Sample records for valley fever vaccine

  1. Novel approaches to develop Rift Valley fever vaccines

    PubMed Central

    Indran, Sabarish V.; Ikegami, Tetsuro

    2012-01-01

    Rift Valley fever (RVF) is endemic to sub-Saharan Africa, and has spread into Madagascar, Egypt, Saudi Arabia, and Yemen. Rift Valley fever virus (RVFV) of the family Bunyaviridae, genus Phlebovirus causes hemorrhagic fever, neurological disorders or blindness in humans, and high rate abortion and fetal malformation in ruminants. RVFV is classified as a Category A Priority pathogen and overlap select agent by CDC/USDA due to its potential impact on public health and agriculture. There is a gap in the safety and immunogenicity in traditional RVF vaccines; the formalin-inactivated RVFV vaccine TSI-GSD-200 requires three doses for protection, and the live-attenuated Smithburn vaccine has a risk to cause abortion and fetal malformation in pregnant ruminants. In this review, problems of traditional vaccines and the safety and efficacy of recently reported novel RVF candidate vaccines including subunit vaccines, virus vector, and replicons are discussed. PMID:23112960

  2. Novel approaches to develop Rift Valley fever vaccines.

    PubMed

    Indran, Sabarish V; Ikegami, Tetsuro

    2012-01-01

    Rift Valley fever (RVF) is endemic to sub-Saharan Africa, and has spread into Madagascar, Egypt, Saudi Arabia, and Yemen. Rift Valley fever virus (RVFV) of the family Bunyaviridae, genus Phlebovirus causes hemorrhagic fever, neurological disorders or blindness in humans, and high rate abortion and fetal malformation in ruminants. RVFV is classified as a Category A Priority pathogen and overlap select agent by CDC/USDA due to its potential impact on public health and agriculture. There is a gap in the safety and immunogenicity in traditional RVF vaccines; the formalin-inactivated RVFV vaccine TSI-GSD-200 requires three doses for protection, and the live-attenuated Smithburn vaccine has a risk to cause abortion and fetal malformation in pregnant ruminants. In this review, problems of traditional vaccines and the safety and efficacy of recently reported novel RVF candidate vaccines including subunit vaccines, virus vector, and replicons are discussed.

  3. Potency of a thermostabilised chimpanzee adenovirus Rift Valley Fever vaccine in cattle.

    PubMed

    Dulal, Pawan; Wright, Daniel; Ashfield, Rebecca; Hill, Adrian V S; Charleston, Bryan; Warimwe, George M

    2016-04-29

    Development of safe and efficacious vaccines whose potency is unaffected by long-term storage at ambient temperature would obviate major vaccine deployment hurdles and limit wastage associated with breaks in the vaccine cold chain. Here, we evaluated the immunogenicity of a novel chimpanzee adenovirus vectored Rift Valley Fever vaccine (ChAdOx1-GnGc) in cattle, following its thermostabilisation by slow desiccation on glass fiber membranes in the non-reducing sugars trehalose and sucrose. Thermostabilised ChAdOx1-GnGc vaccine stored for 6 months at 25, 37 or 45 ° C elicited comparable Rift Valley Fever virus neutralising antibody titres to those elicited by the 'cold chain' vaccine (stored at -80 ° C throughout) at the same dose, and these were within the range associated with protection against Rift Valley Fever in cattle. The results support the use of sugar-membrane thermostabilised vaccines in target livestock species. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Current Status of Rift Valley Fever Vaccine Development

    PubMed Central

    Faburay, Bonto; LaBeaud, Angelle Desiree; McVey, D. Scott; Wilson, William C.; Richt, Juergen A.

    2017-01-01

    Rift Valley Fever (RVF) is a mosquito-borne zoonotic disease that presents a substantial threat to human and public health. It is caused by Rift Valley fever phlebovirus (RVFV), which belongs to the genus Phlebovirus and the family Phenuiviridae within the order Bunyavirales. The wide distribution of competent vectors in non-endemic areas coupled with global climate change poses a significant threat of the transboundary spread of RVFV. In the last decade, an improved understanding of the molecular biology of RVFV has facilitated significant progress in the development of novel vaccines, including DIVA (differentiating infected from vaccinated animals) vaccines. Despite these advances, there is no fully licensed vaccine for veterinary or human use available in non-endemic countries, whereas in endemic countries, there is no clear policy or practice of routine/strategic livestock vaccinations as a preventive or mitigating strategy against potential RVF disease outbreaks. The purpose of this review was to provide an update on the status of RVF vaccine development and provide perspectives on the best strategies for disease control. Herein, we argue that the routine or strategic vaccination of livestock could be the best control approach for preventing the outbreak and spread of future disease. PMID:28925970

  5. Single-cycle replicable Rift Valley fever virus mutants as safe vaccine candidates.

    PubMed

    Terasaki, Kaori; Tercero, Breanna R; Makino, Shinji

    2016-05-02

    Rift Valley fever virus (RVFV) is an arbovirus circulating between ruminants and mosquitoes to maintain its enzootic cycle. Humans are infected with RVFV through mosquito bites or direct contact with materials of infected animals. The virus causes Rift Valley fever (RVF), which was first recognized in the Great Rift Valley of Kenya in 1931. RVF is characterized by a febrile illness resulting in a high rate of abortions in ruminants and an acute febrile illness, followed by fatal hemorrhagic fever and encephalitis in humans. Initially, the virus was restricted to the eastern region of Africa, but the disease has now spread to southern and western Africa, as well as outside of the African continent, e.g., Madagascar, Saudi Arabia and Yemen. There is a serious concern that the virus may spread to other areas, such as North America and Europe. As vaccination is an effective tool to control RVFV epidemics, formalin-inactivated vaccines and live-attenuated RVFV vaccines have been used in endemic areas. The formalin-inactivated vaccines require boosters for effective protection, whereas the live-attenuated vaccines enable the induction of protective immunity by a single vaccination. However, the use of live-attenuated RVFV vaccines for large human populations having a varied health status is of concern, because of these vaccines' residual neuro-invasiveness and neurovirulence. Recently, novel vaccine candidates have been developed using replication-defective RVFV that can undergo only a single round of replication in infected cells. The single-cycle replicable RVFV does not cause systemic infection in immunized hosts, but enables the conferring of protective immunity. This review summarizes the properties of various RVFV vaccines and recent progress on the development of the single-cycle replicable RVFV vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Single-cycle replicable Rift Valley fever virus mutants as safe vaccine candidates

    PubMed Central

    Terasaki, Kaori; Tercero, Breanna R.; Makino, Shinji

    2015-01-01

    Rift Valley fever virus (RVFV) is an arbovirus circulating between ruminants and mosquitoes to maintain its enzootic cycle. Humans are infected with RVFV through mosquito bites or direct contact with materials of infected animals. The virus causes Rift Valley fever, which was first recognized in the Great Rift Valley of Kenya in 1931. RVFV is characterized by a febrile illness resulting in a high rate of abortions in ruminants and an acute febrile illness, followed by fatal hemorrhagic fever and encephalitis in humans. Initially, the virus was restricted to the eastern region of Africa, but the disease has now spread to southern and western Africa, as well as outside of the African continent, e.g., Madagascar, Saudi Arabia and Yemen. There is a serious concern that the virus may spread to other areas, such as North America and Europe. As vaccination is an effective tool to control RVFV epidemics, formalin-inactivated vaccines and live-attenuated RVFV vaccines have been used in endemic areas. The formalin-inactivated vaccines require boosters for effective protection, whereas the live-attenuated vaccines enable the induction of protective immunity by a single vaccination. However, the use of live-attenuated RVFV vaccines for large human populations having a varied health status is of concern, because of these vaccines’ residual neuro-invasiveness and neurovirulence. Recently, novel vaccine candidates have been developed using replication-defective RVFV that can undergo only a single round of replication in infected cells. The single-cycle replicable RVFV does not cause systemic infection in immunized hosts, but enables the conferring of protective immunity. This review summarizes the properties of various RVFV vaccines and recent progress on the development of the single-cycle replicable RVFV vaccines. PMID:26022573

  7. Rift Valley fever vaccines: current and future needs.

    PubMed

    Dungu, Baptiste; Lubisi, Baratang A; Ikegami, Tetsuro

    2018-04-01

    Rift Valley fever (RVF) is a zoonotic mosquito-borne bunyaviral disease associated with high abortion rates, neonatal deaths, and fetal malformations in ruminants, and mild to severe disease in humans. Outbreaks of RVF cause huge economic losses and public health impacts in endemic countries in Africa and the Arabian Peninsula. A proper vaccination strategy is important for preventing or minimizing outbreaks. Vaccination against RVF is not practiced in many countries, however, due to absence or irregular occurrences of outbreaks, despite serological evidence of RVF viral activity. Nonetheless, effective vaccination strategies, and functional national and international multi-disciplinary networks, remain crucial for ensuring availability of vaccines and supporting execution of vaccination in high risk areas for efficient response to RVF alerts and outbreaks. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A recombinant Rift Valley fever virus glycoprotein subunit vaccine confers full protection against Rift Valley fever challenge in sheep

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suita...

  9. A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep.

    PubMed

    Faburay, Bonto; Wilson, William C; Gaudreault, Natasha N; Davis, A Sally; Shivanna, Vinay; Bawa, Bhupinder; Sunwoo, Sun Young; Ma, Wenjun; Drolet, Barbara S; Morozov, Igor; McVey, D Scott; Richt, Juergen A

    2016-06-14

    Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n = 5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts.

  10. A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep

    PubMed Central

    Faburay, Bonto; Wilson, William C.; Gaudreault, Natasha N.; Davis, A. Sally; Shivanna, Vinay; Bawa, Bhupinder; Sunwoo, Sun Young; Ma, Wenjun; Drolet, Barbara S.; Morozov, Igor; McVey, D. Scott; Richt, Juergen A.

    2016-01-01

    Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n = 5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts. PMID:27296136

  11. Rift Valley Fever vaccines: An overview of the safety and efficacy of the live-attenuated MP-12 vaccine candidate

    PubMed Central

    Ikegami, Tetsuro

    2017-01-01

    Introduction Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease endemic to Africa and the Arabian Peninsula. High rates of abortion among infected ruminants and hemorrhagic fever in infected humans are major public health concerns. Commercially available veterinary RVF vaccines are important for preventing the spread of the Rift Valley fever virus (RVFV) in endemic countries; however, RVFV outbreaks continue to occur frequently in endemic countries in the 21st century. In the U.S., the live-attenuated MP-12 vaccine has been developed for both animal and human vaccination. This vaccine strain is well attenuated, and a single dose induces neutralizing antibodies in both ruminants and humans. Areas covered This review describes scientific evidences of MP-12 vaccine efficacy and safety, as well as MP-12 variants recently developed by reverse genetics, in comparison with other RVF vaccines. Expert commentary The containment of active RVF outbreaks and long-term protection from RVF exposure to infected mosquitoes are important goals for RVF vaccination. MP-12 vaccine will allow immediate vaccination of susceptible animals in case of an unexpected RVF outbreak in the U.S., whereas MP-12 vaccine may be also useful for the RVF control in endemic regions. PMID:28425834

  12. Rift Valley fever vaccines: an overview of the safety and efficacy of the live-attenuated MP-12 vaccine candidate.

    PubMed

    Ikegami, Tetsuro

    2017-06-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease endemic to Africa and the Arabian Peninsula. High rates of abortion among infected ruminants and hemorrhagic fever in infected humans are major public health concerns. Commercially available veterinary RVF vaccines are important for preventing the spread of the Rift Valley fever virus (RVFV) in endemic countries; however, RVFV outbreaks continue to occur frequently in endemic countries in the 21st century. In the U.S., the live-attenuated MP-12 vaccine has been developed for both animal and human vaccination. This vaccine strain is well attenuated, and a single dose induces neutralizing antibodies in both ruminants and humans. Areas covered: This review describes scientific evidences of MP-12 vaccine efficacy and safety, as well as MP-12 variants recently developed by reverse genetics, in comparison with other RVF vaccines. Expert commentary: The containment of active RVF outbreaks and long-term protection from RVF exposure to infected mosquitoes are important goals for RVF vaccination. MP-12 vaccine will allow immediate vaccination of susceptible animals in case of an unexpected RVF outbreak in the U.S., whereas MP-12 vaccine may be also useful for the RVF control in endemic regions.

  13. Correlative Gene Expression to Protective Seroconversion in Rift Valley Fever Vaccinates.

    PubMed

    Laughlin, Richard C; Drake, Kenneth L; Morrill, John C; Adams, L Garry

    2016-01-01

    Rift Valley fever Virus (RVFV), a negative-stranded RNA virus, is the etiological agent of the vector-borne zoonotic disease, Rift Valley fever (RVF). In both humans and livestock, protective immunity can be achieved through vaccination. Earlier and more recent vaccine trials in cattle and sheep demonstrated a strong neutralizing antibody and total IgG response induced by the RVF vaccine, authentic recombinant MP-12 (arMP-12). From previous work, protective immunity in sheep and cattle vaccinates normally occurs from 7 to 21 days after inoculation with arMP-12. While the serology and protective response induced by arMP-12 has been studied, little attention has been paid to the underlying molecular and genetic events occurring prior to the serologic immune response. To address this, we isolated RNA from whole blood of vaccinated calves over a time course of 21 days before and after vaccination with arMP-12. The time course RNAs were sequenced by RNASeq and bioinformatically analyzed. Our results revealed time-dependent activation or repression of numerous gene ontologies and pathways related to the vaccine induced immune response and its regulation. Additional bioinformatic analyses identified a correlative relationship between specific host immune response genes and protective immunity prior to the detection of protective serum neutralizing antibody responses. These results contribute an important proof of concept for identifying molecular and genetic components underlying the immune response to RVF vaccination and protection prior to serologic detection.

  14. Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: implications from other RNA viruses

    PubMed Central

    Nishiyama, Shoko; Ikegami, Tetsuro

    2015-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae). Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the U.S. MP-12 displays a temperature-sensitive (ts) phenotype and does not replicate at 41°C. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF. PMID:26322023

  15. 77 FR 68783 - Prospective Grant of Exclusive License: Veterinary Vaccines for Rift Valley Fever Virus

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... Grant of Exclusive License: Veterinary Vaccines for Rift Valley Fever Virus AGENCY: Centers for Disease... territories other than Africa, in the field of use of veterinary vaccines, to practice the inventions listed... precisely defined attenuated vaccine constructs that contain complete deletions of critical virulence...

  16. Vaccination of alpacas against Rift Valley fever virus: Safety, immunogenicity and pathogenicity of MP-12 vaccine.

    PubMed

    Rissmann, M; Ulrich, R; Schröder, C; Hammerschmidt, B; Hanke, D; Mroz, C; Groschup, M H; Eiden, M

    2017-01-23

    Rift Valley fever (RVF) is an emerging zoonosis of major public health concern in Africa and Arabia. Previous outbreaks attributed camelids a significant role in the epidemiology of Rift Valley fever virus (RVFV), making them an important target species for vaccination. Using three alpacas as model-organisms for dromedary camels, the safety, immunogenicity and pathogenicity of the MP-12 vaccine were evaluated in this study. To compare both acute and subacute effects, animals were euthanized at 3 and 31days post infection (dpi). Clinical monitoring, analysis of liver enzymes and hematological parameters demonstrated the tolerability of the vaccine, as no significant adverse effects were observed. Comprehensive analysis of serological parameters illustrated the immunogenicity of the vaccine, eliciting high neutralizing antibody titers and antibodies targeting different viral antigens. RVFV was detected in serum and liver of the alpaca euthanized 3dpi, whereas no virus was detectable at 31dpi. Viral replication was confirmed by detection of various RVFV-antigens in hepatocytes by immunohistochemistry and the presence of mild multifocal necrotizing hepatitis. In conclusion, results indicate that MP-12 is a promising vaccine candidate but still has a residual pathogenicity, which requires further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. 77 FR 68783 - Prospective Grant of Co-Exclusive License: Veterinary Vaccines for Rift Valley Fever Virus

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... Grant of Co-Exclusive License: Veterinary Vaccines for Rift Valley Fever Virus AGENCY: Centers for... veterinary vaccines, to practice the inventions listed in the patent applications referred to below to... generation of precisely defined attenuated vaccine constructs that contain complete deletions of critical...

  18. Rift Valley fever virus: A review of diagnosis and vaccination, and implications for emergence in Europe.

    PubMed

    Mansfield, Karen L; Banyard, Ashley C; McElhinney, Lorraine; Johnson, Nicholas; Horton, Daniel L; Hernández-Triana, Luis M; Fooks, Anthony R

    2015-10-13

    Rift Valley fever virus (RVFV) is a mosquito-borne virus, and is the causative agent of Rift Valley fever (RVF), a zoonotic disease characterised by an increased incidence of abortion or foetal malformation in ruminants. Infection in humans can also lead to clinical manifestations that in severe cases cause encephalitis or haemorrhagic fever. The virus is endemic throughout much of the African continent. However, the emergence of RVFV in the Middle East, northern Egypt and the Comoros Archipelago has highlighted that the geographical range of RVFV may be increasing, and has led to the concern that an incursion into Europe may occur. At present, there is a limited range of veterinary vaccines available for use in endemic areas, and there is no licensed human vaccine. In this review, the methods available for diagnosis of RVFV infection, the current status of vaccine development and possible implications for RVFV emergence in Europe, are discussed. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  19. Valley Fever (Coccidioidomycosis) Risk and Prevention

    MedlinePlus

    ... 2012 Jun;14(3):300-4. Shubitz LF. Comparative aspects of coccidioidomycosis in animals and humans. Ann ... spherule vaccine in humans. The Valley Fever Vaccine Study Group. Am Rev Respir Dis. 1993 Sep;148( ...

  20. Immunogenicity of combination DNA vaccines for Rift Valley fever virus, tick-borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus.

    PubMed

    Spik, Kristin; Shurtleff, Amy; McElroy, Anita K; Guttieri, Mary C; Hooper, Jay W; SchmalJohn, Connie

    2006-05-22

    DNA vaccines for Rift Valley fever virus (RVFV), Crimean Congo hemorrhagic fever virus (CCHFV), tick-borne encephalitis virus (TBEV), and Hantaan virus (HTNV), were tested in mice alone or in various combinations. The bunyavirus vaccines (RVFV, CCHFV, and HTNV) expressed Gn and Gc genes, and the flavivirus vaccine (TBEV) expressed the preM and E genes. All vaccines were delivered by gene gun. The TBEV DNA vaccine and the RVFV DNA vaccine elicited similar levels of antibodies and protected mice from challenge when delivered alone or in combination with other DNAs. Although in general, the HTNV and CCHFV DNA vaccines were not very immunogenic in mice, there were no major differences in performance when given alone or in combination with the other vaccines.

  1. Evaluation of lamb and calf responses to Rift Valley fever MP-12 vaccination

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is an important viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. The disease is of concern to international agricultural and public health communities. The RVF MP-12 strain has been the most safety tested attenuated vaccine ...

  2. Current status of rift valley fever vaccine development

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease that presents substantial threat to human and public health. It is caused by Rift Valley fever phlebovirus (RVFV), which belongs to the genus Phlebovirus and the family Pheuniviridae within the order Bunyavirales. The wide distribution of ...

  3. Modelling Vaccination Strategies against Rift Valley Fever in Livestock in Kenya.

    PubMed

    Gachohi, John M; Njenga, M Kariuki; Kitala, Philip; Bett, Bernard

    2016-12-01

    The impacts of vaccination on the transmission of Rift Valley fever virus (RVFV) have not been evaluated. We have developed a RVFV transmission model comprising two hosts-cattle as a separate host and sheep and goats as one combined host (herein after referred to as sheep)-and two vectors-Aedes species (spp) and Culex spp-and used it to predict the impacts of: (1) reactive vaccination implemented at various levels of coverage at pre-determined time points, (2) targeted vaccination involving either of the two host species, and (3) a periodic vaccination implemented biannually or annually before an outbreak. The model comprises coupled vector and host modules where the dynamics of vectors and hosts are described using a system of difference equations. Vector populations are structured into egg, larva, pupa and adult stages and the latter stage is further categorized into three infection categories: susceptible, exposed and infectious mosquitoes. The survival rates of the immature stages (egg, larva and pupa) are dependent on rainfall densities extracted from the Tropical Rainfall Measuring Mission (TRMM) for a Rift Valley fever (RVF) endemic site in Kenya over a period of 1827 days. The host populations are structured into four age classes comprising young, weaners, yearlings and adults and four infection categories including susceptible, exposed, infectious, and immune categories. The model reproduces the 2006/2007 RVF outbreak reported in empirical surveys in the target area and other seasonal transmission events that are perceived to occur during the wet seasons. Mass reactive vaccination strategies greatly reduce the potential for a major outbreak. The results also suggest that the effectiveness of vaccination can be enhanced by increasing the vaccination coverage, targeting vaccination on cattle given that this species plays a major role in the transmission of the virus, and using both periodic and reactive vaccination strategies. Reactive vaccination can be

  4. A Replication-incompetent Rift Valley Fever Vaccine: Chimeric Virus-like Particles Protect Mice and Rats Against Lethal Challenge

    PubMed Central

    Mandell, Robert B.; Koukuntla, Ramesh; Mogler, Laura J. K.; Carzoli, Andrea K.; Freiberg, Alexander N.; Holbrook, Michael R.; Martin, Brian K.; Staplin, William R.; Vahanian, Nicholas N.; Link, Charles J.; Flick, Ramon

    2009-01-01

    Virus-like particles (VLPs) present viral antigens in a native conformation and are effectively recognized by the immune system and therefore are considered as suitable and safe vaccine candidates against many viral diseases. Here we demonstrate that chimeric VLPs containing Rift Valley fever virus (RVFV) glycoproteins GN and GC, nucleoprotein N and the gag protein of Moloney murine leukemia virus represent an effective vaccine candidate against Rift Valley fever, a deadly disease in humans and livestock. Long-lasting humoral and cellular immune responses are demonstrated in a mouse model by the analysis of neutralizing antibody titers and cytokine secretion profiles. Vaccine efficacy studies were performed in mouse and rat lethal challenge models resulting in high protection rates. Taken together, these results demonstrate that replication-incompetent chimeric RVF VLPs are an efficient RVFV vaccine candidate. PMID:19932911

  5. Chimpanzee Adenovirus Vaccine Provides Multispecies Protection against Rift Valley Fever.

    PubMed

    Warimwe, George M; Gesharisha, Joseph; Carr, B Veronica; Otieno, Simeon; Otingah, Kennedy; Wright, Danny; Charleston, Bryan; Okoth, Edward; Elena, Lopez-Gil; Lorenzo, Gema; Ayman, El-Behiry; Alharbi, Naif K; Al-dubaib, Musaad A; Brun, Alejandro; Gilbert, Sarah C; Nene, Vishvanath; Hill, Adrian V S

    2016-02-05

    Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A 'One Health' vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replication-deficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs.

  6. Observations on rift valley fever virus and vaccines in Egypt

    PubMed Central

    2011-01-01

    Rift Valley Fever virus (RVFV, genus: Phlebovirus, family: Bunyaviridae), is an arbovirus which causes significant morbidity and mortality in animals and humans. RVFV was introduced for the first time in Egypt in 1977. In endemic areas, the insect vector control and vaccination is considering appropriate measures if applied properly and the used vaccine is completely safe and the vaccination programs cover all the susceptible animals. Egypt is importing livestock and camels from the African Horn & the Sudan for human consumption. The imported livestock and camels were usually not vaccinated against RVFV. But in rare occasions, the imported livestock were vaccinated but with unknown date of vaccination and the unvaccinated control contacts were unavailable for laboratory investigations. Also, large number of the imported livestock and camels are often escaped slaughtering for breeding which led to the spread of new strains of FMD and the introduction of RVFV from the enzootic African countries. This article provide general picture about the present situation of RVFV in Egypt to help in controlling this important disease. PMID:22152149

  7. Rift Valley fever virus MP-12 vaccine encoding Toscana virus NSs retains neuroinvasiveness in mice.

    PubMed

    Indran, Sabarish V; Lihoradova, Olga A; Phoenix, Inaia; Lokugamage, Nandadeva; Kalveram, Birte; Head, Jennifer A; Tigabu, Bersabeh; Smith, Jennifer K; Zhang, Lihong; Juelich, Terry L; Gong, Bin; Freiberg, Alexander N; Ikegami, Tetsuro

    2013-07-01

    Rift Valley fever is a mosquito-borne zoonotic disease endemic to sub-Saharan Africa. Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) causes high rates of abortion and fetal malformation in pregnant ruminants, and haemorrhagic fever, neurological disorders or blindness in humans. The MP-12 strain is a highly efficacious and safe live-attenuated vaccine candidate for both humans and ruminants. However, MP-12 lacks a marker to differentiate infected from vaccinated animals. In this study, we originally aimed to characterize the efficacy of a recombinant RVFV MP-12 strain encoding Toscana virus (TOSV) NSs gene in place of MP-12 NSs (rMP12-TOSNSs). TOSV NSs promotes the degradation of dsRNA-dependent protein kinase (PKR) and inhibits interferon-β gene up-regulation without suppressing host general transcription. Unexpectedly, rMP12-TOSNSs increased death in vaccinated outbred mice and inbred BALB/c or C57BL/6 mice. Immunohistochemistry showed diffusely positive viral antigens in the thalamus, hypothalamus and brainstem, including the medulla. No viral antigens were detected in spleen or liver, which is similar to the antigen distribution of moribund mice infected with MP-12. These results suggest that rMP12-TOSNSs retains neuroinvasiveness in mice. Our findings demonstrate that rMP12-TOSNSs causes neuroinvasion without any hepatic disease and will be useful for studying the neuroinvasion mechanism of RVFV and TOSV.

  8. Rift Valley fever virus MP-12 vaccine encoding Toscana virus NSs retains neuroinvasiveness in mice

    PubMed Central

    Indran, Sabarish V.; Lihoradova, Olga A.; Phoenix, Inaia; Lokugamage, Nandadeva; Kalveram, Birte; Head, Jennifer A.; Tigabu, Bersabeh; Smith, Jennifer K.; Zhang, Lihong; Juelich, Terry L.; Gong, Bin; Freiberg, Alexander N.

    2013-01-01

    Rift Valley fever is a mosquito-borne zoonotic disease endemic to sub-Saharan Africa. Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) causes high rates of abortion and fetal malformation in pregnant ruminants, and haemorrhagic fever, neurological disorders or blindness in humans. The MP-12 strain is a highly efficacious and safe live-attenuated vaccine candidate for both humans and ruminants. However, MP-12 lacks a marker to differentiate infected from vaccinated animals. In this study, we originally aimed to characterize the efficacy of a recombinant RVFV MP-12 strain encoding Toscana virus (TOSV) NSs gene in place of MP-12 NSs (rMP12-TOSNSs). TOSV NSs promotes the degradation of dsRNA-dependent protein kinase (PKR) and inhibits interferon-β gene up-regulation without suppressing host general transcription. Unexpectedly, rMP12-TOSNSs increased death in vaccinated outbred mice and inbred BALB/c or C57BL/6 mice. Immunohistochemistry showed diffusely positive viral antigens in the thalamus, hypothalamus and brainstem, including the medulla. No viral antigens were detected in spleen or liver, which is similar to the antigen distribution of moribund mice infected with MP-12. These results suggest that rMP12-TOSNSs retains neuroinvasiveness in mice. Our findings demonstrate that rMP12-TOSNSs causes neuroinvasion without any hepatic disease and will be useful for studying the neuroinvasion mechanism of RVFV and TOSV. PMID:23515022

  9. Application of Droplet Digital PCR to Validate Rift Valley Fever Vaccines.

    PubMed

    Ly, Hoai J; Lokugamage, Nandadeva; Ikegami, Tetsuro

    2016-01-01

    Droplet Digital™ polymerase chain reaction (ddPCR™) is a promising technique that quantitates the absolute concentration of nucleic acids in a given sample. This technique utilizes water-in-oil emulsion technology, a system developed by Bio-Rad Laboratories that partitions a single sample into thousands of nanoliter-sized droplets and counts nucleic acid molecules encapsulated in each individual particle as one PCR reaction. This chapter discusses the applications and methodologies of ddPCR for development of Rift Valley fever (RVF) vaccine, using an example that measures RNA copy numbers of a live-attenuated MP-12 vaccine from virus stocks, infected cells, or animal blood. We also discuss how ddPCR detects a reversion mutant of MP-12 from virus stocks accurately. The use of ddPCR improves the quality control of live-attenuated vaccines in the seed lot systems.

  10. A Single Vaccination with an Improved Nonspreading Rift Valley Fever Virus Vaccine Provides Sterile Immunity in Lambs

    PubMed Central

    Oreshkova, Nadia; van Keulen, Lucien; Kant, Jet; Moormann, Rob J. M.; Kortekaas, Jeroen

    2013-01-01

    Rift Valley fever virus (RVFV) is an important pathogen that affects ruminants and humans. Recently we developed a vaccine based on nonspreading RVFV (NSR) and showed that a single vaccination with this vaccine protects lambs from viremia and clinical signs. However, low levels of viral RNA were detected in the blood of vaccinated lambs shortly after challenge infection. These low levels of virus, when present in a pregnant ewe, could potentially infect the highly susceptible fetus. We therefore aimed to further improve the efficacy of the NSR vaccine. Here we report the expression of Gn, the major immunogenic protein of the virus, from the NSR genome. The resulting NSR-Gn vaccine was shown to elicit superior CD8 and CD4-restricted memory responses and improved virus neutralization titers in mice. A dose titration study in lambs revealed that the highest vaccination dose of 106.3 TCID50/ml protected all lambs from clinical signs and viremia. The lambs developed neutralizing antibodies within three weeks after vaccination and no anamnestic responses were observed following challenge. The combined results suggest that sterile immunity was achieved by a single vaccination with the NSR-Gn vaccine. PMID:24167574

  11. Mouse model for the Rift Valley fever virus MP12 strain infection

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV), a Category A pathogen and select agent, is the causative agent of Rift Valley fever. To date, no fully licensed vaccine is available in the U.S. for human or animal use and effective antiviral drugs have not been identified. The RVFV MP12 strain is conditionally licen...

  12. Evaluation of lamb and calf responses to Rift Valley fever MP-12 vaccination.

    PubMed

    Wilson, William C; Bawa, Bhupinder; Drolet, Barbara S; Lehiy, Chris; Faburay, Bonto; Jasperson, Dane C; Reister, Lindsey; Gaudreault, Natasha N; Carlson, Jolene; Ma, Wenjun; Morozov, Igor; McVey, D Scott; Richt, Jürgen A

    2014-08-06

    Rift Valley fever (RVF) is an important viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. The disease is of concern to international agricultural and public health communities. The RVFV MP-12 strain has been the most safety tested attenuated vaccine strain; thus it is being considered as a potential vaccine for the US national veterinary stockpile. This study was designed to establish safety protocols for large animal research with virulent RVF viruses, establish a target host immune response baseline using RVF MP-12 strain, and independently evaluate this strain as a potential US emergency response vaccine. Ten, approximately four month-old lambs and calves were vaccinated with RVF MP-12 strain; two additional animals per species provided negative control specimens. The animals were monitored for clinical and immune response, fever, and viremia. Two animals per species were sacrificed on 2, 3, 4, 10 and 28 days post infection and full necropsies were performed for histopathological examination. No clinical or febrile responses were observed in this study. The onset and titer of the immune response is discussed. There was no significant histopathology in the lambs; however, 6 out of 10 vaccinated calves had multifocal, random areas of hepatocellular degeneration and necrosis. RVF MP12 antigen was detected in these areas of necrosis by immunohistochemistry in one calf. This study provides independent and baseline information on the RVF MP-12 attenuated vaccination in vaccine relevant age target species and indicates the importance of performing safety testing on vaccine relevant aged target animals. Published by Elsevier B.V.

  13. Valley Fever (Coccidioidomycosis) Statistics

    MedlinePlus

    ... Valley fever may be under-recognized. 2 , 3 Public health surveillance for Valley fever Valley fever is reportable ... MMWR) . Check with your local, state, or territorial public health department for more information about disease reporting requirements ...

  14. Risk analysis of inter-species reassortment through a Rift Valley fever phlebovirus MP-12 vaccine strain.

    PubMed

    Ly, Hoai J; Lokugamage, Nandadeva; Nishiyama, Shoko; Ikegami, Tetsuro

    2017-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Arabian Peninsula. The causative agent, Rift Valley fever phlebovirus (RVFV), belongs to the genus Phlebovirus in the family Phenuiviridae and causes high rates of abortions in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral maintenance by mosquito vectors has led to sporadic RVF outbreaks in ruminants and humans in endemic countries, and effective vaccination of animals and humans may minimize the impact of this disease. A live-attenuated MP-12 vaccine strain is one of the best characterized RVFV strains, and was conditionally approved as a veterinary vaccine in the U.S. Live-attenuated RVF vaccines including MP-12 strain may form reassortant strains with other bunyavirus species. This study thus aimed to characterize the occurrence of genetic reassortment between the MP-12 strain and bunyavirus species closely related to RVFV. The Arumowot virus (AMTV) and Gouleako goukovirus (GOLV), are transmitted by mosquitoes in Africa. The results of this study showed that GOLV does not form detectable reassortant strains with the MP-12 strain in co-infected C6/36 cells. The AMTV also did not form any reassortant strains with MP-12 strain in co-infected C6/36 cells, due to the incompatibility among N, L, and Gn/Gc proteins. A lack of reassortant formation could be due to a functional incompatibility of N and L proteins derived from heterologous species, and due to a lack of packaging via heterologous Gn/Gc proteins. The MP-12 strain did, however, randomly exchange L-, M-, and S-segments with a genetic variant strain, rMP12-GM50, in culture cells. The MP-12 strain is thus unlikely to form any reassortant strains with AMTV or GOLV in nature.

  15. Development of a sheep challenge model for Rift Valley fever

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever is a zoonotic disease responsible for severe outbreaks in ruminant livestock characterized by mass abortion and high mortality rates in younger animals. The lack of a fully licensed vaccine in the US has spurred increased demand for a protective vaccine. Thus, development of a reli...

  16. The L, M, and S Segments of Rift Valley Fever Virus MP-12 Vaccine Independently Contribute to a Temperature-Sensitive Phenotype

    PubMed Central

    Nishiyama, Shoko; Lokugamage, Nandadeva

    2016-01-01

    ABSTRACT Rift Valley fever (RVF) is endemic to Africa, and the mosquito-borne disease is characterized by “abortion storms” in ruminants and by hemorrhagic fever, encephalitis, and blindness in humans. Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) has a tripartite negative-stranded RNA genome (L, M, and S segments). A live-attenuated vaccine for RVF, the MP-12 vaccine, is conditionally licensed for veterinary use in the United States. MP-12 is fully attenuated by the combination of the partially attenuated L, M, and S segments. Temperature sensitivity (ts) limits viral replication at a restrictive temperature and may be involved with viral attenuation. In this study, we aimed to characterize the ts mutations for MP-12. The MP-12 vaccine showed restricted replication at 38°C and replication shutoff (100-fold or greater reduction in virus titer compared to that at 37°C) at 39°C in Vero and MRC-5 cells. Using rZH501 reassortants with either the MP-12 L, M, or S segment, we found that all three segments encode a temperature-sensitive phenotype. However, the ts phenotype of the S segment was weaker than that of the M or L segment. We identified Gn-Y259H, Gc-R1182G, L-V172A, and L-M1244I as major ts mutations for MP-12. The ts mutations in the L segment decreased viral RNA synthesis, while those in the M segment delayed progeny production from infected cells. We also found that a lack of NSs and/or 78kD/NSm protein expression minimally affected the ts phenotype. Our study revealed that MP-12 is a unique vaccine carrying ts mutations in the L, M, and S segments. IMPORTANCE Rift Valley fever (RVF) is a mosquito-borne viral disease endemic to Africa, characterized by high rates of abortion in ruminants and severe diseases in humans. Vaccination is important to prevent the spread of disease, and a live-attenuated MP-12 vaccine is currently the only vaccine with a conditional license in the United States. This study determined the temperature

  17. The L, M, and S Segments of Rift Valley Fever Virus MP-12 Vaccine Independently Contribute to a Temperature-Sensitive Phenotype.

    PubMed

    Nishiyama, Shoko; Lokugamage, Nandadeva; Ikegami, Tetsuro

    2016-01-27

    Rift Valley fever (RVF) is endemic to Africa, and the mosquito-borne disease is characterized by "abortion storms" in ruminants and by hemorrhagic fever, encephalitis, and blindness in humans. Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) has a tripartite negative-stranded RNA genome (L, M, and S segments). A live-attenuated vaccine for RVF, the MP-12 vaccine, is conditionally licensed for veterinary use in the United States. MP-12 is fully attenuated by the combination of the partially attenuated L, M, and S segments. Temperature sensitivity (ts) limits viral replication at a restrictive temperature and may be involved with viral attenuation. In this study, we aimed to characterize the ts mutations for MP-12. The MP-12 vaccine showed restricted replication at 38°C and replication shutoff (100-fold or greater reduction in virus titer compared to that at 37°C) at 39°C in Vero and MRC-5 cells. Using rZH501 reassortants with either the MP-12 L, M, or S segment, we found that all three segments encode a temperature-sensitive phenotype. However, the ts phenotype of the S segment was weaker than that of the M or L segment. We identified Gn-Y259H, Gc-R1182G, L-V172A, and L-M1244I as major ts mutations for MP-12. The ts mutations in the L segment decreased viral RNA synthesis, while those in the M segment delayed progeny production from infected cells. We also found that a lack of NSs and/or 78kD/NSm protein expression minimally affected the ts phenotype. Our study revealed that MP-12 is a unique vaccine carrying ts mutations in the L, M, and S segments. Rift Valley fever (RVF) is a mosquito-borne viral disease endemic to Africa, characterized by high rates of abortion in ruminants and severe diseases in humans. Vaccination is important to prevent the spread of disease, and a live-attenuated MP-12 vaccine is currently the only vaccine with a conditional license in the United States. This study determined the temperature sensitivity (ts) of MP-12

  18. Recombinant Rift Valley fever vaccines induce protective levels of antibody in baboons and resistance to lethal challenge in mice

    PubMed Central

    Papin, James F.; Verardi, Paulo H.; Jones, Leslie A.; Monge-Navarro, Francisco; Brault, Aaron C.; Holbrook, Michael R.; Worthy, Melissa N.; Freiberg, Alexander N.; Yilma, Tilahun D.

    2011-01-01

    Rift Valley fever (RVF) is a zoonotic disease endemic in Africa and the Arabian Peninsula caused by the highly infectious Rift Valley fever virus (RVFV) that can be lethal to humans and animals and results in major losses in the livestock industry. RVF is exotic to the United States; however, mosquito species native to this region can serve as biological vectors for the virus. Thus, accidental or malicious introduction of this virus could result in RVFV becoming endemic in North America. Such an event would likely lead to significant morbidity and mortality in humans, and devastating economic effects on the livestock industry. Currently, there are no licensed vaccines for RVF that are both safe and efficacious. To address this issue, we developed two recombinant RVFV vaccines using vaccinia virus (VACV) as a vector for use in livestock. The first vaccine, vCOGnGc, was attenuated by the deletion of a VACV gene encoding an IFN-γ binding protein, insertional inactivation of the thymidine kinase gene, and expression of RVFV glycoproteins, Gn and Gc. The second vaccine, vCOGnGcγ, is identical to the first and also expresses the human IFN-γ gene to enhance safety. Both vaccines are extremely safe; neither resulted in weight loss nor death in severe combined immunodeficient mice, and pock lesions were smaller in baboons compared with the controls. Furthermore, both vaccines induced protective levels of antibody titers in vaccinated mice and baboons. Mice were protected from lethal RVFV challenge. Thus, we have developed two safe and efficacious recombinant vaccines for RVF. PMID:21873194

  19. Efficacy assessment of an MVA vectored Rift Valley Fever vaccine in lambs.

    PubMed

    Busquets, Núria; Lorenzo, Gema; López-Gil, Elena; Rivas, Raquel; Solanes, David; Galindo-Cardiel, Iván; Abad, F Xavier; Rodríguez, Fernando; Bensaid, Albert; Warimwe, George; Gilbert, Sarah C; Domingo, Mariano; Brun, Alejandro

    2014-08-01

    The present study has evaluated the protection conferred by a single subcutaneous dose of a modified vaccinia virus Ankara (MVA) vectored vaccine encoding the Rift Valley Fever virus (RVFV) glycoproteins Gn and Gc in lambs. Three groups of six to seven lambs were immunized as follows: one group received the vaccine (termed rMVA-GnGc), a second group received an MVA vector (vector control) and a third group received saline solution (non-vaccinated control). Fourteen days later, all animals were subcutaneously challenged with 10(5) TCID50 of the virulent RVFV isolate 56/74 and vaccine efficacy assessed using standard endpoints. Two lambs (one from the vaccine group and one from the vector control group) succumbed to RVFV challenge, showing characteristic liver lesions. Lambs from both the vector control and non-vaccinated groups were febrile from days 2 to 5 post challenge (pc) while those in the rMVA-GnGc group showed a single peak of pyrexia at day 3 pc. RVFV RNA was detected in both nasal and oral swabs from days 3 to 7 pc in some lambs from the vector control and non-vaccinated groups, but no viral shedding could be detected in the surviving lambs vaccinated with rMVA-GnGc. Together, the data suggest that a single dose of the rMVA-GnGc vaccine may be sufficient to reduce RVFV shedding and duration of viremia but does not provide sterile immunity nor protection from disease. Further optimization of this vaccine approach in lambs is warranted. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Vaccines for Viral Hemorrhagic Fevers – Progress and Shortcomings

    PubMed Central

    Falzarano, Darryl; Feldmann, Heinz

    2013-01-01

    With a few exceptions, vaccines for viruses that cause hemorrhagic fever remain unavailable or lack well-documented efficacy. In the past decade this has not been due to a lack of the ability to develop vaccine platforms against highly pathogenic viruses, but rather the lack of will/interest to invest in platforms that have the potential to become successful vaccines. The two exceptions to this are vaccines against Dengue virus and Rift Valley Fever virus, which recently have seen significant progress in putting forward new and improved vaccines, respectively. Experimental vaccines for filoviruses and Lassa virus do exist but are hindered by a lack of financial interest and only partially or ill-defined correlates/mechanisms of protection that could be assessed in clinical trials. PMID:23773330

  1. Genetic stability of Rift Valley fever virus MP-12 vaccine during serial passages in culture cells.

    PubMed

    Lokugamage, Nandadeva; Ikegami, Tetsuro

    2017-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa which affects both ruminants and humans. RVF causes serious damage to the livestock industry and is also a threat to public health. The Rift Valley fever virus has a segmented negative-stranded RNA genome consisting of Large (L)-, Medium (M)-, and Small (S)-segments. The live-attenuated MP-12 vaccine is immunogenic in livestock and humans, and is conditionally licensed for veterinary use in the U.S. The MP-12 strain encodes 23 mutations (nine amino acid substitutions) and is attenuated through a combination of mutations in the L-, M-, and S-segments. Among them, the M-U795C, M-A3564G, and L-G3104A mutations contribute to viral attenuation through the L- and M-segments. The M-U795C, M-A3564G, L-U533C, and L-G3750A mutations are also independently responsible for temperature-sensitive (ts) phenotype. We hypothesized that a serial passage of the MP-12 vaccine in culture cells causes reversions of the MP-12 genome. The MP-12 vaccine and recombinant rMP12-ΔNSs16/198 were serially passaged 25 times. Droplet digital PCR analysis revealed that the reversion occurred at L-G3750A during passages of MP-12 in Vero or MRC-5 cells. The reversion also occurred at M-A3564G and L-U533C of rMP12-ΔNSs16/198 in Vero cells. Reversion mutations were not found in MP-12 or the variant, rMP12-TOSNSs, in the brains of mice with encephalitis. This study characterized genetic stability of the MP-12 vaccine and the potential risk of reversion mutation at the L-G3750A ts mutation after excessive viral passages in culture cells.

  2. Four-segmented Rift Valley fever virus induces sterile immunity in sheep after a single vaccination.

    PubMed

    Wichgers Schreur, Paul J; Kant, Jet; van Keulen, Lucien; Moormann, Rob J M; Kortekaas, Jeroen

    2015-03-17

    Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family, causes recurrent outbreaks with severe disease in ruminants and occasionally humans. The virus comprises a segmented genome consisting of a small (S), medium (M) and large (L) RNA segment of negative polarity. The M-segment encodes a glycoprotein precursor (GPC) protein that is co-translationally cleaved into Gn and Gc, which are required for virus entry and fusion. Recently we developed a four-segmented RVFV (RVFV-4s) by splitting the M-genome segment, and used this virus to study RVFV genome packaging. Here we evaluated the potential of a RVFV-4s variant lacking the NSs gene (4s-ΔNSs) to induce protective immunity in sheep. Groups of seven lambs were either mock-vaccinated or vaccinated with 10(5) or 10(6) tissue culture infective dose (TCID50) of 4s-ΔNSs via the intramuscular (IM) or subcutaneous (SC) route. Three weeks post-vaccination all lambs were challenged with wild-type RVFV. Mock-vaccinated lambs developed high fever and high viremia within 2 days post-challenge and three animals eventually succumbed to the infection. In contrast, none of the 4s-ΔNSs vaccinated animals developed clinical signs during the course of the experiment. Vaccination with 10(5) TCID50 via the IM route provided sterile immunity, whereas a 10(6) dose was required to induce sterile immunity via SC vaccination. Protection was strongly correlated with the presence of RVFV neutralizing antibodies. This study shows that 4s-ΔNSs is able to induce sterile immunity in the natural target species after a single vaccination, preferably administrated via the IM route. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Development of a sheep challenge model for Rift Valley fever

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a zoonotic disease that causes severe epizootic disease in ruminants, characterized by mass abortion and high mortality rates in younger animals. The development of a reliable challenge model is an important prerequisite for evaluation of existing and novel vaccines. A stu...

  4. Immunogenicity and efficacy of a chimpanzee adenovirus-vectored Rift Valley fever vaccine in mice.

    PubMed

    Warimwe, George M; Lorenzo, Gema; Lopez-Gil, Elena; Reyes-Sandoval, Arturo; Cottingham, Matthew G; Spencer, Alexandra J; Collins, Katharine A; Dicks, Matthew D J; Milicic, Anita; Lall, Amar; Furze, Julie; Turner, Alison V; Hill, Adrian V S; Brun, Alejandro; Gilbert, Sarah C

    2013-12-05

    Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibodies against them in the human population, and their excellent safety and immunogenicity profile in human clinical trials of vaccines against a wide range of pathogens. Here, in BALB/c mice, we evaluated the immunogenicity and efficacy of a replication-deficient chimpanzee adenovirus vector, ChAdOx1, encoding the RVF virus envelope glycoproteins, Gn and Gc, which are targets of virus neutralizing antibodies. The ChAdOx1-GnGc vaccine was assessed in comparison to a replication-deficient human adenovirus type 5 vector encoding Gn and Gc (HAdV5-GnGc), a strategy previously shown to confer protective immunity against RVF in mice. A single immunization with either of the vaccines conferred protection against RVF virus challenge eight weeks post-immunization. Both vaccines elicited RVF virus neutralizing antibody and a robust CD8+ T cell response. Together the results support further development of RVF vaccines based on replication-deficient adenovirus vectors, with ChAdOx1-GnGc being a potential candidate for use in future human clinical trials.

  5. Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  6. Development of a Rift Valley fever virus viremia challenge model in sheep and goats

    USDA-ARS?s Scientific Manuscript database

    Rift valley fever virus (RVFV), a member of the family Bunyaviridae, causes severe to fatal disease in newborn ruminants, as well as abortions in pregnant animals; both preventable by vaccination. Availability of a challenge model is a pre-requisite for vaccine efficacy trials. Several modes of ino...

  7. Towards a better understanding of Rift Valley fever epidemiology in the south-west of the Indian Ocean

    PubMed Central

    2013-01-01

    Rift Valley fever virus (Phlebovirus, Bunyaviridae) is an arbovirus causing intermittent epizootics and sporadic epidemics primarily in East Africa. Infection causes severe and often fatal illness in young sheep, goats and cattle. Domestic animals and humans can be contaminated by close contact with infectious tissues or through mosquito infectious bites. Rift Valley fever virus was historically restricted to sub-Saharan countries. The probability of Rift Valley fever emerging in virgin areas is likely to be increasing. Its geographical range has extended over the past years. As a recent example, autochthonous cases of Rift Valley fever were recorded in 2007–2008 in Mayotte in the Indian Ocean. It has been proposed that a single infected animal that enters a naive country is sufficient to initiate a major outbreak before Rift Valley fever virus would ever be detected. Unless vaccines are available and widely used to limit its expansion, Rift Valley fever will continue to be a critical issue for human and animal health in the region of the Indian Ocean. PMID:24016237

  8. Towards a better understanding of Rift Valley fever epidemiology in the south-west of the Indian Ocean.

    PubMed

    Balenghien, Thomas; Cardinale, Eric; Chevalier, Véronique; Elissa, Nohal; Failloux, Anna-Bella; Jean Jose Nipomichene, Thiery Nirina; Nicolas, Gaelle; Rakotoharinome, Vincent Michel; Roger, Matthieu; Zumbo, Betty

    2013-09-09

    Rift Valley fever virus (Phlebovirus, Bunyaviridae) is an arbovirus causing intermittent epizootics and sporadic epidemics primarily in East Africa. Infection causes severe and often fatal illness in young sheep, goats and cattle. Domestic animals and humans can be contaminated by close contact with infectious tissues or through mosquito infectious bites. Rift Valley fever virus was historically restricted to sub-Saharan countries. The probability of Rift Valley fever emerging in virgin areas is likely to be increasing. Its geographical range has extended over the past years. As a recent example, autochthonous cases of Rift Valley fever were recorded in 2007-2008 in Mayotte in the Indian Ocean. It has been proposed that a single infected animal that enters a naive country is sufficient to initiate a major outbreak before Rift Valley fever virus would ever be detected. Unless vaccines are available and widely used to limit its expansion, Rift Valley fever will continue to be a critical issue for human and animal health in the region of the Indian Ocean.

  9. Transmission Dynamics of Rift Valley Fever Virus: Effects of Live and Killed Vaccines on Epizootic Outbreaks and Enzootic Maintenance

    PubMed Central

    Chamchod, Farida; Cosner, Chris; Cantrell, R. Stephen; Beier, John C.; Ruan, Shigui

    2016-01-01

    Rift Valley fever virus (RVFV) is an arthropod-borne viral pathogen that causes significant morbidity and mortality in small ruminants throughout Africa and the Middle East. Due to the sporadic and explosive nature of RVF outbreaks, vaccination has proved challenging to reduce RVFV infection in the ruminant population. Currently, there are two available types of vaccines, live and killed, in endemic areas. In this study, two mathematical models have been developed to explore the impact of live and killed vaccines on the transmission dynamics of RVFV. We demonstrate in general that vaccination helps reduce the severity of RVF outbreaks and that less delay in implementation and more vaccination attempts and effective vaccines can reduce the outbreak magnitude and the endemic number of RVFV. However, an introduction of a number of ruminants vaccinated by live vaccines in RVFV-free areas may cause an outbreak and RVFV may become endemic if there is sustained use of live vaccines. Other factors that are the important determinants of RVF outbreaks include: unsustained vaccination programs, recruitment of susceptible ruminants, and the seasonal abundance of mosquitoes. PMID:26869999

  10. Rift Valley Fever Virus MP-12 Vaccine Is Fully Attenuated by a Combination of Partial Attenuations in the S, M, and L Segments

    PubMed Central

    Hill, Terence E.; Smith, Jennifer K.; Zhang, Lihong; Juelich, Terry L.; Gong, Bin; Slack, Olga A. L.; Ly, Hoai J.; Lokugamage, Nandadeva; Freiberg, Alexander N.

    2015-01-01

    ABSTRACT Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and characterized by a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), which has a tripartite negative-stranded RNA genome (consisting of the S, M, and L segments). Further spread of RVF into countries where the disease is not endemic may affect the economy and public health, and vaccination is an effective approach to prevent the spread of RVFV. A live-attenuated MP-12 vaccine is one of the best-characterized RVF vaccines for safety and efficacy and is currently conditionally licensed for use for veterinary purposes in the United States. Meanwhile, as of 2015, no other RVF vaccine has been conditionally or fully licensed for use in the United States. The MP-12 strain is derived from wild-type pathogenic strain ZH548, and its genome encodes 23 mutations in the three genome segments. However, the mechanism of MP-12 attenuation remains unknown. We characterized the attenuation of wild-type pathogenic strain ZH501 carrying a mutation(s) of the MP-12 S, M, or L segment in a mouse model. Our results indicated that MP-12 is attenuated by the mutations in the S, M, and L segments, while the mutations in the M and L segments confer stronger attenuation than those in the S segment. We identified a combination of 3 amino acid changes, Y259H (Gn), R1182G (Gc), and R1029K (L), that was sufficient to attenuate ZH501. However, strain MP-12 with reversion mutations at those 3 sites was still highly attenuated. Our results indicate that MP-12 attenuation is supported by a combination of multiple partial attenuation mutations and a single reversion mutation is less likely to cause a reversion to virulence of the MP-12 vaccine. IMPORTANCE Rift Valley fever (RVF) is a mosquito-transmitted viral disease that is endemic to Africa and that has the potential to

  11. Rift Valley Fever Virus MP-12 Vaccine Is Fully Attenuated by a Combination of Partial Attenuations in the S, M, and L Segments.

    PubMed

    Ikegami, Tetsuro; Hill, Terence E; Smith, Jennifer K; Zhang, Lihong; Juelich, Terry L; Gong, Bin; Slack, Olga A L; Ly, Hoai J; Lokugamage, Nandadeva; Freiberg, Alexander N

    2015-07-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and characterized by a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), which has a tripartite negative-stranded RNA genome (consisting of the S, M, and L segments). Further spread of RVF into countries where the disease is not endemic may affect the economy and public health, and vaccination is an effective approach to prevent the spread of RVFV. A live-attenuated MP-12 vaccine is one of the best-characterized RVF vaccines for safety and efficacy and is currently conditionally licensed for use for veterinary purposes in the United States. Meanwhile, as of 2015, no other RVF vaccine has been conditionally or fully licensed for use in the United States. The MP-12 strain is derived from wild-type pathogenic strain ZH548, and its genome encodes 23 mutations in the three genome segments. However, the mechanism of MP-12 attenuation remains unknown. We characterized the attenuation of wild-type pathogenic strain ZH501 carrying a mutation(s) of the MP-12 S, M, or L segment in a mouse model. Our results indicated that MP-12 is attenuated by the mutations in the S, M, and L segments, while the mutations in the M and L segments confer stronger attenuation than those in the S segment. We identified a combination of 3 amino acid changes, Y259H (Gn), R1182G (Gc), and R1029K (L), that was sufficient to attenuate ZH501. However, strain MP-12 with reversion mutations at those 3 sites was still highly attenuated. Our results indicate that MP-12 attenuation is supported by a combination of multiple partial attenuation mutations and a single reversion mutation is less likely to cause a reversion to virulence of the MP-12 vaccine. Rift Valley fever (RVF) is a mosquito-transmitted viral disease that is endemic to Africa and that has the potential to spread into other

  12. Safety and Efficacy Profile of Commercial Veterinary Vaccines against Rift Valley Fever: A Review Study

    PubMed Central

    2016-01-01

    Rift Valley Fever (RVF) is an infectious illness with serious clinical manifestations and health consequences in humans as well as a wide range of domestic ruminants. This review provides significant information about the prevention options of RVF along with the safety-efficacy profile of commercial vaccines and some of RVF vaccination strategies. Information presented in this paper was obtained through a systematic investigation of published data about RVF vaccines. Like other viral diseases, the prevention of RVF relies heavily on immunization of susceptible herds with safe and cost-effective vaccine that is able to confer long-term protective immunity. Several strains of RVF vaccines have been developed and are available in commercial production including Formalin-Inactivated vaccine, live attenuated Smithburn vaccine, and the most recent Clone13. Although Formalin-Inactivated vaccine and live attenuated Smithburn vaccine are immunogenic and widely used in prevention programs, they proved to be accompanied by significant concerns. Despite Clone13 vaccine being suggested as safe in pregnant ewes and as highly immunogenic along with its potential for differentiating infected from vaccinated animals (DIVA), a recent study raised concerns about the safety of the vaccine during the first trimester of gestation. Accordingly, RVF vaccines that are currently available in the market to a significant extent do not fulfill the requirements of safety, potency, and DIVA. These adverse effects stressed the need for developing new vaccines with an excellent safety profile to bridge the gap in safety and immunity. Bringing RVF vaccine candidates to local markets besides the absence of validated serological test for DIVA remain the major challenges of RVF control. PMID:27689098

  13. Rift Valley Fever: Recent Insights into Pathogenesis and Prevention▿

    PubMed Central

    Boshra, Hani; Lorenzo, Gema; Busquets, Núria; Brun, Alejandro

    2011-01-01

    Rift Valley fever virus (RVFV) is a zoonotic pathogen that primarily affects ruminants but can also be lethal in humans. A negative-stranded RNA virus of the family Bunyaviridae, this pathogen is transmitted mainly via mosquito vectors. RVFV has shown the ability to inflict significant damage to livestock and is also a threat to public health. While outbreaks have traditionally occurred in sub-Saharan Africa, recent outbreaks in the Middle East have raised awareness of the potential of this virus to spread to Europe, Asia, and the Americas. Although the virus was initially characterized almost 80 years ago, the only vaccine approved for widespread veterinary use is an attenuated strain that has been associated with significant pathogenic side effects. However, increased understanding of the molecular biology of the virus over the last few years has led to recent advances in vaccine design and has enabled the development of more-potent prophylactic measures to combat infection. In this review, we discuss several aspects of RVFV, with particular emphasis on the molecular components of the virus and their respective roles in pathogenesis and an overview of current vaccine candidates. Progress in understanding the epidemiology of Rift Valley fever has also enabled prediction of potential outbreaks well in advance, thus providing another tool to combat the physical and economic impact of this disease. PMID:21450816

  14. Safety and immunogenecity of a live attenuated Rift Valley fever vaccine (CL13T) in camels.

    PubMed

    Daouam, S; Ghzal, F; Naouli, Y; Tadlaoui, K O; Ennaji, M M; Oura, C; El Harrak, M

    2016-07-26

    Rift Valley fever is an emerging zoonotic viral disease, enzootic and endemic in Africa and the Arabian Peninsula, which poses a significant threat to both human and animal health. The disease is most severe in ruminants causing abortions in pregnant animals, especially sheep animals and high mortality in young populations. High mortality rates and severe clinical manifestation have also been reported among camel populations in Africa, to attend however none of the currently available live vaccines against RVF have been tested for safety and efficacy in this species. In this study, the safety and efficacy (through a neutralizing antibody response) of the thermostable live attenuated RVF CL13T vaccine were evaluated in camels in two different preliminary experiments involving 16 camels, (that 12 camels and 4 pregnant camels). The study revealed that the CL13T vaccine was safe to use in camels and no abortions or teratogenic effects were observed. The single dose of the vaccine stimulated a strong and long-lasting neutralizing antibody response for up to 12 months. The presence of neutralization antibodies is likely to correlate with protection; however protection would need to be confirmed by challenge experiments using the virulent RVF virus.

  15. Evaluation of efficacy, potential for vector transmission and duration of immunity testing of MP-12, an attenuated Rift Valley fever virus vaccine candidate, in sheep

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) causes serious disease in ruminants and humans in Africa. There are currently no fully licensed vaccines for this arthropod-borne virus in the US. Studies in sheep and cattle have found an attenuated strain of RVFV, MP-12, to be both safe and efficacious, and a conditi...

  16. Post-exposure vaccination with MP-12 lacking NSs protects mice against lethal Rift Valley fever virus challenge.

    PubMed

    Gowen, Brian B; Bailey, Kevin W; Scharton, Dionna; Vest, Zachery; Westover, Jonna B; Skirpstunas, Ramona; Ikegami, Tetsuro

    2013-05-01

    Rift Valley fever virus (RVFV) causes severe disease in humans and livestock. There are currently no approved antivirals or vaccines for the treatment or prevention of RVF disease in humans. A major virulence factor of RVFV is the NSs protein, which inhibits host transcription including the interferon (IFN)-β gene and promotes the degradation of dsRNA-dependent protein kinase, PKR. We analyzed the efficacy of the live-attenuated MP-12 vaccine strain and MP-12 variants that lack the NSs protein as post-exposure vaccinations. Although parental MP-12 failed to elicit a protective effect in mice challenged with wild-type (wt) RVFV by the intranasal route, significant protection was demonstrated by vaccination with MP-12 strains lacking NSs when they were administered at 20-30 min post-exposure. Viremia and virus replication in liver, spleen and brain were also inhibited by post-exposure vaccination with MP-12 lacking NSs. The protective effect was mostly lost when vaccination was delayed 6 or 24 h after intranasal RVFV challenge. When mice were challenged subcutaneously, efficacy of MP-12 lacking NSs was diminished, most likely due to more rapid dissemination of wt RVFV. Our findings suggest that post-exposure vaccination with MP-12 lacking NSs may be developed as a novel post-exposure treatment to prevent RVF. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Single-particle cryo-electron microscopy of Rift Valley fever virus

    PubMed Central

    Sherman, Michael B.; Freiberg, Alexander N.; Holbrook, Michael R.; Watowich, Stanley J.

    2009-01-01

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human veterinary pathogen causing acute hepatitis in ruminants and has the potential to Single-particle cryo-EM reconstruction of RVFV MP-12 hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on the virus surface are highly symmetric and arranged on a T=12 icosahedral lattice. Our RVFV MP-12 structure allowed clear identification of inter-capsomer contacts and definition of possible glycoprotein arrangements within capsomers. This structure provides a detailed model for phleboviruses, opens new avenues for high-resolution structural studies of the bunyavirus family, and aids the design of antiviral diagnostics and effective subunit-vaccines. PMID:19304307

  18. Single-particle cryo-electron microscopy of Rift Valley fever virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Michael B.; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555; Freiberg, Alexander N.

    2009-04-25

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human and veterinary pathogen causing acute hepatitis in ruminants and has the potential to cause hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on the virus surface are highly symmetric and arranged on a T = 12 icosahedral lattice. Our RVFV MP-12 structure allowed clear identification of inter-capsomer contacts and definition of possible glycoprotein arrangements within capsomers. This structure providesmore » a detailed model for phleboviruses, opens new avenues for high-resolution structural studies of the bunyavirus family, and aids the design of antiviral diagnostics and effective subunit vaccines.« less

  19. [Present status of an arbovirus infection: yellow fever, its natural history of hemorrhagic fever, Rift Valley fever].

    PubMed

    Digoutte, J P

    1999-12-01

    In the early 20th century, when it was discovered that the yellow fever virus was transmitted in its urban cycle by Aedes aegypti, measures of control were introduced leading to its disappearance. Progressive neglect of the disease, however, led to a new outbreak in 1927 during which the etiological agent was isolated; some years later a vaccine was discovered and yellow fever disappeared again. In the 1960s, rare cases of encephalitis were observed in young children after vaccination and the administration of the vaccine was forbidden for children under 10 years. Five years later, a new outbreak of yellow fever in Diourbel, Senegal, was linked to the presence of Aedes aegypti. In the late 1970s, the idea of a selvatic cycle for yellow fever arose. Thanks to new investigative techniques in Senegal and Côte d'Ivoire, the yellow fever virus was isolated from the reservoir of virus and vectors. The isolated virus was identified in monkeys and several vectors: Aedes furcifer, Aedes taylori, Aedes luteocephalus. Most importantly, the virus was isolated in male mosquitoes. Until recently, the only known cycle had been that of Haddow in East Africa. The virus circulate in the canopea between monkeys and Aedes africanus. These monkeys infect Aedes bromeliae when they come to eat in banana plantations. This cycle does not occur in West Africa. Vertical transmission is the main method of maintenance of the virus through the dry season. "Reservoirs of virus" are often mentioned in medical literature, monkeys having a short viremia whereas mosquitoes remain infected throughout their life cycle. In such a selvatic cycle, circulation can reach very high levels and no child would be able to escape an infecting bite and yet no clinical cases of yellow fever have been reported. The virulence--as it affects man--of the yellow fever virus in its wild cycle is very low. In areas where the virus can circulate in epidemic form, two types of circulation can be distinguished

  20. A glycoprotein subunit vaccine elicits a strong Rift Valley fever virus neutralizing antibody response in sheep.

    PubMed

    Faburay, Bonto; Lebedev, Maxim; McVey, D Scott; Wilson, William; Morozov, Igor; Young, Alan; Richt, Juergen A

    2014-10-01

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in nonendemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, amino-terminus glycoprotein (Gn), and carboxyl-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as a GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen with the adjuvant montanide ISA25; at day 21, postvaccination, each animal received a second dose of the same vaccine. The vaccine induced a strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). A plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1280. Furthermore, all animals tested positive for neutralizing antibodies at day 328 postvaccination. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible and represents a promising vaccine platform for RVFV infection in susceptible species.

