is considered a renewable and CO2 neutral energy resource once the consumption rate is lower than the growth rate, and can potentially provide energy for heat, power and transports from the same installation. Currently, most of the biomass ash produced in industrial plants is either disposed of in landfill or recycled on agricultural fields or forest, and most times this goes on without any form of control. However, considering that the disposal cost of biomass ashes are raising, and that biomass ash volumes are increasing worldwide, a sustainable ash management has to be established. The main objective of the present study is the effect of biomass fly ashes in cement mortars and concretes in order to be used as a supplementary cementitious material. The wastes analyzed in the study were collected from the fluidized bed boilers and grate boilers available in the thermal power plants and paper pulp plants situated in Portugal. The physical as well as chemical characterisations of the biomass fly ashes were investigated. The cement was replaced by the biomass fly ashes in 10, 20 and 30% (weight %) in order to investigate the fresh properties as well as the hardened properties of biomass fly ash incorporated cement mortar and concrete formulations. Expansion reactions such as alkali silica reaction (ASR), sulphate attack (external and internal) were conducted in order to check the durability of the biomass fly ash incorporated cement mortars and concretes. Alternative applications such as incorporation in lime mortars and alkali activation of the biomass fly ashes were also attempted. The biomass fly ash particles were irregular in shape and fine in nature. The chemical characterization revealed that the biomass fly

  11. Phylogeny is a powerful tool for predicting plant biomass responses to nitrogen enrichment.

    PubMed

    Wooliver, Rachel C; Marion, Zachary H; Peterson, Christopher R; Potts, Brad M; Senior, John K; Bailey, Joseph K; Schweitzer, Jennifer A

    2017-08-01

    Increasing rates of anthropogenic nitrogen (N) enrichment to soils often lead to the dominance of nitrophilic plant species and reduce plant diversity in natural ecosystems. Yet, we lack a framework to predict which species will be winners or losers in soil N enrichment scenarios, a framework that current literature suggests should integrate plant phylogeny, functional tradeoffs, and nutrient co-limitation. Using a controlled fertilization experiment, we quantified biomass responses to N enrichment for 23 forest tree species within the genus Eucalyptus that are native to Tasmania, Australia. Based on previous work with these species' responses to global change factors and theory on the evolution of plant resource-use strategies, we hypothesized that (1) growth responses to N enrichment are phylogenetically structured, (2) species with more resource-acquisitive functional traits have greater growth responses to N enrichment, and (3) phosphorus (P) limits growth responses to N enrichment differentially across species, wherein P enrichment increases growth responses to N enrichment more in some species than others. We built a hierarchical Bayesian model estimating effects of functional traits (specific leaf area, specific stem density, and specific root length) and P fertilization on species' biomass responses to N, which we then compared between lineages to determine whether phylogeny explains variation in responses to N. In concordance with literature on N limitation, a majority of species responded strongly and positively to N enrichment. Mean responses ranged three-fold, from 6.21 (E. pulchella) to 16.87 (E. delegatensis) percent increases in biomass per g N·m -2 ·yr -1 added. We identified a strong difference in responses to N between two phylogenetic lineages in the Eucalyptus subgenus Symphyomyrtus, suggesting that shared ancestry explains variation in N limitation. However, our model indicated that after controlling for phylogenetic non

  12. Study on new biomass energy systems

    NASA Astrophysics Data System (ADS)

    1992-03-01

    A biomass energy total system is proposed, and its feasibility is studied. It is the system in which liquid fuel is produced from eucalyptuses planted in the desert area in Australia for production of biomass resource. Eucalyptus tree planting aims at a growth amount of 40 cu m/ha. per year and a practical application area of 45,000ha. CO2 fixation in the biomass plantation becomes 540,000 tons at a 12 ton/ha. rate. Assuming that 0.55 ton of liquid fuel is produced from 1 ton of biomass, a petrochemical plant having a production of 2.5 million bbl/year per unit (equivalent to the fuel used in the 100,000kW class power plant) is needed. Moreover, survey is made on practicality of diesel substitution fuel by esterification of palm oil, and a marked effect of reduction in soot/smoke and particulates in exhaust gas is confirmed. The biomass conversion process technology and the technology for afforestation at the arid land and irrigation are important as future subjects, and the technology development using a bench plant and a pilot plant is needed.

  13. Sacramento Valley, CA, USA

    NASA Image and Video Library

    1973-06-22

    SL2-04-179 (22 June 1973) --- The Sacramento Valley (40.5N, 121.5W) of California is the northern extension of the Central Valley, main agriculture region of the state. Hundreds of truck farms, vineyards and orchards can be seen throughout the length and breadth of the valley which was reclaimed from the desert by means of intensive and extensive irrigation projects. Photo credit: NASA

  14. Observation of acoustic valley vortex states and valley-chirality locked beam splitting

    NASA Astrophysics Data System (ADS)

    Ye, Liping; Qiu, Chunyin; Lu, Jiuyang; Wen, Xinhua; Shen, Yuanyuan; Ke, Manzhu; Zhang, Fan; Liu, Zhengyou

    2017-05-01

    We report an experimental observation of the classical version of valley polarized states in a two-dimensional hexagonal sonic crystal. The acoustic valley states, which carry specific linear momenta and orbital angular momenta, were selectively excited by external Gaussian beams and conveniently confirmed by the pressure distribution outside the crystal, according to the criterion of momentum conservation. The vortex nature of such intriguing bulk crystal states was directly characterized by scanning the phase profile inside the crystal. In addition, we observed a peculiar beam-splitting phenomenon, in which the separated beams are constructed by different valleys and locked to the opposite vortex chirality. The exceptional sound transport, encoded with valley-chirality locked information, may serve as the basis of designing conceptually interesting acoustic devices with unconventional functions.

  15. Assessment of agricultural biomass potential to electricity generation in Riau Province

    NASA Astrophysics Data System (ADS)

    Papilo, P.; Kusumanto, I.; Kunaifi, K.

    2017-05-01

    Utilization of biomass as a source of electrical power is one potential solution that can be developed in order to increase of the electrification ratio and to Achieve the national energy security. However, now it is still difficult, to Determine the amount of potential energy that can be used as an alternative power generation. Therefore, as a preliminary step to assess the feasibility of biomass development as a power generation source, an analysis of potential resources are required, especially from some of the main commodities, both of residues of agriculture and plantation. This study aims to assessing the potential of biomass-based supply from unutilized resources that can be Obtained from the residues of agricultural and plantations sectors, such as rice straw and rice husk; Dry straw and chaff of rice; corn stalks and cobs; stalks of cassava; and fiber, shell, empty fruit Bunches, kernels and liquid wastes in the palm oil factories. More research is focused on the theoretical energy potential measurements using a statistical approach which has been developed by Biomass Energy Europe (BEE). Results of the assessment has been done and showed that the total theoretical biomass energy that can be produced is equal to 77,466,754.8 Gj year -1. Theoretically, this potential is equivalent to generate electricityof year 21,518,542.8 MWh -1.

  16. Dry Valleys, Antarctica

    NASA Image and Video Library

    2009-11-02

    The McMurdo Dry Valleys are a row of valleys west of McMurdo Sound, Antarctica. They are so named because of their extremely low humidity and lack of snow and ice cover. This image was acquired December 8, 2002 by NASA Terra spacecraft.

  17. Regional assessment of lake ecological states using Landsat: A classification scheme for alkaline-saline, flamingo lakes in the East African Rift Valley

    NASA Astrophysics Data System (ADS)

    Tebbs, E. J.; Remedios, J. J.; Avery, S. T.; Rowland, C. S.; Harper, D. M.

    2015-08-01

    In situ reflectance measurements and Landsat satellite imagery were combined to develop an optical classification scheme for alkaline-saline lakes in the Eastern Rift Valley. The classification allows the ecological state and consequent value, in this case to Lesser Flamingos, to be determined using Landsat satellite imagery. Lesser Flamingos depend on a network of 15 alkaline-saline lakes in East African Rift Valley, where they feed by filtering cyanobacteria and benthic diatoms from the lakes' waters. The classification developed here was based on a decision tree which used the reflectance in Landsat ETM+ bands 2-4 to assign one of six classes: low phytoplankton biomass; suspended sediment-dominated; microphytobenthos; high cyanobacterial biomass; cyanobacterial scum and bleached cyanobacterial scum. The classification accuracy was 77% when verified against in situ measurements. Classified imagery and timeseries were produced for selected lakes, which show the different ecological behaviours of these complex systems. The results have highlighted the importance to flamingos of the food resources offered by the extremely remote Lake Logipi. This study has demonstrated the potential of high spatial resolution, low spectral resolution sensors for providing ecologically valuable information at a regional scale, for alkaline-saline lakes and similar hypereutrophic inland waters.

  18. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. Anmore » extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The

  19. Bio-mass utilization in high pressure cogeneration boiler

    NASA Astrophysics Data System (ADS)

    Koundinya, Sandeep; Maria Ambrose Raj, Y.; Sreeram, K.; Divakar Shetty A., S.

    2017-07-01

    Coal is widely used all over the world in almost all power plants. The dependence on coal has increased enormously as the demand for electricity has reached its peak. Coal being a non-renewable source is depleting fast. We being the engineers, it's our duty to conserve the natural resources and optimize the coal consumption. In this project, we have tried to optimize the bio-mass utilization in high pressure cogeneration boiler. The project was carried in Seshasayee Paper and Boards Limited, erode related to Boiler No:10 operating at steam pressure of 105 kscg and temperature of 510°C. Available bio-mass fuels in and around the mill premises are bagasse, bagasse pith, cane trash and chipper dust. In this project, we have found out the coal equivalent replacement by the above bio-mass fuel(s) to facilitate deciding on the optimized quantity of coal that can be replaced by biomass without modifying the existing design of the plant. The dominant fuel (coal) which could be displaced with the substitute biomass fuel had been individually (biomass) analyzed.

  20. Ground-water conditions in southern Utah Valley and Goshen Valley, Utah

    USGS Publications Warehouse

    Cordova, R.M.

    1970-01-01

    The investigation of ground-water conditions in southern Utah Valley and Goshen Valley, Utah, was made by the U. S. Geological Survey as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights, to investigate the water resources of the State. The purposes of the investigation were to (1) determine the occurrence, recharge, discharge, movement, storage, chemical quality, and availability of ground water; (2) appraise the effects of increased withdrawal of water from wells; and (3) evaluate the effect of the Central Utah Project on the ground-water reservoir and the water supply of Utah Lake.This report presents a description of the aquifer system in the two valleys, a detailed description of the ground-water resources, and conclusions about potential development and its effect on the hydrologic conditions in the valleys. Two supplementary reports are products of the investigation. A basic-data release (Cordova, 1969) contains most of the basic data collected for the investigation, including well characteristics, drillers' logs, water levels, pumpage from wells, chemical analyses of ground and surface waters, and discharge of selected springs, drains, and streams. An interpretive report (Cordova and Mower, 1967) contains the results of a large-scale aquifer test in southern Utah Valley.

  1. In the aftermath of PURPA: The future of the biomass energy industry in Maine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, S.J.; Connors, J.F.

    During the 1980`s the biomass power industry in Maine grew to nearly 500 MW of installed capacity in 21 cogeneration and stand alone plants. By 1992 these plants consumed four million tons of woody fuels annually, while providing 25% of the states` electricity supply. Moreover, this new industry supported over 2500 jobs throughout rural Maine, generated substantial local property taxes and provided a critically need management option for forest management and mill waste disposal. All of this capacity was developed by non-utility generators as Qualifying Facilities (QF) under PURPA rules. Most power contracts were fixed price, must take agreements guidedmore » by avoided cost calculations that assumed high future costs for energy alternatives. Circumstances have changed. Historically low oil prices, economic recession, and rising electricity rates have made biomass fueled power plants some of the most expensive sources of electricity on the power grid. Utilities are responding to rising rates, to public and political pressure to control costs and lower rates by seeking to renegotiate or buy out power contracts and closing biomass plants. While there are strong demands to control electricity costs, there are equally strong concerns about losing the benefits that accrue from the use of indigenous renewable resources. This article evaluates the actions of Maine utilities, independent power producers, the Maine Public Utilities Commission, and the Main Legislature related to PURPA contracts and their likely effects on the future of the biomass power industry in Maine. In particular, we will describe Maine`s new Electric Rate Stabilization Program and subsequent efforts of the Executive Branch to mediate a compromise solution in one case of a utility buy out of a biomass power plant.« less

  2. Analysis of Mining-induced Valley Closure Movements

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.

    2016-05-01

    Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.

  3. The Inter-Valley Soil Comparative Survey: the ecology of Dry Valley edaphic microbial communities

    PubMed Central

    Lee, Charles K; Barbier, Béatrice A; Bottos, Eric M; McDonald, Ian R; Cary, Stephen Craig

    2012-01-01

    Recent applications of molecular genetics to edaphic microbial communities of the McMurdo Dry Valleys and elsewhere have rejected a long-held belief that Antarctic soils contain extremely limited microbial diversity. The Inter-Valley Soil Comparative Survey aims to elucidate the factors shaping these unique microbial communities and their biogeography by integrating molecular genetic approaches with biogeochemical analyses. Although the microbial communities of Dry Valley soils may be complex, there is little doubt that the ecosystem's food web is relatively simple, and evidence suggests that physicochemical conditions may have the dominant role in shaping microbial communities. To examine this hypothesis, bacterial communities from representative soil samples collected in four geographically disparate Dry Valleys were analyzed using molecular genetic tools, including pyrosequencing of 16S rRNA gene PCR amplicons. Results show that the four communities are structurally and phylogenetically distinct, and possess significantly different levels of diversity. Strikingly, only 2 of 214 phylotypes were found in all four valleys, challenging a widespread assumption that the microbiota of the Dry Valleys is composed of a few cosmopolitan species. Analysis of soil geochemical properties indicated that salt content, alongside altitude and Cu2+, was significantly correlated with differences in microbial communities. Our results indicate that the microbial ecology of Dry Valley soils is highly localized and that physicochemical factors potentially have major roles in shaping the microbiology of ice-free areas of Antarctica. These findings hint at links between Dry Valley glacial geomorphology and microbial ecology, and raise previously unrecognized issues related to environmental management of this unique ecosystem. PMID:22170424

  4. 27 CFR 9.132 - Rogue Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Rogue Valley. 9.132... Rogue Valley. (a) Name. The name of the viticultural area described in this section is “Rouge Valley.” (b) Approved map. The appropriate map for determining the boundaries of the Rogue Valley viticultural...

  5. Bioenergy from forests: The power potential of woody biomass

    Treesearch

    John Kirkland; David Nicholls

    2015-01-01

    The elevated intensity of wildfire seasons in the American West combined with political, environmental, and economic issues surrounding the use of coal and oil are spurring a growing interest in the use of woody biomass as a fuel for heating and electrical generation.David Nicholls, a forest products technologist at the Alaska Wood Utilization Research and...

  6. Green Power Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Patrick Barry

    2013-01-28

    National energy policy supports the gathering of more detailed and authoritative data on the introduction of renewable bio-based fuels into new and existing district energy systems via the application of biomass gasification. The University of Iowa developed a biomass-fueled, university-scale steam generation system based on biomass gasification technologies. The system serves as a state-of-the-art research and educational facility in the emerging application of gasification in steam generation. The facility, which includes a smaller down-draft gasifier and a larger multi-stage biomass boiler, was designed to operate primarily on wood-based fuels, but has provisions for testing other biomass fuel sources produced withinmore » a 100-mile radius, providing enough flexibility to meet the fluctuating local supply of biomass from industry and Midwest agriculture. The equipment was installed in an existing, staffed facility. The down-draft gasifier unit is operated by College of Engineering staff and students, under the direct technical supervision of qualified Utilities plant staff. The Green Power Initiative also includes a substantial, innovative educational component. In addition to an onsite, graduate-level research program in biomass fuels, the investigators have integrated undergraduate and graduate level teaching – through classroom studies and experiential learning – and applied research into a biomass-based, university-scale, functioning power plant. University of Iowa is unique in that it currently has multiple renewable energy technologies deployed, including significant biomass combustion (oat hulls) at its Main Power Plant and a new reciprocating engine based renewable district energy system. This project complements and supports the national energy policy and State of Iowa initiatives in ethanol and biodiesel. Byproducts of ethanol and biodiesel processes (distiller grains) as well as industry residues (oat hulls, wood chips, construction and

  7. Hydrogeologic framework and estimates of groundwater storage for the Hualapai Valley, Detrital Valley, and Sacramento Valley basins, Mohave County, Arizona

    USGS Publications Warehouse

    Truini, Margot; Beard, L. Sue; Kennedy, Jeffrey; Anning, Dave W.

    2013-01-01

    We have investigated the hydrogeology of the Hualapai Valley, Detrital Valley, and Sacramento Valley basins of Mohave County in northwestern Arizona to develop a better understanding of groundwater storage within the basin fill aquifers. In our investigation we used geologic maps, well-log data, and geophysical surveys to delineate the sedimentary textures and lithology of the basin fill. We used gravity data to construct a basin geometry model that defines smaller subbasins within the larger basins, and airborne transient-electromagnetic modeled results along with well-log lithology data to infer the subsurface distribution of basin fill within the subbasins. Hydrogeologic units (HGUs) are delineated within the subbasins on the basis of the inferred lithology of saturated basin fill. We used the extent and size of HGUs to estimate groundwater storage to depths of 400 meters (m) below land surface (bls). The basin geometry model for the Hualapai Valley basin consists of three subbasins: the Kingman, Hualapai, and southern Gregg subbasins. In the Kingman subbasin, which is estimated to be 1,200 m deep, saturated basin fill consists of a mixture of fine- to coarse-grained sedimentary deposits. The Hualapai subbasin, which is the largest of the subbasins, contains a thick halite body from about 400 m to about 4,300 m bls. Saturated basin fill overlying the salt body consists predominately of fine-grained older playa deposits. In the southern Gregg subbasin, which is estimated to be 1,400 m deep, saturated basin fill is interpreted to consist primarily of fine- to coarse-grained sedimentary deposits. Groundwater storage to 400 m bls in the Hualapai Valley basin is estimated to be 14.1 cubic kilometers (km3). The basin geometry model for the Detrital Valley basin consists of three subbasins: northern Detrital, central Detrital, and southern Detrital subbasins. The northern and central Detrital subbasins are characterized by a predominance of playa evaporite and fine

  8. Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes.

    PubMed

    Corton, J; Donnison, I S; Patel, M; Bühle, L; Hodgson, E; Wachendorf, M; Bridgwater, A; Allison, G; Fraser, M D

    2016-09-01

    Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush ( Juncus effuses ) and bracken ( Pteridium aquilinum ) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 10 5  tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.

  9. Fretted Terrain Valleys

    NASA Technical Reports Server (NTRS)

    2004-01-01

    30 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows shallow tributary valleys in the Ismenius Lacus fretted terrain region of northern Arabia Terra. These valleys exhibit a variety of typical fretted terrain valley wall and floor textures, including a lineated, pitted material somewhat reminiscent of the surface of a brain. Origins for these features are still being debated within the Mars science community; there are no clear analogs to these landforms on Earth. This image is located near 39.9oN, 332.1oW. The picture covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  10. 7 CFR 906.30 - Powers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Powers. 906.30 Section 906.30 Agriculture Regulations... GRANDE VALLEY IN TEXAS Order Regulating Handling Committee § 906.30 Powers. The committee shall have the following powers: (a) To administer the provisions of this part in accordance with its terms; (b) To make...

  11. 7 CFR 906.30 - Powers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Powers. 906.30 Section 906.30 Agriculture Regulations... GRANDE VALLEY IN TEXAS Order Regulating Handling Committee § 906.30 Powers. The committee shall have the following powers: (a) To administer the provisions of this part in accordance with its terms; (b) To make...

  12. Geologic history of the Yosemite Valley

    USGS Publications Warehouse

    Matthes, Francois E.

    1930-01-01

    Projection of the longitudinal profiles of these hanging valleys forward to the axis of the Merced Canyon shows that they are closely accordant in height. Their profiles indicate a series of points on a former profile of the Merced with respect to which the side streams had graded their courses prior to the last uplift. This old profile can be extended upward into the glaciated part of the Merced Canyon above El Portal and even into the profoundly glaciated Yosemite Valley, accordant points being furnished by a number of hanging side valleys (due allowance being made for glacial erosion suffered by those valleys). However, not all the hanging valleys of the Yosemite region are accordant with this set. Several of them, including the upland valley of Yosemite Creek, constitute a separate set indicating another old profile of the Merced at a level 600 to 1,000 feet higher than the first. Others, including the hanging gulch of lower Bridalveil Creek, point to an old profile of the Merced about 1,200 feet lower than the first. There are thus three distinct sets of hanging valleys produced in three cycles of stream erosion. The valleys of the upper set, like those of the middle set, were left hanging as a result of rapid trenching by the Merced induced by an uplift of the range, there having been two such uplifts. Only the valleys of the lower set hang because of glacial deepening and widening of the Yosemite Valley, the cycle in which they were cut having been interrupted by the advent of the Pleistocene glaciers. They consequently indicate the preglacial depth of the Yosemite Valley. That depth, measured from the brow of El Capitan, was about 2,400 feet; measured from the rim at Glacier Point it was about 2,000 feet.

  13. Design and process integration of organic Rankine cycle utilizing biomass for power generation

    NASA Astrophysics Data System (ADS)

    Ependi, S.; Nur, T. B.

    2018-02-01

    Indonesia has high potential biomass energy sources from palm oil mill industry activities. The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used for generating electricity from rejected waste heat to the environment in industrial processes. In this study, the potential of the palm oil empty fruit bunch, and wood chip have been used as fuel for biomass to generate electricity based ORC with combustion processes. The heat from combustion burner was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC unit. Appropriate designs integration from biomass combustion unit to ORC unit have been analyzed and proposed to generate expander shaft-work. Moreover, the effect of recuperator on the total system efficiency has also been investigated. It was observed that the fuel consumption was increased when the ORC unit equipped recuperator operated until certain pressure and decreased when operated at high pressure.

  14. Biomass thermochemical gasification: Experimental studies and modeling

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  15. 76 FR 22746 - Conecuh Valley Railway, LLC-Acquisition and Operation Exemption-Conecuh Valley Railroad Co., Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... Railway, LLC--Acquisition and Operation Exemption--Conecuh Valley Railroad Co., Inc. Conecuh Valley Railway, LLC (CVR), a noncarrier, has filed a verified notice of exemption under 49 CFR 1150.31 to acquire from Conecuh Valley Railroad Co., Inc. (COEH), and to operate [[Page 22747

  16. TVA GIS-based biomass resource assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noon, C.E.

    1993-12-31

    The focus of this paper is a computer-based system for estimating the costs of supplying wood fuel. The system is being developed for the Tennessee Valley Authority and is referred to as the Biomass Resource Assessment Version One (BRAVO) system. The main objective in developing the BRAVO system is to assist TVA in estimating the costs for supplying wood fuel to any one of its twelve coal-fired plants. The BRAVO system is developed within a Geographic Information System (GIS) platform and is designed to allow a user to perform {open_quotes}what if{close_quotes} analyses related to the costs of wood fuel supply.more » Three types of wood fuel are considered in the BRAVO system: mill residues, logging residues and short-rotation woody crops (SRWC). Each type of wood fuel has unique economic and supply characteristics. The input data for the system includes the specific locations, amount, and prices of the various types of wood fuel throughout the TVA region. The system input is completed by data on political boundaries, power plant locations, road networks and a model for estimating transportation costs as a function of distance. The result is a comprehensive system which includes information on all possible wood fuel supply joints, demand points and product movement costs. In addition, the BRAVO system has been designed to allow a user to perform sensitivity analysis on a variety of supply system parameters. This will enable TVA to thoroughly investigate the financial impacts of issues such as increased competition for wood fuel, environmental policies, fuel taxes, and regional economic cycles.« less

  17. Biofuel from biomass via photo-electrochemical reactions: An overview

    NASA Astrophysics Data System (ADS)

    Ibrahim, N.; Kamarudin, S. K.; Minggu, L. J.

    2014-08-01

    Biomass is attracting a great deal of attention as a renewable energy resource to reduce carbon dioxide (CO2) emissions. Converting biomass from municipal, agricultural and livestock into biofuel and electrical power has significant environmental and economic advantages. The conversion of biomass into practical energy requires elegant designs and further investigation. Thus, biomass is a promising renewable energy source due to its low production cost and simple manufacturing processes. Biofuel (hydrogen and methanol) from biomass will be possible to be used for transportation with near-zero air pollution, involves efficient uses of land and major contribution to reduce dependence on insecure source of petroleum. Photoelectrochemical (PEC) reactions study has potential pathway for producing fuel from biomass and bio-related compound in the near future. This review highlights recent work related to the PEC conversion of biomass and bio-related compounds into useful biofuels and electricity. This review covers different types of photochemical reaction cells utilizing various types of organic and inorganic waste. It also presents recent developments in photoelectrodes, photocatalysts and electrolytes as well as the production of different types of fuel from PEC cells and highlights current developments and problems in PEC reactions.

  18. Biomass power for rural development. Technical progress report, May 1, 1996--December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    Developing commercial energy crops for power generation by the year 2000 is the focus of the DOE/USDA sponsored Biomass Power for Rural Development project. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-I, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Facette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG). Phase-II of the project willmore » focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. There will be testing of the energy crop as part of the gasification trials expected to occur at BED`s McNeill power station and potentially at one of GPU`s facilities. Phase-III will represent full-scale commercialization of the energy crop and power generation on a sustainable basis. Willow has been selected as the energy crop of choice for many reasons. Willow is well suited to the climate of the Northeastern United States, and initial field trials have demonstrated that the yields required for the success of the project are obtainable. Like other energy crops, willow has rural development benefits and could serve to diversify local crop production, provide new sources of income for participating growers, and create new jobs. Willow could be used to put a large base of idle acreage back into crop production. Additionally, the willow coppicing system integrates well with current farm operations and utilizes agricultural practices that are already familiar to farmers.« less

  19. Grizzly Valley fault system, Sierra Valley, CA

    USGS Publications Warehouse

    Gold, Ryan; Stephenson, William; Odum, Jack; Briggs, Rich; Crone, Anthony; Angster, Steve

    2012-01-01

    The Grizzly Valley fault system (GVFS) strikes northwestward across Sierra Valley, California and is part of a network of active, dextral strike-slip faults in the northern Walker Lane (Figure 1). To investigate Quaternary motion across the GVFS, we analyzed high-resolution (0.25 m) airborne LiDAR data (Figure 2) in combination with six, high-resolution, P-wave, seismic-reflection profiles [Gold and others, 2012]. The 0.5- to 2.0-km-long seismic-reflection profiles were sited orthogonal to suspected tectonic lineaments identified from previous mapping and our analysis of airborne LiDAR data. To image the upper 400–700 m of subsurface stratigraphy of Sierra Valley (Figure 3), we used a 230-kg accelerated weight drop source. Geophone spacing ranged from 2 to 5 m and shots were co-located with the geophones. The profiles reveal a highly reflective, deformed basal marker that we interpret to be the top of Tertiary volcanic rocks, overlain by a 120- to 300-m-thick suite of subhorizontal reflectors we interpret as Plio-Pleistocene lacustrine deposits. Three profiles image the principle active trace of the GVFS, which is a steeply dipping fault zone that offsets the volcanic rocks and the basin fill (Figures 4 & 5).

  20. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expandsmore » the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of

  1. Future impacts of distributed power generation on ambient ozone and particulate matter concentrations in the San Joaquin Valley of California.

    PubMed

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region.

  2. Topological Valley Currents in Gapped Dirac Materials

    NASA Astrophysics Data System (ADS)

    Lensky, Yuri D.; Song, Justin C. W.; Samutpraphoot, Polnop; Levitov, Leonid S.

    2015-06-01

    Gapped 2D Dirac materials, in which inversion symmetry is broken by a gap-opening perturbation, feature a unique valley transport regime. Topological valley currents in such materials are dominated by bulk currents produced by electronic states just beneath the gap rather than by edge modes. The system ground state hosts dissipationless persistent valley currents existing even when topologically protected edge modes are absent. Valley currents induced by an external bias are characterized by a quantized half-integer valley Hall conductivity. The undergap currents dominate magnetization and the charge Hall effect in a light-induced valley-polarized state.

  3. Field Surveys, IOC Valleys. Volume III, Part II. Cultural Resources Survey, Pine and Wah Wah Valleys, Utah.

    DTIC Science & Technology

    1981-08-01

    valleys are typical of the Basin and Range Province, characterized by parallel, north-south trending mountain ranges, separated by hydrologically closed... basins . Pine and Wah Wah valleys each have hardpan-playas in their lowest areas. State Highway 21 runs roughly northwest-southeast through both val...have been important for prehis- toric and historic use of the area. Pine Valley: Pine and Wah Wah valleys are closed alluvial basins . The central part

  4. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Anthe; Geier, Manfred; Dedrick, Daniel E.

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspendedmore » in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.« less

  5. Energy Efficiency and Air Quality Repairs at Lyonsdale Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brower, Michael R; Morrison, James A; Spomer, Eric

    2012-07-31

    This project enabled Lyonsdale Biomass, LLC to effect analyses, repairs and upgrades for its biomass cogeneration facility located in Lewis County, New York and close by the Adirondack Park to reduce air emissions by improving combustion technique and through the overall reduction of biomass throughput by increasing the system's thermodynamic efficiency for its steam-electrical generating cycle. Project outcomes result in significant local, New York State, Northeast U.S. and national benefits including improved renewable energy operational surety, enhanced renewable energy efficiency and more freedom from foreign fossil fuel source dependence. Specifically, the reliability of the Lyonsdale Biomass 20MWe woody biomass combined-heatmore » and power (CHP) was and is now directly enhanced. The New York State and Lewis County benefits are equally substantial since the facility sustains 26 full-time equivalency (FTE) jobs at the facility and as many as 125 FTE jobs in the biomass logistics supply chain. Additionally, the project sustains essential local and state payment in lieu of taxes revenues. This project helps meet several USDOE milestones and contributes directly to the following sustainability goals:  Climate: Reduces greenhouse gas emissions associated with bio-power production, conversion and use, in comparison to fossil fuels. Efficiency and Productivity: Enhances efficient use of renewable resources and maximizes conversion efficiency and productivity. Profitability: Lowers production costs. Rural Development: Enhances economic welfare and rural development through job creation and income generation. Standards: Develop standards and corresponding metrics for ensuring sustainable biopower production. Energy Diversification and Security: Reduces dependence on foreign oil and increases energy supply diversity. Net Energy Balance: Ensures positive net energy balance for all alternatives to fossil fuels.« less

  6. Solar Energy within the Central Valley, CA: Current Practices and Potential

    NASA Astrophysics Data System (ADS)

    Hoffacker, M. K.; Hernandez, R. R.; Allen, M. F.

    2015-12-01

    Utility-scale solar energy (USSE, ≥ 1 megawatt [MW]) systems are rapidly being deployed in the Central Valley of California, generating clean electricity and new job opportunities. Utility-scale solar energy systems require substantial quantities of land or space, often prompting an evaluation of environmental impacts and trade-offs when selecting their placement. Utilizing salt-contaminated agricultural land (as the sodium absorption and electrical conductivity values are unsuitably high), unsuitable for food production, and lands within the built environment (developed), can serve as a co-benefit opportunity when reclamation of these lands for USSE development is prioritized. In this study, we quantify the theoretical and generation-based solar energy potential for the Central Valley according to land-cover type, crop type, and for salt-contaminated lands. Further, we utilize the Carnegie Energy and Environmental Compatibility (CEEC) model to identify and prioritize solar energy, integrating environmental resource opportunities and constraints most relevant to the Central Valley. We use the CEEC model to generate a value-based environmental compatibility output for the Central Valley. The Central Valley extends across nearly 60,000 km2 of California with the potential of generating 21,800 - 30,300 TWh y-1 and 41,600 TWh y-1 of solar energy for photovoltaic (PV) and concentrating solar power (CSP), respectively. Pasture, hay, and cultivated crops comprise over half of the Central Valley, much of which is considered prime agriculture or of statewide or local importance for farming (28,200 km2). Together, approximately one-third of this region is salt-contaminated (16%) or developed (11%). This confers a generation-based potential of 5713 - 7891 TWh y-1 and 2770 TWh y-1 for PV and CSP, respectively. As energy, food, and land are inextricably linked, our study shows how land favorable for renewable energy systems can be used more effectively in places where land is

  7. Formulation, Pretreatment, and Densification Options to Improve Biomass Specifications for Co-Firing High Percentages with Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaya Shankar Tumuluru; J Richard Hess; Richard D. Boardman

    2012-06-01

    There is a growing interest internationally to use more biomass for power generation, given the potential for significant environmental benefits and long-term fuel sustainability. However, the use of biomass alone for power generation is subject to serious challenges, such as feedstock supply reliability, quality, and stability, as well as comparative cost, except in situations in which biomass is locally sourced. In most countries, only a limited biomass supply infrastructure exists. Alternatively, co-firing biomass alongwith coal offers several advantages; these include reducing challenges related to biomass quality, buffering the system against insufficient feedstock quantity, and mitigating the costs of adapting existingmore » coal power plants to feed biomass exclusively. There are some technical constraints, such as low heating values, low bulk density, and grindability or size-reduction challenges, as well as higher moisture, volatiles, and ash content, which limit the co-firing ratios in direct and indirect co-firing. To achieve successful co-firing of biomass with coal, biomass feedstock specifications must be established to direct pretreatment options in order to modify biomass materials into a format that is more compatible with coal co-firing. The impacts on particle transport systems, flame stability, pollutant formation, and boiler-tube fouling/corrosion must also be minimized by setting feedstock specifications, which may include developing new feedstock composition by formulation or blending. Some of the issues, like feeding, co-milling, and fouling, can be overcome by pretreatment methods including washing/leaching, steam explosion, hydrothermal carbonization, and torrefaction, and densification methods such as pelletizing and briquetting. Integrating formulation, pretreatment, and densification will help to overcome issues related to physical and chemical composition, storage, and logistics to successfully co-fire higher percentages of biomass

  8. A landscape scale valley confinement algorithm: Delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications

    Treesearch

    David E. Nagel; John M. Buffington; Sharon L. Parkes; Seth Wenger; Jaime R. Goode

    2014-01-01

    Valley confinement is an important landscape characteristic linked to aquatic habitat, riparian diversity, and geomorphic processes. This report describes a GIS program called the Valley Confinement Algorithm (VCA), which identifies unconfined valleys in montane landscapes. The algorithm uses nationally available digital elevation models (DEMs) at 10-30 m resolution to...

  9. Graphene Nanobubbles as Valley Filters and Beam Splitters

    NASA Astrophysics Data System (ADS)

    Settnes, Mikkel; Power, Stephen R.; Brandbyge, Mads; Jauho, Antti-Pekka

    2016-12-01

    The energy band structure of graphene has two inequivalent valleys at the K and K' points of the Brillouin zone. The possibility to manipulate this valley degree of freedom defines the field of valleytronics, the valley analogue of spintronics. A key requirement for valleytronic devices is the ability to break the valley degeneracy by filtering and spatially splitting valleys to generate valley polarized currents. Here, we suggest a way to obtain valley polarization using strain-induced inhomogeneous pseudomagnetic fields (PMFs) that act oppositely on the two valleys. Notably, the suggested method does not involve external magnetic fields, or magnetic materials, unlike previous proposals. In our proposal the strain is due to experimentally feasible nanobubbles, whose associated PMFs lead to different real space trajectories for K and K' electrons, thus allowing the two valleys to be addressed individually. In this way, graphene nanobubbles can be exploited in both valley filtering and valley splitting devices, and our simulations reveal that a number of different functionalities are possible depending on the deformation field.

  10. Enabling valley selective exciton scattering in monolayer WSe2 through upconversion

    PubMed Central

    Manca, M.; Glazov, M. M.; Robert, C.; Cadiz, F.; Taniguchi, T.; Watanabe, K.; Courtade, E.; Amand, T.; Renucci, P.; Marie, X.; Wang, G.; Urbaszek, B.

    2017-01-01

    Excitons, Coulomb bound electron–hole pairs, are composite bosons and their interactions in traditional semiconductors lead to condensation and light amplification. The much stronger Coulomb interaction in transition metal dichalcogenides such as WSe2 monolayers combined with the presence of the valley degree of freedom is expected to provide new opportunities for controlling excitonic effects. But so far the bosonic character of exciton scattering processes remains largely unexplored in these two-dimensional materials. Here we show that scattering between B-excitons and A-excitons preferably happens within the same valley in momentum space. This leads to power dependent, negative polarization of the hot B-exciton emission. We use a selective upconversion technique for efficient generation of B-excitons in the presence of resonantly excited A-excitons at lower energy; we also observe the excited A-excitons state 2s. Detuning of the continuous wave, low-power laser excitation outside the A-exciton resonance (with a full width at half maximum of 4 meV) results in vanishing upconversion signal. PMID:28367962

  11. Biomass resources for energy in Ohio: The OH-MARKAL modeling framework

    NASA Astrophysics Data System (ADS)

    Shakya, Bibhakar

    The latest reports from the Intergovernmental Panel on Climate Change have indicated that human activities are directly responsible for a significant portion of global warming trends. In response to the growing concerns regarding climate change and efforts to create a sustainable energy future, biomass energy has come to the forefront as a clean and sustainable energy resource. Biomass energy resources are environmentally clean and carbon neutral with net-zero carbon dioxide (CO2) emissions, since CO2 is absorbed or sequestered from the atmosphere during the plant growth. Hence, biomass energy mitigates greenhouse gases (GHG) emissions that would otherwise be added to the environment by conventional fossil fuels, such as coal. The use of biomass resources for energy is even more relevant in Ohio, as the power industry is heavily based on coal, providing about 90 percent of the state's total electricity while only 50 percent of electricity comes from coal at the national level. The burning of coal for electricity generation results in substantial GHG emissions and environmental pollution, which are responsible for global warming and acid rain. Ohio is currently one of the top emitters of GHG in the nation. This dissertation research examines the potential use of biomass resources by analyzing key economic, environmental, and policy issues related to the energy needs of Ohio over a long term future (2001-2030). Specifically, the study develops a dynamic linear programming model (OH-MARKAL) to evaluate biomass cofiring as an option in select coal power plants (both existing and new) to generate commercial electricity in Ohio. The OH-MARKAL model is based on the MARKAL (MARKet ALlocation) framework. Using extensive data on the power industry and biomass resources of Ohio, the study has developed the first comprehensive power sector model for Ohio. Hence, the model can serve as an effective tool for Ohio's energy planning, since it evaluates economic and environmental

  12. The Long Valley Caldera GIS database

    USGS Publications Warehouse

    Battaglia, Maurizio; Williams, M.J.; Venezky, D.Y.; Hill, D.P.; Langbein, J.O.; Farrar, C.D.; Howle, J.F.; Sneed, M.; Segall, P.

    2003-01-01

    This database provides an overview of the studies being conducted by the Long Valley Observatory in eastern California from 1975 to 2001. The database includes geologic, monitoring, and topographic datasets related to Long Valley caldera. The CD-ROM contains a scan of the original geologic map of the Long Valley region by R. Bailey. Real-time data of the current activity of the caldera (including earthquakes, ground deformation and the release of volcanic gas), information about volcanic hazards and the USGS response plan are available online at the Long Valley observatory web page (http://lvo.wr.usgs.gov). If you have any comments or questions about this database, please contact the Scientist in Charge of the Long Valley observatory.

  13. Paleolimnology of lacustrine rocks in Stewart Valley, Nevada: Evidence for Middle Miocene climatic cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starrat, S.W.

    1993-04-01

    Three diatom floras from Middle Miocene (Barstovian and Clarendonian) lacustrine rocks in Stewart Valley, Nevada have been distinguished. The change in floral composition between the two youngest floras may be indicative of climatic cooling over a period of about 3 m.y. (15--12 Ma). Age control is provided by radiometric (K-Ar) and vertebrate fossil data. The oldest flora is dominated by members of the genus Fragilaria'. Although most common in modern-day marshy areas, the laminated nature of the Stewart Valley strata in which this flora is found suggest that large numbers of these diatoms were washed into deeper waters, where theymore » continued to thrive as a significant part of the planktonic biomass. Stratigraphically equivalent rocks elsewhere in Stewart Valley contain abundant clusters of unopened prasinophyte algae. These unopened algal structures are thought to indicate extreme environmental stress. Environmental stress would also explain the presence of several beds of well-preserved fish fossils in stratigraphically adjacent beds. The other tow floras are preserved in a 45-m-thick section of diatomaceous shale, located about 95 m above the flora discussed above. The flora in the lower part of this section is dominated by the genus Aulacoseira (primarily A. granulata). Modern-day members of this genus are common in areas with abundant summer precipitation and mild winters. The flora in the upper part of the section is dominated by Actinocyclus cedarensis Bradbury and Krebs. If A. cedarensis can be considered an ecological analog of the late Pleistocene (glacial) representatives of the genus Stephanodiscus, then its dominant position in the flora may be indicative of a cooling event. This climate trend is also evident in paleobotanical (leaf and pollen) data from Stewart Valley, as well as many other localities across the Great Basin.« less

  14. Processing woody biomass with a modified horizontal grinder

    Treesearch

    Dana Mitchell; John Klepac

    2008-01-01

    This study documents the production rate and cost of producing woody biomass chips for use in a power plant. The power plant has specific raw material handling requirements. Output from a 3-knife chipper, a tub grinder, and a horizontal grinder was considered. None of the samples from these machines met the specifications needed. A horizontal grinder was modified to...

  15. The Integration of Gasification Systems with Gas Engine to Produce Electrical Energy from Biomass

    NASA Astrophysics Data System (ADS)

    Siregar, K.; Alamsyah, R.; Ichwana; Sholihati; Tou, S. B.; Siregar, N. C.

    2018-05-01

    The need for energy especially biomass-based renewable energy continues to increase in Indonesia. The objective of this research was to design downdraft gasifier machine with high content of combustible gas on gas engine. Downdraft gasifier machine was adjusted with the synthetic gas produced from biomass. Besides that, the net energy ratio, net energy balance, renewable index, economic analysis, and impact assessment also been conducted. Gas engine that was designed in this research had been installed with capacity of 25 kW with diameter and height of reactor were 900 mm and 1000 mm respectively. The method used here were the design the Detailed Engineering Design (DED), assembly, and performance test of gas engine. The result showed that gas engine for biomass can be operated for 8 hours with performance engine of 84% and capacity of 25 kW. Net energy balance, net energy ratio, and renewable index was 30 MJ/kWh-electric; 0.89; 0.76 respectively. The value of GHG emission of Biomass Power Generation is 0.03 kg-CO2eq/MJ. Electrical production cost for Biomass Power Generation is about Rp.1.500,/kWh which is cheaper than Solar Power Generation which is about of Rp. 3.300,-/kWh.

  16. Geomorphic controls on Pleistocene knickpoint migration in Alpine valleys

    NASA Astrophysics Data System (ADS)

    Leith, Kerry; Fox, Matt; Moore, Jeffrey R.; Brosda, Julian; Krautblatter, Michael; Loew, Simon

    2014-05-01

    Recent insights into sub-glacial bedrock stress conditions suggest that the erosional efficiency of glaciers may reduce markedly following a major erosional cycle [Leith et al., 2013]. This implies that the formation of large glacial valleys within the Alps is likely to have occurred shortly after the onset of 100 ky glacial-interglacial cycles (at the mid-Pleistocene Revolution (MPR)). The majority of landscape change since this time may have therefore been driven by sub-aerial processes. This hypothesis is supported by observations of hillslope and channel morphology within Canton Valais (Switzerland), where major tributary valleys display a common morphology along their length, hinting at a shared geomorphic history. Glaciers currently occupy the headwaters of many catchments, while the upper reaches of rivers flow across extensive alluvial planes before abruptly transitioning to steep channels consisting of mixed bedrock and talus fan deposits. The rivers then converge to flow out over the alluvial plane of the Rhone Valley. Characteristically rough topographies within the region are suggested to mark the progressive transition from a glacial to fluvially-dominated landscape, and correlate well with steepened river channel sections determined from a 2.5 m resolution LiDAR DEM. We envisage a landscape in which ongoing tectonic uplift drives the emergence of Alpine bedrock through massive sedimentary valley infills (currently concentrated in the Rhone Valley), whose elevation is fixed by the consistent fluvial baselevel at Lake Geneva. As fluvial incision ceases at the onset of glaciation, continued uplift causes the formation of knickpoints at the former transition from bedrock to sedimentary infill. These knickpoints will then propagate upstream during subsequent interglacial periods. By investigating channel morphologies using an approach based on the steady-state form of the stream power equation, we can correlate steepened channel reaches (degraded

  17. 76 FR 62457 - Tennessee Valley Authority (Bellefonte Nuclear Plant, Unit 1)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... (Bellefonte Nuclear Plant, Unit 1) Order I. The Tennessee Valley Authority (TVA, or the applicant) is the... Nuclear Plant (BLN), Units 1 and 2, respectively. The CPs for CPPR-122 and CPPR-123 expire on October 1... option for future power generation at BLN Unit 1. In the letter dated April 25, 2011, TVA informed the...

  18. 27 CFR 9.78 - Ohio River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ohio River Valley. 9.78... River Valley. (a) Name. The name of the viticultural area described in this section is “Ohio River Valley.” (b) Approved maps. The approved maps for determining the boundary of the Ohio River Valley...

  19. Testing a Mars science outpost in the Antarctic dry valleys

    NASA Technical Reports Server (NTRS)

    Andersen, D. T.; Mckay, C. P.; Wharton, R. A.; Rummel, J. D.

    1992-01-01

    Field research conducted in the Antarctic has been providing insights about the nature of Mars in the science disciplines of exobiology and geology. Located in the McMurdo Dry Valleys of southern Victoria Land (160 deg and 164 deg E longitude and 76 deg 30 min and 78 deg 30 min S latitude), research outposts are inhabited by teams of 4-6 scientists. It is proposed that the design of these outposts be expanded to enable meaningful tests of many of the systems that will be needed for the successful conduct of exploration activities on Mars. Although there are some important differences between the environment in the Antarctic dry valleys and on Mars, the many similarities and particularly the field science activities, make the dry valleys a useful terrestrial analog to conditions on Mars. Three areas have been identified for testing at a small science outpost in the dry valleys: (1) studying human factors and physiology in an isolated environment; (2) testing emerging technologies (e.g. innovative power management systems, advanced life support facilities including partial bioregenerative life support systems for water recycling and food growth, telerobotics, etc.); and (3) conducting basic scientific research that will enhance understanding of Mars while contributing to the planning for human exploration. It is suggested that an important early result of a Mars habitat program will be the experience gained by interfacing humans and their supporting technology in a remote and stressful environment.

  20. Valley dependent transport in graphene L junction

    NASA Astrophysics Data System (ADS)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  1. Biomass shock pretreatment

    DOEpatents

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  2. Estimation of Biomass Dynamics in Alpine Treeline Ecotone using Airborne Lidar and Repeat Photography

    NASA Astrophysics Data System (ADS)

    McCaffrey, D. R.; Hopkinson, C.

    2016-12-01

    Historic photographs provide visual records of landscapes which pre-date aerial and satellite observations, but analysis of these photographs has largely been qualitative due to varying spatial scale within an oblique image. Recent technological advances, such as the WSL monoplotting tool, provide the ability to georeference single oblique images, allowing for quantitative spatial analysis of land cover change between historic photographs and contemporary repeat photographs. The WSL monoplotting tool was used to compare alpine land cover change between 12 photographs from a 1914 survey of the West Castle valley (Alberta, Canada; 49.3° N, 114.4° W) and 12 repeat photographs, collected in 2006 by the Mountain Legacy Project. We tested for correlations between land cover shifts over the 92 year observation period and geomorphic controls (e.g. elevation, slope, aspect), with a focus on vegetative change in the alpine treeline ecotone (ATE). A model of above ground biomass was generated using an airborne lidar observation of the valley (2014) and ground validated measurements of tree height, diameter at breast height, and leaf area index from 25 plots (400 m2). By creating a high resolution map of ATE dynamics over a 92 year interval and incorporating a model of above ground biomass, the relative magnitude of anthropogenic, orographic, and climatic controls on ATE can be explored. This research provides a unique opportunity to understand the impact that continued atmospheric warming could have on vegetative boundaries in sensitive alpine systems, such as the eastern slopes of the Rocky Mountains.

  3. Energetic approach of biomass hydrolysis in supercritical water.

    PubMed

    Cantero, Danilo A; Vaquerizo, Luis; Mato, Fidel; Bermejo, M Dolores; Cocero, M José

    2015-03-01

    Cellulose hydrolysis can be performed in supercritical water with a high selectivity of soluble sugars. The process produces high-pressure steam that can be integrated, from an energy point of view, with the whole biomass treating process. This work investigates the integration of biomass hydrolysis reactors with commercial combined heat and power (CHP) schemes, with special attention to reactor outlet streams. The innovation developed in this work allows adequate energy integration possibilities for heating and compression by using high temperature of the flue gases and direct shaft work from the turbine. The integration of biomass hydrolysis with a CHP process allows the selective conversion of biomass into sugars with low heat requirements. Integrating these two processes, the CHP scheme yield is enhanced around 10% by injecting water in the gas turbine. Furthermore, the hydrolysis reactor can be held at 400°C and 23 MPa using only the gas turbine outlet streams. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Down in the Valley.

    ERIC Educational Resources Information Center

    Salter, Linda Graef

    1999-01-01

    Describes the partnerships formed by West Valley Mission Community College District (California) with its surrounding Silicon Valley business community in an effort to benefit workforce development. Asserts that community colleges are uniquely positioned to provide a lifelong education that will yield a skilled workforce to meet the needs of…

  5. Tennessee Valley Authority

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    This report examines the purpose, nature, and costs of the Tennessee Valley Authority's provision of special air transportation services to TVA's manager of nuclear power. It has been found that TVA spent $172,700 to fly him between his TVA office in Chattanooga, Tennessee, and his home in Charlottesville, Virginia, between October 1987 and September 1988. He was accompanied by his wife on three flights during this period. TVA provided that transportation as part of its management services contract with the manager's personal services corporation. Of the $172,700 TVA spent for the special flight arrangements, $126,500 was for the cost ofmore » home-to-work transportation services provided directly to him and, in three instances, to his wife. According to this report, the fair market value of those services - not necessarily the $126,500 that TVA paid for them - could be considered taxable compensation.« less

  6. Hazardous Waste Cleanup: West Valley Demonstration Project USDOE in West Valley, New York

    EPA Pesticide Factsheets

    The U.S. Department of Energy's West Valley Demonstration Project is located at 10282 Rock Spring Road in West Valley, New York. This is a 167 acre, Department of Energy (DOE)-operated portion of a 3,300-acre site owned by the New York State Energy

  7. Enhanced toxicity of aerosol in fog conditions in the Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Decesari, Stefano; Sowlat, Mohammad Hossein; Hasheminassab, Sina; Sandrini, Silvia; Gilardoni, Stefania; Facchini, Maria Cristina; Fuzzi, Sandro; Sioutas, Constantinos

    2017-06-01

    While numerous studies have demonstrated the association between outdoor exposure to atmospheric particulate matter (PM) and adverse health effects, the actual chemical species responsible for PM toxicological properties remain a subject of investigation. We provide here reactive oxygen species (ROS) activity data for PM samples collected at a rural site in the Po Valley, Italy, during the fog season (i.e., November-March). We show that the intrinsic ROS activity of Po Valley PM, which is mainly composed of biomass burning and secondary aerosols, is comparable to that of traffic-related particles in urban areas. The airborne concentration of PM components responsible for the ROS activity decreases in fog conditions, when water-soluble species are scavenged within the droplets. Due to this partitioning effect of fog, the measured ROS activity of fog water was contributed mainly by water-soluble organic carbon (WSOC) and secondary inorganic ions rather than by transition metals. We found that the intrinsic ROS activity of fog droplets is even greater (> 2.5 times) than that of the PM on which droplets are formed, indicating that redox-active compounds are not only scavenged from the particulate phase, but are also produced within the droplets. Therefore, even if fog formation exerts a scavenging effect on PM mass and redox-active compounds, the aqueous-phase formation of reactive secondary organic compounds can eventually enhance ROS activity of PM when fog evaporates. These findings, based on a case study during a field campaign in November 2015, indicate that a significant portion of airborne toxicity in the Po Valley is largely produced by environmental conditions (fog formation and fog processing) and not simply by the emission and transport of pollutants.

  8. Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  9. In situ measurement and source apportionment of aerosols in the Kathmandu valley, Nepal, April 2015.

    NASA Astrophysics Data System (ADS)

    DeCarlo, P. F.; Werden, B.; Goetz, J. D.; Giordano, M.; Bhave, P.; Jayarathne, T. S.; Stockwell, C.; Christian, T. J.; Nadler, W.; Panday, A. K.; Yokelson, R. J.; Stone, E. A.

    2017-12-01

    The Kathmandu Valley in Nepal is home to over 2.5 Million people, and is one of the fastest growing metropolitan areas in South Asia. It is subject to extreme pollution events due to numerous unregulated localized pollution sources and regional transport from the Indo-Gangetic Plain (IGP). Over 10% of Nepali fatalities are from lung disorders, making it the most common cause of death in the country. Previous field work has studied gas species, wintertime VOCs and PM in the valley. The Nepal Ambient Measurement and Site Testing Experiment [NAMaSTE] is the first deployment of a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) in Nepal and allows for a more comprehensive analysis of aerosol species and their source contributions. Ambient measurements for the NAMaSTE campaign were made in Bode, 8 km east of Kathmandu. Intensive measurements were made in April 2015, but cut short by the 2015 Gorka earthquake. HR-ToF-AMS measurements provided detailed chemical composition information on particulate matter in the valley. Ancillary measurements of chemical species CO, CO2, CH4, H2O, O3, NOx, BC and PM were carried out and compared to AMS data and meteorological parameters. AMS species show a clear diurnal pattern, with extremely elevated concentrations in the morning, with a wind shift to westerly in the afternoon. PMF was performed on the ambient data set, and mass spectral data was compared to source mass spectra generated from emission testing of various local sources measured during the campaign. The mean concentration of PM2.5 was 83 ± 45 µg/m3, which is above the 24 hour WHO exposure threshold of 25 µg/m3 and annual continous exposure limit of 10 µg/m3­­. Localized sources of anthropogenic emissions such as garbage burning, coal for brick kilns, dung and biomass burning for cooking and agriculture are likely sources of elevated pollutant emissions. Unmitigated burning of trash and biomass coupled with irregular fuels are a major source of

  10. Intelligent electric vehicle charging: Rethinking the valley-fill

    NASA Astrophysics Data System (ADS)

    Valentine, Keenan; Temple, William G.; Zhang, K. Max

    This study proposes an intelligent PEV charging scheme that significantly reduces power system cost while maintaining reliability compared to the widely discussed valley-fill method of aggregated charging in the early morning. This study considers optimal PEV integration into the New York Independent System Operator's (NYISO) day-ahead and real-time wholesale energy markets for 21 days in June, July, and August of 2006, a record-setting summer for peak load. NYISO market and load data is used to develop a statistical Locational Marginal Price (LMP) and wholesale energy cost model. This model considers the high cost of ramping generators at peak-load and the traditional cost of steady-state operation, resulting in a framework with two competing cost objectives. Results show that intelligent charging assigns roughly 80% of PEV load to valley hours to take advantage of low steady-state cost, while placing the remaining 20% equally at shoulder and peak hours to reduce ramping cost. Compared to unregulated PEV charging, intelligent charging reduces system cost by 5-16%; a 4-9% improvement over the flat valley-fill approach. Moreover, a Charge Flexibility Constraint (CFC), independent of market modeling, is constructed from a vehicle-at-home profile and the mixture of Level 1 and Level 2 charging infrastructure. The CFC is found to severely restrict the ability to charge vehicles during the morning load valley. This study further shows that adding more Level 2 chargers without regulating PEV charging will significantly increase wholesale energy cost. Utilizing the proposed intelligent PEV charging method, there is a noticeable reduction in system cost if the penetration of Level 2 chargers is increased from 70/30 to 50/50 (Level 1/Level 2). However, the system benefit is drastically diminished for higher penetrations of Level 2 chargers.

  11. Systems Based Approaches for Thermochemical Conversion of Biomass to Bioenergy and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Steven

    2016-07-11

    Auburn’s Center for Bioenergy and Bioproducts conducts research on production of synthesis gas for use in power generation and the production of liquid fuels. The overall goal of our gasification research is to identify optimal processes for producing clean syngas to use in production of fuels and chemicals from underutilized agricultural and forest biomass feedstocks. This project focused on construction and commissioning of a bubbling-bed fluidized-bed gasifier and subsequent shakedown of the gasification and gas cleanup system. The result of this project is a fully commissioned gasification laboratory that is conducting testing on agricultural and forest biomass. Initial tests onmore » forest biomass have served as the foundation for follow-up studies on gasification under a more extensive range of temperatures, pressures, and oxidant conditions. The laboratory gasification system consists of a biomass storage tank capable of holding up to 6 tons of biomass; a biomass feeding system, with loss-in-weight metering system, capable of feeding biomass at pressures up to 650 psig; a bubbling-bed fluidized-bed gasification reactor capable of operating at pressures up to 650 psig and temperatures of 1500oF with biomass flowrates of 80 lb/hr and syngas production rates of 37 scfm; a warm-gas filtration system; fixed bed reactors for gas conditioning; and a final quench cooling system and activated carbon filtration system for gas conditioning prior to routing to Fischer-Tropsch reactors, or storage, or venting. This completed laboratory enables research to help develop economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program provides the infrastructure to educate the next generation of engineers and scientists needed to implement these technologies.« less

  12. Effectiveness of the Solar Panels in the Castro Valley Unified School District Based on Projected Amount of Energy to be Produced

    NASA Astrophysics Data System (ADS)

    Sparks, J. R.; Palmer, T. C.; Siegel, A. P.

    2014-12-01

    In recent years Americans have warmed to the idea of installing solar panels to their homes and businesses. These panels help reduce the cost of receiving energy from power plants that lose a lot of energy in transportation. These power plants provide energy by burning gas or coal producing emissions that add to the growing problem of pollution and global warming. In 2010 the Castro Valley Unified School District decided to add solar panels to Canyon Middle School, Castro Valley High School, and Castro Valley Adult School. We researched whether the solar panels reached their projected amount of energy (74%) for the sites where the panels were placed. The solar panels at all three sites were found to exceed these projected amounts. The solar panels at each site produce a little over 74% for the each school.

  13. Biomass waste gasification - can be the two stage process suitable for tar reduction and power generation?

    PubMed

    Sulc, Jindřich; Stojdl, Jiří; Richter, Miroslav; Popelka, Jan; Svoboda, Karel; Smetana, Jiří; Vacek, Jiří; Skoblja, Siarhei; Buryan, Petr

    2012-04-01

    A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW(th). The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950°C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER=0.71) led to substantial reduction of gas heating value (LHV=3.15 MJ/Nm(3)), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950°C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the

  14. An evaluation of Skylab (EREP) remote sensing techniques applied to investigation of crustal structure. [Death Valley and Greenwater Valley (CA)

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. A study of Greenwater Valley indicates that the valley is bounded on the north and east by faults, on the south by a basement high, and on the west by the dip slope of the black mountains, movement of ground water from the valley is thus Movement of ground water from the valley is thus restricted, indicating the valley is a potential water reservoir.

  15. Future Impacts of Distributed Power Generation on Ambient Ozone and Particulate Matter Concentrations in the San Joaquin Valley of California.

    PubMed

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region. [Box: see text].

  16. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Richard Hess; Thomas D. Foust; Reed Hoskinson

    2003-11-01

    The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the researchmore » and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually

  17. 27 CFR 9.154 - Chiles Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Chiles Valley. (a) Name. The name of the viticultural area described in this section is “Chiles Valley... viticultural area are four 1:24,000 Scale U.S.G.S. topography maps. They are titled: (1) St. Helena, CA 1960 photorevised 1980; (2) Rutherford, CA 1951 photorevised 1968; (3) Chiles Valley, CA 1958 photorevised 1980; (4...

  18. Environmentally-benign conversion of biomass residues to electricity

    NASA Astrophysics Data System (ADS)

    Davies, Andrew

    As petroleum resources are finite, it is imperative to use them wisely in energy conversion applications and, at the same time, develop alternative energy sources. Biomass is one of the renewable energy sources that can be used to partially replace fossil fuels. Biomass-based fuels can be produced domestically and can reduce dependency on fuel imports. Due to their abundant supply, and given that to an appreciable extent they can be considered carbon-neutral, their use for power generation is of technological interest. However, whereas biomasses can be directly burned in furnaces, such a conventional direct combustion technique is ill-controlled and typically produces considerable amounts of health-hazardous airborne compounds [1,2]. Thus, an alternative technology for biomass utilization is described herein to address increasing energy needs in an environmentally-benign manner. More specifically, a multi-step process/device is presented to accept granulated or pelletized biomass, and generate an easily-identifiable form of energy as a final product. To achieve low emissions of products of incomplete combustion, the biomass is gasified pyrolytically, mixed with air, ignited and, finally, burned in nominally premixed low-emission flames. Combustion is thus indirect, since the biomass is not directly burned, instead its gaseous pyrolyzates are burned upon mixing with air. Thereby, combustion is well-controlled and can be complete. A demonstration device has been constructed to convert the internal energy of plastics into "clean" thermal energy and, eventually to electricity.

  19. Meter-Scale Characteristics of Martian Channels and Valleys

    USGS Publications Warehouse

    Carr, M.H.; Malin, M.C.

    2000-01-01

    Mars Global Surveyor images, with resolutions as high as 1.5 m pixel, enable characterization of martian channels and valleys at resolutions one to two orders of magnitude better than was previously possible. A major surprise is the near-absence of valleys a few hundred meters wide and narrower. The almost complete absence of fine-scale valleys could be due to lack of precipitation, destruction of small valleys by erosion, or dominance of infiltration over surface runoff. V-shaped valleys with a central channel, such as Nanedi Vallis, provide compelling evidence for sustained or episodic flow of water across the surface. Larger valleys appear to have formed not by headward erosion as a consequence of groundwater sapping but by erosion from water sources upstream of the observed sections. The freshest appearing valleys have triangular cross sections, with talus from opposing walls meeting at the center of the valley. The relations suggest that the width of the valleys is controlled by the depth of incision and the angle of repose of the walls. The flat floors of less fresh-appearing valleys result primarily from later eolian fill. Several discontinuous valleys and lines of craters suggest massive subsurface solution or erosion. The climatic implications of the new images will remain obscure until the cause for the scarcity of fine-scale dissection is better understood. ?? 2000 Academic Press.

  20. FETC/EPRI Biomass Cofiring Cooperative Agreement. Quarterly technical report, September 26-December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, E. Tillman, D.

    1997-12-01

    Biomass utilization to reduce fossil C0{sub 2} emissions is being supported by sixteen (16) EPRI research projects, each contributing to the commercialization of systems to address greenhouse gas emissions. These projects include: (1) cofiring combustion testing at the Seward Generating Station of GPU Genco; (2) fuel preparation testing at the Greenidge Generating Station of NYSEG; (3) precommercial testing of cofiring at the Allen and Colbert Fossil Plants of TVA; (4) testing of switchgrass cofiring at the Blount St. Station of Madison Gas & Electric; (5) high percentage biomass cofiring with Southern Company; (6) urban wood waste cofiring at the supercriticalmore » cyclone boiler at Michigan City Generating Station of Northern Indiana Public Service Co. (NIPSCO); (7) evaluation of switchgrass cofiring with Nebraska Public Power District at Sandia National Laboratories in Livermore, CA; (8) waste plastics cofiring with Duke Power in a tangentially-fired pulverized coal (PC) boiler; (9) cofiring a mixture of plastics, fiber, and pulp industry wastes with South Carolina Electric and Gas; (10) urban wood waste cofiring evaluation and testing by the University of Pittsburgh in stoker boilers; (11) assessment of toxic emissions from cofiring of wood and coal; (12) development of fuel and power plant models for analysis and interpretation of cofiring results; (13) analysis of C0{sub 2} utilization in algal systems for wastewater treatment; (14) combustion testing and combustor development focusing on high percentage cofiring; (15) analysis of problems and potential solutions to the sale of flyash from coal- fired boilers practicing cofiring; and (16) analysis of C0{sub 2} capture and disposal systems. EPRI is supported in these efforts by numerous contractors including: Foster Wheeler Environmental Corporation, Battelle Columbus Laboratories, New York State Electric and Gas Co., Tennessee Valley Authority (TVA), NIPSCO, the University of Pittsburgh, John Benneman, and

  1. Biomass Logistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Richard Hess; Kevin L. Kenney; William A. Smith

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements inmore » quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.« less

  2. Biomass Burning Emissions from Fire Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  3. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California

    NASA Astrophysics Data System (ADS)

    Schubert, Brian A.; Lowenstein, Tim K.; Timofeeff, Michael N.