  1. A Glycoprotein Subunit Vaccine Elicits a Strong Rift Valley Fever Virus Neutralizing Antibody Response in Sheep

    PubMed Central

    Lebedev, Maxim; McVey, D. Scott; Wilson, William; Morozov, Igor; Young, Alan

    2014-01-01

    Abstract Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in nonendemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, amino-terminus glycoprotein (Gn), and carboxyl-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as a GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen with the adjuvant montanide ISA25; at day 21, postvaccination, each animal received a second dose of the same vaccine. The vaccine induced a strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). A plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1280. Furthermore, all animals tested positive for neutralizing antibodies at day 328 postvaccination. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible and represents a promising vaccine platform for RVFV infection in susceptible species. PMID:25325319

  2. Experimental infection of calves by two genetically-distinct strains of rift valley fever virus

    USDA-ARS?s Scientific Manuscript database

    Recent outbreaks of Rift Valley fever in ruminant livestock, characterized by mass abortion and high mortality rates in neonates, have raised international interest in improving vaccine control strategies. Previously we developed a reliable challenge model for sheep that improves the evaluation of ...

  3. Characterization of Rift Valley Fever Virus MP-12 Strain Encoding NSs of Punta Toro Virus or Sandfly Fever Sicilian Virus

    PubMed Central

    Lihoradova, Olga A.; Indran, Sabarish V.; Kalveram, Birte; Lokugamage, Nandadeva; Head, Jennifer A.; Gong, Bin; Tigabu, Bersabeh; Juelich, Terry L.; Freiberg, Alexander N.; Ikegami, Tetsuro

    2013-01-01

    Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) is a mosquito-borne zoonotic pathogen which can cause hemorrhagic fever, neurological disorders or blindness in humans, and a high rate of abortion in ruminants. MP-12 strain, a live-attenuated candidate vaccine, is attenuated in the M- and L-segments, but the S-segment retains the virulent phenotype. MP-12 was manufactured as an Investigational New Drug vaccine by using MRC-5 cells and encodes a functional NSs gene, the major virulence factor of RVFV which 1) induces a shutoff of the host transcription, 2) inhibits interferon (IFN)-β promoter activation, and 3) promotes the degradation of dsRNA-dependent protein kinase (PKR). MP-12 lacks a marker for differentiation of infected from vaccinated animals (DIVA). Although MP-12 lacking NSs works for DIVA, it does not replicate efficiently in type-I IFN-competent MRC-5 cells, while the use of type-I IFN-incompetent cells may negatively affect its genetic stability. To generate modified MP-12 vaccine candidates encoding a DIVA marker, while still replicating efficiently in MRC-5 cells, we generated recombinant MP-12 encoding Punta Toro virus Adames strain NSs (rMP12-PTNSs) or Sandfly fever Sicilian virus NSs (rMP12-SFSNSs) in place of MP-12 NSs. We have demonstrated that those recombinant MP-12 viruses inhibit IFN-β mRNA synthesis, yet do not promote the degradation of PKR. The rMP12-PTNSs, but not rMP12-SFSNSs, replicated more efficiently than recombinant MP-12 lacking NSs in MRC-5 cells. Mice vaccinated with rMP12-PTNSs or rMP12-SFSNSs induced neutralizing antibodies at a level equivalent to those vaccinated with MP-12, and were efficiently protected from wild-type RVFV challenge. The rMP12-PTNSs and rMP12-SFSNSs did not induce antibodies cross-reactive to anti-RVFV NSs antibody and are therefore applicable to DIVA. Thus, rMP12-PTNSs is highly efficacious, replicates efficiently in MRC-5 cells, and encodes a DIVA marker, all of which are

  4. Characterization of Rift Valley fever virus MP-12 strain encoding NSs of Punta Toro virus or sandfly fever Sicilian virus.

    PubMed

    Lihoradova, Olga A; Indran, Sabarish V; Kalveram, Birte; Lokugamage, Nandadeva; Head, Jennifer A; Gong, Bin; Tigabu, Bersabeh; Juelich, Terry L; Freiberg, Alexander N; Ikegami, Tetsuro

    2013-01-01

    Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) is a mosquito-borne zoonotic pathogen which can cause hemorrhagic fever, neurological disorders or blindness in humans, and a high rate of abortion in ruminants. MP-12 strain, a live-attenuated candidate vaccine, is attenuated in the M- and L-segments, but the S-segment retains the virulent phenotype. MP-12 was manufactured as an Investigational New Drug vaccine by using MRC-5 cells and encodes a functional NSs gene, the major virulence factor of RVFV which 1) induces a shutoff of the host transcription, 2) inhibits interferon (IFN)-β promoter activation, and 3) promotes the degradation of dsRNA-dependent protein kinase (PKR). MP-12 lacks a marker for differentiation of infected from vaccinated animals (DIVA). Although MP-12 lacking NSs works for DIVA, it does not replicate efficiently in type-I IFN-competent MRC-5 cells, while the use of type-I IFN-incompetent cells may negatively affect its genetic stability. To generate modified MP-12 vaccine candidates encoding a DIVA marker, while still replicating efficiently in MRC-5 cells, we generated recombinant MP-12 encoding Punta Toro virus Adames strain NSs (rMP12-PTNSs) or Sandfly fever Sicilian virus NSs (rMP12-SFSNSs) in place of MP-12 NSs. We have demonstrated that those recombinant MP-12 viruses inhibit IFN-β mRNA synthesis, yet do not promote the degradation of PKR. The rMP12-PTNSs, but not rMP12-SFSNSs, replicated more efficiently than recombinant MP-12 lacking NSs in MRC-5 cells. Mice vaccinated with rMP12-PTNSs or rMP12-SFSNSs induced neutralizing antibodies at a level equivalent to those vaccinated with MP-12, and were efficiently protected from wild-type RVFV challenge. The rMP12-PTNSs and rMP12-SFSNSs did not induce antibodies cross-reactive to anti-RVFV NSs antibody and are therefore applicable to DIVA. Thus, rMP12-PTNSs is highly efficacious, replicates efficiently in MRC-5 cells, and encodes a DIVA marker, all of which are

  5. Rift Valley fever in Namibia, 2010.

    PubMed

    Monaco, Federica; Pinoni, Chiara; Cosseddu, Gian Mario; Khaiseb, Siegfried; Calistri, Paolo; Molini, Umberto; Bishi, Alec; Conte, Annamaria; Scacchia, Massimo; Lelli, Rossella

    2013-12-01

    During May-July 2010 in Namibia, outbreaks of Rift Valley fever were reported to the National Veterinary Service. Analysis of animal specimens confirmed virus circulation on 7 farms. Molecular characterization showed that all outbreaks were caused by a strain of Rift Valley fever virus closely related to virus strains responsible for outbreaks in South Africa during 2009-2010.

  6. Attenuation and efficacy of live-attenuated Rift Valley fever virus vaccine candidates in non-human primates.

    PubMed

    Smith, Darci R; Johnston, Sara C; Piper, Ashley; Botto, Miriam; Donnelly, Ginger; Shamblin, Joshua; Albariño, César G; Hensley, Lisa E; Schmaljohn, Connie; Nichol, Stuart T; Bird, Brian H

    2018-05-09

    Rift Valley fever virus (RVFV) is an important mosquito-borne veterinary and human pathogen that has caused large outbreaks of severe disease throughout Africa and the Arabian Peninsula. Currently, no licensed vaccine or therapeutics exists to treat this potentially deadly disease. The explosive nature of RVFV outbreaks and the severe consequences of its accidental or intentional introduction into RVFV-free areas provide the impetus for the development of novel vaccine candidates for use in both livestock and humans. Rationally designed vaccine candidates using reverse genetics have been used to develop deletion mutants of two known RVFV virulence factors, the NSs and NSm genes. These recombinant viruses were demonstrated to be protective and immunogenic in rats, mice, and sheep, without producing clinical illness in these animals. Here, we expand upon those findings and evaluate the single deletion mutant (ΔNSs rRVFV) and double deletion mutant (ΔNSs-ΔNSm rRVFV) vaccine candidates in the common marmoset (Callithrix jacchus), a non-human primate (NHP) model resembling severe human RVF disease. We demonstrate that both the ΔNSs and ΔNSs-ΔNSm rRVFV vaccine candidates were found to be safe and immunogenic in the current study. The vaccinated animals received a single dose of vaccine that led to the development of a robust antibody response. No vaccine-induced adverse reactions, signs of clinical illness or infectious virus were detected in the vaccinated marmosets. All vaccinated animals that were subsequently challenged with RVFV were protected against viremia and liver disease. In summary, our results provide the basis for further development of the ΔNSs and ΔNSs-ΔNSm rRVFV as safe and effective human RVFV vaccines for this significant public health threat.

  7. Attenuation of pathogenic Rift Valley fever virus strain through the chimeric S-segment encoding sandfly fever phlebovirus NSs or a dominant-negative PKR

    PubMed Central

    Nishiyama, Shoko; Slack, Olga A. L.; Lokugamage, Nandadeva; Hill, Terence E.; Juelich, Terry L.; Zhang, Lihong; Smith, Jennifer K.; Perez, David; Gong, Bin; Freiberg, Alexander N.; Ikegami, Tetsuro

    2016-01-01

    ABSTRACT Rift Valley fever is a mosquito-borne zoonotic disease affecting ruminants and humans. Rift Valley fever virus (RVFV: family Bunyaviridae, genus Phlebovirus) causes abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or retinitis in humans. The live-attenuated MP-12 vaccine is conditionally licensed for veterinary use in the US. However, this vaccine lacks a marker for the differentiation of vaccinated from infected animals (DIVA). NSs gene is dispensable for RVFV replication, and thus, rMP-12 strains lacking NSs gene is applicable to monitor vaccinated animals. However, the immunogenicity of MP-12 lacking NSs was not as high as parental MP-12. Thus, chimeric MP-12 strains encoding NSs from either Toscana virus (TOSV), sandfly fever Sicilian virus (SFSV) or Punta Toro virus Adames strain (PTA) were characterized previously. Although chimeric MP-12 strains are highly immunogenic, the attenuation through the S-segment remains unknown. Using pathogenic ZH501 strain, we aimed to demonstrate the attenuation of ZH501 strain through chimeric S-segment encoding either the NSs of TOSV, SFSV, PTA, or Punta Toro virus Balliet strain (PTB). In addition, we characterized rZH501 encoding a human dominant-negative PKR (PKRΔE7), which also enhances the immunogenicity of MP-12. Study done on mice revealed that attenuation of rZH501 occurred through the S-segment encoding either PKRΔE7 or SFSV NSs. However, rZH501 encoding either TOSV, PTA, or PTB NSs in the S-segment uniformly caused lethal encephalitis. Our results indicated that the S-segments encoding PKRΔE7 or SFSV NSs are attenuated and thus applicable toward next generation MP-12 vaccine candidates that encode a DIVA marker. PMID:27248570

  8. Attenuation of pathogenic Rift Valley fever virus strain through the chimeric S-segment encoding sandfly fever phlebovirus NSs or a dominant-negative PKR.

    PubMed

    Nishiyama, Shoko; Slack, Olga A L; Lokugamage, Nandadeva; Hill, Terence E; Juelich, Terry L; Zhang, Lihong; Smith, Jennifer K; Perez, David; Gong, Bin; Freiberg, Alexander N; Ikegami, Tetsuro

    2016-11-16

    Rift Valley fever is a mosquito-borne zoonotic disease affecting ruminants and humans. Rift Valley fever virus (RVFV: family Bunyaviridae, genus Phlebovirus) causes abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or retinitis in humans. The live-attenuated MP-12 vaccine is conditionally licensed for veterinary use in the US. However, this vaccine lacks a marker for the differentiation of vaccinated from infected animals (DIVA). NSs gene is dispensable for RVFV replication, and thus, rMP-12 strains lacking NSs gene is applicable to monitor vaccinated animals. However, the immunogenicity of MP-12 lacking NSs was not as high as parental MP-12. Thus, chimeric MP-12 strains encoding NSs from either Toscana virus (TOSV), sandfly fever Sicilian virus (SFSV) or Punta Toro virus Adames strain (PTA) were characterized previously. Although chimeric MP-12 strains are highly immunogenic, the attenuation through the S-segment remains unknown. Using pathogenic ZH501 strain, we aimed to demonstrate the attenuation of ZH501 strain through chimeric S-segment encoding either the NSs of TOSV, SFSV, PTA, or Punta Toro virus Balliet strain (PTB). In addition, we characterized rZH501 encoding a human dominant-negative PKR (PKRΔE7), which also enhances the immunogenicity of MP-12. Study done on mice revealed that attenuation of rZH501 occurred through the S-segment encoding either PKRΔE7 or SFSV NSs. However, rZH501 encoding either TOSV, PTA, or PTB NSs in the S-segment uniformly caused lethal encephalitis. Our results indicated that the S-segments encoding PKRΔE7 or SFSV NSs are attenuated and thus applicable toward next generation MP-12 vaccine candidates that encode a DIVA marker.

  9. Airborne Dust Models in Valley Fever Research

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.; Galgiani, J. N.; Vujadinovic, M.; Pejanovic, G.; Vukovic, A. J.; Prasad, A. K.; Djurdjevic, V.; Nickovic, S.

    2011-12-01

    Dust storms (haboobs) struck Phoenix, Arizona, in 2011 on July 5th and again on July 18th. One potential consequence: an estimated 3,600 new cases of Valley Fever in Maricopa County from the first storm alone. The fungi, Coccidioides immitis, the cause of the respiratory infection, Valley Fever, lives in the dry desert soils of the American southwest and southward through Mexico, Central America and South America. The fungi become part of the dust storm and, a few weeks after inhalation, symptoms of Valley Fever may appear, including pneumonia-like illness, rashes, and severe fatigue. Some fatalities occur. Our airborne dust forecast system predicted the timing and extent of the storm, as it has done with other, often different, dust events. Atmosphere/land surface models can be part of public health services to reduce risk of Valley Fever and exacerbation of other respiratory and cardiovascular illness.

  10. Rift Valley fever outbreak, southern Mauritania, 2012.

    PubMed

    Sow, Abdourahmane; Faye, Ousmane; Ba, Yamar; Ba, Hampathé; Diallo, Diawo; Faye, Oumar; Loucoubar, Cheikh; Boushab, Mohamed; Barry, Yahya; Diallo, Mawlouth; Sall, Amadou Alpha

    2014-02-01

    After a period of heavy rainfall, an outbreak of Rift Valley fever occurred in southern Mauritania during September-November 2012. A total of 41 human cases were confirmed, including 13 deaths, and 12 Rift Valley fever virus strains were isolated. Moudjeria and Temchecket Departments were the most affected areas.

  11. Detection and Response for Rift Valley fever

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever is a viral disease that impacts domestic livestock and humans in Africa and the Middle East, and poses a threat to military operations in these areas. We describe a Rift Valley fever Risk Monitoring website, and its ability to predict risk of disease temporally and spatially. We al...

  12. Interventions against West Nile virus, Rift Valley fever virus, and Crimean-Congo hemorrhagic fever virus: where are we?

    PubMed

    Kortekaas, Jeroen; Ergönül, Onder; Moormann, Rob J M

    2010-10-01

    ARBO-ZOONET is an international network financed by the European Commission's seventh framework program. The major goal of this initiative is capacity building for the control of emerging viral vector-borne zoonotic diseases, with a clear focus on West Nile virus, Rift Valley fever virus, and Crimean-Congo hemorrhagic fever virus. To evaluate the status quo of control measures against these viruses, an ARBO-ZOONET meeting was held in Istanbul, Turkey, from 19 to 20 November 2009. The symposium consisted of three themes: (1) vaccines: new and existing ones; (2) antivirals: existing and new developments; and (3) antivector vaccines. In addition, a satellite workshop was held on epidemiology and diagnosis. The meeting brought together foremost international experts on the subjects from both within and without the ARBO-ZOONET consortium. This report highlights selected results from these presentations and major conclusions that emanated from the discussions held.

  13. 17DD yellow fever vaccine

    PubMed Central

    Martins, Reinaldo M.; Maia, Maria de Lourdes S.; Farias, Roberto Henrique G.; Camacho, Luiz Antonio B.; Freire, Marcos S.; Galler, Ricardo; Yamamura, Anna Maya Yoshida; Almeida, Luiz Fernando C.; Lima, Sheila Maria B.; Nogueira, Rita Maria R.; Sá, Gloria Regina S.; Hokama, Darcy A.; de Carvalho, Ricardo; Freire, Ricardo Aguiar V.; Filho, Edson Pereira; Leal, Maria da Luz Fernandes; Homma, Akira

    2013-01-01

    Objective: To verify if the Bio-Manguinhos 17DD yellow fever vaccine (17DD-YFV) used in lower doses is as immunogenic and safe as the current formulation. Results: Doses from 27,476 IU to 587 IU induced similar seroconversion rates and neutralizing antibodies geometric mean titers (GMTs). Immunity of those who seroconverted to YF was maintained for 10 mo. Reactogenicity was low for all groups. Methods: Young and healthy adult males (n = 900) were recruited and randomized into 6 groups, to receive de-escalating doses of 17DD-YFV, from 27,476 IU to 31 IU. Blood samples were collected before vaccination (for neutralization tests to yellow fever, serology for dengue and clinical chemistry), 3 to 7 d after vaccination (for viremia and clinical chemistry) and 30 d after vaccination (for new yellow fever serology and clinical chemistry). Adverse events diaries were filled out by volunteers during 10 d after vaccination. Volunteers were retested for yellow fever and dengue antibodies 10 mo later. Seropositivity for dengue was found in 87.6% of volunteers before vaccination, but this had no significant influence on conclusions. Conclusion: In young healthy adults Bio-Manguinhos/Fiocruz yellow fever vaccine can be used in much lower doses than usual. International Register ISRCTN 38082350. PMID:23364472

  14. Arabidopsis thaliana plants expressing Rift Valley fever virus antigens: Mice exhibit systemic immune responses as the result of oral administration of the transgenic plants.

    PubMed

    Kalbina, Irina; Lagerqvist, Nina; Moiane, Bélisario; Ahlm, Clas; Andersson, Sören; Strid, Åke; Falk, Kerstin I

    2016-11-01

    The zoonotic Rift Valley fever virus affects livestock and humans in Africa and on the Arabian Peninsula. The economic impact of this pathogen due to livestock losses, as well as its relevance to public health, underscores the importance of developing effective and easily distributed vaccines. Vaccines that can be delivered orally are of particular interest. Here, we report the expression in transformed plants (Arabidopsis thaliana) of Rift Valley fever virus antigens. The antigens used in this study were the N protein and a deletion mutant of the Gn glycoprotein. Transformed lines were analysed for specific mRNA and protein content by RT-PCR and Western blotting, respectively. Furthermore, the plant-expressed antigens were evaluated for their immunogenicity in mice fed the transgenic plants. After oral intake of fresh transgenic plant material, a proportion of the mice elicited specific IgG antibody responses, as compared to the control animals that were fed wild-type plants and of which none sero-converted. Thus, we show that transgenic plants can be readily used to express and produce Rift Valley Fever virus proteins, and that the plants are immunogenic when given orally to mice. These are promising findings and provide a basis for further studies on edible plant vaccines against the Rift Valley fever virus. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Four-segmented Rift Valley fever virus-based vaccines can be applied safely in ewes during pregnancy.

    PubMed

    Wichgers Schreur, Paul J; van Keulen, Lucien; Kant, Jet; Kortekaas, Jeroen

    2017-05-25

    Rift Valley fever virus (RVFV) causes severe and recurrent outbreaks on the African continent and the Arabian Peninsula and continues to expand its habitat. This mosquito-borne virus, belonging to the genus Phlebovirus of the family Bunyaviridae contains a tri-segmented negative-strand RNA genome. Previously, we developed four-segmented RVFV (RVFV-4s) variants by splitting the M-genome segment into two M-type segments each encoding one of the structural glycoproteins; Gn or Gc. Vaccination/challenge experiments with mice and lambs subsequently showed that RVFV-4s induces protective immunity against wild-type virus infection after a single administration. To demonstrate the unprecedented safety of RVFV-4s, we here report that the virus does not cause encephalitis after intranasal inoculation of mice. A study with pregnant ewes subsequently revealed that RVFV-4s does not cause viremia and does not cross the ovine placental barrier, as evidenced by the absence of teratogenic effects and virus in the blood and organs of the fetuses. Altogether, these results show that the RVFV-4s vaccine virus can be applied safely in pregnant ewes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Sociocultural and Economic Dimensions of Rift Valley Fever

    PubMed Central

    Muga, Geoffrey Otieno; Onyango-Ouma, Washington; Sang, Rosemary; Affognon, Hippolyte

    2015-01-01

    Health researchers have advocated for a cross-disciplinary approach to the study and prevention of infectious zoonotic diseases, such as Rift Valley Fever. It is believed that this approach can help bring out the social determinants and effects of the zoonotic diseases for the design of appropriate interventions and public health policy. A comprehensive literature review using a systematic search strategy was undertaken to explore the sociocultural and economic factors that influence the transmission and spread of Rift Valley Fever. Although the findings reveal a paucity of social research on Rift Valley Fever, they suggest that livestock sacrificial rituals, food preparation and consumption practices, gender roles, and inadequate resource base for public institutions are the key factors that influence the transmission. It is concluded that there is need for cross-disciplinary studies to increase the understanding of Rift Valley Fever and facilitate appropriate and timely response and mitigation measures. PMID:25688166

  17. Sociocultural and economic dimensions of Rift Valley fever.

    PubMed

    Muga, Geoffrey Otieno; Onyango-Ouma, Washington; Sang, Rosemary; Affognon, Hippolyte

    2015-04-01

    Health researchers have advocated for a cross-disciplinary approach to the study and prevention of infectious zoonotic diseases, such as Rift Valley Fever. It is believed that this approach can help bring out the social determinants and effects of the zoonotic diseases for the design of appropriate interventions and public health policy. A comprehensive literature review using a systematic search strategy was undertaken to explore the sociocultural and economic factors that influence the transmission and spread of Rift Valley Fever. Although the findings reveal a paucity of social research on Rift Valley Fever, they suggest that livestock sacrificial rituals, food preparation and consumption practices, gender roles, and inadequate resource base for public institutions are the key factors that influence the transmission. It is concluded that there is need for cross-disciplinary studies to increase the understanding of Rift Valley Fever and facilitate appropriate and timely response and mitigation measures. © The American Society of Tropical Medicine and Hygiene.

  18. Rift Valley Fever.

    PubMed

    Hartman, Amy

    2017-06-01

    Rift Valley fever (RVF) is a severe veterinary disease of livestock that also causes moderate to severe illness in people. The life cycle of RVF is complex and involves mosquitoes, livestock, people, and the environment. RVF virus is transmitted from either mosquitoes or farm animals to humans, but is generally not transmitted from person to person. People can develop different diseases after infection, including febrile illness, ocular disease, hemorrhagic fever, or encephalitis. There is a significant risk for emergence of RVF into new locations, which would affect human health and livestock industries. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Vaccines for preventing typhoid fever.

    PubMed

    Anwar, Elspeth; Goldberg, Elad; Fraser, Abigail; Acosta, Camilo J; Paul, Mical; Leibovici, Leonard

    2014-01-02

    Typhoid fever and paratyphoid fever continue to be important causes of illness and death, particularly among children and adolescents in south-central and southeast Asia. Two typhoid vaccines are commercially available, Ty21a (oral) and Vi polysaccharide (parenteral), but neither is used routinely. Other vaccines, such as a new, modified, conjugated Vi vaccine called Vi-rEPA, are in development. To evaluate the efficacy and adverse effects of vaccines used to prevent typhoid fever. In June 2013, we searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL, MEDLINE, EMBASE, LILACS, and mRCT. We also searched relevant conference proceedings up to 2013 and scanned the reference lists of all included trials. Randomized and quasi-randomized controlled trials (RCTs) comparing typhoid fever vaccines with other typhoid fever vaccines or with an inactive agent (placebo or vaccine for a different disease). Two review authors independently applied inclusion criteria and extracted data. We computed vaccine efficacy per year of follow-up and cumulative three-year efficacy, stratifying for vaccine type and dose. The outcome addressed was typhoid fever, defined as isolation of Salmonella typhi in blood. We calculated risk ratios (RRs) and efficacy (1-RR as a percentage) with 95% confidence intervals (CIs). In total, 18 RCTs were included in this review; 12 evaluated efficacy (Ty21a: five trials; Vi polysaccharide: six trials; Vi-rEPA: one trial), and 11 reported on adverse events. Ty21a vaccine (oral vaccine, three doses) A three-dose schedule of Ty21a vaccine prevents around one-third to one-half of typhoid cases in the first two years after vaccination (Year 1: 35%, 95% CI 8% to 54%; Year 2: 58%, 95% CI 40% to 71%; one trial, 20,543 participants; moderate quality evidence; data taken from a single trial conducted in Indonesia in the 1980s). No benefit was detected in the third year after vaccination. Four additional cluster-RCTs have been conducted, but the

  20. Rift Valley Fever Outbreak in Livestock, Mozambique, 2014.

    PubMed

    Fafetine, José M; Coetzee, Peter; Mubemba, Benjamin; Nhambirre, Ofélia; Neves, Luis; Coetzer, J A W; Venter, Estelle H

    2016-12-01

    In early 2014, abortions and death of ruminants were reported on farms in Maputo and Gaza Provinces, Mozambique. Serologic analysis and quantitative and conventional reverse transcription PCR confirmed the presence of Rift Valley fever virus. The viruses belonged to lineage C, which is prevalent among Rift Valley fever viruses in southern Africa.

  1. The Pathogenesis of Rift Valley Fever

    PubMed Central

    Ikegami, Tetsuro; Makino, Shinji

    2011-01-01

    Rift Valley fever (RVF) is an emerging zoonotic disease distributed in sub-Saharan African countries and the Arabian Peninsula. The disease is caused by the Rift Valley fever virus (RVFV) of the family Bunyaviridae and the genus Phlebovirus. The virus is transmitted by mosquitoes, and virus replication in domestic ruminant results in high rates of mortality and abortion. RVFV infection in humans usually causes a self-limiting, acute and febrile illness; however, a small number of cases progress to neurological disorders, partial or complete blindness, hemorrhagic fever, or thrombosis. This review describes the pathology of RVF in human patients and several animal models, and summarizes the role of viral virulence factors and host factors that affect RVFV pathogenesis. PMID:21666766

  2. Evaluation of Fluorescence Microsphere Immunoassay for the Detection of Antibodies to Rift Valley Fever Nucleocapsid Protein and Glycoproteins

    USDA-ARS?s Scientific Manuscript database

    Rift Valley Fever virus (RVFV) is a zoonotic virus that infects ruminants including cattle, sheep, goats, camels and buffalo. Multiplexing diagnostic assays that can simultaneously detect antibodies against multiple RVFV antigens offer a high throughput test for disease surveillance and vaccine eva...

  3. Rift Valley Fever Outbreak in Livestock, Mozambique, 2014

    PubMed Central

    Coetzee, Peter; Mubemba, Benjamin; Nhambirre, Ofélia; Neves, Luis; Coetzer, J.A.W.; Venter, Estelle H.

    2016-01-01

    In early 2014, abortions and death of ruminants were reported on farms in Maputo and Gaza Provinces, Mozambique. Serologic analysis and quantitative and conventional reverse transcription PCR confirmed the presence of Rift Valley fever virus. The viruses belonged to lineage C, which is prevalent among Rift Valley fever viruses in southern Africa. PMID:27869589

  4. Utility of Antibody Avidity for Rift Valley Fever Virus Vaccine Potency and Immunogenicity Studies

    USDA-ARS?s Scientific Manuscript database

    Disease outbreaks caused by arthropod-borne animal viruses (arboviruses) resulting in significant livestock and economic losses world-wide appear to be increasing. Rift Valley fever (RVF) virus is an important arbovirus that causes lethal disease in cattle, camels, sheep and goats in sub-Saharan Afr...

  5. The Dominant-Negative Inhibition of Double-Stranded RNA-Dependent Protein Kinase PKR Increases the Efficacy of Rift Valley Fever Virus MP-12 Vaccine

    PubMed Central

    Lihoradova, Olga; Kalveram, Birte; Indran, Sabarish V.; Lokugamage, Nandadeva; Juelich, Terry L.; Hill, Terence E.; Tseng, Chien-Te K.; Gong, Bin; Fukushi, Shuetsu; Morikawa, Shigeru; Freiberg, Alexander N.

    2012-01-01

    Rift Valley fever virus (RVFV), belonging to the genus Phlebovirus, family Bunyaviridae, is endemic to sub-Saharan Africa and causes a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. MP-12 is the only RVFV strain excluded from the select-agent rule and handled at a biosafety level 2 (BSL2) laboratory. MP-12 encodes a functional major virulence factor, the NSs protein, which contributes to its residual virulence in pregnant ewes. We found that 100% of mice subcutaneously vaccinated with recombinant MP-12 (rMP12)-murine PKRN167 (mPKRN167), which encodes a dominant-negative form of mouse double-stranded RNA (dsRNA)-dependent protein kinase (PKR) in place of NSs, were protected from wild-type (wt) RVFV challenge, while 72% of mice vaccinated with MP-12 were protected after challenge. rMP12-mPKRN167 induced alpha interferon (IFN-α) in sera, accumulated RVFV antigens in dendritic cells at the local draining lymph nodes, and developed high levels of neutralizing antibodies, while parental MP-12 induced neither IFN-α nor viral-antigen accumulation at the draining lymph node yet induced a high level of neutralizing antibodies. The present study suggests that the expression of a dominant-negative PKR increases the immunogenicity and efficacy of live-attenuated RVFV vaccine, which will lead to rational design of safe and highly immunogenic RVFV vaccines for livestock and humans. PMID:22573861

  6. Patterns of Rift Valley fever activity in Zambia.

    PubMed Central

    Davies, F. G.; Kilelu, E.; Linthicum, K. J.; Pegram, R. G.

    1992-01-01

    An hypothesis that there was an annual emergence of Rift Valley fever virus in Zambia, during or after the seasonal rains, was examined with the aid of sentinel cattle. Serum samples taken during 1974 and 1978 showed evidence of epizootic Rift Valley fever in Zambia, with more than 80% positive. A sentinel herd exposed from 1982 to 1986 showed that some Rift Valley fever occurred each year. This was usually at a low level, with 3-8% of the susceptible cattle seroconverting. In 1985-6 more than 20% of the animals seroconverted, and this greater activity was associated with vegetational changes--which could be detected by remote-sensing satellite imagery--which have also been associated with greater virus activity in Kenya. PMID:1547835

  7. Rift Valley fever virus infection in golden Syrian hamsters.

    PubMed

    Scharton, Dionna; Van Wettere, Arnaud J; Bailey, Kevin W; Vest, Zachary; Westover, Jonna B; Siddharthan, Venkatraman; Gowen, Brian B

    2015-01-01

    Rift Valley fever virus (RVFV) is a formidable pathogen that causes severe disease and abortion in a variety of livestock species and a range of disease in humans that includes hemorrhagic fever, fulminant hepatitis, encephalitis and blindness. The natural transmission cycle involves mosquito vectors, but exposure can also occur through contact with infected fluids and tissues. The lack of approved antiviral therapies and vaccines for human use underlies the importance of small animal models for proof-of-concept efficacy studies. Several mouse and rat models of RVFV infection have been well characterized and provide useful systems for the study of certain aspects of pathogenesis, as well as antiviral drug and vaccine development. However, certain host-directed therapeutics may not act on mouse or rat pathways. Here, we describe the natural history of disease in golden Syrian hamsters challenged subcutaneously with the pathogenic ZH501 strain of RVFV. Peracute disease resulted in rapid lethality within 2 to 3 days of RVFV challenge. High titer viremia and substantial viral loads were observed in most tissues examined; however, histopathology and immunostaining for RVFV antigen were largely restricted to the liver. Acute hepatocellular necrosis associated with a strong presence of viral antigen in the hepatocytes indicates that fulminant hepatitis is the likely cause of mortality. Further studies to assess the susceptibility and disease progression following respiratory route exposure are warranted. The use of the hamsters to model RVFV infection is suitable for early stage antiviral drug and vaccine development studies.

  8. Advances in Rift Valley Fever Research: Insights for Disease Prevention

    PubMed Central

    LaBeaud, A. Desiree; Kazura, James W.; King, Charles H.

    2011-01-01

    Purpose of review The purpose of the study was to review recent research on Rift Valley fever virus (RVFV) infection, encompassing four main areas: epidemiology and outbreak prediction, viral pathogenesis, human diagnostics and therapeutics, and vaccine and therapeutic candidates. Recent findings RVFV continues to extend its range in Africa and the Middle East. Better definition of RVFV-related clinical syndromes and human risk factors for severe disease, combined with early-warning systems based on remote-sensing, simplified rapid diagnostics, and tele-epidemiology, hold promise for earlier deployment of effective outbreak control measures. Advances in understanding of viral replication pathways and host cell-related pathogenesis suggest means for antiviral therapeutics and for more effective vaccination strategies based on genetically engineered virus strains or subunit vaccines. Summary RVFV is a significant health and economic burden in many areas of Africa, and remains a serious threat to other parts of the world. Development of more effective methods for RVFV outbreak prevention and control remains a global health priority. PMID:20613512

  9. Viscerotropic disease following yellow fever vaccination in Peru.

    PubMed

    Whittembury, Alvaro; Ramirez, Gladys; Hernández, Herminio; Ropero, Alba Maria; Waterman, Steve; Ticona, María; Brinton, Margo; Uchuya, Jorge; Gershman, Mark; Toledo, Washington; Staples, Erin; Campos, Clarense; Martínez, Mario; Chang, Gwong-Jen J; Cabezas, Cesar; Lanciotti, Robert; Zaki, Sherif; Montgomery, Joel M; Monath, Thomas; Hayes, Edward

    2009-10-09

    Five suspected cases of yellow fever vaccine-associated viscerotropic disease (YEL-AVD) clustered in space and time following a vaccination campaign in Ica, Peru in 2007. All five people received the same lot of 17DD live attenuated yellow fever vaccine before their illness; four of the five died of confirmed YEL-AVD. The surviving case was classified as probable YEL-AVD. Intensive investigation yielded no abnormalities of the implicated vaccine lot and no common risk factors. This is the first described space-time cluster of yellow fever viscerotropic disease involving more than two cases. Mass yellow fever vaccination should be avoided in areas that present extremely low risk of yellow fever.

  10. Vaccines for preventing typhoid fever.

    PubMed

    Milligan, Rachael; Paul, Mical; Richardson, Marty; Neuberger, Ami

    2018-05-31

    Typhoid fever and paratyphoid fever continue to be important causes of illness and death, particularly among children and adolescents in south-central and southeast Asia. Two typhoid vaccines are widely available, Ty21a (oral) and Vi polysaccharide (parenteral). Newer typhoid conjugate vaccines are at varying stages of development and use. The World Health Organization has recently recommended a Vi tetanus toxoid (Vi-TT) conjugate vaccine, Typbar-TCV, as the preferred vaccine for all ages. To assess the effects of vaccines for preventing typhoid fever. In February 2018, we searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL, MEDLINE, Embase, LILACS, and mRCT. We also searched the reference lists of all included trials. Randomized and quasi-randomized controlled trials (RCTs) comparing typhoid fever vaccines with other typhoid fever vaccines or with an inactive agent (placebo or vaccine for a different disease) in adults and children. Human challenge studies were not eligible. Two review authors independently applied inclusion criteria and extracted data, and assessed the certainty of the evidence using the GRADE approach. We computed vaccine efficacy per year of follow-up and cumulative three-year efficacy, stratifying for vaccine type and dose. The outcome addressed was typhoid fever, defined as isolation of Salmonella enterica serovar Typhi in blood. We calculated risk ratios (RRs) and efficacy (1 - RR as a percentage) with 95% confidence intervals (CIs). In total, 18 RCTs contributed to the quantitative analysis in this review: 13 evaluated efficacy (Ty21a: 5 trials; Vi polysaccharide: 6 trials; Vi-rEPA: 1 trial; Vi-TT: 1 trial), and 9 reported on adverse events. All trials but one took place in typhoid-endemic countries. There was no information on vaccination in adults aged over 55 years of age, pregnant women, or travellers. Only one trial included data on children under two years of age.Ty21a vaccine (oral vaccine, three doses

  11. Randomized Controlled Field Trial to Assess the Immunogenicity and Safety of Rift Valley Fever Clone 13 Vaccine in Livestock

    PubMed Central

    Njenga, M. Kariuki; Njagi, Leonard; Thumbi, S. Mwangi; Kahariri, Samuel; Githinji, Jane; Omondi, Eunice; Baden, Amy; Murithi, Mbabu; Paweska, Janusz; Ithondeka, Peter M.; Ngeiywa, Kisa J.; Dungu, Baptiste; Donadeu, Meritxell; Munyua, Peninah M.

    2015-01-01

    Background Although livestock vaccination is effective in preventing Rift Valley fever (RVF) epidemics, there are concerns about safety and effectiveness of the only commercially available RVF Smithburn vaccine. We conducted a randomized controlled field trial to evaluate the immunogenicity and safety of the new RVF Clone 13 vaccine, recently registered in South Africa. Methods In a blinded randomized controlled field trial, 404 animals (85 cattle, 168 sheep, and 151 goats) in three farms in Kenya were divided into three groups. Group A included males and non-pregnant females that were randomized and assigned to two groups; one vaccinated with RVF Clone 13 and the other given placebo. Groups B included animals in 1st half of pregnancy, and group C animals in 2nd half of pregnancy, which were also randomized and either vaccinated and given placebo. Animals were monitored for one year and virus antibodies titers assessed on days 14, 28, 56, 183 and 365. Results In vaccinated goats (N = 72), 72% developed anti-RVF virus IgM antibodies and 97% neutralizing IgG antibodies. In vaccinated sheep (N = 77), 84% developed IgM and 91% neutralizing IgG antibodies. Vaccinated cattle (N = 42) did not develop IgM antibodies but 67% developed neutralizing IgG antibodies. At day 14 post-vaccination, the odds of being seropositive for IgG in the vaccine group was 3.6 (95% CI, 1.5 – 9.2) in cattle, 90.0 (95% CI, 25.1 – 579.2) in goats, and 40.0 (95% CI, 16.5 – 110.5) in sheep. Abortion was observed in one vaccinated goat but histopathologic analysis did not indicate RVF virus infection. There was no evidence of teratogenicity in vaccinated or placebo animals. Conclusions The results suggest RVF Clone 13 vaccine is safe to use and has high (>90%) immunogenicity in sheep and goats but moderate (> 65%) immunogenicity in cattle. PMID:25756501

  12. Climate controls on valley fever incidence in Kern County, California

    NASA Astrophysics Data System (ADS)

    Zender, Charles S.; Talamantes, Jorge

    2006-01-01

    Coccidiodomycosis (valley fever) is a systemic infection caused by inhalation of airborne spores from Coccidioides immitis, a soil-dwelling fungus found in the southwestern United States, parts of Mexico, and Central and South America. Dust storms help disperse C. immitis so risk factors for valley fever include conditions favorable for fungal growth (moist, warm soil) and for aeolian soil erosion (dry soil and strong winds). Here, we analyze and inter-compare the seasonal and inter-annual behavior of valley fever incidence and climate risk factors for the period 1980-2002 in Kern County, California, the US county with highest reported incidence. We find weak but statistically significant links between disease incidence and antecedent climate conditions. Precipitation anomalies 8 and 20 months antecedent explain only up to 4% of monthly variability in subsequent valley fever incidence during the 23 year period tested. This is consistent with previous studies suggesting that C. immitis tolerates hot, dry periods better than competing soil organisms and, as a result, thrives during wet periods following droughts. Furthermore, the relatively small correlation with climate suggests that the causes of valley fever in Kern County could be largely anthropogenic. Seasonal climate predictors of valley fever in Kern County are similar to, but much weaker than, those in Arizona, where previous studies find precipitation explains up to 75% of incidence. Causes for this discrepancy are not yet understood. Higher resolution temporal and spatial monitoring of soil conditions could improve our understanding of climatic antecedents of severe epidemics.

  13. Comparison of Rift Valley fever virus and MP-12 replication in domestic livestock and North American wildlife cell lines.

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) is a mosquito-transmitted pathogen that primarily affects livestock, but can also cause mild to fatal disease in humans. Currently, there is no approved vaccine for use in the United States if it were introduced. Domestic goats, sheep and cattle are susceptible hosts ...

  14. Is it time for a new yellow fever vaccine?

    PubMed

    Hayes, Edward B

    2010-11-29

    An inexpensive live attenuated vaccine (the 17D vaccine) against yellow fever has been effectively used to prevent yellow fever for more than 70 years. Interest in developing new inactivated vaccines has been spurred by recognition of rare but serious, sometimes fatal adverse events following live virus vaccination. A safer inactivated yellow fever vaccine could be useful for vaccinating people at higher risk of adverse events from the live vaccine, but could also have broader global health utility by lowering the risk-benefit threshold for assuring high levels of yellow fever vaccine coverage. If ongoing trials demonstrate favorable immunogenicity and safety compared to the current vaccine, the practical global health utility of an inactivated vaccine is likely to be determined mostly by cost. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Evaluation of the Efficacy, Potential for Vector Transmission, and Duration of Immunity of MP-12, an Attenuated Rift Valley Fever Virus Vaccine Candidate, in Sheep

    PubMed Central

    Bennett, Kristine E.; Drolet, Barbara S.; Lindsay, Robbin; Mecham, James O.; Reeves, Will K.; Weingartl, Hana M.; Wilson, William C.

    2015-01-01

    Rift Valley fever virus (RVFV) causes serious disease in ruminants and humans in Africa. In North America, there are susceptible ruminant hosts and competent mosquito vectors, yet there are no fully licensed animal vaccines for this arthropod-borne virus, should it be introduced. Studies in sheep and cattle have found the attenuated strain of RVFV, MP-12, to be both safe and efficacious based on early testing, and a 2-year conditional license for use in U.S. livestock has been issued. The purpose of this study was to further determine the vaccine's potential to infect mosquitoes, the duration of humoral immunity to 24 months postvaccination, and the ability to prevent disease and viremia from a virulent challenge. Vaccination experiments conducted in sheep found no evidence of a potential for vector transmission to 4 North American mosquito species. Neutralizing antibodies were elicited, with titers of >1:40 still present at 24 months postvaccination. Vaccinates were protected from clinical signs and detectable viremia after challenge with virulent virus, while control sheep had fever and high-titered viremia extending for 5 days. Antibodies to three viral proteins (nucleocapsid N, the N-terminal half of glycoprotein GN, and the nonstructural protein from the short segment NSs) were also detected to 24 months using competitive enzyme-linked immunosorbent assays. This study demonstrates that the MP-12 vaccine given as a single dose in sheep generates protective immunity to a virulent challenge with antibody duration of at least 2 years, with no evidence of a risk for vector transmission. PMID:26041042

  16. Experimental Infection of Calves by Two Genetically-Distinct Strains of Rift Valley Fever Virus.

    PubMed

    Wilson, William C; Davis, A Sally; Gaudreault, Natasha N; Faburay, Bonto; Trujillo, Jessie D; Shivanna, Vinay; Sunwoo, Sun Young; Balogh, Aaron; Endalew, Abaineh; Ma, Wenjun; Drolet, Barbara S; Ruder, Mark G; Morozov, Igor; McVey, D Scott; Richt, Juergen A

    2016-05-23

    Recent outbreaks of Rift Valley fever in ruminant livestock, characterized by mass abortion and high mortality rates in neonates, have raised international interest in improving vaccine control strategies. Previously, we developed a reliable challenge model for sheep that improves the evaluation of existing and novel vaccines in sheep. This sheep model demonstrated differences in the pathogenesis of Rift Valley fever virus (RVFV) infection between two genetically-distinct wild-type strains of the virus, Saudi Arabia 2001 (SA01) and Kenya 2006 (Ken06). Here, we evaluated the pathogenicity of these two RVFV strains in mixed breed beef calves. There was a transient increase in rectal temperatures with both virus strains, but this clinical sign was less consistent than previously reported with sheep. Three of the five Ken06-infected animals had an early-onset viremia, one day post-infection (dpi), with viremia lasting at least three days. The same number of SA01-infected animals developed viremia at 2 dpi, but it only persisted through 3 dpi in one animal. The average virus titer for the SA01-infected calves was 1.6 logs less than for the Ken06-infected calves. Calves, inoculated with either strain, seroconverted by 5 dpi and showed time-dependent increases in their virus-neutralizing antibody titers. Consistent with the results obtained in the previous sheep study, elevated liver enzyme levels, more severe liver pathology and higher virus titers occurred with the Ken06 strain as compared to the SA01 strain. These results demonstrate the establishment of a virulent challenge model for vaccine evaluation in calves.

  17. Rift Valley Fever Vaccine Virus Clone 13 Is Able to Cross the Ovine Placental Barrier Associated with Foetal Infections, Malformations, and Stillbirths.

    PubMed

    Makoschey, Birgit; van Kilsdonk, Emma; Hubers, Willem R; Vrijenhoek, Mieke P; Smit, Marianne; Wichgers Schreur, Paul J; Kortekaas, Jeroen; Moulin, Véronique

    2016-03-01

    Rift Valley fever virus (RVFV) is a mosquito-borne pathogen that affects domesticated ruminants and occasionally humans. Classical RVF vaccines are based on formalin-inactivated virus or the live-attenuated Smithburn strain. The inactivated vaccine is highly safe but requires multiple administrations and yearly re-vaccinations. Although the Smithburn vaccine provides solid protection after a single vaccination, this vaccine is not safe for pregnant animals. An alternative live-attenuated vaccine, named Clone 13, carries a large natural deletion in the NSs gene which encodes the major virulence factor of the virus. The Clone 13 vaccine was previously shown to be safe for young lambs and calves. Moreover, a study in pregnant ewes suggested that the vaccine could also be applied safely during gestation. To anticipate on a possible future incursion of RVFV in Europe, we have evaluated the safety of Clone 13 for young lambs and pregnant ewes. In line with the guidelines from the World Organisation for Animal health (Office International des Epizooties, OIE) and regulations of the European Pharmacopeia (EP), these studies were performed with an overdose. Our studies with lambs showed that Clone 13 dissemination within vaccinated animals is very limited. Moreover, the Clone 13 vaccine virus was not shed nor spread to in-contact sentinels and did not revert to virulence upon animal-to-animal passage. Importantly, a large experiment with pregnant ewes demonstrated that the Clone 13 virus is able to spread to the fetus, resulting in malformations and stillbirths. Altogether, our results suggest that Clone 13 can be applied safely in lambs, but that caution should be taken when Clone 13 is used in pregnant animals, particularly during the first trimester of gestation.

  18. Observations on the epidemiology of Rift Valley fever in Kenya.

    PubMed

    Davies, F G

    1975-10-01

    The epizootic range of Rift Valley fever in Kenya is defined from the results of virus isolations during epizootics, and form an extensive serological survey of cattle which were exposed during an epizootic. A study of the sera from a wide range of wild bovidae sampled immediately after the epizootic, showed that they did not act as reservoir or amplifying hosts for RVF. Virus isolation attempts from a variety of rodents proved negative. Rift Valley fever did not persist between epizootics by producing symptomless abortions in cattle in areas within its epizootic range. A sentinel herd sampled annually after an epizootic in 1968 revealed not one single seroconversion from 1969 to 1974. Certain forest and forest edge situations were postulated as enzootic for Rift Valley fever, and a small percentage of seroconversions were detected in cattle in these areas, born four years after the last epizootic. This has been the only evidence for the persistence of the virus in Kenya since 1968, and may be a part of the interepizootic maintenance cycle for Rift Valley fever in Kenya, which otherwise remains unknown.

  19. Unexpected Rift Valley Fever Outbreak, Northern Mauritania

    PubMed Central

    El Mamy, Ahmed B. Ould; Baba, Mohamed Ould; Barry, Yahya; Isselmou, Katia; Dia, Mamadou L.; Hampate, Ba; Diallo, Mamadou Y.; El Kory, Mohamed Ould Brahim; Diop, Mariam; Lo, Modou Moustapha; Thiongane, Yaya; Bengoumi, Mohammed; Puech, Lilian; Plee, Ludovic; Claes, Filip; Doumbia, Baba

    2011-01-01

    During September–October 2010, an unprecedented outbreak of Rift Valley fever was reported in the northern Sahelian region of Mauritania after exceptionally heavy rainfall. Camels probably played a central role in the local amplification of the virus. We describe the main clinical signs (hemorrhagic fever, icterus, and nervous symptoms) observed during the outbreak. PMID:22000364

  20. Rift Valley fever MP-12 vaccine Phase 2 clinical trial: Safety, immunogenicity, and genetic characterization of virus isolates.

    PubMed

    Pittman, Phillip R; Norris, Sarah L; Brown, Elizabeth S; Ranadive, Manmohan V; Schibly, Barbara A; Bettinger, George E; Lokugamage, Nandadeva; Korman, Lawrence; Morrill, John C; Peters, Clarence J

    2016-01-20

    An outbreak or deliberate release of Rift Valley fever (RVF) virus could have serious public health and socioeconomic consequences. A safe RVF vaccine capable of eliciting long-lasting immunity after a single injection is urgently needed. The live attenuated RVF MP-12 vaccine candidate has shown promise in Phase 1 clinical trials; no evidence of reversion to virulence has been identified in numerous animal studies. The objective of this Phase 2 clinical trial was to (a) further examine the safety and immunogenicity of RVF MP-12 in RVF virus-naïve humans and (b) characterize isolates of RVF MP-12 virus recovered from the blood of vaccinated subjects to evaluate the genetic stability of MP-12 attenuation. We found that RVF MP-12 was well tolerated, causing mostly mild reactions that resolved without sequelae. Of 19 subjects, 18 (95%) and 19 (100%) achieved, respectively, 80% and 50% plaque reduction neutralization titers (PRNT80 and PRNT50)≥1:20 by postvaccination day 28. All 18 PRNT80 responders maintained PRNT80 and PRNT50≥1:40 until at least postvaccination month 12. Viremia was undetectable in the plasma of any subject by direct plaque assay techniques. However, 5 of 19 vaccinees were positive for MP-12 isolates in plasma by blind passage of plasma on Vero cells. Vaccine virus was also recovered from buffy coat material from one of those vaccinees and from one additional vaccinee. Through RNA sequencing of MP-12 isolates, we found no reversions of amino acids to those of the parent virulent virus (strain ZH548). Five years after a single dose of RVF MP-12 vaccine, 8 of 9 vaccinees (89%) maintained a PRNT80≥1:20. These findings support the continued development of RVF MP-12 as a countermeasure against RVF virus in humans. Published by Elsevier Ltd.

  1. Typhoid fever & vaccine development: a partially answered question.

    PubMed

    Marathe, Sandhya A; Lahiri, Amit; Negi, Vidya Devi; Chakravortty, Dipshikha

    2012-01-01

    Typhoid fever is a systemic disease caused by the human specific Gram-negative pathogen Salmonella enterica serovar Typhi (S. Typhi). The extra-intestinal infections caused by Salmonella are very fatal. The incidence of typhoid fever remains very high in impoverished areas and the emergence of multidrug resistance has made the situation worse. To combat and to reduce the morbidity and mortality caused by typhoid fever, many preventive measures and strategies have been employed, the most important being vaccination. In recent years, many Salmonella vaccines have been developed including live attenuated as well as DNA vaccines and their clinical trials have shown encouraging results. But with the increasing antibiotic resistance, the development of potent vaccine candidate for typhoid fever is a need of the hour. This review discusses the latest trends in the typhoid vaccine development and the clinical trials which are underway.

  2. Mouse model for the Rift Valley fever virus MP12 strain infection.

    PubMed

    Lang, Yuekun; Henningson, Jamie; Jasperson, Dane; Li, Yonghai; Lee, Jinhwa; Ma, Jingjiao; Li, Yuhao; Cao, Nan; Liu, Haixia; Wilson, William; Richt, Juergen; Ruder, Mark; McVey, Scott; Ma, Wenjun

    2016-11-15

    Rift Valley fever virus (RVFV), a Category A pathogen and select agent, is the causative agent of Rift Valley fever. To date, no fully licensed vaccine is available in the U.S. for human or animal use and effective antiviral drugs have not been identified. The RVFV MP12 strain is conditionally licensed for use for veterinary purposes in the U.S. which was excluded from the select agent rule of Health and Human Services and the U.S. Department of Agriculture. The MP12 vaccine strain is commonly used in BSL-2 laboratories that is generally not virulent in mice. To establish a small animal model that can be used in a BSL-2 facility for antiviral drug development, we investigated susceptibility of six mouse strains (129S6/SvEv, STAT-1 KO, 129S1/SvlmJ, C57BL/6J, NZW/LacJ, BALB/c) to the MP12 virus infection via an intranasal inoculation route. Severe weight loss, obvious clinical and neurologic signs, and 50% mortality was observed in the STAT-1 KO mice, whereas the other 5 mouse strains did not display obvious and/or severe disease. Virus replication and histopathological lesions were detected in brain and liver of MP12-infected STAT-1 KO mice that developed the acute-onset hepatitis and delayed-onset encephalitis. In conclusion, the STAT-1 KO mouse strain is susceptible to MP12 virus infection, indicating that it can be used to investigate RVFV antivirals in a BSL-2 environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Serious adverse events associated with yellow fever vaccine.

    PubMed

    de Menezes Martins, Reinaldo; Fernandes Leal, Maria da Luz; Homma, Akira

    2015-01-01

    Yellow fever vaccine was considered one of the safest vaccines, but in recent years it was found that it could rarely cause invasive and disseminated disease in some otherwise healthy individuals, with high lethality. After extensive studies, although some risk factors have been identified, the real cause of causes of this serious adverse event are largely unknown, but findings point to individual host factors. Meningoencephalitis, once considered to happen only in children less than 6 months of age, has also been identified in older children and adults, but with good prognosis. Efforts are being made to develop a safer yellow fever vaccine, and an inactivated vaccine or a vaccine prepared with the vaccine virus envelope produced in plants are being tested. Even with serious and rare adverse events, yellow fever vaccine is the best way to avoid yellow fever, a disease of high lethality and should be used routinely in endemic areas, and on people from non-endemic areas that could be exposed, according to a careful risk-benefit analysis.

  4. A Glycoprotein Subunit Vaccine Elicits a Strong Rift Valley Fever Virus Neutralizing Antibody Response in Sheep

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the...

  5. The First Prediction of a Rift Valley Fever Outbreak

    NASA Technical Reports Server (NTRS)

    Anyamba, Assaf; Chretien, Jean-Paul; Small, Jennifer; Tucker, Compton J.; Formenty, Pierre; Richardson, Jason H.; Britch, Seth C.; Schnabel, David C.; Erickson, Ralph L.; Linthicum, Kenneth J.

    2009-01-01

    El Nino/Southern Oscillation (ENSO) related anomalies were analyzed using a combination of satellite measurements of elevated sea surface temperatures, and subsequent elevated rainfall and satellite derived normalized difference vegetation index data. A Rift Valley fever risk mapping model using these climate data predicted areas where outbreaks of Rift Valley fever in humans and animals were expected and occurred in the Horn of Africa from December 2006 to May 2007. The predictions were subsequently confirmed by entomological and epidemiological field investigations of virus activity in the areas identified as at risk. Accurate spatial and temporal predictions of disease activity, as it occurred first in southern Somalia and then through much of Kenya before affecting northern Tanzania, provided a 2 to 6 week period of warning for the Horn of Africa that facilitated disease outbreak response and mitigation activities. This is the first prospective prediction of a Rift Valley fever outbreak.

  6. Review of current typhoid fever vaccines, cross-protection against paratyphoid fever, and the European guidelines.

    PubMed

    Zuckerman, Jane N; Hatz, Christoph; Kantele, Anu

    2017-10-01

    Typhoid and paratyphoid fever remain a global health problem, which - in non-endemic countries - are mainly seen in travelers, particularly in VFRs (visiting friends and relatives), with occasional local outbreaks occurring. A rise in anti-microbial resistance emphasizes the role of preventive measures, especially vaccinations against typhoid and paratyphoid fever for travelers visiting endemic countries. Areas covered: This state-of-the-art review recapitulates the epidemiology and mechanisms of disease of typhoid and paratyphoid fever, depicts the perspective of non-endemic countries and travelers (VFRs), and collectively presents current European recommendations for typhoid fever vaccination. We provide a brief overview of available (and developmental) vaccines in Europe, present current data on cross-protection to S. Paratyphi, and aim to provide a background for typhoid vaccine decision-making in travelers. Expert commentary: European recommendations are not harmonized. Experts must assess vaccination of travelers based on current country-specific recommendations. Travel health practitioners should be aware of the issues surrounding vaccination of travelers and be motivated to increase awareness of typhoid and paratyphoid fever risks.

  7. Experimental Infection of Calves by Two Genetically-Distinct Strains of Rift Valley Fever Virus

    PubMed Central

    Wilson, William C.; Davis, A. Sally; Gaudreault, Natasha N.; Faburay, Bonto; Trujillo, Jessie D.; Shivanna, Vinay; Sunwoo, Sun Young; Balogh, Aaron; Endalew, Abaineh; Ma, Wenjun; Drolet, Barbara S.; Ruder, Mark G.; Morozov, Igor; McVey, D. Scott; Richt, Juergen A.

    2016-01-01

    Recent outbreaks of Rift Valley fever in ruminant livestock, characterized by mass abortion and high mortality rates in neonates, have raised international interest in improving vaccine control strategies. Previously, we developed a reliable challenge model for sheep that improves the evaluation of existing and novel vaccines in sheep. This sheep model demonstrated differences in the pathogenesis of Rift Valley fever virus (RVFV) infection between two genetically-distinct wild-type strains of the virus, Saudi Arabia 2001 (SA01) and Kenya 2006 (Ken06). Here, we evaluated the pathogenicity of these two RVFV strains in mixed breed beef calves. There was a transient increase in rectal temperatures with both virus strains, but this clinical sign was less consistent than previously reported with sheep. Three of the five Ken06-infected animals had an early-onset viremia, one day post-infection (dpi), with viremia lasting at least three days. The same number of SA01-infected animals developed viremia at 2 dpi, but it only persisted through 3 dpi in one animal. The average virus titer for the SA01-infected calves was 1.6 logs less than for the Ken06-infected calves. Calves, inoculated with either strain, seroconverted by 5 dpi and showed time-dependent increases in their virus-neutralizing antibody titers. Consistent with the results obtained in the previous sheep study, elevated liver enzyme levels, more severe liver pathology and higher virus titers occurred with the Ken06 strain as compared to the SA01 strain. These results demonstrate the establishment of a virulent challenge model for vaccine evaluation in calves. PMID:27223298

  8. Traveling Abroad: Latest Yellow Fever Vaccine Update | Poster

    Cancer.gov

    Earlier this month, the U.S. Centers for Disease Control and Prevention (CDC) released its list of clinics that are administering the yellow fever vaccine Stamaril, which has been made available to address the total depletion of the United States’ primary yellow fever vaccine, YF-VAX. These clinics will provide the vaccine to individuals preparing for international travel,

  9. Innate Immune Response to Rift Valley Fever Virus in Goats

    PubMed Central

    Nfon, Charles K.; Marszal, Peter; Zhang, Shunzhen; Weingartl, Hana M.

    2012-01-01

    Rift Valley fever (RVF), a re-emerging mosquito-borne disease of ruminants and man, was endemic in Africa but spread to Saudi Arabia and Yemen, meaning it could spread even further. Little is known about innate and cell-mediated immunity to RVF virus (RVFV) in ruminants, which is knowledge required for adequate vaccine trials. We therefore studied these aspects in experimentally infected goats. We also compared RVFV grown in an insect cell-line and that grown in a mammalian cell-line for differences in the course of infection. Goats developed viremia one day post infection (DPI), which lasted three to four days and some goats had transient fever coinciding with peak viremia. Up to 4% of peripheral blood mononuclear cells (PBMCs) were positive for RVFV. Monocytes and dendritic cells in PBMCs declined possibly from being directly infected with virus as suggested by in vitro exposure. Infected goats produced serum IFN-γ, IL-12 and other proinflammatory cytokines but not IFN-α. Despite the lack of IFN-α, innate immunity via the IL-12 to IFN-γ circuit possibly contributed to early protection against RVFV since neutralising antibodies were detected after viremia had cleared. The course of infection with insect cell-derived RVFV (IN-RVFV) appeared to be different from mammalian cell-derived RVFV (MAM-RVFV), with the former attaining peak viremia faster, inducing fever and profoundly affecting specific immune cell subpopulations. This indicated possible differences in infections of ruminants acquired from mosquito bites relative to those due to contact with infectious material from other animals. These differences need to be considered when testing RVF vaccines in laboratory settings. PMID:22545170

  10. Innate immune response to Rift Valley fever virus in goats.

    PubMed

    Nfon, Charles K; Marszal, Peter; Zhang, Shunzhen; Weingartl, Hana M

    2012-01-01

    Rift Valley fever (RVF), a re-emerging mosquito-borne disease of ruminants and man, was endemic in Africa but spread to Saudi Arabia and Yemen, meaning it could spread even further. Little is known about innate and cell-mediated immunity to RVF virus (RVFV) in ruminants, which is knowledge required for adequate vaccine trials. We therefore studied these aspects in experimentally infected goats. We also compared RVFV grown in an insect cell-line and that grown in a mammalian cell-line for differences in the course of infection. Goats developed viremia one day post infection (DPI), which lasted three to four days and some goats had transient fever coinciding with peak viremia. Up to 4% of peripheral blood mononuclear cells (PBMCs) were positive for RVFV. Monocytes and dendritic cells in PBMCs declined possibly from being directly infected with virus as suggested by in vitro exposure. Infected goats produced serum IFN-γ, IL-12 and other proinflammatory cytokines but not IFN-α. Despite the lack of IFN-α, innate immunity via the IL-12 to IFN-γ circuit possibly contributed to early protection against RVFV since neutralising antibodies were detected after viremia had cleared. The course of infection with insect cell-derived RVFV (IN-RVFV) appeared to be different from mammalian cell-derived RVFV (MAM-RVFV), with the former attaining peak viremia faster, inducing fever and profoundly affecting specific immune cell subpopulations. This indicated possible differences in infections of ruminants acquired from mosquito bites relative to those due to contact with infectious material from other animals. These differences need to be considered when testing RVF vaccines in laboratory settings.

  11. 42 CFR 71.3 - Designation of yellow fever vaccination centers; Validation stamps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... safe, potent, and pure yellow fever vaccine. Medical facilities of Federal agencies are authorized to obtain yellow fever vaccine without being designated as a yellow fever vaccination center by the Director..., storage, and administration of yellow fever vaccine. If a designated center fails to comply with such...

  12. Military Vaccines in Today’s Environment

    DTIC Science & Technology

    2012-08-01

    vaccines for anthrax, plague, influenza, rubella, ade- noviruses, meningococci, hepatitis B, typhoid , Japanese encephalitis, and hepa- titis A...licensed vaccines for naturally occurring diseases, such as those for yellow fever , mumps, measles, chickenpox and polio, were developed with the...HIV-AIDS, Chikungunya, Rift Valley fever , Argentinian hemorrhagic fever , and hemorrhagic fever with renal syndrome (HFRS), have been developed and

  13. Current Assessment of Yellow Fever and Yellow Fever Vaccine.

    PubMed

    Lefeuvre, Anabelle; Marianneau, Philippe; Deubel, Vincent

    2004-04-01

    Yellow fever (YF) is a mosquito-borne viral illness that causes hemorrhagic fever in tropical Africa and South America. Although a very safe and efficient vaccine (17D) is available, it is underused. An estimated 200,000 people are still infected annually, and YF remains a major public health concern. This article reviews the recent data on YF epidemiology, virology, and immunity, and analyzes the rare postvaccination adverse effects that have been recently reported. YF vaccine should be included in the expanded program of immunization for children and sustained for people living in or traveling to endemic areas. A surveillance of vaccinated people also should be reinforced. New research programs should be developed to identify molecular markers of YF virus tropism and attenuation, and to understand mechanisms of host responses to virus infection.

  14. Advanced Vaccine Candidates for Lassa Fever

    PubMed Central

    Lukashevich, Igor S.

    2012-01-01

    Lassa virus (LASV) is the most prominent human pathogen of the Arenaviridae. The virus is transmitted to humans by a rodent reservoir, Mastomys natalensis, and is capable of causing lethal Lassa Fever (LF). LASV has the highest human impact of any of the viral hemorrhagic fevers (with the exception of Dengue Fever) with an estimated several hundred thousand infections annually, resulting in thousands of deaths in Western Africa. The sizeable disease burden, numerous imported cases of LF in non-endemic countries, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Presently there is no licensed vaccine against LF or approved treatment. Recently, several promising vaccine candidates have been developed which can potentially target different groups at risk. The purpose of this manuscript is to review the LASV pathogenesis and immune mechanisms involved in protection. The current status of pre-clinical development of the advanced vaccine candidates that have been tested in non-human primates will be discussed. Major scientific, manufacturing, and regulatory challenges will also be considered. PMID:23202493

  15. Advanced vaccine candidates for Lassa fever.

    PubMed

    Lukashevich, Igor S

    2012-10-29

    Lassa virus (LASV) is the most prominent human pathogen of the Arenaviridae. The virus is transmitted to humans by a rodent reservoir, Mastomys natalensis, and is capable of causing lethal Lassa Fever (LF). LASV has the highest human impact of any of the viral hemorrhagic fevers (with the exception of Dengue Fever) with an estimated several hundred thousand infections annually, resulting in thousands of deaths in Western Africa. The sizeable disease burden, numerous imported cases of LF in non-endemic countries, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Presently there is no licensed vaccine against LF or approved treatment. Recently, several promising vaccine candidates have been developed which can potentially target different groups at risk. The purpose of this manuscript is to review the LASV pathogenesis and immune mechanisms involved in protection. The current status of pre-clinical development of the advanced vaccine candidates that have been tested in non-human primates will be discussed. Major scientific, manufacturing, and regulatory challenges will also be considered.

  16. Diagnostic approaches for Rift Valley Fever

    USDA-ARS?s Scientific Manuscript database

    Disease outbreaks caused by arthropod-borne animal viruses (arboviruses) resulting in significant livestock and economic losses world-wide appear to be increasing. Rift Valley fever (RVF) virus (RVFV) is an important arbovirus that causes lethal disease in cattle, camels, sheep and goats in Sub-Saha...

  17. Pathogenesis of Rift Valley Fever in Rhesus Monkeys: Role of Interferon Response

    DTIC Science & Technology

    1990-01-01

    hemorrhagic fever characterized by epistaxis, petechial to purpuric cutaneous lesions, anorexia, and vomiting prior to death. The 14 remaining monkeys survived...DMI, FILE Copy Arch Virol (1990) 110: 195-212 Amhivesirology ( by Springer-Verlag 1990 00 N Pathogenesis of Rift Valley fever in rhesus monkeys: (NI...inoculated intravenously with Rift Valley fever (RVF) virus presented clinical disease syndromes similar to human cases of RVF. All 17 infected monkeys

  18. Mixing of M Segment DNA Vaccines to Hantaan Virus and Puumala Virus Reduces Their Immunogenicity in Hamsters

    DTIC Science & Technology

    2008-01-01

    vaccines for Rift Valley fever virus, tick- borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus. Vaccine 2006;24(May 22 (21)):4657–66. ...Valley fever virus, tick-borne encephalitis virus, TNV, and Crimean Congo hemorrhagic fever virus [19]. Thus, it s clearly possible to develop certain...online 25 April 2008 eywords: a b s t r a c t To determine if DNA vaccines for two hantaviruses causing hemorrhagic

  19. Traveling Abroad: Latest Yellow Fever Vaccine Update | Poster

    Cancer.gov

    Earlier this month, the U.S. Centers for Disease Control and Prevention (CDC) released its list of clinics that are administering the yellow fever vaccine Stamaril, which has been made available to address the total depletion of the United States’ primary yellow fever vaccine, YF-VAX. These clinics will provide the vaccine to individuals preparing for international travel, including NCI at Frederick staff and scientists.

  20. A network-based meta-population approach to model Rift Valley fever epidemics

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) has been expanding its geographical distribution with important implications for both human and animal health. The emergence of Rift Valley fever (RVF) in the Middle East, and its continuing presence in many areas of Africa, has negatively impacted both medical and vet...

  1. What a rheumatologist needs to know about yellow fever vaccine.

    PubMed

    Oliveira, Ana Cristina Vanderley; Mota, Licia Maria Henrique da; Santos-Neto, Leopoldo Luiz Dos; Tauil, Pedro Luiz

    2013-04-01

    Patients with rheumatic diseases are more susceptible to infection, due to the underlying disease itself or to its treatment. The rheumatologist should prevent infections in those patients, vaccination being one preventive measure to be adopted. Yellow fever is one of such infectious diseases that can be avoided.The yellow fever vaccine is safe and effective for the general population, but, being an attenuated live virus vaccine, it should be avoided whenever possible in rheumatic patients on immunosuppressive drugs. Considering that yellow fever is endemic in a large area of Brazil, and that vaccination against that disease is indicated for those living in such area or travelling there, rheumatologists need to know that disease, as well as the indications for the yellow fever vaccine and contraindications to it. Our paper was aimed at highlighting the major aspects rheumatologists need to know about the yellow fever vaccine to decide about its indication or contraindication in specific situations. 2013 Elsevier Editora Ltda. All rights reserved.

  2. New assay of protective activity of Rocky Mountain spotted fever vaccines.

    PubMed Central

    Anacker, R L; Smith, R F; Mann, R E; Hamilton, M A

    1976-01-01

    Areas under the fever curves of guinea pigs inoculated with Rocky Mountain spotted fever vaccine over a restricted dose range and infected with a standardized dose of Rickettsia rickettsii varied linearly with log10 dose of vaccine. A calculator was programmed to plot fever curves and calculate the vaccine dose that reduced the fever of infected animals by 50%. PMID:823177

  3. Valley Fever: Earth Observations for Risk Reduction

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.

    2012-12-01

    Advances in satellite Earth observation systems, numerical weather prediction, and dust storm modeling yield new tools for public health warnings, advisories and epidemiology of illnesses associated with airborne desert dust. Valley Fever, endemic from California through the US/Mexico border region into Central and South America, is triggered by inhalation of soil-dwelling fungal spores. The path from fungal growth to airborne threat depends on environmental conditions observable from satellite. And space-based sensors provide initial conditions for dust storm forecasts and baselines for the epidemiology of Valley Fever and other dust-borne aggravation of respiratory and cardiovascular disease. A new Pan-American Center for the World Meteorological Organization Sand and Dust Storm Warning Advisory and Assessment System creates an opportunity to advance Earth science applications in public health.

  4. Severe post-vaccination reaction to 17D yellow fever vaccine in Nigeria.

    PubMed

    Oyelami, S A; Olaleye, O D; Oyejide, C O; Omilabu, S A; Fatunla, B A

    1994-01-01

    An unusual outbreak of post-vaccination reactions to 17D yellow fever vaccine occurred at Shaki, Nigeria, in May 1987. Twenty-five of the affected people were treated at the Baptist Hospital Shaki. The patients presented with rapidly progressing swelling of the left arm with associated fever and other constitutional symptoms few hours after inoculation with the vaccine. Some of the patients developed gangrene of the affected limb, five of them went into coma and died. Poor hygiene and improper handling of vaccine as well as contamination of vaccine from the source are possible causes. A review of vaccine delivery strategies especially at local community levels; sound training, supervision of vaccinators and health education are strongly recommended to prevent reoccurrence of similar reactions.

  5. Yellow fever vaccine: an effective vaccine for travelers.

    PubMed

    Verma, Ramesh; Khanna, Pardeep; Chawla, Suraj

    2014-01-01

    Yellow fever (YF) is an acute viral communicable disease transmitted by an arbovirus of the Flavivirus genus. It is primarily a zoonotic disease, especially the monkeys. Worldwide, an estimated 200,000 cases of yellow fever occurred each year, and the case-fatality rate is ~15%. Forty-five endemic countries in Africa and Latin America, with a population of close to 1 billion, are at risk. Up to 50% of severely affected persons from YF die without treatment. During 2009, 55 cases and 18 deaths were reported from Brazil, Colombia, and Peru. Brazil reported the maximum number of cases and death, i.e., 42 cases with 11 deaths. From January 2010 to March 2011, outbreaks of YF were reported to the WHO by Cameroon, Democratic Republic of Congo, Cote d'Ivoire, Guinea, Sierra Leone, Senegal, and Uganda. Cases were also reported in three northern districts of Abim, Agago, and Kitugun near the border with South Sudan. YF usually causes fever, muscle pain with prominent backache, headache, shivers, loss of appetite, and nausea or vomiting. Most patients improve, and their symptoms disappear after 3 to 4 d. Half of the patients who enter the toxic phase die within 10-14 d, while the rest recover without significant organ damage. Vaccination has been the single most important measure for preventing YF. The 17D-204 YF vaccine is a freeze-dried, live attenuated, highly effective vaccine. It is available in single-dose or multi-dose vials and should be stored at 2-8 °C. It is reconstituted with normal saline and should be used within 1 h of reconstitution. The 0.5 mL dose is delivered subcutaneously. Revaccination is recommended every 10 y for people at continued risk of exposure to yellow fever virus (YFV). This vaccine is available worldwide. Travelers, especially to Africa or Latin America from Asia, must have a certificate documenting YF vaccination, which is required by certain countries for entry under the International Health Regulations (IHR) of the WHO.

  6. Transmission potential of Rift Valley fever virus over the course of the 2010 epidemic in South Africa.

    PubMed

    Métras, Raphaëlle; Baguelin, Marc; Edmunds, W John; Thompson, Peter N; Kemp, Alan; Pfeiffer, Dirk U; Collins, Lisa M; White, Richard G

    2013-06-01

    A Rift Valley fever (RVF) epidemic affecting animals on domestic livestock farms was reported in South Africa during January-August 2010. The first cases occurred after heavy rainfall, and the virus subsequently spread countrywide. To determine the possible effect of environmental conditions and vaccination on RVF virus transmissibility, we estimated the effective reproduction number (Re) for the virus over the course of the epidemic by extending the Wallinga and Teunis algorithm with spatial information. Re reached its highest value in mid-February and fell below unity around mid-March, when vaccination coverage was 7.5%-45.7% and vector-suitable environmental conditions were maintained. The epidemic fade-out likely resulted first from the immunization of animals following natural infection or vaccination. The decline in vector-suitable environmental conditions from April onwards and further vaccination helped maintain Re below unity. Increased availability of vaccine use data would enable evaluation of the effect of RVF vaccination campaigns.

  7. Vaccines and vaccination against yellow fever: WHO Position Paper, June 2013--recommendations.

    PubMed

    2015-01-01

    This article presents the World Health Organizations (WHO) evidence and recommendations for the use of yellow fever (YF) vaccination from "Vaccines and vaccination against yellow fever: WHO Position Paper - June 2013" published in the Weekly Epidemiological Record. This position paper summarizes the WHO position on the use of YF vaccination, in particular that a single dose of YF vaccine is sufficient to confer sustained life-long protective immunity against YF disease. A booster dose is not necessary. The current document replaces the position paper on the use of yellow fever vaccines and vaccination published in 2003. Footnotes to this paper provide a number of core references. In accordance with its mandate to provide guidance to Member States on health policy matters, WHO issues a series of regularly updated position papers on vaccines and combinations of vaccines against diseases that have an international public health impact. These papers are concerned primarily with the use of vaccines in large-scale immunization programmes; they summarize essential background information on diseases and vaccines, and conclude with WHO's current position on the use of vaccines in the global context. This paper reflects the recommendations of WHO's Strategic Advisory Group of Experts (SAGE) on immunization. These recommendations were discussed by SAGE at its April 2013 meeting. Evidence presented at the meeting can be accessed at http://www.who.int/immunization/sage/previous/en/index.html. Copyright © 2014. Published by Elsevier Ltd.

  8. Comparison of three rocky mountain spotted fever vaccines.

    PubMed Central

    Kenyon, R H; Sammons, L S; Pedersen, C E

    1975-01-01

    Growth of Rocky Mountain spotted fever (RMSF) rickettsiae in duck embryo cell (DEC) cultures and chicken embryo cell (CEC) cultures was evaluated. Experimental lots of duck embryo cell- and chicken embryo cell-grown Rocky Mountain spotted fever vaccines and a commercial lot of yolk sac-grown vaccine were compared for protective efficacy in rhesus monkeys. Incidence and magnitude of antibody response, febrile response, and rickettsemia, as well as incidence of fatalities, suggested that both cell culture-derived vaccines were more immunogenic than the yolk sac-grown vaccine. PMID:810494

  9. Yellow fever virus vaccine-associated deaths in young women.

    PubMed

    Seligman, Stephen J

    2011-10-01

    Yellow fever vaccine-associated viscerotropic disease is a rare sequela of live-attenuated virus vaccine. Elderly persons and persons who have had thymectomies have increased susceptibility. A review of published and other data suggested a higher than expected number of deaths from yellow fever vaccine-associated viscerotropic disease among women 19-34 years of age without known immunodeficiency.

  10. An inactivated cell-culture vaccine against yellow fever.

    PubMed

    Monath, Thomas P; Fowler, Elizabeth; Johnson, Casey T; Balser, John; Morin, Merribeth J; Sisti, Maggie; Trent, Dennis W

    2011-04-07

    Yellow fever is a lethal viral hemorrhagic fever occurring in Africa and South America. A highly effective live vaccine (17D) is widely used for travelers to and residents of areas in which yellow fever is endemic, but the vaccine can cause serious adverse events, including viscerotropic disease, which is associated with a high rate of death. A safer, nonreplicating vaccine is needed. In a double-blind, placebo-controlled, dose-escalation, phase 1 study of 60 healthy subjects between 18 and 49 years of age, we investigated the safety and immunogenicity of XRX-001 purified whole-virus, β-propiolactone-inactivated yellow fever vaccine produced in Vero cell cultures and adsorbed to aluminum hydroxide (alum) adjuvant. On two visits 21 days apart, subjects received intramuscular injections of vaccine that contained 0.48 μg or 4.8 μg of antigen. Levels of neutralizing antibodies were measured at baseline and on days 21, 31, and 42. The vaccine induced the development of neutralizing antibodies in 100% of subjects receiving 4.8 μg of antigen in each injection and in 88% of subjects receiving 0.48 μg of antigen in each injection. Antibody levels increased by day 10 after the second injection, at which time levels were significantly higher with the 4.8-μg formulation than with the 0.48-μg formulation (geometric mean titer, 146 vs. 39; P<0.001). Three adverse events occurred at a higher incidence in the two vaccine groups than in the placebo group: mild pain, tenderness, and (much less frequently) itching at the injection site. One case of urticaria was observed on day 3 after the second dose of 4.8 μg of vaccine. A two-dose regimen of the XRX-001 vaccine, containing inactivated yellow fever antigen with an alum adjuvant, induced neutralizing antibodies in a high percentage of subjects. XRX-001 has the potential to be a safer alternative to live attenuated 17D vaccine. (Funded by Xcellerex; ClinicalTrials.gov number, NCT00995865.).

  11. Rift Valley fever.

    PubMed

    Paweska, J T

    2015-08-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease affecting domestic and wild ruminants, camels and humans. The causative agent of RVF, the RVF virus (RVFV), has the capacity to cause large and severe outbreaks in animal and human populations and to cross significant natural geographic barriers. Rift Valley fever is usually inapparent in non-pregnant adult animals, but pregnant animals and newborns can be severely affected; outbreaks are characterised by a sudden onset of abortions and high neonatal mortality. The majority of human infections are subclinical or associated with moderate to severe, non-fatal, febrile illness, but some patients may develop a haemorrhagic syndrome and/or ocular and neurological lesions. In both animals and humans, the primary site of RVFV replication and tissue pathology is the liver. Outbreaks of RVF are associated with persistent high rainfalls leading to massive flooding and the emergence of large numbers of competent mosquito vectors that transmit the virus to a wide range of susceptible vertebrate species. Outbreaks of RVF have devastating economic effects on countries for which animal trade constitutes the main source of national revenue. The propensity of the virus to spread into new territories and re-emerge in traditionally endemic regions, where it causes large outbreaks in human and animal populations, presents a formidable challenge for public and veterinary health authorities. The presence of competent mosquito vectors in RVF-free countries, the wide range of mammals susceptible to the virus, altering land use, the global changes in climate, and increased animal trade and travel are some of the factors which might contribute to international spread of RVF.

  12. The Nonstructural Protein NSs Induces a Variable Antibody Response in Domestic Ruminants Naturally Infected with Rift Valley Fever Virus

    PubMed Central

    Fernandez, José-Carlos; Billecocq, Agnès; Durand, Jean Paul; Cêtre-Sossah, Catherine; Cardinale, Eric; Marianneau, Philippe; Pépin, Michel; Tordo, Noël

    2012-01-01

    Rift Valley fever (RVF) is an emerging zoonosis in Africa which has spread to Egypt, the Arabian Peninsula, Madagascar, and Comoros. RVF virus (RVFV) (Bunyaviridae family, Phlebovirus genus) causes a wide range of symptoms in humans, from benign fever to fatal hemorrhagic fever. Ruminants are severely affected by the disease, which leads to a high rate of mortality in young animals and to abortions and teratogenesis in pregnant females. Diagnostic tests include virus isolation and genome or antibody detection. During RVFV infection, the nucleoprotein encapsidating the tripartite RNA genome is expressed in large amounts and raises a robust antibody response, while the envelope glycoproteins elicit neutralizing antibodies which play a major role in protection. Much less is known about the antigenicity/immunogenicity of the nonstructural protein NSs, which is a major virulence factor. Here we have developed a competitive enzyme-linked immunosorbent assay (ELISA) enabling detection of low levels of NSs-specific antibodies in naturally infected or vaccinated ruminants. Detection of the NSs antibodies was validated by Western blotting. Altogether, our data showed that the NSs antibodies were detected in only 55% of animals naturally infected by RVFV, indicating that NSs does not induce a consistently high immune response. These results are discussed in light of differentiation between infected and vaccinated animals (DIVA) tests distinguishing naturally infected animals and those vaccinated with NSs-defective vaccines. PMID:22072723

  13. The nonstructural protein NSs induces a variable antibody response in domestic ruminants naturally infected with Rift Valley fever virus.

    PubMed

    Fernandez, José-Carlos; Billecocq, Agnès; Durand, Jean Paul; Cêtre-Sossah, Catherine; Cardinale, Eric; Marianneau, Philippe; Pépin, Michel; Tordo, Noël; Bouloy, Michèle

    2012-01-01

    Rift Valley fever (RVF) is an emerging zoonosis in Africa which has spread to Egypt, the Arabian Peninsula, Madagascar, and Comoros. RVF virus (RVFV) (Bunyaviridae family, Phlebovirus genus) causes a wide range of symptoms in humans, from benign fever to fatal hemorrhagic fever. Ruminants are severely affected by the disease, which leads to a high rate of mortality in young animals and to abortions and teratogenesis in pregnant females. Diagnostic tests include virus isolation and genome or antibody detection. During RVFV infection, the nucleoprotein encapsidating the tripartite RNA genome is expressed in large amounts and raises a robust antibody response, while the envelope glycoproteins elicit neutralizing antibodies which play a major role in protection. Much less is known about the antigenicity/immunogenicity of the nonstructural protein NSs, which is a major virulence factor. Here we have developed a competitive enzyme-linked immunosorbent assay (ELISA) enabling detection of low levels of NSs-specific antibodies in naturally infected or vaccinated ruminants. Detection of the NSs antibodies was validated by Western blotting. Altogether, our data showed that the NSs antibodies were detected in only 55% of animals naturally infected by RVFV, indicating that NSs does not induce a consistently high immune response. These results are discussed in light of differentiation between infected and vaccinated animals (DIVA) tests distinguishing naturally infected animals and those vaccinated with NSs-defective vaccines.

  14. African Swine Fever Virus Biology and Vaccine Approaches.

    PubMed

    Revilla, Yolanda; Pérez-Núñez, Daniel; Richt, Juergen A

    2018-01-01

    African swine fever (ASF) is an acute and often fatal disease affecting domestic pigs and wild boar, with severe economic consequences for affected countries. ASF is endemic in sub-Saharan Africa and the island of Sardinia, Italy. Since 2007, the virus emerged in the republic of Georgia, and since then spread throughout the Caucasus region and Russia. Outbreaks have also been reported in Belarus, Ukraine, Lithuania, Latvia, Estonia, Romania, Moldova, Czech Republic, and Poland, threatening neighboring West European countries. The causative agent, the African swine fever virus (ASFV), is a large, enveloped, double-stranded DNA virus that enters the cell by macropinocytosis and a clathrin-dependent mechanism. African Swine Fever Virus is able to interfere with various cellular signaling pathways resulting in immunomodulation, thus making the development of an efficacious vaccine very challenging. Inactivated preparations of African Swine Fever Virus do not confer protection, and the role of antibodies in protection remains unclear. The use of live-attenuated vaccines, although rendering suitable levels of protection, presents difficulties due to safety and side effects in the vaccinated animals. Several African Swine Fever Virus proteins have been reported to induce neutralizing antibodies in immunized pigs, and vaccination strategies based on DNA vaccines and recombinant proteins have also been explored, however, without being very successful. The complexity of the virus particle and the ability of the virus to modulate host immune responses are most likely the reason for this failure. Furthermore, no permanent cell lines able to sustain productive virus infection by both virulent and naturally attenuated African Swine Fever Virus strains exist so far, thus impairing basic research and the commercial production of attenuated vaccine candidates. © 2018 Elsevier Inc. All rights reserved.

  15. Rift Valley fever outbreak, Mauritania, 1998: seroepidemiologic, virologic, entomologic, and zoologic investigations.

    PubMed

    Nabeth, P; Kane, Y; Abdalahi, M O; Diallo, M; Ndiaye, K; Ba, K; Schneegans, F; Sall, A A; Mathiot, C

    2001-01-01

    A Rift Valley fever outbreak occurred in Mauritania in 1998. Seroepidemiologic and virologic investigation showed active circulation of the Rift Valley fever virus, with 13 strains isolated, and 16% (range 1.5%-38%) immunoglobulin (Ig) M-positivity in sera from 90 humans and 343 animals (sheep, goats, camels, cattle, and donkeys). One human case was fatal.

  16. Rift Valley fever: the Nigerian story.

    PubMed

    Adeyeye, Adewale A; Ekong, Pius S; Pilau, Nicholas N

    2011-01-01

    Rift Valley fever (RVF) is an arthropod-borne zoonotic disease of livestock. It is characterised by fever, salivation, abdominal pain, diarrhoea, mucopurulent to bloody nasal discharge, abortion, rapid decrease in milk production and death in animals. Infected humans experience an influenza-like illness that is characterised by fever, malaise, headaches, nausea and epigastric pain followed by recovery, although mortality can occur. RVF was thought to be a disease of sub-Saharan Africa but with the outbreaks in Egypt and the Arabian Peninsula, it may be extending its range further afield. Virological and serological evidence indicates that the virus exists in Nigeria and, with the warning signal sent by international organisations to countries in Africa about an impending outbreak, co-ordinated research between veterinarians and physicians in Nigeria is advocated.

  17. Yellow fever vaccine: worthy friend or stealthy foe?

    PubMed

    Seligman, Stephen J; Casanova, Jean-Laurent

    2016-06-01

    Recognition that the live yellow fever vaccine may rarely be associated with viscerotropic disease (YEL-AVD) has diminished its safety status. However, the vaccine remains the principal tool for limiting the occurrence of yellow fever, making large portions of Africa and South America more habitable. The subject has previously been exhaustively reviewed. Novel concepts in the current report include the description of a systematic method for deciding whom to vaccinate, recommendations for obtaining data helpful in making that decision, and suggestions for additional study. The vaccine is indeed a worthy friend, but its adverse reactions need to be recognized.

  18. A cost-effectiveness analysis of typhoid fever vaccines in US military personnel.

    PubMed

    Warren, T A; Finder, S F; Brier, K L; Ries, A J; Weber, M P; Miller, M R; Potyk, R P; Reeves, C S; Moran, E L; Tornow, J J

    1996-11-01

    Typhoid fever has been a problem for military personnel throughout history. A cost-effectiveness analysis of typhoid fever vaccines from the perspective of the US military was performed. Currently 3 vaccine preparations are available in the US: an oral live Type 21A whole cell vaccine; a single-dose parenteral, cell subunit vaccine; and a 2-dose parenteral heat-phenol killed, whole cell vaccine. This analysis assumed all vaccinees were US military personnel. Two pharmacoeconomic models were developed, one for personnel who have not yet been deployed, and the other for personnel who are deployed to an area endemic for typhoid fever. Drug acquisition, administration, adverse effect and lost work costs, as well as the costs associated with typhoid fever, were included in this analysis. Unique military issues, typhoid fever attack rates, vaccine efficacy, and compliance with each vaccine's dosage regimen were included in this analysis. A sensitivity analysis was performed to test the robustness of the models. Typhoid fever immunisation is not cost-effective for US military personnel unless they are considered imminently deployable or are deployed. The most cost-effective vaccine for US military personnel is the single-dose, cell subunit parenteral vaccine.

  19. Addressing a Yellow Fever Vaccine Shortage - United States, 2016-2017.

    PubMed

    Gershman, Mark D; Angelo, Kristina M; Ritchey, Julian; Greenberg, David P; Muhammad, Riyadh D; Brunette, Gary; Cetron, Martin S; Sotir, Mark J

    2017-05-05

    Recent manufacturing problems resulted in a shortage of the only U.S.-licensed yellow fever vaccine. This shortage is expected to lead to a complete depletion of yellow fever vaccine available for the immunization of U.S. travelers by mid-2017. CDC, the Food and Drug Administration (FDA), and Sanofi Pasteur are collaborating to ensure a continuous yellow fever vaccine supply in the United States. As part of this collaboration, Sanofi Pasteur submitted an expanded access investigational new drug (eIND) application to FDA in September 2016 to allow for the importation and use of an alternative yellow fever vaccine manufactured by Sanofi Pasteur France, with safety and efficacy comparable to the U.S.-licensed vaccine; the eIND was accepted by FDA in October 2016. The implementation of this eIND protocol included developing a systematic process for selecting a limited number of clinic sites to provide the vaccine. CDC and Sanofi Pasteur will continue to communicate with the public and other stakeholders, and CDC will provide a list of locations that will be administering the replacement vaccine at a later date.

  20. Potential for autoimmune pathogenesis of Rift Valley Fever virus retinitis.

    PubMed

    Newman-Gerhardt, Shoshana; Muiruri, Samuel; Muchiri, Eric; Peters, Clarence J; Morrill, John; Lucas, Alexander H; King, Charles H; Kazura, James; LaBeaud, Angelle Desiree

    2013-09-01

    Rift Valley Fever (RVF) is a significant threat to human health because it can progress to retinitis, encephalitis, and hemorrhagic fever. The timing of onset of Rift Valley Fever virus (RVFV) retinitis suggests an autoimmune origin. To determine whether RVFV retinitis is associated with increased levels of IgG against retinal tissue, we measured and compared levels of IgG against healthy human eye tissue by immunohistochemical analysis. We found that serum samples from RVFV-exposed Kenyans with retinitis (n = 8) were slightly more likely to have antibodies against retinal tissue than control populations, but the correlation was not statistically significant. Further investigation into the possible immune pathogenesis of RVFV retinitis could lead to improved therapies to prevent or treat this severe complication.

  1. Potential for Autoimmune Pathogenesis of Rift Valley Fever Virus Retinitis

    PubMed Central

    Newman-Gerhardt, Shoshana; Muiruri, Samuel; Muchiri, Eric; Peters, Clarence J.; Morrill, John; Lucas, Alexander H.; King, Charles H.; Kazura, James; LaBeaud, Angelle Desiree

    2013-01-01

    Rift Valley Fever (RVF) is a significant threat to human health because it can progress to retinitis, encephalitis, and hemorrhagic fever. The timing of onset of Rift Valley Fever virus (RVFV) retinitis suggests an autoimmune origin. To determine whether RVFV retinitis is associated with increased levels of IgG against retinal tissue, we measured and compared levels of IgG against healthy human eye tissue by immunohistochemical analysis. We found that serum samples from RVFV-exposed Kenyans with retinitis (n = 8) were slightly more likely to have antibodies against retinal tissue than control populations, but the correlation was not statistically significant. Further investigation into the possible immune pathogenesis of RVFV retinitis could lead to improved therapies to prevent or treat this severe complication. PMID:23918215

  2. Q-Vax Q fever vaccine failures, Victoria, Australia 1994-2013.

    PubMed

    Bond, Katherine A; Franklin, Lucinda J; Sutton, Brett; Firestone, Simon M

    2017-12-18

    Q-Vax®, a whole cell formalin inactivated vaccine, is currently the only licensed Q fever vaccine for humans world-wide. Efficacy is high, although vaccine failures have been described for those vaccinated within the incubation of a naturally acquired infection. In Australia, it is widely used to prevent occupational acquisition of Q fever and is the mainstay for outbreak control. A retrospective review of all notified cases of acute Q fever to the Victorian department of health, 1993-2013, revealed 34 of 659 cases were previously vaccinated and 10 cases were positive on pre-vaccination screening, precluding vaccination. Twenty-one cases described high-risk exposures for C. burnetii prior to and within 15 days post vaccination and are likely to have been vaccinated within the incubation period of a natural infection. Thirteen cases described symptom onset more than 15 days post vaccination and thus may represent the first described series of Q-Vax vaccine failures following appropriate vaccination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A Haploid Genetic Screen Identifies Heparan Sulfate Proteoglycans Supporting Rift Valley Fever Virus Infection.

    PubMed

    Riblett, Amber M; Blomen, Vincent A; Jae, Lucas T; Altamura, Louis A; Doms, Robert W; Brummelkamp, Thijn R; Wojcechowskyj, Jason A

    2016-02-01

    Rift Valley fever virus (RVFV) causes recurrent insect-borne epizootics throughout the African continent, and infection of humans can lead to a lethal hemorrhagic fever syndrome. Deep mutagenesis of haploid human cells was used to identify host factors required for RVFV infection. This screen identified a suite of enzymes involved in glycosaminoglycan (GAG) biogenesis and transport, including several components of the cis-oligomeric Golgi (COG) complex, one of the central components of Golgi complex trafficking. In addition, disruption of PTAR1 led to RVFV resistance as well as reduced heparan sulfate surface levels, consistent with recent observations that PTAR1-deficient cells exhibit altered Golgi complex morphology and glycosylation defects. A variety of biochemical and genetic approaches were utilized to show that both pathogenic and attenuated RVFV strains require GAGs for efficient infection on some, but not all, cell types, with the block to infection being at the level of virion attachment. Examination of other members of the Bunyaviridae family for GAG-dependent infection suggested that the interaction with GAGs is not universal among bunyaviruses, indicating that these viruses, as well as RVFV on certain cell types, employ additional unidentified virion attachment factors and/or receptors. Rift Valley fever virus (RVFV) is an emerging pathogen that can cause severe disease in humans and animals. Epizootics among livestock populations lead to high mortality rates and can be economically devastating. Human epidemics of Rift Valley fever, often initiated by contact with infected animals, are characterized by a febrile disease that sometimes leads to encephalitis or hemorrhagic fever. The global burden of the pathogen is increasing because it has recently disseminated beyond Africa, which is of particular concern because the virus can be transmitted by widely distributed mosquito species. There are no FDA-licensed vaccines or antiviral agents with activity

  4. Identification of fever and vaccine-associated gene interaction networks using ontology-based literature mining

    PubMed Central

    2012-01-01

    Background Fever is one of the most common adverse events of vaccines. The detailed mechanisms of fever and vaccine-associated gene interaction networks are not fully understood. In the present study, we employed a genome-wide, Centrality and Ontology-based Network Discovery using Literature data (CONDL) approach to analyse the genes and gene interaction networks associated with fever or vaccine-related fever responses. Results Over 170,000 fever-related articles from PubMed abstracts and titles were retrieved and analysed at the sentence level using natural language processing techniques to identify genes and vaccines (including 186 Vaccine Ontology terms) as well as their interactions. This resulted in a generic fever network consisting of 403 genes and 577 gene interactions. A vaccine-specific fever sub-network consisting of 29 genes and 28 gene interactions was extracted from articles that are related to both fever and vaccines. In addition, gene-vaccine interactions were identified. Vaccines (including 4 specific vaccine names) were found to directly interact with 26 genes. Gene set enrichment analysis was performed using the genes in the generated interaction networks. Moreover, the genes in these networks were prioritized using network centrality metrics. Making scientific discoveries and generating new hypotheses were possible by using network centrality and gene set enrichment analyses. For example, our study found that the genes in the generic fever network were more enriched in cell death and responses to wounding, and the vaccine sub-network had more gene enrichment in leukocyte activation and phosphorylation regulation. The most central genes in the vaccine-specific fever network are predicted to be highly relevant to vaccine-induced fever, whereas genes that are central only in the generic fever network are likely to be highly relevant to generic fever responses. Interestingly, no Toll-like receptors (TLRs) were found in the gene-vaccine interaction

  5. Statistical modeling of valley fever data in Kern County, California

    NASA Astrophysics Data System (ADS)

    Talamantes, Jorge; Behseta, Sam; Zender, Charles S.

    2007-03-01

    Coccidioidomycosis (valley fever) is a fungal infection found in the southwestern US, northern Mexico, and some places in Central and South America. The fungus that causes it ( Coccidioides immitis) is normally soil-dwelling but, if disturbed, becomes air-borne and infects the host when its spores are inhaled. It is thus natural to surmise that weather conditions that foster the growth and dispersal of the fungus must have an effect on the number of cases in the endemic areas. We present here an attempt at the modeling of valley fever incidence in Kern County, California, by the implementation of a generalized auto regressive moving average (GARMA) model. We show that the number of valley fever cases can be predicted mainly by considering only the previous history of incidence rates in the county. The inclusion of weather-related time sequences improves the model only to a relatively minor extent. This suggests that fluctuations of incidence rates (about a seasonally varying background value) are related to biological and/or anthropogenic reasons, and not so much to weather anomalies.

  6. Persistence of yellow fever vaccine-induced antibodies after solid organ transplantation.

    PubMed

    Wyplosz, B; Burdet, C; François, H; Durrbach, A; Duclos-Vallée, J C; Mamzer-Bruneel, M-F; Poujol, P; Launay, O; Samuel, D; Vittecoq, D; Consigny, P H

    2013-09-01

    Immunization using live attenuated vaccines represents a contra-indication after solid organ transplantation (SOT): consequently, transplant candidates planning to travel in countries where yellow fever is endemic should be vaccinated prior to transplantation. The persistence of yellow fever vaccine-induced antibodies after transplantation has not been studied yet. We measured yellow-fever neutralizing antibodies in 53 SOT recipients vaccinated prior to transplantation (including 29 kidney recipients and 18 liver recipients). All but one (98%) had protective titers of antibodies after a median duration of 3 years (min.: 0.8, max.: 21) after transplantation. The median antibody level was 40 U/L (interquartile range: 40-80). For the 46 patients with a known or estimated date of vaccination, yellow-fever antibodies were still detectable after a median time of 13 years (range: 2-32 years) post-immunization. Our data suggest there is long-term persistence of antibodies to yellow fever in SOT recipients who have been vaccinated prior to transplantation. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  7. Vaccination against typhoid fever: present status.

    PubMed Central

    Ivanoff, B.; Levine, M. M.; Lambert, P. H.

    1994-01-01

    Typhoid fever remains an underestimated important health problem in many developing countries, causing more than 600,000 deaths annually in the world. Because of the reactogenicity of the parenteral, killed whole-cell vaccine, research has been oriented towards vaccination orally using live organisms and purified antigen. Live vaccine Ty21a, given by the oral route, has been extensively tested in several studies in developing countries. Its liquid formulation was the most effective, providing more than 60% protection after 7 years of follow-up. A Vi polysaccharide vaccine has been elaborated and provided more than 65% protection; after 3 years of follow-up the Vi antibody level was still at a high level. These two vaccines are therefore candidates for use in public health control programmes. Before such use, however, they need further evaluation for safety and protective efficacy when administered to the EPI-targeted age groups. The question of whether typhoid fever vaccines interfere with the response to simultaneously administered measles vaccine must also be studied. New live vaccines, given by the oral route in one dose, have been constructed through genetic engineering. The first results are promising, but they must be improved before use in a large-scale study. These strains could be used as live vector to deliver foreign antigens to the intestinal mucosa. PMID:7867143

  8. Association of Rift Valley fever virus infection with miscarriage in Sudanese women: a cross-sectional study.

    PubMed

    Baudin, Maria; Jumaa, Ammar M; Jomma, Huda J E; Karsany, Mubarak S; Bucht, Göran; Näslund, Jonas; Ahlm, Clas; Evander, Magnus; Mohamed, Nahla

    2016-11-01

    Rift Valley fever virus is an emerging mosquito-borne virus that causes infections in animals and human beings in Africa and the Arabian Peninsula. Outbreaks of Rift Valley fever lead to mass abortions in livestock, but such abortions have not been identified in human beings. Our aim was to investigate the cause of miscarriages in febrile pregnant women in an area endemic for Rift Valley fever. Pregnant women with fever of unknown origin who attended the governmental hospital of Port Sudan, Sudan, between June 30, 2011, and Nov 17, 2012, were sampled at admission and included in this cross-sectional study. Medical records were retrieved and haematological tests were done on patient samples. Presence of viral RNA as well as antibodies against a variety of viruses were analysed. Any association of viral infections, symptoms, and laboratory parameters to pregnancy outcome was investigated using Pearson's χ 2 test. Of 130 pregnant women with febrile disease, 28 were infected with Rift Valley fever virus and 31 with chikungunya virus, with typical clinical and laboratory findings for the infection in question. 15 (54%) of 28 women with an acute Rift Valley fever virus infection had miscarriages compared with 12 (12%) of 102 women negative for Rift Valley fever virus (p<0·0001). In a multiple logistic regression analysis, adjusting for age, haemorrhagic disease, and chikungunya virus infection, an acute Rift Valley fever virus infection was an independent predictor of having a miscarriage (odds ratio 7·4, 95% CI 2·7-20·1; p<0·0001). This study is the first to show an association between infection with Rift Valley fever virus and miscarriage in pregnant women. Further studies are warranted to investigate the possible mechanisms. Our findings have implications for implementation of preventive measures, and evidence-based information to the public in endemic countries should be strongly recommended during Rift Valley fever outbreaks. Schlumberger Faculty for the

  9. Yellow Fever Vaccine Booster Doses: Recommendations of the Advisory Committee on Immunization Practices, 2015.

    PubMed

    Staples, J Erin; Bocchini, Joseph A; Rubin, Lorry; Fischer, Marc

    2015-06-19

    On February 26, 2015, the Advisory Committee on Immunization Practices (ACIP) voted that a single primary dose of yellow fever vaccine provides long-lasting protection and is adequate for most travelers. ACIP also approved recommendations for at-risk laboratory personnel and certain travelers to receive additional doses of yellow fever vaccine (Box). The ACIP Japanese Encephalitis and Yellow Fever Vaccines Workgroup evaluated published and unpublished data on yellow fever vaccine immunogenicity and safety. The evidence for benefits and risks associated with yellow fever vaccine booster doses was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) framework. This report summarizes the evidence considered by ACIP and provides the updated recommendations for yellow fever vaccine booster doses.

  10. Recent advances in the development of antiviral therapeutics for Rift Valley fever virus infection.

    PubMed

    Atkins, Colm; Freiberg, Alexander N

    2017-11-01

    Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus endemic to sub-Saharan Africa and the Arabian Peninsula and the etiological agent of Rift Valley fever. Rift Valley fever is a disease of major public health and economic concern, affecting livestock and humans. In ruminants, RVFV infection is characterized by high mortality rates in newborns and near 100% abortion rates in pregnant animals. Infection in humans is typically manifested as a self-limiting febrile illness, but can lead to severe and fatal hepatitis, encephalitis, hemorrhagic fever or retinitis with partial or complete blindness. Currently, there are no specific treatment options available for RVFV infection. This review presents a summary of the therapeutic approaches that have been explored on the treatment of RVFV infection.

  11. Regional dust storm modeling for health services: The case of valley fever

    NASA Astrophysics Data System (ADS)

    Sprigg, William A.; Nickovic, Slobodan; Galgiani, John N.; Pejanovic, Goran; Petkovic, Slavko; Vujadinovic, Mirjam; Vukovic, Ana; Dacic, Milan; DiBiase, Scott; Prasad, Anup; El-Askary, Hesham

    2014-09-01

    On 5 July 2011, a massive dust storm struck Phoenix, Arizona (USA), raising concerns for increased cases of valley fever (coccidioidomycosis, or, cocci). A quasi-operational experimental airborne dust forecast system predicted the event and provides model output for continuing analysis in collaboration with public health and air quality communities. An objective of this collaboration was to see if a signal in cases of valley fever in the region could be detected and traced to the storm - an American haboob. To better understand the atmospheric life cycle of cocci spores, the DREAM dust model (also herein, NMME-DREAM) was modified to simulate spore emission, transport and deposition. Inexact knowledge of where cocci-causing fungus grows, the low resolution of cocci surveillance and an overall active period for significant dust events complicate analysis of the effect of the 5 July 2011 storm. In the larger context of monthly to annual disease surveillance, valley fever statistics, when compared against PM10 observation networks and modeled airborne dust concentrations, may reveal a likely cause and effect. Details provided by models and satellites fill time and space voids in conventional approaches to air quality and disease surveillance, leading to land-atmosphere modeling and remote sensing that clearly mark a path to advance valley fever epidemiology, surveillance and risk avoidance.

  12. Efficacy of a recombinant Rift Valley fever virus MP-12 with NSm deletion as a vaccine candidate in sheep

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family and Phlebovirus genus, causes RVF, a disease of ruminants and man, endemic in Sub-Saharan African countries. However, outbreaks in Yemen and Saudi Arabia demonstrate the ability for RVFV to spread into virgin territory...

  13. Reemergence of Rift Valley fever, Mauritania, 2010.

    PubMed

    Faye, Ousmane; Ba, Hampathé; Ba, Yamar; Freire, Caio C M; Faye, Oumar; Ndiaye, Oumar; Elgady, Isselmou O; Zanotto, Paolo M A; Diallo, Mawlouth; Sall, Amadou A

    2014-02-01

    A Rift Valley fever (RVF) outbreak in humans and animals occurred in Mauritania in 2010. Thirty cases of RVF in humans and 3 deaths were identified. RVFV isolates were recovered from humans, camels, sheep, goats, and Culex antennatus mosquitoes. Phylogenetic analysis of isolates indicated a virus origin from western Africa.

  14. The phylogeny of yellow fever virus 17D vaccines.

    PubMed

    Stock, Nina K; Boschetti, Nicola; Herzog, Christian; Appelhans, Marc S; Niedrig, Matthias

    2012-02-01

    In recent years the safety of the yellow fever live vaccine 17D came under scrutiny. The focus was on serious adverse events after vaccinations that resemble a wild type infection with yellow fever and whose reasons are still not known. Also the exact mechanism of attenuation of the vaccine remains unknown to this day. In this context, the standards of safety and surveillance in vaccine production and administration have been discussed. Therein embodied was the demand for improved documentation of the derivation of the seed virus used for yellow fever vaccine production. So far, there was just a historical genealogy available that is based on source area and passage level. However, there is a need for a documentation based on molecular information to get better insights into the mechanisms of pathology. In this work we sequenced the whole genome of different passages of the YFV-17D strain used by Crucell Switzerland AG for vaccine production. Using all other publically available 17D full genome sequences we compared the sequence variance of all vaccine strains and oppose a phylogenetic tree based on full genome sequences to the historical genealogy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Transmission of yellow fever vaccine virus through breast-feeding - Brazil, 2009.

    PubMed

    2010-02-12

    In April, 2009, the state health department of Rio Grande do Sul, Brazil, was notified by the Cachoeira do Sul municipal health department of a case of meningoencephalitis requiring hospitalization in an infant whose mother recently had received yellow fever vaccine during a postpartum visit. The Field Epidemiology Training Program of the Secretariat of Surveillance in Health of the Brazilian Ministry of Health assisted state and municipal health departments with an investigation. This report summarizes the results of that investigation, which determined that the infant acquired yellow fever vaccine virus through breast-feeding. The mother reported 2 days of headache, malaise, and low fever occurring 5 days after receipt of yellow fever vaccine. The infant, who was exclusively breast-fed, was hospitalized at age 23 days with seizures requiring continuous infusion of intravenous anticonvulsants. The infant received antimicrobial and antiviral treatment for meningoencephalitis. The presence of 17DD yellow fever virus was detected by reverse transcription--polymerase chain reaction (RT-PCR) in the infant's cerebrospinal fluid (CSF); yellow fever--specific immunoglobulin M (IgM) antibodies also were present in serum and CSF. The infant recovered completely, was discharged after 24 days of hospitalization, and has had normal neurodevelopment and growth through age 6 months. The findings in this report provide documentation that yellow fever vaccine virus can be transmitted via breast-feeding. Administration of yellow fever vaccine to breast-feeding women should be avoided except in situations where exposure to yellow fever viruses cannot be avoided or postponed.

  16. Vaccine Platforms to Control Arenaviral Hemorrhagic Fevers.

    PubMed

    Carrion, Ricardo; Bredenbeek, Peter; Jiang, Xiaohong; Tretyakova, Irina; Pushko, Peter; Lukashevich, Igor S

    2012-11-20

    Arenaviruses are rodent-borne emerging human pathogens. Diseases caused by these viruses, e.g., Lassa fever (LF) in West Africa and South American hemorrhagic fevers (HFs), are serious public health problems in endemic areas. We have employed replication-competent and replication-deficient strategies to design vaccine candidates potentially targeting different groups "at risk". Our leader LF vaccine candidate, the live reassortant vaccine ML29, is safe and efficacious in all tested animal models including non-human primates. In this study we showed that treatment of fatally infected animals with ML29 two days after Lassa virus (LASV) challenge protected 80% of the treated animals. In endemic areas, where most of the target population is poor and many live far from health care facilities, a single-dose vaccination with ML29 would be ideal solution. Once there is an outbreak, a fast-acting vaccine or post-exposure prophylaxis would be best. The 2(nd) vaccine technology is based on Yellow Fever (YF) 17D vaccine. We designed YF17D-based recombinant viruses expressing LASV glycoproteins (GP) and showed protective efficacy of these recombinants. In the current study we developed a novel technology to clone LASV nucleocapsid within YF17D C gene. Low immunogenicity and stability of foreign inserts must be addressed to design successful LASV/YFV bivalent vaccines to control LF and YF in overlapping endemic areas of West Africa. The 3(rd) platform is based on the new generation of alphavirus replicon virus-like-particle vectors (VLPV). Using this technology we designed VLPV expressing LASV GP with enhanced immunogenicity and bivalent VLPV expressing cross-reactive GP of Junin virus (JUNV) and Machupo virus (MACV), causative agents of Argentinian and Bolivian HF, respectively. A prime-boost regimen required for VLPV immunization might be practical for medical providers, military, lab personnel, and visitors in endemic areas.

  17. An Atypical Local Vesicular Reaction to the Yellow Fever Vaccine.

    PubMed

    Wauters, Robert H; Hernandez, Camellia L; Petersen, Maureen M

    2017-09-19

    Yellow fever vaccine is a live attenuated viral inoculation indicated for patients traveling to endemic areas. The vaccine is generally well tolerated with minimal adverse effects. Typical side effects include malaise, pain at the injection site, and, albeit rarely, immediate hypersensitivity reactions. We present a case of a rare adverse reaction to yellow fever vaccine in which a patient developed vesicular lesions resulting in bullae and circumferential hyperpigmentation.

  18. Rift Valley Fever, Mayotte, 2007–2008

    PubMed Central

    Giry, Claude; Gabrie, Philippe; Tarantola, Arnaud; Pettinelli, François; Collet, Louis; D’Ortenzio, Eric; Renault, Philippe; Pierre, Vincent

    2009-01-01

    After the 2006–2007 epidemic wave of Rift Valley fever (RVF) in East Africa and its circulation in the Comoros, laboratory case-finding of RVF was conducted in Mayotte from September 2007 through May 2008. Ten recent human RVF cases were detected, which confirms the indigenous transmission of RFV virus in Mayotte. PMID:19331733

  19. Yellow fever vaccine-associated neurological disease, a suspicious case.

    PubMed

    Beirão, Pedro; Pereira, Patrícia; Nunes, Andreia; Antunes, Pedro

    2017-03-02

    A 70-year-old man with known cardiovascular risk factors, presented with acute onset expression aphasia, agraphia, dyscalculia, right-left disorientation and finger agnosia, without fever or meningeal signs. Stroke was thought to be the cause, but cerebrovascular disease investigation was negative. Interviewing the family revealed he had undergone yellow fever vaccination 18 days before. Lumbar puncture revealed mild protein elevation. Cultural examinations, Coxiella burnetti, and neurotropic virus serologies were negative. Regarding the yellow fever virus, IgG was identified in serum and cerebrospinal fluid (CSF), with negative IgM and virus PCR in CSF. EEG showed an encephalopathic pattern. The patient improved gradually and a week after discharge was his usual self. Only criteria for suspect neurotropic disease were met, but it's possible the time spent between symptom onset and lumbar puncture prevented a definite diagnosis of yellow fever vaccine-associated neurological disease. This gap would have been smaller if the vaccination history had been collected earlier. 2017 BMJ Publishing Group Ltd.

  20. Mutual interference on the immune response to yellow fever vaccine and a combined vaccine against measles, mumps and rubella.

    PubMed

    Nascimento Silva, Juliana Romualdo; Camacho, Luiz Antonio B; Siqueira, Marilda M; Freire, Marcos de Silva; Castro, Yvone P; Maia, Maria de Lourdes S; Yamamura, Anna Maya Y; Martins, Reinaldo M; Leal, Maria de Luz F

    2011-08-26

    A randomized trial was conducted to assess the immunogenicity and reactogenicity of yellow fever vaccines (YFV) given either simultaneously in separate injections, or 30 days or more after a combined measles-mumps-rubella (MMR) vaccine. Volunteers were also randomized to YFV produced from 17DD and WHO-17D-213 substrains. The study group comprised 1769 healthy 12-month-old children brought to health care centers in Brasilia for routine vaccination. The reactogenicity was of the type and frequency expected for the vaccines and no severe adverse event was associated to either vaccine. Seroconversion and seropositivity 30 days or more after vaccination against yellow fever was similar across groups defined by YFV substrain. Subjects injected YFV and MMR simultaneously had lower seroconversion rates--90% for rubella, 70% for yellow fever and 61% for mumps--compared with those vaccinated 30 days apart--97% for rubella, 87% for yellow fever and 71% for mumps. Seroconversion rates for measles were higher than 98% in both comparison groups. Geometric mean titers for rubella and for yellow fever were approximately three times higher among those who got the vaccines 30 days apart. For measles and mumps antibodies GMTs were similar across groups. MMR's interference in immune response of YFV and YFV's interference in immune response of rubella and mumps components of MMR had never been reported before but are consistent with previous observations from other live vaccines. These results may affect the recommendations regarding primary vaccination with yellow fever vaccine and MMR. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Rift Valley fever: a mosquito-borne emerging disease

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) (Bunyaviridae: Phlebovirus) is mosquito-borne zoonotic emerging infectious viral disease caused by RVF virus (RVFV) that presents significant threats to global public health and agriculture in Africa and the Middle East. RVFV is listed as a select agent with significant conce...

  2. Molecular biology and genetic diversity of Rift Valley fever virus

    PubMed Central

    Ikegami, Tetsuro

    2013-01-01

    Rift Valley fever virus (RVFV), a member of the family Bunyaviridae, genus Phlebovirus, is the causative agent of Rift Valley fever (RVF), a mosquito-borne disease of ruminant animals and humans. The generation of a large sequence database has facilitated studies of the evolution and spread of the virus. Bayesian analyses indicate that currently circulating strains of RVFV are descended from an ancestral species that emerged from a natural reservoir in Africa when large-scale cattle and sheep farming were introduced during the 19th century. Viruses descended from multiple lineages persist in that region, through infection of reservoir animals and vertical transmission in mosquitoes, emerging in years of heavy rainfall to cause epizootics and epidemics. On a number of occasions, viruses from these lineages have been transported outside the enzootic region through the movement of infected animals or mosquitoes, triggering outbreaks in countries such as Egypt, Saudi Arabia, Mauritania and Madagascar, where RVF had not previously been seen. Such viruses could potentially become established in their new environments through infection of wild and domestic ruminants and other animals and vertical transmission in local mosquito species. Despite their extensive geographic dispersion, all strains of RVFV remain closely related at the nucleotide and amino acid level. The high degree of conservation of genes encoding the virion surface glycoproteins suggests that a single vaccine should protect against all currently circulating RVFV strains. Similarly, preservation of the sequence of the RNA-dependent RNA polymerase across viral lineages implies that antiviral drugs targeting the enzyme should be effective against all strains. Researchers should be encouraged to collect additional RVFV isolates and perform whole-genome sequencing and phylogenetic analysis, so as to enhance our understanding of the continuing evolution of this important virus. This review forms part of a series

  3. Antibody response to 17D yellow fever vaccine in Ghanaian infants.

    PubMed Central

    Osei-Kwasi, M.; Dunyo, S. K.; Koram, K. A.; Afari, E. A.; Odoom, J. K.; Nkrumah, F. K.

    2001-01-01

    OBJECTIVES: To assess the seroresponses to yellow fever vaccination at 6 and 9 months of age; assess any possible adverse effects of immunization with the 17D yellow fever vaccine in infants, particularly at 6 months of age. METHODS: Four hundred and twenty infants who had completed BCG, OPV and DPT immunizations were randomized to receive yellow fever immunization at either 6 or 9 months. A single dose of 0.5 ml of the reconstituted vaccine was administered to each infant by subcutaneous injection. To determine the yellow fever antibody levels of the infants, each donated 1 ml whole blood prior to immunization and 3 months post-immunization. Each serum sample was titred on Vero cells against the vaccine virus. FINDINGS: The most common adverse reactions reported were fever, cough, diarrhoea and mild reactions at the inoculation site. The incidences of adverse reactions were not statistically different in both groups. None of the pre-immunization sera in both age groups had detectable yellow fever antibodies. Infants immunized at 6 months recorded seroconversion of 98.6% and those immunized at 9 months recorded 98% seroconversion. The GMT of their antibodies were 158.5 and 129.8, respectively. CONCLUSIONS: The results indicate that seroresponses to yellow fever immunization at 6 and 9 months as determined by seroconversion and GMTs of antibodies are similar. The findings of good seroresponses at 6 months without significant adverse effects would suggest that the 17D yellow fever vaccine could be recommended for use in children at 6 months in outbreak situations or in high risk endemic areas. PMID:11731813

  4. Vaccination for typhoid fever in sub-Saharan Africa.

    PubMed

    Slayton, Rachel B; Date, Kashmira A; Mintz, Eric D

    2013-04-01

    Emerging data on the epidemiologic, clinical and microbiologic aspects of typhoid fever in sub-Saharan Africa call for new strategies and new resources to bring the regional epidemic under control. Areas with endemic disease at rates approaching those in south Asia have been identified; large, prolonged and severe outbreaks are occurring more frequently; and resistance to antimicrobial agents, including fluoroquinolones is increasing. Surveillance for typhoid fever is hampered by the lack of laboratory resources for rapid diagnosis, culture confirmation and antimicrobial susceptibility testing. Nonetheless, in 2010, typhoid fever was estimated to cause 725 incident cases and 7 deaths per 100,000 person years in sub-Saharan Africa. Efforts for prevention and outbreak control are challenged by limited access to safe drinking water and sanitation and by a lack of resources to initiate typhoid immunization. A comprehensive approach to typhoid fever prevention including laboratory and epidemiologic capacity building, investments in water, sanitation and hygiene and reconsideration of the role of currently available vaccines could significantly reduce the disease burden. Targeted vaccination using currently available typhoid vaccines should be considered as a short- to intermediate-term risk reduction strategy for high-risk groups across sub-Saharan Africa.

  5. Vaccinating in disease-free regions: a vaccine model with application to yellow fever.

    PubMed

    Codeço, Claudia T; Luz, Paula M; Coelho, Flavio; Galvani, Alison P; Struchiner, Claudio

    2007-12-22

    Concerns regarding natural or induced emergence of infectious diseases have raised a debate on the pros and cons of pre-emptive vaccination of populations under uncertain risk. In the absence of immediate risk, ethical issues arise because even smaller risks associated with the vaccine are greater than the immediate disease risk (which is zero). The model proposed here seeks to formalize the vaccination decision process looking from the perspective of the susceptible individual, and results are shown in the context of the emergence of urban yellow fever in Brazil. The model decomposes the individual's choice about vaccinating or not into uncertain components. The choice is modelled as a function of (i) the risk of a vaccine adverse event, (ii) the risk of an outbreak and (iii) the probability of receiving the vaccine or escaping serious disease given an outbreak. Additionally, we explore how this decision varies as a function of mass vaccination strategies of varying efficiency. If disease is considered possible but unlikely (risk of outbreak less than 0.1), delay vaccination is a good strategy if a reasonably efficient campaign is expected. The advantage of waiting increases as the rate of transmission is reduced (low R0) suggesting that vector control programmes and emergency vaccination preparedness work together to favour this strategy. The opposing strategy, vaccinating pre-emptively, is favoured if the probability of yellow fever urbanization is high or if expected R0 is high and emergency action is expected to be slow. In summary, our model highlights the nonlinear dependence of an individual's best strategy on the preparedness of a response to a yellow fever outbreak or other emergent infectious disease.

  6. Interim Canadian recommendations for the use of a fractional dose of yellow fever vaccine during a vaccine shortage

    PubMed Central

    2016-01-01

    Summary This statement outlines interim recommendations intended for use during yellow fever vaccine shortages only. The recommendations differ from the standard recommendations for yellow fever vaccination in the Canadian Immunization Guide and in the Committee to Advise on Tropical Medicine and Travel (CATMAT) Statement for Travellers and Yellow Fever. PMID:29770023

  7. Rift valley fever in the US: Commerce networks, climate, and susceptible vector and host populations

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a mosquito-borne hemorrhagic viral disease with substantial negative impacts on public and animal health in its endemic range of sub-Saharan Africa. Rift Valley fever virus (RVFV) could enter the United States and lead to widespread morbidity and mortality in humans, domes...

  8. Seroepidemiological Survey of Rift Valley Fever Virus in Ruminants in Garissa, Kenya.

    PubMed

    Nanyingi, Mark O; Muchemi, Gerald M; Thumbi, Samuel M; Ade, Fredrick; Onyango, Clayton O; Kiama, Stephen G; Bett, Bernard

    2017-02-01

    Rift Valley fever (RVF) is a vector-borne zoonotic disease caused by phlebovirus in the family Bunyaviridae. In Kenya, major outbreaks occurred in 1997-1998 and 2006-2007 leading to human deaths, huge economic losses because of livestock morbidity, mortality, and restrictions on livestock trade. This study was conducted to determine RVF seroprevalence in cattle, sheep, and goats during an interepidemic period in Garissa County in Kenya. In July 2013, we performed a cross-sectional survey and sampled 370 ruminants from eight RVF-prone areas of Garissa County. Rift Valley fever virus (RVFV) antibodies were detected using a multispecies competitive enzyme-linked immunosorbent assay. Mixed effect logistic regression models were used to determine the association between RVF seropositivity and species, sex, age, and location of the animals. A total of 271 goats, 87 sheep, and 12 cattle were sampled and the overall immunoglobulin G seroprevalence was 27.6% (95% CI [23-32.1]). Sheep, cattle, and goats had seroprevalences of 32.2% (95% CI [20.6-31]), 33.3% (95% CI [6.7-60]), and 25.8% (95% CI [22.4-42]), respectively. Seropositivity in males was 31.8% (95% CI [22.2-31.8]), whereas that of females was 27% (95% CI [18.1-45.6]). The high seroprevalence suggests RVFV circulation in domestic ruminants in Garissa and may be indicative of a subclinal infection. These findings provide evidence of RVF disease status that will assist decision-makers to flag areas of high risk of RVF outbreaks and prioritize the implementation of timely and cost-effective vaccination programs.

  9. Global yellow fever vaccination coverage from 1970 to 2016: an adjusted retrospective analysis.

    PubMed

    Shearer, Freya M; Moyes, Catherine L; Pigott, David M; Brady, Oliver J; Marinho, Fatima; Deshpande, Aniruddha; Longbottom, Joshua; Browne, Annie J; Kraemer, Moritz U G; O'Reilly, Kathleen M; Hombach, Joachim; Yactayo, Sergio; de Araújo, Valdelaine E M; da Nóbrega, Aglaêr A; Mosser, Jonathan F; Stanaway, Jeffrey D; Lim, Stephen S; Hay, Simon I; Golding, Nick; Reiner, Robert C

    2017-11-01

    Substantial outbreaks of yellow fever in Angola and Brazil in the past 2 years, combined with global shortages in vaccine stockpiles, highlight a pressing need to assess present control strategies. The aims of this study were to estimate global yellow fever vaccination coverage from 1970 through to 2016 at high spatial resolution and to calculate the number of individuals still requiring vaccination to reach population coverage thresholds for outbreak prevention. For this adjusted retrospective analysis, we compiled data from a range of sources (eg, WHO reports and health-service-provider registeries) reporting on yellow fever vaccination activities between May 1, 1939, and Oct 29, 2016. To account for uncertainty in how vaccine campaigns were targeted, we calculated three population coverage values to encompass alternative scenarios. We combined these data with demographic information and tracked vaccination coverage through time to estimate the proportion of the population who had ever received a yellow fever vaccine for each second level administrative division across countries at risk of yellow fever virus transmission from 1970 to 2016. Overall, substantial increases in vaccine coverage have occurred since 1970, but notable gaps still exist in contemporary coverage within yellow fever risk zones. We estimate that between 393·7 million and 472·9 million people still require vaccination in areas at risk of yellow fever virus transmission to achieve the 80% population coverage threshold recommended by WHO; this represents between 43% and 52% of the population within yellow fever risk zones, compared with between 66% and 76% of the population who would have required vaccination in 1970. Our results highlight important gaps in yellow fever vaccination coverage, can contribute to improved quantification of outbreak risk, and help to guide planning of future vaccination efforts and emergency stockpiling. The Rhodes Trust, Bill & Melinda Gates Foundation, the

  10. [Yellow fever vaccination in non-immunocompetent patients].

    PubMed

    Bruyand, M; Receveur, M C; Pistone, T; Verdière, C H; Thiebaut, R; Malvy, D

    2008-10-01

    Any person travelling in countries where yellow fever (YF) is endemic and without presenting contra-indication for the vaccination against YF may be vaccinated. This vaccination can very rarely induce a potentially lethal neurotropic or viscerotropic disease. In severely immunodeficient patients, the vaccination is contra-indicated because postvaccinal encephalitis may occur after the vaccination, due to vaccine strain pathogenecity. It is important to evaluate the general health status in elderly individuals before vaccinating because of the increased risk of viscerotropic disease in people of 60 years of age and over. Pregnant women should not be vaccinated, except if departure to an endemic zone is unavoidable. YF vaccinatio is contra-indicated for newborns under six months of age. Solid organ grafts, congenital immunodeficiency, leukemia, lymphoma, cancer, and immunosuppressive treatments are contra-indications for this vaccination. Nevertheless, YF immunization is possible after a bone marrow graft and a two-year period without graft-versus-host disease or immunosuppressive treatment. There is no data to support that immunization of the dono prior to the graft could confer protection against yellow fever to the recipient. Low doses, short courses of corticosteroids either as systemic treatment or intra-articular injections are not contra-indications for YF vaccination. Patients infected with HIV with stable clinical status and T CD4-cel count above 200 cells per millimetre cube may be vaccinated. Thymic diseases, including thymoma and thymectomy, are contra-indications for YF vaccination. Finally, a substantial residual level of antibodies beyond 10 years after the latest vaccination could confer protection, thus avoiding a new vaccination when it is an issue.