    2009-06-01

    Primary fluid inclusions in halite crystallized in Saline Valley, California, in 1980, 2004-2005, and 2007, contain rod- and coccoid-shaped microparticles the same size and morphology as archaea and bacteria living in modern brines. Primary fluid inclusions from a well-dated (0-100,000 years), 90 m long salt core from Badwater Basin, Death Valley, California, also contain microparticles, here interpreted as halophilic and halotolerant prokaryotes. Prokaryotes are distinguished from crystals on the basis of morphology, optical properties (birefringence), and uniformity of size. Electron micrographs of microparticles from filtered modern brine (Saline Valley), dissolved modern halite crystals (Saline Valley), and dissolved ancient halite crystals (Death Valley) support in situ microscopic observations that prokaryotes are present in fluid inclusions in ancient halite. In the Death Valley salt core, prokaryotes in fluid inclusions occur almost exclusively in halite precipitated in perennial saline lakes 10,000 to 35,000 years ago. This suggests that trapping and preservation of prokaryotes in fluid inclusions is influenced by the surface environment in which the halite originally precipitated. In all cases, prokaryotes in fluid inclusions in halite from the Death Valley salt core are miniaturized (<1 μm diameter cocci, <2.5 μm long, very rare rod shapes), which supports interpretations that the prokaryotes are indigenous to the halite and starvation survival may be the normal response of some prokaryotes to entrapment in fluid inclusions for millennia. These results reinforce the view that fluid inclusions in halite and possibly other evaporites are important repositories of microbial life and should be carefully examined in the search for ancient microorganisms on Earth, Mars, and elsewhere in the Solar System.

  4. Valley Vortex States in Sonic Crystals

    NASA Astrophysics Data System (ADS)

    Lu, Jiuyang; Qiu, Chunyin; Ke, Manzhu; Liu, Zhengyou

    2016-03-01

    Valleytronics is quickly emerging as an exciting field in fundamental and applied research. In this Letter, we study the acoustic version of valley states in sonic crystals and reveal a vortex nature of such states. In addition to the selection rules established for exciting valley polarized states, a mimicked valley Hall effect of sound is proposed further. The extraordinary chirality of valley vortex states, detectable in experiments, may open a new possibility in sound manipulations. This is appealing to scalar acoustics that lacks a spin degree of freedom inherently. In addition, the valley selection enables a handy way to create vortex matter in acoustics, in which the vortex chirality can be controlled flexibly. Potential applications can be anticipated with the exotic interaction of acoustic vortices with matter, such as to trigger the rotation of the trapped microparticles without contact.

  5. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    PubMed

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  6. Testing of the Prototype Mars Drill and Sample Acquisition System in the Mars Analog Site of the Antarctica's Dry Valleys

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Paulsen, G.; McKay, C.; Glass, B. J.; Marinova, M.; Davila, A. F.; Pollard, W. H.; Jackson, A.

    2011-12-01

    We report on the testing of the one meter class prototype Mars drill and cuttings sampling system, called the IceBreaker in the Dry Valleys of Antarctica. The drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sampling station for moving the augered ice shavings or soil cuttings into a sample cup. In November/December of 2010, the IceBreaker drill was tested in the Uni-versity Valley (within the Beacon Valley region of the Antarctic Dry Valleys). University Valley is a good analog to the Northern Polar Regions of Mars because a layer of dry soil lies on top of either ice-cemeted ground or massive ice (depending on the location within the valley). That is exactly what the 2007 Phoenix mission discovered on Mars. The drill demonstrated drilling in ice-cemented ground and in massive ice at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This corresponds to an average energy of 100 Whr. At the same time, the bit temperature measured by the bit thermocouple did not exceed more than 10 °C above the formation temperature. The temperature also never exceeded freezing, which minimizes chances of getting stuck and also of altering the materials that are being sampled and analyzed. The samples in the forms of cuttings were acquired every 10 cm intervals into sterile bags. These tests have shown that drilling on Mars, in ice cemented ground with limited power, energy and Weight on Bit, and collecting samples in discrete depth intervals is possible within the given mass, power, and energy levels of a Phoenix-size lander and within the duration of a Phoenix-like mission.

  7. Minnesota Power Settlement

    EPA Pesticide Factsheets

    EPA and DOJ announced a Clean Air Act settlement with Minnesota Power, an ALLETE company based in Duluth, that will cover its three coal-fired power plants and one biomass-and-coal-fired steam and electricity cogeneration plan

  8. Optical tuning of electronic valleys (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sie, Edbert J.; Gedik, Nuh

    2017-02-01

    Monolayer transition-metal dichalcogenides such as MoS2 and WS2 are prime examples of atomically thin semiconducting crystals that exhibit remarkable electronic and optical properties. They have a pair of valleys that can serve as a new electronic degree of freedom, and these valleys obey optical selection rules with circularly polarized light. Here, we discuss how ultrafast laser pulses can be used to tune their energy levels in a controllable valley-selective manner. The energy tunability is extremely large, comparable to what would be obtained using a hundred Tesla of magnetic field. We will also show that such valley tunability can be performed while we effectively manipulate the valley selection rules. Finally, we will explore the prospect of using this technique through photoemission spectroscopy to create a new phase of matter called a valley Floquet topological insulator.

  9. Optimal Design of Biomass Utilization System for Rural Area Includes Technical and Economic Dimensions

    NASA Astrophysics Data System (ADS)

    Morioka, Yasuki; Nakata, Toshihiko

    In order to design optimal biomass utilization system for rural area, OMNIBUS (The Optimization Model for Neo-Integrated Biomass Utilization System) has been developed. OMNIBUS can derive the optimal system configuration to meet different objective function, such as current account balance, amount of biomass energy supply, and CO2 emission. Most of biomass resources in a focused region e.g. wood biomass, livestock biomass, and crop residues are considered in the model. Conversion technologies considered are energy utilization technologies e.g. direct combustion and methane fermentation, and material utilization technologies e.g. composting and carbonization. Case study in Miyakojima, Okinawa prefecture, has been carried out for several objective functions and constraint conditions. Considering economics of the utilization system as a priority requirement, composting and combustion heat utilization are mainly chosen in the optimal system configuration. However gasification power plant and methane fermentation are included in optimal solutions, only when both biomass energy utilization and CO2 reduction have been set as higher priorities. External benefit of CO2 reduction has large impacts on the system configuration. Provided marginal external benefit of more than 50,000 JPY/t-C, external benefit becomes greater than the revenue from electricity and compost etc. Considering technological learning in the future, expensive technologies such as gasification power plant and methane fermentation will have economic feasibility as well as market competitiveness.

  10. Biomass: An overview in the United States of America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, T.; Shapouri, H.

    1993-12-31

    Concerns about the heavy reliance on foreign sources of fossil fuels, environmental impacts of burning fossil fuels, environmental impacts of agricultural activities, the need to find sustainable renewable sources of energy, and the need for a sustainable agricultural resource base have been driving forces for the development of biomass as a source of energy. The development of biomass conversion technologies, of high-yielding herbaceous and short-rotation woody biomass crops, of high-yielding food, feed, and fiber crops, and of livestock with higher levels of feed conversion efficiencies has made the transition from total reliance on fossil fuels to utilization of renewable sourcesmore » of energy from biomass a reality. A variety of biomass conversion technologies have been developed and tested. Public utilities, private power companies, and the paper industry are interested in applying this technology. Direct burning of biomass and/or cofiring in existing facilities will reduce emissions of greenhouse and other undesirable gases. Legislation has been passed to promote biomass production and utilization for liquid fuels and electricity. Land is available. The production of short-rotation woody crops and perennial grasses provides alternatives to commodity crops to stabilize income in the agricultural sector. The production of biomass crops can also reduce soil erosion, sediment loadings to surface water, and agricultural chemical loadings to ground and surface water; provide wildlife habitat; increase income and employment opportunities in rural areas; and provide a more sustainable agricultural resource base.« less

  11. Biomass torrefaction: A promising pretreatment technology for biomass utilization

    NASA Astrophysics Data System (ADS)

    Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen

    2018-02-01

    Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.

  12. Martian oceans, valleys and climate

    USGS Publications Warehouse

    Carr, M.H.

    2000-01-01

    The new Mars Global Surveyor altimetry shows that the heavily cratered southern hemisphere of Mars is 5 km higher that the sparely cratered plains of the northern hemisphere. Previous suggestions that oceans formerly occupied that northern plains as evidenced by shorelines are partly supported by the new data. A previously identified outer boundary has a wide range of elevations and is unlikely to be a shoreline but an inner contact with a narrow range of elevations is a more likely candidate. No shorelines are visible in the newly acquired, 2.5 metre/pixel imaging. Newly imaged valleys provide strong support for sustained or episodic flow of water across the Martian surface. A major surprise, however, is the near absence of valleys less than 100 m across. Martian valleys seemingly do not divide into ever smaller valleys as terrestrial valleys commonly do. This could be due to lack of precipitation or lack of surface runoff because of high infiltration rates. High erosion rates and supports warm climates and presence of large bodies of water during heavy bombardment. The climate history and fate of the water after heavy bombardment remain cotroversial.

  13. Railroad Valley, Nevada

    NASA Image and Video Library

    2002-02-01

    Information from images of Railroad Valley, Nevada captured on August 17, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) may provide a powerful tool for monitoring crop health and maintenance procedures. These images cover an area of north central Nevada. The top image shows irrigated fields, with healthy vegetation in red. The middle image highlights the amount of vegetation. The color code shows highest vegetation content in red, orange, yellow, green, blue, and purple and the lowest in black. The final image is a thermal infrared channel, with warmer temperatures in white and colder in black. In the thermal image, the northernmost and westernmost fields are markedly colder on their northwest areas, even though no differences are seen in the visible image or the second, Vegetation Index image. This can be attributed to the presence of excess water, which can lead to crop damage. http://photojournal.jpl.nasa.gov/catalog/PIA03463

  14. How to develop renewable power in China? A cost-effective perspective.

    PubMed

    Cong, Rong-Gang; Shen, Shaochuan

    2014-01-01

    To address the problems of climate change and energy security, Chinese government strived to develop renewable power as an important alternative of conventional electricity. In this paper, the learning curve model is employed to describe the decreasing unit investment cost due to accumulated installed capacity; the technology diffusion model is used to analyze the potential of renewable power. Combined with the investment cost, the technology potential, and scenario analysis of China social development in the future, we develop the Renewable Power Optimization Model (RPOM) to analyze the optimal development paths of three sources of renewable power from 2009 to 2020 in a cost-effective way. Results show that (1) the optimal accumulated installed capacities of wind power, solar power, and biomass power will reach 169000, 20000, and 30000 MW in 2020; (2) the developments of renewable power show the intermittent feature; (3) the unit investment costs of wind power, solar power, and biomass power will be 4500, 11500, and 5700 Yuan/KW in 2020; (4) the discounting effect dominates the learning curve effect for solar and biomass powers; (5) the rise of on-grid ratio of renewable power will first promote the development of wind power and then solar power and biomass power.

  15. How to Develop Renewable Power in China? A Cost-Effective Perspective

    PubMed Central

    2014-01-01

    To address the problems of climate change and energy security, Chinese government strived to develop renewable power as an important alternative of conventional electricity. In this paper, the learning curve model is employed to describe the decreasing unit investment cost due to accumulated installed capacity; the technology diffusion model is used to analyze the potential of renewable power. Combined with the investment cost, the technology potential, and scenario analysis of China social development in the future, we develop the Renewable Power Optimization Model (RPOM) to analyze the optimal development paths of three sources of renewable power from 2009 to 2020 in a cost-effective way. Results show that (1) the optimal accumulated installed capacities of wind power, solar power, and biomass power will reach 169000, 20000, and 30000 MW in 2020; (2) the developments of renewable power show the intermittent feature; (3) the unit investment costs of wind power, solar power, and biomass power will be 4500, 11500, and 5700 Yuan/KW in 2020; (4) the discounting effect dominates the learning curve effect for solar and biomass powers; (5) the rise of on-grid ratio of renewable power will first promote the development of wind power and then solar power and biomass power. PMID:24578672

  16. Knickpoints and Hanging Valleys of Licus Vallis, Mars

    NASA Astrophysics Data System (ADS)

    Goudge, T. A.; Fassett, C.

    2016-12-01

    Licus Vallis is a 350 km long valley system located along the dichotomy boundary on Mars. The main trunk of the valley is incised 200-700 m into the surrounding terrain. The valley heads at an outlet breach of a shallow, 30 km diameter impact crater, and is also fed by a system of tributaries incised into the plateau surrounding Licus Vallis. Many of the tributary valleys, as well as the main stem of the valley fed by the paleolake outlet, have profiles that are not smoothly graded, but rather have distinct reaches with concave downward topography. These sections are either knickpoints or hanging valleys that develop in response to changes in the effective local base level, changes in climate conditions during incision of the valley, or lithologic boundaries in the substrate. Here we present remote sensing observations from images and topography to test these competing hypotheses and further characterize the evolution of this large valley system. Slope-watershed area relationships for the tributaries and main trunk valley are used to distinguish between knickpoints and hanging valleys. Analysis of orbital images does not reveal any distinct layer above which knickpoints develop, and the elevation of knickpoints show no systematic trends that might be expected of a regional lithologic unit(s). Our preliminary results suggest that the distance of knickpoint retreat is correlated with the position of the tributary valley and not the watershed area. Downstream valleys have retreated the most, suggesting they have had the most time to adjust to lowering of the local base level associated with incision of the main valley. These results are most consistent with a wave of incision sweeping up the valley system as it adjusts to a low base level in the northern plains. This conclusion is also consistent with observations of the incision depth of Licus Vallis, which increases approximately linearly downstream. Understanding this signature of base level control on the incision

  17. First biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume dealmore » with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less

  18. Logistics, Costs, and GHG Impacts of Utility-Scale Co-Firing with 20% Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichol, Corrie Ian

    This study analyzes the possibility that biopower in the U.S. is a cost-competitive option to significantly reduce greenhouse gas emissions. In 2009, net greenhouse gas (GHG) emitted in the United States was equivalent to 5,618 million metric tons CO 2, up 5.6% from 1990 (EPA 2011). Coal-fired power generation accounted for 1,748 million metric tons of this total. Intuitively, life-cycle CO 2 emissions in the power sector could be reduced by substituting renewable biomass for coal. If just 20% of the coal combusted in 2009 had been replaced with biomass, CO 2 emissions would have been reduced by 350 millionmore » metric tons, or about 6% of net annual GHG emission. This would have required approximately 225 million tons of dry biomass. Such an ambitious fuel substitution would require development of a biomass feedstock production and supply system tantamount to coal. This material would need to meet stringent specifications to ensure reliable conveyance to boiler burners, efficient combustion, and no adverse impact on heat transfer surfaces and flue gas cleanup operations. Therefore, this report addresses the potential cost/benefit tradeoffs of co-firing 20% specification-qualified biomass (on an energy content basis) in large U.S. coal-fired power plants. The dependence and sensitivity of feedstock cost on source of material, location, supply distance, and demand pressure was established. Subsequently, the dependence of levelized cost of electricity (LCOE) on feedstock costs, power plant feed system retrofit, and impact on boiler performance was determined. Overall life-cycle assessment (LCA) of greenhouse gas emissions saving were next evaluated and compared to wind and solar energy to benchmark the leading alternatives for meeting renewable portfolio standards (or RPS).« less

  19. Potential impacts of damming the Juba Valley, western Somalia: Insights from geomorphology and alluvial history

    NASA Astrophysics Data System (ADS)

    Williams, Martin

    2014-05-01

    In 1988 plans were well advanced to dam the Juba River in western Somalia. The aims of the Baardheere Dam Project were to generate hydroelectric power for the capital Mogadishu, and to provide water for irrigation in the Juba Valley. A reconnaissance survey on foot along 500 km of the river upstream of the proposed dam site at Baardheere and detailed geomorphic mapping from air photos provided a basis for reconstructing the late Quaternary alluvial history of the river and for assessing the potential impact of the proposed dam. The Juba River rises in the Ethiopian Highlands and is the only river in Somalia that flows to the sea. Its history reflects climatic events in Ethiopia, where the Rift Valley lakes were very low during the LGM (21±2 ka), and high for about 5, 000 years before and after then. Cave deposits in Somalia indicate wetter conditions at 13, 10, 7.5 and 1.5 ka. Alluvial terraces in the Juba Valley range in age from late Pleistocene to late Holocene but only attain a few metres above the present floodplain. This is because the dry tributary valleys contain limestone caves and fissures that divert any high flows from the parent river underground, a process not known when the project was first approved. The oldest preserved terrace was cemented by calcrete by 40 ka. Alluvial gravels were deposited at the outlet of dry tributary valleys during times of episodic high-energy flow between 26 ka and 28 ka. Finely laminated shelly sands accumulated at 10 ka to form the 5 m terrace. The 2 m terrace was laid down 3.2 ka ago as a slackwater deposit. The lack of high-level alluvial terraces raises doubts over plans to dam the river, since rapid leakage would occur from side valleys and the reservoir would not attain the height needed to generate hydroelectric power. It would submerge all existing arable land along the river. Finally, the presence in the late Holocene alluvium of the sub-fossil gastropods Bulinus truncatus and Biomphalaria pfeifferi, which are

  20. Mini-biomass electric generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliot, G.

    1997-12-01

    Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility ofmore » replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).« less

  1. Optical and microphysical properties of aerosol vertical distribution over Vipava valley retrieved by ground-based elastic lidar and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Wang, Longlong; Gregorič, Asta; Stanič, Samo; Mole, Maruška; Bergant, Klemen; Močnik, Griša; Drinovec, Luka; Vaupotič, Janja; Miler, Miloš; Gosar, Mateja

    2017-04-01

    event on 5-6 April 2016 the prevailing aerosols were expected to be mineral dust, while in the second case, during traditional bonfires on 30 April 30 - 1 May 2016 carbonaceous aerosol from biomass burning prevailed. In the Saharan dust case, the height of the mineral dust layer decreased from 2 km to 1 km, causing the mixing of mineral dust within the planetary boundary layer, which resulted in its spreading within the valley. Increased fraction of relatively large mineral aerosols was observed (2.5-10 µm) and their identity was confirmed by SEM-EDX analysis of the collected samples. No significant increase of black carbon concentration was detected, indicating dry deposition of mineral dust and good mixing with the locally emitted black carbon. In the biomass burning case, the LIDAR backscattering coefficient gradually increased due to intensive local emissions within the valley. After 10PM the increasing wind caused the dispersion of aerosols and the total particle concentration of particles smaller than 1 µm indicates smaller sizes of black carbon aerosols in comparison to mineral dust particles.

  2. Processing woody debris biomass for co-milling with pulverized coal

    Treesearch

    Dana Mitchell; Bob Rummer

    2007-01-01

    The USDA, Forest Service, Forest Products Lab funds several grants each year for the purpose of studying woody biomass utilization. One selected project proposed removing small diameter stems and unmerchantable woody material from National Forest lands and delivering it to a coal-fired power plant in Alabama for energy conversion. The Alabama Power Company...

  3. Magnetic control of valley pseudospin in monolayer WSe 2

    DOE PAGES

    Aivazian, G.; Gong, Zhirui; Jones, Aaron M.; ...

    2015-01-26

    Local energy extrema of the bands in momentum space, or valleys, can endow electrons in solids with pseudo-spin in addition to real spin 1-5. In transition metal dichalcogenides this valley pseudo-spin, like real spin, is associated with a magnetic moment1,6 which underlies the valley-dependent circular dichroism 6 that allows optical generation of valley polarization 7-9, intervalley quantum coherence 10, and the valley Hall effect 11. However, magnetic manipulation of valley pseudospin via this magnetic moment 12-13, analogous to what is possible with real spin, has not been shown before. Here we report observation of the valley Zeeman splitting and magneticmore » tuning of polarization and coherence of the excitonic valley pseudospin, by performing polarization-resolved magneto-photoluminescence on monolayer WSe 2. Our measurements reveal both the atomic orbital and lattice contributions to the valley orbital magnetic moment; demonstrate the deviation of the band edges in the valleys from an exact massive Dirac fermion model; and reveal a striking difference between the magnetic responses of neutral and charged valley excitons which is explained by renormalization of the excitonic spectrum due to strong exchange interactions.« less

  4. Spin and valley filter across line defect in silicene

    NASA Astrophysics Data System (ADS)

    Wang, Sake; Ren, Chongdan; Li, Yunfang; Tian, Hongyu; Lu, Weitao; Sun, Minglei

    2018-05-01

    We propose a new scheme to achieve an effective spin/valley filter in silicene with extended line defect on the basis of spin–valley coupling due to the intrinsic spin-orbit coupling (SOC). The transmission coefficient of the spin/valley states is seriously affected by the SOC. When a perpendicular magnetic field is applied on one side of the line defect, one valley state will experience backscattering, but the other valley will not; this leads to high valley polarization in all transmission directions. Moreover, the spin/valley polarization can be enhanced to 96% with the aid of a perpendicular electric field.

  5. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    NASA Astrophysics Data System (ADS)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In

  6. Thermochemical conversion of microalgal biomass into biofuels: a review.

    PubMed

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Biomass Burning

    Atmospheric Science Data Center

    2015-07-27

    Projects:  Biomass Burning Definition/Description:  Biomass Burning: This data set represents the geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ...

  8. Closed Loop Short Rotation Woody Biomass Energy Crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brower, Michael

    CRC Development LLC is pursuing commercialization of shrub willow crops to evaluate and confirm estimates of yield, harvesting, transportation and renewable energy conversion costs and to provide a diverse resource in its supply portfolio.The goal of Closed Loop Short Rotation Woody Biomass Energy Crops is supply expansion in Central New York to facilitate the commercialization of willow biomass crops as part of the mix of woody biomass feedstocks for bioenergy and bioproducts. CRC Development LLC established the first commercial willow biomass plantation acreage in North America was established on the Tug Hill in the spring of 2006 and expanded inmore » 2007. This was the first 230- acres toward the goal of 10,000 regional acres. This project replaces some 2007-drought damaged acreage and installs a total of 630-acre new planting acres in order to demonstrate to regional agricultural producers and rural land-owners the economic vitality of closed loop short rotation woody biomass energy crops when deployed commercially in order to motivate new grower entry into the market-place. The willow biomass will directly help stabilize the fuel supply for the Lyonsdale Biomass facility, which produces 19 MWe of power and exports 15,000 pph of process steam to Burrows Paper. This project will also provide feedstock to The Biorefinery in New York for the manufacture of renewable, CO2-neutral liquid transportation fuels, chemicals and polymers. This project helps end dependency on imported fossil fuels, adds to region economic and environmental vitality and contributes to national security through improved energy independence.« less

  9. Valley current characterization of high current density resonant tunnelling diodes for terahertz-wave applications

    NASA Astrophysics Data System (ADS)

    Jacobs, K. J. P.; Stevens, B. J.; Baba, R.; Wada, O.; Mukai, T.; Hogg, R. A.

    2017-10-01

    We report valley current characterisation of high current density InGaAs/AlAs/InP resonant tunnelling diodes (RTDs) grown by metal-organic vapour phase epitaxy (MOVPE) for THz emission, with a view to investigate the origin of the valley current and optimize device performance. By applying a dual-pass fabrication technique, we are able to measure the RTD I-V characteristic for different perimeter/area ratios, which uniquely allows us to investigate the contribution of leakage current to the valley current and its effect on the PVCR from a single device. Temperature dependent (20 - 300 K) characteristics for a device are critically analysed and the effect of temperature on the maximum extractable power (PMAX) and the negative differential conductance (NDC) of the device is investigated. By performing theoretical modelling, we are able to explore the effect of typical variations in structural composition during the growth process on the tunnelling properties of the device, and hence the device performance.

  10. Demonstration of a 200-Kilowatt Biomass Fueled Power Plant

    DTIC Science & Technology

    1994-01-01

    300 people. Throughout the world there exists tremendous quantities of biomass waste, such as wood waste, rice husks , sugar bagasse, and coconut ...0.07 to 0.10 gallon (0.27 to 0.38 liter) of oil per kilowatt-hour generated. Even at subsidized prices of $1.00/gal ($0.26/liter), the fuel cost alone...for generating electricity amounts to $0.07 to $0.10/kW-hr generated. In many locations where diesel oil prices are $2.00 to $4.00/gal ($0.53 to $1.06

  11. Rail vs truck transport of biomass.

    PubMed

    Mahmudi, Hamed; Flynn, Peter C

    2006-01-01

    This study analyzes the economics of transshipping biomass from truck to train in a North American setting. Transshipment will only be economic when the cost per unit distance of a second transportation mode is less than the original mode. There is an optimum number of transshipment terminals which is related to biomass yield. Transshipment incurs incremental fixed costs, and hence there is a minimum shipping distance for rail transport above which lower costs/km offset the incremental fixed costs. For transport by dedicated unit train with an optimum number of terminals, the minimum economic rail shipping distance for straw is 170 km, and for boreal forest harvest residue wood chips is 145 km. The minimum economic shipping distance for straw exceeds the biomass draw distance for economically sized centrally located power plants, and hence the prospects for rail transport are limited to cases in which traffic congestion from truck transport would otherwise preclude project development. Ideally, wood chip transport costs would be lowered by rail transshipment for an economically sized centrally located power plant, but in a specific case in Alberta, Canada, the layout of existing rail lines precludes a centrally located plant supplied by rail, whereas a more versatile road system enables it by truck. Hence for wood chips as well as straw the economic incentive for rail transport to centrally located processing plants is limited. Rail transshipment may still be preferred in cases in which road congestion precludes truck delivery, for example as result of community objections.

  12. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment tomore » collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key

  13. 27 CFR 9.36 - McDowell Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....” (b) Approved maps. The appropriate map for determining the boundaries of the McDowell Valley... and the ridge line (highest elevation line) between the McDowell Creek Valley and the Dooley Creek Valley. (3) Then southeasterly along the ridge line (highest elevation line) to the intersection of the...

  14. 27 CFR 9.36 - McDowell Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....” (b) Approved maps. The appropriate map for determining the boundaries of the McDowell Valley... and the ridge line (highest elevation line) between the McDowell Creek Valley and the Dooley Creek Valley. (3) Then southeasterly along the ridge line (highest elevation line) to the intersection of the...

  15. Valley Near Nilus Chaos

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-504, 5 October 2003

    This August 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a valley near Nilus Chaos, around 25.2oN, 80.3oW. The scene has a uniform albedo, indicating that all of the landforms are probably mantled by fine, bright dust. Dark streaks on the valley walls indicate places where recent dust avalanches have occurred. The ripple-like dune features on the valley floor were formed by wind, but today they are inactive and covered with dust. A few craters, created by impacting debris, have formed on the dunes, again attesting to their inactivity in the modern martian environment. The image covers an area 3 km (1.9 mi) wide; it is illuminated by sunlight from the lower left.

  16. Geothermal energy from deep sedimentary basins: The Valley of Mexico (Central Mexico)

    NASA Astrophysics Data System (ADS)

    Lenhardt, Nils; Götz, Annette E.

    2015-04-01

    The geothermal potential of the Valley of Mexico has not been addressed in the past, although volcaniclastic settings in other parts of the world contain promising target reservoir formations. A first assessment of the geothermal potential of the Valley of Mexico is based on thermophysical data gained from outcrop analogues, covering all lithofacies types, and evaluation of groundwater temperature and heat flow values from literature. Furthermore, the volumetric approach of Muffler and Cataldi (1978) leads to a first estimation of ca. 4000 TWh (14.4 EJ) of power generation from Neogene volcanic rocks within the Valley of Mexico. Comparison with data from other sedimentary basins where deep geothermal reservoirs are identified shows the high potential of the Valley of Mexico for future geothermal reservoir utilization. The mainly low permeable lithotypes may be operated as stimulated systems, depending on the fracture porosity in the deeper subsurface. In some areas also auto-convective thermal water circulation might be expected and direct heat use without artificial stimulation becomes reasonable. Thermophysical properties of tuffs and siliciclastic rocks qualify them as promising target horizons (Lenhardt and Götz, 2015). The here presented data serve to identify exploration areas and are valuable attributes for reservoir modelling, contributing to (1) a reliable reservoir prognosis, (2) the decision of potential reservoir stimulation, and (3) the planning of long-term efficient reservoir utilization. References Lenhardt, N., Götz, A.E., 2015. Geothermal reservoir potential of volcaniclastic settings: The Valley of Mexico, Central Mexico. Renewable Energy. [in press] Muffler, P., Cataldi, R., 1978. Methods for regional assessment of geothermal resources. Geothermics, 7, 53-89.

  17. Biosorption of simulated dyed effluents by inactivated fungal biomasses.

    PubMed

    Prigione, Valeria; Varese, Giovanna Cristina; Casieri, Leonardo; Marchisio, Valeria Filipello

    2008-06-01

    Treatment of dyed effluents presents several problems mainly due to the toxicity and recalcitrance of dyestuffs. Innovative technologies, such as biosorption, are needed as alternatives to conventional methods to find inexpensive ways of removing dyes from large volumes of effluents. Inactivated biomasses do not require a continuous supply of nutrients and are not sensitive to the toxicity of dyes or toxic wastes. They can also be regenerated and reused in many cycles and are both safe and environment-friendly. The sorption capacities (SC) of autoclaved biomasses of three Mucorales fungi (Cunninghamella elegans, Rhizomucor pusillus and Rhizopus stolonifer), cultured on two different media, were evaluated against simulated effluents containing concentrations of 1000 and 5000 ppm of a single dye and a mix of 10 industrial textile dyes in batch experiments. SC values of up to 532.8 mg of dye g(-1) dry weight of biomass were coupled with high effluent decolourisation percentages (up to 100%). These biomasses may thus prove to be extremely powerful candidates for dye biosorption from industrial wastewaters. Even better results were obtained when a column system with the immobilised and inactivated biomass of one fungus was employed.

  18. Coal and Coal/Biomass-Based Power Generation

    EPA Science Inventory

    For Frank Princiotta's book, Global Climate Change--The Technology Challenge Coal is a key, growing component in power generation globally. It generates 50% of U.S. electricity, and criteria emissions from coal-based power generation are being reduced. However, CO2 emissions m...

  19. Modeling biomass gasification in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  20. 27 CFR 9.194 - San Antonio Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... significance. (b) Approved Maps. The appropriate maps for determining the boundary of the San Antonio Valley...) Hames Valley, California, 1949, photorevised 1978; (2) Tierra Redonda Mountain, California, 1949... southeast corner of section 14, T23S, R9E, on the Hames Valley map; (2) From the beginning point, proceed...

  1. 78 FR 56686 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ...: ER13-2326-000. Applicants: Southwest Power Pool, Inc. Description: 2573 Buckeye Wind Energy LLC GIA to..., Hatchet Ridge Wind, LLC, Spring Valley Wind LLC, Ocotillo Express LLC, Lyonsdale Biomass, LLC, ReEnergy Sterling CT Limited Partnership, Bayonne Plant Holding, L.L.C., Camden Plant Holding, L.L.C., Dartmouth...

  2. Debris Flow Process and Climate Controls on Steepland Valley Form and Evolution

    NASA Astrophysics Data System (ADS)

    Struble, W.; Roering, J. J.