  11. A hierarchical network approach for modeling Rift Valley fever epidemics with applications in North America

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a vector-borne zoonotic disease which causes high morbidity and mortality in livestock. In the event Rift Valley fever virus is introduced to the United States or other non-endemic areas, understanding the potential patterns of spread and the areas at risk based on disease...

  12. An inactivated yellow fever 17DD vaccine cultivated in Vero cell cultures.

    PubMed

    Pereira, Renata C; Silva, Andrea N M R; Souza, Marta Cristina O; Silva, Marlon V; Neves, Patrícia P C C; Silva, Andrea A M V; Matos, Denise D C S; Herrera, Miguel A O; Yamamura, Anna M Y; Freire, Marcos S; Gaspar, Luciane P; Caride, Elena

    2015-08-20

    Yellow fever is an acute infectious disease caused by prototype virus of the genus Flavivirus. It is endemic in Africa and South America where it represents a serious public health problem causing epidemics of hemorrhagic fever with mortality rates ranging from 20% to 50%. There is no available antiviral therapy and vaccination is the primary method of disease control. Although the attenuated vaccines for yellow fever show safety and efficacy it became necessary to develop a new yellow fever vaccine due to the occurrence of rare serious adverse events, which include visceral and neurotropic diseases. The new inactivated vaccine should be safer and effective as the existing attenuated one. In the present study, the immunogenicity of an inactivated 17DD vaccine in C57BL/6 mice was evaluated. The yellow fever virus was produced by cultivation of Vero cells in bioreactors, inactivated with β-propiolactone, and adsorbed to aluminum hydroxide (alum). Mice were inoculated with inactivated 17DD vaccine containing alum adjuvant and followed by intracerebral challenge with 17DD virus. The results showed that animals receiving 3 doses of the inactivated vaccine (2 μg/dose) with alum adjuvant had neutralizing antibody titers above the cut-off of PRNT50 (Plaque Reduction Neutralization Test). In addition, animals immunized with inactivated vaccine showed survival rate of 100% after the challenge as well as animals immunized with commercial attenuated 17DD vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Longitudinal myelitis associated with yellow fever vaccination.

    PubMed

    Chaves, M; Riccio, P; Patrucco, L; Rojas, J I; Cristiano, E

    2009-07-01

    Severe adverse reaction to yellow fever (YF) vaccine includes the yellow fever vaccine-associated neurotropic disease. This terminology includes postvaccinal encephalitis, acute disseminated encephalomyelitis, and Guillain-Barré syndrome. The objective of this communication is to report a patient who received a YF vaccine in Argentina and subsequently developed longitudinal myelitis with a symptom that had previously gone unreported in the literature. A 56-year-old man began with progressive paraparesia, urinary retention, and constipation 48 h previous to admission. The patient received YF vaccine 45 days prior to the onset of the symptoms. There was no history of other immunization or relevant condition. MR of the spine showed longitudinal intramedullary hyperintense signal (D5-12) without gadolinium enhancement. A high concentration of YFV-specific IgM vaccine antibody was found in the cerebrospinal fluid (CSF). Serological tests for other flavivirus were negative. A diagnosis of longitudinal myelitis without encephalitis associated with YF vaccine was performed and symptoms improved 5 days later. This is the first report dealing with longitudinal myelitis as a serious adverse event associated with YF vaccination in which confirmation of the presence of antibodies in CSF was found. To date, it is also the first report with serological confirmation in Argentina and in South America. We consider that the present investigation will raise awareness in the region in the reporting of adverse events related to YF vaccine and improve our knowledge of adverse reactions to the vaccine.

  14. Typhoid fever vaccination strategies.

    PubMed

    Date, Kashmira A; Bentsi-Enchill, Adwoa; Marks, Florian; Fox, Kimberley

    2015-06-19

    Typhoid vaccination is an important component of typhoid fever prevention and control, and is recommended for public health programmatic use in both endemic and outbreak settings. We reviewed experiences with various vaccination strategies using the currently available typhoid vaccines (injectable Vi polysaccharide vaccine [ViPS], oral Ty21a vaccine, and injectable typhoid conjugate vaccine [TCV]). We assessed the rationale, acceptability, effectiveness, impact and implementation lessons of these strategies to inform effective typhoid vaccination strategies for the future. Vaccination strategies were categorized by vaccine disease control strategy (preemptive use for endemic disease or to prevent an outbreak, and reactive use for outbreak control) and vaccine delivery strategy (community-based routine, community-based campaign and school-based). Almost all public health typhoid vaccination programs used ViPS vaccine and have been in countries of Asia, with one example in the Pacific and one experience using the Ty21a vaccine in South America. All vaccination strategies were found to be acceptable, feasible and effective in the settings evaluated; evidence of impact, where available, was strongest in endemic settings and in the short- to medium-term. Vaccination was cost-effective in high-incidence but not low-incidence settings. Experience in disaster and outbreak settings remains limited. TCVs have recently become available and none are WHO-prequalified yet; no program experience with TCVs was found in published literature. Despite the demonstrated success of several typhoid vaccination strategies, typhoid vaccines remain underused. Implementation lessons should be applied to design optimal vaccination strategies using TCVs which have several anticipated advantages, such as potential for use in infant immunization programs and longer duration of protection, over the ViPS and Ty21a vaccines for typhoid prevention and control. Copyright © 2015. Published by

  15. Application of Immunosignatures for Diagnosis of Valley Fever

    PubMed Central

    Navalkar, Krupa Arun; Johnston, Stephen Albert; Woodbury, Neal; Galgiani, John N.; Magee, D. Mitchell; Chicacz, Zbigniew

    2014-01-01

    Valley fever (VF) is difficult to diagnose, partly because the symptoms of VF are confounded with those of other community-acquired pneumonias. Confirmatory diagnostics detect IgM and IgG antibodies against coccidioidal antigens via immunodiffusion (ID). The false-negative rate can be as high as 50% to 70%, with 5% of symptomatic patients never showing detectable antibody levels. In this study, we tested whether the immunosignature diagnostic can resolve VF false negatives. An immunosignature is the pattern of antibody binding to random-sequence peptides on a peptide microarray. A 10,000-peptide microarray was first used to determine whether valley fever patients can be distinguished from 3 other cohorts with similar infections. After determining the VF-specific peptides, a small 96-peptide diagnostic array was created and tested. The performances of the 10,000-peptide array and the 96-peptide diagnostic array were compared to that of the ID diagnostic standard. The 10,000-peptide microarray classified the VF samples from the other 3 infections with 98% accuracy. It also classified VF false-negative patients with 100% sensitivity in a blinded test set versus 28% sensitivity for ID. The immunosignature microarray has potential for simultaneously distinguishing valley fever patients from those with other fungal or bacterial infections. The same 10,000-peptide array can diagnose VF false-negative patients with 100% sensitivity. The smaller 96-peptide diagnostic array was less specific for diagnosing false negatives. We conclude that the performance of the immunosignature diagnostic exceeds that of the existing standard, and the immunosignature can distinguish related infections and might be used in lieu of existing diagnostics. PMID:24964807

  16. Mapping the Risk of Rift Valley fever re-emergence in Southern Africa using remote sensing data

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever is a viral disease of animals and humans that occurs throughout sub-Saharan Africa, Egypt and the Arabian Peninsula. Outbreaks of the disease are episodic and closely linked to climate variability, especially widespread elevated rainfall that facilitates Rift Valley fever virus tra...

  17. [Completed sequences analysis on the Chinese attenuated yellow fever 17D vaccine strain and the WHO standard yellow fever 17D vaccine strain].

    PubMed

    Li, Jing; Yu, Yong-Xin; Dong, Guan-Mu

    2009-04-01

    To compare the molecular characteristics of the Chinese attenuated yellow fever 17D vaccine strain and the WHO reference yellow fever 17D vaccine strain. The primers were designed according to the published nucleotide sequences of YFV 17D strains in GenBank. Total RNA of was extracted by the Trizol and reverse transcripted. The each fragments of the YFV genome were amplified by PCR and sequenced subsequently. The fragments of the 5' and 3' end of the two strains were cloned into the pGEM T-easy vector and then sequenced. The nucleotide acid and amino acid sequences of the homology to both strains were 99% with each other. No obvious nulceotide changes were found in the sequences of the entire genome of each 17D strains. Moreover, there was no obvious changes in the E protein genes. But the E173 of YF17D Tiantan, associted with the virulence, had mutantions. And the two live attenuated yellow fever 17D vaccine strains fell to the same lineage by the phylogenetic analysis. The results indicated that the two attenuated yellow fever 17D vaccine viruses accumulates mutations at a very low frequency and the genomes were relative stable.

  18. A Fusion-Inhibiting Peptide against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses

    DTIC Science & Technology

    2013-09-12

    Interests: The authors have declared that no competing interests exist. * E-mail: connie.schmaljohn@amedd.army.mil Introduction Rift Valley fever (RVF...against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S) 5d...MFLGWSFDFGSLWGNKPWF stem 450–468 RVFV-10sc WSSGLPFGNFGLSWFDMGFWS stem 447–467 doi:10.1371/journal.pntd.0002430.t001 Author Summary Entry into a cell is an essential

  19. Viscerotropic and neurotropic disease following vaccination with the 17D yellow fever vaccine, ARILVAX.

    PubMed

    Kitchener, Scott

    2004-06-02

    Yellow fever vaccine associated viscerotropic (YFV-AVD) and neurotropic (YFV-AND) diseases have been recently identified in various countries. Previously post-vaccination multiple organ system failure was recognised as a rare serious adverse event of yellow fever vaccination and 21 cases of post-vaccinal (YFV) encephalitis had been recorded. Incidence data is not available. On investigation of vaccine surveillance reports from Europe following distribution of more than 3 million doses of ARILVAX trade mark, four cases each of YFV-AVD and YFV-AND were found (each 1.3 cases per million doses distributed) for the period 1991 to 2003. The incidence for each is higher after 1996 (2.5 cases per million doses distributed). The incidence of these adverse events appears to be very low with ARILVAX trade mark. Similar incidence data is required from other countries for comparison.

  20. Yellow fever vaccine used in a psoriatic arthritis patient treated with methotrexate: a case report.

    PubMed

    Stuhec, Matej

    2014-01-01

    The yellow fever vaccines on the market are contraindicated for immunocompromised and elderly patients. A case of yellow fever vaccine used in a 27-year-old Slovenian male with psoriatic arthritis during treatment with methotrexate is described. We demonstrate a positive case, since there were no adverse effects in concurrent administration of yellow fever vaccine and methotrexate. This patient did not show severe adverse reactions and did not contract yellow fever despite potential exposure. More research is needed on possible adverse effects of concurrent administration of yellow fever vaccine and methotrexate to determine the potential of this method for more frequent use.

  1. Lay perceptions of risk factors for Rift Valley fever in a pastoral community in northeastern Kenya.

    PubMed

    Ng'ang'a, Caroline M; Bukachi, Salome A; Bett, Bernard K

    2016-01-13

    Human behavioral factors have been found to be central in the transmission of Rift Valley fever. Consumption of contaminated meat and milk in particular have been identified as one of the key risk factors for the transmission of Rift Valley fever in humans. In pastoral communities, livestock is the main source of livelihood from which many benefits such as food as well as economic and cultural services are derived. Zoonotic diseases therefore have a great impact on pastoral communities livelihoods. However, lay perceptions regarding the transmission of these diseases including Rift Valley fever hampers their effective control. This study investigated the lay perceptions of risks for Rift Valley fever transmission in a pastoral community in northeastern Kenya. A qualitative study was carried out in Ijara district, Kenya which was one of the hotspots of Rift Valley during the 2006/2007 outbreak. Data were collected using focus group discussions and narratives guided by checklists. Eight focus group discussions consisting of 83 participants and six narratives were conducted. Data was transcribed, coded and analysed according to Emergent themes. The participants reported that they had experienced Rift Valley fever in their livestock especially sheep and in humans both in 1997/1998 and 2006/2007. However, they believed that infections in humans occurred as a result of mosquito bites and had little to do with their consumption of meat, milk and blood from infected livestock. The participants in this study indicated that they had heard of the risks of acquiring the disease through consumption of livestock products but their experiences did not tally with the information they had received hence to them, Rift Valley fever was not transmissible through their dietary practices. Though the communities in this region were aware of Rift Valley fever, they did not have elaborate information regarding the disease transmission dynamics to humans. To avoid misconception about

  2. Yellow Fever Vaccination of a Primary Vaccinee During Adalimumab Therapy.

    PubMed

    Nash, Esther R; Brand, Myron; Chalkias, Spyridon

    2015-01-01

    In this case report, we describe a 63-year-old female with Crohn's disease since age 16 years, and on adalimumab therapy, who inadvertently received a yellow fever vaccine (YFV) 4 days before her next dose of adalimumab. She had never received YFV. Her next dose of tumor necrosis factor (TNF) antagonist was held. She did not report any adverse effects referable to the vaccine. Reverse transcriptase-polymerase chain reaction (RT-PCR) for yellow fever (YF) viral RNA on days 12 and 18 postvaccination was negative. Neutralizing antibody to YF virus vaccine was immunoprotective on day 18 following vaccination, which further increased by day 26. A neutralizing antibody obtained 2 years following vaccination also remained immunoprotective. © 2015 International Society of Travel Medicine.

  3. Suspected YF-AND after yellow fever vaccination in Finland.

    PubMed

    Jääskeläinen, Anne J; Huhtamo, Eili; Kivioja, Reetta; Domingo, Cristina; Vene, Sirkka; Kallio-Kokko, Hannimari; Niedrig, Matthias; Tienari, Pentti J; Vapalahti, Olli

    2014-11-01

    Yellow fever (YF) vaccine is considered safe but vaccine-associated complications have also been encountered. We report neurological symptoms after YF-vaccination in a previously healthy Finnish male. Other concomitant infections or causes for the symptoms could not be identified. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A Rift Valley Fever Vaccine Trial. 1. Side Effects and Serologic Response Over a Six-Month Follow-Up

    DTIC Science & Technology

    1982-01-01

    strep - injection. One volunteer was excluded tomycin and 10 per cent fetal calf serum. from the trial following detection of se- The cells were...ml swelling, induration) were recorded. Each of lot 1. Three additional individuals who symptom was individually scored on a received the 1 ml dose...plaque-forming units of the tivities, nasal discharge, sore throat , ZH501 strain of Rift Valley fever virus cough, nausea or anorexia, vomiting, and and

  5. Drivers of Rift Valley fever epidemics in Madagascar.

    PubMed

    Lancelot, Renaud; Béral, Marina; Rakotoharinome, Vincent Michel; Andriamandimby, Soa-Fy; Héraud, Jean-Michel; Coste, Caroline; Apolloni, Andrea; Squarzoni-Diaw, Cécile; de La Rocque, Stéphane; Formenty, Pierre B H; Bouyer, Jérémy; Wint, G R William; Cardinale, Eric

    2017-01-31

    Rift Valley fever (RVF) is a vector-borne viral disease widespread in Africa. The primary cycle involves mosquitoes and wild and domestic ruminant hosts. Humans are usually contaminated after contact with infected ruminants. As many environmental, agricultural, epidemiological, and anthropogenic factors are implicated in RVF spread, the multidisciplinary One Health approach was needed to identify the drivers of RVF epidemics in Madagascar. We examined the environmental patterns associated with these epidemics, comparing human and ruminant serological data with environmental and cattle-trade data. In contrast to East Africa, environmental drivers did not trigger the epidemics: They only modulated local Rift Valley fever virus (RVFV) transmission in ruminants. Instead, RVFV was introduced through ruminant trade and subsequent movement of cattle between trade hubs caused its long-distance spread within the country. Contact with cattle brought in from infected districts was associated with higher infection risk in slaughterhouse workers. The finding that anthropogenic rather than environmental factors are the main drivers of RVF infection in humans can be used to design better prevention and early detection in the case of RVF resurgence in the region.

  6. Ultrastructural study of Rift Valley fever virus in the mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Christopher; Steele, Keith E.; Honko, Anna

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed inmore » the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV-host interactions and further characterize the mouse model of RVF.« less

  7. First case of yellow fever vaccine-associated viscerotropic disease (YEL-AVD) in Hong Kong.

    PubMed

    Leung, Wai Shing; Chan, Man Chun; Chik, Shiu Hong; Tsang, Tak Yin

    2016-04-01

    Yellow fever is an important and potentially fatal infection in tropical regions of Africa, South America, eastern Panama in Central America and Trinidad in the Caribbean. Yellow fever vaccination is not only crucial to reduce the disease risk and mortality in individuals travelling to these areas, but also an important public health measure to prevent the spread of the disease. Despite generally considered as a safe vaccine, yellow fever vaccine can rarely be associated with severe adverse reactions including yellow fever vaccine-associated viscerotropic disease (YEL-AVD). Here, we report the first case of YEL-AVD in Hong Kong. Clinicians should alert to the possibility of YEL-AVD in vaccinees presenting with compatible symptoms after yellow fever vaccination, particularly in people at higher risk of adverse events. © International Society of Travel Medicine, 2016. All rights reserved. Published by Oxford University Press. For permissions, please e-mail: journals.permissions@oup.com.

  8. [Severe Yellow fever vaccine-associated disease: a case report and current overview].

    PubMed

    Slesak, Günther; Gabriel, Martin; Domingo, Cristina; Schäfer, Johannes

    2017-08-01

    History and physical examination  A 56-year-old man developed high fever with severe headaches, fatigue, impaired concentration skills, and an exanthema 5 days after a yellow fever (YF) vaccination. Laboratory tests  Liver enzymes and YF antibody titers were remarkably elevated. YF vaccine virus was detected in urine by PCR. Diagnosis and therapy  Initially, severe YF vaccine-associated visceral disease was suspected and treated symptomatically. Clinical Course  His fever ceased after 10 days in total, no organ failure developed. However, postencephalitic symptoms persisted with fatigue and impaired concentration, memory, and reading skills and partly incapability to work for over 3 months. A diagnosis was made of suspected YF vaccine-associated neurotropic disease. Conclusion  Severe vaccine-derived adverse effects need to be considered in the indication process for YF vaccination. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Yellow fever vaccine-associated neurotropic disease (YEL-AND) - A case report.

    PubMed

    Florczak-Wyspiańska, Jolanta; Nawotczyńska, Ewa; Kozubski, Wojciech

    Yellow fever (YF) is a mosquito-borne viral hemorrhagic fever, which is a serious and potentially fatal disease with no specific antiviral treatment that can be effectively prevented by an attenuated vaccine (YEL). Despite the long history of safe and efficacious YF vaccination, sporadic case reports of serious adverse events (SAEs) have been reported, including yellow fever vaccine-associated neurotropic disease (YEL-AND). YEL-AND usually appears within one month of YF vaccination, manifesting as meningoencephalitis, Guillain-Barré syndrome (GBS) or acute disseminated encephalomyelitis (ADEM). We report a case of YEL-AND with meningitis presentation in a 39-year-old Caucasian man without evidence of significant risk factors, which was confirmed by the presence of the YF virus and specific immunoglobulin G (IgG) antibodies in the cerebrospinal fluid (CSF). In conclusion, we should stress the importance of balancing the risk of SAEs associated with the vaccine and the benefits of YF vaccination for each patient individually. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. Assessing the Habitat of Coccidioides posadasii, the Valley Fever Pathogen: A Study of Environmental Variables and Human Incidence Data in Arizona

    NASA Astrophysics Data System (ADS)

    Mann, Sarina N.

    Coccidioidomycosis, or Valley Fever, is an infectious disease caused by inhalation of soil-dwelling fungus Coccidioides posadasii spores in the Lower Sonoran Life Zone (LSLZ) in Arizona. In the context of climate change, the habitat of environmentally-mediated infectious diseases, such as Valley Fever, are expected to change. Connections have been drawn between climate and Valley Fever infection. The operational scale of the organism is still unknown. Here, we use climatic variables, including precipitation, soil moisture, and temperature. We use PRISM precipitation and temperature data, and Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) as a measure of soil moisture for the entire state of Arizona, divided into 126 primary care areas (PCA). These data are analyzed and regressed with Valley Fever incidence to determine the effects of climatic variability on disease distribution and timing. This study confirms that Valley Fever occurrence is clustered in the LSLZ. Seasonal Valley Fever outbreak was found to be variable year-to-year based on climatic variability. The inconclusive regression analyses indicate that the operational scale of Coccidioides is smaller than the PCA region. All variables are related to Valley Fever infection, but one variable was not found to hold more predictive power than others.

  11. Rift Valley fever virus vaccine lacking the NSs and NSm genes is safe, nonteratogenic, and confers protection from viremia, pyrexia, and abortion following challenge in adult and pregnant sheep.

    PubMed

    Bird, Brian H; Maartens, Louis H; Campbell, Shelley; Erasmus, Baltus J; Erickson, Bobbie R; Dodd, Kimberly A; Spiropoulou, Christina F; Cannon, Deborah; Drew, Clifton P; Knust, Barbara; McElroy, Anita K; Khristova, Marina L; Albariño, César G; Nichol, Stuart T

    2011-12-01

    Rift Valley fever virus (RVFV) is a mosquito-borne human and veterinary pathogen causing large outbreaks of severe disease throughout Africa and the Arabian Peninsula. Safe and effective vaccines are critically needed, especially those that can be used in a targeted one-health approach to prevent both livestock and human disease. We report here on the safety, immunogenicity, and efficacy of the ΔNSs-ΔNSm recombinant RVFV (rRVFV) vaccine (which lacks the NSs and NSm virulence factors) in a total of 41 sheep, including 29 timed-pregnant ewes. This vaccine was proven safe and immunogenic for adult animals at doses ranging from 1.0 × 10(3) to 1.0 × 10(5) PFU administered subcutaneously (s.c.). Pregnant animals were vaccinated with 1.0 × 10(4) PFU s.c. at day 42 of gestation, when fetal sensitivity to RVFV vaccine-induced teratogenesis is highest. No febrile reactions, clinical illness, or pregnancy loss was observed following vaccination. Vaccination resulted in a rapid increase in anti-RVFV IgM (day 4) and IgG (day 7) titers. No seroconversion occurred in cohoused control animals. A subset of 20 ewes progressed to full-term delivery after vaccination. All lambs were born without musculoskeletal, neurological, or histological birth defects. Vaccine efficacy was assessed in 9 pregnant animals challenged at day 122 of gestation with virulent RVFV (1.0 × 10(6) PFU intravenously). Following challenge, 100% (9/9) of the animals were protected, progressed to full term, and delivered healthy lambs. As expected, all 3 sham-vaccinated controls experienced viremia, fetal death, and abortion postchallenge. These results demonstrate that the ΔNSs-ΔNSm rRVFV vaccine is safe and nonteratogenic and confers high-level protection in sheep.

  12. Development of a sheep challenge model for Rift Valley fever.

    PubMed

    Faburay, Bonto; Gaudreault, Natasha N; Liu, Qinfang; Davis, A Sally; Shivanna, Vinay; Sunwoo, Sun Young; Lang, Yuekun; Morozov, Igor; Ruder, Mark; Drolet, Barbara; Scott McVey, D; Ma, Wenjun; Wilson, William; Richt, Juergen A

    2016-02-01

    Rift Valley fever (RVF) is a zoonotic disease that causes severe epizootics in ruminants, characterized by mass abortion and high mortality rates in younger animals. The development of a reliable challenge model is an important prerequisite for evaluation of existing and novel vaccines. A study aimed at comparing the pathogenesis of RVF virus infection in US sheep using two genetically different wild type strains of the virus (SA01-1322 and Kenya-128B-15) was performed. A group of sheep was inoculated with both strains and all infected sheep manifested early-onset viremia accompanied by a transient increase in temperatures. The Kenya-128B-15 strain manifested higher virulence compared to SA01-1322 by inducing more severe liver damage, and longer and higher viremia. Genome sequence analysis revealed sequence variations between the two isolates, which potentially could account for the observed phenotypic differences. We conclude that Kenya-128B-15 sheep infection represents a good and virulent challenge model for RVF. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. New developments in flavivirus vaccines with special attention to yellow fever.

    PubMed

    Pugachev, Konstantin V; Guirakhoo, Farshad; Monath, Thomas P

    2005-10-01

    Here we review recent epidemiological trends in flavivirus diseases, findings related to existing vaccines, and new directions in flavivirus vaccine research. We emphasize the need for stepped-up efforts to stop further spread and intensification of these infections worldwide. Although the incidence and geographic distribution of flavivirus diseases have increased in recent years, human vaccines are available only for yellow fever, Japanese encephalitis, tick-borne encephalitis and Kyasanur forest disease. Factors contributing to resurgence include insufficient supplies of available vaccines, incomplete vaccination coverage and relaxation in vector control. Research has been underway for 60 years to develop effective vaccines against dengue, and recent progress is encouraging. The development of vaccines against West Nile, virus recently introduced to North America, has been initiated. In addition, there is considerable interest in improving existing vaccines with respect to increasing safety (e.g. eliminating the newly recognized syndrome of yellow fever vaccine-associated viscerotropic adverse disease), and to reducing the cost and number of doses required for effective immunization. Traditional approaches to flavivirus vaccines are still employed, while recent advancements in biotechnology produced new approaches to vaccine design, such as recombinant live virus, subunit and DNA vaccines. Live chimeric vaccines against dengue, Japanese encephalitis and West Nile based on yellow fever 17D virus (ChimeriVax) are in phase I/II trials, with encouraging results. Other chimeric dengue, tick-borne encephalitis and West Nile virus candidates were developed based on attenuated dengue backbones. To further reduce the impact of flavivirus diseases, vaccination policies and vector control programs in affected countries require revision.

  14. Molecular biology and genetic diversity of Rift Valley fever virus.

    PubMed

    Ikegami, Tetsuro

    2012-09-01

    Rift Valley fever virus (RVFV), a member of the family Bunyaviridae, genus Phlebovirus, is the causative agent of Rift Valley fever (RVF), a mosquito-borne disease of ruminant animals and humans. The generation of a large sequence database has facilitated studies of the evolution and spread of the virus. Bayesian analyses indicate that currently circulating strains of RVFV are descended from an ancestral species that emerged from a natural reservoir in Africa when large-scale cattle and sheep farming were introduced during the 19th century. Viruses descended from multiple lineages persist in that region, through infection of reservoir animals and vertical transmission in mosquitoes, emerging in years of heavy rainfall to cause epizootics and epidemics. On a number of occasions, viruses from these lineages have been transported outside the enzootic region through the movement of infected animals or mosquitoes, triggering outbreaks in countries such as Egypt, Saudi Arabia, Mauritania and Madagascar, where RVF had not previously been seen. Such viruses could potentially become established in their new environments through infection of wild and domestic ruminants and other animals and vertical transmission in local mosquito species. Despite their extensive geographic dispersion, all strains of RVFV remain closely related at the nucleotide and amino acid level. The high degree of conservation of genes encoding the virion surface glycoproteins suggests that a single vaccine should protect against all currently circulating RVFV strains. Similarly, preservation of the sequence of the RNA-dependent RNA polymerase across viral lineages implies that antiviral drugs targeting the enzyme should be effective against all strains. Researchers should be encouraged to collect additional RVFV isolates and perform whole-genome sequencing and phylogenetic analysis, so as to enhance our understanding of the continuing evolution of this important virus. This review forms part of a series

  15. The Yellow Fever Vaccine: A History

    PubMed Central

    Frierson, J. Gordon

    2010-01-01

    After failed attempts at producing bacteria-based vaccines, the discovery of a viral agent causing yellow fever and its isolation in monkeys opened new avenues of research. Subsequent advances were the attenuation of the virus in mice and later in tissue culture; the creation of the seed lot system to avoid spontaneous mutations; the ability to produce the vaccine on a large scale in eggs; and the removal of dangerous contaminants. An important person in the story is Max Theiler, who was Professor of Epidemiology and Public Health at Yale from 1964-67, and whose work on virus attenuation created the modern vaccine and earned him the Nobel Prize. PMID:20589188

  16. Yellow Fever

    MedlinePlus

    ... Testing Vaccine Information Testing for Vaccine Adverse Events Yellow fever Vaccine Continuing Education Course Yellow Fever Home Prevention Vaccine Vaccine Recommendations Reactions to Yellow Fever Vacine Yellow Fever Vaccine, Pregnancy, & ... Transmission Symptoms, Diagnosis, & Treatment Maps Africa ...

  17. Intrathecal antibody production in two cases of yellow fever vaccine associated neurotropic disease in Argentina.

    PubMed

    Pires-Marczeski, Fanny Clara; Martinez, Valeria Paula; Nemirovsky, Corina; Padula, Paula Julieta

    2011-12-01

    During the period 2007-2008 several epizootics of Yellow fever with dead of monkeys occurred in southeastern Brasil, Paraguay, and northeastern Argentina. In 2008 after a Yellow fever outbreak an exhaustive prevention campaign took place in Argentina using 17D live attenuated Yellow fever vaccine. This vaccine is considered one of the safest live virus vaccines, although serious adverse reactions may occur after vaccination, and vaccine-associated neurotropic disease are reported rarely. The aim of this study was to confirm two serious adverse events associated to Yellow fever vaccine in Argentina, and to describe the analysis performed to assess the origin of specific IgM against Yellow fever virus (YFV) in cerebrospinal fluid (CSF). Both cases coincided with the Yellow fever vaccine-associated neurotropic disease case definition, being clinical diagnosis longitudinal myelitis (case 1) and meningoencephalitis (case 2). Specific YFV antibodies were detected in CSF and serum samples in both cases by IgM antibody-capture ELISA. No other cause of neurological disease was identified. In order to obtain a conclusive diagnosis of central nervous system (CNS) infection the IgM antibody index (AI(IgM) ) was calculated. High AI(IgM) values were found in both cases indicating intrathecal production of antibodies and, therefore, CNS post-vaccinal YFV infection could be definitively associated to YFV vaccination. Copyright © 2011 Wiley Periodicals, Inc.

  18. Yellow fever vaccination status and safety in hemodialysis patients.

    PubMed

    Facincani, Tila; Guimarães, Maia Nogueira Crown; De Sousa Dos Santos, Sigrid

    2016-07-01

    The adverse effects of yellow fever (YF) vaccine in dialysis patients are not well known. There is concern about the risks and benefits of the vaccine in immunocompromised patients living in endemic areas, particularly given the risk of resurgence of urban YF with the spread of Aedes aegypti mosquitoes. The purpose of this study was to assess the coverage and safety of YF vaccine in chronic dialysis patients. A cross-sectional study of 130 chronic dialysis patients was performed. Data were collected on clinical characteristics and YF vaccine status. Patients not vaccinated against YF or without a booster vaccination within the last 10 years were referred to receive the vaccine, and adverse effects were monitored. Previous vaccination was verified in 44 patients within the last 10 years and in 26 patients at more than 10 years ago, with no mention of adverse effects. Thirty-six patients had never been vaccinated and 24 had an unknown vaccination status. Of the total 86 patients referred for immunization, 45 actually received the YF vaccine, with 24.4% experiencing mild local adverse effects and 4.4% experiencing fever. No serious adverse effects attributable to YF vaccine were observed (anaphylaxis, neurological or viscerotropic disease). YF vaccine coverage among hemodialysis patients is low, and the vaccine appeared to be safe in this population with a small sample size. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Peripheral Blood Biomarkers of Disease Outcome in a Monkey Model of Rift Valley Fever Encephalitis.

    PubMed

    Wonderlich, Elizabeth R; Caroline, Amy L; McMillen, Cynthia M; Walters, Aaron W; Reed, Douglas S; Barratt-Boyes, Simon M; Hartman, Amy L

    2018-02-01

    Rift Valley Fever (RVF) is an emerging arboviral disease of livestock and humans. Although the disease is caused by a mosquito-borne virus, humans are infected through contact with, or inhalation of, virus-laden particles from contaminated animal carcasses. Some individuals infected with RVF virus (RVFV) develop meningoencephalitis, resulting in morbidity and mortality. Little is known about the pathogenic mechanisms that lead to neurologic sequelae, and thus, animal models that represent human disease are needed. African green monkeys (AGM) exposed to aerosols containing RVFV develop a reproducibly lethal neurological disease that resembles human illness. To understand the disease process and identify biomarkers of lethality, two groups of 5 AGM were infected by inhalation with either a lethal or a sublethal dose of RVFV. Divergence between lethal and sublethal infections occurred as early as 2 days postinfection (dpi), at which point CD8 + T cells from lethally infected AGM expressed activated caspase-3 and simultaneously failed to increase levels of major histocompatibility complex (MHC) class II molecules, in contrast to surviving animals. At 4 dpi, lethally infected animals failed to demonstrate proliferation of total CD4 + and CD8 + T cells, in contrast to survivors. These marked changes in peripheral blood cells occur much earlier than more-established indicators of severe RVF disease, such as granulocytosis and fever. In addition, an early proinflammatory (gamma interferon [IFN-γ], interleukin 6 [IL-6], IL-8, monocyte chemoattractant protein 1 [MCP-1]) and antiviral (IFN-α) response was seen in survivors, while very late cytokine expression was found in animals with lethal infections. By characterizing immunological markers of lethal disease, this study furthers our understanding of RVF pathogenesis and will allow the testing of therapeutics and vaccines in the AGM model. IMPORTANCE Rift Valley Fever (RVF) is an important emerging viral disease for which

  20. Epidemiological Assessment of the Rift Valley Fever Outbreak in Kenya and Tanzania in 2006 and 2007

    PubMed Central

    Jost, Christine C.; Nzietchueng, Serge; Kihu, Simon; Bett, Bernard; Njogu, George; Swai, Emmanuel S.; Mariner, Jeffrey C.

    2010-01-01

    To capture lessons from the 2007 Rift Valley fever (RVF) outbreak, epidemiological studies were carried out in Kenya and Tanzania. Somali pastoralists proved to be adept at recognizing symptoms of RVF and risk factors such as heavy rainfall and mosquito swarms. Sandik, which means “bloody nose,” was used by Somalis to denote disease consistent with RVF. Somalis reported that sandik was previously seen in 1997/98, the period of the last RVF epidemic. Pastoralists communicated valuable epidemiological information for surveillance and early warning systems that was observed before international warnings. The results indicate that an all or none approach to decision making contributed to the delay in response. In the future, a phased approach balancing actions against increasing risk of an outbreak would be more effective. Given the time required to mobilize large vaccine stocks, emergency vaccination did not contribute to the mitigation of explosive outbreaks of RVF. PMID:20682908

  1. Dengue Fever: Causes, Complications, and Vaccine Strategies

    PubMed Central

    Khanna, Ira

    2016-01-01

    Dengue is a highly endemic infectious disease of the tropical countries and is rapidly becoming a global burden. It is caused by any of the 4 serotypes of dengue virus and is transmitted within humans through female Aedes mosquitoes. Dengue disease varies from mild fever to severe conditions of dengue hemorrhagic fever and shock syndrome. Globalization, increased air travel, and unplanned urbanization have led to increase in the rate of infection and helped dengue to expand its geographic and demographic distribution. Dengue vaccine development has been a challenging task due to the existence of four antigenically distinct dengue virus serotypes, each capable of eliciting cross-reactive and disease-enhancing antibody response against the remaining three serotypes. Recently, Sanofi Pasteur's chimeric live-attenuated dengue vaccine candidate has been approved in Mexico, Brazil, and Philippines for usage in adults between 9 and 45 years of age. The impact of its limited application to the public health system needs to be evaluated. Simultaneously, the restricted application of this vaccine candidate warrants continued efforts in developing a dengue vaccine candidate which is additionally efficacious for infants and naïve individuals. In this context, alternative strategies of developing a designed vaccine candidate which does not allow production of enhancing antibodies should be explored, as it may expand the umbrella of efficacy to include infants and naïve individuals. PMID:27525287

  2. WHO position on the use of fractional doses - June 2017, addendum to vaccines and vaccination against yellow fever WHO: Position paper - June 2013.

    PubMed

    World Health Organization

    2017-10-13

    This article presents the World Health Organization's (WHO) recommendations on the use of fractional doses of yellow fever vaccines excerpted from the "Yellow fever vaccine: WHO position on the use of fractional doses - June 2017, Addendum to Vaccines and vaccination against yellow fever WHO: Position Paper - June 2013″, published in the Weekly Epidemiological Record [1,2]. This addendum to the 2013 position paper pertains specifically to use of fractional dose YF (fYF) vaccination (fractional dose yellow fever vaccination refers to administration of a reduced volume of vaccine dose, which has been reconstituted as usual per manufacturer recommendations) in the context of YF vaccine supply shortages beyond the capacity of the global stockpile. The current WHO position on the use of yellow fever (YF) vaccine is set out in the 2013 WHO position paper on vaccines and vaccination against YF and those recommendations are unchanged. Footnotes to this paper provide a number of core references including references to grading tables that assess the quality of the scientific evidence, and to the evidence-to-recommendation table. In accordance with its mandate to provide guidance to Member States on health policy matters, WHO issues a series of regularly updated position papers on vaccines and combinations of vaccines against diseases that have an international public health impact. These papers are concerned primarily with the use of vaccines in large-scale immunization programmes; they summarize essential background information on diseases and vaccines, and conclude with WHO's current position on the use of vaccines in the global context. Recommendations on the use of Yellow Fever vaccines were discussed by SAGE in October 2016; evidence presented at these meetings can be accessed at: www.who.int/immunization/sage/meetings/2016/October/presentations_background_docs/en/. Copyright © 2017. Published by Elsevier Ltd.

  3. Drivers of Rift Valley fever epidemics in Madagascar

    PubMed Central

    Lancelot, Renaud; Béral, Marina; Rakotoharinome, Vincent Michel; Andriamandimby, Soa-Fy; Héraud, Jean-Michel; Coste, Caroline; Apolloni, Andrea; Squarzoni-Diaw, Cécile; de La Rocque, Stéphane; Wint, G. R. William; Cardinale, Eric

    2017-01-01

    Rift Valley fever (RVF) is a vector-borne viral disease widespread in Africa. The primary cycle involves mosquitoes and wild and domestic ruminant hosts. Humans are usually contaminated after contact with infected ruminants. As many environmental, agricultural, epidemiological, and anthropogenic factors are implicated in RVF spread, the multidisciplinary One Health approach was needed to identify the drivers of RVF epidemics in Madagascar. We examined the environmental patterns associated with these epidemics, comparing human and ruminant serological data with environmental and cattle-trade data. In contrast to East Africa, environmental drivers did not trigger the epidemics: They only modulated local Rift Valley fever virus (RVFV) transmission in ruminants. Instead, RVFV was introduced through ruminant trade and subsequent movement of cattle between trade hubs caused its long-distance spread within the country. Contact with cattle brought in from infected districts was associated with higher infection risk in slaughterhouse workers. The finding that anthropogenic rather than environmental factors are the main drivers of RVF infection in humans can be used to design better prevention and early detection in the case of RVF resurgence in the region. PMID:28096420

  4. Relating coccidioidomycosis (Valley Fever) incidence via to soil moisture conditions

    USDA-ARS?s Scientific Manuscript database

    Coccidioidomycosis (also called Valley fever) is caused by a soil-borne fungus, Coccidioides spp., in arid regions of the southwestern United States. Though some who develop infections from this fungus remain asymptomatic, others develop respiratory disease as a consequence. Less commonly, severe ...

  5. [Antibody responses in Japanese volunteers after immunization with yellow fever vaccine].

    PubMed

    Taga, Kenichiro; Imura, Shunro; Hayashi, Akihiro; Kamakura, Kazumasa; Hashimoto, Satoru; Takasaki, Tomohiko; Kurane, Ichiro; Uchida, Yukinori

    2002-09-01

    To monitor the development of specific and cross-reactive antibody response in twenty Japanese volunteers after vaccination with live yellow fever vaccine. Serum samples were collected on various days after vaccination and examined for hemagglutination inhibition (HI) antibodies against yellow fever virus (YFV), Japanese encephalitis virus (JEV) and dengue virus (DV), neutralizing antibodies against YFV and JEV, and IgM antibodies against YFV. None of the volunteers had been previously immunized with this vaccine. Fifteen of 20 had pre-vaccinated with JEV 7 to 40 years before. Ten of the 20 had neutralizing antibodies against JEV before immunization. None of the 20 had detectable antibodies against YFV or DV before vaccination. On day 10th after the vaccination, neutralizing antibodies to YFV were detected in 6 of 19 volunteers and IgM antibodies against YFV were detected in 7 of 19. On day 14th, HI, neutralizing, and IgM antibodies against YFV were detected in all the tested sera. Neutralizing antibodies against JEV were developed in 2 volunteers and HI antibodies against JEV were increased in 3 of 6 volunteers respectively. On day 29th, cross-reactive HI antibodies for JEV and DV were detected in all the tested sera. The results indicate that YF vaccine induces YFV-specific antibodies in all the tested volunteers and that it also induces HI antibodies cross-reactive for JEV and DV. The YF vaccine has a strong immunogenicity because it is a live vaccine, and induces antibody against YFV predominantly. The international certificate of yellow fever vaccination becomes valid 10 days after vaccination. On day 14th after vaccination, we detected neutralizing antibodies against YFV from all tested volunteers, however, only 6 of 19 volunteers had detectable neutralizing antibody on the 10th day after vaccination. Therefore, the vaccine may not be perfectly effective on day 10th after the vaccination.

  6. Biologically Informed Individual-based Network Model for Rift Valley Fever in the US and Evaluation of Mitigation Strategies

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a zoonotic disease endemic in Sub-Saharan Africa with periodic outbreaks in human and animal populations. Mosquitoes are the primary disease vectors; however, Rift Valley fever virus (RVFV) can also spread by direct contact with infected tissues. The transmission cycle is ...

  7. Attenuation and protective efficacy of Rift Valley fever phlebovirus rMP12-GM50 strain.

    PubMed

    Ly, Hoai J; Nishiyama, Shoko; Lokugamage, Nandadeva; Smith, Jennifer K; Zhang, Lihong; Perez, David; Juelich, Terry L; Freiberg, Alexander N; Ikegami, Tetsuro

    2017-12-04

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Arabian Peninsula that affects sheep, cattle, goats, camels, and humans. Effective vaccination of susceptible ruminants is important for the prevention of RVF outbreaks. Live-attenuated RVF vaccines are in general highly immunogenic in ruminants, whereas residual virulence might be a concern for vulnerable populations. It is also important for live-attenuated strains to encode unique genetic markers for the differentiation from wild-type RVFV strains. In this study, we aimed to strengthen the attenuation profile of the MP-12 vaccine strain via the introduction of 584 silent mutations. To minimize the impact on protective efficacy, codon usage and codon pair bias were not de-optimized. The resulting rMP12-GM50 strain showed 100% protective efficacy with a single intramuscular dose, raising a 1:853 mean titer of plaque reduction neutralization test. Moreover, outbred mice infected with one of three pathogenic reassortant ZH501 strains, which encoded rMP12-GM50 L-, M-, or S-segments, showed 90%, 50%, or 30% survival, respectively. These results indicate that attenuation of the rMP12-GM50 strain is significantly attenuated via the L-, M-, and S-segments. Recombinant RVFV vaccine strains encoding similar silent mutations will be also useful for the surveillance of reassortant strains derived from vaccine strains in endemic countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evaluation of a killed Rocky Mountain spotted fever vaccine in cynomolgus monkeys.

    PubMed Central

    Gonder, J C; Kenyon, R H; Pedersen, C E

    1979-01-01

    A nonhuman primate model of Rocky Mountain spotted fever infection was developed in cynomolgus monkeys (Macaca fascicularis) infected by the subcutaneous route or by aerosol. Clinical responses, hematology and serum chemistry values, and pathological findings were similar to those found in humans ill with Rocky Mountain spotted fever. The clinical model was then used to test the efficacy of a killed Rocky Mountain spotted fever vaccine grown in chicken embryo cells. Monkeys were immunized with varying dilutions of the vaccine with a two-dose schedule and then challenged at 2 months with virulent Rickettsia rickettsii by the subcutaneous route or by aerosol. The undiluted vaccine totally protected monkeys against both challenges, even at extremely high doses. PMID:120877

  9. Q Fever Knowledge, Attitudes and Vaccination Status of Australia’s Veterinary Workforce in 2014

    PubMed Central

    Sellens, Emily; Norris, Jacqueline M.; Dhand, Navneet K.; Heller, Jane; Hayes, Lynne; Gidding, Heather F.; Willaby, Harold; Wood, Nicholas; Bosward, Katrina L.

    2016-01-01

    Q fever, caused by Coxiella burnetii, is a serious zoonotic disease in humans with a worldwide distribution. Many species of animals are capable of transmitting C. burnetii, and consequently all veterinary workers are at risk for this disease. An effective Q fever vaccine has been readily available and used in Australia for many years in at-risk groups, and the European Centre for Disease Prevention and Control has recently also called for the use of this vaccine among at-risk groups in Europe. Little is known about attitudes towards this vaccine and vaccine uptake in veterinary workers. This study aimed to determine the Q fever vaccination status of veterinarians and veterinary nurses in Australia and to assess and compare the knowledge and attitudes towards Q fever disease and vaccination of each cohort. An online cross-sectional survey performed in 2014 targeted all veterinarians and veterinary nurses in Australia. Responses from 890 veterinarians and 852 veterinary nurses were obtained. Binary, ordinal and multinomial logistic regression were used to make comparisons between the two cohorts. The results showed that 74% of veterinarians had sought vaccination compared to only 29% of veterinary nurses. Barriers to vaccination among those not vaccinated did not differ between cohorts, and included a lack of perceived risk, financial expense, time constraints, and difficulty in finding a vaccine provider. Poor knowledge and awareness of Q fever disease and vaccination were additional and notable barriers for the veterinary nursing cohort, suggesting veterinary clinics and veterinarians may not be meeting their legal responsibility to educate staff about risks and risk prevention. Further evaluation is needed to identify the drivers behind seeking and recommending vaccination so that recommendations can be made to improve vaccine uptake. PMID:26756210

  10. CHRONOVAC VOYAGEUR: A study of the immune response to yellow fever vaccine among infants previously immunized against measles.

    PubMed

    Goujon, Catherine; Gougeon, Marie-Lise; Tondeur, Laura; Poirier, Béatrice; Seffer, Valérie; Desprès, Philippe; Consigny, Paul-Henri; Vray, Muriel

    2017-10-27

    For administration of multiple live attenuated vaccines, the Advisory Committee on Immunization Practices recommends either simultaneous immunization or period of at least 28days between vaccines, due to a possible reduction in the immune response to either vaccine. The main objective of this study was to compare the immune response to measles (alone or combined with mumps and rubella) and yellow fever vaccines among infants aged 6-24months living in a yellow fever non-endemic country who had receivedmeasles and yellow fever vaccines before travelling to a yellow fever endemic area. A retrospective, multicenter case-control study was carried out in 7 travel clinics in the Paris area from February 1st 2011 to march 31, 2015. Cases were defined as infants immunized with the yellow fever vaccine and with the measles vaccine, either alone or in combination with mumps and rubella vaccine, with a period of 1-27days between each immunization. For each case, two controls were matched based on sex and age: a first control group (control 1) was defined as infants having received the measles vaccine and the yellow fever vaccine simultaneously; a second control group (control 2) was defined as infants who had a period of more than 27days between receiving the measles vaccine and yellow fever vaccine. The primary endpoint of the study was the percentage of infants with protective immunity against yellow fever, measured by the titer of neutralizing antibodies in a venous blood sample. One hundred and thirty-one infants were included in the study (62 cases, 50 infants in control 1 and 19 infants in control 2). Of these, 127 (96%) were shown to have a protective titer of yellow fever antibodies. All 4 infants without a protective titer of yellow fever antibodies were part of control group 1. The measles vaccine, alone or combined with mumps and rubella vaccines, appears to have no influence on humoral immune response to the yellow fever vaccine when administered between 1 and 27

  11. A case suspected for yellow fever vaccine-associated viscerotropic disease in the Netherlands.

    PubMed

    van de Pol, Eva M; Gisolf, Elizabeth H; Richter, Clemens

    2014-01-01

    Yellow fever (YF) 17D vaccine is one of the most successful vaccines ever developed. Since 2001, 56 cases of yellow fever vaccine-associated viscerotropic disease (YEL-AVD) have been published in the peer-reviewed literature. Here, we report a new case suspected for YEL-AVD in the Netherlands. Further research is needed to determine the true incidence of YEL-AVD and to clarify host and vaccine-associated factors in the pathogenesis of YEL-AVD. Because of the potential adverse events, healthcare providers should carefully consider vaccination only in people who are truly at risk for YF infection, especially in primary vaccine recipients. © 2014 International Society of Travel Medicine.

  12. [YEL-AND meningoencephalitis in a 4-year-old boy consecutive to a yellow-fever vaccine].

    PubMed

    Gerin, M; Wroblewski, I; Bost-Bru, C; N'guyen, M-A; Debillon, T

    2014-04-01

    Yellow fever is a vector-borne disease transmitted by an endemic mosquito in sub-Saharan Africa and tropical South America. It causes fever and possibly liver and renal failure with hemorrhagic signs, which may be fatal. The yellow-fever vaccine is an attenuated vaccine that is recommended for all travelers over the age of 9 months in high-risk areas. Adverse effects have been reported: minor symptoms (such as viral syndrome), hypersensitivity reactions, and major symptoms such as viscerotropic disease (YEL-AVD) and neurotropic disease (YEL-AND). The yellow-fever vaccine-associated autoimmune disease with central nervous system involvement (such as acute disseminated encephalomyelitis) associates fever and headaches, neurologic dysfunction, seizures, cerebrospinal fluid (CSF) pleocytosis, and elevated protein, with neuroimaging consistent with multifocal areas of demyelization. The presence of antibodies or virus in CSF, within 1-30 days following vaccination, and the exclusion of other causes is necessary for diagnosis. We describe herein the case of a 4-year-old child who presented with severe encephalitis consecutive to a yellow-fever vaccine, with favorable progression. Diagnosis is based on the chronology of clinical and paraclinical signs and the presence of yellow-fever-specific antibodies in CSF. The treatment consists of symptomatic treatment and immunoglobulin injection. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Distinct virulence of Rift Valley fever phlebovirus strains from different genetic lineages in a mouse model.

    PubMed

    Ikegami, Tetsuro; Balogh, Aaron; Nishiyama, Shoko; Lokugamage, Nandadeva; Saito, Tais B; Morrill, John C; Shivanna, Vinay; Indran, Sabarish V; Zhang, Lihong; Smith, Jennifer K; Perez, David; Juelich, Terry L; Morozov, Igor; Wilson, William C; Freiberg, Alexander N; Richt, Juergen A

    2017-01-01

    Rift Valley fever phlebovirus (RVFV) causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2-3 dpi. Recombinant SA51 (rSA51) and Zinga (rZinga) strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies.

  14. Distinct virulence of Rift Valley fever phlebovirus strains from different genetic lineages in a mouse model

    PubMed Central

    Balogh, Aaron; Nishiyama, Shoko; Lokugamage, Nandadeva; Saito, Tais B.; Morrill, John C.; Shivanna, Vinay; Indran, Sabarish V.; Zhang, Lihong; Smith, Jennifer K.; Perez, David; Juelich, Terry L.; Morozov, Igor; Wilson, William C.; Freiberg, Alexander N.; Richt, Juergen A.

    2017-01-01

    Rift Valley fever phlebovirus (RVFV) causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2–3 dpi. Recombinant SA51 (rSA51) and Zinga (rZinga) strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies. PMID:29267298

  15. Immunogenicity of Fractional-Dose Vaccine during a Yellow Fever Outbreak - Preliminary Report.

    PubMed

    Ahuka-Mundeke, Steve; Casey, Rebecca M; Harris, Jennifer B; Dixon, Meredith G; Nsele, Pierre M; Kizito, Gabriel M; Umutesi, Grace; Laven, Janeen; Paluku, Gilson; Gueye, Abdou S; Hyde, Terri B; Sheria, Guylain K M; Muyembe-Tanfum, Jean-Jacques; Staples, J Erin

    2018-02-14

    Background In 2016, the response to a yellow fever outbreak in Angola and the Democratic Republic of Congo led to a global shortage of yellow fever vaccine. As a result, a fractional dose of the 17DD yellow fever vaccine (containing one fifth [0.1 ml] of the standard dose) was offered to 7.6 million children 2 years of age or older and nonpregnant adults in a preemptive campaign in Kinshasa. The goal of this study was to assess the immune response to the fractional dose in a large-scale campaign. Methods We recruited participants in four age strata at six vaccination sites. We assessed neutralizing antibody titers against yellow fever virus in blood samples obtained before vaccination and 28 to 35 days after vaccination, using a plaque reduction neutralization test with a 50% cutoff (PRNT 50 ). Participants with a PRNT 50 titer of 10 or higher at baseline were considered to be seropositive. Those with a baseline titer of less than 10 who became seropositive at follow-up were classified as having undergone seroconversion. Participants who were seropositive at baseline and who had an increase in the titer by a factor of 4 or more at follow-up were classified as having an immune response. Results Among 716 participants who completed follow-up, 705 (98%; 95% confidence interval [CI], 97 to 99) were seropositive after vaccination. Among 493 participants who were seronegative at baseline, 482 (98%; 95% CI, 96 to 99) underwent seroconversion. Among 223 participants who were seropositive at baseline, 148 (66%; 95% CI, 60 to 72) had an immune response. Lower baseline titers were associated with a higher probability of having an immune response (P<0.001). Conclusions A fractional dose of the 17DD yellow fever vaccine was effective at inducing seroconversion in most of the participants who were seronegative at baseline. These findings support the use of fractional-dose vaccination for outbreak control. (Funded by the U.S. Agency for International Development and the Centers

  16. Risk factors and familial clustering for fever 7-10days after the first dose of measles vaccines.

    PubMed

    Klein, Nicola P; Lewis, Edwin; McDonald, Julia; Fireman, Bruce; Naleway, Allison; Glanz, Jason; Jackson, Lisa A; Donahue, James G; Jacobsen, Steven J; Weintraub, Eric; Baxter, Roger

    2017-03-14

    Seven to ten days after a first dose of a measles-containing vaccine (MCV; i.e., MMR or MMRV), children have elevated fever risk which can be associated with febrile seizures. This study investigated individual and familial factors associated with fever 7-10days after MCV. Retrospective cohort study among children who were <36months of age at receipt of MCV in six sites of the Vaccine Safety Datalink from 1/1/2000 to 12/31/2012. We evaluated medically-attended clinic or emergency department visits with a code for fever 7-10days after any MCV ("MCV- associated"). We evaluated factors associated with MCV-associated fever using χ 2 and multivariable logistic regression analyses. Among 946,806 children vaccinated with MCV, we identified 7480 (0.8%) MCV-associated fever visits. Compared with children without fever after MCV, children with MCV-associated fever were more likely to have received MMRV than MMR (OR 1.3 95% CI 1.2, 1.5), have had medically attended fever both following previous vaccines (OR 1.3 95% CI 1.1, 1.6) and at any other previous time (OR 1.7 95% CI 1.6, 1.8), have had at least 1 prior seizure (OR 2.2 95% CI 1.7, 2.7), and have had >3 medical visits within the 6months before MCV (OR 1.7 95% CI 1.6, 1.8). In families with multiple MCV-immunized children, after adjusting for healthcare seeking behavior care for fever, those whose siblings had MCV-associated fever were more likely to also have MCV-associated fever (OR 3.5 95% CI 2.5, 4.8). Children who received MMRV vaccine or who had prior medically-attended fevers and seizures during the first year of life had increased risk of fever after a first dose of measles vaccine. After adjusting for familial propensity to seek care, MCV-associated fever still clustered within families, suggesting a possible genetic basis for susceptibility to developing fever due to measles vaccines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Rift Valley fever virus infections in Egyptian cattle and their prevention.

    PubMed

    Mroz, C; Gwida, M; El-Ashker, M; Ziegler, U; Homeier-Bachmann, T; Eiden, M; Groschup, M H

    2017-12-01

    Rift Valley fever virus (RVFV) causes consistently severe outbreaks with high public health impacts and economic losses in livestock in many African countries and has also been introduced to Saudi Arabia and Yemen. Egypt with its four large outbreaks in the last 40 years represents the northernmost endemic area of RVFV. The purpose of this study was to provide an insight into the current anti-RVFV antibody status in immunized as well as non-immunized dairy cattle from the Nile Delta of Egypt. During 2013-2015, a total of 4,167 dairy cattle from four governorates including Dakahlia, Damietta, Gharbia and Port Said were investigated. All cattle were born after 2007 and therewith after the last reported Egyptian RVFV outbreak in 2003. The samples derived from vaccinated animals from 26 different dairy farms as well as non-immunized cattle from 27 different smallholding flocks. All samples were examined following a three-part analysis including a commercially available competition ELISA, an in-house immunofluorescence assay and a virus neutralization test. Additionally, a subset of samples was analysed for acute infections using IgM ELISA and real-time reverse transcriptase PCR. The results indicated that the RVFV is still circulating in Egypt as about 10% of the non-immunized animals exhibited RVFV-specific antibodies. Surprisingly, the antibody prevalence in immunized animals was not significantly higher than that in non-vaccinated animals which points out the need for further evaluation of the vaccination programme. Due to the substantial role of livestock in the amplification and transmission of RVFV, further recurrent monitoring of the antibody prevalence in susceptible species is highly warranted. © 2017 Blackwell Verlag GmbH.

  18. Safety and immunogenicity of typhoid fever and yellow fever vaccines when administered concomitantly with quadrivalent meningococcal ACWY glycoconjugate vaccine in healthy adults.

    PubMed

    Alberer, Martin; Burchard, Gerd; Jelinek, Tomas; Reisinger, Emil; Beran, Jiri; Hlavata, Lucie Cerna; Forleo-Neto, Eduardo; Dagnew, Alemnew F; Arora, Ashwani K

    2015-01-01

    Compact and short pre-travel immunization schedules, which include several vaccinations in a single visit, are desirable for many travelers. However, concomitant vaccination could potentially compromise immunogenicity and/or safety of the individual vaccines and, therefore, possible vaccine interferences should be carefully assessed. This article discusses the immunogenicity and safety of travel vaccines for typhoid fever (TF) and yellow fever (YF), when administered with or without a quadrivalent meningococcal glycoconjugate ACWY-CRM vaccine (MenACWY-CRM). Healthy adults (18-≤60 years) were randomized to one of three vaccine regimens: TF + YF + MenACWY-CRM (group I; n = 100), TF + YF (group II; n = 101), or MenACWY-CRM (group III; n = 100). Immunogenicity at baseline and 4 weeks post-vaccination (day 29) was assessed by serum bactericidal assay using human complement (hSBA), enzyme-linked immunosorbent assay (ELISA), or a neutralization test. Adverse events (AEs) and serious adverse events (SAEs) were collected throughout the study period. Non-inferiority of post-vaccination geometric mean concentrations (GMCs) and geometric mean titers (GMTs) was established for TF and YF vaccines, respectively, when given concomitantly with MenACWY-CRM vaccine versus when given alone. The percentages of subjects with seroprotective neutralizing titers against YF on day 29 were similar in groups I and II. The antibody responses to meningococcal serogroups A, C, W-135, and Y were within the same range when MenACWY-CRM was given separately or together with TF and YF vaccines. The percentage of subjects reporting AEs was the same for TF and YF vaccines with or without MenACWY-CRM vaccine. There were no reports of SAEs or AEs leading to study withdrawals. These data provide evidence that MenACWY-CRM can be administered with typhoid Vi polysaccharide vaccine and live attenuated YF vaccine without compromising antibody responses stimulated by the

  19. VACCINATION AGAINST YELLOW FEVER WITH IMMUNE SERUM AND VIRUS FIXED FOR MICE

    PubMed Central

    Sawyer, W. A.; Kitchen, S. F.; Lloyd, Wray

    1932-01-01

    1. After preliminary experiments in monkeys, 15 persons were actively immunized by a single injection of a dried mixture of living yellow fever virus, fixed for mice, and human immune serum, with separate injections of enough additional serum to make up the amount required for protection. 2. One person was similarly immunized by injecting immune serum and dried virus separately. 3. By titration of the sera of vaccinated persons in mice, it was shown that the immunity rose in a few weeks to a height comparable to that reached after an attack of yellow fever, and remained there throughout an observation period of 6 months. 4. Yellow fever virus could not be recovered from the blood of vaccinated persons or monkeys, except when the latter had received less than the minimal effective amount of immune serum. 5. Neutralization of yellow fever virus by immune serum took place very slowly in vitro at room temperature in our experiments, and could not have been an appreciable factor in vaccination with the serum virus mixtures. 6. A mixture of fixed virus and immune serum retained its immunizing power for 8 months when dried in the frozen state and sealed in glass. 7. It appears that the immunizing reaction after yellow fever vaccination was a part of a true infectious process, as was also the observed leucopenia. PMID:19870044

  20. Potential Effects of Rift Valley Fever in the United States

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) has been the cause of disease outbreaks throughout Africa and the Arabian Peninsula, and the infection often results in heavy economic costs through loss of livestock. If RVFV, which is common to select agent lists of the US Department of Health and Human Services and ...

  1. Yellow Fever Vaccine: What You Need to Know

    MedlinePlus

    ... to any component of the vaccine, including eggs, chicken proteins, or gelatin, or who has had a ... allergic reaction, very high fever, behavior changes, or flu-like symptoms that occur 1-30 days after ...

  2. Yellow fever vaccine: recommendations of the Advisory Committee on Immunization Practices (ACIP).

    PubMed

    Staples, J Erin; Gershman, Mark; Fischer, Marc

    2010-07-30

    This report updates CDC's recommendations for using yellow fever (YF) vaccine (CDC. Yellow fever vaccine: recommendations of the Advisory Committee on Immunizations Practices: MMWR 2002;51[No. RR-17]). Since the previous YF vaccine recommendations were published in 2002, new or additional information has become available on the epidemiology of YF, safety profile of the vaccine, and health regulations related to the vaccine. This report summarizes the current epidemiology of YF, describes immunogenicity and safety data for the YF vaccine, and provides recommendations for the use of YF vaccine among travelers and laboratory workers. YF is a vectorborne disease resulting from the transmission of yellow fever virus (YFV) to a human from the bite of an infected mosquito. It is endemic to sub-Saharan Africa and tropical South America and is estimated to cause 200,000 cases of clinical disease and 30,000 deaths annually. Infection in humans is capable of producing hemorrhagic fever and is fatal in 20%-50% of persons with severe disease. Because no treatment exists for YF disease, prevention is critical to lower disease risk and mortality. A traveler's risk for acquiring YFV is determined by multiple factors, including immunization status, location of travel, season, duration of exposure, occupational and recreational activities while traveling, and local rate of virus transmission at the time of travel. All travelers to countries in which YF is endemic should be advised of the risks for contracting the disease and available methods to prevent it, including use of personal protective measures and receipt of vaccine. Administration of YF vaccine is recommended for persons aged >or=9 months who are traveling to or living in areas of South America and Africa in which a risk exists for YFV transmission. Because serious adverse events can occur following YF vaccine administration, health-care providers should vaccinate only persons who are at risk for exposure to YFV or who

  3. Anomalous High Rainfall and Soil Saturation as Combined Risk Indicator of Rift Valley Fever Outbreaks, South Africa, 2008-2011.

    PubMed

    Williams, Roy; Malherbe, Johan; Weepener, Harold; Majiwa, Phelix; Swanepoel, Robert

    2016-12-01

    Rift Valley fever (RVF), a zoonotic vectorborne viral disease, causes loss of life among humans and livestock and an adverse effect on the economy of affected countries. Vaccination is the most effective way to protect livestock; however, during protracted interepidemic periods, farmers discontinue vaccination, which leads to loss of herd immunity and heavy losses of livestock when subsequent outbreaks occur. Retrospective analysis of the 2008-2011 RVF epidemics in South Africa revealed a pattern of continuous and widespread seasonal rainfall causing substantial soil saturation followed by explicit rainfall events that flooded dambos (seasonally flooded depressions), triggering outbreaks of disease. Incorporation of rainfall and soil saturation data into a prediction model for major outbreaks of RVF resulted in the correctly identified risk in nearly 90% of instances at least 1 month before outbreaks occurred; all indications are that irrigation is of major importance in the remaining 10% of outbreaks.

  4. Impact of Global Climate on Rift Valley Fever Disease Outbreaks

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever is a viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. Since the virus was first isolated in Kenya in 1930 it has caused significant impact to animal and human health and national economies, and it is of concern to the internationa...

  5. Yellow fever vaccination during treatment with infliximab in a patient with ulcerative colitis: A case report.

    PubMed

    Rüddel, J; Schleenvoigt, B T; Schüler, E; Schmidt, C; Pletz, M W; Stallmach, A

    2016-09-01

    We report the case of a 59-year-old patient who accidentally underwent live vaccination against yellow fever during continuous treatment with the TNF-α-antibody (AB) infliximab for ulcerative colitis. The clinical course showed fever of short duration and elevation of liver enzymes without further clinical complications. Yellow fever viremia was not detectable and protective antibodies were developed. A primary vaccination against yellow fever under infliximab has not been reported in the literature before, although vaccination is an important topic in IBD. Live vaccinations, like Stamaril(®) against yellow fever, are contraindicated during TNF-α-AB treatment. Treatment regimens containing TNF-α-AB are of growing importance, not only in gastroenterology, but also in rheumatology and dermatology. We discuss this topic by presenting our case and reviewing the current literature. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Inflammatory Biomarkers Associated with Lethal Rift Valley Fever Encephalitis in the Lewis Rat Model

    PubMed Central

    Caroline, Amy L.; Kujawa, Michael R.; Oury, Tim D.; Reed, Douglas S.; Hartman, Amy L.

    2016-01-01

    Rift Valley fever (RVF) is an emerging viral disease that causes significant human and veterinary illness in Africa and the Arabian Peninsula. Encephalitis is one of the severe complications arising from RVF virus (RVFV) infection of people, and the pathogenesis of this form of RVF is completely unknown. We use a novel reproducible encephalitic disease model in rats to identify biomarkers of lethal infection. Lewis rats were infected with RVFV strain ZH501 by aerosol exposure, then sacrificed daily to determine the course of infection and evaluation of clinical, virological, and immunological parameters. Weight loss, fever, and clinical signs occurred during the last 1–2 days prior to death. Prior to onset of clinical indications of disease, rats displayed marked granulocytosis and thrombocytopenia. In addition, high levels of inflammatory chemokines (MCP-1, MCS-F, Gro/KC, RANTES, and IL-1β) were detected first in serum (3–5 dpi) followed by brain (5–7 dpi). The results of this study are consistent with clinical data from human RVF patients and validate Lewis rats as an appropriate small animal model for RVF encephalitis. The biomarkers we identified here will be useful in future studies evaluating the efficacy of novel vaccines and therapeutics. PMID:26779164

  7. Desirability for a typhoid fever vaccine among rural residents, Pemba Island, Tanzania.

    PubMed

    Kaljee, Linda M; Pach, Alfred; Thriemer, Kamala; Ley, Benedikt; Jiddawi, Mohamed; Puri, Mahesh; Ochiai, Leon; Wierzba, Thomas; Clemens, John; Ali, Said M

    2013-06-24

    Surveillance data indicate that Salmonella enterica serotype Typhi (S. Typhi) is a significant cause of morbidity and mortality in Africa. With limited anticipated short-term improvements in sanitation and water infrastructure, targeted vaccination campaigns may be an important prevention tool for typhoid fever. A cross-sectional survey was conducted with 435 randomly selected households in four rural villages on Pemba Island, Tanzania. A dichotomous 'readiness to pay' variable was created to assess vaccine desirability. Data analyses included univariate and bivariate descriptive statistics and binary logistic regression. Bivariate outcomes (ANOVA, t-tests, and chi-square) and odds ratios with 95% confidence intervals are reported. A total of 66% respondents stated that they would pay for a typhoid fever vaccine in the future. Readiness to pay was not significantly associated with household expenditures. Readiness to pay was associated with use of local Primary Health Care Units (PHCUs) compared to use of cottage or district hospitals (OR 1.8 [95% CI, 1.2-2.7]: p=.007) and with knowledge of someone being sick from typhoid fever (OR 2.2 [95% CI, 1.0-4.5]: p=.039). Respondents perceiving prevention measures as more effective (OR 1.0 [95% CI, 1.0-1.2]: p=.009) were also more likely ready to pay. Preferred methods of communication of information about a typhoid fever vaccine included broadcasting via microphone ('miking'), radio, and door-to-door visits. With rapid increase in numbers of licensed and promising vaccines, policy makers and health administrators are faced with decisions regarding allocation of scarce health resources for competing interventions. Community residents need to be informed about diseases which may not be readily recognized, diagnosed, and treated. Perceived vulnerability to the disease may increase likelihood of vaccine desirability. A better local understanding of typhoid fever is needed for general prevention measures, increasing treatment

  8. Pathology Review of Two New Rift Valley Fever Virus Ruminant Models

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV), is a mosquito-borne, zoonotic pathogen within genus Phlebovirus, family Bunyaviridae that typically causes outbreaks in sub-Saharan Africa and recently spread to the Arabian Peninsula. In ruminants, RVFV infections cause mass abortion and high mortality rates in neona...

  9. USDA, ARS, ABDRL Research on Countermeasures for Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    The United State Department of Agriculture, Agriculture Research Service has recently established research program to address countermeasures for of Rift Valley fever (RVF) virus (RVFV). The recent outbreak in Kenya, Tanzania and Somalia demonstrates the impact this virus can have on human and live...

  10. Yellow fever vector live-virus vaccines: West Nile virus vaccine development.

    PubMed

    Arroyo, J; Miller, C A; Catalan, J; Monath, T P

    2001-08-01

    By combining molecular-biological techniques with our increased understanding of the effect of gene sequence modification on viral function, yellow fever 17D, a positive-strand RNA virus vaccine, has been manipulated to induce a protective immune response against viruses of the same family (e.g. Japanese encephalitis and dengue viruses). Triggered by the emergence of West Nile virus infections in the New World afflicting humans, horses and birds, the success of this recombinant technology has prompted the rapid development of a live-virus attenuated candidate vaccine against West Nile virus.

  11. Multiplex Detection of IgG and IgM to Rift Valley Fever Virus Nucleoprotein, Nonstructural Proteins, and Glycoprotein in Ovine and Bovine.

    PubMed

    Hossain, Mohammad M; Wilson, William C; Faburay, Bonto; Richt, Jürgen; McVey, David S; Rowland, Raymond R

    2016-08-01

    A multiplex fluorescence microsphere immunoassay (FMIA) was used to detect bovine and ovine IgM and IgG antibodies to several Rift Valley fever virus (RVFV) proteins, including the major surface glycoprotein, Gn; the nonstructural proteins, NSs and NSm; and the nucleoprotein, N. Target antigens were assembled into a multiplex and tested in serum samples from infected wild-type RVFV or MP12, a modified live virus vaccine. As expected, the N protein was immunodominant and the best target for early detection of infection. Antibody activity against the other targets was also detected. The experimental results demonstrate the capabilities of FMIA for the detection of antibodies to RVFV structural and nonstructural proteins, which can be applied to future development and validation of diagnostic tests that can be used to differentiate vaccinated from infected animals.

  12. Administration of time-expired yellow fever vaccine: public health response and results of a serological investigation.

    PubMed

    Allen, K W; Nguyen-Van-Tam, J S; Howells, J

    1999-06-01

    The discovery that a local travel clinic had administered 101 doses of time-expired yellow fever vaccine over a six month period prompted an immediate investigation in order to advise vaccinees about to travel to areas where yellow fever is endemic. No data were available to provide adequate reassurance about the potential efficacy of time-expired vaccine, so a rapid serological investigation was conducted, which provided evidence that the yellow fever vaccine had remained potent beyond its expiry date.

  13. Fractional dosing of yellow fever vaccine to extend supply: a modelling study.

    PubMed

    Wu, Joseph T; Peak, Corey M; Leung, Gabriel M; Lipsitch, Marc

    2016-12-10

    The ongoing yellow fever epidemic in Angola strains the global vaccine supply, prompting WHO to adopt dose sparing for its vaccination campaign in Kinshasa, Democratic Republic of the Congo, in July-August, 2016. Although a 5-fold fractional-dose vaccine is similar to standard-dose vaccine in safety and immunogenicity, efficacy is untested. There is an urgent need to ensure the robustness of fractional-dose vaccination by elucidation of the conditions under which dose fractionation would reduce transmission. We estimate the effective reproductive number for yellow fever in Angola using disease natural history and case report data. With simple mathematical models of yellow fever transmission, we calculate the infection attack rate (the proportion of population infected over the course of an epidemic) with various levels of transmissibility and 5-fold fractional-dose vaccine efficacy for two vaccination scenarios, ie, random vaccination in a hypothetical population that is completely susceptible, and the Kinshasa vaccination campaign in July-August, 2016, with different age cutoff for fractional-dose vaccines. We estimate the effective reproductive number early in the Angola outbreak was between 5·2 and 7·1. If vaccine action is all-or-nothing (ie, a proportion of vaccine recipients receive complete protection [VE] and the remainder receive no protection), n-fold fractionation can greatly reduce infection attack rate as long as VE exceeds 1/n. This benefit threshold becomes more stringent if vaccine action is leaky (ie, the susceptibility of each vaccine recipient is reduced by a factor that is equal to the vaccine efficacy). The age cutoff for fractional-dose vaccines chosen by WHO for the Kinshasa vaccination campaign (2 years) provides the largest reduction in infection attack rate if the efficacy of 5-fold fractional-dose vaccines exceeds 20%. Dose fractionation is an effective strategy for reduction of the infection attack rate that would be robust with a

  14. Potential for North American Mosquitoes to Transmit Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    The recent outbreaks of disease caused by Rift Valley fever virus (RVFV) in Kenya, Mauritania, Yemen, Tanzania, Somalia, and Madagascar indicate the potential for RVFV to cause severe disease in both humans and domestic animals and its potential to be introduced into new areas, including North Ameri...

  15. Vaccine administration decision making: the case of yellow fever vaccine.

    PubMed

    Lown, Beth A; Chen, Lin H; Wilson, Mary E; Sisson, Emily; Gershman, Mark; Yanni, Emad; Jentes, Emily S; Hochberg, Natasha S; Hamer, Davidson H; Barnett, Elizabeth D

    2012-09-01

    Providers must counsel travelers to yellow fever (YF)-endemic areas, although risk estimates of disease and vaccine serious adverse events (SAEs) may be imprecise. The impact of risk information and patients' requests for participation in vaccine decisions on providers' recommendations is unknown. Vaccine providers were surveyed regarding decisions for 4 patient scenarios before and after being presented information about risk of YF disease vs vaccine SAEs. Participants' theoretical attitudes were compared with actual responses to scenarios in which patients wanted to share vaccine decisions. Analyses were done by using χ(2) tests with significance level of .05. Forty-six percent of respondents made appropriate initial YF vaccine administration decisions for a pregnant woman, 73% for an immunosuppressed man, and 49% for an 8-month-old infant. After receiving scenario-specific information, 20%, 54%, and 23% of respondents respectively who initially responded incorrectly changed to a more appropriate decision. Thirty-one percent of participants made consistently appropriate decisions. Among participants who made ≥1 incorrect decision, 35.7% made no decision changes after receiving information. In the scenario in which either a decision to withhold or to administer vaccine was acceptable, 19% of respondents refused a patient's request for vaccine. Targeted information is necessary but insufficient to change the process of vaccine administration decision making. Providers need additional education to enable them to apply evidence, overcome cognitive decision-making errors, and involve patients in vaccine decisions.

  16. Vaccine platforms to control Lassa fever.

    PubMed

    Lukashevich, Igor S; Pushko, Peter

    2016-09-01

    Lassa virus (LASV), the most prominent human pathogen of the Arenaviridae, is transmitted to humans from infected rodents and can cause Lassa Fever (LF). The sizeable disease burden in West Africa, numerous imported LF cases worldwide, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. There are no licensed LASV vaccines and the antiviral treatment is limited to an off-label use of ribavirin that is only partially effective. LASV vaccine development is hampered by high cost of biocontainment requirement, the absence of appropriate small animal models, genetic diversity of LASV species, and by high HIV-1 prevalence in LASV endemic areas. Over the past 15 years several vaccine platforms have been developed. Natural history of LASV and pathogenesis of the disease provide strong justification for replication-competent (RC) vaccine as one of the most feasible approaches to control LF. Development of LASV vaccine candidates based on reassortant, recombinant, and alphavirus replicon technologies is covered in this review. Expert commentary: Two lead RC vaccine candidates, reassortant ML29 and recombinant VSV/LASV, have been successfully tested in non-human primates and have been recommended by international vaccine experts for rapid clinical development. Both platforms have powerful molecular tools to further secure safety, improve immunogenicity, and cross-protection. These platforms are well positioned to design multivalent vaccines to protect against all LASV strains citculatrd in West Africa. The regulatory pathway of Candid #1, the first live-attenuated arenaviral vaccine against Argentine hemorrhagic, will be a reasonable guideline for LASV vaccine efficacy trials.

  17. The impact of climate change on the epidemiology and control of Rift Valley fever.

    PubMed

    Martin, V; Chevalier, V; Ceccato, P; Anyamba, A; De Simone, L; Lubroth, J; de La Rocque, S; Domenech, J

    2008-08-01

    Climate change is likely to change the frequency of extreme weather events, such as tropical cyclones, floods, droughts and hurricanes, and may destabilise and weaken the ecosystem services upon which human society depends. Climate change is also expected to affect animal, human and plant health via indirect pathways: it is likely that the geography of infectious diseases and pests will be altered, including the distribution of vector-borne diseases, such as Rift Valley fever, yellow fever, malaria and dengue, which are highly sensitive to climatic conditions. Extreme weather events might then create the necessary conditions for Rift Valley fever to expand its geographical range northwards and cross the Mediterranean and Arabian seas, with an unexpected impact on the animal and human health of newly affected countries. Strengthening global, regional and national early warning systems is crucial, as are co-ordinated research programmes and subsequent prevention and intervention measures.

  18. Anomalous High Rainfall and Soil Saturation as Combined Risk Indicator of Rift Valley Fever Outbreaks, South Africa, 2008–2011

    PubMed Central

    Malherbe, Johan; Weepener, Harold; Majiwa, Phelix; Swanepoel, Robert

    2016-01-01

    Rift Valley fever (RVF), a zoonotic vectorborne viral disease, causes loss of life among humans and livestock and an adverse effect on the economy of affected countries. Vaccination is the most effective way to protect livestock; however, during protracted interepidemic periods, farmers discontinue vaccination, which leads to loss of herd immunity and heavy losses of livestock when subsequent outbreaks occur. Retrospective analysis of the 2008–2011 RVF epidemics in South Africa revealed a pattern of continuous and widespread seasonal rainfall causing substantial soil saturation followed by explicit rainfall events that flooded dambos (seasonally flooded depressions), triggering outbreaks of disease. Incorporation of rainfall and soil saturation data into a prediction model for major outbreaks of RVF resulted in the correctly identified risk in nearly 90% of instances at least 1 month before outbreaks occurred; all indications are that irrigation is of major importance in the remaining 10% of outbreaks. PMID:27403563

  19. Preparation of Rocky Mountain spotted fever vaccine suitable for human immunization.

    PubMed Central

    Kenyon, R H; Pedersen, C E

    1975-01-01

    Rocky Mountain spotted fever vaccine was produced from rickettsiae grown in chicken embryo cells in roller bottle cultures. The rickettsiae were concentrated and purified by passage through a sucrose gradient and inactivated with formalin. This vaccine satisfactorily passed preinactivation and final container testing and is believed to be superior to the presently available yolk sac vaccine. PMID:809483

  20. Rift Valley Fever Virus Structural and Nonstructural Proteins: Recombinant Protein Expression and Immunoreactivity Against Antisera from Sheep

    PubMed Central

    Faburay, Bonto; Wilson, William; McVey, D. Scott; Drolet, Barbara S.; Weingartl, Hana; Madden, Daniel; Young, Alan; Ma, Wenjun

    2013-01-01

    Abstract The Rift Valley fever virus (RVFV) encodes the structural proteins nucleoprotein (N), aminoterminal glycoprotein (Gn), carboxyterminal glycoprotein (Gc), and L protein, 78-kD, and the nonstructural proteins NSm and NSs. Using the baculovirus system, we expressed the full-length coding sequence of N, NSs, NSm, Gc, and the ectodomain of the coding sequence of the Gn glycoprotein derived from the virulent strain of RVFV ZH548. Western blot analysis using anti-His antibodies and monoclonal antibodies against Gn and N confirmed expression of the recombinant proteins, and in vitro biochemical analysis showed that the two glycoproteins, Gn and Gc, were expressed in glycosylated form. Immunoreactivity profiles of the recombinant proteins in western blot and in indirect enzyme-linked immunosorbent assay against a panel of antisera obtained from vaccinated or wild type (RVFV)-challenged sheep confirmed the results obtained with anti-His antibodies and demonstrated the suitability of the baculo-expressed antigens for diagnostic assays. In addition, these recombinant proteins could be valuable for the development of diagnostic methods that differentiate infected from vaccinated animals (DIVA). PMID:23962238

  1. Should close contacts of returning travellers with typhoid fever be protected by vaccination?

    PubMed

    Kantele, A

    2015-03-17

    Increasing international travel to areas endemic for typhoid fever correlates with increased risk for travellers to contract the disease. At home, the acutely ill/convalescent patients may pose some risk to their close contacts. In Finland an unofficial guideline suggests vaccination for close contacts of patients with acute typhoid fever; in other developed countries, routine typhoid vaccinations are only recommended to contacts of chronic carriers. This paper discusses the possibilities and limitations of prophylactic/post-exposure typhoid vaccination for contacts of patients with acute disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Potential for North American mosquitoes to transmit Rift Valley fever virus

    USDA-ARS?s Scientific Manuscript database

    The recent outbreaks of disease caused by Rift Valley fever virus (RVFV) in Kenya, Mauritania, Yemen, Tanzania, Somalia, and Madagascar indicate the potential for RVFV to cause severe disease in both humans and domestic animals and its potential to be introduced into new areas, possibly even North A...

  3. Seroprevalence of Sheep and Goat Pox, Peste Des Petits Ruminants and Rift Valley Fever in Saudi Arabia.

    PubMed

    Boshra, Hani; Truong, Thang; Babiuk, Shawn; Hemida, Maged Gomaa

    2015-01-01

    Sheep and goat pox, peste des petits ruminants and Rift Valley fever are important diseases of small ruminant livestock. Sheep and goat pox, along with peste des petits ruminants, are endemic throughout most of Africa, Asia and the Middle East. Whereas Rift Valley fever is endemic in Africa, outbreaks in the Middle East have been reported over the past decade, including the Arabian Peninsula. Saudi Arabia is a major importer of livestock, and understanding the prevalence of these viral infections would be useful for disease control. In this study, sera from sheep and goats were collected from 3 regions in Saudi Arabia. They were evaluated for antibodies specific to sheep and goat pox, peste des petits ruminants and Rift Valley fever by virus neutralization assays. To the best of our knowledge, this is the first study to evaluate the seroprevalence of these viruses in sheep and goats.

  4. Guiding dengue vaccine development using knowledge gained from the success of the yellow fever vaccine.

    PubMed

    Liang, Huabin; Lee, Min; Jin, Xia

    2016-01-01

    Flaviviruses comprise approximately 70 closely related RNA viruses. These include several mosquito-borne pathogens, such as yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), which can cause significant human diseases and thus are of great medical importance. Vaccines against both YFV and JEV have been used successfully in humans for decades; however, the development of a DENV vaccine has encountered considerable obstacles. Here, we review the protective immune responses elicited by the vaccine against YFV to provide some insights into the development of a protective DENV vaccine.

  5. Guiding dengue vaccine development using knowledge gained from the success of the yellow fever vaccine

    PubMed Central

    Liang, Huabin; Lee, Min; Jin, Xia

    2016-01-01

    Flaviviruses comprise approximately 70 closely related RNA viruses. These include several mosquito-borne pathogens, such as yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), which can cause significant human diseases and thus are of great medical importance. Vaccines against both YFV and JEV have been used successfully in humans for decades; however, the development of a DENV vaccine has encountered considerable obstacles. Here, we review the protective immune responses elicited by the vaccine against YFV to provide some insights into the development of a protective DENV vaccine. PMID:26435066

  6. Neurological adverse events temporally associated to mass vaccination against yellow fever in Juiz de Fora, Brazil, 1999-2005.

    PubMed

    Fernandes, Guilherme Côrtes; Camacho, Luiz Antonio Bastos; Sá Carvalho, Marilia; Batista, Maristela; de Almeida, Sonia Maria Rodrigues

    2007-04-20

    The identification of adverse events following immunization (AEFI) and their prompt investigation are important to allow a timely and scientifically based response to the users of immunization services. This article presents an analysis of notified AEFI cases between 1999 and 2005 and their temporal association with 2001 yellow fever vaccination campaign, AEFI notification attributed to yellow fever vaccination rose from 0.06 to 1.32 per 100,000 vaccinees in Brazil, between 1998 and 2000. During the 2001 yellow fever mass vaccination campaign held in Juiz de Fora, Brazil, 12 cases of aseptic meningitis were temporally associated to yellow fever vaccination, but clinical and laboratory data were not available to confirm nor deny causality. Epidemiological studies associated to enhanced surveillance and standardized protocols should take advantage of public health interventions like mass vaccination campaigns and implementation of new vaccination strategies in order to assess and investigate vaccine safety.

  7. Protein Phosphatase-1 regulates Rift Valley fever virus replication.

    PubMed

    Baer, Alan; Shafagati, Nazly; Benedict, Ashwini; Ammosova, Tatiana; Ivanov, Andrey; Hakami, Ramin M; Terasaki, Kaori; Makino, Shinji; Nekhai, Sergei; Kehn-Hall, Kylene

    2016-03-01

    Rift Valley fever virus (RVFV), genus Phlebovirus family Bunyaviridae, is an arthropod-borne virus endemic throughout sub-Saharan Africa. Recent outbreaks have resulted in cyclic epidemics with an increasing geographic footprint, devastating both livestock and human populations. Despite being recognized as an emerging threat, relatively little is known about the virulence mechanisms and host interactions of RVFV. To date there are no FDA approved therapeutics or vaccines for RVF and there is an urgent need for their development. The Ser/Thr protein phosphatase 1 (PP1) has previously been shown to play a significant role in the replication of several viruses. Here we demonstrate for the first time that PP1 plays a prominent role in RVFV replication early on during the viral life cycle. Both siRNA knockdown of PP1α and a novel PP1-targeting small molecule compound 1E7-03, resulted in decreased viral titers across several cell lines. Deregulation of PP1 was found to inhibit viral RNA production, potentially through the disruption of viral RNA transcript/protein interactions, and indicates a potential link between PP1α and the viral L polymerase and nucleoprotein. These results indicate that PP1 activity is important for RVFV replication early on during the viral life cycle and may prove an attractive therapeutic target. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. An epidemic of Rift Valley fever in Egypt

    PubMed Central

    Imam, Imam Z. E.; Karamany, R. El; Darwish, Medhat A.

    1979-01-01

    During the epidemic of Rift Valley fever (RVF) that occurred in Egypt and other areas of North Africa in 1977, the virus was isolated from various species of domestic animal and rats (Rattus rattus frugivorus) as well as man. The highest number of RVF virus isolates were obtained from sheep; only one isolate was recovered from each of the other species tested, viz. cow, camel, goat, horse, and rat. RVF virus was reisolated from both camel and horse sera, apparently for the first time. PMID:314355

  9. Yellow fever vaccination: some thoughts on how much is enough [Vaccine 23 (2005) 3908-3914].

    PubMed

    Martins, Reinaldo M; Galler, Ricardo; Freire, Marcos Silva; Camacho, Luiz Antonio B; de Lourdes S Maia, Maria; Homma, Akira

    2007-01-02

    In a recently published article in this journal, Massad et al. contraindicates yellow fever vaccination to persons 60 years or older, considering that the risk of serious adverse events is higher for this age class. The conclusion was based on the input of available data on age-related probabilities of developing serious adverse events in the United States, as well on other data not firmly established. We consider such contraindication inadequate, because the data input has limitations, higher letality of wild-type yellow fever infection in older adults, risk of introduction of yellow fever by travelers into new countries, lower risk of vaccine adverse events in revaccinated or immune people in endemic countries, and the experience of Brazil, with only one suspect case of associated viscerotropic disease in an individual older than 60 years. The model proposed by Massad et al. is useful but can lead to different conclusions, depending on the epidemiological context and individual risk profile.

  10. Yellow fever vaccination coverage following massive emergency immunization campaigns in rural Uganda, May 2011: a community cluster survey.

    PubMed

    Bagonza, James; Rutebemberwa, Elizeus; Mugaga, Malimbo; Tumuhamye, Nathan; Makumbi, Issa

    2013-03-07

    Following an outbreak of yellow fever in northern Uganda in December 2010, Ministry of Health conducted a massive emergency vaccination campaign in January 2011. The reported vaccination coverage in Pader District was 75.9%. Administrative coverage though timely, is affected by incorrect population estimates and over or under reporting of vaccination doses administered. This paper presents the validated yellow fever vaccination coverage following massive emergency immunization campaigns in Pader district. A cross sectional cluster survey was carried out in May 2011 among communities in Pader district and 680 respondents were indentified using the modified World Health Organization (WHO) 40 × 17 cluster survey sampling methodology. Respondents were aged nine months and above. Interviewer administered questionnaires were used to collect data on demographic characteristics, vaccination status and reasons for none vaccination. Vaccination status was assessed using self reports and vaccination card evidence. Our main outcomes were measures of yellow fever vaccination coverage in each age-specific stratum, overall, and disaggregated by age and sex, adjusting for the clustered design and the size of the population in each stratum. Of the 680 survey respondents, 654 (96.1%, 95% CI 94.9 - 97.8) reported being vaccinated during the last campaign but only 353 (51.6%, 95% CI 47.2 - 56.1) had valid yellow fever vaccination cards. Of the 280 children below 5 years, 269 (96.1%, 95% CI 93.7 - 98.7) were vaccinated and nearly all males 299 (96.9%, 95% CI 94.3 - 99.5) were vaccinated. The main reasons for none vaccination were; having travelled out of Pader district during the campaign period (40.0%), lack of transport to immunization posts (28.0%) and, sickness at the time of vaccination (16.0%). Our results show that actual yellow fever vaccination coverage was high and satisfactory in Pader district since it was above the desired minimum threshold coverage of 80% according

  11. Yellow fever vaccination coverage following massive emergency immunization campaigns in rural Uganda, May 2011: a community cluster survey

    PubMed Central

    2013-01-01

    Background Following an outbreak of yellow fever in northern Uganda in December 2010, Ministry of Health conducted a massive emergency vaccination campaign in January 2011. The reported vaccination coverage in Pader District was 75.9%. Administrative coverage though timely, is affected by incorrect population estimates and over or under reporting of vaccination doses administered. This paper presents the validated yellow fever vaccination coverage following massive emergency immunization campaigns in Pader district. Methods A cross sectional cluster survey was carried out in May 2011 among communities in Pader district and 680 respondents were indentified using the modified World Health Organization (WHO) 40 × 17 cluster survey sampling methodology. Respondents were aged nine months and above. Interviewer administered questionnaires were used to collect data on demographic characteristics, vaccination status and reasons for none vaccination. Vaccination status was assessed using self reports and vaccination card evidence. Our main outcomes were measures of yellow fever vaccination coverage in each age-specific stratum, overall, and disaggregated by age and sex, adjusting for the clustered design and the size of the population in each stratum. Results Of the 680 survey respondents, 654 (96.1%, 95% CI 94.9 – 97.8) reported being vaccinated during the last campaign but only 353 (51.6%, 95% CI 47.2 – 56.1) had valid yellow fever vaccination cards. Of the 280 children below 5 years, 269 (96.1%, 95% CI 93.7 – 98.7) were vaccinated and nearly all males 299 (96.9%, 95% CI 94.3 – 99.5) were vaccinated. The main reasons for none vaccination were; having travelled out of Pader district during the campaign period (40.0%), lack of transport to immunization posts (28.0%) and, sickness at the time of vaccination (16.0%). Conclusions Our results show that actual yellow fever vaccination coverage was high and satisfactory in Pader district since it was above the

  12. 42 CFR 71.3 - Designation of yellow fever vaccination centers; Validation stamps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...; Validation stamps. 71.3 Section 71.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN... Designation of yellow fever vaccination centers; Validation stamps. (a) Designation of yellow fever... health department, may revoke designation. (b) Validation stamps. International Certificates of...

  13. 42 CFR 71.3 - Designation of yellow fever vaccination centers; Validation stamps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...; Validation stamps. 71.3 Section 71.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN... Designation of yellow fever vaccination centers; Validation stamps. (a) Designation of yellow fever... health department, may revoke designation. (b) Validation stamps. International Certificates of...

  14. 42 CFR 71.3 - Designation of yellow fever vaccination centers; Validation stamps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...; Validation stamps. 71.3 Section 71.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN... Designation of yellow fever vaccination centers; Validation stamps. (a) Designation of yellow fever... health department, may revoke designation. (b) Validation stamps. International Certificates of...

  15. 42 CFR 71.3 - Designation of yellow fever vaccination centers; Validation stamps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...; Validation stamps. 71.3 Section 71.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN... Designation of yellow fever vaccination centers; Validation stamps. (a) Designation of yellow fever... health department, may revoke designation. (b) Validation stamps. International Certificates of...

  16. Aedes mosquito saliva modulates Rift Valley fever virus pathogenicity.

    PubMed

    Le Coupanec, Alain; Babin, Divya; Fiette, Laurence; Jouvion, Grégory; Ave, Patrick; Misse, Dorothee; Bouloy, Michèle; Choumet, Valerie

    2013-01-01

    Rift Valley fever (RVF) is a severe mosquito-borne disease affecting humans and domestic ruminants. Mosquito saliva contains compounds that counteract the hemostatic, inflammatory, and immune responses of the host. Modulation of these defensive responses may facilitate virus infection. Indeed, Aedes mosquito saliva played a crucial role in the vector's capacity to effectively transfer arboviruses such as the Cache Valley and West Nile viruses. The role of mosquito saliva in the transmission of Rift Valley fever virus (RVFV) has not been investigated. Using a murine model, we explored the potential for mosquitoes to impact the course of RVF disease by determining whether differences in pathogenesis occurred in the presence or absence of mosquito saliva and salivary gland extract. C57BL/6NRJ male mice were infected with the ZH548 strain of RVFV via intraperitoneal or intradermal route, or via bites from RVFV-exposed mosquitoes. The virus titers in mosquitoes and mouse organs were determined by plaque assays. After intraperitoneal injection, RVFV infection primarily resulted in liver damage. In contrast, RVFV infection via intradermal injection caused both liver and neurological symptoms and this route best mimicked the natural infection by mosquitoes. Co-injections of RVFV with salivary gland extract or saliva via intradermal route increased the mortality rates of mice, as well as the virus titers measured in several organs and in the blood. Furthermore, the blood cell counts of infected mice were altered compared to those of uninfected mice. Different routes of infection determine the pattern in which the virus spreads and the organs it targets. Aedes saliva significantly increases the pathogenicity of RVFV.

  17. Blood Meal Analysis of Mosquitoes Involved in a Rift Valley fever Outbreak

    USDA-ARS?s Scientific Manuscript database

    Background: Rift Valley fever (RVF) is a zoonosis of domestic ruminants in Africa. Bloodfed mosquitoes collected during the 2006-2007 RVF outbreak in Kenya were analyzed to determine the virus infection status and animal source of the bloodmeals. Bloodmeals from individual mosquito abdomens were sc...

  18. Gestational exposure to yellow fever vaccine at different developmental stages induces behavioral alterations in the progeny.

    PubMed

    Marianno, P; Salles, M J S; Sonego, A B; Costa, G A; Galvão, T C; Lima, G Z; Moreira, E G

    2013-01-01

    The most effective method to prevent yellow fever and control the disease is a vaccine made with attenuated live virus. Due to the neurological tropism of the virus, preventive vaccination is not recommended for infants under 6 months and for pregnant women. However there is a paucity of data regarding the safety for pregnant women and there are no experimental studies investigating adverse effects to the offspring after maternal exposure to the vaccine. This study aimed to investigate, in mice, the effects of maternal exposure to the yellow fever vaccine at three different gestational ages on the physical and behavioral development of the offspring. Pregnant Swiss mice received a single subcutaneous injection of water for injection (control groups) or 2 log Plaque Forming Units (vaccine-treated groups) of the yellow fever vaccine on gestational days (GD) 5, 10 or 15. Neither maternal signs of toxicity nor alterations in physical development and reflex ontogeny of the offspring were observed in any of the groups. Data from behavioral evaluation indicated that yellow fever vaccine exposure induced motor hypoactivity in 22-day-old females independent of the day of exposure; and in 60-day-old male and female pups exposed at GD 10. Moreover, 22-day-old females also presented with a deficit in habituation memory. Altogether, these results indicate that in utero exposure to the yellow fever vaccine may induce behavioral alterations in the pups that may persist to adulthood in the absence of observed maternal toxicity or disruption of physical development milestones or reflex ontogeny. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Occurrence of Autoimmune Diseases Related to the Vaccine against Yellow Fever

    PubMed Central

    Oliveira, Ana Cristina Vanderley; Maria Henrique da Mota, Licia; dos Santos-Neto, Leopoldo Luiz; De Carvalho, Jozélio Freire; Caldas, Iramaya Rodrigues; Martins Filho, Olindo Assis; Tauil, Pedro Luis

    2014-01-01

    Yellow fever is an infectious disease, endemic in South America and Africa. This is a potentially serious illness, with lethality between 5 and 40% of cases. The most effective preventive vaccine is constituted by the attenuated virus strain 17D, developed in 1937. It is considered safe and effective, conferring protection in more than 90% in 10 years. Adverse effects are known as mild reactions (allergies, transaminases transient elevation, fever, headache) and severe (visceral and neurotropic disease related to vaccine). However, little is known about its potential to induce autoimmune responses. This systematic review aims to identify the occurrence of autoinflammatory diseases related to 17D vaccine administration. Six studies were identified describing 13 possible cases. The diseases were Guillain-Barré syndrome, multiple sclerosis, multiple points evanescent syndrome, acute disseminated encephalomyelitis, autoimmune hepatitis, and Kawasaki disease. The data suggest that 17D vaccination may play a role in the mechanism of loss of self-tolerance. PMID:25405025

  20. Nonspreading Rift Valley Fever Virus Infection of Human Dendritic Cells Results in Downregulation of CD83 and Full Maturation of Bystander Cells.

    PubMed

    Oreshkova, Nadia; Wichgers Schreur, Paul J; Spel, Lotte; Vloet, Rianka P M; Moormann, Rob J M; Boes, Marianne; Kortekaas, Jeroen

    2015-01-01

    Vaccines based on nonspreading Rift Valley fever virus (NSR) induce strong humoral and robust cellular immune responses with pronounced Th1 polarisation. The present work was aimed to gain insight into the molecular basis of NSR-mediated immunity. Recent studies have demonstrated that wild-type Rift Valley fever virus efficiently targets and replicates in dendritic cells (DCs). We found that NSR infection of cultured human DCs results in maturation of DCs, characterized by surface upregulation of CD40, CD80, CD86, MHC-I and MHC-II and secretion of the proinflammatory cytokines IFN-β, IL-6 and TNF. Interestingly, expression of the most prominent marker of DC maturation, CD83, was consistently downregulated at 24 hours post infection. Remarkably, NSR infection also completely abrogated CD83 upregulation by LPS. Downregulation of CD83 was not associated with reduced mRNA levels or impaired CD83 mRNA transport from the nucleus and could not be prevented by inhibition of the proteasome or endocytic degradation pathways, suggesting that suppression occurs at the translational level. In contrast to infected cells, bystander DCs displayed full maturation as evidenced by upregulation of CD83. Our results indicate that bystander DCs play an important role in NSR-mediated immunity.

  1. The 17D-204 and 17DD yellow fever vaccines: an overview of major similarities and subtle differences.

    PubMed

    Ferreira, Clarissa de Castro; Campi-Azevedo, Ana Carolina; Peruhype-Magalhāes, Vanessa; Costa-Pereira, Christiane; Albuquerque, Cleandro Pires de; Muniz, Luciana Feitosa; Yokoy de Souza, Talita; Oliveira, Ana Cristina Vanderley; Martins-Filho, Olindo Assis; da Mota, Licia Maria Henrique

    2018-01-01

    The yellow fever vaccine is a live attenuated virus vaccine that is considered one of the most efficient vaccines produced to date. The original 17D strain generated the substrains 17D-204 and 17DD, which are used for the current production of vaccines against yellow fever. The 17D-204 and 17DD substrains present subtle differences in their nucleotide compositions, which can potentially lead to variations in immunogenicity and reactogenicity. We will address the main changes in the immune responses induced by the 17D-204 and 17DD yellow fever vaccines and report similarities and differences between these vaccines in cellular and humoral immunity . This is a relevant issue in view of the re-emergence of yellow fever in Uganda in 2016 and in Brazil in the beginning of 2017. Areas covered: This article will be divided into 8 sections that will analyze the innate immune response, adaptive immune response, humoral response, production of cytokines, immunity in children, immunity in the elderly, gene expression and adverse reactions. Expert commentary: The 17D-204 and 17DD yellow fever vaccines present similar immunogenicity, with strong activation of the cellular and humoral immune responses. Additionally, both vaccines have similar adverse effects, which are mostly mild and thus are considered safe.

  2. Yellow fever live attenuated vaccine: A very successful live attenuated vaccine but still we have problems controlling the disease.

    PubMed

    Barrett, Alan D T

    2017-10-20

    Yellow fever (YF) is regarded as the original hemorrhagic fever and has been a major public health problem for at least 250years. A very effective live attenuated vaccine, strain 17D, was developed in the 1930s and this has proved critical in the control of the disease. There is little doubt that without the vaccine, YF virus would be considered a biosafety level 4 pathogen. Significantly, YF is currently the only disease where an international vaccination certificate is required under the International Health Regulations. Despite having a very successful vaccine, there are occasional issues of supply and demand, such as that which occurred in Angola and Democratic Republic of Congo in 2016 when there was insufficient vaccine available. For the first time fractional dosing of the vaccine was approved on an emergency basis. Thus, continued vigilance and improvements in supply and demand are needed in the future. Copyright © 2017. Published by Elsevier Ltd.

  3. Adaptive immune responses to booster vaccination against yellow fever virus are much reduced compared to those after primary vaccination.

    PubMed

    Kongsgaard, Michael; Bassi, Maria R; Rasmussen, Michael; Skjødt, Karsten; Thybo, Søren; Gabriel, Mette; Hansen, Morten Bagge; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup; Buus, Soren; Stryhn, Anette

    2017-04-06

    Outbreaks of Yellow Fever occur regularly in endemic areas of Africa and South America frequently leading to mass vaccination campaigns straining the availability of the attenuated Yellow Fever vaccine, YF-17D. The WHO has recently decided to discontinue regular booster-vaccinations since a single vaccination is deemed to confer life-long immune protection. Here, we have examined humoral (neutralizing antibody) and cellular (CD8 and CD4 T cell) immune responses in primary and booster vaccinees (the latter spanning 8 to 36 years after primary vaccination). After primary vaccination, we observed strong cellular immune responses with T cell activation peaking ≈2 weeks and subsiding to background levels ≈ 4 weeks post-vaccination. The number of antigen-specific CD8+ T cells declined over the following years. In >90% of vaccinees, in vitro expandable T cells could still be detected >10 years post-vaccination. Although most vaccinees responded to a booster vaccination, both the humoral and cellular immune responses observed following booster vaccination were strikingly reduced compared to primary responses. This suggests that pre-existing immunity efficiently controls booster inoculums of YF-17D. In a situation with epidemic outbreaks, one could argue that a more efficient use of a limited supply of the vaccine would be to focus on primary vaccinations.

  4. A qualitatively validated mathematical-computational model of the immune response to the yellow fever vaccine.

    PubMed

    Bonin, Carla R B; Fernandes, Guilherme C; Dos Santos, Rodrigo W; Lobosco, Marcelo

    2018-05-25

    Although a safe and effective yellow fever vaccine was developed more than 80 years ago, several issues regarding its use remain unclear. For example, what is the minimum dose that can provide immunity against the disease? A useful tool that can help researchers answer this and other related questions is a computational simulator that implements a mathematical model describing the human immune response to vaccination against yellow fever. This work uses a system of ten ordinary differential equations to represent a few important populations in the response process generated by the body after vaccination. The main populations include viruses, APCs, CD8+ T cells, short-lived and long-lived plasma cells, B cells and antibodies. In order to qualitatively validate our model, four experiments were carried out, and their computational results were compared to experimental data obtained from the literature. The four experiments were: a) simulation of a scenario in which an individual was vaccinated against yellow fever for the first time; b) simulation of a booster dose ten years after the first dose; c) simulation of the immune response to the yellow fever vaccine in individuals with different levels of naïve CD8+ T cells; and d) simulation of the immune response to distinct doses of the yellow fever vaccine. This work shows that the simulator was able to qualitatively reproduce some of the experimental results reported in the literature, such as the amount of antibodies and viremia throughout time, as well as to reproduce other behaviors of the immune response reported in the literature, such as those that occur after a booster dose of the vaccine.

  5. Early molecular correlates of adverse events following yellow fever vaccination

    PubMed Central

    Chan, Candice Y.Y.; Chan, Kuan Rong; Chua, Camillus J.H.; nur Hazirah, Sharifah; Ghosh, Sujoy; Ooi, Eng Eong; Low, Jenny G.

    2017-01-01

    The innate immune response shapes the development of adaptive immunity following infections and vaccination. However, it can also induce symptoms such as fever and myalgia, leading to the possibility that the molecular basis of immunogenicity and reactogenicity of vaccination are inseparably linked. To test this possibility, we used the yellow fever live-attenuated vaccine (YFLAV) as a model to study the molecular correlates of reactogenicity or adverse events (AEs). We analyzed the outcome of 68 adults who completed a YFLAV clinical trial, of which 43 (63.2%) reported systemic AEs. Through whole-genome profiling of blood collected before and after YFLAV dosing, we observed that activation of innate immune genes at day 1, but not day 3 after vaccination, was directly correlated with AEs. These findings contrast with the gene expression profile at day 3 that we and others have previously shown to be correlated with immunogenicity. We conclude that although the innate immune response is a double-edged sword, its expression that induces AEs is temporally distinct from that which engenders robust immunity. The use of genomic profiling thus provides molecular insights into the biology of AEs that potentially forms a basis for the development of safer vaccines. PMID:28978802

  6. A Hierarchical Network Approach for Modeling Rift Valley Fever Epidemics with Applications in North America

    PubMed Central

    Xue, Ling; Cohnstaedt, Lee W.; Scott, H. Morgan; Scoglio, Caterina

    2013-01-01

    Rift Valley fever is a vector-borne zoonotic disease which causes high morbidity and mortality in livestock. In the event Rift Valley fever virus is introduced to the United States or other non-endemic areas, understanding the potential patterns of spread and the areas at risk based on disease vectors and hosts will be vital for developing mitigation strategies. Presented here is a general network-based mathematical model of Rift Valley fever. Given a lack of empirical data on disease vector species and their vector competence, this discrete time epidemic model uses stochastic parameters following several PERT distributions to model the dynamic interactions between hosts and likely North American mosquito vectors in dispersed geographic areas. Spatial effects and climate factors are also addressed in the model. The model is applied to a large directed asymmetric network of 3,621 nodes based on actual farms to examine a hypothetical introduction to some counties of Texas, an important ranching area in the United States of America. The nodes of the networks represent livestock farms, livestock markets, and feedlots, and the links represent cattle movements and mosquito diffusion between different nodes. Cattle and mosquito (Aedes and Culex) populations are treated with different contact networks to assess virus propagation. Rift Valley fever virus spread is assessed under various initial infection conditions (infected mosquito eggs, adults or cattle). A surprising trend is fewer initial infectious organisms result in a longer delay before a larger and more prolonged outbreak. The delay is likely caused by a lack of herd immunity while the infection expands geographically before becoming an epidemic involving many dispersed farms and animals almost simultaneously. Cattle movement between farms is a large driver of virus expansion, thus quarantines can be efficient mitigation strategy to prevent further geographic spread. PMID:23667453

  7. A hierarchical network approach for modeling Rift Valley fever epidemics with applications in North America.

    PubMed

    Xue, Ling; Cohnstaedt, Lee W; Scott, H Morgan; Scoglio, Caterina

    2013-01-01

    Rift Valley fever is a vector-borne zoonotic disease which causes high morbidity and mortality in livestock. In the event Rift Valley fever virus is introduced to the United States or other non-endemic areas, understanding the potential patterns of spread and the areas at risk based on disease vectors and hosts will be vital for developing mitigation strategies. Presented here is a general network-based mathematical model of Rift Valley fever. Given a lack of empirical data on disease vector species and their vector competence, this discrete time epidemic model uses stochastic parameters following several PERT distributions to model the dynamic interactions between hosts and likely North American mosquito vectors in dispersed geographic areas. Spatial effects and climate factors are also addressed in the model. The model is applied to a large directed asymmetric network of 3,621 nodes based on actual farms to examine a hypothetical introduction to some counties of Texas, an important ranching area in the United States of America. The nodes of the networks represent livestock farms, livestock markets, and feedlots, and the links represent cattle movements and mosquito diffusion between different nodes. Cattle and mosquito (Aedes and Culex) populations are treated with different contact networks to assess virus propagation. Rift Valley fever virus spread is assessed under various initial infection conditions (infected mosquito eggs, adults or cattle). A surprising trend is fewer initial infectious organisms result in a longer delay before a larger and more prolonged outbreak. The delay is likely caused by a lack of herd immunity while the infection expands geographically before becoming an epidemic involving many dispersed farms and animals almost simultaneously. Cattle movement between farms is a large driver of virus expansion, thus quarantines can be efficient mitigation strategy to prevent further geographic spread.

  8. [Typhoid fever in school children: by what measures is the modification of the clinical course due to oral vaccination?].

    PubMed

    Contreras, R; Ferreccio, C; Sotomayor, V; Astroza, L; Berríos, G; Ortiz, E; Palomino, C; Prenzel, I; Pinto, M E; Levine, M

    1992-02-01

    The clinical course of infection by Salmonellae was compared between patients who had been vaccinated against typhoid fever using the Ty21a vaccine and those who had not. Of 2566 bacteriological confirmed cases 84% were infected with S typhi, 14% with S paratyphi B and 2% with S paratyphi A. Among patients with typhoid fever, 34% were treated in hospital, 3.5% had relapses, 5.4% developed complications and 1 patient died (0.05%). Among patients with paratyphoid fever, 18% were treated in hospital, 0.6% had relapses, 1.4% developed complications and there were no deaths. These figures were similar among vaccinated and non-vaccinated cases. A slightly greater proportion of vaccinated cases were treated in hospital (38 vs 30%). Thus, use of oral vaccination against typhoid fever does not alter the clinical course of infection with Salmonellae.

  9. Co-administration of live measles and yellow fever vaccines and inactivated pentavalent vaccines is associated with increased mortality compared with measles and yellow fever vaccines only. An observational study from Guinea-Bissau.

    PubMed

    Fisker, Ane Bærent; Ravn, Henrik; Rodrigues, Amabelia; Østergaard, Marie Drivsholm; Bale, Carlito; Benn, Christine Stabell; Aaby, Peter

    2014-01-23

    Studies from low-income countries indicate that co-administration of inactivated diphtheria-tetanus-pertussis (DTP) vaccine and live attenuated measles vaccine (MV) is associated with increased mortality compared with receiving MV only. Pentavalent (DTP-H. Influenza type B-Hepatitis B) vaccine is replacing DTP in many low-income countries and yellow fever vaccine (YF) has been introduced to be given together with MV. Pentavalent and YF vaccines were introduced in Guinea-Bissau in 2008. We investigated whether co-administration of pentavalent vaccine with MV and yellow fever vaccine has similar negative effects. In 2007-2011, we conducted a randomised placebo-controlled trial of vitamin A at routine vaccination contacts among children aged 6-23 months in urban and rural Guinea-Bissau. In the present study, we included 2331 children randomised to placebo who received live vaccines only (MV or MV+YF) or a combination of live and inactivated vaccines (MV+DTP or MV+YF+pentavalent). Mortality was compared in Cox proportional hazards models stratified for urban/rural enrolment adjusted for age and unevenly distributed baseline factors. While DTP was still used 685 children received MV only and 358 MV+DTP; following the change in programme, 940 received MV+YF only and 348 MV+YF+pentavalent. During 6 months of follow-up, the adjusted mortality rate ratio (MRR) for co-administered live and inactivated vaccines compared with live vaccines only was 3.24 (1.20-8.73). For MV+YF+pentavalent compared with MV+YF only, the adjusted MRR was 7.73 (1.79-33.4). In line with previous studies of DTP, the present results indicate that pentavalent vaccine co-administered with MV and YF is associated with increased mortality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Rift Valley Fever Virus Control: Integration of Virus, Host and Vector Studies

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a disease of animals and humans that occurs in Africa and the Arabian Peninsula. It is caused by a Phlebovirus in the family Bunyaviridae. Mosquito-borne epizootics occur during years of unusually heavy rainfall. Domestic cattle, sheep and goats are highly susceptible to i...

  11. Potential for North American Mosquitoes (Diptera: Culicidae) to Transmit Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    To determine which biting insects should be targeted for control should Rift Valley fever virus (RVFV) be detected in North America, we evaluated Culex erraticus, Culex erythrothorax, Culex pipiens, Culex quinquefasciatus, Culex tarsalis, Aedes dorsalis, Aedes vexans, Anopheles quadrimaculatus, and ...

  12. Favipiravir (T-705) protects against peracute Rift Valley fever virus infection and reduces delayed-onset neurologic disease observed with ribavirin treatment.

    PubMed

    Scharton, Dionna; Bailey, Kevin W; Vest, Zachary; Westover, Jonna B; Kumaki, Yohichi; Van Wettere, Arnaud; Furuta, Yousuke; Gowen, Brian B

    2014-04-01

    Rift Valley fever is a zoonotic, arthropod-borne disease that affects livestock and humans. The etiologic agent, Rift Valley fever virus (RVFV; Bunyaviridae, Phlebovirus) is primarily transmitted through mosquito bites, but can also be transmitted by exposure to infectious aerosols. There are presently no licensed vaccines or therapeutics to prevent or treat severe RVFV infection in humans. We have previously reported on the activity of favipiravir (T-705) against the MP-12 vaccine strain of RVFV and other bunyaviruses in cell culture. In addition, efficacy has also been documented in mouse and hamster models of infection with the related Punta Toro virus. Here, hamsters challenged with the highly pathogenic ZH501 strain of RVFV were used to evaluate the activity of favipiravir against lethal infection. Subcutaneous RVFV challenge resulted in substantial serum and tissue viral loads and caused severe disease and mortality within 2-3 days of infection. Oral favipiravir (200 mg/kg/day) prevented mortality in 60% or greater of hamsters challenged with RVFV when administered within 1 or 6h post-exposure and reduced RVFV titers in serum and tissues relative to the time of treatment initiation. In contrast, although ribavirin (75 mg/kg/day) was effective at protecting animals from the peracute RVFV disease, most ultimately succumbed from a delayed-onset neurologic disease associated with high RVFV burden observed in the brain in moribund animals. When combined, T-705 and ribavirin treatment started 24 h post-infection significantly improved survival outcome and reduced serum and tissue virus titers compared to monotherapy. Our findings demonstrate significant post-RVFV exposure efficacy with favipiravir against both peracute disease and delayed-onset neuroinvasion, and suggest added benefit when combined with ribavirin. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Broadening the horizons for yellow fever: new uses for an old vaccine.

    PubMed

    Van Epps, Heather L

    2005-01-17

    The vaccine against yellow fever is one of the safest and most effective ever developed. With an outstanding record in humans, has this live attenuated vaccine been overlooked as a promising vector for the development of vaccines against pathogens outside its own genus? Recent studies, including a report by Tao et al. on page 201 of this issue, have sparked renewed interest.

  14. Current status and future prospects of yellow fever vaccines.

    PubMed

    Beck, Andrew S; Barrett, Alan D T

    2015-01-01

    Yellow fever 17D vaccine is one of the oldest live-attenuated vaccines in current use that is recognized historically for its immunogenic and safe properties. These unique properties of 17D are presently exploited in rationally designed recombinant vaccines targeting not only flaviviral antigens but also other pathogens of public health concern. Several candidate vaccines based on 17D have advanced to human trials, and a chimeric recombinant Japanese encephalitis vaccine utilizing the 17D backbone has been licensed. The mechanism(s) of attenuation for 17D are poorly understood; however, recent insights from large in silico studies have indicated particular host genetic determinants contributing to the immune response to the vaccine, which presumably influences the considerable durability of protection, now in many cases considered to be lifelong. The very rare occurrence of severe adverse events for 17D is discussed, including a recent fatal case of vaccine-associated viscerotropic disease.

  15. Current Status and Future Prospects of Yellow Fever Vaccines

    PubMed Central

    Beck, Andrew S.; Barrett, Alan D.T.

    2017-01-01

    Summary Yellow fever 17D vaccine is one of the oldest live-attenuated vaccines in current use that is recognized for historically immunogenic and safe properties. These unique properties of 17D are presently exploited in rationally designed recombinant vaccines targeting not only flaviviral antigens but also other pathogens of public health concern. Several candidate vaccines based on 17D have advanced to human trials, and a chimeric recombinant Japanese encephalitis vaccine utilizing the 17D backbone has been licensed. The mechanism(s) of attenuation for 17D are poorly understood; however, recent insights from large in silico studies have indicated particular host genetic determinants contributing to the immune response to the vaccine, which presumably influences the considerable durability of protection, now in many cases considered to be life-long. The very rare occurrence of severe adverse events for 17D is discussed, including a recent fatal case of vaccine-associated viscerotropic disease. PMID:26366673

  16. Coupling Vector-host Dynamics with Weather Geography and Mitigation Measures to Model Rift Valley Fever in Africa.

    PubMed

    McMahon, B H; Manore, C A; Hyman, J M; LaBute, M X; Fair, J M

    2014-01-01

    We present and characterize a multi-host epidemic model of Rift Valley fever (RVF) virus in East Africa with geographic spread on a network, rule-based mitigation measures, and mosquito infection and population dynamics. Susceptible populations are depleted by disease and vaccination and are replenished with the birth of new animals. We observe that the severity of the epidemics is strongly correlated with the duration of the rainy season and that even severe epidemics are abruptly terminated when the rain stops. Because naturally acquired herd immunity is established, total mortality across 25 years is relatively insensitive to many mitigation approaches. Strong reductions in cattle mortality are expected, however, with sufficient reduction in population densities of either vectors or susceptible (ie. unvaccinated) hosts. A better understanding of RVF epidemiology would result from serology surveys to quantify the importance of herd immunity in epidemic control, and sequencing of virus from representative animals to quantify the realative importance of transportation and local reservoirs in nucleating yearly epidemics. Our results suggest that an effective multi-layered mitigation strategy would include vector control, movement control, and vaccination of young animals yearly, even in the absence of expected rainfall.

  17. Rift Valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention

    PubMed Central

    Pepin, Michel; Bouloy, Michèle; Bird, Brian H.; Kemp, Alan; Paweska, Janusz

    2010-01-01

    Rift Valley fever (RVF) virus is an arbovirus in the Bunyaviridae family that, from phylogenetic analysis, appears to have first emerged in the mid-19th century and was only identified at the begininning of the 1930s in the Rift Valley region of Kenya. Despite being an arbovirus with a relatively simple but temporally and geographically stable genome, this zoonotic virus has already demonstrated a real capacity for emerging in new territories, as exemplified by the outbreaks in Egypt (1977), Western Africa (1988) and the Arabian Peninsula (2000), or for re-emerging after long periods of silence as observed very recently in Kenya and South Africa. The presence of competent vectors in countries previously free of RVF, the high viral titres in viraemic animals and the global changes in climate, travel and trade all contribute to make this virus a threat that must not be neglected as the consequences of RVF are dramatic, both for human and animal health. In this review, we present the latest advances in RVF virus research. In spite of this renewed interest, aspects of the epidemiology of RVF virus are still not fully understood and safe, effective vaccines are still not freely available for protecting humans and livestock against the dramatic consequences of this virus. PMID:21188836

  18. Yellow fever 17-D vaccine is neurotropic and produces encephalitis in immunosuppressed hamsters.

    PubMed

    Mateo, Rosa I; Xiao, Shu-Yuan; Travassos da Rosa, Amelia P A; Lei, Hao; Guzman, Hilda; Lu, Liang; Tesh, Robert B

    2007-11-01

    Immunosuppressed (cyclophosphamide) adult golden hamsters inoculated intraperitoneally (i.p.) with wild-type Asibi yellow fever virus (YFV) developed a rapidly fatal illness. Histopathologic and immunohistochemical studies of tissues from these animals showed typical hepatic changes of severe yellow fever (inflammation, hepatocyte necrosis, and steatosis) without brain involvement. In contrast, 50% of immunosuppressed hamsters receiving the YFV-17D-attenuated vaccine developed a slowly progressive encephalitic-type illness. Brain tissue from these latter animals revealed focal neuronal changes, inflammation, and YFV antigen-positive neurons; however, the liver and spleen appeared normal. YFV was isolated from brain cultures of many of these animals. Immunocompetent (non-immunosuppressed) hamsters inoculated with both viruses developed a subclinical infection. Results of this study indicate that wild-type YFV is hepatotropic in immunosuppressed hamsters, whereas the attenuated YFV-17 is primarily neurotropic. These findings support current recommendations against yellow fever vaccination of immunosuppressed/immunocompromised people and suggest that this hamster model might be useful for monitoring the safety of other live-attenuated YFV vaccines.

  19. Willingness of veterinarians in Australia to recommend Q fever vaccination in veterinary personnel: Implications for workplace health and safety compliance.

    PubMed

    Sellens, Emily; Norris, Jacqueline M; Dhand, Navneet K; Heller, Jane; Hayes, Lynne; Gidding, Heather F; Willaby, Harold; Wood, Nicholas; Bosward, Katrina L

    2018-01-01

    Q fever vaccine uptake among veterinary nurses in Australia is low, suggesting veterinarians are not recommending the vaccination to veterinary personnel. This study aimed to determine the willingness of veterinarians to recommend Q fever vaccination to veterinary personnel and to identify factors influencing Q fever vaccine uptake by veterinary nurses in Australia. An online cross sectional survey targeted veterinarians and veterinary nurses in Australia in 2014. Responses were analysed using multivariable logistic regression. Factors significantly (p<0.05) associated with a willingness to recommend the vaccination, expressed by 35% (95% CI 31-38%) of veterinarians (n = 828), were (1) being very concerned for colleagues regarding Coxiella burnetii (OR 4.73), (2) disagreeing the vaccine is harmful (OR 3.80), (3) high Q fever knowledge (OR 2.27), (4) working within small animal practice (OR 1.67), (5) disagreeing the vaccine is expensive (OR 1.55), and (6) age, with veterinarians under 39 years most likely to recommend vaccination. Of the veterinary nursing cohort who reported a known Q fever vaccination status (n = 688), 29% (95% CI 26-33%) had sought vaccination. This was significantly (p<0.05) associated with (1) agreeing the vaccine is important (OR 8.34), (2) moderate/high Q fever knowledge (OR 5.51), (3) working in Queensland (OR 4.00), (4) working within livestock/mixed animal practice (OR 3.24), (5) disagreeing the vaccine is expensive (OR 1.86), (6) strong reliance on work culture for biosecurity information (OR 2.5), (7) perceiving personal exposure to Coxiella burnetii to be at least low/moderate (OR 2.14), and (8) both agreeing the vaccine is safe and working within a corporate practice structure (OR 4.28). The study identified the need for veterinarians to take greater responsibility for workplace health and safety promotion, and calls for better education of veterinary personnel to raise awareness of the potential for occupational exposure to C

  20. Willingness of veterinarians in Australia to recommend Q fever vaccination in veterinary personnel: Implications for workplace health and safety compliance

    PubMed Central

    Norris, Jacqueline M.; Dhand, Navneet K.; Heller, Jane; Hayes, Lynne; Gidding, Heather F.; Willaby, Harold; Wood, Nicholas; Bosward, Katrina L.

    2018-01-01

    Q fever vaccine uptake among veterinary nurses in Australia is low, suggesting veterinarians are not recommending the vaccination to veterinary personnel. This study aimed to determine the willingness of veterinarians to recommend Q fever vaccination to veterinary personnel and to identify factors influencing Q fever vaccine uptake by veterinary nurses in Australia. An online cross sectional survey targeted veterinarians and veterinary nurses in Australia in 2014. Responses were analysed using multivariable logistic regression. Factors significantly (p<0.05) associated with a willingness to recommend the vaccination, expressed by 35% (95% CI 31–38%) of veterinarians (n = 828), were (1) being very concerned for colleagues regarding Coxiella burnetii (OR 4.73), (2) disagreeing the vaccine is harmful (OR 3.80), (3) high Q fever knowledge (OR 2.27), (4) working within small animal practice (OR 1.67), (5) disagreeing the vaccine is expensive (OR 1.55), and (6) age, with veterinarians under 39 years most likely to recommend vaccination. Of the veterinary nursing cohort who reported a known Q fever vaccination status (n = 688), 29% (95% CI 26–33%) had sought vaccination. This was significantly (p<0.05) associated with (1) agreeing the vaccine is important (OR 8.34), (2) moderate/high Q fever knowledge (OR 5.51), (3) working in Queensland (OR 4.00), (4) working within livestock/mixed animal practice (OR 3.24), (5) disagreeing the vaccine is expensive (OR 1.86), (6) strong reliance on work culture for biosecurity information (OR 2.5), (7) perceiving personal exposure to Coxiella burnetii to be at least low/moderate (OR 2.14), and (8) both agreeing the vaccine is safe and working within a corporate practice structure (OR 4.28). The study identified the need for veterinarians to take greater responsibility for workplace health and safety promotion, and calls for better education of veterinary personnel to raise awareness of the potential for occupational exposure to C

  1. Creation of Rift Valley Fever Viruses with Four-Segmented Genomes Reveals Flexibility in Bunyavirus Genome Packaging

    PubMed Central

    Oreshkova, Nadia; Moormann, Rob J. M.; Kortekaas, Jeroen

    2014-01-01

    ABSTRACT Bunyavirus genomes comprise a small (S), a medium (M), and a large (L) RNA segment of negative polarity. Although the untranslated regions have been shown to comprise signals required for transcription, replication, and encapsidation, the mechanisms that drive the packaging of at least one S, M, and L segment into a single virion to generate infectious virus are largely unknown. One of the most important members of the Bunyaviridae family that causes devastating disease in ruminants and occasionally humans is the Rift Valley fever virus (RVFV). We studied the flexibility of RVFV genome packaging by splitting the glycoprotein precursor gene, encoding the (NSm)GnGc polyprotein, into two individual genes encoding either (NSm)Gn or Gc. Using reverse genetics, six viruses with a segmented glycoprotein precursor gene were rescued, varying from a virus comprising two S-type segments in the absence of an M-type segment to a virus consisting of four segments (RVFV-4s), of which three are M-type. Despite that all virus variants were able to grow in mammalian cell lines, they were unable to spread efficiently in cells of mosquito origin. Moreover, in vivo studies demonstrated that RVFV-4s is unable to cause disseminated infection and disease in mice, even in the presence of the main virulence factor NSs, but induced a protective immune response against a lethal challenge with wild-type virus. In summary, splitting bunyavirus glycoprotein precursor genes provides new opportunities to study bunyavirus genome packaging and offers new methods to develop next-generation live-attenuated bunyavirus vaccines. IMPORTANCE Rift Valley fever virus (RVFV) causes devastating disease in ruminants and occasionally humans. Virions capable of productive infection comprise at least one copy of the small (S), medium (M), and large (L) RNA genome segments. The M segment encodes a glycoprotein precursor (GPC) protein that is cotranslationally cleaved into Gn and Gc, which are required for

  2. Creation of Rift Valley fever viruses with four-segmented genomes reveals flexibility in bunyavirus genome packaging.

    PubMed

    Wichgers Schreur, Paul J; Oreshkova, Nadia; Moormann, Rob J M; Kortekaas, Jeroen

    2014-09-01

    Bunyavirus genomes comprise a small (S), a medium (M), and a large (L) RNA segment of negative polarity. Although the untranslated regions have been shown to comprise signals required for transcription, replication, and encapsidation, the mechanisms that drive the packaging of at least one S, M, and L segment into a single virion to generate infectious virus are largely unknown. One of the most important members of the Bunyaviridae family that causes devastating disease in ruminants and occasionally humans is the Rift Valley fever virus (RVFV). We studied the flexibility of RVFV genome packaging by splitting the glycoprotein precursor gene, encoding the (NSm)GnGc polyprotein, into two individual genes encoding either (NSm)Gn or Gc. Using reverse genetics, six viruses with a segmented glycoprotein precursor gene were rescued, varying from a virus comprising two S-type segments in the absence of an M-type segment to a virus consisting of four segments (RVFV-4s), of which three are M-type. Despite that all virus variants were able to grow in mammalian cell lines, they were unable to spread efficiently in cells of mosquito origin. Moreover, in vivo studies demonstrated that RVFV-4s is unable to cause disseminated infection and disease in mice, even in the presence of the main virulence factor NSs, but induced a protective immune response against a lethal challenge with wild-type virus. In summary, splitting bunyavirus glycoprotein precursor genes provides new opportunities to study bunyavirus genome packaging and offers new methods to develop next-generation live-attenuated bunyavirus vaccines. Rift Valley fever virus (RVFV) causes devastating disease in ruminants and occasionally humans. Virions capable of productive infection comprise at least one copy of the small (S), medium (M), and large (L) RNA genome segments. The M segment encodes a glycoprotein precursor (GPC) protein that is cotranslationally cleaved into Gn and Gc, which are required for virus entry and

  3. A Promising Trigene Recombinant Human Adenovirus Vaccine Against Classical Swine Fever Virus.

    PubMed

    Li, Helin; Gao, Rui; Zhang, Yanming

    2016-05-01

    Classical swine fever (CSF) vaccine based on HAdV-5 had achieved an efficient protection in swine. Both classical swine fever virus (CSFV) E0 glycoprotein and E2 glycoprotein were the targets for neutralizing antibodies and related to immune protection against CSF. Interleukin-2 (IL2), as an adjuvant, also had been used in CSF vaccine research. In this study, coexpression of the CSFV E0, E2, and IL2 genes by HAdV-5 (rAdV-E0-E2-IL2) was constructed and immunized to evaluate its efficacy. Three expressed genes had been sequentially connected with foot-and-mouth disease virus 2A (FMDV 2A). The vaccine was administered by intramuscular inoculation to CSFV-free pigs (10(8) TCID50) twice at triweekly intervals. No adverse clinical signs were observed in any of the pigs after vaccination. The vaccine induced strong humoral and cellular responses that led to complete protection against clinical signs of lethal CSFV infection, viremia, and shedding of challenge virus. The rAdV-E0-E2-IL2 is a promising, efficient, and safe marker vaccine candidate against CSFV.