    2017-12-01

    In unglaciated mountain ranges, steepland bedrock valleys often dominate relief structure and dictate landscape response to perturbations in tectonics or climate; drainage divides have been shown to be dynamic and drainage capture is common. Landscape evolution models often use the stream power model to simulate morphologic changes, but steepland valley networks exhibit trends that deviate from predictions of this model. The prevalence of debris flows in steep channels has motivated approaches that account for commonly observed curvature of slope-area data at small drainage areas. Debris flow deposits correspond with observed curvature in slope-area data, wherein slope increases slowly as drainage area decreases; debris flow incision is implied upstream of deposits. In addition, shallow landslides and in-channel sediment entrainment in humid and arid regions, respectively, have been identified as likely debris flow triggering mechanisms, but the extent to which they set the slope of steep channels is unclear. While an untested model exists for humid landscape debris flows, field observations and models are lacking for regions with lower mean annual precipitation. The Oregon Coastal Ranges are an ideal humid setting for observing how shallow landslide-initiated debris flows abrade channel beds and/or drive exposure-driven weathering. Preliminary field observations in the Lost River Range and the eastern Sierra Nevada - semi-arid and unglaciated environments - suggest that debris flows are pervasive in steep reaches. Evidence for fluvial incision is lacking and the presence of downstream debris flow deposits and a curved morphologic signature in slope-area space suggests stream power models are insufficient for predicting and interpreting landscape dynamics. Investigation of debris flow processes in both humid and arid sites such as these seeks to identify the linkage between sediment transport and the characteristic form of steepland valleys. Bedrock weathering

  3. Crustal Deformation of Long Valley Caldera, Eastern California, Inferred from L-Band InSAR

    NASA Astrophysics Data System (ADS)

    Tanaka, Akiko

    2008-11-01

    SAR interferometric analyses using JERS-1/SAR and ALOS/PALSAR images of Long Valley caldera are performed. JERS-1/SAR interferogram (June 1993-August 1996) shows a small region of subsidence associated the Casa Diablo geothermal power plant, which is superimposed on a broad scale uplift/expansion of the resurgent dome. ALOS/PALSAR interferograms show no deformation of the resurgent dome as expected. However, it may show a small region of subsidence associated the Casa Diablo geothermal power plant.

  4. Morning Transition Tracer Experiments in a Deep Narrow Valley.

    NASA Astrophysics Data System (ADS)

    Whiteman, C. David

    1989-07-01

    Three sulfur hexafluoride atmospheric tracer experiments were conducted during the post-sunrise temperature inversion breakup period in the deep, narrow Brush Creek Valley of Colorado. Experiments were conducted under clear, undisturbed weather conditions.A continuous elevated tracer plume was produced along the axis of the valley before sunrise and the behavior of the plume during the inversion breakup period was detected down-valley from the release point using an array of radio-controlled sequential bag samplers, a vertical SF6 profiling system carried on a tethered balloon, two portable gas chromatographs operated on a sidewall of the valley, and a continuous real-time SF6 monitor operated from a research aircraft. Supporting meteorological data came primarily from tethered balloon profilers. The nocturnal elevated plume was carried and diffused in down-valley flows. After sunrise, convective boundary layers grew upward from the sunlit valley surfaces, fumigating the elevated plume onto the valley floor and sidewalls. Upslope flow developed in the growing convective boundary layers, carrying fumigated SF6 up the sidewalls and causing a compensating subsidence over the valley center. High post-sunrise SF6 concentrations were experienced on the northeast-facing sidewall of the northwest-southeast oriented valley as a result of cross-valley flow, which developed due to differential solar heating of the sidewalls. Reversal of the down-valley wind system brought air with lower SF6 concentrations into the lower valley.

  5. The Central Valley Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Faunt, C.; Belitz, K.; Hanson, R. T.

    2009-12-01

    Historically, California’s Central Valley has been one of the most productive agricultural regions in the world. The Central Valley also is rapidly becoming an important area for California’s expanding urban population. In response to this competition for water, a number of water-related issues have gained prominence: conjunctive use, artificial recharge, hydrologic implications of land-use change, subsidence, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS made a detailed assessment of the Central Valley aquifer system that includes the present status of water resources and how these resources have changed over time. The principal product of this assessment is a tool, referred to as the Central Valley Hydrologic Model (CVHM), that simulates surface-water flows, groundwater flows, and land subsidence in response to stresses from human uses and from climate variability throughout the entire Central Valley. The CVHM utilizes MODFLOW combined with a new tool called “Farm Process” to simulate groundwater and surface-water flow, irrigated agriculture, land subsidence, and other key processes in the Central Valley on a monthly basis. This model was discretized horizontally into 20,000 1-mi2 cells and vertically into 10 layers ranging in thickness from 50 feet at the land surface to 750 feet at depth. A texture model constructed by using data from more than 8,500 drillers’ logs was used to estimate hydraulic properties. Unmetered pumpage and surface-water deliveries for 21 water-balance regions were simulated with the Farm Process. Model results indicate that human activities, predominately surface-water deliveries and groundwater pumping for irrigated agriculture, have dramatically influenced the hydrology of the Central Valley. These human activities have increased flow though the aquifer system by about a factor of six compared to pre-development conditions. The simulated hydrology reflects spatial

  6. NV PFA - Steptoe Valley

    DOE Data Explorer

    Jim Faulds

    2015-10-29

    All datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.

  7. 27 CFR 9.27 - Lime Kiln Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lime Kiln Valley. 9.27... OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.27 Lime Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln Valley...

  8. Valley Pearl’ table grape

    USDA-ARS?s Scientific Manuscript database

    Valley Pearl’ is an early to mid-season, white seedless table grape (Vitis vinifera L.) suitable for commercial table grape production where V. vinifera can be grown. Significant characteristics of ‘Valley Pearl’ are its high and consistent fruit production on spur pruned vines and large round berr...

  9. Extraction of Martian valley networks from digital topography

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Collier, M. L.

    2004-01-01

    We have developed a novel method for delineating valley networks on Mars. The valleys are inferred from digital topography by an autonomous computer algorithm as drainage networks, instead of being manually mapped from images. Individual drainage basins are precisely defined and reconstructed to restore flow continuity disrupted by craters. Drainage networks are extracted from their underlying basins using the contributing area threshold method. We demonstrate that such drainage networks coincide with mapped valley networks verifying that valley networks are indeed drainage systems. Our procedure is capable of delineating and analyzing valley networks with unparalleled speed and consistency. We have applied this method to 28 Noachian locations on Mars exhibiting prominent valley networks. All extracted networks have a planar morphology similar to that of terrestrial river networks. They are characterized by a drainage density of approx.0.1/km, low in comparison to the drainage density of terrestrial river networks. Slopes of "streams" in Martian valley networks decrease downstream at a slower rate than slopes of streams in terrestrial river networks. This analysis, based on a sizable data set of valley networks, reveals that although valley networks have some features pointing to their origin by precipitation-fed runoff erosion, their quantitative characteristics suggest that precipitation intensity and/or longevity of past pluvial climate were inadequate to develop mature drainage basins on Mars.

  10. Dynamics of Katabatic Winds in Colorado' Brush Creek Valley.

    NASA Astrophysics Data System (ADS)

    Vergeiner, I.; Dreiseitl, E.; Whiteman, C. David

    1987-01-01

    A method is proposed to evaluate the coupled mass, momentum and thermal energy budget equations for a deep valley under two-dimensional, steady-state flow conditions. The method requires the temperature, down- valley wind and valley width fields to be approximated by simple analytical functions. The vertical velocity field is calculated using the mass continuity equation. Advection terms in the momentum and energy equations are then calculated using finite differences computed on a vertical two-dimensional grid that runs down the valley's axis. The pressure gradient term in the momentum equation is calculated from the temperature field by means of the hydrostatic equation. The friction term is then calculated as a residual in the xmomentum equation, and the diabatic cooling term is calculated as a residual in the thermal energy budget equation.The method is applied to data from an 8-km-long segment of Colorado's; Brush Creek Valley on the night of 30-31 July 1982. Pressure decreased with distance down the peak on horizontal surfaces, with peak horizontal pressure gradients of 0.04 hPa km1. The valley mass budget indicated that subsidence was required in the valley to support calculated mean along-valley mass flux divergence. Peak subsidence rates on the order of 0.10 m s1 were calculated. Subsiding motions in the valley produced negative vertical down-valley momentum fluxes in the upper valley atmosphere, but produced positive down-valley momentum fluxes below the level of the jet. Friction, calculated as a residual in the x momentum equation, was negative, as expected on physical grounds. and attained reasonable quantitative values.The strong subsidence field in the stable valley atmosphere produced subsidence warming that was only partly counteracted by down-valley cold air advection. Strong diabatic cooling was therefore required in order to account for the weak net cooling of the valley atmosphere during the nighttime period when tethered balloon observations

  11. Investigation & analysis of transient luminous phenomena in the low atmosphere of Hessdalen valley, Norway

    NASA Astrophysics Data System (ADS)

    Hauge, Bjørn Gitle

    2010-12-01

    For over 100 years, transient luminous phenomena have been seen in the Hessdalen valley. Italian and Norwegian scientists, gaining experience from the SETI program, has since 1998 installed cameras, spectrometers and RADAR's to unveil the nature of this phenomenon. Results indicate a combustion process driven by an unknown power source.

  12. Fretted Terrain Valley in Coloe Fossae Region

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1 Click on image for larger version

    The image in figure 1 shows lineated valley fill in one of a series of enclosed, intersecting troughs known as Coloe (Choloe) Fossae. Lineated valley fill consists of rows of material in valley centers that are parallel to the valley walls. It is probably made of ice-rich material and boulders that are left behind when the ice-rich material sublimates. Very distinct rows can be seen near the south (bottom) wall of the valley. Lineated valley fill is thought to result from mass wasting (downslope movement) of ice-rich material from valley walls towards their centers. It is commonly found in valleys near the crustal dichotomy that separates the two hemispheres of Mars. The valley shown here joins four other valleys with lineated fill near the top left corner of this image. Their juncture is a topographic low, suggesting that the lineated valley fill from the different valleys may be flowing or creeping towards the low area (movement towards the upper left of the image). The valley walls appear smooth at first glance but are seen to be speckled with small craters several meters in diameter at HiRISE resolution (see contrast-enhanced subimage). This indicates that at least some of the wall material has been stable to mass wasting for some period of time. Also seen on the valley wall are elongated features shaped like teardrops. These are most likely slightly older craters that have been degraded due to potentially recent downhill creep. It is unknown whether the valley walls are shedding material today. The subimage is approximately 140 x 400 m (450 x 1280 ft).

    Image PSP_001372_2160 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 11, 2006. The complete image is centered at 35.5 degrees latitude, 56.8 degrees East longitude. The range to the target site was 290.3 km (181

  13. Changes in tundra vascular plant biomass over thirty years at Imnavait Creek, Alaska.

    NASA Astrophysics Data System (ADS)

    Bret-Harte, M. S.; Euskirchen, E. S.; Edgar, C.; Huebner, D. C.; Okano, K.; Tucker, C.; Genet, H.; Ray, P. M.; Shaver, G. R.

    2014-12-01

    Understanding the magnitude of, and controls over, CO2 and water fluxes in arctic ecosystems is essential for accurate assessment and prediction of their responses to climate change. In 2013, we harvested vegetation and soils in the most common plant community types located in the source areas for fluxes measured by eddy covariance towers located in three representative Alaska tundra ecosystems along a toposequence (a ridge site composed of heath tundra and moist non-acidic tundra, a mid-slope site composed of moist acidic tussock tundra, and a valley bottom fen site composed of wet sedge tundra and moist acidic tundra) at Imnavait Creek, Alaska. While the purpose of this harvest was to relate biomass and production to estimates of overall net ecosystem CO2 exchange (NEE), gross primary productivity (GPP) and ecosystem respiration (ER) obtained by micrometeorological methods, it also afforded an opportunity to compare with biomass harvests done in the 1980s in moist acidic tundra at Imnavait Creek; there have been no other harvests than ours at Imnavait since then. Our data showed that plant biomass and production were greatest in the tussock tundra at the mid-slope tower, and least in the wet sedge community at the fen tower, while plant diversity was greatest in the communities at the ridge site. Aboveground biomass of vascular plants in our 2013 harvest in moist acidic tundra was nearly three times higher than that measured approximately thirty years earlier in three harvests of nearby areas at Imnavait Creek, due to an increase in the biomass of shrubs and graminoids. Comparison with other biomass harvests from the vicinity of Toolik Field Station indicate that vascular plant biomass in moist acidic tundra has increased over this time period, with the greatest increase evident by the mid-1990s, and a more gradual increase through to the present time, despite no obvious increase in air temperature as seen in data from nearby climate stations. These data will be

  14. Hot water in the Long Valley Caldera—The benefits and hazards of this large natural resource

    USGS Publications Warehouse

    Evans, William C.; Hurwitz, Shaul; Bergfeld, Deborah; Howle, James F.

    2018-03-26

    The volcanic processes that have shaped the Long Valley Caldera in eastern California have also created an abundant supply of natural hot water. This natural resource provides benefits to many users, including power generation at the Casa Diablo Geothermal Plant, warm water for a state fish hatchery, and beautiful scenic areas such as Hot Creek gorge for visitors. However, some features can be dangerous because of sudden and unpredictable changes in the location and flow rate of boiling water. The U.S. Geological Survey monitors several aspects of the hydrothermal system in the Long Valley Caldera including temperature, flow rate, and water chemistry.

  15. Victor Valley College Agreement between the Victor Valley Community College District and the Victor Valley College California Teachers Association Chapter 1170. July 1989 - June 1992.

    ERIC Educational Resources Information Center

    Victor Valley Community Coll. District, Victorville, CA.

    The collective bargaining agreement between the Victor Valley College Board of Trustees and the Victor Valley College California Teachers Association/National Education Association is presented. This contract, covering the period from July 1989 through June 1992, deals with the following topics: bargaining agent recognition; district and…

  16. Valley spin polarization of Tl/Si(111)

    NASA Astrophysics Data System (ADS)

    Stolwijk, Sebastian D.; Schmidt, Anke B.; Sakamoto, Kazuyuki; Krüger, Peter; Donath, Markus

    2017-11-01

    The metal/semiconductor hybrid system Tl/Si(111)-(1 ×1 ) exhibits a unique Tl-derived surface state with remarkable properties. It lies within the silicon band gap and forms spin-momentum-locked valleys close to the Fermi energy at the K ¯ and K¯' points. These valleys are completely spin polarized with opposite spin orientation at K ¯ and K¯' and show a giant spin splitting of more than 0.5 eV. We present a detailed preparation study of the surface system and demonstrate that the electronic valleys are extremely robust, surviving exposure to 100 L hydrogen and 500 L oxygen. We investigate the influence of additional Tl atoms on the spin-polarized valleys. By combining photoemission and inverse photoemission, we prove the existence of fully spin-polarized valleys crossing the Fermi level. Moreover, these metallic valleys carry opposite Berry curvature at K ¯ and K¯', very similar to WSe2, promising a large spin Hall effect. Thus, Tl/Si(111)-(1 ×1 ) possesses all necessary key properties for spintronic applications.

  17. Electrical valley filtering in transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Hsieh, Tzu-Chi; Chou, Mei-Yin; Wu, Yu-Shu

    2018-03-01

    This work investigates the feasibility of electrical valley filtering for holes in transition metal dichalcogenides. We look specifically into the scheme that utilizes a potential barrier to produce valley-dependent tunneling rates, and perform the study with both a k .p -based analytic method and a recursive Green's function-based numerical method. The study yields the transmission coefficient as a function of incident energy and transverse wave vector, for holes going through lateral quantum barriers oriented in either armchair or zigzag directions, in both homogeneous and heterogeneous systems. The main findings are the following: (1) The tunneling current valley polarization increases with increasing barrier width or height; (2) both the valley-orbit interaction and band structure warping contribute to valley-dependent tunneling, with the former contribution being manifest in structures with asymmetric potential barriers, and the latter being orientation dependent and reaching maximum for transmission in the armchair direction; and (3) for transmission ˜0.1 , a tunneling current valley polarization of the order of 10 % can be achieved.

  18. Observation of valley-dependent beams in photonic graphene.

    PubMed

    Deng, Fusheng; Sun, Yong; Wang, Xiao; Xue, Rui; Li, Yuan; Jiang, Haitao; Shi, Yunlong; Chang, Kai; Chen, Hong

    2014-09-22

    Valley-dependent propagation of light in an artificial photonic hexagonal lattice, akin to electrons in graphene, is investigated in microwave regime. Both numerical and experimental results show that the valley degeneracy in the photonic graphene is broken when the frequency is away from the Dirac point. The peculiar anisotropic wave transport property due to distinct valleys is analyzed using the equifrequency contours. More interestingly, the valley-dependent self-collimation and beam splitting phenomena are experimentally demonstrated with the armchair and zigzag interfaces, respectively. Our results confirm that there are two inequivalent Dirac points that lead to two distinct valleys in photonic graphene, which could be used to control the flow of light and might be used to carry information in valley polarized beam splitter, collimator or guiding device.

  19. 27 CFR 9.58 - Carmel Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....” (b) Approved maps. The approved maps for determining the boundary of the Carmel Valley viticultural... Ridge, Calif., dated 1956; and (5) Rana Creek, Calif., dated 1956. (c) Boundary. The Carmel Valley...

  20. 27 CFR 9.58 - Carmel Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....” (b) Approved maps. The approved maps for determining the boundary of the Carmel Valley viticultural... Ridge, Calif., dated 1956; and (5) Rana Creek, Calif., dated 1956. (c) Boundary. The Carmel Valley...

  1. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion.

    PubMed

    Liu, Wei; Mu, Wei; Deng, Yulin

    2014-12-01

    Herein, we report high-performance fuel cells that are catalyzed solely by polyoxometalate (POM) solution without any solid metal or metal oxide. The novel design of the liquid-catalyst fuel cells (LCFC) changes the traditional gas-solid-surface heterogeneous reactions to liquid-catalysis reactions. With this design, raw biomasses, such as cellulose, starch, and even grass or wood powders can be directly converted into electricity. The power densities of the fuel cell with switchgrass (dry powder) and bush allamanda (freshly collected) are 44 mW cm(-2) and 51 mW cm(-2) respectively. For the cellulose-based biomass fuel cell, the power density is almost 3000 times higher than that of cellulose-based microbial fuel cells. Unlike noble-metal catalysts, POMs are tolerant to most organic and inorganic contaminants. Therefore, almost any raw biomass can be used directly to produce electricity without prior purification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Water resources of Parowan Valley, Iron County, Utah

    USGS Publications Warehouse

    Marston, Thomas M.

    2017-08-29

    Parowan Valley, in Iron County, Utah, covers about 160 square miles west of the Red Cliffs and includes the towns of Parowan, Paragonah, and Summit. The valley is a structural depression formed by northwest-trending faults and is, essentially, a closed surface-water basin although a small part of the valley at the southwestern end drains into the adjacent Cedar Valley. Groundwater occurs in and has been developed mainly from the unconsolidated basin-fill aquifer. Long-term downward trends in groundwater levels have been documented by the U.S. Geological Survey (USGS) since the mid-1950s. The water resources of Parowan Valley were assessed during 2012 to 2014 with an emphasis on refining the understanding of the groundwater and surface-water systems and updating the groundwater budget.Surface-water discharge of five perennial mountain streams that enter Parowan Valley was measured from 2013 to 2014. The total annual surface-water discharge of the five streams during 2013 to 2014 was about 18,000 acre-feet (acre-ft) compared to the average annual streamflow of about 22,000 acre-ft from USGS streamgages operated on the three largest of these streams from the 1940s to the 1980s. The largest stream, Parowan Creek, contributes more than 50 percent of the annual surface-water discharge to the valley, with smaller amounts contributed by Red, Summit, Little, and Cottonwood Creeks.Average annual recharge to the Parowan Valley groundwater system was estimated to be about 25,000 acre-ft from 1994 to 2013. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall on the Markagunt Plateau east of the valley. Smaller amounts of recharge occur as infiltration of streamflow and unconsumed irrigation water near the east side of the valley on alluvial fans associated with mountain streams at the foot of the Red Cliffs. Subsurface flow from the mountain block to the east of the valley is a significant source of groundwater recharge to the basin-fill aquifer

  3. Optical manipulation of valley pseduospin in 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Ye, Ziliang

    Valley polarization associated with the occupancy in the energy degenerate but quantum mechanically distinct valleys in the momentum space closely resembles spin polarization and has been proposed as a pseudospin carrier for future quantum information technologies. Monolayers of transition metal dichalcogenide (TMDC) crystals, with broken inversion symmetry and large spin-orbital coupling, support robust valley polarization and therefore provide an important platform for studying valley-dependent physics. Besides optical excitation and photoluminescence detection, valley polarization has been electrically measured through the valley Hall effect and created through spin injection from ferromagnetic semiconductor contacts. Moreover, the energy degeneracy of the valley degree of freedom has been lifted by the optical Stark effect. Recently, we have demonstrated optical manipulation of valley coherence, i.e., of the valley pseudospin, by the optical Stark effect in monolayer WSe2. Using below-bandgap circularly polarized light, we rotated the valley pseudospin on the femtosecond time scale. Both the direction and speed of the rotation can be optically controlled by tuning the dynamic phase of excitons in opposite valleys. The pseudospin rotation was identified by changes in the polarization of the photoluminescence. In addition, by varying the time delay between the excitation and control pulses, we directly probed the lifetime of the intervalley coherence. Similar rotation levels have also been observed in static magneto-optic experiments. Our work presents an important step towards the full control of the valley degree of freedom in 2D semiconductors. The work was done in collaboration with Dr. Dezheng Sun and Prof. Tony F. Heinz.

  4. YEAR 2 BIOMASS UTILIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammermore » mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived

  5. Development potentials and policy options of biomass in China.

    PubMed

    Shen, Lei; Liu, Litao; Yao, Zhijun; Liu, Gang; Lucas, Mario

    2010-10-01

    Biomass, one of the most important renewable energies, is playing and will continue to play an important role in the future energy structure of the world. This article aims to analyze the position and role, assess the resource availability, discuss the geographic distribution, market scale and industry development, and present the policy options of biomass in China. The resource availability and geographical distribution of biomass byproducts are assessed in terms of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater. The position of biomass use for power generation is just next to hydropower among types of renewable energy in China. The potential quantity of all biomass byproducts energy in 2004 is 3511 Mtce (Mtce is the abbreviation of million tons of coal equivalents and 1 Mtce is equal to10(6) tce.), while the acquirable quantity is 460 Mtce. Biomass energy plays a critical role in rural regions of China. The geographical distribution and quantity of biomass byproducts resources depends mainly on the relationship between ecological zones and climate conditions. Our estimation shows that the total quantity of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater resources are 728, 3926, 2175, 155 and 48240 Mt (million tons), respectively. Crop residues come mainly from the provinces of Henan, Shandong, Heilongjiang, Jilin and Sichuan. All manure is mainly located in the provinces of Henan, Shandong, Sichuan, Hebei and Hunan. Forest and wood biomass byproducts are mainly produced in the provinces or autonomous regions of Tibet, Sichuan, Yunnan, Heilongjiang and Inner Mongolia, while most of municipal waste mainly comes from Guangdong, Shandong, Heilongjiang, Hubei and Jiangsu. Most of wastewater is largely discharged from advanced provinces like Guangdong, Jiangsu, Zhejiang, Shandong and Henan. Biomass byproducts' energy distribution also varies from province to province in China

  6. Development Potentials and Policy Options of Biomass in China

    NASA Astrophysics Data System (ADS)

    Shen, Lei; Liu, Litao; Yao, Zhijun; Liu, Gang; Lucas, Mario

    2010-10-01

    Biomass, one of the most important renewable energies, is playing and will continue to play an important role in the future energy structure of the world. This article aims to analyze the position and role, assess the resource availability, discuss the geographic distribution, market scale and industry development, and present the policy options of biomass in China. The resource availability and geographical distribution of biomass byproducts are assessed in terms of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater. The position of biomass use for power generation is just next to hydropower among types of renewable energy in China. The potential quantity of all biomass byproducts energy in 2004 is 3511 Mtce (Mtce is the abbreviation of million tons of coal equivalents and 1 Mtce is equal to106 tce.), while the acquirable quantity is 460 Mtce. Biomass energy plays a critical role in rural regions of China. The geographical distribution and quantity of biomass byproducts resources depends mainly on the relationship between ecological zones and climate conditions. Our estimation shows that the total quantity of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater resources are 728, 3926, 2175, 155 and 48240 Mt (million tons), respectively. Crop residues come mainly from the provinces of Henan, Shandong, Heilongjiang, Jilin and Sichuan. All manure is mainly located in the provinces of Henan, Shandong, Sichuan, Hebei and Hunan. Forest and wood biomass byproducts are mainly produced in the provinces or autonomous regions of Tibet, Sichuan, Yunnan, Heilongjiang and Inner Mongolia, while most of municipal waste mainly comes from Guangdong, Shandong, Heilongjiang, Hubei and Jiangsu. Most of wastewater is largely discharged from advanced provinces like Guangdong, Jiangsu, Zhejiang, Shandong and Henan. Biomass byproducts’ energy distribution also varies from province to province in China. Based on

  7. Origin of the Valley Networks On Mars: A Hydrological Perspective

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.

    2000-01-01

    The geomorphology of the Martian valley networks is examined from a hydrological perspective for their compatibility with an origin by rainfall, globally higher heat flow, and localized hydrothermal systems. Comparison of morphology and spatial distribution of valleys on geologic surfaces with terrestrial fluvial valleys suggests that most Martian valleys are probably not indicative of a rainfall origin, nor are they indicative of formation by an early global uniformly higher heat flow. In general, valleys are not uniformly distributed within geologic surface units as are terrestrial fluvial valleys. Valleys tend to form either as isolated systems or in clusters on a geologic surface unit leaving large expanses of the unit virtually untouched by erosion. With the exception of fluvial valleys on some volcanoes, most Martian valleys exhibit a sapping morphology and do not appear to have formed along with those that exhibit a runoff morphology. In contrast, terrestrial sapping valleys form from and along with runoff valleys. The isolated or clustered distribution of valleys suggests localized water sources were important in drainage development. Persistent ground-water outflow driven by localized, but vigorous hydrothermal circulation associated with magmatism, volcanism, impacts, or tectonism is, however, consistent with valley morphology and distribution. Snowfall from sublimating ice-covered lakes or seas may have provided an atmospheric water source for the formation of some valleys in regions where the surface is easily eroded and where localized geothermal/hydrothermal activity is sufficient to melt accumulated snowpacks.

  8. EPA Region 1 - Valley Depth in Meters

    EPA Pesticide Factsheets

    Raster of the Depth in meters of EPA-delimited Valleys in Region 1.Valleys (areas that are lower than their neighbors) were extracted from a Digital Elevation Model (USGS, 30m) by finding the local average elevation, subtracting the actual elevation from the average, and selecting areas where the actual elevation was below the average. The landscape was sampled at seven scales (circles of 1, 2, 4, 7, 11, 16, and 22 km radius) to take into account the diversity of valley shapes and sizes. Areas selected in at least four scales were designated as valleys.

  9. Biomass treatment method

    DOEpatents

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  10. Preliminary hydrogeologic assessment near the boundary of the Antelope Valley and El Mirage Valley groundwater basins, California

    USGS Publications Warehouse

    Stamos, Christina L.; Christensen, Allen H.; Langenheim, Victoria

    2017-07-19

    The increasing demands on groundwater for water supply in desert areas in California and the western United States have resulted in the need to better understand groundwater sources, availability, and sustainability. This is true for a 650-square-mile area that encompasses the Antelope Valley, El Mirage Valley, and Upper Mojave River Valley groundwater basins, about 50 miles northeast of Los Angeles, California, in the western part of the Mojave Desert. These basins have been adjudicated to ensure that groundwater rights are allocated according to legal judgments. In an effort to assess if the boundary between the Antelope Valley and El Mirage Valley groundwater basins could be better defined, the U.S. Geological Survey began a cooperative study in 2014 with the Mojave Water Agency to better understand the hydrogeology in the area and investigate potential controls on groundwater flow and availability, including basement topography.Recharge is sporadic and primarily from small ephemeral washes and streams that originate in the San Gabriel Mountains to the south; estimates range from about 400 to 1,940 acre-feet per year. Lateral underflow from adjacent basins has been considered minor in previous studies; underflow from the Antelope Valley to the El Mirage Valley groundwater basin has been estimated to be between 100 and 1,900 acre-feet per year. Groundwater discharge is primarily from pumping, mostly by municipal supply wells. Between October 2013 and September 2014, the municipal pumpage in the Antelope Valley and El Mirage Valley groundwater basins was reported to be about 800 and 2,080 acre-feet, respectively.This study was motivated by the results from a previously completed regional gravity study, which suggested a northeast-trending subsurface basement ridge and saddle approximately 3.5 miles west of the boundary between the Antelope Valley and El Mirage Valley groundwater basins that might influence groundwater flow. To better define potential basement

  11. Assessing the Habitat of Coccidioides posadasii, the Valley Fever Pathogen: A Study of Environmental Variables and Human Incidence Data in Arizona

    NASA Astrophysics Data System (ADS)

    Mann, Sarina N.

    Coccidioidomycosis, or Valley Fever, is an infectious disease caused by inhalation of soil-dwelling fungus Coccidioides posadasii spores in the Lower Sonoran Life Zone (LSLZ) in Arizona. In the context of climate change, the habitat of environmentally-mediated infectious diseases, such as Valley Fever, are expected to change. Connections have been drawn between climate and Valley Fever infection. The operational scale of the organism is still unknown. Here, we use climatic variables, including precipitation, soil moisture, and temperature. We use PRISM precipitation and temperature data, and Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) as a measure of soil moisture for the entire state of Arizona, divided into 126 primary care areas (PCA). These data are analyzed and regressed with Valley Fever incidence to determine the effects of climatic variability on disease distribution and timing. This study confirms that Valley Fever occurrence is clustered in the LSLZ. Seasonal Valley Fever outbreak was found to be variable year-to-year based on climatic variability. The inconclusive regression analyses indicate that the operational scale of Coccidioides is smaller than the PCA region. All variables are related to Valley Fever infection, but one variable was not found to hold more predictive power than others.

  12. Oncorhynchus nerka population monitoring in the Sawtooth Valley Lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teuscher, D.M.; Taki, D.; Ariwite, K.

    1996-05-01

    Critical habitat for endangered Snake River sockeye salmon includes five rearing lakes located in the Sawtooth Valley of central Idaho. Most of the lakes contain either introduced or endemic kokanee populations. Snake River sockeye occur naturally in Redfish Lake, and are being stocked in Redfish and Pettit Lakes. Because kokanee compete with sockeye for limited food resources, understanding population characteristics of both species such as spawn timing, egg-to-fry survival, distribution and abundance are important components of sockeye recovery. This chapter describes some of those characteristics. In 1995, hydroacoustic estimates of O. nerka densities in the Sawtooth Valley Lakes ranged frommore » 57 to 465 fish/ha. Densities were greatest in Pettit followed by Redfish (167), Alturas (95), and Stanley Lakes. O. nerka numbers increased from 1994 values in Pettit and Alturas Lakes, but declined in Redfish and Stanley. Despite a decline in total lake abundance, O. nerka biomass estimates in Redfish Lake increased. Approximately 144,000 kokanee fry recruited to Redfish Lake from Fishhook Creek. O. nerka fry recruitment to Stanley and Alturas lake was 5,000 and 30,000 fry, respectively. Egg-to-fry survival was 14% in Fishhook and 7% in Stanley Lake Creek. In Fishhook Creek, kokanee spawning escapement was estimated using stream surveys and a weir. Escapement estimates were 4,860 from weir counts, and 7,000 from stream surveys. As part of the kokanee reduction program, 385 of the spawning female kokanee were culled. Escapement for Stanley Lake Creek was only 60 fish, a ten fold decrease from 1994. In Alturas Lake, kokanee spawners dropped by 50% to 1,600.« less

  13. A quantile-based scenario analysis approach to biomass supply chain optimization under uncertainty

    DOE PAGES

    Zamar, David S.; Gopaluni, Bhushan; Sokhansanj, Shahab; ...