  4. Fever following immunization with influenza A (H1N1) vaccine in children: a survey-based study in the Netherlands.

    PubMed

    Broos, Nancy; van Puijenbroek, Eugène P; van Grootheest, Kees

    2010-12-01

    In November 2009, all children in the Netherlands from 6 months up to 4 years of age were indicated to receive the Influenza A (H1N1) vaccine. Fever is a common adverse event following immunization in children. Pandemrix®, an inactivated, split-virus influenza A (H1N1) vaccine, was used for this age group. A clinical study mentioned in the Summary of Product Characteristics of Pandemrix® found an increased reactogenicity after the second dose in comparison with the first dose, particularly in the rate of fever. In the Netherlands, this adverse reaction was a point of concern for the parents or caregivers of these children. To investigate the course and height of fever following the first and second dose of Pandemrix® in children aged from 6 months up to 4 years. The secondary aim was to evaluate the use of an online survey during a vaccination campaign. Survey-based descriptive study. Adverse drug reaction reporting database of the Netherlands Pharmacovigilance Centre (Lareb). Parents or caregivers (n = 839) of vaccinated children who reported fever to Lareb following the first immunization with Pandemrix®. Questionnaires were sent by email to parents or caregivers of eligible children following the first and second doses of Pandremix®. Time between vaccination and the occurrence of fever, the maximum measured temperature, the occurrence of other adverse events after first and second vaccination, the decision to get the second vaccination and the social implication of the fever in terms of absence from work, nursery or school, and hospitalization. Following the first vaccination against Influenza A (H1N1), the height of the fever was between 39.0 and 40.0°C in 359/639 (56.2%) of the children. In most of these children (235/639 [36.8%]), the onset of fever was between 6 and 12 hours following vaccination. 450/639 (70.4%) children recovered within 2 days. Of the 539 responders to the second questionnaire, 380 (70.5%) received the second vaccination against

  5. Rift Valley Fever Virus among Wild Ruminants, Etosha National Park, Namibia, 2011.

    PubMed

    Capobianco Dondona, Andrea; Aschenborn, Ortwin; Pinoni, Chiara; Di Gialleonardo, Luigina; Maseke, Adrianatus; Bortone, Grazia; Polci, Andrea; Scacchia, Massimo; Molini, Umberto; Monaco, Federica

    2016-01-01

    After a May 2011 outbreak of Rift Valley fever among livestock northeast of Etosha National Park, Namibia, wild ruminants in the park were tested for the virus. Antibodies were detected in springbok, wildebeest, and black-faced impala, and viral RNA was detected in springbok. Seroprevalence was high, and immune response was long lasting.

  6. Vertical transmission of fatal Rift Valley fever in a newborn.

    PubMed

    Arishi, Haider M; Aqeel, Ali Y; Al Hazmi, Mohamed M

    2006-09-01

    Rift Valley Fever (RVF) is a viral disease transmitted to humans by mosquito bite and contact with animals or their infected tissues. Other modes of transmission include aerosol inhalation and possibly ingestion of raw milk from infected animals. We present a 5-day-old neonate with fatal RVF. Onset of the infant's illness on the 2nd day of life combined with positive RVF-IgM and serological evidence of maternal disease supports vertical transmission.

  7. Zika virus infection, associated microcephaly, and low yellow fever vaccination coverage in Brazil: is there any causal link?

    PubMed

    De Góes Cavalcanti, Luciano Pamplona; Tauil, Pedro Luiz; Alencar, Carlos Henrique; Oliveira, Wanderson; Teixeira, Mauro Martins; Heukelbach, Jorg

    2016-06-30

    Since the end of 2014, Zika virus (ZIKV) infection has been rapidly spreading in Brazil. To analyze the possible association of yellow fever vaccine with a protective effect against ZIKV-related microcephaly, the following spatial analyses were performed, using Brazilian municipalities as units: i) yellow fever vaccination coverage in Brazilian municipalities in individuals aged 15-49; ii) reported cases of microcephaly by municipality; and iii) confirmed cases of microcephaly related to ZIKV, by municipality. SaTScan software was used to identify clusters of municipalities for high risk of microcephaly. There were seven significant high risk clusters of confirmed microcephaly cases, with four of them located in the Northeast where yellow fever vaccination rates were the lowest. The clusters harbored only 2.9% of the total population of Brazil, but 15.2% of confirmed cases of microcephaly. We hypothesize that pregnant women in regions with high yellow fever vaccination coverage may pose their offspring to lower risk for development of microcephaly. There is an urgent need for systematic studies to confirm the possible link between low yellow fever vaccination coverage, Zika virus infection and microcephaly.

  8. Classical swine fever vaccines-State-of-the-art.

    PubMed

    Blome, Sandra; Moß, Claudia; Reimann, Ilona; König, Patricia; Beer, Martin

    2017-07-01

    Due to its impact on animal health and pig industry, classical swine fever (CSF) is still one of the most important viral diseases of pigs. To control the disease, safe and highly efficacious live attenuated vaccines exist for decades. These vaccines have usually outstanding efficacy and safety but lack differentiability of infected from vaccinated animals (DIVA or marker strategy). In contrast, the first generation of E2 subunit marker vaccines shows constraints in efficacy, application, and production. To overcome these limitations, new generations of marker vaccines are developed. A wide range of approaches have been tried including recombinant vaccines, recombinant inactivated vaccines or subunit vaccines, vector vaccines, and DNA/RNA vaccines. During the last years, especially attenuated deletion vaccines or chimeric constructs have shown potential. At present, especially two new constructs have been intensively tested, the adenovirus-delivered, Semliki Forest virus replicon-vectored marker vaccine candidate "rAdV-SFV-E2" and the pestivirus chimera "CP7_E2alf". The later was recently licensed by the European Medicines Agency. Under field conditions, all marker vaccines have to be accompanied by a potent test system. Particularly this point shows still weaknesses and it is important to embed vaccination in a well-established vaccination strategy and a suitable diagnostic workflow. In summary, conventional vaccines are a standard in terms of efficacy. However, only vaccines with DIVA will allow improved eradication strategies e.g. also under emergency vaccination conditions in free regions. To answer this demand, new generations of marker vaccines have been developed and add now to the tool box of CSF control. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Mosquito host choices on livestock amplifiers of Rift Valley fever virus in Kenya

    USDA-ARS?s Scientific Manuscript database

    Animal hosts may vary in their attraction and acceptability as components of the host location process for assessing biting rates of vectors and risk of exposure to pathogens. However, these parameters remain poorly understood for mosquito vectors of the Rift Valley fever (RVF), an arboviral disease...

  10. Factors Affecting the Ability of American Mosquitoes to Transmit Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    The recent outbreaks of disease caused by Rift Valley fever virus (RVFV) in Kenya, Mauritania, Yemen, Tanzania, Somalia, and Madagascar indicate the potential for RVFV to cause severe disease in both humans and domestic animals and its potential to be introduced into new areas, including North Ameri...

  11. Yellow Fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data.

    PubMed

    Garske, Tini; Van Kerkhove, Maria D; Yactayo, Sergio; Ronveaux, Olivier; Lewis, Rosamund F; Staples, J Erin; Perea, William; Ferguson, Neil M

    2014-05-01

    Yellow fever is a vector-borne disease affecting humans and non-human primates in tropical areas of Africa and South America. While eradication is not feasible due to the wildlife reservoir, large scale vaccination activities in Africa during the 1940s to 1960s reduced yellow fever incidence for several decades. However, after a period of low vaccination coverage, yellow fever has resurged in the continent. Since 2006 there has been substantial funding for large preventive mass vaccination campaigns in the most affected countries in Africa to curb the rising burden of disease and control future outbreaks. Contemporary estimates of the yellow fever disease burden are lacking, and the present study aimed to update the previous estimates on the basis of more recent yellow fever occurrence data and improved estimation methods. Generalised linear regression models were fitted to a dataset of the locations of yellow fever outbreaks within the last 25 years to estimate the probability of outbreak reports across the endemic zone. Environmental variables and indicators for the surveillance quality in the affected countries were used as covariates. By comparing probabilities of outbreak reports estimated in the regression with the force of infection estimated for a limited set of locations for which serological surveys were available, the detection probability per case and the force of infection were estimated across the endemic zone. The yellow fever burden in Africa was estimated for the year 2013 as 130,000 (95% CI 51,000-380,000) cases with fever and jaundice or haemorrhage including 78,000 (95% CI 19,000-180,000) deaths, taking into account the current level of vaccination coverage. The impact of the recent mass vaccination campaigns was assessed by evaluating the difference between the estimates obtained for the current vaccination coverage and for a hypothetical scenario excluding these vaccination campaigns. Vaccination campaigns were estimated to have reduced the

  12. Persistent seropositivity for yellow fever in a previously vaccinated autologous hematopoietic stem cell transplantation recipient.

    PubMed

    Hayakawa, Kayoko; Takasaki, Tomohiko; Tsunemine, Hiroko; Kanagawa, Shuzo; Kutsuna, Satoshi; Takeshita, Nozomi; Mawatari, Momoko; Fujiya, Yoshihiro; Yamamoto, Kei; Ohmagari, Norio; Kato, Yasuyuki

    2015-08-01

    The duration of a protective level of yellow fever antibodies after autologous hematopoietic stem cell transplantation in a previously vaccinated person is unclear. The case of a patient who had previously been vaccinated for yellow fever and who remained seropositive for 22 months after autologous peripheral blood stem cell transplantation for malignant lymphoma is described herein. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Vaccination against yellow fever in French Guiana: The impact of educational level, negative beliefs and attitude towards vaccination.

    PubMed

    Koïvogui, Akoï; Carbunar, Aurel; Imounga, Laure-Manuella; Laruade, Christelle; Laube, Sylvaine

    Analyze the impact of educational level, negative beliefs and negative attitudes on the yellow fever vaccination coverage (YFVC). This analytical study involved a sample of 2763 people from 866 households. Educational status was described in six levels: No level (Respondent had never attended school), level-1 (respondent left before intermediate school), level-2 (Respondent attended intermediate school), level-3 (respondent attended high school), level-4 (Respondent attended university), Other level (When the level could not be determined). The Attitude towards vaccination was described in terms of person's availability to recommend vaccination to third. The relationships were analyzed by multivariate mixed logistic regression. Among the 2763 peoples, 2039 (73.8%) were vaccinated against yellow fever. People who left high school with or without the French baccalaureate were more likely to be vaccinated against YF than people without any diploma (OR = 1.4; p < 0.05). The probability of being vaccinated among people with negative attitudes was reduced by 40% (OR = 0.6; p < 0.05). Low level of education, negative beliefs and negative attitudes have significant impacts on YFVC. Negatives beliefs and attitudes result often from a major lack of information about the benefits of vaccination. This deficit is exacerbated in persons with low educational level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Single shot of 17D vaccine may not confer life-long protection against yellow fever.

    PubMed

    Vasconcelos, Pedro Fc

    2018-02-01

    The yellow fever (YF) vaccine has been used since the 1930s to prevent YF, which is a severe infectious disease caused by the yellow fever virus (YFV), and mainly transmitted by Culicidae mosquitoes from the genera Aedes and Haemagogus . Until 2013, the World Health Organization (WHO) recommended the administration of a vaccine dose every ten years. A new recommendation of a single vaccine dose to confer life-long protection against YFV infection has since been established. Recent evidence published elsewhere suggests that at least a second dose is needed to fully protect against YF disease. Here, we discuss the feasibility of administering multiple doses, the necessity for a new and modern vaccine, and recommend that the WHO conveys a meeting to discuss YFV vaccination strategies for people living in or travelling to endemic areas.

  15. Risk groups for yellow fever vaccine-associated viscerotropic disease (YEL-AVD).

    PubMed

    Seligman, Stephen J

    2014-10-07

    Although previously considered as the safest of the live virus vaccines, reports published since 2001 indicate that live yellow fever virus vaccine can cause a severe, often fatal, multisystemic illness, yellow fever vaccine-associated viscerotropic disease (YEL-AVD), that resembles the disease it was designed to prevent. This review was prompted by the availability of a listing of the cumulative cases of YEL-AVD, insights from a statistical method for analyzing risk factors and re-evaluation of previously published data. The purpose of this review is to identify and analyze risk groups based on gender, age, outcome and predisposing illnesses. Using a passive surveillance system in the US, the incidence was reported as 0.3 to 0.4 cases per 100,000. However, other estimates range from 0 to 12 per 100,000. Identified and potential risk groups for YEL-AVD include elderly males, women between the ages of 19 and 34, people with a variety of autoimmune diseases, individuals who have been thymectomized because of thymoma, and infants and children ≤11 years old. All but the last group are supported by statistical analysis. The confirmed risk groups account for 77% (49/64) of known cases and 76% (32/42) of the deaths. The overall case fatality rate is 66% (42/64) with a rate of 80% (12/15) in young women, in contrast to 50% (13/26) in men ≥56 years old. Recognition of YEL-AVD raises the possibility that similar reactions to live chimeric flavivirus vaccines that contain a yellow fever virus vaccine backbone could occur in susceptible individuals. Delineation of risk groups focuses the search for genetic mutations resulting in immune defects associated with a given risk group. Lastly, identification of risk groups encourages concentration on measures to decrease both the incidence and the severity of YEL-AVD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Live Attenuated Yellow Fever 17D Vaccine: A Legacy Vaccine Still Controlling Outbreaks In Modern Day.

    PubMed

    Collins, Natalie D; Barrett, Alan D T

    2017-03-01

    Live attenuated 17D vaccine is considered one of the safest and efficacious vaccines developed to date. This review highlights what is known and the gaps in knowledge of vaccine-induced protective immunity. Recently, the World Health Organization modifying its guidance from 10-year booster doses to one dose gives lifelong protection in most populations. Nonetheless, there are some data suggesting immunity, though protective, may wane over time in certain populations and more research is needed to address this question. Despite having an effective vaccine to control yellow fever, vaccine shortages were identified during outbreaks in 2016, eventuating the use of a fractional-dosing campaign in the Democratic Republic of the Congo. Limited studies hinder identification of the underlying mechanism(s) of vaccine longevity; however, concurrent outbreaks during 2016 provide an opportunity to evaluate vaccine immunity following fractional dosing and insights into vaccine longevity in populations where there is limited information.

  17. Insights into human CD8(+) T-cell memory using the yellow fever and smallpox vaccines.

    PubMed

    Ahmed, Rafi; Akondy, Rama S

    2011-03-01

    Live virus vaccines provide a unique opportunity to study human CD8(+) T-cell memory in the context of a controlled, primary acute viral infection. Yellow fever virus-17D and Dryvax are two such live-virus vaccines that are highly efficacious, used worldwide and provide long-term immunity against yellow fever and smallpox respectively. In this review, we describe the properties of virus-specific memory CD8(+) T cells generated in smallpox and yellow fever vaccinees. We address fundamental questions regarding magnitude, functional quality and longevity of the CD8(+) T-cell response, which are otherwise challenging to address in humans. These findings provide insights into the attributes of the human immune system as well as provide a benchmark for the optimal quality of a CD8(+) T-cell response that can be used to evaluate novel candidate vaccines.

  18. Rift Valley Fever Virus Lacking the NSs and NSm Genes Is Highly Attenuated, Confers Protective Immunity from Virulent Virus Challenge, and Allows for Differential Identification of Infected and Vaccinated Animals▿

    PubMed Central

    Bird, Brian H.; Albariño, César G.; Hartman, Amy L.; Erickson, Bobbie Rae; Ksiazek, Thomas G.; Nichol, Stuart T.

    2008-01-01

    Rift Valley fever (RVF) virus is a mosquito-borne human and veterinary pathogen associated with large outbreaks of severe disease throughout Africa and more recently the Arabian peninsula. Infection of livestock can result in sweeping “abortion storms” and high mortality among young animals. Human infection results in self-limiting febrile disease that in ∼1 to 2% of patients progresses to more serious complications including hepatitis, encephalitis, and retinitis or a hemorrhagic syndrome with high fatality. The virus S segment-encoded NSs and the M segment-encoded NSm proteins are important virulence factors. The development of safe, effective vaccines and tools to screen and evaluate antiviral compounds is critical for future control strategies. Here, we report the successful reverse genetics generation of multiple recombinant enhanced green fluorescent protein-tagged RVF viruses containing either the full-length, complete virus genome or precise deletions of the NSs gene alone or the NSs/NSm genes in combination, thus creating attenuating deletions on multiple virus genome segments. These viruses were highly attenuated, with no detectable viremia or clinical illness observed with high challenge dosages (1.0 × 104 PFU) in the rat lethal disease model. A single-dose immunization regimen induced robust anti-RVF virus immunoglobulin G antibodies (titer, ∼1:6,400) by day 26 postvaccination. All vaccinated animals that were subsequently challenged with a high dose of virulent RVF virus survived infection and could be serologically differentiated from naïve, experimentally infected animals by the lack of NSs antibodies. These rationally designed marker RVF vaccine viruses will be useful tools for in vitro screening of therapeutic compounds and will provide a basis for further development of RVF virus marker vaccines for use in endemic regions or following the natural or intentional introduction of the virus into previously unaffected areas. PMID:18199647

  19. 17DD yellow fever vaccine: a double blind, randomized clinical trial of immunogenicity and safety on a dose-response study.

    PubMed

    Martins, Reinaldo M; Maia, Maria de Lourdes S; Farias, Roberto Henrique G; Camacho, Luiz Antonio B; Freire, Marcos S; Galler, Ricardo; Yamamura, Anna Maya Yoshida; Almeida, Luiz Fernando C; Lima, Sheila Maria B; Nogueira, Rita Maria R; Sá, Gloria Regina S; Hokama, Darcy A; de Carvalho, Ricardo; Freire, Ricardo Aguiar V; Pereira Filho, Edson; Leal, Maria da Luz Fernandes; Homma, Akira

    2013-04-01

    To verify if the Bio-Manguinhos 17DD yellow fever vaccine (17DD-YFV) used in lower doses is as immunogenic and safe as the current formulation. Doses from 27,476 IU to 587 IU induced similar seroconversion rates and neutralizing antibodies geometric mean titers (GMTs). Immunity of those who seroconverted to YF was maintained for 10 mo. Reactogenicity was low for all groups. Young and healthy adult males (n = 900) were recruited and randomized into 6 groups, to receive de-escalating doses of 17DD-YFV, from 27,476 IU to 31 IU. Blood samples were collected before vaccination (for neutralization tests to yellow fever, serology for dengue and clinical chemistry), 3 to 7 d after vaccination (for viremia and clinical chemistry) and 30 d after vaccination (for new yellow fever serology and clinical chemistry). Adverse events diaries were filled out by volunteers during 10 d after vaccination. Volunteers were retested for yellow fever and dengue antibodies 10 mo later. Seropositivity for dengue was found in 87.6% of volunteers before vaccination, but this had no significant influence on conclusions. In young healthy adults Bio-Manguinhos/Fiocruz yellow fever vaccine can be used in much lower doses than usual. INTERNATIONAL REGISTER: ISRCTN 38082350.

  20. Yellow fever: epidemiology and prevention.

    PubMed

    Barnett, Elizabeth D

    2007-03-15

    Yellow fever continues to occur in regions of Africa and South America, despite the availability of effective vaccines. Recently, some cases of severe neurologic disease and multiorgan system disease have been described in individuals who received yellow fever vaccine. These events have focused attention on the need to define criteria for judicious use of yellow fever vaccine and to describe the spectrum of adverse events that may be associated with yellow fever vaccine. Describing host factors that would increase risk of these events and identifying potential treatment modalities for yellow fever and yellow fever vaccine-associated adverse events are subjects of intense investigation.

  1. Immunogenicity and tolerability of yellow fever vaccination in 23 French HIV-infected patients.

    PubMed

    Pistone, Thierry; Verdière, Claire-Hélène; Receveur, Marie-Catherine; Ezzedine, Khaled; Lafon, Marie-Edith; Malvy, Denis

    2010-09-01

    Vaccination of asymptomatic human immunodeficiency virus (HIV)-infected patients with a CD4 cell count ≥ 200/mm³ is strongly suggested prior to travel to a region where yellow fever (YF) is endemic. However, few data describing YF vaccination in such patients are available. In this retrospective observational study of 23 HIV-infected patients, YF antibody titers, CD4 cell counts, and viral loads were measured before and after vaccination. Serologies were performed retrospectively on samples that had been stored as part of routine hospital procedures. Ninety-three percent of patients (13/14) with no baseline immunity, seroconverted after vaccination. Immunogenicity appeared slowly; only 2 of the 5 patients tested within 5 weeks of vaccination had seroconverted. A booster effect was noted in 3 of the 9 patients with baseline immunogenicity. Finally, due to unawareness of his HIV status, one patient was vaccinated and was found later to have a CD4 cell count < 200/mm³.The YF vaccine was well tolerated and no serious adverse events were reported. The impact of vaccination on immunologic and viral parameters was variable. Both decreases (n = 7) and increases (n = 5) in CD4 cell counts were recorded. Viral loads became undetectable in 2 patients and doubled or became positive in 3 patients. Yellow fever vaccination was safe and effective in a large majority of this cohort of stable, HIV-infected patients.

  2. Yellow Fever in Africa: Estimating the Burden of Disease and Impact of Mass Vaccination from Outbreak and Serological Data

    PubMed Central

    Garske, Tini; Van Kerkhove, Maria D.; Yactayo, Sergio; Ronveaux, Olivier; Lewis, Rosamund F.; Staples, J. Erin; Perea, William; Ferguson, Neil M.

    2014-01-01

    Background Yellow fever is a vector-borne disease affecting humans and non-human primates in tropical areas of Africa and South America. While eradication is not feasible due to the wildlife reservoir, large scale vaccination activities in Africa during the 1940s to 1960s reduced yellow fever incidence for several decades. However, after a period of low vaccination coverage, yellow fever has resurged in the continent. Since 2006 there has been substantial funding for large preventive mass vaccination campaigns in the most affected countries in Africa to curb the rising burden of disease and control future outbreaks. Contemporary estimates of the yellow fever disease burden are lacking, and the present study aimed to update the previous estimates on the basis of more recent yellow fever occurrence data and improved estimation methods. Methods and Findings Generalised linear regression models were fitted to a dataset of the locations of yellow fever outbreaks within the last 25 years to estimate the probability of outbreak reports across the endemic zone. Environmental variables and indicators for the surveillance quality in the affected countries were used as covariates. By comparing probabilities of outbreak reports estimated in the regression with the force of infection estimated for a limited set of locations for which serological surveys were available, the detection probability per case and the force of infection were estimated across the endemic zone. The yellow fever burden in Africa was estimated for the year 2013 as 130,000 (95% CI 51,000–380,000) cases with fever and jaundice or haemorrhage including 78,000 (95% CI 19,000–180,000) deaths, taking into account the current level of vaccination coverage. The impact of the recent mass vaccination campaigns was assessed by evaluating the difference between the estimates obtained for the current vaccination coverage and for a hypothetical scenario excluding these vaccination campaigns. Vaccination campaigns

  3. Dengue Hemorrhagic Fever Virus in Saudi Arabia: A Review.

    PubMed

    Al-Tawfiq, Jaffar A; Memish, Ziad A

    2018-02-01

    Dengue fever is a global disease with a spectrum of clinical manifestation ranging from mild febrile disease to a severe disease in the form of dengue hemorrhagic fever and dengue shock syndrome. Dengue virus is one viral hemorrhagic fever that exists in the Kingdom of Saudi Arabia in addition to Alkhurma (Alkhurma) Hemorrhagic Fever, Chikungunya virus, Crimean-Congo Hemorrhagic Fever, and Rift Valley Fever. The disease is limited to the Western and South-western regions of Saudi Arabia, where Aedes aegypti exists. The majority of the cases in Saudi Arabia had mild disease and is related to serotypes 1-3 but not 4. The prospect for Dengue virus control relies on vector control, health education, and possibly vaccine use. Despite extensive collaborative efforts between multiple governmental sectors, including Ministry of Health, Ministry of Municipalities and Rural Affairs, and Ministry of Water, dengue remains a major public health concern in the regions affected.

  4. An equine herpesvirus type 1 (EHV-1) vector expressing Rift Valley fever virus (RVFV) Gn and Gc induces neutralizing antibodies in sheep.

    PubMed

    Said, Abdelrahman; Elmanzalawy, Mona; Ma, Guanggang; Damiani, Armando Mario; Osterrieder, Nikolaus

    2017-08-14

    Rift Valley fever virus (RVFV) is an arthropod-borne bunyavirus that can cause serious and fatal disease in humans and animals. RVFV is a negative-sense RNA virus of the Phlebovirus genus in the Bunyaviridae family. The main envelope RVFV glycoproteins, Gn and Gc, are encoded on the M segment of RVFV and known inducers of protective immunity. In an attempt to develop a safe and efficacious RVF vaccine, we constructed and tested a vectored equine herpesvirus type 1 (EHV-1) vaccine that expresses RVFV Gn and Gc. The Gn and Gc genes were custom-synthesized after codon optimization and inserted into EHV-1 strain RacH genome. The rH_Gn-Gc recombinant virus grew in cultured cells with kinetics that were comparable to those of the parental virus and stably expressed Gn and Gc. Upon immunization of sheep, the natural host, neutralizing antibodies against RVFV were elicited by rH_Gn-Gc and protective titers reached to 1:320 at day 49 post immunization but not by parental EHV-1, indicating that EHV-1 is a promising vector alternative in the development of a safe marker RVFV vaccine.

  5. MP-12 virus containing the clone 13 deletion in the NSs gene prevents lethal disease when administered after Rift Valley fever virus infection in hamsters.

    PubMed

    Gowen, Brian B; Westover, Jonna B; Sefing, Eric J; Bailey, Kevin W; Nishiyama, Shoko; Wandersee, Luci; Scharton, Dionna; Jung, Kie-Hoon; Ikegami, Tetsuro

    2015-01-01

    Rift Valley fever virus (RVFV; Bunyaviridae, Phlebovirus) causes a range of illnesses that include retinitis, fulminant hepatitis, neurologic disease, and hemorrhagic fever. In hospitalized individuals, case fatality rates can be as high as 10-20%. There are no vaccines or antivirals approved for human use to prevent or treat severe RVFV infections. We previously tested the efficacy of the MP-12 vaccine strain and related variants with NSs truncations as a post-exposure prophylaxis in mice infected with wild-type pathogenic RVFV strain ZH501. Post-exposure efficacy of the rMP12-C13type, a recombinant MP-12 vaccine virus which encodes an in-frame truncation removing 69% of the NSs protein, resulted in 30% survival when administering the virus within 30 min of subcutaneous ZH501 challenge in mice, while the parental MP-12 virus conferred no protection by post-exposure vaccination. Here, we demonstrate uniform protection of hamsters by post-exposure vaccination with rMP12-C13type administered 6 h post-ZH501 infection while no efficacy was observed with the parental MP-12 virus. Notably, both the MP-12 and rMP12-C13type viruses were highly effective (100% protection) when administered 21 days prior to challenge. In a subsequent study delaying vaccination until 8, 12, and 24 h post-RVFV exposure, we observed 80, 70, and 30% survival, respectively. Our findings indicate that the rapid protective innate immune response elicited by rMP12-C13type may be due to the truncated NSs protein, suggesting that the resulting functional inactivation of NSs plays an important role in the observed post-exposure efficacy. Taken together, the data demonstrate that post-exposure vaccination with rMP12-C13type is effective in limiting ZH501 replication and associated disease in standard pre-exposure vaccination and post-challenge treatment models of RVFV infection, and suggest an extended post-exposure prophylaxis window beyond that initially observed in mice.

  6. Potential for mosquitoes (Diptera: Culicidae) from Florida to transmit rift valley fever virus

    USDA-ARS?s Scientific Manuscript database

    We evaluated 8 species of mosquitoes collected in Florida to determine which of these should be targeted for control should Rift Valley fever virus (RVFV) be detected in North America. Female mosquitoes that had fed on adult hamsters inoculated with RVFV were incubated for 7-21 d at 26°C, allowed to...

  7. Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology.

    PubMed

    Pulendran, Bali

    2009-10-01

    Despite their great success, we understand little about how effective vaccines stimulate protective immune responses. Two recent developments promise to yield such understanding: the appreciation of the crucial role of the innate immune system in sensing microorganisms and tuning immune responses, and advances in systems biology. Here I review how these developments are yielding insights into the mechanism of action of the yellow fever vaccine, one of the most successful vaccines ever developed, and the broader implications for vaccinology.

  8. Rift Valley fever outbreak--Kenya, November 2006-January 2007.

    PubMed

    2007-02-02

    In mid-December 2006, several unexplained fatalities associated with fever and generalized bleeding were reported to the Kenya Ministry of Health (KMOH) from Garissa District in North Eastern Province (NEP). By December 20, a total of 11 deaths had been reported. Of serum samples collected from the first 19 patients, Rift Valley fever (RVF) virus RNA or immunoglobulin M (IgM) antibodies against RVF virus were found in samples from 10 patients; all serum specimens were negative for yellow fever, Ebola, Crimean-Congo hemorrhagic fever, and dengue viruses. The outbreak was confirmed by isolation of RVF virus from six of the specimens. Humans can be infected with RVF virus from bites of mosquitoes or other arthropod vectors that have fed on animals infected with RVF virus, or through contact with viremic animals, particularly livestock. Reports of livestock deaths and unexplained animal abortions in NEP provided further evidence of an RVF outbreak. On December 20, an investigation was launched by KMOH, the Kenya Field Epidemiology and Laboratory Training Program (FELTP), the Kenya Medical Research Institute (KEMRI), the Walter Reed Project of the U.S. Army Medical Research Unit, CDC-Kenya's Global Disease Detection Center, and other partners, including the World Health Organization (WHO) and Médecins Sans Frontières (MSF). This report describes the findings from that initial investigation and the control measures taken in response to the RVF outbreak, which spread to multiple additional provinces and districts, resulting in 404 cases with 118 deaths as of January 25, 2007.

  9. Development of Enzyme-Linked Immunosorbent Assays Using Expressed Proteins of Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) is a member of the genus Phlebovirus, family Bunyaviridae that can cause severe disease in both humans and animals. The disease is enzootic in sub-Saharan Africa and RVFV epidemics/epizootics occur periodically, primarily in eastern and southern Africa. Since the virus...

  10. Immunohistochemical Detection of Rift Valley Fever Virus with Non-Infectious, Recombinant Viral Protein Antibodies

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) causes re-emerging disease outbreaks and abortion storms in mature cattle, sheep, and goats, and can cause 100% mortality in young animals. The spread of this exotic, insect transmitted virus is of particular concern because of its widely recognized potential for being...

  11. Mosquitoes and the environment in Nile Delta villages with previous rift valley fever activity

    USDA-ARS?s Scientific Manuscript database

    Egypt is affected by serious human and animal mosquito-borne diseases such as Rift Valley fever (RVF). We investigated how potential RVF virus mosquito vector populations are affected by environmental conditions in the Nile Delta region of Egypt by collecting mosquitoes and environmental data from t...

  12. Using reverse genetics to manipulate the NSs gene of the Rift Valley fever virus MP-12 strain to improve vaccine safety and efficacy.

    PubMed

    Kalveram, Birte; Lihoradova, Olga; Indran, Sabarish V; Ikegami, Tetsuro

    2011-11-01

    Rift Valley fever virus (RVFV), which causes hemorrhagic fever, neurological disorders or blindness in humans, and a high rate abortion and fetal malformation in ruminants, has been classified as a HHS/USDA overlap select agent and a risk group 3 pathogen. It belongs to the genus Phlebovirus in the family Bunyaviridae and is one of the most virulent members of this family. Several reverse genetics systems for the RVFV MP-12 vaccine strain as well as wild-type RVFV strains, including ZH548 and ZH501, have been developed since 2006. The MP-12 strain (which is a risk group 2 pathogen and a non-select agent) is highly attenuated by several mutations in its M- and L-segments, but still carries virulent S-segment RNA, which encodes a functional virulence factor, NSs. The rMP12-C13type (C13type) carrying 69% in-frame deletion of NSs ORF lacks all the known NSs functions, while it replicates as efficient as does MP-12 in VeroE6 cells lacking type-I IFN. NSs induces a shut-off of host transcription including interferon (IFN)-beta mRNA and promotes degradation of double-stranded RNA-dependent protein kinase (PKR) at the post-translational level. IFN-beta is transcriptionally upregulated by interferon regulatory factor 3 (IRF-3), NF-kB and activator protein-1 (AP-1), and the binding of IFN-beta to IFN-alpha/beta receptor (IFNAR) stimulates the transcription of IFN-alpha genes or other interferon stimulated genes (ISGs), which induces host antiviral activities, whereas host transcription suppression including IFN-beta gene by NSs prevents the gene upregulations of those ISGs in response to viral replication although IRF-3, NF-kB and activator protein-1 (AP-1) can be activated by RVFV7. Thus, NSs is an excellent target to further attenuate MP-12, and to enhance host innate immune responses by abolishing the IFN-beta suppression function. Here, we describe a protocol for generating a recombinant MP-12 encoding mutated NSs, and provide an example of a screening method to identify

  13. Serological surveillance studies confirm the Rift Valley fever virus free status in South Korea.

    PubMed

    Kim, Hyun Joo; Park, Jee-Yong; Jeoung, Hye-Young; Yeh, Jung-Yong; Cho, Yun-Sang; Choi, Jeong-Soo; Lee, Ji-Youn; Cho, In-Soo; Yoo, Han-Sang

    2015-10-01

    Rift Valley fever is a mosquito-borne zoonotic disease of domestic ruminants. This disease causes abortions in pregnant animals, and it has a high mortality rate in newborn animals. Recently, a Rift Valley fever virus (RVFV) outbreak in the Arabian Peninsula increased its potential spread to new regions worldwide. In non-endemic or disease-free countries, early detection and surveillance are important for preventing the introduction of RVFV. In this study, a serological surveillance was conducted to detect antibodies against RVFV. A total of 2382 serum samples from goats and cattle were randomly collected from nine areas in South Korea from 2011 to 2013. These samples were tested for antibodies against RVFV, using commercial ELISA kits. None of the goats and cattle were positive for antibodies against RVFV. This finding suggests that this disease is not present in South Korea, and furthermore presents the evidence of the RVFV-free status of this country.

  14. Collaborative study to assess the suitability of a candidate International Standard for yellow fever vaccine.

    PubMed

    Ferguson, Morag; Heath, Alan

    2004-12-01

    Yellow fever vaccines are routinely assayed by plaque assay. However, the results of these assays are then converted into mouse LD(50) using correlations/conversion factors which, in many cases, were established many years ago. The minimum required potency in WHO Recommendations is 10(3) LD(50)/dose. Thirteen participants from 8 countries participated in a collaborative study whose aim was to assess the suitability of two candidate preparations to serve as an International Standard for yellow fever vaccine. In addition, the study investigated the relationship between the mouse LD(50) test and plaque forming units with a view to updating the WHO recommendations. Plaque assays were more reproducible than mouse assays, as expected. Differences in sensitivities of plaque assays were observed between laboratories but these differences appear to be consistent within a laboratory for all samples and the expression of potency relative to the candidate standard vaccine improved the reproducibility of assays between laboratories. However, the use of potencies had little effect on the between laboratory variability in mouse LD(50) assays. There appears to be a consistent relationship between overall mean LD(50) and plaques titre for all study preparations other than sample E. The slope of the correlation curve is >1 and it would appear that 10(3) LD(50) is approximately equivalent to 10(4) plaque forming units (PFU), based on the overall means of all laboratory results. The First International Standard for yellow fever vaccine, NIBSC Code 99/616, has been established as the First International Standard for yellow fever vaccine by the Expert Committee of Biological Standards of the World Health Organisation. The International Standard has been arbitrarily assigned a potency of 10(4.5) International Units (IU) per ampoule. Manufacturers and National Control Laboratories are including the First International Standard for yellow fever vaccine in routine assays so that the minimum

  15. Rift Valley fever virus-infected mosquito ova and associated pathology: possible implications for endemic maintenance

    USDA-ARS?s Scientific Manuscript database

    Background: Endemic/enzootic maintenance mechanisms like vertical transmission, pathogen passage from infected adults to their offspring, are central in the epidemiology of zoonotic pathogens. In Kenya, Rift Valley fever virus (RVFV) may be maintained by vertical transmission in ground-pool mosquit...

  16. The search for animal models for Lassa fever vaccine development

    PubMed Central

    Lukashevich, Igor S

    2013-01-01

    Lassa virus (LASV) is the most prevalent arenavirus in West Africa and is responsible for several hundred thousand infections and thousands of deaths annually. The sizeable disease burden, numerous imported cases of Lassa fever (LF) and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Currently there is no licensed LF vaccine and research and devlopment is hampered by the high cost of nonhuman primate animal models and by biocontainment requirements (BSL-4). In addition, a successful LF vaccine has to induce a strong cell-mediated cross-protective immunity against different LASV lineages. All of these challenges will be addressed in this review in the context of available and novel animal models recently described for evaluation of LF vaccine candidates. PMID:23256740

  17. The search for animal models for Lassa fever vaccine development.

    PubMed

    Lukashevich, Igor S

    2013-01-01

    Lassa virus (LASV) is the most prevalent arenavirus in West Africa and is responsible for several hundred thousand infections and thousands of deaths annually. The sizeable disease burden, numerous imported cases of Lassa fever (LF) and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Currently there is no licensed LF vaccine and research and devlopment is hampered by the high cost of nonhuman primate animal models and by biocontainment requirements (BSL-4). In addition, a successful LF vaccine has to induce a strong cell-mediated cross-protective immunity against different LASV lineages. All of these challenges will be addressed in this review in the context of available and novel animal models recently described for evaluation of LF vaccine candidates.

  18. Differences in perception of dysentery and enteric fever and willingness to receive vaccines among rural residents in China.

    PubMed

    Chen, Xinguang; Stanton, Bonita; Wang, Xuanyi; Nyamette, Andrew; Pach, Alfred; Kaljee, Linda; Pack, Robert; von Seidlein, Lorenz; Clemens, John; Gong, Youlong; Mao, Rong

    2006-01-30

    Enteric diseases including dysentery and enteric fever remain significant public health problems in China. While vaccines offer great potential in controlling these diseases, greater understanding of factors influencing acceptance of vaccines is needed to create effective enteric disease control programs in rural China. Cross-sectional quantitative study with randomly sampled households from two sites in China, one experiencing high rates of shigellosis (Zengding) and the other of typhoid/paratyphoid (Lingchuan). Sociobehavioral survey data were collected through face-to-face interviews from 501 respondents (56% female) in Zhengding regarding dysentery and 624 in Lingchuan (51% female) regarding enteric fever. Vaccine acceptability was measured by expressed need for vaccination and willingness to pay. Comparative and associative analyses were conducted to assess disease perception, vaccination service satisfaction, likelihood of improvements in water and sanitation, and vaccine acceptability. Nearly all respondents in Lingchuan considered enteric fever to be prevalent in the community, while only one half of the respondents in Zhengding considered dysentery to be problematic (p < 0.01). Nevertheless, more respondents in Zhengding were fearful that a household member would acquire dysentery than were Lingchuan respondents worried that a household member would acquire enteric fever (p < 0.01). Perceived vulnerability of specific subgroups (odds ratios ranging from 1.6 to 8.1), knowing someone who died of the disease (odds ratio reached infinity) and satisfaction with past vaccination services (odds ratios reached infinity) were consistently associated with perceived need for vaccines of target populations of all age groups while the association between perception of sanitary improvement and vaccine need was limited. Perceived need for a vaccine was associated with willingness to pay for the vaccine. Perceptions of enhanced vulnerability of specific subgroups to a

  19. Protective and immunological behavior of chimeric yellow fever dengue vaccine.

    PubMed

    Halstead, Scott B; Russell, Philip K

    2016-03-29

    Clinical observations from the third year of the Sanofi Pasteur chimeric yellow fever dengue tetravalent vaccine (CYD) trials document both protection and vaccination-enhanced dengue disease among vaccine recipients. Children who were 5 years-old or younger when vaccinated experienced a DENV disease resulting in hospitalization at 5 times the rate of controls. On closer inspection, hospitalized cases among vaccinated seropositives, those at highest risk to hospitalized disease accompanying a dengue virus (DENV) infection, were greatly reduced by vaccination. But, seronegative individuals of all ages after being vaccinated were only modestly protected from mild to moderate disease throughout the entire observation period despite developing neutralizing antibodies at high rates. Applying a simple epidemiological model to the data, vaccinated seronegative individuals of all ages were at increased risk of developing hospitalized disease during a subsequent wild type DENV infection. The etiology of disease in placebo and vaccinated children resulting in hospitalization during a DENV infection, while clinically similar are of different origin. The implications of the observed mixture of DENV protection and enhanced disease in CYD vaccinees are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. An unusual case of influenza-like illness after yellow fever vaccination.

    PubMed

    Lamson, Daryl M; Ramani, Rama; Kleabonas, Matthew; Metcalfe, Maureen; Humphrey, Charles; St George, Kirsten

    2014-05-01

    Yellow fever (YF) is an important public health concern in areas where the disease is endemic. For more than 60 years a highly effective live attenuated vaccine has been available, its widespread use resulting in a dramatic decrease in the number of cases. On rare occasions, YF vaccine can cause mild to severe disease and rare adverse vaccine-associated events have been reported. Additionally, an average viremia of 3-5 days after administration of the YF vaccine has been published. Here we present a case where YF vaccine was isolated in cell culture from a respiratory swab collected from a patient presenting with influenza-like illness. To the best of our knowledge, this is the first report finding replicating YF vaccine in the respiratory sample of a post inoculated individual. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Severe Human Illness Caused by Rift Valley Fever Virus in Mauritania, 2015.

    PubMed

    Boushab, Boushab Mohamed; Fall-Malick, Fatima Zahra; Ould Baba, Sidi El Wafi; Ould Salem, Mohamed Lemine; Belizaire, Marie Roseline Darnycka; Ledib, Hamade; Ould Baba Ahmed, Mohamed Mahmoud; Basco, Leonardo Kishi; Ba, Hampaté

    2016-10-01

    Rift Valley Fever epizootics are characterized by numerous abortions and mortality among young animals. In humans, the illness is usually characterized by a mild self-limited febrile illness, which could progress to more serious complications.Objectives. The aim of the present prospective study was to describe severe clinical signs and symptoms of Rift Valley Fever in southern Mauritania. Suspected cases were enrolled in Kiffa (Assaba) and Aleg (Brakna) Hospital Centers from September 1 to November 7, 2015, based on the presence of fever, hemorrhagic or meningoencephalitic syndromes, and probable contact with sick animals. Suspected cases were confirmed by enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR). There were thirty-one confirmed cases. The sex ratio M/F and the average age were 2.9 and 25 years old [range, 4-70 years old], respectively. Mosquito bites, direct contact with aborted or dead animals, and frequent ingestion of milk from these animals were risk factors observed in all patients. Hemorrhagic and neurological manifestations were observed in 81% and 13% of cases, respectively. The results of laboratory analysis showed high levels of transaminases, creatinine, and urea associated with thrombocytopenia, anemia, and leukopenia. All patients who died (42%) had a hemorrhagic syndrome and 3 of them had a neurological complication. Among the cured patients, none had neurologic sequelae. The hemorrhagic form was the most common clinical manifestation of RVF found in southern Mauritania and was responsible for a high mortality rate. Our results justify the implementation of a continuous epidemiological surveillance.

  2. How many published cases of serious adverse events after yellow fever vaccination meet Brighton Collaboration diagnostic criteria?

    PubMed

    Thomas, Roger E; Spragins, Wendy; Lorenzetti, Diane L

    2013-12-16

    To perform a systematic review of all serious adverse events (SAEs) after yellow fever vaccination and to assess them according to Brighton Collaboration criteria. Nine electronic databases were searched with the terms "yellow fever vaccine" and "adverse events" to 10 July 2013 (no language/date limits). Two reviewers independently assessed studies, entered data, and assessed cases with Brighton Collaboration criteria. One hundred and thirty-one cases met Brighton Collaboration criteria: 32 anaphylaxis, 41 neurologic (one death), 56 viscerotropic (24 deaths), and 2 both neurologic and viscerotropic criteria. All SAEs occurred following first yellow fever (YF) vaccination. Two additional cases which met Brighton Collaboration criteria were proven due to wild virus. An additional 345 cases were presented with insufficient detail to meet Brighton Collaboration criteria:173 neurological, 68 viscerotropic (24 deaths), 67 anaphylaxis, and 34 cases from a UK database and 3 from a Swiss database described as "serious adverse events" but not further classified into neurologic or viscerotropic. A further 253 cases were excluded as presenting insufficient data to be regarded as yellow fever vaccine (YFV) related SAEs. One hundred and thirty-one cases met Brighton Collaboration criteria for serious adverse events after yellow fever vaccination. Another 345 cases did not meet Brighton criteria and 253 were excluded as presenting insufficient data to be regarded as serious adverse events after YFV. There are likely to be cases in areas that are remote or with insufficient diagnostic resources that are neither correctly assessed nor not published. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Classical Swine Fever Outbreak after Modified Live LOM Strain Vaccination in Naive Pigs, South Korea

    PubMed Central

    Je, Sang H.; Kwon, Taeyong; Yoo, Sung J.; Lee, Dong-Uk; Lee, SeungYoon; Richt, Juergen A.

    2018-01-01

    We report classical swine fever outbreaks occurring in naive pig herds on Jeju Island, South Korea, after the introduction of the LOM vaccine strain. Two isolates from sick pigs had >99% identity with the vaccine stain. LOM strain does not appear safe; its use in the vaccine should be reconsidered. PMID:29553332

  4. Hemorrhagic Fevers - Multiple Languages

    MedlinePlus

    ... dialect) (繁體中文) Expand Section Vaccine Information Statement (VIS) -- Yellow Fever Vaccine: What You Need to Know - English PDF Vaccine Information Statement (VIS) -- Yellow Fever Vaccine: What You Need to Know - 繁體中文 (Chinese, Traditional ( ...

  5. Development of a bivalent conjugate vaccine candidate against malaria transmission and typhoid fever.

    PubMed

    An, So Jung; Scaria, Puthupparampil V; Chen, Beth; Barnafo, Emma; Muratova, Olga; Anderson, Charles; Lambert, Lynn; Chae, Myung Hwa; Yang, Jae Seung; Duffy, Patrick E

    2018-05-17

    Immune responses to poorly immunogenic antigens, such as polysaccharides, can be enhanced by conjugation to carriers. Our previous studies indicate that conjugation to Vi polysaccharide of Salmonella Typhi may also enhance immunogenicity of some protein carriers. We therefore explored the possibility of generating a bivalent vaccine against Plasmodium falciparum malaria and typhoid fever, which are co-endemic in many parts of the world, by conjugating Vi polysaccharide, an approved antigen in typhoid vaccine, to Pfs25, a malaria transmission blocking vaccine antigen in clinical trials. Vi-Pfs25 conjugates induced strong immune responses against both Vi and Pfs25 in mice, whereas the unconjugated antigens are poorly immunogenic. Functional assays of immune sera revealed potent transmission blocking activity mediated by anti-Pfs25 antibody and serum bactericidal activity due to anti-Vi antibody. Pfs25 conjugation to Vi modified the IgG isotype distribution of antisera, inducing a Th2 polarized immune response against Vi antigen. This conjugate may be further developed as a bivalent vaccine to concurrently target malaria and typhoid fever. Copyright © 2018. Published by Elsevier Ltd.

  6. Studies of Infection and Dissemination of Rift Valley Fever Virus in Mosquitoes.

    DTIC Science & Technology

    1991-10-15

    have carried out the following studies:(l) Ultrastructural study of Rift Valley fever ( RVF ) virions in the cardia. (2) Immunocytochemical studies of...tissues for RVF virus in hemocoelically-infected Cx. pipiens. (5) Development of an immunogold procedure for in situ labelling of RVF viri-ons in electron...microscopic preps. (6) Worked toward the idetiTifTcation and isolation of the mosquito cell surface receptor molecule for RVF virus. (7) Developed and

  7. Studies of Infection and Dissemination of Rift Valley Fever Virus in Mosquitoes

    DTIC Science & Technology

    1990-05-01

    study of Rift Valley fever ( RVF ) virus in mosquitoes. During this year, we~havelcarrled out: (1) Immuno- cytochemical and ultrastructurai studies of...the proventriculus of adult, fkmale CuIex o infected with RVF virus. (2) irlmunocytochomical studies of the salivary glands and other tissues in...3) work on the development of an Immunogold procedure for InL.si labelling of RVF virlons In -_ + 20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21

  8. Challenges for African swine fever vaccine development-"… perhaps the end of the beginning."

    PubMed

    Rock, D L

    2017-07-01

    African swine fever (ASF), an acute, viral hemorrhagic disease in domestic swine with mortality rates approaching 100%, is arguably the most significant emerging disease threat for the swine industry worldwide. Devastating ASF outbreaks and continuing epidemic in the Caucasus region and Russia (2007-to date) highlight significance of this disease threat. There is no vaccine for ASF, thus leaving animal slaughter the only effective disease control option. It is clear, however, that vaccination is possible since protection against reinfection with the homologous strain of African swine fever virus (ASFV) has been clearly demonstrated. Vaccine development has been hindered by large gaps in knowledge concerning ASFV infection and immunity, the extent of ASFV strain variation in nature and the identification of viral proteins (protective antigens) responsible for inducing protective immune responses in the pig. This review focuses on the challenges surrounding ASF vaccine design and development, with an emphasis on existing knowledge gaps. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Comparison of Rift Valley fever virus replication in North American livestock and wildlife cell lines

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) causes outbreaks of endemic disease across Africa and the Arabian Peninsula, resulting in high morbidity and mortality among young domestic livestock, frequent abortions in pregnant animals, and potentially severe or fatal disease in humans. The possibility of RVFV spr...

  10. Efficacy trial of Vi polysaccharide vaccine against typhoid fever in south-western China.

    PubMed Central

    Yang, H. H.; Wu, C. G.; Xie, G. Z.; Gu, Q. W.; Wang, B. R.; Wang, L. Y.; Wang, H. F.; Ding, Z. S.; Yang, Y.; Tan, W. S.; Wang, W. Y.; Wang, X. C.; Qin, M.; Wang, J. H.; Tang, H. A.; Jiang, X. M.; Li, Y. H.; Wang, M. L.; Zhang, S. L.; Li, G. L.

    2001-01-01

    OBJECTIVE: To test the efficacy of locally produced Vi vaccine over a time period of longer than one year. METHODS: A double-blinded, randomized field trial was performed in Guangxi Zhuang Autonomous Region in south-western China, using 30 micrograms doses of locally produced Vi. Enrolled subjects were 3-50 years of age, although the majority (92%) were school-aged children, who have the highest rate of typhoid fever in this setting. A total of 131,271 people were systematically allocated a single dose of 30 micrograms of Vi polysaccharide or saline placebo. The study population was followed for 19 months, with passive surveillance conducted in the Ministry of Health and the Regional Health and Anti-epidemic Centre (HAEC). Clinically suspected cases of typhoid fever were confirmed by blood culture, or by serological reaction with O-antigen (Widal tests). FINDINGS: After 19 months, there were 23 culture-confirmed cases of typhoid fever in the placebo group versus 7 cases in the Vi group (Protective efficacy (PE) = 69%; 95% CI = 28%, 87%). Most of the isolates were from school-aged children: 22 cases in the placebo group versus 6 in the Vi group (PE = 72%; 95% CI = 32%, 82%). No serious post-injection reactions were observed. The locally produced Vi polysaccharide vaccine showed levels of protective efficacy similar to those for Vi vaccine produced in industrial countries. CONCLUSION: The slightly higher dose of vaccine did not seem to alter efficacy significantly in China. PMID:11477965

  11. Seroprevalence of Rift Valley fever, Q fever, and brucellosis in ruminants on the southeastern shore of Lake Chad.

    PubMed

    Abakar, Mahamat Fayiz; Naré, Ngandolo B; Schelling, Esther; Hattendorf, Jan; Alfaroukh, Idriss O; Zinsstag, Jakob

    2014-10-01

    The seroprevalence of Rift Valley fever (RVF), brucellosis, and Q fever among domestic ruminants on the southeastern shore of Lake Chad was studied. The study area consisted of two parts, including mainland and islands. On the mainland, the study was conducted in nine randomly selected villages and camps. On the islands, samples were collected from all four available sites. A total of 985 serum samples were collected and 924 were analyzed using enzyme-linked immunosorbent assay (ELISA) for RVF. A total of 561 samples collected from islands were analyzed using ELISA for Q fever and both ELISA and Rose Bengal tests (RBT) for brucellosis. The apparent RVF seroprevalence by species was 37.8% (95% confidence interval [CI] 34.2-41.3) in cattle, 18.8% (95% CI 12.3-25.2) in goats, and 10.8% (95% CI 3.0-18.5) in sheep. For brucellosis and Q fever, only cattle samples from islands were analyzed. For Q fever, the apparent seroprevalence was 7.8% (95% CI 5.6-10.1). For brucellosis, the RBT showed a prevalence of 5.7% (95% CI 3.8-7.6), and ELISA showed 11.9% (95% CI 9.3-14.6) with a kappa value of 0.53 showing a moderate agreement between the two tests. This study confirms the presence of the three diseases in the study area. More research is required to assess the importance for public health and conservation of the Kouri cattle breed.

  12. An optimal control strategies using vaccination and fogging in dengue fever transmission model

    NASA Astrophysics Data System (ADS)

    Fitria, Irma; Winarni, Pancahayani, Sigit; Subchan

    2017-08-01

    This paper discussed regarding a model and an optimal control problem of dengue fever transmission. We classified the model as human and vector (mosquito) population classes. For the human population, there are three subclasses, such as susceptible, infected, and resistant classes. Then, for the vector population, we divided it into wiggler, susceptible, and infected vector classes. Thus, the model consists of six dynamic equations. To minimize the number of dengue fever cases, we designed two optimal control variables in the model, the giving of fogging and vaccination. The objective function of this optimal control problem is to minimize the number of infected human population, the number of vector, and the cost of the controlling efforts. By giving the fogging optimally, the number of vector can be minimized. In this case, we considered the giving of vaccination as a control variable because it is one of the efforts that are being developed to reduce the spreading of dengue fever. We used Pontryagin Minimum Principle to solve the optimal control problem. Furthermore, the numerical simulation results are given to show the effect of the optimal control strategies in order to minimize the epidemic of dengue fever.

  13. Phylogeography of Rift Valley Fever Virus in Africa and the Arabian Peninsula

    PubMed Central

    Peterson, A. Townsend; Hall, Matthew

    2017-01-01

    Rift Valley Fever is an acute zoonotic viral disease caused by Rift Valley Fever virus (RVFV) that affects ruminants and humans in Sub-Saharan Africa and the Arabian Peninsula. We used phylogenetic analyses to understand the demographic history of RVFV populations, using sequence data from the three minigenomic segments of the virus. We used phylogeographic approaches to infer RVFV historical movement patterns across its geographic range, and to reconstruct transitions among host species. Results revealed broad circulation of the virus in East Africa, with many lineages originating in Kenya. Arrival of RVFV in Madagascar resulted from three major waves of virus introduction: the first from Zimbabwe, and the second and third from Kenya. The two major outbreaks in Egypt since 1977 possibly resulted from a long-distance introduction from Zimbabwe during the 1970s, and a single introduction took RVFV from Kenya to Saudi Arabia. Movement of the virus between Kenya and Sudan, and CAR and Zimbabwe, was in both directions. Viral populations in West Africa appear to have resulted from a single introduction from Central African Republic. The overall picture of RVFV history is thus one of considerable mobility, and dynamic evolution and biogeography, emphasizing its invasive potential, potentially more broadly than its current distributional limits. PMID:28068340

  14. Phylogeography of Rift Valley Fever Virus in Africa and the Arabian Peninsula.

    PubMed

    Samy, Abdallah M; Peterson, A Townsend; Hall, Matthew

    2017-01-01

    Rift Valley Fever is an acute zoonotic viral disease caused by Rift Valley Fever virus (RVFV) that affects ruminants and humans in Sub-Saharan Africa and the Arabian Peninsula. We used phylogenetic analyses to understand the demographic history of RVFV populations, using sequence data from the three minigenomic segments of the virus. We used phylogeographic approaches to infer RVFV historical movement patterns across its geographic range, and to reconstruct transitions among host species. Results revealed broad circulation of the virus in East Africa, with many lineages originating in Kenya. Arrival of RVFV in Madagascar resulted from three major waves of virus introduction: the first from Zimbabwe, and the second and third from Kenya. The two major outbreaks in Egypt since 1977 possibly resulted from a long-distance introduction from Zimbabwe during the 1970s, and a single introduction took RVFV from Kenya to Saudi Arabia. Movement of the virus between Kenya and Sudan, and CAR and Zimbabwe, was in both directions. Viral populations in West Africa appear to have resulted from a single introduction from Central African Republic. The overall picture of RVFV history is thus one of considerable mobility, and dynamic evolution and biogeography, emphasizing its invasive potential, potentially more broadly than its current distributional limits.

  15. Access to yellow fever travel vaccination centres in England, Wales, and Northern Ireland: A geographical study.

    PubMed

    Petersen, Jakob; Simons, Hilary; Patel, Dipti

    More than 700,000 trips were made by residents in England, Wales, and Northern Ireland (EWNI) in 2015 to tropical countries endemic for yellow fever, a potentially deadly, yet vaccine-preventable disease transmitted by mosquitoes. The aim of this study was to map the geographical accessibility of yellow fever vaccination centres (YFVC) in EWNI. The location of 3208 YFVC were geocoded and the average geodetic distance to nearest YFVC was calculated for each population unit. Data on trips abroad and centres were obtained regionally for EWNI and nationally for the World Top20 countries in terms of travel. The mean distance to nearest YFVC was 2.4 km and only 1% of the population had to travel more than 16.1 km to their nearest centre. The number of vaccines administered regionally in EWNI was found correlated with the number of trips to yellow fever countries. The number of centres per 100,000 trips was 6.1 in EWNI, which was below United States (12.1) and above the rest of Top20 countries. The service availability was in line with demand regionally. With the exception of remote, rural areas, yellow fever vaccination services were widely available with only short distances to cover for the travelling public. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  16. Rift Valley fever virus and European mosquitoes: vector competence of Culex pipiens and Stegomyia albopicta (= Aedes albopictus).

    PubMed

    Brustolin, M; Talavera, S; Nuñez, A; Santamaría, C; Rivas, R; Pujol, N; Valle, M; Verdún, M; Brun, A; Pagès, N; Busquets, N

    2017-12-01

    Rift Valley fever (RVF) is a mosquito-borne disease caused by the Rift Valley fever virus (RVFV). Rift Valley fever affects a large number of species, including human, and has severe impact on public health and the economy, especially in African countries. The present study examined the vector competence of three different European mosquito species, Culex pipiens (Linnaeus, 1758) form molestus (Diptera: Culicidae), Culex pipiens hybrid form and Stegomyia albopicta (= Aedes albopictus) (Skuse, 1894) (Diptera: Culicidae). Mosquitoes were artificially fed with blood containing RVFV. Infection, disseminated infection and transmission efficiency were evaluated. This is the first study to assess the transmission efficiency of European mosquito species using a virulent RVFV strain. The virus disseminated in Cx. pipiens hybrid form and in S. albopicta. Moreover, infectious viral particles were isolated from saliva of both species, showing their RVFV transmission capacity. The presence of competent Cx. pipiens and S. albopicta in Spain indicates that an autochthonous outbreak of RVF may occur if the virus is introduced. These findings provide information that will help health authorities to set up efficient entomological surveillance and RVFV vector control programmes. © 2017 The Authors. Medical and Veterinary Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society.

  17. Effect of environmental temperature on the vector competence of mosquitoes for Rift Valley fever virus

    USDA-ARS?s Scientific Manuscript database

    Environmental temperature has been shown to affect the ability of mosquitoes to transmit numerous arboviruses and for Rift Valley fever virus (RVFV) in particular. We evaluated the effect of incubation temperatures ranging from 14-26ºC on infection, dissemination, and transmission rates for Culex ta...

  18. Ebola hemorrhagic Fever and the current state of vaccine development.

    PubMed

    Hong, Joo Eun; Hong, Kee-Jong; Choi, Woo Young; Lee, Won-Ja; Choi, Yeon Hwa; Jeong, Chung-Hyeon; Cho, Kwang-Il

    2014-12-01

    Current Ebola virus outbreak in West Africa already reached the total number of 1,323 including 729 deaths by July 31st. the fatality is around 55% in the southeastern area of Guinea, Sierra Leone, Liberia, and Nigeria. The number of patients with Ebola Hemorrhagic Fever (EHF) was continuously increasing even though the any effective therapeutics or vaccines has not been developed yet. The Ebola virus in Guinea showed 98% homology with Zaire Ebola Virus. Study of the pathogenesis of Ebola virus infection and assess of the various candidates of vaccine have been tried for a long time, especially in United States and some European countries. Even though the attenuated live vaccine and DNA vaccine containing Ebola viral genes were tested and showed efficacy in chimpanzees, those candidates still need clinical tests requiring much longer time than the preclinical development to be approved for the practical treatment. It can be expected to eradicate Ebola virus by a safe and efficient vaccine development similar to the case of smallpox virus which was extinguished from the world by the variola vaccine.