    2016-11-21

    Supply chain optimization for biomass-based power plants is an important research area due to greater emphasis on renewable power energy sources. Biomass supply chain design and operational planning models are often formulated and studied using deterministic mathematical models. While these models are beneficial for making decisions, their applicability to real world problems may be limited because they do not capture all the complexities in the supply chain, including uncertainties in the parameters. This study develops a statistically robust quantile-based approach for stochastic optimization under uncertainty, which builds upon scenario analysis. We apply and evaluate the performance of our approach tomore » address the problem of analyzing competing biomass supply chains subject to stochastic demand and supply. Finally, the proposed approach was found to outperform alternative methods in terms of computational efficiency and ability to meet the stochastic problem requirements.« less

  14. A quantile-based scenario analysis approach to biomass supply chain optimization under uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamar, David S.; Gopaluni, Bhushan; Sokhansanj, Shahab

    Supply chain optimization for biomass-based power plants is an important research area due to greater emphasis on renewable power energy sources. Biomass supply chain design and operational planning models are often formulated and studied using deterministic mathematical models. While these models are beneficial for making decisions, their applicability to real world problems may be limited because they do not capture all the complexities in the supply chain, including uncertainties in the parameters. This study develops a statistically robust quantile-based approach for stochastic optimization under uncertainty, which builds upon scenario analysis. We apply and evaluate the performance of our approach tomore » address the problem of analyzing competing biomass supply chains subject to stochastic demand and supply. Finally, the proposed approach was found to outperform alternative methods in terms of computational efficiency and ability to meet the stochastic problem requirements.« less

  15. Control of Exciton Valley Coherence in Transition Metal Dichalcogenide Monolayers

    NASA Astrophysics Data System (ADS)

    Wang, Gang

    Current research on Transition Metal Dichalcogenide (TMD) Monolayers is stimulated by their strong light-matter interaction and the possibility to use the valley index in addition to spin as an information carrier. The direct gap interband transitions in TMD monolayers are governed by chiral optical selection rules. Determined by laser helicity, optical transitions in either the K+ or K- valley in momentum space are induced. Very recently the optical generation of valley polarization and valley coherence (coherent superposition of valley states) have been reported. In this work we go a step further by discussing the coherent manipulation of valley states. Linearly polarized laser excitation prepares a coherent superposition of valley states. We demonstrate the control of the exciton valley coherence in monolayer WSe2 by tuning the applied magnetic field perpendicular to the monolayer plane. The induced valley Zeeman splitting between K+ and K- results in a change of the oscillation frequency of the superposition of the valley states, which corresponds to a rotation of the exciton valley pseudo-spin. We show rotation of this coherent superposition of valley states by angles as large as 30 degrees in applied fields up to 9T and discuss valley coherence in other TMD monolayer materials. This exciton valley coherence control on ps time scale could be an important step towards complete control of qubits based on the valley degree of freedom. In collaboration with X. Marie, T. Amand, C. Robert, F. Cadiz, P. Renucci, B. Urbaszek (Université de Toulouse, INSA-CNRS-UPS, LPCNO, France), B. L. Liu (Institute of Physics, Chinese Academy of Sciences, China) and we acknowledge ERC Grant No. 306719.

  16. Geology and water resources of Owens Valley, California

    USGS Publications Warehouse

    Hollett, Kenneth J.; Danskin, Wesley R.; McCaffrey, William F.; Walti, Caryl L.

    1991-01-01

    Owens Valley, a long, narrow valley located along the east flank of the Sierra Nevada in east-central California, is the main source of water for the city of Los Angeles. The city diverts most of the surface water in the valley into the Owens River-Los Angeles Aqueduct system, which transports the water more than 200 miles south to areas of distribution and use. Additionally, ground water is pumped or flows from wells to supplement the surface-water diversions to the river-aqueduct system. Pumpage from wells needed to supplement water export has increased since 1970, when a second aqueduct was put into service, and local concerns have been expressed that the increased pumpage may have had a detrimental effect on the environment and the indigenous alkaline scrub and meadow plant communities in the valley. The scrub and meadow communities depend on soil moisture derived from precipitation and the unconfined part of a multilayered aquifer system. This report, which describes the hydrogeology of the aquifer system and the water resources of the valley, is one in a series designed to (1) evaluate the effects that groundwater pumping has on scrub and meadow communities and (2) appraise alternative strategies to mitigate any adverse effects caused by, pumping. Two principal topographic features are the surface expression of the geologic framework--the high, prominent mountains on the east and west sides of the valley and the long, narrow intermountain valley floor. The mountains are composed of sedimentary, granitic, and metamorphic rocks, mantled in part by volcanic rocks as well as by glacial, talus, and fluvial deposits. The valley floor is underlain by valley fill that consists of unconsolidated to moderately consolidated alluvial fan, transition-zone, glacial and talus, and fluvial and lacustrine deposits. The valley fill also includes interlayered recent volcanic flows and pyroclastic rocks. The bedrock surface beneath the valley fill is a narrow, steep-sided graben

  17. Geohydrology of the Unconsolidated Valley-Fill Aquifer in the Meads Creek Valley, Schuyler and Steuben Counties, New York

    USGS Publications Warehouse

    Miller, Todd S.; Bugliosi, Edward F.; Reddy, James E.

    2008-01-01

    The Meads Creek valley encompasses 70 square miles of predominantly forested uplands in the upper Susquehanna River drainage basin. The valley, which was listed as a Priority Waterbody by the New York State Department of Environmental Conservation in 2004, is prone to periodic flooding, mostly in its downstream end, where development is occurring most rapidly. Hydraulic characteristics of the unconsolidated valley-fill aquifer were evaluated, and seepage rates in losing and gaining tributaries were calculated or estimated, in an effort to delineate the aquifer geometry and identify the factors that contribute to flooding. Results indicated that (1) Meads Creek gained about 61 cubic feet of flow per second (about 6.0 cubic feet per second per mile of stream channel) from ground-water discharge and inflow from tributaries in its 10.2-mile reach between the northernmost and southernmost measurement sites; (2) major tributaries in the northern part of the valley are not significant sources of recharge to the aquifer; and (3) major tributaries in the central and southern part of the valley provide recharge to the aquifer. The ground-water portion of streamflow in Meads Creek (excluding tributary inflow) was 11.3 cubic feet per second (ft3/s) in the central part of the valley and 17.2 ft3/s in the southern part - a total of 28.5 ft3/s. Ground-water levels were measured in 29 wells finished in unconfined deposits for construction of a potentiometric-surface map to depict directions of ground-water flow within the valley. In general, ground water flows from the edges of the valley toward Meads Creek and ultimately discharges to it. The horizontal hydraulic gradient for the entire 12-mile-long aquifer averages about 30 feet per mile, whereas the gradient in the southern fourth of the valley averages about half that - about 17 feet per mile. A water budget for the aquifer indicated that 28 percent of recharge was derived from precipitation that falls on the aquifer, 32

  18. Co-firing coal and biomass blends and their influence on the post-combustion CO2 capture installation

    NASA Astrophysics Data System (ADS)

    Więckol-Ryk, Angelika; Smoliński, Adam

    2017-10-01

    Co-firing of biomass with coal for energy production is a well-known technology and plays an important role in the electricity sector. The post-combustion capture integrated with biomass-fired power plants (Bio-CCS) seems to be a new alternative for reducing greenhouse gas emissions. This study refers to the best known and advanced technology for post-combustion CO2 capture (PCC) based on a chemical absorption in monoethanolamine (MEA). The co-firing of hard coal with four types of biomass was investigated using a laboratory fixed bed reactor system. The comparison of gaseous products emitted from the combustion of coal and different biomass blends were determined using gas chromatography. Research proved that co-firing of biomass in fossil fuel power plants is beneficial for PCC process. It may also reduce the corrosion of CO2 capture installation. The oxygen concentration in the flue gases from hard coal combustion was comparable with the respective value for a fuel blend of biomass content of 20% w/w. It was also noted that an increase in biomass content in a sample from 20 to 40 % w/w increased the concentration of oxygen in the flue gas streams. However, this concentration should not have a significant impact on the rate of amine oxidative degradation.

  19. Use of Biomass Ash as a stabilization agent for expansive marly soils (SE Spain)

    NASA Astrophysics Data System (ADS)

    Ureña, C.; Azañón, J. M.; Caro, J. M.; Irigaray, C.; Corpas, F.; Ramirez, A.; Rivas, F.; Salazar, L. M.; Mochón, I.

    2012-04-01

    In recent years, several biomass power plants have been installed in Southeastern Spain to reuse olive oil industry residues. This energy production tries to reduce the high costs associated with fossil fuels, but without entering into direct competition to traditional food crops. The waste management in these biomass energy plants is still an issue since there are non-flammable materials which remains after incineration in the form of ashes. In Southeastern Spain there is also a great amount of clayey and marly soils whose volume is very sensitive to changes in climate conditions, making them unsuitable for civil engineering. We propose the use of biomass ash (both fly ash and bottom ash) as a stabilization agent for expansive soils in order to improve the efficiency of construction processes by using locally available materials. In this work biomass ashes from a biomass power plant in Southeastern Spain have been used to stabilize 6 samples of local marly soil. Those 6 samples of expansive soil were mixed with different dosages of biomass ash (2%, 4% and 7%) to create 18 specimens of treated soil, which were submitted to Proctor, Atterberg Limits, pH and Free Swell Index tests, following Spanish Standards UNE by AENOR. X-Ray Diffraction (XRD) tests by powder method were also carried out, using a diffractometer Philips X'Pert-MPD. The results obtained for the original untreated marly soil were: PI = 34.6; Free Swell = 12.5; pH = 8. By adding biomass ash the value of the plasticity index (PI) became slightly lower although it was not low enough as to obtain a non-plastic soil (PI under 25). However, there were dramatical decreases of free swell index (FSI) after the stabilization treatment: FSI < 8.18 (2% biomass); FSI < 6.15 (4% biomass); FSI < 4.18 (7% biomass); These results suggest that treated soil is quite less susceptible than the original soil to moisture changes. The pH of the mixes after adding biomass ash rose from 8 to 11±1 leading to an alkaline

  20. Major Biomass Conference

    Science.gov Websites

    Top Scientists, Industry and Government Leaders to Gather for Major Biomass Conference America, South America and Europe will focus on building a sustainable, profitable biomass business at the Third Biomass Conference of the Americas in Montreal. Scheduled presentations will cover all biomass

  1. Observation of valley-selective microwave transport in photonic crystals

    NASA Astrophysics Data System (ADS)

    Ye, Liping; Yang, Yuting; Hong Hang, Zhi; Qiu, Chunyin; Liu, Zhengyou

    2017-12-01

    Recently, the discrete valley degree of freedom has attracted extensive attention in condensed matter physics. Here, we present an experimental observation of the intriguing valley transport for microwaves in photonic crystals, including the bulk valley transport and the valley-projected edge modes along the interface separating different photonic insulating phases. For both cases, valley-selective excitations are realized by a point-like chiral source located at proper locations inside the samples. Our results are promising for exploring unprecedented routes to manipulate microwaves.

  2. On a clean power generation system with the co-gasification of biomass and coal in a quadruple fluidized bed gasifier.

    PubMed

    Yan, Linbo; He, Boshu

    2017-07-01

    A clean power generation system was built based on the steam co-gasification of biomass and coal in a quadruple fluidized bed gasifier. The chemical looping with oxygen uncoupling technology was used to supply oxygen for the calciner. The solid oxide fuel cell and the steam turbine were combined to generate power. The calcium looping and mineral carbonation were used for CO 2 capture and sequestration. The aim of this work was to study the characteristics of this system. The effects of key operation parameters on the system total energy efficiency (ŋ ten ), total exergy efficiency (ŋ tex ) and carbon sequestration rate (R cs ) were detected. The energy and exergy balance calculations were implemented and the corresponding Sankey and Grassmann diagrams were drawn. It was found that the maximum energy and exergy losses occurred in the steam turbine. The system ŋ ten and ŋ tex could be ∼50% and ∼47%, and R cs could be over unit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology.

    PubMed

    Salema, Arshad Adam; Afzal, Muhammad T; Bennamoun, Lyes

    2017-06-01

    Pyrolysis of corn stalk biomass briquettes was carried out in a developed microwave (MW) reactor supplied with 2.45GHz frequency using 3kW power generator. MW power and biomass loading were the key parameters investigated in this study. Highest bio-oil, biochar, and gas yield of 19.6%, 41.1%, and 54.0% was achieved at different process condition. In terms of quality, biochar exhibited good heating value (32MJ/kg) than bio-oil (2.47MJ/kg). Bio-oil was also characterised chemically using FTIR and GC-MS method. This work may open new dimension towards development of large-scale MW pyrolysis technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Water-power resources in upper Carson River basin, California-Nevada, A discussion of potential development of power and reservoir sites on east and west forks, Carson River

    USGS Publications Warehouse

    Pumphrey, Harold L.

    1955-01-01

    West Fork Carson River offers the best opportunity for power development in the Carson River basin. The Hope Valley reservoir site could be developed to provide adequate storage regulation and concentration of fall would permit utilization of 1,400 feet of head in 51h miles below the clam site, or 1,900 feet of head in about 972 miles below the dam site; however, the average annual runoff susceptible of development is only about 70,000 acre-feet which limits the power that could be developed continuously in an average year with regulation to about 8,700 kilowatts utilizing 1,400 feet of head, or 12,000 kilowatts utilizing 1,900 feet of head. The method and degree of development will be determined to large extent by the method devised to supplement regulated flows from the Hope Valley reservoir to supply the water already appropriated for irrigation. If the Hope Valley site and the Watasheamu site on East Fork Carson River were developed coordinately water could be transferred to the West Fork for distribution through canals leading from that stream thus satisfying the deficiency due to regulation at Hope Valley and release of stored water on a power schedule. This would permit utilization of the entire 1,900 feet of fall. Independent development of the West Fork for optimum power production would require re-regulation of releases from Hope Valley reservoir and storage of a considerable part of the fall and winter flow for use during the irrigation season. Adequate storage capacity is apparently not available on the West Fork below Hope Valley; but offstream storage may be available in Diamond Valley which could be utilized by diversion from the West Fork near Woodfords. This would limit the utilization of the stream for power purposes to the development of the 1,400 feet of head between the Hope Valley dam site and Wood fords. In a year of average discharge East Fork Carson River and three of its principal tributaries could be developed to produce about 13

  5. New perspectives on quantitative characterization of biomass burning (Invited)

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.

    2010-12-01

    Biomass burning (BB) occurs seasonally in different vegetated landscapes across the world, consuming large amounts of biomass, generating intense heat energy, and emitting corresponding amounts of smoke plumes that comprise aerosols and trace gases, which include carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), non-methane hydrocarbons, and numerous other trace compounds, many of which have adverse effects on human health, air quality, and environmental processes. Accurate estimates of these emissions are required as model inputs to evaluate and forecast smoke plume transport and impacts on air quality, human health, clouds, weather, radiation, and climate. The goal of this presentation is to highlight results of research activities that are aimed at advancing the quantitative characterization of various aspects of biomass burning (energetics, intensity, burn areas, burn severity, emissions, and fire weather) from aircraft and satellite measurements that can help advance our understanding of biomass burning and its overall effects. We will show recent results of analysis of fire radiative power (FRP), burned areas, fuel consumption, smoke emission rates, and plume heights from satellite measurements, as well as related aircraft calibration/validation activities. We will also briefly examine potential future plans and strategies for effective monitoring of biomass burning characteristics and emissions from aircraft and satellite.

  6. 27 CFR 9.90 - Willamette Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) “Roseburg,” Location Diagram NL 10-2, 1958 (revised 1970). (c) Boundaries. The Willamette Valley... valleys of Little River, Mosby Creek, Sharps Creek and Lost Creek to the intersection of R1W/R1E and State...

  7. Valley photonic crystals for control of spin and topology

    NASA Astrophysics Data System (ADS)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  8. A review of empirical evidence on different uncanny valley hypotheses: support for perceptual mismatch as one road to the valley of eeriness

    PubMed Central

    Kätsyri, Jari; Förger, Klaus; Mäkäräinen, Meeri; Takala, Tapio

    2015-01-01

    The uncanny valley hypothesis, proposed already in the 1970s, suggests that almost but not fully humanlike artificial characters will trigger a profound sense of unease. This hypothesis has become widely acknowledged both in the popular media and scientific research. Surprisingly, empirical evidence for the hypothesis has remained inconsistent. In the present article, we reinterpret the original uncanny valley hypothesis and review empirical evidence for different theoretically motivated uncanny valley hypotheses. The uncanny valley could be understood as the naïve claim that any kind of human-likeness manipulation will lead to experienced negative affinity at close-to-realistic levels. More recent hypotheses have suggested that the uncanny valley would be caused by artificial–human categorization difficulty or by a perceptual mismatch between artificial and human features. Original formulation also suggested that movement would modulate the uncanny valley. The reviewed empirical literature failed to provide consistent support for the naïve uncanny valley hypothesis or the modulatory effects of movement. Results on the categorization difficulty hypothesis were still too scarce to allow drawing firm conclusions. In contrast, good support was found for the perceptual mismatch hypothesis. Taken together, the present review findings suggest that the uncanny valley exists only under specific conditions. More research is still needed to pinpoint the exact conditions under which the uncanny valley phenomenon manifests itself. PMID:25914661

  9. Duck Valley Habitat Enhancement and Protection, 2001-2002 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Mattie H.; Sellman, Jake

    The Duck Valley Indian Reservation's Habitat Enhancement project is an ongoing project designed to enhance and protect critical riparian areas, natural springs, the Owhyee River and its tributaries, and native fish spawning areas on the Reservation. The project commenced in 1997 and addresses the Northwest Power Planning Council's measures 10.8C.2, 10.8C.3, and 10.8C.5 of the 1994 Columbia River Basin Fish and Wildlife Program. The performance period covers dates from April 2001 through August 2002.

  10. Biomass pretreatment

    DOEpatents

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  11. Gravity survey of Dixie Valley, west-central Nevada

    USGS Publications Warehouse

    Schaefer, Donald H.

    1983-01-01

    Dixie Valley, a northeast-trending structural trough typical of valleys in the Basin and Range Province, is filled with a maximum of about 10,000 feet of alluvial and lacustrine deposits , as estimated from residual-gravity measurements obtained in this study. On the basis of gravity measurements at 300 stations on nine east-west profiles, the gravity residuals reach a maximum of 30 milligals near the south-central part of the valley. Results from a three-dimensional inversion model indicate that the central depression of the valley is offset to the west of the geographic axis. This offset is probably due to major faulting along the west side of the valley adjacent to the Stillwater Range. Comparison of depths to bedrock obtained during this study and depths obtained from a previous seismic-refraction study indicates a reasonably good correlation. A heterogeneous distribution of densities within the valley-fill deposits would account for differing depths determined by the two methods. (USGS)

  12. [Growth analysis on modules of Cynodon dactylon clones in Yili River Valley Plain of Xinjiang].

    PubMed

    Zhao, Yu; Janar; Li, Hai-Yan; Liu, Ying; Yang, Yun-Fei

    2009-04-01

    By the method of randomly digging up whole ramet tuft while maintaining natural integrity, large samples of Cynodon dactylon clones were collected from a grape orchard abandoned for 2 years without any management in the Yili River Valley Plain of Xinjiang, aimed to quantitatively analyze the growth patterns of their modules. The results showed that the average ramet number of test 30 clones reached 272.6 +/- 186. 6, among which, vegetative ramets occupied 82.3%, being 4.3 times higher than reproductive ones. The total biomass of the clones was 45.4 +/- 40.0 g, in which, rhizomes accounted for 54.4%, while the vegetative ramets, stolons, and reproductive ramets occupied 21.0%, 14.8%, and 9.4% of the total, respectively. The accumulative length of rhizomes and stolons reached 5.1 + 4.7 m and 3.3 +/- 3.4 m, while the bud number on stolons and rhizomes was 291.5 +/- 246.8 and 78.8 +/- 87.4, respectively. The bud number on stolons and rhizomes was positively correlated to the quantitative characters of vegetative ramets, reproductive ramets, stolons, and rhizomes (P < 0.01), indicating that in Yili River Valley Plain, C. dactylon clone could achieve and maintain its continuous renovation via rhizome buds.

  13. Napa Valley Community College District and Napa Valley College Faculty Association/CTA/NEA 1988-89 Agreement.

    ERIC Educational Resources Information Center

    Napa Valley Community Coll. District, Napa, CA.

    The collective bargaining agreement between the Board of Trustees of the Napa Valley Community College District and the Napa Valley College Faculty Association/California Teachers Association/National Education Association is presented. This contract, in effect from June 1988 through July 1989, deals with the following topics: bargaining agent…

  14. Co-combustion of coal and biomass in a pressurized bubbling fluidized bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andries, J.; Verloop, M.; Hein, K.

    1997-12-31

    The use of biomass as an energy source in power plants has advantages compared to fossil fuel firing. Co-firing of biomass and coal offers additional advantages compared to exclusive biomass firing. The objective of the research described in this paper is to assess the effect of co-combustion of biomass (straw or Miscanthus Sinensis) and coal on the behavior of a pressurized fluidized bed combustor with regard to fuel feeding, fluidization, sintering, burnout, temperature distribution and the emission of harmful gaseous and solid components. Temperature and gas concentration profiles have been determined in the freeboard of the Delft 1.6 MW{sub th}more » PFBC test rig. The addition of up to 20% of biomass (based on heat input) has no adverse effect on the PFBC process. The feeding of the biomass is more critical than the feeding of coal, due to the more fibrous structure and the larger volumes of the biomass fuel. Dependent on the process conditions the biomass addition results locally in an increase or decrease of the temperatures. Biomass addition causes a small increase of the CO and NO and a small decrease of N{sub 2}O emissions. The influence of the biomass addition on the HCl emissions is not clear. The lower sulfur content and a larger sulfur capture efficiency result in lower SO{sub 2} emissions. The addition of biomass has a negligible influence on the combustion efficiency. A 15--30% higher cyclone catch was found for the coal/Miscanthus mixture when compared to the other fuels.« less

  15. Channels and valleys on Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1983-01-01

    Tentative conclusions about the origins of channels and valleys on Mars based on the consensus of investigators who have studied the problem are presented. The morphology of outflow channels is described in detail, and the morphology, distribution, and genesis of Martian valleys are addressed. Secondary modification of channels and valleys by mass-wasting phenomena, eolian processes, cratering, and mantling by lava flows is discussed. The physics of the flows needed to account for the immense volumes of Martian outflow channels is considered in detail, including the possible influence of debris flows and mudflows, glaciers, and ice sheets. It is concluded that Mars once probably possessed an atmosphere with higher temperatures and pressures than at present which played an essential role in an active hydrological cycle.

  16. Powerful peracetic acid-ionic liquid pretreatment process for the efficient chemical hydrolysis of lignocellulosic biomass.

    PubMed

    Uju; Goto, Masahiro; Kamiya, Noriho

    2016-08-01

    The aim of this work was to design a new method for the efficient saccharification of lignocellulosic biomass (LB) using a combination of peracetic acid (PAA) pretreatment with ionic liquid (IL)-HCl hydrolysis. The pretreatment of LBs with PAA disrupted the lignin fractions, enhanced the dissolution of LB and led to a significant increase in the initial rate of the IL-HCl hydrolysis. The pretreatment of Bagasse with PAA prior to its 1-buthyl-3-methylimidazolium chloride ([Bmim][Cl])-HCl hydrolysis, led to an improvement in the cellulose conversion from 20% to 70% in 1.5h. Interestingly, the 1-buthyl-3-methylpyridium chloride ([Bmpy][Cl])-HCl hydrolysis of Bagasse gave a cellulose conversion greater than 80%, with or without the PAA pretreatment. For LB derived from seaweed waste, the cellulose conversion reached 98% in 1h. The strong hydrolysis power of [Bmpy][Cl] was attributed to its ability to transform cellulose I to II, and lowering the degree of polymerization of cellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The geochemistry of groundwater resources in the Jordan Valley: The impact of the Rift Valley brines

    USGS Publications Warehouse

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Polak, A.; Shavit, U.

    2007-01-01

    The chemical composition of groundwater in the Jordan Valley, along the section between the Sea of Galilee and the Dead Sea, is investigated in order to evaluate the origin of the groundwater resources and, in particular, to elucidate the role of deep brines on the chemical composition of the regional groundwater resources in the Jordan Valley. Samples were collected from shallow groundwater in research boreholes on two sites in the northern and southern parts of the Jordan Valley, adjacent to the Jordan River. Data is also compiled from previous published studies. Geochemical data (e.g., Br/Cl, Na/Cl and SO4/Cl ratios) and B, O, Sr and S isotopic compositions are used to define groundwater groups, to map their distribution in the Jordan valley, and to evaluate their origin. The combined geochemical tools enabled the delineation of three major sources of solutes that differentially affect the quality of groundwater in the Jordan Valley: (1) flow and mixing with hypersaline brines with high Br/Cl (>2 ?? 10-3) and low Na/Cl (<0.8) ratios; (2) dissolution of highly soluble salts (e.g., halite, gypsum) in the host sediments resulting in typically lower Br/Cl signal (<2 ?? 10-3); and (3) recharge of anthropogenic effluents, primarily derived from evaporated agricultural return flow that has interacted (e.g., base-exchange reactions) with the overlying soil. It is shown that shallow saline groundwaters influenced by brine mixing exhibit a north-south variation in their Br/Cl and Na/Cl ratios. This chemical trend was observed also in hypersaline brines in the Jordan valley, which suggests a local mixing process between the water bodies. ?? 2007 Elsevier Ltd. All rights reserved.

  18. 36 CFR 7.26 - Death Valley National Monument.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Death Valley National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.26 Death Valley National Monument. (a) Mining. Mining in Death Valley National Monument is subject to the following regulations, which are...

  19. Eastern cottonwood and black willow biomass crop production in the Lower Mississippi Alluvial Valley under four planting densities

    Treesearch

    Ray A. Souter; Emile S Gardiner; Theodor D. Leininger; Dana Mitchell; Robert B. Rummer

    2015-01-01

    "Wood is an obvious alternative energy source": Johnson and others (2007) declare the potential of short-rotation intensively-managed woody crop systems to produce biomass for energy. While obvious as an energy source, costs of production need to be measured to assess the economic viability of selected tree species as woody perennial energy crops

  20. Total carbon and nitrogen in mineral soil after 26 years of prescribed fire: Long Valley and Fort Valley Experimental Forests

    Treesearch

    Daniel G. Neary; Sally M. Haase; Steven T. Overby

    2008-01-01

    Prescribed fire was introduced to high density ponderosa pine stands at Fort Valley and Long Valley Experimental Forests in 1976. This paper reports on mineral soil total carbon (C) and nitrogen (N) at Long Valley. Total soil C and N levels were highly variable and exhibited an increasing, but inconsistent, concentration trend related to burn interval. Total N ranged...

  1. Methods for pretreating biomass

    DOEpatents

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2017-05-09

    A method for pretreating biomass is provided, which includes, in a reactor, allowing gaseous ammonia to condense on the biomass and react with water present in the biomass to produce pretreated biomass, wherein reactivity of polysaccharides in the biomass is increased during subsequent biological conversion as compared to the reactivity of polysaccharides in biomass which has not been pretreated. A method for pretreating biomass with a liquid ammonia and recovering the liquid ammonia is also provided. Related systems which include a biochemical or biofuel production facility are also disclosed.

  2. Evaluation of total aboveground biomass and total merchantable biomass in Missouri

    Treesearch

    Michael E. Goerndt; David R. Larsen; Charles D. Keating

    2014-01-01

    In recent years, the state of Missouri has been converting to biomass weight rather than volume as the standard measurement of wood for buying and selling sawtimber. Therefore, there is a need to identify accurate and precise methods of estimating whole tree biomass and merchantable biomass of harvested trees as well as total standing biomass of live timber for...

  3. Determination of variability in leaf biomass densities of conifers and mixed conifers under different environmental conditions in the San Joaquin Valley air basin. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temple, P.J.; Mutters, R.J.; Adams, C.

    1995-06-01

    Biomass sampling plots were established at 29 locations within the dominant vegetation zones of the study area. Estimates of foliar biomass were made for each plot by three independent methods: regression analysis on the basis of tree diameter, calculation of the amount of light intercepted by the leaf canopy, and extrapolation from branch leaf area. Multivariate regression analysis was used to relate these foliar biomass estimates for oak plots and conifer plots to several independent predictor variables, including elevation, slope, aspect, temperature, precipitation, and soil chemical characteristics.

  4. Valley-polarized quantum transport generated by gauge fields in graphene

    NASA Astrophysics Data System (ADS)

    Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan

    2017-09-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.

  5. Biomass recycling and Earth’s early phosphorus cycle

    PubMed Central

    Kipp, Michael A.; Stüeken, Eva E.

    2017-01-01

    Phosphorus sets the pace of marine biological productivity on geological time scales. Recent estimates of Precambrian phosphorus levels suggest a severe deficit of this macronutrient, with the depletion attributed to scavenging by iron minerals. We propose that the size of the marine phosphorus reservoir was instead constrained by muted liberation of phosphorus during the remineralization of biomass. In the modern ocean, most biomass-bound phosphorus gets aerobically recycled; but a dearth of oxidizing power in Earth’s early oceans would have limited the stoichiometric capacity for remineralization, particularly during the Archean. The resulting low phosphorus concentrations would have substantially hampered primary productivity, contributing to the delayed rise of atmospheric oxygen. PMID:29202032

  6. Groundwater availability of the Central Valley Aquifer, California

    USGS Publications Warehouse

    Faunt, Claudia C.

    2009-01-01

    California's Central Valley covers about 20,000 square miles and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year. This irrigated agriculture relies heavily on surface-water diversions and groundwater pumpage. Approximately one-sixth of the Nation's irrigated land is in the Central Valley, and about one-fifth of the Nation's groundwater demand is supplied from its aquifers. The Central Valley also is rapidly becoming an important area for California's expanding urban population. Since 1980, the population of the Central Valley has nearly doubled from 2 million to 3.8 million people. The Census Bureau projects that the Central Valley's population will increase to 6 million people by 2020. This surge in population has increased the competition for water resources within the Central Valley and statewide, which likely will be exacerbated by anticipated reductions in deliveries of Colorado River water to southern California. In response to this competition for water, a number of water-related issues have gained prominence: conservation of agricultural land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS Groundwater Resources Program made a detailed assessment of groundwater availability of the Central Valley aquifer system, that includes: (1) the present status of groundwater resources; (2) how these resources have changed over time; and (3) tools to assess system responses to stresses from future human uses and climate variability and change. This effort builds on previous investigations, such as the USGS Central Valley Regional Aquifer System and Analysis (CV-RASA) project and several other groundwater studies in the Valley completed by Federal, State and local agencies at differing scales. The

  7. Valley-selective optical Stark effect in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Gedik, Nuh

    Monolayer semiconducting transition-metal dichalcogenides (TMDs) have a pair of valleys that, by time-reversal symmetry, are energetically degenerate. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley specific band engineering and offer additional control in valleytronic applications. In this talk, I will show that circularly polarized light, which breaks time-reversal symmetry, can be used to lift the valley degeneracy by means of the optical Stark effect. We demonstrate that this effect is capable of raising the exciton level in monolayer TMD WS2 by as much as 18 meV in a controllable valley-selective manner. The resulting energy shift is extremely large, comparable to the shift that would be obtained using a very high magnetic field (approximately 100 Tesla). These results offer a novel way to control valley degree of freedom, and may provide a means to realize new valley-selective Floquet topological state of matter.

  8. DUE GlobBiomass - Estimates of Biomass on a Global Scale

    NASA Astrophysics Data System (ADS)

    Eberle, J.; Schmullius, C.

    2017-12-01

    For the last three years, a new ESA Data User Element (DUE) project had focussed on creating improved knowledge about the Essential Climate Variable Biomass. The main purpose of the DUE GlobBiomass project is to better characterize and to reduce uncertainties of AGB estimates by developing an innovative synergistic mapping approach in five regional sites (Sweden, Poland, Mexico, Kalimantan, South Africa) for the epochs 2005, 2010 and 2015 and for one global map for the year 2010. The project team includes leading Earth Observation experts of Europe and is linked through Partnership Agreements with further national bodies from Brazil, Canada, China, Russia and South Africa. GlobBiomass has demonstrated how EO observation data can be integrated with in situ measurements and ecological understanding to provide improved biomass estimates that can be effectively exploited by users. The target users had mainly be drawn from the climate and carbon cycle modelling communities and included users concerned with carbon emissions and uptake due to biomass changes within initiatives such as REDD+. GlobBiomass provided a harmonised structure that can be exploited to address user needs for biomass information, but will be capable of being progressively refined as new data and methods become available. This presentation will give an overview of the technical prerequisites and final results of the GlobBiomass project.

  9. A summary of ground-water pumpage in the Central Valley, California, 1961-77

    USGS Publications Warehouse

    Diamond, Jonathan; Williamson, A.K.