  19. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficientmore » in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.« less

  20. The challenges of classical swine fever control: modified live and E2 subunit vaccines.

    PubMed

    Huang, Yu-Liang; Deng, Ming-Chung; Wang, Fun-In; Huang, Chin-Cheng; Chang, Chia-Yi

    2014-01-22

    Classical swine fever (CSF) is an economically important, highly contagious disease of swine worldwide. CSF is caused by classical swine fever virus (CSFV), and domestic pigs and wild boars are its only natural hosts. The two main strategies used to control CSF epidemic are systematic prophylactic vaccination and a non-vaccination stamping-out policy. This review compares the protective efficacy of the routinely used modified live vaccine (MLV) and E2 subunit vaccines and summarizes the factors that influence the efficacy of the vaccines and the challenges that both vaccines face to CSF control. Although MLV provide earlier and more complete protection than E2 subunit vaccines, it has the drawback of not allowing differentiation between infected and vaccinated animals (DIVA). The marker vaccine of E2 protein with companion discriminatory test to detect antibodies against E(rns) allows DIVA and is a promising strategy for future control and eradication of CSF. Maternal derived antibody (MDA) is the critical factor in impairing the efficacy of both MLV and E2 subunit vaccines, so the well-designed vaccination programs of sows and piglets should be considered together. Because of the antigen variation among various genotypes of CSFV, antibodies raised by either MLV or subunit vaccine neutralize genotypically homologous strains better than heterologous ones. However, although this is not a major concern for MLV as the induced immune responses can protect pigs against the challenge of various genotypes of CSFVs, it is critical for E2 subunit vaccines. It is thus necessary to evaluate whether the E2 subunit vaccine can completely protect against the current prevalent strains in the field. An ideal new generation of vaccine should be able to maintain the high protective efficiency of MLV and overcome the problem of antigenic variations while allowing for DIVA. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Understanding the legal trade of cattle and camels and the derived risk of Rift Valley Fever introduction into and transmission within Egypt

    PubMed Central

    Chevalier, Veronique; Busquets, Núria; Calistri, Paolo; Casal, Jordi; Attia, Mohamed; Elbassal, Rehab; Hosni, Heba; Farrag, Hatem; Hassan, Noura; Tawfik, Rasha; Abd Elkader, Sohair; Bayomy, Shahin

    2018-01-01

    Rift Valley Fever (RVF) is a mosquito-borne zoonosis, which may cause significant losses for the livestock sector and have serious public health implications. Egypt has been repeatedly affected by RVF epidemics, mainly associated to the importation of animals from sub-Saharan countries, where the disease is endemic. The objective of our study was the improvement of the surveillance and control strategies implemented in Egypt. In order to do that, first we evaluated the legal trade of live animals into and within Egypt. Then, we assessed the risk of Rift Valley Fever virus (RVFV) transmission within the country using a multi-criteria evaluation approach. Finally, we combined the animal trade and the risk of RVFV transmission data to identify those areas and periods in which the introduction of RVFV is more likely. Our results indicate that the main risk of RVFV introduction is posed by the continuous flow of large number of camels coming from Sudan. The risk of RVFV transmission by vectors is restricted to the areas surrounding the Nile river, and does not vary significantly throughout the year. Imported camels are taken to quarantines, where the risk of RVFV transmission by vectors is generally low. Then, they are taken to animal markets or slaughterhouses, many located in populated areas, where the risk of RVFV transmission to animals or humans is much higher. The measures currently implemented (quarantines, vaccination or testing) seem to have a limited effect in reducing the risk of RVFV introduction, and therefore other (risk-based) surveillance strategies are proposed. PMID:29351273

  2. Yellow fever vaccine-associated viscerotropic disease: current perspectives.

    PubMed

    Thomas, Roger E

    2016-01-01

    To assess those published cases of yellow fever (YF) vaccine-associated viscerotropic disease that meet the Brighton Collaboration criteria and to assess the safety of YF vaccine with respect to viscerotropic disease. Ten electronic databases were searched with no restriction of date or language and reference lists of retrieved articles. All abstracts and titles were independently read by two reviewers and data independently entered by two reviewers. All serious adverse events that met the Brighton Classification criteria were associated with first YF vaccinations. Sixty-two published cases (35 died) met the Brighton Collaboration viscerotropic criteria, with 32 from the US, six from Brazil, five from Peru, three from Spain, two from the People's Republic of China, one each from Argentina, Australia, Belgium, Ecuador, France, Germany, Ireland, New Zealand, Portugal, and the UK, and four with no country stated. Two cases met both the viscerotropic and YF vaccine-associated neurologic disease criteria. Seventy cases proposed by authors as viscerotropic disease did not meet any Brighton Collaboration viscerotropic level of diagnostic certainty or any YF vaccine-associated viscerotropic disease causality criteria (37 died). Viscerotropic disease is rare in the published literature and in pharmacovigilance databases. All published cases were from developing countries. Because the symptoms are usually very severe and life threatening, it is unlikely that cases would not come to medical attention (but might not be published). Because viscerotropic disease has a highly predictable pathologic course, it is likely that viscerotropic disease post-YF vaccine occurs in low-income countries with the same incidence as in developing countries. YF vaccine is a very safe vaccine that likely confers lifelong immunity.

  3. Yellow fever vaccine-associated viscerotropic disease: current perspectives

    PubMed Central

    Thomas, Roger E

    2016-01-01

    Purpose To assess those published cases of yellow fever (YF) vaccine-associated viscerotropic disease that meet the Brighton Collaboration criteria and to assess the safety of YF vaccine with respect to viscerotropic disease. Literature search Ten electronic databases were searched with no restriction of date or language and reference lists of retrieved articles. Methods All abstracts and titles were independently read by two reviewers and data independently entered by two reviewers. Results All serious adverse events that met the Brighton Classification criteria were associated with first YF vaccinations. Sixty-two published cases (35 died) met the Brighton Collaboration viscerotropic criteria, with 32 from the US, six from Brazil, five from Peru, three from Spain, two from the People’s Republic of China, one each from Argentina, Australia, Belgium, Ecuador, France, Germany, Ireland, New Zealand, Portugal, and the UK, and four with no country stated. Two cases met both the viscerotropic and YF vaccine-associated neurologic disease criteria. Seventy cases proposed by authors as viscerotropic disease did not meet any Brighton Collaboration viscerotropic level of diagnostic certainty or any YF vaccine-associated viscerotropic disease causality criteria (37 died). Conclusion Viscerotropic disease is rare in the published literature and in pharmacovigilance databases. All published cases were from developing countries. Because the symptoms are usually very severe and life threatening, it is unlikely that cases would not come to medical attention (but might not be published). Because viscerotropic disease has a highly predictable pathologic course, it is likely that viscerotropic disease post-YF vaccine occurs in low-income countries with the same incidence as in developing countries. YF vaccine is a very safe vaccine that likely confers lifelong immunity. PMID:27784992

  4. The Bulgarian vaccine Crimean-Congo haemorrhagic fever virus strain.

    PubMed

    Papa, Anna; Papadimitriou, Evangelia; Christova, Iva

    2011-03-01

    The Crimean-Congo haemorrhagic fever virus (CCHFV) is a 3-segmented RNA virus, which causes disease with a high fatality rate in humans. An inactivated suckling mouse brain-derived vaccine is used in Bulgaria for protection against CCHF. Strain V42/81 is currently used for the vaccine preparation. As the M-RNA segment plays a major role in the immune response, the full-length M segment sequence of the V42/81 strain was characterized. A great genetic diversity was observed among CCHFV strains. In order to gain an insight into the topology of the strain in the CCHFV phylogenetic trees, the full-length S and partial L segments were additionally sequenced and analyzed.

  5. In vitro Studies of Sandfly Fever Viruses and Their Potential Significance for Vaccine Development.

    DTIC Science & Technology

    1981-02-01

    34 - "’: / AD In vitro Studies of Sandfly Fever Viruses and Their Potential Significance for Vaccine Development Annual Progress Report by CO Jonathan F. Smith...Significance for Vaccine 1 gR1 Development 6 WPW"a EOTHmaei AUTHOV&PSI CONTRACt OR GRANT NUMSERWa Jonahan . Smth, h.D.DAMD-17-78-C-8056 P6EftJrPORim...antibodies, post-translational processing, Immunoprecipitation, antigen purification, In vitro translation, passive transfer, vaccines _26. AEISTRACTMO

  6. Potential for stable flies and house flies (Diptera: Muscidae) to transmit Rift Valley fever virus

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF), a disease of ruminants and humans, has been responsible for large outbreaks in Africa that have resulted in hundreds of thousands of human infections and major economic disruption due to loss of livestock and to trade restrictions. As indicated by the rapid spread of West N...

  7. VaxCelerate II: Rapid development of a self-assembling vaccine for Lassa fever

    PubMed Central

    Leblanc, Pierre; Moise, Leonard; Luza, Cybelle; Chantaralawan, Kanawat; Lezeau, Lynchy; Yuan, Jianping; Field, Mary; Richer, Daniel; Boyle, Christine; Martin, William D; Fishman, Jordan B; Berg, Eric A; Baker, David; Zeigler, Brandon; Mais, Dale E; Taylor, William; Coleman, Russell; Warren, H Shaw; Gelfand, Jeffrey A; De Groot, Anne S; Brauns, Timothy; Poznansky, Mark C

    2014-01-01

    Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available. We established the VaxCelerate Consortium to address the need for more rapid vaccine development by creating a platform capable of generating and pre-clinically testing a new vaccine against specific pathogen targets in less than 120 d. A self-assembling vaccine is at the core of the approach. It consists of a fusion protein composed of the immunostimulatory Mycobacterium tuberculosis heat shock protein 70 (MtbHSP70) and the biotin binding protein, avidin. Mixing the resulting protein (MAV) with biotinylated pathogen-specific immunogenic peptides yields a self-assembled vaccine (SAV). To meet the time constraint imposed on this project, we used a distributed R&D model involving experts in the fields of protein engineering and production, bioinformatics, peptide synthesis/design and GMP/GLP manufacturing and testing standards. SAV immunogenicity was first tested using H1N1 influenza specific peptides and the entire VaxCelerate process was then tested in a mock live-fire exercise targeting Lassa fever virus. We demonstrated that the Lassa fever vaccine induced significantly increased class II peptide specific interferon-γ CD4+ T cell responses in HLA-DR3 transgenic mice compared to peptide or MAV alone controls. We thereby demonstrated that our SAV in combination with a distributed development model may facilitate accelerated regulatory review by using an identical design for each vaccine and by applying safety and efficacy assessment tools that are more relevant to human vaccine responses than current animal models. PMID:25483693

  8. VaxCelerate II: rapid development of a self-assembling vaccine for Lassa fever.

    PubMed

    Leblanc, Pierre; Moise, Leonard; Luza, Cybelle; Chantaralawan, Kanawat; Lezeau, Lynchy; Yuan, Jianping; Field, Mary; Richer, Daniel; Boyle, Christine; Martin, William D; Fishman, Jordan B; Berg, Eric A; Baker, David; Zeigler, Brandon; Mais, Dale E; Taylor, William; Coleman, Russell; Warren, H Shaw; Gelfand, Jeffrey A; De Groot, Anne S; Brauns, Timothy; Poznansky, Mark C

    2014-01-01

    Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available. We established the VaxCelerate Consortium to address the need for more rapid vaccine development by creating a platform capable of generating and pre-clinically testing a new vaccine against specific pathogen targets in less than 120 d A self-assembling vaccine is at the core of the approach. It consists of a fusion protein composed of the immunostimulatory Mycobacterium tuberculosis heat shock protein 70 (MtbHSP70) and the biotin binding protein, avidin. Mixing the resulting protein (MAV) with biotinylated pathogen-specific immunogenic peptides yields a self-assembled vaccine (SAV). To meet the time constraint imposed on this project, we used a distributed R&D model involving experts in the fields of protein engineering and production, bioinformatics, peptide synthesis/design and GMP/GLP manufacturing and testing standards. SAV immunogenicity was first tested using H1N1 influenza specific peptides and the entire VaxCelerate process was then tested in a mock live-fire exercise targeting Lassa fever virus. We demonstrated that the Lassa fever vaccine induced significantly increased class II peptide specific interferon-γ CD4(+) T cell responses in HLA-DR3 transgenic mice compared to peptide or MAV alone controls. We thereby demonstrated that our SAV in combination with a distributed development model may facilitate accelerated regulatory review by using an identical design for each vaccine and by applying safety and efficacy assessment tools that are more relevant to human vaccine responses than current animal models.

  9. A DNA vaccine delivered by dermal electroporation fully protects cynomolgus macaques against Lassa fever.

    PubMed

    Cashman, Kathleen A; Wilkinson, Eric R; Shaia, Carl I; Facemire, Paul R; Bell, Todd M; Bearss, Jeremy J; Shamblin, Joshua D; Wollen, Suzanne E; Broderick, Kate E; Sardesai, Niranjan Y; Schmaljohn, Connie S

    2017-12-02

    Lassa virus (LASV) is an ambisense RNA virus in the Arenaviridae family and is the etiological agent of Lassa fever, a severe hemorrhagic disease endemic to West and Central Africa. 1,2 There are no US Food and Drug Administration (FDA)-licensed vaccines available to prevent Lassa fever. 1,2 in our previous studies, we developed a gene-optimized DNA vaccine that encodes the glycoprotein precursor gene of LASV (Josiah strain) and demonstrated that 3 vaccinations accompanied by dermal electroporation protected guinea pigs from LASV-associated illness and death. Here, we describe an initial efficacy experiment in cynomolgus macaque nonhuman primates (NHPs) in which we followed an identical 3-dose vaccine schedule that was successful in guinea pigs, and a follow-on experiment in which we used an accelerated vaccination strategy consisting of 2 administrations, spaced 4 weeks apart. In both studies, all of the LASV DNA-vaccinated NHPs survived challenge and none of them had measureable, sustained viremia or displayed weight loss or other disease signs post-exposure. Three of 10 mock-vaccinates survived exposure to LASV, but all of them became acutely ill post-exposure and remained chronically ill to the study end point (45 d post-exposure). Two of the 3 survivors experienced sensorineural hearing loss (described elsewhere). These results clearly demonstrate that the LASV DNA vaccine combined with dermal electroporation is a highly effective candidate for eventual use in humans.

  10. Vaccines.gov

    MedlinePlus

    ... Vaccine Safety Vaccines Work Vaccine Types Vaccine Ingredients Vaccines by Disease Chickenpox ... Typhoid Fever Whooping Cough (Pertussis) Yellow Fever Who and When Infants, Children, and Teens ...

  11. Safety and immunogenicity of inactivated poliovirus vaccine when given with measles-rubella combined vaccine and yellow fever vaccine and when given via different administration routes: a phase 4, randomised, non-inferiority trial in The Gambia.

    PubMed

    Clarke, Ed; Saidu, Yauba; Adetifa, Jane U; Adigweme, Ikechukwu; Hydara, Mariama Badjie; Bashorun, Adedapo O; Moneke-Anyanwoke, Ngozi; Umesi, Ama; Roberts, Elishia; Cham, Pa Modou; Okoye, Michael E; Brown, Kevin E; Niedrig, Matthias; Chowdhury, Panchali Roy; Clemens, Ralf; Bandyopadhyay, Ananda S; Mueller, Jenny; Jeffries, David J; Kampmann, Beate

    2016-08-01

    The introduction of the inactivated poliovirus vaccine (IPV) represents a crucial step in the polio eradication endgame. This trial examined the safety and immunogenicity of IPV given alongside the measles-rubella and yellow fever vaccines at 9 months and when given as a full or fractional dose using needle and syringe or disposable-syringe jet injector. We did a phase 4, randomised, non-inferiority trial at three periurban government clinics in west Gambia. Infants aged 9-10 months who had already received oral poliovirus vaccine were randomly assigned to receive the IPV, measles-rubella, and yellow fever vaccines, singularly or in combination. Separately, IPV was given as a full intramuscular or fractional intradermal dose by needle and syringe or disposable-syringe jet injector at a second visit. The primary outcomes were seroprevalence rates for poliovirus 4-6 weeks post-vaccination and the rate of seroconversion between baseline and post-vaccination serum samples for measles, rubella, and yellow fever; and the post-vaccination antibody titres generated against each component of the vaccines. We did a per-protocol analysis with a non-inferiority margin of 10% for poliovirus seroprevalence and measles, rubella, and yellow fever seroconversion, and (1/3) log2 for log2-transformed antibody titres. This trial is registered with ClinicalTrials.gov, number NCT01847872. Between July 10, 2013, and May 8, 2014, we assessed 1662 infants for eligibility, of whom 1504 were enrolled into one of seven groups for vaccine interference and one of four groups for fractional dosing and alternative route of administration. The rubella and yellow fever antibody titres were reduced by co-administration but the seroconversion rates achieved non-inferiority in both cases (rubella, -4·5% [95% CI -9·5 to -0·1]; yellow fever, 1·2% [-2·9 to 5·5]). Measles and poliovirus responses were unaffected (measles, 6·8% [95% CI -1·4 to 14·9]; poliovirus serotype 1, 1·6% [-6·7 to 4·7

  12. Rift Valley Fever Virus Growth Curve Kinetics in Cattle and Sheep Peripheral Blood Monocyte Derived Macrophages

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV), is a mosquito-borne, zoonotic pathogen within genus Phlebovirus, family Bunyaviridae that typically causes outbreaks in sub-Saharan Africa and recently spread to the Arabian Peninsula. In ruminants, RVFV infections cause mass abortion and high mortality rates in neona...

  13. Epidemiologic and environmental risk factors of rift valley fever in southern Africa from 2008 to 2011

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Rift Valley fever outbreaks have been associated with periods of widespread and above average rainfall over several months which allows for the virus infected mosquito vector populations to emerge and propagate. This has provided basis to develop complex models based on environmental fa...

  14. Safety, immunogenicity, and efficacy of the ML29 reassortant vaccine for Lassa fever in small non-human primates✩

    PubMed Central

    Lukashevich, Igor S.; Carrion, Ricardo; Salvato, Maria S.; Mansfield, Keith; Brasky, Kathleen; Zapata, Juan; Cairo, Cristiana; Goicochea, Marco; Hoosien, Gia E.; Ticer, Anysha; Bryant, Joseph; Davis, Harry; Hammamieh, Rasha; Mayda, Maria; Jett, Marti; Patterson, Jean

    2008-01-01

    A single injection of ML29 reassortant vaccine for Lassa fever induces low, transient viremia, and low or moderate levels of ML29 replication in tissues of common marmosets depending on the dose of the vaccination. The vaccination elicits specific immune responses and completely protects marmosets against fatal disease by induction of sterilizing cell-mediated immunity. DNA array analysis of human peripheral blood mononuclear cells from healthy donors exposed to ML29 revealed that gene expression patterns in ML29-exposed PBMC and control, media-exposed PBMC, clustered together confirming safety profile of the ML29 in non-human primates. The ML29 reassortant is a promising vaccine candidate for Lassa fever. PMID:18692539

  15. Rift Valley Fever, Sudan, 2007 and 2010

    PubMed Central

    Aradaib, Imadeldin E.; Erickson, Bobbie R.; Elageb, Rehab M.; Khristova, Marina L.; Carroll, Serena A.; Elkhidir, Isam M.; Karsany, Mubarak E.; Karrar, AbdelRahim E.; Elbashir, Mustafa I.

    2013-01-01

    To elucidate whether Rift Valley fever virus (RVFV) diversity in Sudan resulted from multiple introductions or from acquired changes over time from 1 introduction event, we generated complete genome sequences from RVFV strains detected during the 2007 and 2010 outbreaks. Phylogenetic analyses of small, medium, and large RNA segment sequences indicated several genetic RVFV variants were circulating in Sudan, which all grouped into Kenya-1 or Kenya-2 sublineages from the 2006–2008 eastern Africa epizootic. Bayesian analysis of sequence differences estimated that diversity among the 2007 and 2010 Sudan RVFV variants shared a most recent common ancestor circa 1996. The data suggest multiple introductions of RVFV into Sudan as part of sweeping epizootics from eastern Africa. The sequences indicate recent movement of RVFV and support the need for surveillance to recognize when and where RVFV circulates between epidemics, which can make data from prediction tools easier to interpret and preventive measures easier to direct toward high-risk areas. PMID:23347790

  16. Prediction of a Rift Valley fever outbreak

    PubMed Central

    Anyamba, Assaf; Chretien, Jean-Paul; Small, Jennifer; Tucker, Compton J.; Formenty, Pierre B.; Richardson, Jason H.; Britch, Seth C.; Schnabel, David C.; Erickson, Ralph L.; Linthicum, Kenneth J.

    2009-01-01

    El Niño/Southern Oscillation related climate anomalies were analyzed by using a combination of satellite measurements of elevated sea-surface temperatures and subsequent elevated rainfall and satellite-derived normalized difference vegetation index data. A Rift Valley fever (RVF) risk mapping model using these climate data predicted areas where outbreaks of RVF in humans and animals were expected and occurred in the Horn of Africa from December 2006 to May 2007. The predictions were subsequently confirmed by entomological and epidemiological field investigations of virus activity in the areas identified as at risk. Accurate spatial and temporal predictions of disease activity, as it occurred first in southern Somalia and then through much of Kenya before affecting northern Tanzania, provided a 2 to 6 week period of warning for the Horn of Africa that facilitated disease outbreak response and mitigation activities. To our knowledge, this is the first prospective prediction of a RVF outbreak. PMID:19144928

  17. Rift Valley Fever Seroprevalence in Coastal Kenya.

    PubMed

    Grossi-Soyster, Elysse N; Banda, Tamara; Teng, Crystal Y; Muchiri, Eric M; Mungai, Peter L; Mutuku, Francis M; Gildengorin, Ginny; Kitron, Uriel; King, Charles H; Desiree Labeaud, A

    2017-07-01

    Rift Valley fever virus (RVFV) causes severe disease in both animals and humans, resulting in significant economic and public health damages. The objective of this study was to measure RVFV seroprevalence in six coastal Kenyan villages between 2009 and 2011, and characterize individual-, household-, and community-level risk factors for prior RVFV exposure. Sera were tested for anti-RVFV IgG via enzyme-linked immunosorbent assay. Overall, 51 (1.8%; confidence interval [CI 95 ] 1.3-2.3) of 2,871 samples were seropositive for RVFV. Seroprevalence differed significantly among villages, and was highest in Jego Village (18/300; 6.0%; CI 95 3.6-9.3) and lowest in Magodzoni (0/248). Adults were more likely to be seropositive than children ( P < 0.001). Seropositive subjects were less likely to own land or a motor vehicle ( P < 0.01), suggesting exposure is associated with lower socioeconomic standing ( P = 0.03). RVFV exposure appears to be low in coastal Kenya, although with some variability among villages.

  18. DoD-GEIS Rift Valley Fever Monitoring and Prediction System as a Tool for Defense and US Diplomacy

    NASA Technical Reports Server (NTRS)

    Anyamba, Assaf; Tucker, Compton J.; Linthicum, Kenneth J.; Witt, Clara J.; Gaydos, Joel C.; Russell, Kevin L.

    2011-01-01

    Over the last 10 years the Armed Forces Health Surveillance Center's Global Emerging Infections Surveillance and Response System (GEIS) partnering with NASA'S Goddard Space Flight Center and USDA's USDA-Center for Medical, Agricultural & Veterinary Entomology established and have operated the Rift Valley fever Monitoring and Prediction System to monitor, predict and assess the risk of Rift Valley fever outbreaks and other vector-borne diseases over Africa and the Middle East. This system is built on legacy DoD basic research conducted by Walter Reed Army Institute of Research overseas laboratory (US Army Medical Research Unit-Kenya) and the operational satellite environmental monitoring by NASA GSFC. Over the last 10 years of operation the system has predicted outbreaks of Rift Valley fever in the Horn of Africa, Sudan, South Africa and Mauritania. The ability to predict an outbreak several months before it occurs provides early warning to protect deployed forces, enhance public health in concerned countries and is a valuable tool use.d by the State Department in US Diplomacy. At the international level the system has been used by the Food and Agricultural Organization (FAD) and the World Health Organization (WHO) to support their monitoring, surveillance and response programs in the livestock sector and human health. This project is a successful testament of leveraging resources of different federal agencies to achieve objectives of force health protection, health and diplomacy.

  19. Efficacy of a live attenuated vaccine in classical swine fever virus postnatally persistently infected pigs.

    PubMed

    Muñoz-González, Sara; Perez-Simó, Marta; Muñoz, Marta; Bohorquez, José Alejandro; Rosell, Rosa; Summerfield, Artur; Domingo, Mariano; Ruggli, Nicolas; Ganges, Llilianne

    2015-07-09

    Classical swine fever (CSF) causes major losses in pig farming, with various degrees of disease severity. Efficient live attenuated vaccines against classical swine fever virus (CSFV) are used routinely in endemic countries. However, despite intensive vaccination programs in these areas for more than 20 years, CSF has not been eradicated. Molecular epidemiology studies in these regions suggests that the virus circulating in the field has evolved under the positive selection pressure exerted by the immune response to the vaccine, leading to new attenuated viral variants. Recent work by our group demonstrated that a high proportion of persistently infected piglets can be generated by early postnatal infection with low and moderately virulent CSFV strains. Here, we studied the immune response to a hog cholera lapinised virus vaccine (HCLV), C-strain, in six-week-old persistently infected pigs following post-natal infection. CSFV-negative pigs were vaccinated as controls. The humoral and interferon gamma responses as well as the CSFV RNA loads were monitored for 21 days post-vaccination. No vaccine viral RNA was detected in the serum samples and tonsils from CSFV postnatally persistently infected pigs for 21 days post-vaccination. Furthermore, no E2-specific antibody response or neutralising antibody titres were shown in CSFV persistently infected vaccinated animals. Likewise, no of IFN-gamma producing cell response against CSFV or PHA was observed. To our knowledge, this is the first report demonstrating the absence of a response to vaccination in CSFV persistently infected pigs.

  20. Genetic stability of a dengue vaccine based on chimeric yellow fever/dengue viruses.

    PubMed

    Mantel, N; Girerd, Y; Geny, C; Bernard, I; Pontvianne, J; Lang, J; Barban, V

    2011-09-02

    A tetravalent dengue vaccine based on four live, attenuated, chimeric viruses (CYD1-4), constructed by replacing the genes coding for premembrane (prM) and envelope (E) proteins of the yellow fever (YF)-17D vaccine strain with those of the four serotypes of dengue virus, is in clinical phase III evaluation. We assessed the vaccine's genetic stability by fully sequencing each vaccine virus throughout the development and manufacturing process. The four viruses displayed complete genetic stability, with no change from premaster seed lots to bulk lots. When pursuing the virus growth beyond bulk lots, a few genetic variations were observed. Usually both the initial nucleotide and the new one persisted, and mutations appeared after a relatively high number of virus duplication cycles (65-200, depending on position). Variations were concentrated in the prM-E and non-structural (NS)4B regions. PrM-E variations had no impact on lysis-plaque size or neurovirulence in mice. None of the variations located in the YF-17D-derived genes corresponded with reversion to the wild-type Yellow Fever sequence. Variations in NS4B likely reflect virus adaptation to Vero cells growth. A low to undetectable viremia has been reported previously [1-3] in vaccinated non-human and human primates. Combined with the data reported here about the genetic stability of the vaccine strains, the probability of in vivo emergence of mutant viruses appears very low. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Impact of combined vector-control and vaccination strategies on transmission dynamics of dengue fever: a model-based analysis.

    PubMed

    Knerer, Gerhart; Currie, Christine S M; Brailsford, Sally C

    2015-06-01

    Dengue fever is a vector-borne disease prevalent in tropical and subtropical regions. It is an important public health problem with a considerable and often under-valued disease burden in terms of frequency, cost and quality-of-life. Recent literature reviews have documented the development of mathematical models of dengue fever both to identify important characteristics for future model development as well as to assess the impact of dengue control interventions. Such reviews highlight the importance of short-term cross-protection; antibody-dependent enhancement; and seasonality (in terms of both favourable and unfavourable conditions for mosquitoes). The compartmental model extends work by Bartley (2002) and combines the following factors: seasonality, age-structure, consecutive infection by all four serotypes, cross-protection and immune enhancement, as well as combined vector-host transmission. The model is used to represent dengue transmission dynamics using parameters appropriate for Thailand and to assess the potential impact of combined vector-control and vaccination strategies including routine and catch-up vaccination strategies on disease dynamics. When seasonality and temporary cross-protection between serotypes are included, the model is able to approximate the observed incidence of dengue fever in Thailand. We find vaccination to be the most effective single intervention, albeit with imperfect efficacy (30.2 %) and limited duration of protection. However, in combination, control interventions and vaccination exhibit a marked impact on dengue fever transmission. This study shows that an imperfect vaccine can be a useful weapon in reducing disease spread within the community, although it will be most effective when promoted as one of several strategies for combating dengue fever transmission.

  2. Duration of post-vaccination immunity against yellow fever in adults.

    PubMed

    2014-09-03

    Available scientific evidence to recommend or to advise against booster doses of yellow fever vaccine (YFV) is inconclusive. A study to estimate the seropositivity rate and geometric mean titres (GMT) of adults with varied times of vaccination was aimed to provide elements to revise the need and the timing of revaccination. Adults from the cities of Rio de Janeiro and Alfenas located in non-endemic areas in the Southeast of Brazil, who had one dose of YFV, were tested for YF neutralising antibodies and dengue IgG. Time (in years) since vaccination was based on immunisation cards and other reliable records. From 2011 to 2012 we recruited 691 subjects (73% males), aged 18-83 years. Time since vaccination ranged from 30 days to 18 years. Seropositivity rates (95%C.I.) and GMT (International Units/mL; 95%C.I.) decreased with time since vaccination: 93% (88-96%), 8.8 (7.0-10.9) IU/mL for newly vaccinated; 94% (88-97), 3.0 (2.5-3.6) IU/mL after 1-4 years; 83% (74-90), 2.2 (1.7-2.8) IU/mL after 5-9 years; 76% (68-83), 1.7 (1.4-2.0) IU/mL after 10-11 years; and 85% (80-90), 2.1 (1.7-2.5) IU/mL after 12 years or more. YF seropositivity rates were not affected by previous dengue infection. Eventhough serological correlates of protection for yellow fever are unknown, seronegativity in vaccinated subjects may indicate primary immunisation failure, or waning of immunity to levels below the protection threshold. Immunogenicity of YFV under routine conditions of immunisation services is likely to be lower than in controlled studies. Moreover, infants and toddlers, who comprise the main target group in YF endemic regions, and populations with high HIV infection rates, respond to YFV with lower antibody levels. In those settings one booster dose, preferably sooner than currently recommended, seems to be necessary to ensure longer protection for all vaccinees. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Persistence of Yellow Fever vaccine-induced antibodies after cord blood stem cell transplant.

    PubMed

    Avelino-Silva, Vivian Iida; Freire, Marcos da Silva; Rocha, Vanderson; Rodrigues, Celso Arrais; Novis, Yana Sarkis; Sabino, Ester C; Kallas, Esper Georges

    2016-04-02

    We report the case of a cord blood haematopoietic stem cell transplant recipient who was vaccinated for Yellow Fever (YF) 7 days before initiating chemotherapy and had persistent YF antibodies more than 3 years after vaccination. Since the stem cell donor was never exposed to wild YF or to the YF vaccine, and our patient was not exposed to YF or revaccinated, this finding strongly suggests the persistence of recipient immunity. We briefly discuss potential consequences of incomplete elimination of recipient's leukocytes following existing haematopoietic cancer treatments.

  4. Yellow fever and Max Theiler: the only Nobel Prize for a virus vaccine

    PubMed Central

    Norrby, Erling

    2007-01-01

    In 1951, Max Theiler of the Rockefeller Foundation received the Nobel Prize in Physiology or Medicine for his discovery of an effective vaccine against yellow fever—a discovery first reported in the JEM 70 years ago. This was the first, and so far the only, Nobel Prize given for the development of a virus vaccine. Recently released Nobel archives now reveal how the advances in the yellow fever vaccine field were evaluated more than 50 years ago, and how this led to a prize for Max Theiler. PMID:18039952

  5. Pigs immunized with a novel E2 subunit vaccine are protected from heterologous classical swine fever virus challenge

    USDA-ARS?s Scientific Manuscript database

    Background: Classical swine fever (CSF) or hog cholera is a highly contagious swineviral disease. CSF endemic countries have to use routine vaccination with modifiedlive virus (MLV) vaccines to prevent and control CSF. However, it is impossible toserologically differentiate MLV vaccinated pigs from...

  6. TLR expression and NK cell activation after human yellow fever vaccination.

    PubMed

    Neves, Patrícia Cristina da Costa; Matos, Denise Cristina de Souza; Marcovistz, Rugimar; Galler, Ricardo

    2009-09-18

    The yellow fever vaccine is very effective with a single injection conferring protection for at least 10 years. Recent evidence suggests that the innate immune cells activated through Toll-like receptors (TLRs), are critical determinants of the robustness of the adaptive response. Therefore, we investigated the NK cell status in eight healthy volunteers after vaccination with YF 17DD virus. Shortly after vaccination, we observed increased expression of TLR-3 and TLR-9 in NK cells and markers such as CD69, HLA-DP-DQ-DR, CD38 and CD16. The up-regulation of CD69 was positively correlated with the presence of TLRs throughout the post-vaccination period and the circulating IFN-gamma was significantly augmented. These results suggest that TLRs may play an important role in NK cell activation during the immune response to vaccination, indicating a potential role for NK cells in helping the development of long-lasting protective memory.

  7. Intensified dust storm activity and Valley fever infection in the southwestern United States

    NASA Astrophysics Data System (ADS)

    Tong, Daniel Q.; Wang, Julian X. L.; Gill, Thomas E.; Lei, Hang; Wang, Binyu

    2017-05-01

    Climate models have consistently projected a drying trend in the southwestern United States, aiding speculation of increasing dust storms in this region. Long-term climatology is essential to documenting the dust trend and its response to climate variability. We have reconstructed long-term dust climatology in the western United States, based on a comprehensive dust identification method and continuous aerosol observations from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. We report here direct evidence of rapid intensification of dust storm activity over American deserts in the past decades (1988-2011), in contrast to reported decreasing trends in Asia and Africa. The frequency of windblown dust storms has increased 240% from 1990s to 2000s. This dust trend is associated with large-scale variations of sea surface temperature in the Pacific Ocean, with the strongest correlation with the Pacific Decadal Oscillation. We further investigate the relationship between dust and Valley fever, a fast-rising infectious disease caused by inhaling soil-dwelling fungus (Coccidioides immitis and C. posadasii) in the southwestern United States. The frequency of dust storms is found to be correlated with Valley fever incidences, with a coefficient (r) comparable to or stronger than that with other factors believed to control the disease in two endemic centers (Maricopa and Pima County, Arizona).

  8. Introducing Vi polysaccharide typhoid fever vaccine to primary school children in North Jakarta, Indonesia, via an existent school-based vaccination platform.

    PubMed

    Agtini, M D; Ochiai, R L; Soeharno, R; Lee, H J; Sundoro, J; Hadinegoro, S R; Han, O P; Tana, L; Halim, F X S; Ghani, L; Delima; Lestari, W; Sintawati, F X; Kusumawardani, N; Malik, R; Santoso, T S; Nadjib, M; Soeroso, S; Wangsasaputra, F; Ali, M; Ivanoff, B; Galindo, C M; Pang, T; Clemens, J D; Suwandono, A; Acosta, C J

    2006-11-01

    To report results on coverage, safety and logistics of a large-scale, school-based Vi polysaccharide immunization campaign in North Jakarta. Of 443 primary schools in North Jakarta, Indonesia, 18 public schools were randomly selected for this study. Exclusion criteria were fever 37.5 degrees C or higher at the time of vaccination or a known history of hypersensitivity to any vaccine. Adverse events were monitored and recorded for 1 month after immunization. Because this was a pilot programme, resource use was tracked in detail. During the February 2004 vaccination campaign, 4828 students were immunized (91% of the target population); another 394 students (7%) were vaccinated during mop-up programmes. Informed consent was obtained for 98% of the target population. In all, 34 adverse events were reported, corresponding to seven events per 1000 doses injected; none was serious. The manufacturer recommended cold chain was maintained throughout the programme. This demonstration project in two sub-districts of North Jakarta shows that a large-scale, school-based typhoid fever Vi polysaccharide vaccination campaign is logistically feasible, safe and minimally disruptive to regular school activities, when used in the context of an existing successful immunization platform. The project had high parental acceptance. Nonetheless, policy-relevant questions still need to be answered before implementing a widespread Vi polysaccharide vaccine programme in Indonesia.

  9. [Vaccination against yellow fever among patients on immunosuppressors with diagnoses of rheumatic diseases].

    PubMed

    Mota, Licia Maria Henrique da; Oliveira, Ana Cristina Vanderley; Lima, Rodrigo Aires Corrêa; Santos-Neto, Leopoldo Luiz dos; Tauil, Pedro Luiz

    2009-01-01

    Yellow fever is endemic in some countries. The anti-yellow fever vaccine is the only effective means of protection but is contraindicated for immunocompromised patients. The aim of this paper was to report on a case series of rheumatological patients who were using immunosuppressors and were vaccinated against this disease. This was a retrospective study by means of a questionnaire applied to these patients, who were vaccinated 60 days before the investigation. Seventy patients of mean age 46 years were evaluated. Most of them were female (90%). There were cases of rheumatoid arthritis (54), systemic lupus erythematosus (11), spondyloarthropathy (5) and systemic sclerosis (2). The therapeutic schemes included methotrexate (42), corticosteroids (22), sulfasalazine (26), leflunomide (18), cyclophosphamide (3) and immunobiological agents (9). Sixteen patients (22.5%) reported some minor adverse effect. Among the eight patients using immunobiological agents, only one presented a mild adverse effect. Among these patients using immunosuppressors, adverse reactions were no more frequent than among immunocompetent individuals. This is the first study on this topic.

  10. The safety of yellow fever vaccine 17D or 17DD in children, pregnant women, HIV+ individuals, and older persons: systematic review.

    PubMed

    Thomas, Roger E; Lorenzetti, Diane L; Spragins, Wendy; Jackson, Dave; Williamson, Tyler

    2012-02-01

    Yellow fever vaccine provides long-lasting immunity. Rare serious adverse events after vaccination include neurologic or viscerotropic syndromes or anaphylaxis. We conducted a systematic review of adverse events associated with yellow fever vaccination in vulnerable populations. Nine electronic bibliographic databases and reference lists of included articles were searched. Electronic databases identified 2,415 abstracts for review, and 32 abstracts were included in this review. We identified nine studies of adverse events in infants and children, eight studies of adverse events in pregnant women, nine studies of adverse events in human immunodeficiency virus-positive patients, five studies of adverse events in persons 60 years and older, and one study of adverse events in individuals taking immunosuppressive medications. Two case studies of maternal-neonate transmission resulted in serious adverse events, and the five passive surveillance databases identified very small numbers of cases of yellow fever vaccine-associated viscerotropic disease, yellow fever vaccine-associated neurotropic disease, and anaphylaxis in persons ≥ 60 years. No other serious adverse events were identified in the other studies of vulnerable groups.

  11. Parental weighting of seizure risks vs. fever risks in vaccination tradeoff decisions.

    PubMed

    Zikmund-Fisher, Brian J; Wittenberg, Eve; Lieu, Tracy A

    2016-12-07

    As part of a survey of about vaccination beliefs, a nationally representative sample of parents of young children answered a series of tradeoff questions that asked them to choose between two vaccination approaches that differed in terms of risks of vaccine complications, number of injections, and/or vaccine effectiveness. Most parents were willing to have their children endure more injections, and many were willing to forgo disease protection, in order to reduce the rare chance of febrile seizures. Yet, most parents were unwilling to trade disease protection to reduce the risk of fever alone, even though this is correlated with the risk of febrile seizures. Vaccine risk communications need to address the heightened emotional weight that parents give to febrile seizure risk, even when the rarity of such events is explicit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Rift Valley fever risk map model and seroprevalence in selected wild ungulates and camels from Kenya

    USDA-ARS?s Scientific Manuscript database

    Since the first isolation of Rift Valley fever virus (RVFV) in the 1930s, there have been multiple epizootics and epidemics in animals and humans in sub-Saharan Africa. Prospective climate-based models have recently been developed that flag areas at risk of RVFV transmission in endemic regions based...

  13. Potential for Psorophora columbiae and Psorophora ciliata mosquitoes (Diptera: Culicidae) to transmit Rift Valley fever virus

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) continues to pose a threat to much of the world. Unlike many arboviruses, numerous mosquito species have been associated with RVFV in nature, and many species have been demonstrated as competent vectors in the laboratory. In this study, we evaluated two field-collect...

  14. Safety of the yellow Fever vaccine: a retrospective study.

    PubMed

    Nordin, James D; Parker, Emily D; Vazquez-Benitez, Gabriela; Kharbanda, Elyse O; Naleway, Allison; Marcy, S Michael; Molitor, Beth; Kuckler, Leslie; Baggs, James

    2013-01-01

    Yellow fever (YF) vaccine is considered safe; however, severe illness and death following vaccination have been reported. Vaccine Safety Datalink (VSD) and US Department of Defense (DoD) data were used to identify adverse reactions following YF vaccination. Within the VSD, YF-vaccine-exposed subjects were compared to age-, site-, and gender-matched unexposed subjects. YF-vaccine-exposed DoD subjects were studied using a risk-interval design. For both cohorts, ICD-9 codes were analyzed for allergic and local reactions, mild systemic reactions, and possible visceral and neurologic adverse events (AEs). The VSD cohort received 47,159 doses from 1991 through 2006. The DoD cohort received 1.12 million doses from 1999 through 2007. Most subjects received other vaccines simultaneously. In the VSD cohort, rates of allergic, local, and mild systemic reactions were not statistically different between YF-vaccine-exposed and -unexposed subjects. In the DoD, there was an increased risk for outpatient allergic events in the period following vaccination with YF and other vaccines rate ratios [RR 3.85, 95% confidence interval (CI) 3.35-4.41] but with no increased risk for inpatient allergic reactions. In both cohorts, inpatient ICD-9 codes for visceral events were significantly less common following vaccination; inpatient codes for neurologic events were less common in the VSD YF-vaccine-exposed adult cohort, but did not differ between exposed and unexposed periods in the DoD. In the DoD, one fatal case of YF-vaccine-associated viscerotropic disease (YF-vaccine-AVD) was detected. The estimated death rate was 0.89 for 1,000,000 YF vaccine doses (95% CI 0.12-6.31/1,000,000 doses). No YF vaccine-associated deaths occurred in the VSD. In these closed cohorts we did not detect increased risk for visceral or neurologic events following YF vaccination. The death rate following YF vaccine was consistent with previous reports. These data support current recommendations for use of YF

  15. A brief review on the immunological scenario and recent developmental status of vaccines against enteric fever.

    PubMed

    Howlader, Debaki Ranjan; Koley, Hemanta; Maiti, Suhrid; Bhaumik, Ushasi; Mukherjee, Priyadarshini; Dutta, Shanta

    2017-11-07

    Enteric fever has been one of the leading causes of severe illness and deaths worldwide. S. Typhi and S. Paratyphi A, B and C are important enteric fever-causing organisms globally. This infection causes about 21 million cases among which 222,000 typhoid related deaths occurred in 2015. These estimates do not reflect the ultimate and real status of the disease due to the lack of unified diagnostic and proper reporting system from typhoid endemic and other regions. Current control strategies have become increasingly ineffective due to the emergence of multi-drug resistance among the strains. This situation worsens the disease-burden in developing as well as in developed countries. Moreover the emergence of S. Paratyphi A as a major enteric fever-causing organism in several Asian countries, demands a prophylactic measure at this hour. Other than two licensed vaccines of S. Typhi, there are no exsisting vaccines for S. Paratyphi A. Moreover, travelers returning from endemic regions are becoming more susceptible to have these infections. In this situation, a need for bivalent approach is required where a single immunogen (consisting from each organism) will be effective against the disease. In this review, we have focused on the general information about typhoidal fever, its spread and epidemiology in brief and the present status of typhoidal vaccines and its future. This review highlights existing gaps in the typhoidal salmonellae research with a special emphasis on the status of present typhoidal salmonellae vaccine research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    PubMed

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Live virus vaccines based on a yellow fever vaccine backbone: standardized template with key considerations for a risk/benefit assessment.

    PubMed

    Monath, Thomas P; Seligman, Stephen J; Robertson, James S; Guy, Bruno; Hayes, Edward B; Condit, Richard C; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  18. NMOSD triggered by yellow fever vaccination - An unusual clinical presentation with segmental painful erythema.

    PubMed

    Schöberl, F; Csanadi, E; Eren, O; Dieterich, M; Kümpfel, T

    2017-01-01

    Neuromyelitis Optica Spectrum Disorder (NMOSD) is an immune-mediated disease of the central nervous system with the presence of aquaporin 4-antibodies (AQP4-abs) in most cases. We describe a patient who developed NMOSD after a yellow fever vaccination. He presented to us with an unusual painful erythema Th7-9 triggered by touch in the respective skin area due to a cervical spinal cord lesion affecting the dorsolateral parts of C6/7. To our knowledge, this is the first case of NMOSD with such a clinical presentation expanding the clinical spectrum of NMOSD. It is important to be aware of that a yellow fever vaccination can trigger NMOSD. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Candid No. 1 Argentine Hemorrhagic Fever Vaccine Protects against Lethal Junin Virus Challenge in Rhesus Macaques

    DTIC Science & Technology

    1992-01-01

    HeLra Fever Vaccine Anna L. Kuhne Hemorrhagic Joan A. Spisso Protects against Lethal Junin Virus B.G. Mahlandt United States Army Medical Challenge in...live-attenuated vac- cine against Argentine hemorrhagic fever (AH F), was evaluated om in non-human primates. Twenty rhesus macaques immunized 3 months...nees that had received 3 logl,• PFU Candid No. I or fewer: all Argentine hemorrhagic fever others, including those receiving 127,200 PFU, maintained

  20. Adverse event reports following yellow fever vaccination, 2007-13.

    PubMed

    Lindsey, Nicole P; Rabe, Ingrid B; Miller, Elaine R; Fischer, Marc; Staples, J Erin

    2016-05-01

    Yellow fever (YF) vaccines have been available since the 1930s and are generally considered safe and effective. However, rare reports of serious adverse events (SAE) following vaccination have prompted the Advisory Committee for Immunization Practices to periodically expand the list of conditions considered contraindications and precautions to vaccination. We describe adverse events following YF vaccination reported to the U.S. Vaccine Adverse Event Reporting System (VAERS) from 2007 through 2013 and calculate age- and sex-specific reporting rates of all SAE, anaphylaxis, YF vaccine-associated neurologic disease (YEL-AND) and YF vaccine-associated viscerotropic disease (YEL-AVD). There were 938 adverse events following YF vaccination reported to VAERS from 2007 through 2013. Of these, 84 (9%) were classified as SAEs for a rate of 3.8 per 100 000 doses distributed. Reporting rates of SAEs increased with increasing age with a rate of 6.5 per 100 000 in persons aged 60-69 years and 10.3 for ≥70 years. The reporting rate for anaphylaxis was 1.3 per 100 000 doses distributed and was highest in persons ≤18 years (2.7 per 100 000). Reporting rates of YEL-AND and YEL-AVD were 0.8 and 0.3 per 100 000 doses distributed, respectively; both rates increased with increasing age. These findings reinforce the generally acceptable safety profile of YF vaccine, but highlight the importance of continued physician and traveller education regarding the risks and benefits of YF vaccination, particularly for older travellers. Published by Oxford University Press on behalf of the International Society of Travel Medicine, 2016. This work is written by US Government employees and is in the public domain in the United States.

  1. Countermeasure development for Rift Valley fever: deletion, modification or targeting of major virulence factor NSs.

    PubMed

    Lihoradova, Olga; Ikegami, Tetsuro

    2014-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease characterized by a high rate of abortion in ruminants, and febrile illness, hemorrhagic fever, retinitis and encephalitis in humans. RVF is caused by the RVF virus (RVFV), belonging to the genus Phlebovirus of the family Bunyaviridae . RVFV encodes a major virulence factor, NSs , which is dispensable for viral replication, yet required for evasion of host innate immune responses. RVFV NSs inhibits host gene upregulation at the transcriptional level, while promoting viral translation in the cytoplasm. In this article, we summarize the virology and pathology of RVF, and countermeasure development for RVF, with emphasis on NSs function and applications.

  2. Countermeasure development for Rift Valley fever: deletion, modification or targeting of major virulence factor NSs

    PubMed Central

    Lihoradova, Olga; Ikegami, Tetsuro

    2014-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease characterized by a high rate of abortion in ruminants, and febrile illness, hemorrhagic fever, retinitis and encephalitis in humans. RVF is caused by the RVF virus (RVFV), belonging to the genus Phlebovirus of the family Bunyaviridae. RVFV encodes a major virulence factor, NSs, which is dispensable for viral replication, yet required for evasion of host innate immune responses. RVFV NSs inhibits host gene upregulation at the transcriptional level, while promoting viral translation in the cytoplasm. In this article, we summarize the virology and pathology of RVF, and countermeasure development for RVF, with emphasis on NSs function and applications. PMID:24910709

  3. Live Virus Vaccines Based on a Yellow Fever Vaccine Backbone: Standardized Template with Key Considerations for a Risk/Benefit Assessment*

    PubMed Central

    Monath, Thomas P.; Seligman, Stephen J.; Robertson, James S.; Guy, Bruno; Hayes, Edward B.; Condit, Richard C.; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called “chimeric virus vaccines”). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were replaced by the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  4. A mass vaccination campaign targeting adults and children to prevent typhoid fever in Hechi; Expanding the use of Vi polysaccharide vaccine in Southeast China: A cluster-randomized trial

    PubMed Central

    Yang, Jin; Acosta, Camilo J; Si, Guo-ai; Zeng, Jun; Li, Cui-yun; Liang, Da-bin; Ochiai, R Leon; Page, Anne-Laure; Danovaro-Holliday, M Carolina; Zhang, Jie; Zhou, Bao-de; Liao, He-zhuang; Wang, Ming-liu; Tan, Dong-mei; Tang, Zhen-zhu; Gong, Jian; Park, Jin-Kyung; Ali, Mohammad; Ivanoff, Bernard; Liang, Gui-chen; Yang, Hong-hui; Pang, Tikki; Xu, Zhi-yi; Donner, Allan; Galindo, Claudia M; Dong, Bai-qing; Clemens, John D

    2005-01-01

    Background One of the goals of this study was to learn the coverage, safety and logistics of a mass vaccination campaign against typhoid fever in children and adults using locally produced typhoid Vi polysaccharide (PS) and group A meningococcal PS vaccines in southern China. Methods The vaccination campaign targeted 118,588 persons in Hechi, Guangxi Province, aged between 5 to 60 years, in 2003. The study area was divided into 107 geographic clusters, which were randomly allocated to receive one of the single-dose parenteral vaccines. All aspects regarding vaccination logistics, feasibility and safety were documented and systematically recorded. Results of the logistics, feasibility and safety are reported. Results The campaign lasted 5 weeks and the overall vaccination coverage was 78%. On average, the 30 vaccine teams gave immunizations on 23 days. Vaccine rates were higher in those aged ≤ 15 years (90%) than in adolescents and young adults (70%). Planned mop-up activities increased the coverage by 17%. The overall vaccine wastage was 11%. The cold chain was maintained and documented. 66 individuals reported of adverse events out of all vaccinees, where fever (21%), malaise (19%) and local redness (19%) were the major symptoms; no life-threatening event occurred. Three needle-sharp events were reported. Conclusion The mass immunization proved feasible and safe, and vaccine coverage was high. Emphasis should be placed on: injection safety measures, community involvement and incorporation of mop-up strategies into any vaccination campaign. School-based and all-age Vi mass immunizations programs are potentially important public health strategies for prevention of typhoid fever in high-risk populations in southern China. PMID:15904514

  5. Approaches and Perspectives for Development of African Swine Fever Virus Vaccines

    PubMed Central

    Arias, Marisa; de la Torre, Ana; Dixon, Linda; Gallardo, Carmina; Laddomada, Alberto; Martins, Carlos; Parkhouse, R. Michael; Revilla, Yolanda; Rodriguez, Fernando; Sanchez-Vizcaino, Jose-Manuel

    2017-01-01

    African swine fever (ASF) is a complex disease of swine, caused by a large DNA virus belonging to the family Asfarviridae. The disease shows variable clinical signs, with high case fatality rates, up to 100%, in the acute forms. ASF is currently present in Africa and Europe where it circulates in different scenarios causing a high socio-economic impact. In most affected regions, control has not been effective in part due to lack of a vaccine. The availability of an effective and safe ASFV vaccines would support and enforce control–eradication strategies. Therefore, work leading to the rational development of protective ASF vaccines is a high priority. Several factors have hindered vaccine development, including the complexity of the ASF virus particle and the large number of proteins encoded by its genome. Many of these virus proteins inhibit the host’s immune system thus facilitating virus replication and persistence. We review previous work aimed at understanding ASFV–host interactions, including mechanisms of protective immunity, and approaches for vaccine development. These include live attenuated vaccines, and “subunit” vaccines, based on DNA, proteins, or virus vectors. In the shorter to medium term, live attenuated vaccines are the most promising and best positioned candidates. Gaps and future research directions are evaluated. PMID:28991171

  6. Seroprevalence of Rift Valley fever virus in livestock during inter-epidemic period in Egypt, 2014/15.

    PubMed

    Mroz, Claudia; Gwida, Mayada; El-Ashker, Maged; El-Diasty, Mohamed; El-Beskawy, Mohamed; Ziegler, Ute; Eiden, Martin; Groschup, Martin H

    2017-04-05

    Rift Valley fever virus (RVFV) caused several outbreaks throughout the African continent and the Arabian Peninsula posing significant threat to human and animal health. In Egypt the first and most important Rift Valley fever epidemic occurred during 1977/78 with a multitude of infected humans and huge economic losses in livestock. After this major outbreak, RVF epidemics re-occurred in irregular intervals between 1993 and 2003. Seroprevalence of anti-RVFV antibodies in livestock during inter-epidemic periods can be used for supporting the evaluation of the present risk exposure for animal and public health. A serosurvey was conducted during 2014/2015 in non-vaccinated livestock including camels, sheep, goats and buffalos in different areas of the Nile River Delta as well as the furthermost southeast of Egypt to investigate the presence of anti-RVFV antibodies for further evaluating of the risk exposure for animal and human health. All animals integrated in this study were born after the last Egyptian RVF epidemic in 2003 and sampled buffalos and small ruminants were not imported from other endemic countries. A total of 873 serum samples from apparently healthy animals from different host species (camels: n = 221; sheep: n = 438; goats: n = 26; buffalo: n = 188) were tested serologically using RVFV competition ELISA, virus neutralization test and/or an indirect immunofluorescence assay, depending on available serum volume. Sera were assessed positive when virus neutralization test alone or least two assays produced consistent positive results. The overall seroprevalence was 2.29% (95%CI: 1.51-3.07) ranging from 0% in goats, 0.46% in sheep (95%CI: 0.41-0.5), and 3.17% in camels (95%CI: 0.86-5.48) up to 5.85% in buffalos (95%CI: 2.75-8.95). Our findings assume currently low level of circulating virus in the investigated areas and suggest minor indication for a new RVF epidemic. Further the results may indicate that during long inter-epidemic periods

  7. Typhoid Fever surveillance and vaccine use - South-East Asia and Western Pacific regions, 2009-2013.

    PubMed

    Date, Kashmira A; Bentsi-Enchill, Adwoa D; Fox, Kimberley K; Abeysinghe, Nihal; Mintz, Eric D; Khan, M Imran; Sahastrabuddhe, Sushant; Hyde, Terri B

    2014-10-03

    Typhoid fever is a serious, systemic infection resulting in nearly 22 million cases and 216,500 deaths annually, primarily in Asia. Safe water, adequate sanitation, appropriate personal and food hygiene, and vaccination are the most effective strategies for prevention and control. In 2008, the World Health Organization (WHO) recommended use of available typhoid vaccines to control endemic disease and outbreaks and strengthening of typhoid surveillance to improve disease estimates and identify high-risk populations (e.g., persons without access to potable water and adequate sanitation). This report summarizes the status of typhoid surveillance and vaccination programs in the WHO South-East Asia (SEAR) and Western Pacific regions (WPR) during 2009-2013, after the revised WHO recommendations. Data were obtained from the WHO/United Nations Children's Fund (UNICEF) Joint Reporting Form on Immunization, a supplemental survey of surveillance and immunization program managers, and published literature. During 2009-2013, 23 (48%) of 48 countries and areas of SEAR (11) and WPR (37) collected surveillance or notifiable disease data on typhoid cases, with most surveillance activities established before 2008. Nine (19%) countries reported implementation of typhoid vaccination programs or recommended vaccine use during 2009-2013. Despite the high incidence, typhoid surveillance is weak in these two regions, and vaccination efforts have been limited. Further progress toward typhoid fever prevention and control in SEAR and WPR will require country commitment and international support for enhanced surveillance, targeted use of existing vaccines and availability of newer vaccines integrated within routine immunization programs, and integration of vaccination with safe water, sanitation, and hygiene measures.

  8. Questions regarding the safety and duration of immunity following live yellow fever vaccination.

    PubMed

    Amanna, Ian J; Slifka, Mark K

    2016-12-01

    The World Health Organization (WHO) and other health agencies have concluded that yellow fever booster vaccination is unnecessary since a single dose of vaccine confers lifelong immunity. Areas covered: We reviewed the clinical studies cited by health authorities in their investigation of both the safety profile and duration of immunity for the YFV-17D vaccine and examined the position that booster vaccination is no longer needed. We found that antiviral immunity may be lost in 1-in-3 to 1-in-5 individuals within 5 to 10 years after a single vaccination and that children may be at greater risk for primary vaccine failure. The safety profile of YFV-17D was compared to other licensed vaccines including oral polio vaccine (OPV) and the rotavirus vaccine, RotaShield, which have subsequently been withdrawn from the US and world market, respectively. Expert commentary: Based on these results and recent epidemiological data on vaccine failures (particularly evident at >10 years after vaccination), we believe that current recommendations to no longer administer YFV-17D booster vaccination be carefully re-evaluated, and that further development of safer vaccine approaches should be considered.

  9. Questions regarding the safety and duration of immunity following live yellow fever vaccination

    PubMed Central

    Amanna, Ian J.; Slifka, Mark K.

    2016-01-01

    Introduction The World Health Organization (WHO) and other health agencies have concluded that yellow fever booster vaccination is unnecessary since a single dose of vaccine confers lifelong immunity. Areas Covered We reviewed the clinical studies cited by health authorities in their investigation of both the safety profile and duration of immunity for the YFV-17D vaccine and examined the position that booster vaccination is no longer needed. We found that antiviral immunity may be lost in 1-in-3 to 1-in-5 individuals within 5 to 10 years after a single vaccination and that children may be at greater risk for primary vaccine failure. The safety profile of YFV-17D was compared to other licensed vaccines including oral polio vaccine (OPV) and the rotavirus vaccine, RotaShield, which have subsequently been withdrawn from the US and world market, respectively. Expert Commentary Based on these results and recent epidemiological data on vaccine failures (particularly evident at >10 years after vaccination), we believe that current recommendations to no longer administer YFV-17D booster vaccination be carefully re-evaluated, and that further development of safer vaccine approaches should be considered. PMID:27267203

  10. The Rift Valley fever: could re-emerge in Egypt again?

    PubMed

    El-Bahnasawy, Mamdouh; Megahed, Laila Abdel-Mawla; Abdalla Saleh, Hala Ahmed; Morsy, Tosson A

    2013-04-01

    The Rift Valley fever (RVF) is a neglected, emerging, mosquito-borne disease with severe negative impact on human and animal health and economy. RVF is caused by RVF virus of the family of Bunyaviridae, genus Phlebovirus. RVF is an acute, febrile disease affecting humans and a wide range of animals. The virus is trans-mitted through the bites from mosquitoes and exposure to viremic blood, body fluids, or contact with tissues of infected animals or by inhaling natural virus aerosols, also possibly by consumption of infected unpasteurized milk. The RVF-virus replicate at the site introduction and in local lymphatic followed by viremia and spread to other organs as the liver and central nervous system, causing the hepatic necrosis and eosinophilia cytoplasmic degeneration. The main signs and symptoms are fever, headache, myalgia, arthralgia, photophobia, bradycardia, conjunctivitis and flushing face. Main complications include jaundice, hemorrhagic, meningoencephalitis and retinal lesions. Generally speaking, in the 21st Century, the vector-borne infectious diseases, was accepted as the disaster issues with the considerable significant morbidity and mortality. These facts should be considered by the public health, veterinary and agricultural authorities

  11. How Brazil joined the quest for a yellow fever vaccine. Interview by Claudia Jurberg and Julia D'Aloisio..

    PubMed

    Benchimol, Jaime

    2013-03-01

    Brazil recently announced an agreement between its Bio-Manguinhos vaccine unit and two US companies to research and develop a new yellow fever vaccine. Claudia Jurberg and Julia D'Aloisio talk to Jaime Benchimol about the controversial history of the development of the vaccine that benefits millions of people today.

  12. Pathogenic effects of Rift Valley fever virus NSs gene are alleviated in cultured cells by expressed antiviral short hairpin RNAs.

    PubMed

    Scott, Tristan; Paweska, Janusz T; Arbuthnot, Patrick; Weinberg, Marc S

    2012-01-01

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, may cause severe hepatitis, encephalitis and haemorrhagic fever in humans. There are currently no available licensed vaccines or therapies to treat the viral infection in humans. RNA interference (RNAi)-based viral gene silencing offers a promising approach to inhibiting replication of this highly pathogenic virus. The small (S) segment of the RVFV tripartite genome carries the genetic determinates for pathogenicity during infection. This segment encodes the non-structural S (NSs) and essential nucleocapsid (N) genes. To advance RNAi-based inhibition of RVFV replication, we designed several Pol III short hairpin RNA (shRNA) expression cassettes against the NSs and N genes, including a multimerized plasmid vector that included four shRNA expression cassettes. Effective target silencing was demonstrated using full- and partial-length target reporter assays, and confirmed by western blot analysis of exogenous N and NSs expression. Small RNA northern blots showed detectable RNAi guide strand formation from single and multimerized shRNA constructs. Using a cell culture model of RVFV replication, shRNAs targeting the N gene decreased intracellular nucleocapsid protein concentration and viral replication. The shRNAs directed against the NSs gene reduced NSs protein concentrations and alleviated NSs-mediated cytotoxicity, which may be caused by host transcription suppression. These data are the first demonstration that RNAi activators have a potential therapeutic benefit for countering RVFV infection.

  13. Serological Evidence for the Circulation of Rift Valley Fever Virus in Domestic Small Ruminants in Southern Gabon.

    PubMed

    Maganga, Gael Darren; Abessolo Ndong, Andre Lea; Mikala Okouyi, Clency Sylde; Makiala Mandanda, Sheila; N'Dilimabaka, Nadine; Pinto, Anais; Agossou, Ernest; Cossic, Brieuc; Akue, Jean-Paul; Leroy, Eric Maurice

    2017-06-01

    Rift Valley fever (RVF) is a zoonotic disease, which caused several epidemics in humans in many countries of Africa. Using an inhibition enzyme-linked immunosorbent assay (ELISA), real-time reverse transcription PCR, and nested one-step reverse transcription PCR, we conducted a cross-sectional study in populations of sheep and goats from the Mongo County in 2014 to determine the circulation of the Rift Valley fever virus (RVFV) in small ruminants from this area. From a total of 201 small ruminants (95 sheep and 106 goats), the overall IgG seroprevalence against the RVFV was 6.47% (13/201). No RVFV RNA was detected in the animal plasmas. Logistic regression analysis showed that age, species, sex, and locality were not the significant risk factors. The findings of this study highlight the risk of RVF for domestic ruminants bred in this region and for the human rural population living in contact with these animals and they emphasize the need to develop adequate control measures to limit this threat.