    1983-01-01

    In the Central Valley of California, a great agricultural economy has been developed in a semiarid environment. This economy is supported by imported surface water and 9 to 15 million acre-feet per year of ground water. Estimates of ground-water pumpage computed from power consumption have been compiled and summarized. Under ideal conditions, the accuracy of the methods used is about 3 percent. This level of accuracy is not sustained over the entire study area. When pumpage for the entire area is mapped, the estimates seem to be consistent areally and through time. A multiple linear-regression model was used to synthesize data for the years 1961 through 1977, when power data were not available. The model used a relation between ground-water pumpage and climatic indexes to develop a full suite of pumpage data to be used as input to a digital ground-water model, one of the products of the Central Valley Aquifer Project. Statistical analysis of well-perforation data from drillers ' logs and water-temperature data was used to determine the percentage of pumpage that was withdrawn from each of two horizontal layers. (USGS)

  10. Groundwater sapping valleys: Experimental studies, geological controls and implications to the interpretation of valley networks on Mars

    NASA Technical Reports Server (NTRS)

    Kochel, R. Craig

    1988-01-01

    An integrated approach using experimental laboratory models, field studies of terrestrial analogs, and remote studies of terrestrial field sites were applied to the goals of understanding the nature and morphology of valley networks formed by groundwater sapping. In spite of problems with scaling, the experimental studies provide valuable insights into concepts relating to the initiation, development, and evolution of valleys by groundwater sapping. These investigations are also aimed at developing geomorphic criteria for distinguishing valleys formed by surface runoff from those formed by groundwater sapping processes. Channels that were field classified as sapping vs. runoff were successfully distinguished using statistical analysis of their respective morphologies; therefore, it may be possible to use similar techniques to interpret channel genesis on Mars. The terrestrial and flume studies provide the ground truth dataset which can be used (and will be during the present year) to help interpret the genesis of valley networks on Mars.

  11. Hydrologic effects of stress-relief fracturing in an Appalachian Valley

    USGS Publications Warehouse

    Wyrick, Granville G.; Borchers, James W.

    1981-01-01

    A hydrologic study at Twin Falls State Park, Wyoming County, West Virginia, was made to determine how fracture systems affect the occurrence and movement of ground water in a typical valley of the Appalachian Plateaus Physiographic Province. Twin Falls was selected because it is generally unaffected by factors that would complicate an analysis of the data. The study area was the Black Fork Valley at Twin Falls. The valley is about 3 miles long and 400 to 600 feet wide and is cut into massive sandstone units interbedded with thin coal and shale beds. The study was made to determine how aquifer characteristics were related to fracture systems in this valley, so that the relation could be applied to studies of other valleys. Two sites were selected for test drilling, pumping tests, and geophysical studies. One site is in the upper part of the valley, and the second is near the lower central part. At both sites, ground water occurs mainly in horizontal bedding-plane fractures under the valley floor and in nearly vertical and horizontal slump fractures along the valley wall. The aquifer is under confined conditions under the valley floor and unconfined conditions along the valley wall. The fractures pinch out under the valley walls, which form impermeable barriers. Tests of wells near the valley center indicated a change in storage coefficient as the cone of depression caused by pumping reached the confined-unconfined boundaries; the tests also indicated barrier-image effects when the cone reached the impermeable boundaries. Drawdown from pumping near the center of the valley affected water levels at both sites, indicating a hydraulic connection from the upper to the lower end of the valley. Stream gain-and-loss studies show that ground water discharges to the stream from horizontal fractures beneath Black Fork Falls, near the mouth of Black Fork. The fracture systems that constitute most of the transmissive part of the aquifer at Twin Falls are like those described as

  12. Biomass torrefaction mill

    DOEpatents

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  13. Trends and variability of atmospheric PM2.5 and PM10-2.5 concentration in the Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Bigi, Alessandro; Ghermandi, Grazia

    2016-12-01

    The Po Valley is one of the largest European regions with a remarkably high concentration level of atmospheric pollutants, both for particulate and gaseous compounds. In the last decade stringent regulations on air quality standards and on anthropogenic emissions have been set by the European Commission, including also for PM2.5 and its main components since 2008. These regulations have led to an overall improvement in air quality across Europe, including the Po Valley and specifically PM10, as shown in a previous study by Bigi and Ghermandi (2014). In order to assess the trend and variability in PM2.5 in the Po Valley and its role in the decrease in PM10, we analysed daily gravimetric equivalent concentration of PM2.5 and of PM10-2.5 at 44 and 15 sites respectively across the Po Valley. The duration of the times series investigated in this work ranges from 7 to 10 years. For both PM sizes, the trend in deseasonalized monthly means, annual quantiles and in monthly frequency distribution was estimated: this showed a significant decreasing trend at several sites for both size fractions and mostly occurring in winter. All series were tested for a significant weekly periodicity (a proxy to estimate the impact of primary anthropogenic emissions), yielding positive results for summer PM2.5 and for summer and winter PM10-2.5. Hierarchical cluster analysis showed moderate variability in PM2.5 across the valley, with two to three main clusters, dividing the area in western, eastern and southern/Apennines foothill sectors. The trend in atmospheric concentration was compared with the time series of local emissions, vehicular fleet details and fuel sales, suggesting that the decrease in PM2.5 and in PM10 originates from a drop both in primary and in precursors of secondary inorganic aerosol emissions, largely ascribed to vehicular traffic. Potentially, the increase in biomass burning emissions in winter and the modest decrease in NH3 weaken an otherwise even larger drop in

  14. Groundwater quality in the Santa Clara River Valley, California

    USGS Publications Warehouse

    Burton, Carmen A.; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    The Santa Clara River Valley (SCRV) study unit is located in Los Angeles and Ventura Counties, California, and is bounded by the Santa Monica, San Gabriel, Topatopa, and Santa Ynez Mountains, and the Pacific Ocean. The 460-square-mile study unit includes eight groundwater basins: Ojai Valley, Upper Ojai Valley, Ventura River Valley, Santa Clara River Valley, Pleasant Valley, Arroyo Santa Rosa Valley, Las Posas Valley, and Simi Valley (California Department of Water Resources, 2003; Montrella and Belitz, 2009). The SCRV study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 12 to 28 inches. The study unit is drained by the Ventura and Santa Clara Rivers, and Calleguas Creek. The primary aquifer system in the Ventura River Valley, Ojai Valley, Upper Ojai Valley, and Simi Valley basins is largely unconfined alluvium. The primary aquifer system in the remaining groundwater basins mainly consists of unconfined sands and gravels in the upper portion and partially confined marine and nonmarine deposits in the lower portion. The primary aquifer system in the SCRV study unit is defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. Public-supply wells typically are completed in the primary aquifer system to depths of 200 to 1,100 feet below land surface (bls). The wells contain solid casing reaching from the land surface to a depth of about 60-700 feet, and are perforated below the solid casing to allow water into the well. Water quality in the primary aquifer system may differ from the water in the shallower and deeper parts of the aquifer. Land use in the study unit is approximately 40 percent (%) natural (primarily shrubs, grassland, and wetlands), 37% agricultural, and 23% urban. The primary crops are citrus, avocados, alfalfa, pasture, strawberries, and dry beans. The largest urban areas in the study unit are the cities of

  15. Methods for producing and using densified biomass products containing pretreated biomass fibers

    DOEpatents

    Dale, Bruce E.; Ritchie, Bryan; Marshall, Derek

    2015-05-26

    A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.

  16. California's restless giant: the Long Valley Caldera

    USGS Publications Warehouse

    Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.; Marcaida, Mae

    2014-01-01

    Scientists have monitored geologic unrest in the Long Valley, California, area since 1980. In that year, following a swarm of strong earthquakes, they discovered that the central part of the Long Valley Caldera had begun actively rising. Unrest in the area persists today. The U.S. Geological Survey (USGS) continues to provide the public and civil authorities with current information on the volcanic hazard at Long Valley and is prepared to give timely warnings of any impending eruption.

  17. Geology of the Greenwater Range, and the dawn of Death Valley, California—Field guide for the Death Valley Natural History Conference, 2013

    USGS Publications Warehouse

    Calzia, J.P.; Rämö, O.T.; Jachens, Robert; Smith, Eugene; Knott, Jeffrey

    2016-05-02

    Much has been written about the age and formation of Death Valley, but that is one—if not the last—chapter in the fascinating geologic history of this area. Igneous and sedimentary rocks in the Greenwater Range, one mountain range east of Death Valley, tell an earlier story that overlaps with the formation of Death Valley proper. This early story has been told by scientists who have studied these rocks for many years and continue to do so. This field guide was prepared for the first Death Valley Natural History Conference and provides an overview of the geology of the Greenwater Range and the early history (10–0 Ma) of Death Valley.

  18. 27 CFR 9.191 - Ramona Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Ramona Valley. 9.191 Section 9.191 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT...) Borrego Valley, California, 1982 edition; and (2) El Cajon, California, 1979 edition. (c) Boundary. The...

  19. 27 CFR 9.191 - Ramona Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ramona Valley. 9.191 Section 9.191 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT...) Borrego Valley, California, 1982 edition; and (2) El Cajon, California, 1979 edition. (c) Boundary. The...

  20. A Quantitative Analysis of the Fretted Terrain Valleys, Arabia Terra, Mars

    NASA Astrophysics Data System (ADS)

    Mason, Kelsey Anne

    Fretted terrain describes regions on Mars with low-lying, flat valleys separated by steep cliffs that often form polygonal-shaped mesas. The fretted terrain valleys have a morphology distinct from other valleys found on Mars, and their unknown origin may hold insights into critical questions about Mars' tectonic, magmatic, and hydrologic history. Current hypothesis for the formation of the fretted terrain include fracturing as well as hydrological flow processes such as fluvial or glacial erosion. The region for this study is located in eastern Arabia Terra and is the type-location for fretted terrain. By qualitatively and quantitatively documenting the planform, or map-view, valley geometries and orientations throughout the fretted terrain, this study better constrains the origin of the valleys. Valleys were mapped using automated routines in ArcGIS including the D8 flow direction algorithm. Valleys were then grouped geographically into basins and also by Strahler order. The valleys were then segmented every 50 km and the azimuth of each segment was calculated. The resulting valley azimuths were analyzed using rose diagrams to quantitatively describe the planform geometries of the valleys. Qualitatively, the majority of basins were found to have rectangular valley geometries. The downslope direction was calculated for each basin, and it was compared to the corresponding valley azimuths. The basins with rectangular valley geometries had valleys with an azimuth mode nearly parallel to the downslope direction and another azimuth mode perpendicular to the downslope direction. The valley azimuth mode parallel to the downslope direction is attributed to hydrological flow processes while the mode perpendicular to the downslope direction is attributed to fracturing related to the formation or existence of the Mars global dichotomy boundary.

  1. Dynamics of valley pseudospin in single-layer WSe2. Inter-valley scattering mediated by electron-phonon interaction

    NASA Astrophysics Data System (ADS)

    Molina-Sanchez, Alejandro; Sangalli, Davide; Wirtz, Ludger; Marini, Andrea

    In a time-dependent Kerr experiment a circularly polarized laser field is used to selectively populate the K+/- electronic valleys of single-layer WSe2. This carrier population corresponds to a finite pseudospin polarization that dictates the valleytronic properties of WSe2, but whose decay mechanism still remains largely debated. Time-dependent Kerr experiments provide an accurate way to visualize the pseudospin dynamics by measuring the rotation of a linearly polarized probe pulse applied after a circularly polarized and short pump pulse. We present here a clear, accurate and parameter-free description of the valley pseudospin dynamics in single-layer WSe2. By using an ab-initio approach we solve unambiguously the long standing debate about the dominant mechanism that drives the valley depolarization. Our results are in excellent agreement with recent time-dependent Kerr experiments. The decay dynamics and peculiar temperature dependence is explained in terms of electron phonon mediated processes that induce spin-flip inter-valley transitions.

  2. Luminescence dating of paleolake deltas and glacial deposits in Garwood Valley, Antarctica: Implications for climate, Ross ice sheet dynamics, and paleolake duration

    USGS Publications Warehouse

    Levy, Joseph S.; Rittenour, Tammy M.; Fountain, Andrew G.; O'Connor, Jim E.

    2017-01-01

    The formation of perched deltas and other lacustrine deposits in the McMurdo Dry Valleys of Antarctica is widely considered to be evidence of valley-filling lakes dammed by the grounded Ross Sea ice sheet during the local Last Glacial Maximum, with lake drainage interpreted as a record of grounding line retreat. We used luminescence dating to determine the age of paleolake deltas and glacial tills in Garwood Valley, a coastal dry valley that opens to the Ross Sea. Luminescence ages are stratigraphically consistent with radiocarbon results from algal mats within the same delta deposits but suggest radiocarbon dates from lacustrine carbonates may overestimate deposit ages by thousands of years. Results suggest that late Holocene delta deposition into paleolake Howard in Garwood Valley persisted until ca. 3.5 ka. This is significantly younger than the date when grounded ice is thought to have retreated from the Ross Sea. Our evidence suggests that the local, stranded ice-cored till topography in Garwood Valley, rather than regional ice-sheet dynamics, may have controlled lake levels for some McMurdo Dry Valleys paleolakes. Age control from the supraglacial Ross Sea drift suggests grounding and up-valley advance of the Ross Sea ice sheet into Garwood valley during marine oxygen isotope stage (MIS) 4 (71–78 ka) and the local Last Glacial Maximum (9–10 ka). This work demonstrates the power of combining luminescence dating with existing radiocarbon data sets to improve understanding of the relationships among paleolake formation, glacial position, and stream discharge in response to climate change.

  3. 7 CFR 956.30 - Powers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Powers. 956.30 Section 956.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE SWEET ONIONS GROWN IN THE WALLA WALLA VALLEY...

  4. 7 CFR 956.30 - Powers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Powers. 956.30 Section 956.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE SWEET ONIONS GROWN IN THE WALLA WALLA VALLEY...

  5. 7 CFR 956.30 - Powers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Powers. 956.30 Section 956.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE SWEET ONIONS GROWN IN THE WALLA WALLA VALLEY...

  6. 7 CFR 956.30 - Powers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Powers. 956.30 Section 956.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE SWEET ONIONS GROWN IN THE WALLA WALLA VALLEY...

  7. 7 CFR 956.30 - Powers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Powers. 956.30 Section 956.30 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE SWEET ONIONS GROWN IN THE WALLA WALLA VALLEY...

  8. Scaling relationships and concavity of small valley networks on Mars

    NASA Astrophysics Data System (ADS)

    Penido, Julita C.; Fassett, Caleb I.; Som, Sanjoy M.

    2013-01-01

    Valley networks are widely interpreted as the preserved erosional record of water flowing across the martian surface. The manner in which valley morphometric properties scale with drainage area has been widely examined on Earth. Earlier studies assessing these properties on Mars have suggested that martian valleys are morphometrically distinct from those on Earth. However, these earlier measurements were generally made on large valley systems because of the limited topographic data available. In this study, we determine the scaling properties of valley networks at smaller scales than have been previously assessed, using digital elevation models from the High Resolution Stereo Camera (HRSC). We find a Hack's law exponent of 0.74, larger than on Earth, and our measurements also reveal that individual small valleys have concave up, concave down, and quasi-linear longitudinal profiles, consistent with earlier studies of dissected terrain on Mars. However, for many valleys, widths are observed to increase downstream similarly to how they scale in terrestrial channels. The similarities and differences between valley networks on Mars and Earth are consistent with the idea that valleys on Mars are comparatively immature, and precipitation was a likely mechanism for delivering water to these networks.

  9. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis Lau

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-productmore » of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a

  10. Biomass

    Treesearch

    Bernard R. Parresol

    2001-01-01

    Biomass, the contraction for biological mass, is the amount of living material provided by a given area or volume of the earth's surface, whether terrestrial or aquatic. Biomass is important for commercial uses (e.g., fuel and fiber) and for national development planning, as well as for scientific studies of ecosystem productivity, energy and nutrient flows, and...

  11. 27 CFR 9.100 - Mesilla Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Mesilla Valley. 9.100 Section 9.100 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Mesilla Valley viticultural area is located within Dona Ana County, New Mexico, and El Paso County, Texas...

  12. 27 CFR 9.100 - Mesilla Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Mesilla Valley. 9.100 Section 9.100 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Mesilla Valley viticultural area is located within Dona Ana County, New Mexico, and El Paso County, Texas...

  13. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Crist

    2005-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment tomore » collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine

  14. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Crist

    2006-04-02

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM stationmore » will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg

  15. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Crist

    2005-04-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment tomore » collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM

  16. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment tomore » collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and

  17. BIOMASS DRYING TECHNOLOGIES

    EPA Science Inventory

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the d...

  18. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.

    PubMed

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L

    2017-02-01

    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. 27 CFR 9.78 - Ohio River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Valley.” (b) Approved maps. The approved maps for determining the boundary of the Ohio River Valley... boundary proceeds in a straight line westerly to the town of Dry Ridge in Grant County, Kentucky...

  20. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements inmore » quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.« less

  1. Numerical Simulation of Nocturnal Drainage Flows in Idealized Valley-Tributary Systems.

    NASA Astrophysics Data System (ADS)

    O'Steen, Lance B.

    2000-11-01

    Numerical simulations of nocturnal drainage flow and transport in idealized valley-tributary systems are compared with the Atmospheric Science in Complex Terrain (ASCOT) meteorological field data and tracer studies from the Brush Creek valley of western Colorado. Much of the general valley-tributary flow behavior deduced from observations is qualitatively reproduced in the numerical results. The spatially complex, unsteady nature of the tributary flow found in the field data is also seen in the simulations. Oscillations in the simulated tributary flow are similar to some field observations. However, observed oscillations in the valley flow at the mouth of the tributary could not be reproduced in the numerical results. Thus, hypotheses of strongly coupled valley-tributary flow oscillations, based on field data, cannot be supported by these simulations. Along-valley mass flux calculations based on model results for the valley-tributary system indicate an increase of 5%-10% over a valley without a tributary. Enhanced valley mass fluxes were found from 8 km above the tributary to almost the valley mouth. However, the valley mass fluxes for topography with and without a tributary were nearly equal at the valley outflow. ASCOT field data suggested a tributary mass flow contribution of 5%-15% for a Brush Creek tributary of similar drainage area to the model tributary employed here. Numerical simulations of transport in the nocturnal valley-tributary flow strongly support ASCOT tracer studies in the Pack Canyon tributary of Brush Creek. These results suggest that the valley-tributary interaction can significantly increase plume dispersion under stable conditions. Overall, the simulation results presented here indicate that simple terrain geometries are able to capture many of the salient features of drainage flow in real valley-tributary systems.

  2. The Valley Networks on Mars

    NASA Astrophysics Data System (ADS)

    Gulick, V. C.

    2002-12-01

    Despite three decades of exploration, the valley networks on Mars still seem to raise more questions than they answer. Valley systems have formed in the southern highlands, along some regions of the dichotomy boundary and the south rim of Valles Marineris, around the rim of some impact craters, and on the flanks of some volcanoes. They are found on some of the oldest and youngest terrains as well as on intermediate aged surfaces. There is surprisingly little consensus as to the formation and the paleoclimatic implications of the valley networks. Did the valleys require a persistent solar-driven atmospheric hydrological cycle involving precipitation, surface runoff, infiltration and groundwater outflow as they typically do on Earth? Or are they the result of magmatic or impact-driven thermal cycling of ground water involving persistent outflow and subsequent runoff? Are they the result of some other process(es)? Ground-water sapping, surface-water runoff, debris flows, wind erosion, and formation mechanisms involving other fluids have been proposed. Until such basic questions as these are definitively answered, their significance for understanding paleoclimatic change on Mars remains cloudy. I will review what is known about valley networks using data from both past and current missions. I will discuss what we have learned about their morphology, environments in which they formed, their spatial and temporal associations, possible formation mechanisms, relation to outflow channel and gully formation, as well as the possible implications for past climate change on Mars. Finally I will discuss how future, meter to submeter scale imaging and other remote sensing observations may shed new light on the debate over the origin of these enigmatic features.

  3. Death Valley California as seen from STS-59

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This oblique handheld Hasselblad 70mm photo shows Death Valley, near California's border with Nevada. The valley -- the central feature of Death Valley National Monument -- extends north to south for some 140 miles (225 kilometers). Hemmed in to the east by the Amargosa Range and to the west by the Panamints, its width varies from 5 to 15 miles (8 to 24 kilometers).

  4. Application of Biomass from Palm Oil Mill for Organic Rankine Cycle to Generate Power in North Sumatera Indonesia

    NASA Astrophysics Data System (ADS)

    Nur, T. B.; Pane, Z.; Amin, M. N.

    2017-03-01

    Due to increasing oil and gas demand with the depletion of fossil resources in the current situation make efficient energy systems and alternative energy conversion processes are urgently needed. With the great potential of resources in Indonesia, make biomass has been considered as one of major potential fuel and renewable resource for the near future. In this paper, the potential of palm oil mill waste as a bioenergy source has been investigated. An organic Rankine cycle (ORC) small scale power plant has been preliminary designed to generate electricity. The working fluid candidates for the ORC plant based on the heat source temperature domains have been investigated. The ORC system with a regenerator has higher thermal efficiency than the basic ORC system. The study demonstrates the technical feasibility of ORC solutions in terms of resources optimizations and reducing of greenhouse gas emissions.

  5. Commercialization of fuels from Pinyon-Juniper biomass in Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, G.P.

    1994-12-31

    This study analyzes and defines energy applications and markets that could stimulate the commercial use of Eastern Nevada`s Pinyon-Juniper resources. The commercialization potential for producing energy from Pinyon-Juniper biomass is analyzed by examining the resource base and resource availability for a commercial harvesting and processing operation. The study considered the spectrum of available equipment and technology for carrying out harvesting and processing operations, investigated the markets that might be able to use energy products derived from Pinyon-Juniper biomass, analyzed the costs of harvesting, processing, and transporting Pinyon-Juniper fuels, and set forth a plan for developing the commercial potential of thesemore » resources. The emerging residential pellet-fuels market is a promising entry market for the commercialization of an energy from Pinyon-Juniper biomass industry in Eastern Nevada, although there are serious technical issues that may render Pinyon-Juniper biomass an unsuitable feedstock for the manufacture of pellet fuels. These issues could be investigated at a moderate cost in order to determine whether to proceed with development efforts in this direction. In the longer term, one or two biomass-fired power plants in the size range of 5-10 MW could provide a stable and predictable market for the production and utilization of fuels derived from local Pinyon-Juniper biomass resources, and would provide valuable economic and environmental benefits to the region. Municipal utility ownership of such facilities could help to enhance the economic benefits of the investments by qualifying them for federal energy credits and tax-free financing.« less

  6. Different states of the transient luminous phenomena in Hessdalen valley, Norway.

    NASA Astrophysics Data System (ADS)

    Hauge, B. G.; Montebugnoli, S.

    2012-04-01

    The transient luminous phenomena's in Hessdalen valley has at least been observed for 200 years, since 1811, when the priest Jacob T. Krogh did the first written documentation. The valley is located in the middle of Norway, isolated and with sub arctic climate. The former mining district has no more than 140 inhabitants, and the deep mines are closed and filled with water. The valley has been under scientific surveillance since 1998 when the first automated and remote controlled observatory was put into action. Today a Norwegian, Italian and French collaboration runs 3 different research stations inside the valley. Each year a scientific field campaign establishes 4 temporary bases in the mountains, and up to 100 students and researchers man these bases for up to 14 days in september when the moon is down. The Hessdalen phenomena is not easy to detect, and approximately only 20 observations is done each year. The work done the last 14 years suggests that the phenomenon has different states, at least 6 detected so far. The states are so different that to se a coupling between them is difficult. New work done into dusty plasma physics suggest that the different phenomena's may be of the same origin, since the ionized grains of dusty plasma can change states from weakly coupled (gaseous) to crystalline, altering shape/formation and leading to different phenomena. Optical spectrometry from 2007 suggested that the luminous phenomena consisted of burning air and dust from the valley. Work done by G.S Paiva and C.A Taft suggests that radon decay from closed mines may be the mechanism that ionizes dust and triggers this phenomena. The 6 different main states of the Hessdalen phenomena, Doublet, Fireball, Plasma ray, Dust cloud, Flash and Invisible state is described and discussed. Investigation of the atmosphere inside the Hessdalen valley with low frequency directional RADAR, reveals large areas of ionized matter, giving a reflecting area big enough to saturate the input

  7. PM10 source apportionment in a Swiss Alpine valley impacted by highway traffic.

    PubMed

    Ducret-Stich, Regina E; Tsai, Ming-Yi; Thimmaiah, Devraj; Künzli, Nino; Hopke, Philip K; Phuleria, Harish C

    2013-09-01

    Although trans-Alpine highway traffic exhaust is one of the major sources of air pollution along the highway valleys of the Alpine regions, little is known about its contribution to residential exposure and impact on respiratory health. In this paper, source-specific contributions to particulate matter with an aerodynamic diameter < 10 μm (PM10) and their spatio-temporal distribution were determined for later use in a pediatric asthma panel study in an Alpine village. PM10 sources were identified by positive matrix factorization using chemical trace elements, elemental, and organic carbon from daily PM10 filters collected between November 2007 and June 2009 at seven locations within the village. Of the nine sources identified, four were directly road traffic-related: traffic exhaust, road dust, tire and brake wear, and road salt contributing 16 %, 8 %, 1 %, and 2 % to annual PM10 concentrations, respectively. They showed a clear dependence with distance to highway. Additional contributions were identified from secondary particles (27 %), biomass burning (18 %), railway (11 %), and mineral dust including a local construction site (13 %). Comparing these source contributions with known source-specific biomarkers (e.g., levoglucosan, nitro-polycyclic aromatic hydrocarbons) showed high agreement with biomass burning, moderate with secondary particles (in winter), and lowest agreement with traffic exhaust.

  8. Cuyahoga Valley National Park : comprehensive rail study

    DOT National Transportation Integrated Search

    2013-07-25

    Cuyahoga Valley Scenic Railroad (CVSR) has been operating in partnership with Cuyahoga Valley National Park (CVNP) since 1989 under a cooperative agreement. The railroad has been successfully developing and expanding services and ridership for the pa...

  9. Valley photonic crystals for control of spin and topology.

    PubMed

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  10. W. W. Hansen, Microwave Physics, and Silicon Valley

    NASA Astrophysics Data System (ADS)

    Leeson, David

    2009-03-01

    The Stanford physicist W. W. Hansen (b. 1909, AB '29 and PhD '32, MIT post-doc 1933-4, Prof. physics '35-'49, d. 1949) played a seminal role in the development of microwave electronics. His contributions underlay Silicon Valley's postwar ``microwave'' phase, when numerous companies, acknowledging their unique scientific debt to Hansen, flourished around Stanford University. As had the prewar ``radio'' companies, they furthered the regional entrepreneurial culture and prepared the ground for the later semiconductor and computer developments we know as Silicon Valley. In the 1930's, Hansen invented the cavity resonator. He applied this to his concept of the radio-frequency (RF) linear accelerator and, with the Varian brothers, to the invention of the klystron, which made microwave radar practical. As WWII loomed, Hansen was asked to lecture on microwaves to the physicists recruited to the MIT Radiation Laboratory. Hansen's ``Notes on Microwaves,'' the Rad Lab ``bible'' on the subject, had a seminal impact on subsequent works, including the Rad Lab Series. Because of Hansen's failing health, his postwar work, and MIT-Stanford rivalries, the Notes were never published, languishing as an underground classic. I have located remaining copies, and will publish the Notes with a biography honoring the centenary of Hansen's birth. After the war, Hansen founded Stanford's Microwave Laboratory to develop powerful klystrons and linear accelerators. He collaborated with Felix Bloch in the discovery of nuclear magnetic resonance. Hansen experienced first-hand Stanford's evolution from its depression-era physics department to corporate, then government funding. Hansen's brilliant career was cut short by his death in 1949, after his induction in the National Academy of Sciences. His ideas were carried on in Stanford's two-mile long linear accelerator and the development of Silicon Valley.

  11. Valley Hall effect and Nernst effect in strain engineered graphene

    NASA Astrophysics Data System (ADS)

    Niu, Zhi Ping; Yao, Jian-ming

    2018-04-01

    We theoretically predict the existence of tunneling valley Hall effect and Nernst effect in the normal/strain/normal graphene junctions, where a strained graphene is sandwiched by two normal graphene electrodes. By applying an electric bias a pure transverse valley Hall current with longitudinal charge current is generated. If the system is driven by a temperature bias, a valley Nernst effect is observed, where a pure transverse valley current without charge current propagates. Furthermore, the transverse valley current can be modulated by the Fermi energy and crystallographic orientation. When the magnetic field is further considered, we obtain a fully valley-polarized current. It is expected these features may be helpful in the design of the controllable valleytronic devices.

  12. Compacting biomass waste materials for use as fuel

    NASA Astrophysics Data System (ADS)

    Zhang, Ou

    Every year, biomass waste materials are produced in large quantity. The combustibles in biomass waste materials make up over 70% of the total waste. How to utilize these waste materials is important to the nation and the world. The purpose of this study is to test optimum processes and conditions of compacting a number of biomass waste materials to form a densified solid fuel for use at coal-fired power plants or ordinary commercial furnaces. Successful use of such fuel as a substitute for or in cofiring with coal not only solves a solid waste disposal problem but also reduces the release of some gases from burning coal which cause health problem, acid rain and global warming. The unique punch-and-die process developed at the Capsule Pipeline Research Center, University of Missouri-Columbia was used for compacting the solid wastes, including waste paper, plastics (both film and hard products), textiles, leaves, and wood. The compaction was performed to produce strong compacts (biomass logs) under room temperature without binder and without preheating. The compaction conditions important to the commercial production of densified biomass fuel logs, including compaction pressure, pressure holding time, back pressure, moisture content, particle size, binder effects, and mold conditions were studied and optimized. The properties of the biomass logs were evaluated in terms of physical, mechanical, and combustion characteristics. It was found that the compaction pressure and the initial moisture content of the biomass material play critical roles in producing high-quality biomass logs. Under optimized compaction conditions, biomass waste materials can be compacted into high-quality logs with a density of 0.8 to 1.2 g/cm3. The logs made from the combustible wastes have a heating value in the range 6,000 to 8,000 Btu/lb which is only slightly (10 to 30%) less than that of subbituminous coal. To evaluate the feasibility of cofiring biomass logs with coal, burn tests were

  13. Performance and emissions of a spark-ignited engine driven generator on biomass based syngas.

    PubMed

    Shah, Ajay; Srinivasan, Radhakrishnan; To, Suminto D Filip; Columbus, Eugene P

    2010-06-01

    The emergence of biomass based energy warrants the evaluation of syngas from biomass gasification as a fuel for personal power systems. The objectives of this study were to determine the performance and exhaust emissions of a commercial 5.5 kW generator modified for operation with 100% syngas at different syngas flows and to compare the results with those obtained for gasoline operation at same electrical power. The maximum electrical power output for syngas operation was 1392 W and that for gasoline operation was 2451 W. However, the overall efficiency of the generator at maximum electrical power output for both the fuels were found to be the same. The concentrations of CO and NO(x) in the generator exhaust were lower for the syngas operation, respectively by 30-96% and 54-84% compared to the gasoline operation. However, the concentrations of CO(2) in the generator exhaust were significantly higher by 33-167% for the syngas operation. (c) 2010 Elsevier Ltd. All rights reserved.

  14. Scaling relations for large Martian valleys

    NASA Astrophysics Data System (ADS)

    Som, Sanjoy M.; Montgomery, David R.; Greenberg, Harvey M.

    2009-02-01

    The dendritic morphology of Martian valley networks, particularly in the Noachian highlands, has long been argued to imply a warmer, wetter early Martian climate, but the character and extent of this period remains controversial. We analyzed scaling relations for the 10 large valley systems incised in terrain of various ages, resolvable using the Mars Orbiter Laser Altimeter (MOLA) and the Thermal Emission Imaging System (THEMIS). Four of the valleys originate in point sources with negligible contributions from tributaries, three are very poorly dissected with a few large tributaries separated by long uninterrupted trunks, and three exhibit the dendritic, branching morphology typical of terrestrial channel networks. We generated width-area and slope-area relationships for each because these relations are identified as either theoretically predicted or robust terrestrial empiricisms for graded precipitation-fed, perennial channels. We also generated distance-area relationships (Hack's law) because they similarly represent robust characteristics of terrestrial channels (whether perennial or ephemeral). We find that the studied Martian valleys, even the dendritic ones, do not satisfy those empiricisms. On Mars, the width-area scaling exponent b of -0.7-4.7 contrasts with values of 0.3-0.6 typical of terrestrial channels; the slope-area scaling exponent $\\theta$ ranges from -25.6-5.5, whereas values of 0.3-0.5 are typical on Earth; the length-area, or Hack's exponent n ranges from 0.47 to 19.2, while values of 0.5-0.6 are found on Earth. None of the valleys analyzed satisfy all three relations typical of terrestrial perennial channels. As such, our analysis supports the hypotheses that ephemeral and/or immature channel morphologies provide the closest terrestrial analogs to the dendritic networks on Mars, and point source discharges provide terrestrial analogs best suited to describe the other large Martian valleys.

  15. The Role of Source Material in Basin Sedimentation, as Illustrated within Eureka Valley, Death Valley National Park, CA.

    NASA Astrophysics Data System (ADS)

    Lawson, M. J.; Yin, A.; Rhodes, E. J.

    2015-12-01

    Steep landscapes are known to provide sediment to sink regions, but often petrological factors can dominate basin sedimentation. Within Eureka Valley, in northwestern Death Valley National Park, normal faulting has exposed a steep cliff face on the western margin of the Last Chance range with four kilometers of vertical relief from the valley floor and an angle of repose of nearly 38 degrees. The cliff face is composed of Cambrian limestone and dolomite, including the Bonanza King, Carrara and Wood Canyon formations. Interacting with local normal faulting, these units preferentially break off the cliff face in coherent blocks, which result in landslide deposits rather than as finer grained material found within the basin. The valley is well known for a large sand dune, which derives its sediment from distal sources to the north, instead of from the adjacent Last Chance Range cliff face. During the Holocene, sediment is sourced primary from the northerly Willow Wash and Cucomungo canyon, a relatively small drainage (less than 80 km2) within the Sylvan Mountains. Within this drainage, the Jurassic quartz monzonite of Beer Creek is heavily fractured due to motion of the Fish Valley Lake - Death Valley fault zone. Thus, the quartz monzonite is more easily eroded than the well-consolidated limestone and dolomite that forms the Last Change Range cliff face. As well, the resultant eroded material is smaller grained, and thus more easily transported than the limestone. Consequently, this work highlights an excellent example of the strong influence that source material can have on basin sedimentation.

  16. Boulder Valley Schools Teen Parenting Program.

    ERIC Educational Resources Information Center

    Parmerlee-Greiner, Gloria

    To meet the needs of pregnant and parenting adolescents in Boulder Valley (Colorado), the local public school district has developed the Boulder Valley Schools Teen Parenting Program, now in its 12th year. The program was designed to help teen parents to mature to meet the challenges of parenting, enhance the school district's dropout/intervention…

  17. Biomass [updated

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turhollow Jr, Anthony F

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in themore » forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.« less

  18. Biomass cogeneration: A business assessment

    NASA Astrophysics Data System (ADS)

    Skelton, J. C.

    1981-11-01

    The biomass cogeneration was reviewed. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  19. Collective Bargaining Agreement between Antelope Valley Community College and Antelope Valley College Faculty Association, June 13, 1988.

    ERIC Educational Resources Information Center

    Antelope Valley Coll., Lancaster, CA.

    The collective bargaining agreement between Antelope Valley Community College and the Antelope Valley College Faculty Association outlines the terms of employment for all full- and part-time certificated employees of the District, covering the period from June 1988 to June 1990. The articles in the agreement set forth provisions related to: (1)…

  20. Volume of Valley Networks on Mars and Its Hydrologic Implications

    NASA Astrophysics Data System (ADS)

    Luo, W.; Cang, X.; Howard, A. D.; Heo, J.

    2015-12-01

    Valley networks on Mars are river-like features that offer the best evidence for water activities in its geologic past. Previous studies have extracted valley network lines automatically from digital elevation model (DEM) data and manually from remotely sensed images. The volume of material removed by valley networks is an important parameter that could help us infer the amount of water needed to carve the valleys. A progressive black top hat (PBTH) transformation algorithm has been adapted from image processing to extract valley volume and successfully applied to simulated landform and Ma'adim Valles, Mars. However, the volume of valley network excavation on Mars has not been estimated on a global scale. In this study, the PBTH method was applied to the whole Mars to estimate this important parameter. The process was automated with Python in ArcGIS. Polygons delineating the valley associated depressions were generated by using a multi-flow direction growth method, which started with selected high point seeds on a depth grid (essentially an inverted valley) created by PBTH transformation and grew outward following multi-flow direction on the depth grid. Two published versions of valley network lines were integrated to automatically select depression polygons that represent the valleys. Some crater depressions that are connected with valleys and thus selected in the previous step were removed by using information from a crater database. Because of large distortion associated with global dataset in projected maps, the volume of each cell within a valley was calculated using the depth of the cell multiplied by the spherical area of the cell. The volumes of all the valley cells were then summed to produce the estimate of global valley excavation volume. Our initial result of this estimate was ~2.4×1014 m3. Assuming a sediment density of 2900 kg/m3, a porosity of 0.35, and a sediment load of 1.5 kg/m3, the global volume of water needed to carve the valleys was

  1. Valley excitons in two-dimensional semiconductors

    DOE PAGES

    Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; ...

    2014-12-30

    Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibitmore » remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.« less

  2. Geology and ground water in Russian River Valley areas and in Round, Laytonville, and Little Lake Valleys, Sonoma and Mendocino Counties, California

    USGS Publications Warehouse

    Cardwell, G.T.

    1965-01-01

    This report describes the occurrence, availability, and quality of ground water in seven valley areas along the course of the Russian River in Sonoma and Mendocino Counties, Calif., and in three valleys in the upper drainage reach of the Eel River in Mendocino County. Except for the westward-trending lower Russian River valley, the remaining valley areas along the Russian River (Healdsburg, Alexander, Cloverdale, Sanel, Ukiah, and Potter Valleys) lie in northwest-trending structurally controlled depressions formed in marine rocks of Jurassic and Cretaceous age. The principal aquifer in all the valleys is the alluvium of Recent age, which includes highly permeable channel deposits of gravel and sand. Water for domestic, irrigation, industrial, and other uses is developed by (1) direct diversion from the Russian River and its tributaries, (2) withdrawal of ground water and river water from shallow wells near the river, and (3) withdrawals of ground water from wells in alluvial deposits at varying distances from the river. Surface water in the Russian River and most tributaries is of good chemical quality. The water is a calcium magnesium bicarbonate type and contains 75,200 parts per million of dissolved solids. Ground water is also of good chemical quality throughout most of the drainage basin, but the concentration of dissolved solids (100-300 parts per million) is somewhat higher than that in the surface water. Round, Laytonville, and Little Lake Valleys are in central and northern Mendocino County in the drainage basin of the northwestward flowing Eel River. In Round Valley the alluvium of Recent age yields water of good chemical quality in large quantities. Yields are lower and the chemical quality poorer in Laytonville Valley. Ground water in Little Lake Valley is relatively undeveloped. Selected descriptions of wells, drillers' logs, chemical analyses, and hydrographs showing water-level fluctuations are included in the report. Accompanying maps show the

  3. Emission rates of organics from vegetation in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Winer, Arthur M.; Arey, Janet; Atkinson, Roger; Aschmann, Sara M.; Long, William D.; Morrison, C. Lynn; Olszyk, David M.

    Rates of emission of speciated hydrocarbons have been determined for more than 30 of the most dominant (based on acreage) agricultural and natural plant types found in California's Central Valley. These measurements employed flow-through Teflon chambers, sample collection on solid adsorbent and thermal desorption gas chromatography (GC) and GC-mass spectrometry analysis to identify more than 40 individual organic compounds. In addition to isoprene and the monoterpenes, we observed sesquiterpenes, alcohols, acetates, aldehydes, ketones, ethers, esters, alkanes, alkenes and aromatics as emissions from these plant species. Mean emission rates for total monoterpenes ranged from none detected in the case of beans, grapes, rice and wheat, to as high as 12-30 μg h -1 g -1 for pistachio and tomato (normalized to dry leaf and total biomass, respectively). Other agricultural species exhibiting substantial rates of emission of monoterpenes included carrot, cotton, lemon, orange and walnut. All of the plant species studied showed total assigned compound emission rates in the range between 0.1 and 36 νg h -1 g -1.

  4. Gasification and combustion technologies of agro-residues and their application to rural electric power systems in India

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Anshu

    Biomass based power generation has the potential to add up to 20,000 MW of distributed capacity in India close to the rural load centers. However, the present production of biomass-based electricity is modest, contributing a mere 300 MW of installed capacity. In this thesis, we shall examine some of the scientific, technological and policy issues concerned with the generation and commercial viability of biomass-based electric power. We first consider the present status of biomass-based power in India and make an attempt to understand the reasons for low utilization. Our analysis suggests that the small-scale biomass power plants (<100 kW) when used for village electrification have a low Plant Load Factor (PLF) that adversely affects their economic viability. Medium Scale units (0.5 MW--5 MW) do not appear attractive because of the costs involved in the biomass transportation. There is thus a merit in considering power plants that use biomass available in large quantities in agro-processing centers such as rice or sugar mills where power plants of capacities in excess of 5 MW are possible without biomass transportation. We then simulate a biomass gasification combustion cycle using a naturally aspirated spark ignition engine since it can run totally on biomass gas. The gasifier and engine are modeled using the chemical equilibrium approach. The simulation is used to study the impact of fuel moisture and the performance of different biomass feedstock. Biomass power plants when used for decentralized power generation; close to the rural load centers can solve some of the problems of rural power supply: provide voltage support, reactive power and peak shaving. We consider an innovative option of setting up a rural electricity micro-grid using a decentralized biomass power plant and selected a rural feeder in Tumkur district, Karnataka for three-phase AC load flow studies. Our results suggest that this option significantly reduces the distribution losses and improves

  5. Rheology of concentrated biomass

    Treesearch

    J.R. Samaniuk; J. Wang; T.W. Root; C.T. Scott; D.J. Klingenberg

    2011-01-01

    Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained...

  6. Observation of ultralong valley lifetime in WSe 2/MoS 2 heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jonghwan; Jin, Chenhao; Chen, Bin

    The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcogenides (TMD) is expected to be markedly long due to the unique spin-valley locking behavior, where the intervalley scattering of the electron simultaneously requires a large momentum transfer to the opposite valley and a flip of the electron spin. However, the experimentally observed valley lifetime in 2D TMDs has been limited to tens of nanoseconds thus far. We report efficient generation of microsecond-long-lived valley polarization in WSe 2/MoS 2 heterostructuresmore » by exploiting the ultrafast charge transfer processes in the heterostructure that efficiently creates resident holes in the WSe 2 layer. These valley-polarized holes exhibit near-unity valley polarization and ultralong valley lifetime: We observe a valley-polarized hole population lifetime of more than 1 μs and a valley depolarization lifetime (that is, intervalley scattering lifetime) of more than 40 μs at 10 K. The near-perfect generation of valley-polarized holes in TMD heterostructures, combined with ultralong valley lifetime, which is orders of magnitude longer than previous results, opens up new opportunities for novel valleytronics and spintronics applications.« less

  7. Observation of ultralong valley lifetime in WSe 2/MoS 2 heterostructures

    DOE PAGES

    Kim, Jonghwan; Jin, Chenhao; Chen, Bin; ...

    2017-07-26

    The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcogenides (TMD) is expected to be markedly long due to the unique spin-valley locking behavior, where the intervalley scattering of the electron simultaneously requires a large momentum transfer to the opposite valley and a flip of the electron spin. However, the experimentally observed valley lifetime in 2D TMDs has been limited to tens of nanoseconds thus far. We report efficient generation of microsecond-long-lived valley polarization in WSe 2/MoS 2 heterostructuresmore » by exploiting the ultrafast charge transfer processes in the heterostructure that efficiently creates resident holes in the WSe 2 layer. These valley-polarized holes exhibit near-unity valley polarization and ultralong valley lifetime: We observe a valley-polarized hole population lifetime of more than 1 μs and a valley depolarization lifetime (that is, intervalley scattering lifetime) of more than 40 μs at 10 K. The near-perfect generation of valley-polarized holes in TMD heterostructures, combined with ultralong valley lifetime, which is orders of magnitude longer than previous results, opens up new opportunities for novel valleytronics and spintronics applications.« less

  8. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  9. 27 CFR 9.29 - Sonoma Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Sonoma Valley. 9.29 Section 9.29 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.29 Sonoma Valley. (a) Name. The name of the viticultural...

  10. 27 CFR 9.23 - Napa Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Napa Valley. 9.23 Section 9.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.23 Napa Valley. (a) Name. The name of the viticultural area...

  11. 27 CFR 9.23 - Napa Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Napa Valley. 9.23 Section 9.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.23 Napa Valley. (a) Name. The name of the viticultural area...

  12. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  13. 27 CFR 9.29 - Sonoma Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Sonoma Valley. 9.29 Section 9.29 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.29 Sonoma Valley. (a) Name. The name of the viticultural...

  14. 27 CFR 9.23 - Napa Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Napa Valley. 9.23 Section 9.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.23 Napa Valley. (a) Name. The name of the viticultural area...

  15. 27 CFR 9.23 - Napa Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Napa Valley. 9.23 Section 9.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.23 Napa Valley. (a) Name. The name of the viticultural area...

  16. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Bennett Valley. 9.142 Section 9.142 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.142 Bennett Valley. (a) Name. The name of the...

  17. 27 CFR 9.29 - Sonoma Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Sonoma Valley. 9.29 Section 9.29 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.29 Sonoma Valley. (a) Name. The name of the viticultural...

  18. 27 CFR 9.29 - Sonoma Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Sonoma Valley. 9.29 Section 9.29 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.29 Sonoma Valley. (a) Name. The name of the viticultural...

  19. 27 CFR 9.53 - Alexander Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Alexander Valley. 9.53 Section 9.53 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.53 Alexander Valley. (a) Name. The name of the...

  20. 27 CFR 9.53 - Alexander Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Alexander Valley. 9.53 Section 9.53 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.53 Alexander Valley. (a) Name. The name of the...

  1. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  2. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  3. 27 CFR 9.23 - Napa Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Napa Valley. 9.23 Section 9.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.23 Napa Valley. (a) Name. The name of the viticultural area...

  4. 27 CFR 9.29 - Sonoma Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Sonoma Valley. 9.29 Section 9.29 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.29 Sonoma Valley. (a) Name. The name of the viticultural...

  5. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Bennett Valley. 9.142 Section 9.142 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.142 Bennett Valley. (a) Name. The name of the...

  6. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bennett Valley. 9.142 Section 9.142 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.142 Bennett Valley. (a) Name. The name of the...

  7. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bennett Valley. 9.142 Section 9.142 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.142 Bennett Valley. (a) Name. The name of the...

  8. 27 CFR 9.53 - Alexander Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Alexander Valley. 9.53 Section 9.53 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.53 Alexander Valley. (a) Name. The name of the...

  9. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  10. 27 CFR 9.53 - Alexander Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Alexander Valley. 9.53 Section 9.53 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.53 Alexander Valley. (a) Name. The name of the...

  11. 27 CFR 9.53 - Alexander Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Alexander Valley. 9.53 Section 9.53 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.53 Alexander Valley. (a) Name. The name of the...

  12. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Bennett Valley. 9.142 Section 9.142 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.142 Bennett Valley. (a) Name. The name of the...

  13. Rift Valley fever in Namibia, 2010.

    PubMed

    Monaco, Federica; Pinoni, Chiara; Cosseddu, Gian Mario; Khaiseb, Siegfried; Calistri, Paolo; Molini, Umberto; Bishi, Alec; Conte, Annamaria; Scacchia, Massimo; Lelli, Rossella

    2013-12-01

    During May-July 2010 in Namibia, outbreaks of Rift Valley fever were reported to the National Veterinary Service. Analysis of animal specimens confirmed virus circulation on 7 farms. Molecular characterization showed that all outbreaks were caused by a strain of Rift Valley fever virus closely related to virus strains responsible for outbreaks in South Africa during 2009-2010.

  14. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  15. Commercialization of biomass projects: A case study of the design, development, and application of a biomass gasifier to a large retrofit market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woerner, W.L.

    1994-12-31

    The steam production potential of older biomass-fired boilers currently in operation may be significantly increased through the application of a commercially available gasifier. A large percentage of boiler systems in lumber mills and similar applications were initially designed to generate steam through convection heat transfer, and have been horse power rated at approximately 7 to 10 square feet of heating surface to the horse power. This paper deals with the before and after performance characteristics of the first gasifier retrofit installation based on an AED designed unit currently commercially available.

  16. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.

    PubMed

    Costa, Taynan de Oliveira; Calijuri, Maria Lúcia; Avelar, Nayara Vilela; Carneiro, Angélica de Cássia de Oliveira; de Assis, Letícia Rodrigues

    2017-08-01

    In this investigation, chemical characteristics, higher, lower and net heating value, bulk and energy density, and thermogravimetric analysis were applied to study the thermal characteristics of three algal biomasses. These biomasses, grown as by-products of wastewater treatment in high-rate algal ponds (HRAPs), were: (i) biomass produced in domestic effluent and collected directly from an HRAP (PO); (ii) biomass produced in domestic effluent in a mixed pond-panel system and collected from the panels (PA); and (iii) biomass originating from the treatment effluent from the meat processing industry and collected directly from an HRAP (IN). The biomass IN was the best alternative for thermal power generation. Subsequently, a mixture of the algal biomasses and Jatropha epicarp was used to produce briquettes containing 0%, 25%, 50%, 75%, and 100% of algal biomass, and their properties were evaluated. In general, the addition of algal biomass to briquettes decreased both the hygroscopicity and fixed carbon content and increased the bulk density, ash content, and energy density. A 50% proportion of biomass IN was found to be the best raw material for producing briquettes. Therefore, the production of briquettes consisting of algal biomass and Jatropha epicarp at a laboratory scale was shown to be technically feasible.

  17. Total carbon and nitrogen in mineral soil after 26 years of prescribed fire: Long Valley and Fort Valley Experimental Forests (P-53)

    Treesearch

    Daniel G. Neary; Sally M. Haase; Steven T. Overby

    2008-01-01

    Prescribed fire was introduced to high density ponderosa pine stands at Fort Valley and Long Valley Experimental Forests in 1976. This paper reports on mineral soil total carbon (C) and nitrogen (N) at Long Valley. Total soil C and N levels were highly variable and exhibited an increasing, but inconsistent, concentration trend related to burn interval. Total N ranged...

  18. Carbon-Based Nanomaterials in Biomass-Based Fuel-Fed Fuel Cells

    PubMed Central

    Vestergaard, Mun’delanji C.; Tamiya, Eiichi

    2017-01-01

    Environmental and sustainable economical concerns are generating a growing interest in biofuels predominantly produced from biomass. It would be ideal if an energy conversion device could directly extract energy from a sustainable energy resource such as biomass. Unfortunately, up to now, such a direct conversion device produces insufficient power to meet the demand of practical applications. To realize the future of biofuel-fed fuel cells as a green energy conversion device, efforts have been devoted to the development of carbon-based nanomaterials with tunable electronic and surface characteristics to act as efficient metal-free electrocatalysts and/or as supporting matrix for metal-based electrocatalysts. We present here a mini review on the recent advances in carbon-based catalysts for each type of biofuel-fed/biofuel cells that directly/indirectly extract energy from biomass resources, and discuss the challenges and perspectives in this developing field. PMID:29125564

  19. Carbon-Based Nanomaterials in Biomass-Based Fuel-Fed Fuel Cells.

    PubMed

    Hoa, Le Quynh; Vestergaard, Mun'delanji C; Tamiya, Eiichi

    2017-11-10

    Environmental and sustainable economical concerns are generating a growing interest in biofuels predominantly produced from biomass. It would be ideal if an energy conversion device could directly extract energy from a sustainable energy resource such as biomass. Unfortunately, up to now, such a direct conversion device produces insufficient power to meet the demand of practical applications. To realize the future of biofuel-fed fuel cells as a green energy conversion device, efforts have been devoted to the development of carbon-based nanomaterials with tunable electronic and surface characteristics to act as efficient metal-free electrocatalysts and/or as supporting matrix for metal-based electrocatalysts. We present here a mini review on the recent advances in carbon-based catalysts for each type of biofuel-fed/biofuel cells that directly/indirectly extract energy from biomass resources, and discuss the challenges and perspectives in this developing field.

  20. Biomass Characterization | Bioenergy | NREL

    Science.gov Websites

    analytical methods for biomass characterization available for downloading. View the Biomass Compositional Methods Molecular Beam Mass Spectrometry Photo of a man in front of multiple computer screens that present Characterization of Biomass We develop new methods and tools to understand the chemical composition of raw biomass

  1. Aquatic invertebrate ecology during a simulated botulism epizootic in a Sacramento Valley wetland

    USGS Publications Warehouse

    Hicks, Jane M.; Euliss, Ned H.; Harris, Stanley W.

    1997-01-01

    We investigated the effect of decomposing duck carcasses on aquatic invertebrate numbers, biomass, and taxonomic composition in a seasonally flooded, impounded wetland in the Sacramento Valley, California during August–November 1988 and 1989. Major invertebrate taxa were copepods (Cyclopoida, occurred in 8.3% of samples), water fleas (Daphnidae, 8.9%), water boatmen (Corisella, 10.4%), and midge larvae (Goeldichironomus, 9.3%;Chironomus, 11.5%;Tanypus, 17.2%). We found no treatment (carcass present or no carcass) by sampling day interaction for these taxa. We found a significant difference between sample plots with carcasses and those without carcasses only for Daphnidae counts andCorisella wet weights. We found significant differences among sampling days for these taxa that were probably statistical artifacts. We were unable to detect any effect of duck carcasses on aquatic invertebrate community structure and the potential availability of invertebrates as waterfowl food.

  2. Valley switch in a graphene superlattice due to pseudo-Andreev reflection

    NASA Astrophysics Data System (ADS)

    Beenakker, C. W. J.; Gnezdilov, N. V.; Dresselhaus, E.; Ostroukh, V. P.; Herasymenko, Y.; Adagideli, I.; Tworzydło, J.

    2018-06-01

    Dirac electrons in graphene have a valley degree of freedom that is being explored as a carrier of information. In that context of "valleytronics" one seeks to coherently manipulate the valley index. Here, we show that reflection from a superlattice potential can provide a valley switch: Electrons approaching a pristine-graphene-superlattice-graphene interface near normal incidence are reflected in the opposite valley. We identify the topological origin of this valley switch, by mapping the problem onto that of Andreev reflection from a topological superconductor, with the electron-hole degree of freedom playing the role of the valley index. The valley switch is ideal at a symmetry point of the superlattice potential, but remains close to 100% in a broad parameter range.

  3. Wilderness, water, and quality of life in the Bitterroot Valley

    Treesearch

    Kari Gunderson; Clint Cook

    2007-01-01

    The Bitterroot Valley is located in western Montana, U.S.A. Most of the Bitterroot Range above the Bitterroot Valley is protected as wilderness, and is a source of much of the water that flows down and through the valley floor. With an annual precipitation of only 12.3 inches, the Bitterroot Valley is classified as a high desert environment. Today the quality of life...

  4. Fracture controls on valley persistence: the Cairngorm Granite pluton, Scotland

    NASA Astrophysics Data System (ADS)

    Hall, A. M.; Gillespie, M. R.

    2017-09-01

    Valleys are remarkably persistent features in many different tectonic settings, but the reasons for this persistence are rarely explored. Here, we examine the structural controls on valleys in the Cairngorms Mountains, Scotland, part of the passive margin of the eastern North Atlantic. We consider valleys at three scales: straths, glens and headwater valleys. The structural controls on valleys in and around the Cairngorm Granite pluton were examined on satellite and aerial photographs and by field survey. Topographic lineaments, including valleys, show no consistent orientation with joint sets or with sheets of microgranite and pegmatitic granite. In this granite landscape, jointing is not a first-order control on valley development. Instead, glens and headwater valleys align closely to quartz veins and linear alteration zones (LAZs). LAZs are zones of weakness in the granite pluton in which late-stage hydrothermal alteration and hydro-fracturing have greatly reduced rock mass strength and increased permeability. LAZs, which can be kilometres long and >700 m deep, are the dominant controls on the orientation of valleys in the Cairngorms. LAZs formed in the roof zone of the granite intrusion. Although the Cairngorm pluton was unroofed soon after emplacement, the presence of Old Red Sandstone (ORS) outliers in the terrain to the north and east indicates that the lower relief of the sub-ORS basement surface has been lowered by <500 m. Hence, the valley patterns in and around the Cairngorms have persisted through >1 km of vertical erosion and for 400 Myr. This valley persistence is a combined product of regionally low rates of basement exhumation and of the existence of LAZs in the Cairngorm pluton and sub-parallel Caledonide fractures in the surrounding terrain with depths that exceed 1 km.

  5. A comparison of producer gas, biochar, and activated carbon from two distributed scale thermochemical conversion systems used to process forest biomass

    Treesearch

    Nathaniel Anderson; J. Greg Jones; Deborah Page-Dumroese; Daniel McCollum; Stephen Baker; Daniel Loeffler; Woodam Chung

    2013-01-01

    Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or...

  6. Airborne Dust Models in Valley Fever Research

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.; Galgiani, J. N.; Vujadinovic, M.; Pejanovic, G.; Vukovic, A. J.; Prasad, A. K.; Djurdjevic, V.; Nickovic, S.

    2011-12-01

    Dust storms (haboobs) struck Phoenix, Arizona, in 2011 on July 5th and again on July 18th. One potential consequence: an estimated 3,600 new cases of Valley Fever in Maricopa County from the first storm alone. The fungi, Coccidioides immitis, the cause of the respiratory infection, Valley Fever, lives in the dry desert soils of the American southwest and southward through Mexico, Central America and South America. The fungi become part of the dust storm and, a few weeks after inhalation, symptoms of Valley Fever may appear, including pneumonia-like illness, rashes, and severe fatigue. Some fatalities occur. Our airborne dust forecast system predicted the timing and extent of the storm, as it has done with other, often different, dust events. Atmosphere/land surface models can be part of public health services to reduce risk of Valley Fever and exacerbation of other respiratory and cardiovascular illness.

  7. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Joe Iovenitti

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  8. Residue distribution and biomass recovery following biomass harvest of plantation pine

    Treesearch

    Johnny Grace III; John Klepac; S. Taylor; Dana Mitchell

    2016-01-01

    Forest biomass is anticipated to play a significant role in addressing an alternative energy supply. However, the efficiencies of current state-of-the-art recovery systems operating in forest biomass harvests are still relatively unknown. Forest biomass harvest stands typically have higher stand densities and smaller diameter trees than conventional stands which may...

  9. California: Diamond Valley

    Atmospheric Science Data Center

    2014-05-15

    ... article title:  Watching the Creation of Southern California's Largest Reservoir     ... Valley Lake is designed to provide protection against drought and a six-month emergency supply in the event of earthquake damage to a ...

  10. Mzab Valley, Algeria

    NASA Image and Video Library

    2011-03-24

    Located 600 km south of Algiers, Algeria in the heart of the Sahara Desert, the five ksour fortified villages of the MZab Valley form an extraordinarily homogenous ensemble in this image captured by NASA Terra spacecraft.

  11. First Biomass Conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this second volume covermore » Transportation Fuels, and Chemicals and Products. Transportation Fuels topics include: Biodiesel, Pyrolytic Liquids, Ethanol, Methanol and Ethers, and Commercialization. The Chemicals and Products section includes specific topics in: Research, Technology Transfer, and Commercial Systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less

  12. Spin- and Valley-Dependent Electronic Structure in Silicene Under Periodic Potentials

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao; Li, Yun-Fang; Tian, Hong-Yu

    2018-03-01

    We study the spin- and valley-dependent energy band and transport property of silicene under a periodic potential, where both spin and valley degeneracies are lifted. It is found that the Dirac point, miniband, band gap, anisotropic velocity, and conductance strongly depend on the spin and valley indices. The extra Dirac points appear as the voltage potential increases, the critical values of which are different for electron with different spins and valleys. Interestingly, the velocity is greatly suppressed due to the electric field and exchange field, other than the gapless graphene. It is possible to achieve an excellent collimation effect for a specific spin near a specific valley. The spin- and valley-dependent band structure can be used to adjust the transport, and perfect transmissions are observed at Dirac points. Therefore, a remarkable spin and valley polarization is achieved which can be switched effectively by the structural parameters. Importantly, the spin and valley polarizations are greatly enhanced by the disorder of the periodic potential.

  13. Biomass waste gasification - Can be the two stage process suitable for tar reduction and power generation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulc, Jindrich; Stojdl, Jiri; Richter, Miroslav

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Comparison of one stage (co-current) and two stage gasification of wood pellets. Black-Right-Pointing-Pointer Original arrangement with grate-less reactor and upward moving bed of the pellets. Black-Right-Pointing-Pointer Two stage gasification leads to drastic reduction of tar content in gas. Black-Right-Pointing-Pointer One stage gasification produces gas with higher LHV at lower overall ER. Black-Right-Pointing-Pointer Content of ammonia in gas is lower in two stage moving bed gasification. - Abstract: A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stagemore » gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW{sub th}. The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950 Degree-Sign C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition

  14. 2012-2013 Delaware Valley Household Travel Survey | Transportation Secure

    Science.gov Websites

    Data Center | NREL 12-2013 Delaware Valley Household Travel Survey 2012-2013 Delaware Valley Household Travel Survey The 2012-2013 Delaware Valley Household Travel Survey collected data for multiple ) sponsored the survey in collaboration with AbtSRBI. Methodology A sampling strategy was designed to recruit

  15. Fluvial valleys on Martian volcanoes

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.; Gulick, Virginia C.

    1987-01-01

    Channels and valleys were known on the Martian volcanoes since their discovery by the Mariner 9 mission. Their analysis has generally centered on interpretation of possible origins by fluvial, lava, or viscous flows. The possible fluvial dissection of Martian volcanoes has received scant attention in comparison to that afforded outflow, runoff, and fretted channels. Photointerpretative, mapping, and morphometric studies of three Martian volcanoes were initiated: Ceraunius Tholus, Hecate Tholus, and Alba Patera. Preliminary morphometric results indicate that, for these three volcanoes, valley junction angles increase with decreasing slope. Drainage densities are quite variable, apparently reflecting complex interactions in the landscape-forming factors described. Ages of the Martian volcanoes were recently reinterpreted. This refined dating provides a time sequence in which to evaluate the degradational forms. An anomaly has appeared from the initial study: fluvial valleys seem to be present on some Martian volcanoes, but not on others of the same age. Volcanic surfaces characterized only by high permeability lava flows may have persisted without fluvial dissection.

  16. Directional interlayer spin-valley transfer in two-dimensional heterostructures

    DOE PAGES

    Schaibley, John R.; Rivera, Pasqual; Yu, Hongyi; ...

    2016-12-14

    Van der Waals heterostructures formed by two different monolayer semiconductors have emerged as a promising platform for new optoelectronic and spin/valleytronic applications. In addition to its atomically thin nature, a two-dimensional semiconductor heterostructure is distinct from its three-dimensional counterparts due to the unique coupled spin-valley physics of its constituent monolayers. In this paper, we report the direct observation that an optically generated spin-valley polarization in one monolayer can be transferred between layers of a two-dimensional MoSe 2–WSe 2 heterostructure. Using non-degenerate optical circular dichroism spectroscopy, we show that charge transfer between two monolayers conserves spin-valley polarization and is only weaklymore » dependent on the twist angle between layers. Finally, our work points to a new spin-valley pumping scheme in nanoscale devices, provides a fundamental understanding of spin-valley transfer across the two-dimensional interface, and shows the potential use of two-dimensional semiconductors as a spin-valley generator in two-dimensional spin/valleytronic devices for storing and processing information.« less

  17. 76 FR 67055 - Amendment of Class E Airspace; Valley City, ND

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ...-0605; Airspace Docket No. 11-AGL-13] Amendment of Class E Airspace; Valley City, ND AGENCY: Federal... Valley City, ND. Decommissioning of the Valley City non-directional beacon (NDB) at Barnes County Municipal Airport, Valley City, ND, has made this action necessary to enhance the safety and management of...

  18. Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986-2000

    USGS Publications Warehouse

    Doran, P.T.; McKay, C.P.; Clow, G.D.; Dana, G.L.; Fountain, A.G.; Nylen, T.; Lyons, W.B.

    2002-01-01

    Climate observations from the McMurdo dry valleys, East Antarctica are presented from a network of seven valley floor automatic meteorological stations during the period 1986 to 2000. Mean annual temperatures ranged from -14.8??C to -30.0??C, depending on the site and period of measurement. Mean annual relative humidity is generally highest near the coast. Mean annual wind speed increases with proximity to the polar plateau. Site-to-site variation in mean annual solar flux and PAR is due to exposure of each station and changes over time are likely related to changes in cloudiness. During the nonsummer months, strong katabatic winds are frequent at some sites and infrequent at others, creating large variation in mean annual temperature owing to the warming effect of the winds. Katabatic wind exposure appears to be controlled to a large degree by the presence of colder air in the region that collects at low points and keeps the warm less dense katabatic flow from the ground. The strong influence of katabatic winds makes prediction of relative mean annual temperature based on geographical position (elevation and distance from the coast) alone, not possible. During the summer months, onshore winds dominate and warm as they progress through the valleys creating a strong linear relationship (r2 = 0.992) of increasing potential temperature with distance from the coast (0.09??C km-1). In contrast to mean annual temperature, summer temperature lends itself quite well to model predictions, and is used to construct a statistical model for predicting summer dry valley temperatures at unmonitored sites. Copyright 2002 by the American Geophysical Union.

  19. Hydrologic reconnaissance of Rush Valley, Tooele County, Utah

    USGS Publications Warehouse

    Hood, James W.; Price, Don; Waddell, K.M.

    1969-01-01

    This report is the third in a series by the U. S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes the water resources of the western basins of Utah. Its purpose is to present available hydrologic data for Rush Valley, to provide an evaluation of the potential water-resources development of the valley, and to identify needed studies that would help provide an understanding of the valley's water supply.

  20. Hydrologic reconnaissance of Skull Valley, Tooele County, Utah

    USGS Publications Warehouse

    Hood, James W.; Waddell, K.M.

    1968-01-01

    This report is the second in a series by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes the water resources of the western basins of Utah. Its purpose is to present available hydrologic data on Skull Valley, to provide an evaluation of the potential water-resource development of the valley, and to identify needed studies that would help provide an understandingof the valley's water supply.

  1. Biomass Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, Steve; Brunecky, Roman; Lin, Chien-Yuan

    2017-08-02

    Biomass constitutes all the plant matter found on our planet, and is produced directly by photosynthesis, the fundamental engine of life on earth. It is the photosynthetic capability of plants to utilize carbon dioxide from the atmosphere that leads to its designation as a 'carbon neutral' fuel, meaning that it does not introduce new carbon into the atmosphere. This article discusses the life cycle assessments of biomass use and the magnitude of energy captured by photosynthesis in the form of biomass on the planet to appraise approaches to tap this energy to meet the ever-growing demand for energy.

  2. Death Valley, California

    NASA Image and Video Library

    2009-06-29

    Death Valley, Calif., has the lowest point in North America, Badwater at 85.5 meters 282 feet below sea level. It is also the driest and hottest location in North America. This image is from NASA Terra spacecraft.

  3. Air flow analysis in the upper Río Negro Valley (Argentina)

    NASA Astrophysics Data System (ADS)

    Cogliati, M. G.; Mazzeo, N. A.

    2006-06-01

    The so called Upper Río Negro Valley in Argentina is one of the most important fruit and vegetable production regions of the country. It comprises the lower valleys of the Limay and Neuquén rivers and the upper Negro river valley. Out of the 41,671 cultivated hectares, 84.6% are cultivated with fruit trees, especially apple, pear and stone fruit trees. Late frosts occurring when trees are sensitive to low temperatures have a significant impact on the regional production. This study presents an analysis of air flow characteristics in the Upper Río Negro Valley and its relationship with ambient air flow. To such effect, observations made when synoptic-scale weather patterns were favorable for radiative frosts (light wind and clear sky) or nocturnal temperature inversion in the lower layer were used. In the Negro river valley, both wind channeling and downward horizontal momentum transport from ambient wind were observed; in nighttime, very light wind events occurred, possibly associated with drainage winds from the nearby higher levels of the barda. In the Neuquén river valley, the prevailing effect appeared to be forced channeling, consistent with the results obtained in valleys where the synoptic scale wind crossed the axis of the valley. In the Limay river valley, the flow was observed to blow parallel to the longitudinal valley axis, possibly influenced by pressure gradient and forced channeling.

  4. Titan's fluvial valleys: Morphology, distribution, and spectral properties

    USGS Publications Warehouse

    Langhans, M.H.; Jaumann, R.; Stephan, K.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Baines, K.H.; Nicholson, P.D.; Lorenz, R.D.; Soderblom, L.A.; Soderblom, J.M.; Sotin, Christophe; Barnes, J.W.; Nelson, R.

    2012-01-01

    Titan's fluvial channels have been investigated based on data obtained by the Synthetic Aperture Radar (SAR) instrument and the Visible and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. In this paper, a database of fluvial features is created based on radar-SAR data aiming to unveil the distribution and the morphologic and spectral characteristics of valleys on Titan on a global scale. It will also study the spatial relations between fluvial valleys and Titan's geologic units and spectral surface units which have become accessible thanks to Cassini-VIMS data. Several distinct morphologic types of fluvial valleys can be discerned by SAR-images. Dendritic valley networks appear to have much in common with terrestrial dendritic systems owing to a hierarchical and tree-shaped arrangement of the tributaries which is indicative of an origin from precipitation. Dry valleys constitute another class of valleys resembling terrestrial wadis, an indication of episodic and strong flow events. Other valley types, such as putative canyons, cannot be correlated with rainfall based on their morphology alone, since it cannot be ruled out that they may have originated from volcanic/tectonic action or groundwater sapping. Highly developed and complex fluvial networks with channel lengths of up to 1200 km and widths of up to 10 km are concentrated only at a few locations whereas single valleys are scattered over all latitudes. Fluvial valleys are frequently found in mountainous areas. Some terrains, such as equatorial dune fields and undifferentiated plains at mid-latitudes, are almost entirely free of valleys. Spectrally, fluvial terrains are often characterized by a high reflectance in each of Titan's atmospheric windows, as most of them are located on Titan's bright 'continents'. Nevertheless, valleys are spatially associated with a surface unit appearing blue due to its higher reflection at 1.3??m in a VIMS false color RGB composite with R: 1.59/1.27??m, G: 2

  5. Installation of an ENERGEO Biomass Power Plant at a Lumber Company

    DTIC Science & Technology

    1995-06-01

    people. Throughout the world there exists tremendous quantities, of biomass waste, such as wood waste, rice husks , sugar bagasse, and coconut ...0.27 to 0.38 liter) of oil per kilowatt-hour generated. Even at subsidized prices of $1.00/gal ($0.26/liter), the fuel cost alone for generating...electricity amounts to $0.07 to $0.10/kW-hr generated In many locations where diesel oil prices are $2.00 to $4.00/aal’ ($0.53 to $1.06/liter) the

  6. Biomass resources in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiangco, V.M.; Sethi, P.S.

    1993-12-31

    The biomass resources in California which have potential for energy conversion were assessed and characterized through the project funded by the California Energy Commission and the US Department of Energy`s Western Regional Biomass Energy Program (WRBEP). The results indicate that there is an abundance of biomass resources as yet untouched by the industry due to technical, economic, and environmental problems, and other barriers. These biomass resources include residues from field and seed crops, fruit and nut crops, vegetable crops, and nursery crops; food processing wastes; forest slash; energy crops; lumber mill waste; urban wood waste; urban yard waste; livestock manure;more » and chaparral. The estimated total potential of these biomass resource is approximately 47 million bone dry tons (BDT), which is equivalent to 780 billion MJ (740 trillion Btu). About 7 million BDT (132 billion MJ or 124 trillion Btu) of biomass residue was used for generating electricity by 66 direct combustion facilities with gross capacity of about 800 MW. This tonnage accounts for only about 15% of the total biomass resource potential identified in this study. The barriers interfering with the biomass utilization both in the on-site harvesting, collection, storage, handling, transportation, and conversion to energy are identified. The question whether these barriers present significant impact to biomass {open_quotes}availability{close_quotes} and {open_quotes}sustainability{close_quotes} remains to be answered.« less

  7. Erosion of steepland valleys by debris flows

    USGS Publications Warehouse

    Stock, J.D.; Dietrich, W.E.

    2006-01-01

    Episodic debris flows scour the rock beds of many steepland valleys. Along recent debris-flow runout paths in the western United States, we have observed evidence for bedrock lowering, primarily by the impact of large particles entrained in debris flows. This evidence may persist to the point at which debris-flow deposition occurs, commonly at slopes of less than ???0.03-0.10. We find that debris-flow-scoured valleys have a topographic signature that is fundamentally different from that predicted by bedrock river-incision models. Much of this difference results from the fact that local valley slope shows a tendency to decrease abruptly downstream of tributaries that contribute throughgoing debris flows. The degree of weathering of valley floor bedrock may also decrease abruptly downstream of such junctions. On the basis of these observations, we hypothesize that valley slope is adjusted to the long-term frequency of debris flows, and that valleys scoured by debris flows should not be modeled using conventional bedrock river-incision laws. We use field observations to justify one possible debris-flow incision model, whose lowering rate is proportional to the integral of solid inertial normal stresses from particle impacts along the flow and the number of upvalley debris-flow sources. The model predicts that increases in incision rate caused by increases in flow event frequency and length (as flows gain material) downvalley are balanced by rate reductions from reduced inertial normal stress at lower slopes, and stronger, less weathered bedrock. These adjustments lead to a spatially uniform lowering rate. Although the proposed expression leads to equilibrium long-profiles with the correct topographic signature, the crudeness with which the debris-flow dynamics are parameterized reveals that we are far from a validated debris-flow incision law. However, the vast extent of steepland valley networks above slopes of ???0.03-0.10 illustrates the need to understand debris

  8. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China.

    PubMed

    He, Huaijiang; Zhang, Chunyu; Zhao, Xiuhai; Fousseni, Folega; Wang, Jinsong; Dai, Haijun; Yang, Song; Zuo, Qiang

    2018-01-01

    Understanding forest carbon budget and dynamics for sustainable resource management and ecosystem functions requires quantification of above- and below-ground biomass at individual tree species and stand levels. In this study, a total of 122 trees (9-12 per species) were destructively sampled to determine above- and below-ground biomass of 12 tree species (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis and Ulmus japonica) in coniferous and broadleaved mixed forests of Northeastern China, an area of the largest natural forest in the country. Biomass allocation was examined and biomass models were developed using diameter as independent variable for individual tree species and all species combined. The results showed that the largest biomass allocation of all species combined was on stems (57.1%), followed by coarse root (21.3%), branch (18.7%), and foliage (2.9%). The log-transformed model was statistically significant for all biomass components, although predicting power was higher for species-specific models than for all species combined, general biomass models, and higher for stems, roots, above-ground biomass, and total tree biomass than for branch and foliage biomass. These findings supplement the previous studies on this forest type by additional sample trees, species and locations, and support biomass research on forest carbon budget and dynamics by management activities such as thinning and harvesting in the northeastern part of China.

  9. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China

    PubMed Central

    He, Huaijiang; Zhao, Xiuhai; Fousseni, Folega; Wang, Jinsong; Dai, Haijun; Yang, Song; Zuo, Qiang

    2018-01-01

    Understanding forest carbon budget and dynamics for sustainable resource management and ecosystem functions requires quantification of above- and below-ground biomass at individual tree species and stand levels. In this study, a total of 122 trees (9–12 per species) were destructively sampled to determine above- and below-ground biomass of 12 tree species (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis and Ulmus japonica) in coniferous and broadleaved mixed forests of Northeastern China, an area of the largest natural forest in the country. Biomass allocation was examined and biomass models were developed using diameter as independent variable for individual tree species and all species combined. The results showed that the largest biomass allocation of all species combined was on stems (57.1%), followed by coarse root (21.3%), branch (18.7%), and foliage (2.9%). The log-transformed model was statistically significant for all biomass components, although predicting power was higher for species-specific models than for all species combined, general biomass models, and higher for stems, roots, above-ground biomass, and total tree biomass than for branch and foliage biomass. These findings supplement the previous studies on this forest type by additional sample trees, species and locations, and support biomass research on forest carbon budget and dynamics by management activities such as thinning and harvesting in the northeastern part of China. PMID:29351291

  10. Preliminary review of biomass energy options in Costa Rica and the national alcohol fuel program. Summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, J.L.

    1981-01-30

    For an agricultural, oil-importing country such as Costa Rica, the use of biomass as a source of transportation fuels is a topic of great interest. This analysis is intended to assist the Costa Rican government and USAID/CR to identify possible biomass energy projects. While emphasis is on technologies for converting biomass into liquid fuels, agronomic issues and alternative energy options are also explored. Costa Rica plans to build six facilities for converting biomass (primarily sugarcane, supplemented by molasses, cassava, and banana wastes) to hydrous ethanol. The following issues relating to biomass conversion technologies are identified: use of hydroelectrically powered drivesmore » in sugarcane processing to allow use of bagasse as a fuel; possible sources and costs of energy for converting starch crops like cassava to ethanol; the optimal method for treating stillage; and the feasibility of using fermentation reactors. No definitive recommendation on the scale of ethanol production is made due to the lack of an environmental impact assessment. Finally, with regard to nonalcohol renewable energy, several ideas warrant consideration: electrically powered mass transit; electric cars; vehicle-mounted gasifiers operating on wood chips or pelletized fuels produced from excess bagasse; anaerobic digestion of animal manure and other agricultural wastes; and energy recovery from municipal solid wastes.« less

  11. Groundwater quality in Coachella Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  12. Rift Valley fever outbreak, southern Mauritania, 2012.

    PubMed

    Sow, Abdourahmane; Faye, Ousmane; Ba, Yamar; Ba, Hampathé; Diallo, Diawo; Faye, Oumar; Loucoubar, Cheikh; Boushab, Mohamed; Barry, Yahya; Diallo, Mawlouth; Sall, Amadou Alpha

    2014-02-01

    After a period of heavy rainfall, an outbreak of Rift Valley fever occurred in southern Mauritania during September-November 2012. A total of 41 human cases were confirmed, including 13 deaths, and 12 Rift Valley fever virus strains were isolated. Moudjeria and Temchecket Departments were the most affected areas.

  13. Complex pendulum biomass sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In anmore » alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.« less

  14. Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon.

    PubMed

    Zuleta, Daniel; Duque, Alvaro; Cardenas, Dairon; Muller-Landau, Helene C; Davies, Stuart J

    2017-10-01

    Extreme climatic events affecting the Amazon region are expected to become more frequent under ongoing climate change. In this study, we assessed the responses to the 2010 drought of over 14,000 trees ≥10 cm dbh in a 25 ha lowland forest plot in the Colombian Amazon and how these responses varied among topographically defined habitats, with tree size, and with species wood density. Tree mortality was significantly higher during the 2010-2013 period immediately after the drought than in 2007-2010. The post-drought increase in mortality was stronger for trees located in valleys (+243%) than for those located on slopes (+67%) and ridges (+57%). Tree-based generalized linear mixed models showed a significant negative effect of species wood density on mortality and no effect of tree size. Despite the elevated post-drought mortality, aboveground biomass increased from 2007 to 2013 by 1.62 Mg ha -1  yr -1 (95% CI 0.80-2.43 Mg ha -1  yr -1 ). Biomass change varied among habitats, with no significant increase on the slopes (1.05, 95% CI -0.76 to 2.85 Mg ha -1  yr -1 ), a significant increase in the valleys (1.33, 95% CI 0.37-2.34 Mg ha -1  yr -1 ), and a strong increase on the ridges (2.79, 95% CI 1.20-4.21 Mg ha -1  yr -1 ). These results indicate a high carbon resilience of this forest to the 2010 drought due to habitat-associated and interspecific heterogeneity in responses including directional changes in functional composition driven by enhanced performance of drought-tolerant species that inhabit the drier ridges. © 2017 by the Ecological Society of America.

  15. Comparative recruitment success of pine provenances (Pinus sylvestris, Pinus nigra) under simulated climate change in the Swiss Rhone valley

    NASA Astrophysics Data System (ADS)

    Richter, Sarah; Moser, Barbara; Ghazoul, Jaboury; Wohlgemuth, Thomas

    2010-05-01

    Low elevation Scots pine forests of European inner-alpine dry valleys may potentially disappear under continued climate warming, largely in response to increased warming and drought effects. In the upper Rhone valley, the driest region in Switzerland, increased Scots pine mortality in mature forest stands and sparse tree establishment after a large-scale forest fire already give evidence for ongoing climate change. Furthermore, vegetation models predict a decline of Scots pine (Pinus sylvestris) and Pubescent oak (Quercus pubescens) even under a moderate temperature increase of 2-3°C. A decline of tree species in the region may lead to a transition from forest to a steppe-like vegetation. Such a change is of considerable concern for both biodiversity and natural hazard protection. Although changing climate conditions affect all life stages of a tree, its most vulnerable stage is recruitment. We tested P. sylvestris and P. nigra seedlings to simulated temperature increase and water stress, using seeds from the upper Rhone valley, Switzerland (CH), and from Peñyagolosa, Spain (ES). The experiment was located outdoors at the bottom of the Rhone Valley. Treatments consisted of factorial combinations of 3 precipitation regimes (‘wet spring-wet summer', ‘dry spring-dry summer' and ‘wet spring-dry summer') and 3 soil heating levels (+0 °C, +2.5 °C, +5 °C). Automatically operated shelters intercepted natural rainfall and different precipitation regimes were simulated by manual irrigation. We found significantly lower germination rates under dry conditions compared to wet conditions, whereas soil temperature affected germination rates only for P. nigra and when elevated by 5°C. Contrastingly, an increase of soil temperatures by 2.5 °C already caused a substantial decrease of survival rates under both ‘dry spring-dry summer' and ‘wet spring-dry summer' conditions. Precipitation regime was more important for survival than temperature increase. Seasonality of

  16. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff

    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification.more » Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a

  17. Pattern of ground deformation in Kathmandu valley during 2015 Gorkha Earthquake, central Nepal

    NASA Astrophysics Data System (ADS)

    Ghimire, S.; Dwivedi, S. K.; Acharya, K. K.

    2016-12-01

    The 25th April 2015 Gorkha Earthquake (Mw=7.8) epicentered at Barpak along with thousands of aftershocks released seismic moment nearly equivalent to an 8.0 Magnitude earthquake rupturing a 150km long fault segment. Although Kathmandu valley was supposed to be severely devastated by such major earthquake, post earthquake scenario is completely different. The observed destruction is far less than anticipated as well as the spatial pattern is different than expected. This work focuses on the behavior of Kathmandu valley sediments during the strong shaking by the 2015 Gorkha Earthquake. For this purpose spatial pattern of destruction is analyzed at heavily destructed sites. To understand characteristics of subsurface soil 2D-MASW survey was carried out using a 24-channel seismograph system. An accellerogram recorded by Nepal Seismological Center was analyzed to characterize the strong ground motion. The Kathmandu valley comprises fluvio-lacustrine deposit with gravel, sand, silt and clay along with few exposures of basement rocks within the sediments. The observations show systematic repetition of destruction at an average interval of 2.5km mostly in sand, silt and clay dominated formations. Results of 2D-MASW show the sites of destruction are characterized by static deformation of soil (liquefaction and southerly dipping cracks). Spectral analysis of the accelerogram indicates maximum power associated with frequency of 1.0Hz. The result of this study explains the observed spatial pattern of destruction in Kathmandu valley. This is correlated with the seismic energy associated with the frequency of 1Hz, which generates an average wavelength of 2.5km with an average S-wave velocity of 2.5km/s. The cumulative effect of dominant frequency and associated wavelength resulted in static deformation of surface soil layers at an average interval of 2.5km. This phenomenon clearly describes the reason for different scenario than that was anticipated in Kathmandu valley.

  18. Analysis of potency and development of renewable energy based on agricultural biomass waste in Jambi province

    NASA Astrophysics Data System (ADS)

    Devita, W. H.; Fauzi, A. M.; Purwanto, Y. A.

    2018-05-01

    Indonesia has the big potency of biomass. The source of biomass energy is scattered all over the country. The big potential in concentrated scale is on the island of Sumatera. Jambi province which is located in Sumatra Island has the potency of biomass energy due to a huge area for estate crop and agriculture. The Indonesian government had issued several policies which put a higher priority on the utilization of renewable energy. This study aimed to identify the conditions and distribution of biomass waste potential in Jambi province. The potential biomass waste in Jambi province was 27,407,183 tons per year which dominated of oil palm residue (46.16%), rice husk and straw (3.52%), replanting rubberwood (50.32%). The total power generated from biomass waste was 129 GWhth per year which is consisted of palm oil residue (56 GWhth per year), rice husk and straw (3.22 GWhth per year), rubberwood (70.56 GWhth per year). Based on the potential of biomass waste, then the province of Jambi could obtain supplies of renewable energy from waste biomass with electricity generated amount to 32.34 GWhe per year.

  19. Identifying/Quantifying Environmental Trade-offs Inherent in GHG Reduction Strategies for Coal-Fired Power.

    PubMed

    Schivley, Greg; Ingwersen, Wesley W; Marriott, Joe; Hawkins, Troy R; Skone, Timothy J

    2015-07-07

    Improvements to coal power plant technology and the cofired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in unintended increases in impacts to air and water quality and human health. This study provides a unique analysis of the potential environmental impact reductions from upgrading existing subcritical pulverized coal power plants to increase their efficiency, improving environmental controls, cofiring biomass, and exporting steam for industrial use. The climate impacts are examined in both a traditional-100 year GWP-method and a time series analysis that accounts for emission and uptake timing over the life of the power plant. Compared to fleet average pulverized bed boilers (33% efficiency), we find that circulating fluidized bed boilers (39% efficiency) may provide GHG reductions of about 13% when using 100% coal and reductions of about 20-37% when cofiring with 30% biomass. Additional greenhouse gas reductions from combined heat and power are minimal if the steam coproduct displaces steam from an efficient natural gas boiler. These upgrades and cofiring biomass can also reduce other life cycle impacts, although there may be increased impacts to water quality (eutrophication) when using biomass from an intensely cultivated source. Climate change impacts are sensitive to the timing of emissions and carbon sequestration as well as the time horizon over which impacts are considered, particularly for long growth woody biomass.

  20. 27 CFR 9.37 - California Shenandoah Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false California Shenandoah Valley. 9.37 Section 9.37 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Boundaries. The Shenandoah Valley viticultural Area is located in portions of Amador and El Dorado Counties...

  1. 27 CFR 9.37 - California Shenandoah Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false California Shenandoah Valley. 9.37 Section 9.37 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Boundaries. The Shenandoah Valley viticultural Area is located in portions of Amador and El Dorado Counties...

  2. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  3. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  4. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  5. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  6. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  7. Detection and Response for Rift Valley fever

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever is a viral disease that impacts domestic livestock and humans in Africa and the Middle East, and poses a threat to military operations in these areas. We describe a Rift Valley fever Risk Monitoring website, and its ability to predict risk of disease temporally and spatially. We al...

  8. Illinois Valley Industry Retention Program. Final Report.

    ERIC Educational Resources Information Center

    Allen, John P.

    The Illinois Valley Industry Retention Program was conceived with the goals of retaining existing industries in the area and saving presently available jobs for the area's citizens. A program committee, formed in March 1982 of representatives from state government, Illinois Valley Community College (IVCC), and local businesses, undertook a survey…

  9. An Ancient Valley Network

    NASA Image and Video Library

    2017-05-09

    Most of the oldest terrains on Mars have eroded into branching valleys, as seen here in by NASA's Mars Reconnaisance Orbiter, much like many land regions of Earth are eroded by rain and snowmelt runoff. This is the primary evidence for major climate change on Mars billions of years ago. How the climate of Mars could have supported a warmer and wetter environment has been the subject of scientific debates for 40 years. A full-resolution enhanced color closeup reveals details in the bedrock and dunes on the valley floor (upper left). The bedrock of ancient Mars has been hardened and cemented by groundwater. https://photojournal.jpl.nasa.gov/catalog/PIA21630

  10. Subglacial tunnel valleys dissecting the Alpine landscape - an example from Bern, Switzerland

    NASA Astrophysics Data System (ADS)

    Dürst Stucki, Mirjam; Reber, Regina; Schlunegger, Fritz

    2010-05-01

    The morphology of the Alpine and adjacent landscapes is directly related to glacial erosion and associated sediment transport. Here we report the effects of glacio-hydrologic erosion on bedrock topography in the Swiss Mittelland. Specifically, we identify the presence of subsurface valleys beneath the city of Bern in Switzerland and discuss their genesis. Detailed stratigraphic investigations of more than 4000 borehole data within a 430 km2-large area reveal the presence of a network of >200 m-deep and 1000 m-wide valleys. They are flat floored with steep sided walls and are filled by Quaternary fluvio-glacial deposits. The main valley beneath Bern is straight and oriented towards the NNW, with valley flanks more than 20° steep. The valley bottom has an irregular undulating profile along the thalweg, with differences between sills and hollows higher than 50-100 m over a reach of 4 kilometers length. Approximately 200 m high bedrock uplands flank the valley network. The uplands are dissected by up to 80 m-deep and 500 m-broad hanging valleys that currently drain away from the axis of the main valley. We interpret the valleys beneath the city of Bern to be a tunnel valley network which originated from subglacial erosion by melt water. The upland valleys are hanging with respect to the trunk system, indicating that these incipient upland systems as well as the main gorge beneath Bern formed by glacial melt water under hydrostatic pressure. This explains the ascending flow of glacial water from the base towards the higher elevation hanging valleys where high water discharge resulted in the formation of broad valley geometries. Similarly, we relate efficient erosion, excavation of bedrock and the formation of the tunnel valley network with >20° steep shoulders to confined flow under pressure, caused by the overlying ice.

  11. EPA Region 1 - Map Layers for Valley ID Tool (Hosted Feature Service)

    EPA Pesticide Factsheets

    The Valley Service Feature Layer hosts spatial data for EPA Region 1's Valley Identification Tool. These layers contain attribute information added by EPA R1 GIS Center to help identify populated valleys:- Fac_2011NEI: Pollution sources selected from the National Emissions Inventory (EPA, 2011).- NE_Towns_PopValleys: New England Town polygons (courtesy USGS), with Population in Valleys and Population Density in Valleys calculated by EPA R1 GIS, from 2010 US Census blocks. - VT_E911: Vermont residences (courtesy VT Center for Geographic Information E-911).

  12. The annual cycles of phytoplankton biomass

    USGS Publications Warehouse

    Winder, M.; Cloern, J.E.

    2010-01-01

    Terrestrial plants are powerful climate sentinels because their annual cycles of growth, reproduction and senescence are finely tuned to the annual climate cycle having a period of one year. Consistency in the seasonal phasing of terrestrial plant activity provides a relatively low-noise background from which phenological shifts can be detected and attributed to climate change. Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual cycle in lake, estuarine-coastal and ocean ecosystems and whether there is a characteristic phenology of phytoplankton as a consistent phase and amplitude of variability. We compiled 125 time series of phytoplankton biomass (chloro-phyll a concentration) from temperate and subtropical zones and used wavelet analysis to extract their dominant periods of variability and the recurrence strength at those periods. Fewer than half (48%) of the series had a dominant 12-month period of variability, commonly expressed as the canonical spring-bloom pattern. About 20 per cent had a dominant six-month period of variability, commonly expressed as the spring and autumn or winter and summer blooms of temperate lakes and oceans. These annual patterns varied in recurrence strength across sites, and did not persist over the full series duration at some sites. About a third of the series had no component of variability at either the six-or 12-month period, reflecting a series of irregular pulses of biomass. These findings show that there is high variability of annual phytoplankton cycles across ecosystems, and that climate-driven annual cycles can be obscured by other drivers of population variability, including human disturbance, aperiodic weather events and strong trophic coupling between phytoplankton and their consumers. Regulation of phytoplankton biomass by multiple processes operating at multiple time scales adds complexity to the challenge of detecting climate-driven trends in aquatic ecosystems where the noise to

  13. Valley photonic crystals for control of spin and topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu

    2016-11-28

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing1,2,3,4. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points5,6,7,8,9,10. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials11,12,13,14,15. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley–spin locking behaviour results in selective net spin flow insidemore » bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.« less

  14. Valley Physics in Non-Hermitian Artificial Acoustic Boron Nitride

    NASA Astrophysics Data System (ADS)

    Wang, Mudi; Ye, Liping; Christensen, J.; Liu, Zhengyou

    2018-06-01

    The valley can serve as a new degree of freedom in the manipulation of particles or waves in condensed matter physics, whereas systems containing combinations of gain and loss elements constitute rich building units that can mimic non-Hermitian properties. By introducing gain and loss in artificial acoustic boron nitride, we show that the acoustic valley states and the valley-projected edge states display exotic behaviors in that they sustain either attenuated or amplified wave propagation. Our findings show how non-Hermiticity introduces a mechanism in tuning topological protected valley transports, which may have significance in advanced wave control for sensing and communication applications.

  15. Pretreated densified biomass products

    DOEpatents

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  16. Method for pretreating lignocellulosic biomass

    DOEpatents

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  17. Smart Valley Infrastructure.

    ERIC Educational Resources Information Center

    Maule, R. William

    1994-01-01

    Discusses prototype information infrastructure projects in northern California's Silicon Valley. The strategies of the public and private telecommunications carriers vying for backbone services and industries developing end-user infrastructure technologies via office networks, set-top box networks, Internet multimedia, and "smart homes"…

  18. System and process for biomass treatment

    DOEpatents

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  19. The Biomass mission: a step forward in quantifying forest biomass and structure

    NASA Astrophysics Data System (ADS)

    LE Toan, T.

    2015-12-01

    The primary aim of the ESA BIOMASS mission is to determine, for the first time and in a consistent manner, the global distribution of above-ground forest biomass (AGB) in order to provide greatly improved quantification of the size and distribution of the terrestrial carbon pool, and improved estimates of terrestrial carbon fluxes. Specifically, BIOMASS will measure forest carbon stock, as well as forest height, from data provided by a single satellite giving a biomass map covering tropical, temperate and boreal forests at a resolution of around 200 m every 6 months throughout the five years of the mission. BIOMASS will use a long wavelength SAR (P-band) providing three mutually supporting measurement techniques, namely polarimetric SAR (PolSAR), polarimetric interferometric SAR (PolInSAR) and tomographic SAR (TomoSAR). The combination of these techniques will significantly reduce the uncertainties in biomass retrievals by yielding complementary information on biomass properties. Horizontal mapping: For a forest canopy, the P-band radar waves penetrate deep into the canopy, and their interaction with the structure of the forest will be exploited to map above ground biomass (AGB), as demonstrated from airborne data for temperate, boreal forests and tropical forest. Height mapping: By repeat revisits to the same location, the PolInSAR measurements will be used to estimate the height of scattering in the forest canopy. The long wavelength used by BIOMASS is crucial for the temporal coherence to be preserved over much longer timescales than at L-band, for example. 3D mapping: The P-band frequency used by BIOMASS is low enough to ensure penetration through the entire canopy, even in dense tropical forests. As a consequence, resolution of the vertical structure of the forest will be possible using tomographic methods from the multi-baseline acquisitions. This is the concept of SAR tomography, which will be implemented in the BIOMASS mission. The improvement in the

  20. Acoustic valley edge states in a graphene-like resonator system

    NASA Astrophysics Data System (ADS)

    Yang, Yahui; Yang, Zhaoju; Zhang, Baile

    2018-03-01

    The concept of valley physics, as inspired by the recent development in valleytronic materials, has been extended to acoustic crystals for manipulation of air-borne sound. Many valleytronic materials follow the model of a gapped graphene. Yet the previously demonstrated valley acoustic crystal adopted a mirror-symmetry-breaking mechanism, lacking a direct counterpart in condensed matter systems. In this paper, we investigate a two-dimensional (2D) periodic acoustic resonator system with inversion symmetry breaking, as an analogue of a gapped graphene monolayer. It demonstrates the quantum valley Hall topological phase for sound waves. Similar to a gapped graphene, gapless topological valley edge states can be found at a zigzag domain wall separating different domains with opposite valley Chern numbers, while an armchair domain wall hosts no gapless edge states. Our study offers a route to simulate novel valley phenomena predicted in gapped graphene and other 2D materials with classical acoustic waves.