  14. Risk of yellow fever vaccine-associated viscerotropic disease among the elderly: a systematic review.

    PubMed

    Rafferty, Ellen; Duclos, Philippe; Yactayo, Sergio; Schuster, Melanie

    2013-12-02

    Yellow fever vaccine-associated viscerotropic disease (YEL-AVD) is a rare and serious adverse event of the yellow fever (YF) vaccine that mimics wild-type YF. Research shows there may be an increased risk of YEL-AVD among the elderly population (≥ 60-65 years old), however this research has yet to be accumulated and reviewed in order to make policy recommendations to countries currently administering the YF vaccine. This paper systematically reviewed all information available on YEL-AVD to determine if there is an increased risk among the elderly, for both travelers and endemic populations. Age-specific reporting rates (RRs) were re-calculated from the literature using the Brighton Collaboration case definition for YEL-AVD and were then analyzed to determine if there was a significant difference between the RRs of younger and older age groups. Two out of the five studies found a significantly higher rate of YEL-AVD among the elderly population. Our findings suggest unexposed elders may be at an increased risk of developing YEF-AVD, however the evidence remains limited. Therefore, our findings for YF vaccination of elderly populations support the recommendations made by the Strategic Advisory Group of Experts (SAGE) in their April 2013 meeting, mainly vaccination of the elderly should be based on a careful risk-benefit analysis. Copyright © 2013 World Health Organization (WHO). Published by Elsevier Ltd.. All rights reserved.

  15. Yellow fever.

    PubMed

    Monath, Thomas P; Vasconcelos, Pedro F C

    2015-03-01

    Yellow fever, a mosquito-borne flavivirus disease occurs in tropical areas of South America and Africa. It is a disease of major historical importance, but remains a threat to travelers to and residents of endemic areas despite the availability of an effective vaccine for nearly 70 years. An important aspect is the receptivity of many non-endemic areas to introduction and spread of yellow fever. This paper reviews the clinical aspects, pathogenesis, and epidemiology of yellow fever, with an emphasis on recent changes in the distribution and incidence of the disease. Recent knowledge about yellow fever 17D vaccine mechanism of action and safety are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Transfusion-related transmission of yellow fever vaccine virus--California, 2009.

    PubMed

    2010-01-22

    In the United States, yellow fever (YF) vaccination is recommended for travelers and active duty military members visiting endemic areas of sub-Saharan Africa and Central/South America. The American Red Cross recommends that recipients of YF vaccine defer blood product donation for 2 weeks because of the theoretical risk for transmission from a viremic donor. On April 10, 2009, a hospital blood bank supervisor learned that, on March 27, blood products had been collected from 89 U.S. active duty trainees who had received YF vaccine 4 days before donation. This report summarizes the subsequent investigation by the hospital and CDC to identify lapses in donor deferral and to determine whether transfusion-related transmission of YF vaccine virus occurred. The investigation found that a recent change in the timing of trainee vaccination had occurred and that vaccinees had not reported recent YF vaccination status at time of donation. Despite a prompt recall, six units of blood products were transfused into five patients. No clinical evidence or laboratory abnormalities consistent with a serious adverse reaction were identified in four recipients within the first month after transfusion; the fifth patient, who had prostate cancer and end-stage, transfusion-dependent, B-cell lymphoma, died while in hospice care. Three of the four surviving patients had evidence of serologic response to YF vaccine virus. This report provides evidence that transfusion-related transmission of YF vaccine virus can occur and underscores the need for careful screening and deferral of recently vaccinated blood donors.

  17. Molecular and serological studies on the Rift Valley fever outbreak in Mauritania in 2010.

    PubMed

    Jäckel, S; Eiden, M; El Mamy, B O; Isselmou, K; Vina-Rodriguez, A; Doumbia, B; Groschup, M H

    2013-11-01

    Rift Valley fever virus (RVFV) is a vector-borne RNA virus affecting humans, livestock and wildlife. In October/November 2010, after a period of unusually heavy rainfall, a Rift Valley fever outbreak occurred in northern Mauritania causing clinical cases in cattle, sheep, goats and camels, 21 of which were of lethal outcome. The aim of this study was to obtain further information on the continuation of RVF virus activity and spread in animal species in Mauritania after this outbreak. We therefore tested sera from small ruminants, cattle and camels for the presence of viral RNA and antibodies against RVFV. These sera were collected in different parts of the country from December 2010 to February 2011 and tested with three different ELISAs and an indirect immunofluorescence assay. The results show a high seroprevalence of RVFV IgM and IgG antibodies of about 57% in all animals investigated. Moreover, in four camel sera, viral RNA was detected emphasizing the important role camels played during the latest RVF outbreak in Mauritania. The study demonstrates the continuous spread of RVFV in Mauritania after initial emergence and highlights the potential role of small ruminants and camels in virus dissemination. © 2013 Blackwell Verlag GmbH.

  18. The Example of Eastern Africa: the dynamic of Rift Valley fever and tools for monitoring virus activity

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever is a mosquito-borne viral zoonosis that primarily affects animals but also has the capacity to infect humans. Outbreaks of this disease in eastern Africa are closely associated with periods of heavy rainfall and forecasting models and early warning systems have been developed to en...

  19. Rift Valley fever virus NSs protein functions and the similarity to other bunyavirus NSs proteins.

    PubMed

    Ly, Hoai J; Ikegami, Tetsuro

    2016-07-02

    Rift Valley fever is a mosquito-borne zoonotic disease that affects both ruminants and humans. The nonstructural (NS) protein, which is a major virulence factor for Rift Valley fever virus (RVFV), is encoded on the S-segment. Through the cullin 1-Skp1-Fbox E3 ligase complex, the NSs protein promotes the degradation of at least two host proteins, the TFIIH p62 and the PKR proteins. NSs protein bridges the Fbox protein with subsequent substrates, and facilitates the transfer of ubiquitin. The SAP30-YY1 complex also bridges the NSs protein with chromatin DNA, affecting cohesion and segregation of chromatin DNA as well as the activation of interferon-β promoter. The presence of NSs filaments in the nucleus induces DNA damage responses and causes cell-cycle arrest, p53 activation, and apoptosis. Despite the fact that NSs proteins have poor amino acid similarity among bunyaviruses, the strategy utilized to hijack host cells are similar. This review will provide and summarize an update of recent findings pertaining to the biological functions of the NSs protein of RVFV as well as the differences from those of other bunyaviruses.

  20. Pre-clinical efficacy and safety of experimental vaccines based on non-replicating vaccinia vectors against yellow fever.

    PubMed

    Schäfer, Birgit; Holzer, Georg W; Joachimsthaler, Alexandra; Coulibaly, Sogue; Schwendinger, Michael; Crowe, Brian A; Kreil, Thomas R; Barrett, P Noel; Falkner, Falko G

    2011-01-01

    Currently existing yellow fever (YF) vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D). Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. A gene encoding the precursor of the membrane and envelope (prME) protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 10(5) TCID(50). Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles. The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice.

  1. Lessons Learned from Emergency Response Vaccination Efforts for Cholera, Typhoid, Yellow Fever, and Ebola

    PubMed Central

    Date, Kashmira A.; Sreenivasan, Nandini; Harris, Jennifer B.; Hyde, Terri B.

    2017-01-01

    Countries must be prepared to respond to public health threats associated with emergencies, such as natural disasters, sociopolitical conflicts, or uncontrolled disease outbreaks. Rapid vaccination of populations vulnerable to epidemic-prone vaccine-preventable diseases is a major component of emergency response. Emergency vaccination planning presents challenges, including how to predict resource needs, expand vaccine availability during global shortages, and address regulatory barriers to deliver new products. The US Centers for Disease Control and Prevention supports countries to plan, implement, and evaluate emergency vaccination response. We describe work of the Centers for Disease Control and Prevention in collaboration with global partners to support emergency vaccination against cholera, typhoid, yellow fever, and Ebola, diseases for which a new vaccine or vaccine formulation has played a major role in response. Lessons learned will help countries prepare for future emergencies. Integration of vaccination with emergency response augments global health security through reducing disease burden, saving lives, and preventing spread across international borders. PMID:29155670

  2. Rift Valley Fever Outbreak in Livestock in Kenya, 2006–2007

    PubMed Central

    Munyua, Peninah; Murithi, Rees M.; Wainwright, Sherrilyn; Githinji, Jane; Hightower, Allen; Mutonga, David; Macharia, Joseph; Ithondeka, Peter M.; Musaa, Joseph; Breiman, Robert F.; Bloland, Peter; Njenga, M. Kariuki

    2010-01-01

    We analyzed the extent of livestock involvement in the latest Rift Valley fever (RVF) outbreak in Kenya that started in December 2006 and continued until June 2007. When compared with previous RVF outbreaks in the country, the 2006–07 outbreak was the most extensive in cattle, sheep, goats, and camels affecting thousands of animals in 29 of 69 administrative districts across six of the eight provinces. This contrasted with the distribution of approximately 700 human RVF cases in the country, where over 85% of these cases were located in four districts; Garissa and Ijara districts in Northeastern Province, Baringo district in Rift Valley Province, and Kilifi district in Coast Province. Analysis of livestock and human data suggests that livestock infections occur before virus detection in humans, as supported by clustering of human RVF cases around livestock cases in Baringo district. The highest livestock morbidity and mortality rates were recorded in Garissa and Baringo districts, the same districts that recorded a high number of human cases. The districts that reported RVF in livestock for the first time in 2006/07 included Kitui, Tharaka, Meru South, Meru central, Mwingi, Embu, and Mbeere in Eastern Province, Malindi and Taita taveta in Coast Province, Kirinyaga and Murang'a in Central Province, and Baringo and Samburu in Rift Valley Province, indicating that the disease was occurring in new regions in the country. PMID:20682907

  3. Transcutaneous yellow fever vaccination of subjects with or without atopic dermatitis

    PubMed Central

    Slifka, Mark K.; Leung, Donald Y. M.; Hammarlund, Erika; Raué, Hans-Peter; Simpson, Eric L.; Tofte, Susan; Baig-Lewis, Shahana; David, Gloria; Lynn, Henry; Woolson, Rob; Hata, Tissa; Milgrom, Henry; Hanifin, Jon

    2013-01-01

    Background Atopic dermatitis (AD) is a common inflammatory skin disease with global prevalence ranging from 3% to 20%. AD patients have an increased risk for complications following viral infection (e.g., herpes simplex virus), and vaccination of AD patients with live vaccinia virus is contraindicated due to a heightened risk of eczema vaccinatum, a rare but potentially lethal complication associated with smallpox vaccination. Objective To develop a better understanding of immunity to cutaneous viral infection in AD patients. Methods In a double-blind, randomized study, we investigated the safety and immunogenicity of live attenuated yellow fever virus (YFV) vaccination of non-atopic (NA) subjects and AD patients following standard subcutaneous (SC) inoculation or transcutaneous (TC) vaccination administered with a bifurcated needle. Viremia, neutralizing antibody, and antiviral T cell responses were analyzed for up to 30 days post-vaccination. Results YFV vaccination by either route was well tolerated. SC vaccination resulted in higher seroconversion rates than TC vaccination but elicited similar antiviral antibody levels and T cell responses in both NA and AD groups. Following TC vaccination, both groups mounted similar neutralizing antibody responses, but AD patients demonstrated lower antiviral T cell responses by 30 days after vaccination. Among TC-vaccinated subjects, a significant inverse correlation between baseline IgE levels and the magnitude of antiviral antibody and CD4+ T cell responses was observed. Conclusions YFV vaccination of AD patients by the TC route revealed that high baseline IgE levels provides a potential biomarker for predicting reduced virus-specific immune memory following TC infection with a live virus. PMID:24331381

  4. Rift Valley Fever: An Emerging Mosquito-Borne Disease.

    PubMed

    Linthicum, Kenneth J; Britch, Seth C; Anyamba, Assaf

    2016-01-01

    Rift Valley fever (RVF), an emerging mosquito-borne zoonotic infectious viral disease caused by the RVF virus (RVFV) (Bunyaviridae: Phlebovirus), presents significant threats to global public health and agriculture in Africa and the Middle East. RVFV is listed as a select agent with significant potential for international spread and use in bioterrorism. RVFV has caused large, devastating periodic epizootics and epidemics in Africa over the past ∼60 years, with severe economic and nutritional impacts on humans from illness and livestock loss. In the past 15 years alone, RVFV caused tens of thousands of human cases, hundreds of human deaths, and more than 100,000 domestic animal deaths. Cattle, sheep, goats, and camels are particularly susceptible to RVF and serve as amplifying hosts for the virus. This review highlights recent research on RVF, focusing on vectors and their ecology, transmission dynamics, and use of environmental and climate data to predict disease outbreaks. Important directions for future research are also discussed.

  5. Equilibrium analysis of a yellow Fever dynamical model with vaccination.

    PubMed

    Martorano Raimundo, Silvia; Amaku, Marcos; Massad, Eduardo

    2015-01-01

    We propose an equilibrium analysis of a dynamical model of yellow fever transmission in the presence of a vaccine. The model considers both human and vector populations. We found thresholds parameters that affect the development of the disease and the infectious status of the human population in the presence of a vaccine whose protection may wane over time. In particular, we derived a threshold vaccination rate, above which the disease would be eradicated from the human population. We show that if the mortality rate of the mosquitoes is greater than a given threshold, then the disease is naturally (without intervention) eradicated from the population. In contrast, if the mortality rate of the mosquitoes is less than that threshold, then the disease is eradicated from the populations only when the growing rate of humans is less than another threshold; otherwise, the disease is eradicated only if the reproduction number of the infection after vaccination is less than 1. When this reproduction number is greater than 1, the disease will be eradicated from the human population if the vaccination rate is greater than a given threshold; otherwise, the disease will establish itself among humans, reaching a stable endemic equilibrium. The analysis presented in this paper can be useful, both to the better understanding of the disease dynamics and also for the planning of vaccination strategies.

  6. Outbreak of Rift Valley fever affecting veterinarians and farmers in South Africa, 2008.

    PubMed

    Archer, Brett N; Weyer, Jacqueline; Paweska, Janusz; Nkosi, Deliwe; Leman, Patricia; Tint, Khin San; Blumberg, Lucille

    2011-04-01

    During 2008, Rift Valley fever (RVF) virus re-emerged in South Africa as focal outbreaks in several provinces. To investigate an outbreak affecting cattle farmers and farm workers, and the staff and students of a veterinary school, assess the prevalence of infection during the outbreak, document the clinical presentation of cases, and identify potential risk factors. We conducted a cross-sectional serological survey of exposed veterinarians and farmers, who were examined to determine the presence of current or recent illness. Blood specimens were collected for virus isolation, nucleic acid detection and serology. A subset was interviewed using a standardised questionnaire to obtain data on recent exposures and risk factors for infection. Of 53 participants potentially exposed to infected domestic ruminants, 15% had evidence of recent infection and 4% evidence of past exposure to the RVF virus. The prevalence of acute infection was 21% in veterinarians compared with 9% in farmers and farm workers. After a mean incubation period of 4.3 days, the most frequent symptoms experienced included myalgia (100%), headache (88%) and malaise (75%). No asymptomatic cases were identified. Transmission, by direct contact with infected animals was the major risk factor in these professional groups. Performing animal autopsies was significantly associated with acute infection (risk ratio 16.3, 95% confidence interval 2.3 - 114.2). Increased risks associated with veterinary practices highlight a need for the use of personal protective equipment, and identify veterinarians as a primary target group for future vaccination.

  7. Randomized, double-blind, multicenter study of the immunogenicity and reactogenicity of 17DD and WHO 17D-213/77 yellow fever vaccines in children: implications for the Brazilian National Immunization Program.

    PubMed

    2007-04-20

    Vaccines against yellow fever currently recommended by the World Health Organization contain either virus sub-strains 17D or 17DD. In adults, the 17DD vaccine demonstrated high seroconversion and similar performance to vaccines manufactured with the WHO 17D-213/77 seed-lot. In another study, 17DD vaccine showed lower seroconversion rates in children younger than 2 years. Data also suggested lower seroconversion with simultaneous application of measles vaccine. This finding in very young children is not consistent with data from studies with 17D vaccines. A multicenter, randomized, double-blind clinical trial was designed (1) to compare the immunogenicity and reactogenicity of two yellow fever vaccines: 17DD (licensed product) and 17D-213/77 (investigational product) in children aged 9-23 months; (2) to assess the effect of simultaneous administration of yellow fever and the measles-mumps-rubella vaccines; and (3) to investigate the interference of maternal antibodies in the response to yellow fever vaccination. The anticipated implications of the results are changes in vaccine sub-strains used in manufacturing YF vaccine used in several countries and changes in the yellow fever vaccination schedule recommendations in national immunization programs.

  8. Determination of free polysaccharide in Vi glycoconjugate vaccine against typhoid fever.

    PubMed

    Giannelli, C; Cappelletti, E; Di Benedetto, R; Pippi, F; Arcuri, M; Di Cioccio, V; Martin, L B; Saul, A; Micoli, F

    2017-05-30

    Glycoconjugate vaccines based on the Vi capsular polysaccharide directed against Salmonella enterica serovar Typhi are licensed or in development against typhoid fever, an important cause of morbidity and mortality in developing countries. Quantification of free polysaccharide in conjugate vaccines is an important quality control for release, to monitor vaccine stability and to ensure appropriate immune response. However, we found that existing separation methods based on size are not appropriate as free Vi non-specifically binds to unconjugated and conjugated protein. We developed a method based on free Vi separation by Capto Adhere resin and quantification by HPAEC-PAD. The method has been tested for conjugates of Vi derived from Citrobacter freundii with different carrier proteins such as CRM 197 , Tetanus Toxoid and Diphtheria Toxoid. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Protocol for the Production of a Vaccine Against Argentinian Hemorrhagic Fever.

    PubMed

    Ambrosio, Ana María; Mariani, Mauricio Andrés; Maiza, Andrea Soledad; Gamboa, Graciela Susana; Fossa, Sebastián Edgardo; Bottale, Alejando Javier

    2018-01-01

    Argentinian hemorrhagic Fever (AHF) is a febrile, acute disease caused by Junín virus (JUNV), a member of the Arenaviridae. Different approaches to obtain an effective antigen to prevent AHF using complete live or inactivated virus, as well as molecular constructs, have reached diverse development stages. This chapter refers to JUNV live attenuated vaccine strain Candid #1, currently used in Argentina to prevent AHF. A general standardized protocol used at Instituto Nacional de Enfermedades Virales Humanas (Pergamino, Pcia. Buenos Aires, Argentina) to manufacture the tissue culture derived Candid #1 vaccine is described. Intermediate stages like viral seeds and cell culture bank management, bulk vaccine manufacture, and finished product processing are also separately presented in terms of Production and Quality Control/Quality Assurance requirements, under the Adminitracion Nacional de Medicamentos, Alimentos y Tecnología Medica (ANMAT), the Argentine national regulatory authority.

  10. Early protection events in swine immunized with an experimental live attenuated classical swine fever marker vaccine, FlagT4G

    USDA-ARS?s Scientific Manuscript database

    Prophylactic vaccination using live attenuated classical swine fever (CSF) vaccines has been a very effective method to control disease in endemic regions and during outbreaks in previously disease-free areas. These vaccines confer effective protection against the disease at early times post-vaccina...

  11. Priming effect of dengue and yellow fever vaccination on the immunogenicity, infectivity, and safety of a tetravalent dengue vaccine in humans.

    PubMed

    Qiao, Ming; Shaw, David; Forrat, Remi; Wartel-Tram, Anh; Lang, Jean

    2011-10-01

    A dengue vaccine effective against all four serotypes is urgently needed. However, safety and immunogenicity could be affected by prior exposure to flaviviruses. This open, controlled, phase IIa study was conducted in 35 healthy adults who had received monovalent, live attenuated Vero cell-derived dengue vaccine against dengue virus 1 (VDV1) or 2 (VDV2) or yellow fever (YF) vaccine 1 year before or who were flavivirus-naïve. All participants received one subcutaneous injection of tetravalent dengue vaccine (TDV) and were followed for 180 days. Previous vaccination did not increase reactogenicity, laboratory abnormalities, or incidence of vaccine viremia, but it did increase the neutralizing antibody response to dengue virus that persisted at day 180. There was no increase in YF antibodies in participants previously immunized with YF vaccine. Prior exposure to YF or monovalent dengue vaccines had no adverse effects on the safety or incidence of viremia associated with this TDV, but it increased immunogenicity.

  12. Yellow fever: an update.

    PubMed

    Monath, T P

    2001-08-01

    Yellow fever, the original viral haemorrhagic fever, was one of the most feared lethal diseases before the development of an effective vaccine. Today the disease still affects as many as 200,000 persons annually in tropical regions of Africa and South America, and poses a significant hazard to unvaccinated travellers to these areas. Yellow fever is transmitted in a cycle involving monkeys and mosquitoes, but human beings can also serve as the viraemic host for mosquito infection. Recent increases in the density and distribution of the urban mosquito vector, Aedes aegypti, as well as the rise in air travel increase the risk of introduction and spread of yellow fever to North and Central America, the Caribbean and Asia. Here I review the clinical features of the disease, its pathogenesis and pathophysiology. The disease mechanisms are poorly understood and have not been the subject of modern clinical research. Since there is no specific treatment, and management of patients with the disease is extremely problematic, the emphasis is on preventative vaccination. As a zoonosis, yellow fever cannot be eradicated, but reduction of the human disease burden is achievable through routine childhood vaccination in endemic countries, with a low cost for the benefits obtained. The biological characteristics, safety, and efficacy of live attenuated, yellow fever 17D vaccine are reviewed. New applications of yellow fever 17D virus as a vector for foreign genes hold considerable promise as a means of developing new vaccines against other viruses, and possibly against cancers.

  13. A multi-site feasibility study to assess fever and wheezing in children after influenza vaccines using text messaging.

    PubMed

    Stockwell, Melissa S; Marchant, Colin D; Wodi, A Patrica; Barnett, Elizabeth D; Broder, Karen R; Jakob, Kathleen; Lewis, Paige; Kattan, Meyer; Rezendes, Anne Marie; Barrett, Angela; Sharma, Devindra; Fernandez, Nadira; LaRussa, Philip

    2017-12-15

    Using text messaging for vaccine safety monitoring, particularly for non-medically attended events, would be valuable for pandemic influenza and emergency vaccination program preparedness. We assessed the feasibility and acceptability of text messaging to evaluate fever and wheezing post-influenza vaccination in a prospective, observational, multi-site pediatric study. Children aged 2-11 years old, with an emphasis on children with asthma, were recruited during the 2014-2015 influenza season from three community-based clinics in New York City, and during the 2014-2015 and 2015-2016 seasons from a private practice in Fall River, Massachusetts. Parents of enrolled children receiving quadrivalent live attenuated (LAIV4) or inactivated influenza vaccine (IIV4) replied to text messages assessing respiratory symptoms (day 3 and 7, then weekly through day 42), and temperature on the night of vaccination and the next seven nights (day 0-7). Missing data were collected via diary (day 0-7 only) and phone. Phone confirmation was obtained for both presence and absence of respiratory symptoms. Reporting rates, fever (T≥100.4 °F) frequency, proportion of wheezing and/or chest tightness reports captured via text message versus all sources (text, phone, diary, electronic health record) and parental satisfaction were assessed. Across both seasons, 266 children were analyzed; 49.2% with asthma. Parental text message response rates were high (>70%) across sites. Overall, fever frequency was low (day 0-2: 4.1% [95% confidence interval (CI) 2.3-7.4%]; d3-7: 6.7% [95% CI 4.1-10.8%]). A third (39.2%) of parents reported a respiratory problem in their child, primarily cough. Most (88.2%) of the 52 wheezing and/or chest tightness reports were by text message. Most (88.1%) participants preferred text messaging over paper reporting. Text messaging can provide information about pediatric post-vaccination fever and wheezing and was viewed positively by parents. It could be a helpful tool

  14. Risk of hospitalisation with fever following MenB vaccination: self-controlled case series analysis.

    PubMed

    Murdoch, Heather; Wallace, Lynn; Bishop, Jennifer; Robertson, Chris; Claire Cameron, J

    2017-10-01

    To investigate a possible association between fever admissions and 4 component Meningococcal B (4CMenB). 4CMenB is given at 8 and 16 weeks in the first year of life. Self-controlled case series using linked routinely collected healthcare data, where the risk period was the 3 days immediately following receipt of a vaccine dose. Children aged under 1 year in Scotland preintroduction and postintroduction of 4CMenB vaccine (pre-September 2014 to August 2015 and post-September 2015 to June 2016). Hospitalisations for fever attributable to 4CMenB vaccine. The postintroduction model showed an increased risk in the 3 days after dose 1 (relative incidence (RI), 10.78; 95% CI: 8.31 to 14.00) and dose 3 (RI, 9.80; 95% CI: 7.10 to 13.62), with a smaller increased risk after dose 2 (RI, 2.20; 95% CI: 1.27 to 3.82). The magnitude of these effects was greater than in the preintroduction model. The attributable fractions were 90.7%, 54.8% and 89.7%, equating to 162, 14 and 84 vaccine attributable cases per 100 000 doses, respectively.This is equivalent to 102 extra hospitalisations in Scotland annually, based on a birth cohort of 55 100 and extrapolated to 1430 across the UK based on a birth cohort of 777 165. There is an increased risk of hospital admission with fever within 3 days of the routine childhood immunisations at 8 and 16 weeks following introduction of 4CMenB vaccine. The results indicate that further understanding of the current use of prophylactic paracetamol is needed. Communication to parents and health professionals may also need to be re-examined, and guidance on the use of prophylactic paracetamol reinforced. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Duration of post-vaccination immunity to yellow fever in volunteers eight years after a dose-response study.

    PubMed

    de Menezes Martins, Reinaldo; Maia, Maria de Lourdes S; de Lima, Sheila Maria Barbosa; de Noronha, Tatiana Guimarães; Xavier, Janaina Reis; Camacho, Luiz Antonio Bastos; de Albuquerque, Elizabeth Maciel; Farias, Roberto Henrique Guedes; da Matta de Castro, Thalita; Homma, Akira

    2018-06-27

    In 2009, Bio-Manguinhos conducted a dose-response study with the yellow fever vaccine, administering the vaccine in the usual mean dose of 27,476 IU (full dose, reference) and in tapered doses (10,447 IU, 3013 IU, 587 IU, 158 IU, and 31 IU) by the usual subcutaneous route and usual volume (0.5 mL). Tapered doses were obtained by dilution in the manufacturer's laboratory, and the test batches presented industrial quality. Doses down to 587 IU showed similar immunogenicity to the full dose (27,476, reference), while the 158 IU and 31 IU doses displayed lower immunogenicity. Seropositivity was maintained at 10 months, except in the group that received the 31 IU dose. The current study aims to determine whether yellow fever seropositivity was maintained eight years after YF vaccination in non-revaccinated individuals. According to the current study's results, seropositivity was maintained in 85% of 318 participants and was similar across groups. The findings support the use of the yellow fever vaccine in fractional doses during outbreaks, but each fractional dose should have at least 587 IU. This study also supports the minimum dose required by WHO, 1000 IU. Clinicaltrials.gov NCT 03338231. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Administration of yellow fever vaccine in patients with egg allergy.

    PubMed

    Rutkowski, K; Ewan, P W; Nasser, S M

    2013-01-01

    The population of large parts of Africa, South America and travellers to these areas are at risk of yellow fever (YF) with a 50% mortality risk. Yellow fever vaccine (YFV) propagated in hens' eggs confers protection in 95% of the vaccinated. The rate of anaphylaxis for YFV ranges from 0.42 to 1.8/100,000 doses with most cases considered to be due to egg allergy. Egg allergy is a contraindication for the YFV. Nevertheless, the potential fatal sequelae from YF give the incentive to protect everyone at risk irrespective of their allergic status. Six subjects who had had a recent reaction to egg and who were travelling to endemic areas (3 adults and 3 children) underwent skin prick tests (SPT) with undiluted YFV and egg extract. Intradermal tests for YFV were undertaken at a 1:10 dilution. In 4 egg-allergic patients with a positive SPT to YFV, a 7-step desensitization protocol was used. A 2-step (10 + 90%) protocol was used in the 2 subjects with a negative YFV SPT. Premedication was not administered. All 6 patients were successfully vaccinated. Four patients completed desensitization: 1 developed mild local erythema at the injection site, 1 had fleeting generalized urticaria with local erythema/angioedema and 2 did not experience any adverse reactions. Patients who received YFV in 2 steps developed no adverse reactions. We describe the successful administration of YFV in 6 egg-allergic patients. The Cambridge Allergy 7-step protocol allows for its safe administration in patients with positive SPT to YFV. A 2-step protocol can be used in patients with negative YFV SPT. Copyright © 2013 S. Karger AG, Basel.

  17. Development of a Rift Valley fever real-time RT-PCR assay that can detect all three genome segments

    USDA-ARS?s Scientific Manuscript database

    Outbreaks of Rift Valley fever in Kenya, Madagascar, Mauritania, and South Africa had devastating effects on livestock and human health. In addition, this disease is a food security issue for endemic countries. There is growing concern for the potential introduction of RVF into non-endemic countries...

  18. Vaccines against viral hemorrhagic fevers: non-human primate models.

    PubMed

    Carrion, Ricardo; Patterson, Jean L

    2011-06-01

    Viral hemorrhagic fevers are a group of disease syndromes caused by infection with certain RNA viruses. The disease is marked by a febrile response, malaise, coagulopathy and vascular permeability culminating in death. Case fatality rates can reach 90% depending on the etiologic agent. Currently, there is no approved antiviral treatment. Because of the high case fatality, risk of importation and the potential to use these agents as biological weapons, development of countermeasures to these agents is a high priority. The sporadic nature of disease outbreaks and the ethical issues associated with conducting a human trial for such diseases make human studies impractical; therefore, development of countermeasures must occur in relevant animal models. Non-human primates are superior models to study infectious disease because their immune system is similar to humans and they are good predictors of efficacy in vaccine development and other intervention strategies. This review article summarizes viral hemorrhagic fever non-human primate models.

  19. Biologically Informed Individual-Based Network Model for Rift Valley Fever in the US and Evaluation of Mitigation Strategies

    PubMed Central

    Scoglio, Caterina M.

    2016-01-01

    Rift Valley fever (RVF) is a zoonotic disease endemic in sub-Saharan Africa with periodic outbreaks in human and animal populations. Mosquitoes are the primary disease vectors; however, Rift Valley fever virus (RVFV) can also spread by direct contact with infected tissues. The transmission cycle is complex, involving humans, livestock, and multiple species of mosquitoes. The epidemiology of RVFV in endemic areas is strongly affected by climatic conditions and environmental variables. In this research, we adapt and use a network-based modeling framework to simulate the transmission of RVFV among hypothetical cattle operations in Kansas, US. Our model considers geo-located livestock populations at the individual level while incorporating the role of mosquito populations and the environment at a coarse resolution. Extensive simulations show the flexibility of our modeling framework when applied to specific scenarios to quantitatively evaluate the efficacy of mosquito control and livestock movement regulations in reducing the extent and intensity of RVF outbreaks in the United States. PMID:27662585

  20. Biologically Informed Individual-Based Network Model for Rift Valley Fever in the US and Evaluation of Mitigation Strategies.

    PubMed

    Scoglio, Caterina M; Bosca, Claudio; Riad, Mahbubul H; Sahneh, Faryad D; Britch, Seth C; Cohnstaedt, Lee W; Linthicum, Kenneth J

    Rift Valley fever (RVF) is a zoonotic disease endemic in sub-Saharan Africa with periodic outbreaks in human and animal populations. Mosquitoes are the primary disease vectors; however, Rift Valley fever virus (RVFV) can also spread by direct contact with infected tissues. The transmission cycle is complex, involving humans, livestock, and multiple species of mosquitoes. The epidemiology of RVFV in endemic areas is strongly affected by climatic conditions and environmental variables. In this research, we adapt and use a network-based modeling framework to simulate the transmission of RVFV among hypothetical cattle operations in Kansas, US. Our model considers geo-located livestock populations at the individual level while incorporating the role of mosquito populations and the environment at a coarse resolution. Extensive simulations show the flexibility of our modeling framework when applied to specific scenarios to quantitatively evaluate the efficacy of mosquito control and livestock movement regulations in reducing the extent and intensity of RVF outbreaks in the United States.

  1. The first imported case of Rift Valley fever in China reveals a genetic reassortment of different viral lineages.

    PubMed

    Liu, Jingyuan; Sun, Yulan; Shi, Weifeng; Tan, Shuguang; Pan, Yang; Cui, Shujuan; Zhang, Qingchao; Dou, Xiangfeng; Lv, Yanning; Li, Xinyu; Li, Xitai; Chen, Lijuan; Quan, Chuansong; Wang, Qianli; Zhao, Yingze; Lv, Qiang; Hua, Wenhao; Zeng, Hui; Chen, Zhihai; Xiong, Haofeng; Jiang, Chengyu; Pang, Xinghuo; Zhang, Fujie; Liang, Mifang; Wu, Guizhen; Gao, George F; Liu, William J; Li, Ang; Wang, Quanyi

    2017-01-18

    We report the first imported case of Rift Valley fever (RVF) in China. The patient returned from Angola, a non-epidemic country, with an infection of a new reassortant from different lineages of Rift Valley fever viruses (RVFVs). The patient developed multiorgan dysfunction and gradually recovered with continuous renal replacement therapy and a short regimen of methylprednisolone treatment. The disordered cytokines and chemokines in the plasma of the patient revealed hypercytokinemia, but the levels of protective cytokines were low upon admission and fluctuated as the disease improved. Whole-genome sequencing and phylogenetic analysis revealed that the imported strain was a reassortant comprising the L and M genes from lineage E and the S gene from lineage A. This case highlights that RVFV had undergone genetic reassortment, which could potentially alter its biological properties, cause large outbreaks and pose a serious threat to global public health as well as the livestock breeding industry.

  2. Rift Valley fever virus NS{sub S} gene expression correlates with a defect in nuclear mRNA export

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, Anna Maria; Van Deusen, Nicole M.; Schmaljohn, Connie S., E-mail: Connie.s.schmaljohn.civ@mail.mil

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NS{sub S} gene, but not the N, G{sub N} or NS{sub M} genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NS{sub S}, confirming that expression of NS{sub S} is likely responsible for this phenomenon. - Highlights: • Riftmore » Valley fever virus (RVFV) infection alters the localization of host mRNA. • mRNA accumulates in the nuclei of RVFV-infected but not mock-infected cells. • NS{sub S} is likely responsible for mRNA relocalization to the nucleus.« less

  3. Marker vaccines and companion diagnostic tests for classical swine fever.

    PubMed

    Floegel-Niesmann, G

    2003-01-01

    For Classical Swine Fever (CSF) a subunit vaccine consisting of the E2 protein is commercially available. The discriminatory ELISAs detect antibodies against another viral protein, the E(rns). As CSF has already been eradicated from many countries the use of a marker vaccine in these regions can only be contemplated as emergency vaccination after a new introduction of virus. Therefore, a Large Scale Marker Vaccine Trial was financed by the EU Commission and organised by the EU Reference Laboratory for CSF in 1999. When tested under the conditions of emergency vaccination, e.g. challenge before full immunity had developed, it was shown, that most CSF challenge infections took a subclinical course with reduced virus shedding. Transplacental transmission in pregnant sows could not be prevented after an application of a single vaccine dose. The most serious deficiencies have been found in the discriminatory ELISAs. Both available tests have shown deficiencies in sensitivity and specificity compared to conventional CSF antibody ELISAs. At the time, when the trial was performed, no confirmatory test was available to verify the results of the discriminatory ELISAs. Currently two new developments of marker vaccines for CSF are in progress. A chimaeric vaccine is based on infectious clones of the conventional live vaccine (C-strain) where a gene is replaced with the corresponding gene of the closely related pestivirus Bovine Viral Diarrhoea (BVD) virus. Conversely, the E2 gene of a BVD virus can be replaced by the E2 of a virulent CSF virus. The other principle is the construction of a DNA vaccine, expressing the E2 gene after entering the host cell. Deletion mutants of the E2 gene have also been constructed and tested for their induction of immunity. Both new developments are based on the same discriminatory tests as mentioned previously and developments of other principles for discrimination are rare.

  4. [Estimated operational costs of vaccination campaign to combat yellow fever in Abidjan].

    PubMed

    Zengbe-Acray, Pétronille; Douba, Alfred; Traore, Youssouf; Dagnan, Simplice; Attoh-Toure, Harvey; Ekra, Daniel

    2009-01-01

    A cost effectiveness study was conducted with the main objective to assess the operational costs of a vaccination campaign against yellow fever organised and implemented in Abidjan from September 21st to October 2nd, 2001. The study was carried out from the perspective of the health authorities. Data was collected retrospectively on all information related to resources needed and required activities. The justification of the monetary value of resources was provided with written proof and receipts as well as other supporting documents. The coverage achieved was 91.33% with 2 584 360 doses of vaccine having been administered. Spending on vaccines and vaccine supplies amounted to 1 123 177 128 FCFA; the average cost per dose was 539.40 FCFA. Human resource costs amounted to 2590 people who were mobilized for a total cost of 125 678 400 FCFA. The total operational cost of the vaccination campaign was 1 394 010 829 FCFA. Vaccines and supplies were the largest item of expenditure, or 80.57% of the total spent. The results of this study could serve as a tool for decision-making related to funding a vaccination campaign. Taking account of these results could contribute to the development of strategies to effectively reduce the operational cost of a vaccination campaign.

  5. Potential for Stable Flies and House Flies (Diptera: Muscidae) to Transmit Rift Valley Fever Virus

    DTIC Science & Technology

    2010-01-01

    14. ABSTRACT Rift Valley fever ( RVF ), a disease of ruminants and humans, has been responsible for large outbreaks in Africa that have resulted in...regions. Although RVF virus (RVFV) is normally transmitted by mosquitoes, we wanted to determine the potential for this virus to replicate in 2 of...of a RVF outbreak. Other Stomoxys species present in Africa and elsewhere may also play similar roles. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION

  6. Transcutaneous yellow fever vaccination of subjects with or without atopic dermatitis.

    PubMed

    Slifka, Mark K; Leung, Donald Y M; Hammarlund, Erika; Raué, Hans-Peter; Simpson, Eric L; Tofte, Susan; Baig-Lewis, Shahana; David, Gloria; Lynn, Henry; Woolson, Rob; Hata, Tissa; Milgrom, Henry; Hanifin, Jon

    2014-02-01

    Atopic dermatitis (AD) is a common inflammatory skin disease with a global prevalence ranging from 3% to 20%. Patients with AD have an increased risk for complications after viral infection (eg, herpes simplex virus), and vaccination of patients with AD with live vaccinia virus is contraindicated because of a heightened risk of eczema vaccinatum, a rare but potentially lethal complication associated with smallpox vaccination. We sought to develop a better understanding of immunity to cutaneous viral infection in patients with AD. In a double-blind randomized study we investigated the safety and immunogenicity of live attenuated yellow fever virus (YFV) vaccination of nonatopic subjects and patients with AD after standard subcutaneous inoculation or transcutaneous vaccination administered with a bifurcated needle. Viremia, neutralizing antibody, and antiviral T-cell responses were analyzed for up to 30 days after vaccination. YFV vaccination administered through either route was well tolerated. Subcutaneous vaccination resulted in higher seroconversion rates than transcutaneous vaccination but elicited similar antiviral antibody levels and T-cell responses in both the nonatopic and AD groups. After transcutaneous vaccination, both groups mounted similar neutralizing antibody responses, but patients with AD demonstrated lower antiviral T-cell responses by 30 days after vaccination. Among transcutaneously vaccinated subjects, a significant inverse correlation between baseline IgE levels and the magnitude of antiviral antibody and CD4(+) T-cell responses was observed. YFV vaccination of patients with AD through the transcutaneous route revealed that high baseline IgE levels provide a potential biomarker for predicting reduced virus-specific immune memory after transcutaneous infection with a live virus. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  7. Pre-Clinical Efficacy and Safety of Experimental Vaccines Based on Non-Replicating Vaccinia Vectors against Yellow Fever

    PubMed Central

    Schäfer, Birgit; Holzer, Georg W.; Joachimsthaler, Alexandra; Coulibaly, Sogue; Schwendinger, Michael; Crowe, Brian A.; Kreil, Thomas R.; Barrett, P. Noel; Falkner, Falko G.

    2011-01-01

    Background Currently existing yellow fever (YF) vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D). Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. Methodology/Principal Findings A gene encoding the precursor of the membrane and envelope (prME) protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 105 TCID50. Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles. Conclusions/Significance The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice. PMID:21931732

  8. A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models

    PubMed Central

    Fitzpatrick, Collin J.; Suschak, John J.; Richards, Michelle J.; Badger, Catherine V.; Six, Carolyn M.; Martin, Jacqueline D.; Hannaman, Drew; Zivcec, Marko; Bergeron, Eric; Koehler, Jeffrey W.; Schmaljohn, Connie S.

    2017-01-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7–10 per group) were intraperitoneally (IP) challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV. PMID:28922426

  9. A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models.

    PubMed

    Garrison, Aura R; Shoemaker, Charles J; Golden, Joseph W; Fitzpatrick, Collin J; Suschak, John J; Richards, Michelle J; Badger, Catherine V; Six, Carolyn M; Martin, Jacqueline D; Hannaman, Drew; Zivcec, Marko; Bergeron, Eric; Koehler, Jeffrey W; Schmaljohn, Connie S

    2017-09-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7-10 per group) were intraperitoneally (IP) challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV.

  10. NSs protein of severe fever with thrombocytopenia syndrome virus suppresses interferon production through different mechanism than Rift Valley fever virus.

    PubMed

    Zhang, S; Zheng, B; Wang, T; Li, A; Wan, J; Qu, J; Li, C H; Li, D; Liang, M

    Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly identified Phlebovirus that causes severe fever with thrombocytopenia syndrome. Our study demonstrated that SFTSV NSs functioned as IFN antagonist mainly by suppressing TBK1/IKKε-IRF3 signaling pathway. NSs interacted with and relocalized TANK-binding kinase 1 (TBK1) into NSs-induced cytoplasmic structures and this interaction could effectively inhibit downstream phosphorylation and dimerization of interferon regulatory factor 3 (IRF3), resulting in the suppression of antiviral signaling and IFN induction. Functional sites of SFTSV NSs binding with TBK1 were then studied and results showed that NSs had lost their IFN-inhibiting activity after deleting the 25 amino acids in N-terminal. Furthermore, the mechanism of Rift Valley fever virus (RVFV) NSs blocking IFN-β response were also investigated. Preliminary results showed that RVFV NSs proteins could neither interact nor co-localize with TBK1 in cytoplasm, but suppressed its expression levels, phosphorylation and dimerization of IRF3 in the subsequent steps, resulting in inhibition of the IFN-β production. Altogether, our data demonstrated the probable mechanism used by SFTSV to inhibit IFN responses which was different from RVFV and pointed toward a novel mechanism for RVFV suppressing IFN responses.

  11. Rift Valley fever virus structural and non-structural proteins: Recombinant protein expression and immunoreactivity against antisera from sheep

    USDA-ARS?s Scientific Manuscript database

    The Rift Valley fever virus (RVFV) encodes structural proteins, nucleoprotein (N), N-terminus glycoprotein (Gn), C-terminus glycoprotein (Gc) and L protein, 78-kDa and non-structural proteins NSm and NSs. Using the baculovirus system we expressed the full-length coding sequence of N, NSs, NSm, Gc an...

  12. Formative research and development of an evidence-based communication strategy: the introduction of Vi typhoid fever vaccine among school-aged children in Karachi, Pakistan.

    PubMed

    Pach, Alfred; Tabbusam, Ghurnata; Khan, M Imran; Suhag, Zamir; Hussain, Imtiaz; Hussain, Ejaz; Mumtaz, Uzma; Haq, Inam Ul; Tahir, Rehman; Mirani, Amjad; Yousafzai, Aisha; Sahastrabuddhe, Sushant; Ochiai, R Leon; Soofi, Sajid; Clemens, John D; Favorov, Michael O; Bhutta, Zulfiqar A

    2013-01-01

    The authors conducted formative research (a) to identify stakeholders' concerns related to typhoid fever and the need for disease information and (b) to develop a communication strategy to inform stakeholders and address their concerns and motivate for support of a school-based vaccination program in Pakistan. Data were collected during interactive and semi-structured focus group discussions and interviews, followed by a qualitative analysis and multidisciplinary consultative process to identify an effective social mobilization strategy comprised of relevant media channels and messages. The authors conducted 14 focus group discussions with the parents of school-aged children and their teachers, and 13 individual interviews with school, religious, and political leaders. Parents thought that typhoid fever was a dangerous disease, but were unsure of their children's risk. They were interested in vaccination and were comfortable with a school-based vaccination if conducted under the supervision of trained and qualified staff. Teachers and leaders needed information on typhoid fever, the vaccine, procedures, and sponsors of the vaccination program. Meetings were considered the best form of information dissemination, followed by printed materials and mass media. This study shows how qualitative research findings can be translated into an effective social mobilization and communication approach. The findings of the research indicated the importance of increasing awareness of typhoid fever and the benefits of vaccination against the disease. Identification and dissemination of relevant, community-based disease and vaccination information will increase demand and use of vaccination.

  13. Standards of yellow fever vaccination and travel medicine practice in the Republic of Ireland: A questionnaire-based evaluation.

    PubMed

    Noone, Peter; Hamza, Mohammed; Tang, John; Flaherty, Gerard

    2015-01-01

    The Department of Health regulates the designation of yellow fever vaccination centres (YFVCs) in the Republic of Ireland to ensure appropriate standards in the safe, effective use of yellow fever vaccine for overseas travellers. The process of designation of YFVCs is delegated to Directors of Public Health who direct Principal Medical Officers. Variation in implementation of specific criteria for designation exists and no formal follow up inspection is carried out. This survey of all designated YFVCs in the Republic of Ireland aimed to assess compliance with standards to ensure the objectives of the national yellow fever vaccination programme were met. A piloted questionnaire devised from a United Kingdom (UK) YFVC survey was developed and tested in five YFVCs. The questionnaire was adapted for the postal survey and captured data on professional training, reference sources, services provided, physical facilities and supplies, and was distributed to 655 YFVCs in a stamped addressed envelope. During the period 2010-2011, there were 655 designated YFVCs in the Republic of Ireland. Responses were received from 246 centres (38% response rate), 91% of which were in general practice. Deficiencies were identified in respect of vaccine refrigeration protocols, record keeping, attendance at YFVC training sessions, and clinical protocols for adverse events. Specific deficiencies in relation to training, vaccine storage, administration and documentation should be addressed to ensure standardised YFVC practices and thus align them with best international practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Remote Sensing Contributions to Prediction and Risk Assessment of Natural Disasters Caused by Large Scale Rift Valley Fever Outbreaks

    NASA Technical Reports Server (NTRS)

    Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer; Britch, S. C.; Tucker, C. J.

    2012-01-01

    Remotely sensed vegetation measurements for the last 30 years combined with other climate data sets such as rainfall and sea surface temperatures have come to play an important role in the study of the ecology of arthropod-borne diseases. We show that epidemics and epizootics of previously unpredictable Rift Valley fever are directly influenced by large scale flooding associated with the El Ni o/Southern Oscillation. This flooding affects the ecology of disease transmitting arthropod vectors through vegetation development and other bioclimatic factors. This information is now utilized to monitor, model, and map areas of potential Rift Valley fever outbreaks and is used as an early warning system for risk reduction of outbreaks to human and animal health, trade, and associated economic impacts. The continuation of such satellite measurements is critical to anticipating, preventing, and managing disease epidemics and epizootics and other climate-related disasters.

  15. IMOJEV(®): a Yellow fever virus-based novel Japanese encephalitis vaccine.

    PubMed

    Appaiahgari, Mohan Babu; Vrati, Sudhanshu

    2010-12-01

    Japanese encephalitis (JE) is a disease of the CNS caused by Japanese encephalitis virus (JEV). The disease appears in the form of frequent outbreaks in most south- and southeast Asian countries and the virus has become endemic in several areas. There is no licensed therapy available and disease control by vaccination is considered to be most effective. Mouse brain-derived inactivated JE vaccines, although immunogenic, have several limitations in terms of safety, availability and requirement for multiple doses. Owing to these drawbacks, the WHO called for the development of novel, safe and more efficacious JE vaccines. Several candidate vaccines have been developed and at least three of them that demonstrated strong immunogenicity after one or two doses of the vaccine in animal models were subsequently tested in various clinical trials. One of these vaccines, IMOJEV(®) (JE-CV and previously known as ChimeriVax™-JE), is a novel recombinant chimeric virus vaccine, developed using the Yellow fever virus (YFV) vaccine vector YFV17D, by replacing the cDNA encoding the envelope proteins of YFV with that of an attenuated JEV strain SA14-14-2. IMOJEV was found to be safe, highly immunogenic and capable of inducing long-lasting immunity in both preclinical and clinical trials. Moreover, a single dose of IMOJEV was sufficient to induce protective immunity, which was similar to that induced in adults by three doses of JE-VAX(®), a mouse brain-derived inactivated JE vaccine. Recently, Phase III trials evaluating the immunogenicity and safety of the chimeric virus vaccine have been successfully completed in some JE-endemic countries and the vaccine manufacturers have filed an application for vaccine registration. IMOJEV may thus be licensed for use in humans as an improved alternative to the currently licensed JE vaccines.

  16. Immunogenicity and safety of tetravalent dengue vaccine in 2-11 year-olds previously vaccinated against yellow fever: randomized, controlled, phase II study in Piura, Peru.

    PubMed

    Lanata, Claudio F; Andrade, Teresa; Gil, Ana I; Terrones, Cynthia; Valladolid, Omar; Zambrano, Betzana; Saville, Melanie; Crevat, Denis

    2012-09-07

    In a randomized, placebo-controlled, monocenter, observer blinded study conducted in an area where dengue is endemic, we assessed the safety and immunogenicity of a recombinant, live, attenuated, tetravalent dengue vaccine candidate (CYD-TDV) in 2-11 year-olds with varying levels of pre-existing yellow-fever immunity due to vaccination 1-7 years previously. 199 children received 3 injections of CYD-TDV (months 0, 6 and 12) and 99 received placebo (months 0 and 6) or pneumococcal polysaccharide vaccine (month 12). One month after the third dengue vaccination, serotype specific neutralizing antibody GMTs were in the range of 178-190 (1/dil) (versus 16.7-38.1 in the control group), a 10-20 fold-increase from baseline, and 94% of vaccines were seropositive to all four serotypes (versus 39% in the control group). There were no vaccine-related SAEs. The observed reactogenicity profile was consistent with phase I studies, with severity grade 1-2 injection site pain, headache, malaise and fever most frequently reported and no increase after subsequent vaccinations. Virologically confirmed dengue cases were seen after completion of the 3 doses: 1 in the CYD-TDV group (N=199), and 3 in the control group (N=99). A 3-dose regimen of CYD-TDV had a good safety profile in 2-11 year olds with a history of YF vaccination and elicited robust antibody responses that were balanced against the four serotypes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Creation of a Recombinant Rift Valley Fever Virus with a Two-Segmented Genome ▿ †

    PubMed Central

    Brennan, Benjamin; Welch, Stephen R.; McLees, Angela; Elliott, Richard M.

    2011-01-01

    Rift Valley fever virus (RVFV; family Bunyaviridae) is a clinically important, mosquito-borne pathogen of both livestock and humans, which is found mainly in sub-Saharan Africa and the Arabian Peninsula. RVFV has a trisegmented single-stranded RNA (ssRNA) genome. The L and M segments are negative sense and encode the L protein (viral polymerase) on the L segment and the virion glycoproteins Gn and Gc as well as two other proteins, NSm and 78K, on the M segment. The S segment uses an ambisense coding strategy to express the nucleocapsid protein, N, and the nonstructural protein, NSs. Both the NSs and NSm proteins are dispensable for virus growth in tissue culture. Using reverse genetics, we generated a recombinant virus, designated r2segMP12, containing a two-segmented genome in which the NSs coding sequence was replaced with that for the Gn and Gc precursor. Thus, r2segMP12 lacks an M segment, and although it was attenuated in comparison to the three-segmented parental virus in both mammalian and insect cell cultures, it was genetically stable over multiple passages. We further show that the virus can stably maintain an M-like RNA segment encoding the enhanced green fluorescent protein gene. The implications of these findings for RVFV genome packaging and the potential to develop multivalent live-attenuated vaccines are discussed. PMID:21795328

  18. Fever following administration of two inactivated influenza vaccines--a survey of parents of New Zealand infants and children 5 years of age and under.

    PubMed

    Petousis-Harris, Helen; Poole, Tracey; Booy, Robert; Turner, Nikki

    2011-04-05

    Due to a dramatic increase in reported febrile convulsions in Western Australia following a routine pediatric influenza vaccination programme we evaluated parental recall of fever in their child following 2010 trivalent influenza vaccine manufactured by either Sanofi Pasteur (Vaxigrip(®)) or CSL Biotherapies (Fluvax(®)) to determine if the rates of febrile events in infants and children 5 years and under following administration of either Vaxigrip(®) or Fluvax(®) were significantly different. A convenience sample of New Zealand General practices who had received stocks of the vaccines of interest consecutively contacted parents of infants and children under 5 years of age who received at least one dose of 2010 influenza vaccine. A brief questionnaire was administered with the main outcome parental recall of fever within 24 h of vaccination. Response rate was 99%. There were 327 parents of children aged 6 months to 5 years attending one of 23 primary care practices who had received a dose of either the Vaxigrip(®) or Fluvax(®) vaccine between 4th March and 28th June 2010 surveyed. A total of 422 doses were given of which 267 were Vaxigrip(®), 133 were Fluvax(®) and 22 another vaccine. Fever occurred significantly more frequently within 24 h following administration of Fluvax(®) compared with Vaxigrip(®) RR 4.33 (2.44-7.70). When fevers were measured they were, on average, higher in the Fluvax(®) vaccines (38°C compared with 39°C). Additionally, recipients were more likely to seek medical advice for fever following Fluvax(®) RR 23.11 (2.96-180.12). There is considerable variation in reactogenicity between two 2010 seasonal vaccines in infants and young children. Vaxigrip(®) is significantly less reactogenic when compared to Fluvax(®) in this population in which Fluvax(®) is associated with unacceptably high rates of febrile reactions. There has been insufficient safety evaluation of seasonal influenza vaccine safety in this population. Copyright

  19. A genetically engineered live attenuated vaccine of Coccidioides posadasii protects BALB/c mice against coccidioidomycosis.

    PubMed

    Xue, Jianmin; Chen, Xia; Selby, Dale; Hung, Chiung-Yu; Yu, Jieh-Juen; Cole, Garry T

    2009-08-01

    Coccidioidomycosis (also known as San Joaquin Valley fever) is an occupational disease. Workers exposed to outdoor dust which contains spores of the soil-inhabiting fungus have a significantly increased risk of respiratory infection. In addition, people with compromised T-cell immunity, the elderly, and certain racial groups, particularly African-Americans and Filipinos, who live in regions of endemicity in the southwestern United States have an elevated incidence of symptomatic infection caused by inhalation of spores of Coccidioides posadasii or Coccidioides immitis. Recurring epidemics and escalation of medical costs have helped to motivate production of a vaccine against valley fever. The major focus has been the development of a defined, T-cell-reactive, recombinant protein vaccine. However, none of the products described to date have provided full protection to coccidioidal disease-susceptible BALB/c mice. Here we describe the first genetically engineered, live, attenuated vaccine that protects both BALB/c and C57BL/6 mice against coccidioidomycosis. Two chitinase genes (CTS2 and CTS3) were disrupted to yield the attenuated strain, which was unable to endosporulate and was no longer infectious. Vaccinated survivors mounted an immune response characterized by production of both T-helper-1- and T-helper-2-type cytokines. Histology revealed well-formed granulomas and markedly diminished inflammation. Significantly fewer organisms were observed in the lungs of survivors than in those of nonvaccinated mice. Additional investigations are required to further define the nature of the live, attenuated vaccine-induced immunity against Coccidioides infection.

  20. Interim Report on SNP analysis and forensic microarray probe design for South American hemorrhagic fever viruses, tick-borne encephalitis virus, henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever viruses, Rift Valley fever

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaing, C; Gardner, S

    The goal of this project is to develop forensic genotyping assays for select agent viruses, enhancing the current capabilities for the viral bioforensics and law enforcement community. We used a multipronged approach combining bioinformatics analysis, PCR-enriched samples, microarrays and TaqMan assays to develop high resolution and cost effective genotyping methods for strain level forensic discrimination of viruses. We have leveraged substantial experience and efficiency gained through year 1 on software development, SNP discovery, TaqMan signature design and phylogenetic signature mapping to scale up the development of forensics signatures in year 2. In this report, we have summarized the whole genomemore » wide SNP analysis and microarray probe design for forensics characterization of South American hemorrhagic fever viruses, tick-borne encephalitis viruses and henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus and Japanese encephalitis virus.« less

  1. A recombinant vesicular stomatitis virus-based Lassa fever vaccine protects guinea pigs and macaques against challenge with geographically and genetically distinct Lassa viruses.

    PubMed

    Safronetz, David; Mire, Chad; Rosenke, Kyle; Feldmann, Friederike; Haddock, Elaine; Geisbert, Thomas; Feldmann, Heinz

    2015-04-01

    Lassa virus (LASV) is endemic in several West African countries and is the etiological agent of Lassa fever. Despite the high annual incidence and significant morbidity and mortality rates, currently there are no approved vaccines to prevent infection or disease in humans. Genetically, LASV demonstrates a high degree of diversity that correlates with geographic distribution. The genetic heterogeneity observed between geographically distinct viruses raises concerns over the potential efficacy of a "universal" LASV vaccine. To date, several experimental LASV vaccines have been developed; however, few have been evaluated against challenge with various genetically unique Lassa virus isolates in relevant animal models. Here we demonstrate that a single, prophylactic immunization with a recombinant vesicular stomatitis virus (VSV) expressing the glycoproteins of LASV strain Josiah from Sierra Leone protects strain 13 guinea pigs from infection / disease following challenge with LASV isolates originating from Liberia, Mali and Nigeria. Similarly, the VSV-based LASV vaccine yields complete protection against a lethal challenge with the Liberian LASV isolate in the gold-standard macaque model of Lassa fever. Our results demonstrate the VSV-based LASV vaccine is capable of preventing morbidity and mortality associated with non-homologous LASV challenge in two animal models of Lassa fever. Additionally, this work highlights the need for the further development of disease models for geographical distinct LASV strains, particularly those from Nigeria, in order to comprehensively evaluate potential vaccines and therapies against this prominent agent of viral hemorrhagic fever.

  2. Pigs immunized with a novel E2 subunit vaccine are protected from subgenotype heterologous classical swine fever virus challenge.

    PubMed

    Madera, Rachel; Gong, Wenjie; Wang, Lihua; Burakova, Yulia; Lleellish, Karen; Galliher-Beckley, Amy; Nietfeld, Jerome; Henningson, Jamie; Jia, Kaimin; Li, Ping; Bai, Jianfa; Schlup, John; McVey, Scott; Tu, Changchun; Shi, Jishu

    2016-09-09

    Classical swine fever (CSF) or hog cholera is a highly contagious swine viral disease. CSF endemic countries have to use routine vaccination with modified live virus (MLV) vaccines to prevent and control CSF. However, it is impossible to serologically differentiate MLV vaccinated pigs from those infected with CSF virus (CSFV). The aim of this study is to develop a one-dose E2-subunit vaccine that can provide protection against CSFV challenge. We hypothesize that a vaccine consisting of a suitable adjuvant and recombinant E2 with natural conformation may induce a similar level of protection as the MLV vaccine. Our experimental vaccine KNB-E2 was formulated with the recombinant E2 protein (Genotype 1.1) expressed by insect cells and an oil-in-water emulsion based adjuvant. 10 pigs (3 weeks old, 5 pigs/group) were immunized intramuscularly with one dose or two doses (3 weeks apart) KNB-E2, and 10 more control pigs were administered normal saline solution only. Two weeks after the second vaccination, all KNB-E2 vaccinated pigs and 5 control pigs were challenged with 5 × 10(5) TCID50 CSFV Honduras/1997 (Genotype 1.3, 1 ml intramuscular, 1 ml intranasal). It was found that while control pigs infected with CSFV stopped growing and developed high fever (>40 °C), high level CSFV load in blood and nasal fluid, and severe leukopenia 3-14 days post challenge, all KNB-E2 vaccinated pigs continued to grow as control pigs without CSFV exposure, did not show any fever, had low or undetectable level of CSFV in blood and nasal fluid. At the time of CSFV challenge, only pigs immunized with KNB-E2 developed high levels of E2-specific antibodies and anti-CSFV neutralizing antibodies. Our studies provide direct evidence that pigs immunized with one dose KNB-E2 can be protected clinically from CSFV challenge. This protection is likely mediated by high levels of E2-specific and anti-CSFV neutralizing antibodies.

  3. A DNA vaccine against yellow fever virus: development and evaluation.

    PubMed

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T A; Dhalia, Rafael

    2015-04-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  4. A DNA Vaccine against Yellow Fever Virus: Development and Evaluation

    PubMed Central

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T. A.; Dhalia, Rafael

    2015-01-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies. PMID:25875109

  5. Characterization and discrimination of three Theileria parva stabilates involved in East Coast fever vaccination.

    PubMed

    Sparagano, O A; Zanaa, O; Ambrose, N

    1998-06-29

    Three vaccine stabilates of Theileria parva, of which sporozoites are being used against East Coast fever, were characterized by immunological and molecular biology techniques before being used for a national vaccination campaign in Kenya. T. parva Marikebuni stabilates 316 and 3014, and T. parva Lanet were used in this study and were discriminated from other Kenyan field Theileria isolates. IFAT results showed that all the animals were producing antibodies regardless of the stock used. Primers designed on the TPR1 gene sequence were used for PCR and Decamers were used for RAPD. Specific DNA band patterns (1,877 bp; 1,059 bp, and 443 bp) for the three vaccine stocks were observed. These molecular markers could be used to trace vaccinated animals in Kenya and to identify which isolates are responsible for reactions in animals.

  6. Healthy individuals' immune response to the Bulgarian Crimean-Congo hemorrhagic fever virus vaccine.

    PubMed

    Mousavi-Jazi, Mehrdad; Karlberg, Helen; Papa, Anna; Christova, Iva; Mirazimi, Ali

    2012-09-28

    Crimean-Congo hemorrhagic fever virus (CCHFV) poses a great threat to public health due to its high mortality and transmission rate and wide geographical distribution. There is currently no specific antiviral therapy for CCHF. This study provides the first in-depth analysis of the cellular and humoral immune response in healthy individuals following injection of inactivated Bulgarian vaccine, the only CCHFV vaccine available at present. Vaccinated individuals developed robust, anti-CCHFV-specific T-cell activity as measured by IFN-γ ELISpot assay. The frequency of IFN-γ secreting T-cells was 10-fold higher in individuals after vaccination with four doses than after one single dose. High levels of CCHFV antibodies were observed following the first dose, but repeated doses were required to achieve antibodies with neutralizing activity against CCHFV. However, the neutralizing activity in these groups was low. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Yellow fever vaccine for patients with HIV infection.

    PubMed

    Barte, Hilary; Horvath, Tara H; Rutherford, George W

    2014-01-23

    Yellow fever (YF) is an acute viral haemorrhagic disease prevalent in tropical Africa and Latin America. The World Health Organization (WHO) estimates that there are 200,000 cases of YF and 30,000 deaths worldwide annually. Treatment for YF is supportive, but a live attenuated virus vaccine is effective for preventing infection. WHO recommends immunisation for all individuals > 9 months living in countries or areas at risk. However, the United States Advisory Committee on Immunization Practices (ACIP) advises that YF vaccine is contraindicated in individuals with HIV. Given the large populations of HIV-infected individuals living in tropical areas where YF is endemic, YF vaccine may be an important intervention for preventing YF in immunocompromised populations. To assess the risk and benefits of YF immunisation for people infected with HIV. We used standard Cochrane methods to search electronic databases and conference proceedings with relevant search terms without limits to language. Randomised controlled trials and cohort studies of individuals with HIV infection who received YF vaccine (17DD or 17D-204). Two authors screened abstracts of references identified by electronic or bibliographic searches according to inclusion and exclusion criteria as detailed in the protocol. We identified 199 references and examined 19 in detail for study eligibility. Data were abstracted independently using a standardised abstraction form. Three cohort studies were included in the review. They examined 484 patients with HIV infection who received YF immunisation. Patients with HIV infection developed significantly lower concentrations of neutralising antibodies in the first year post immunisation compared to uninfected patients, though decay patterns were similar for recipients regardless of HIV infection. No study patient with HIV infection suffered serious adverse events as a result of YF vaccination. YF vaccination can produce protective levels of neutralising antibodies in

  8. African swine fever virus: current state and future perspectives in vaccine and antiviral research.

    PubMed

    Zakaryan, Hovakim; Revilla, Yolanda

    2016-03-15

    African swine fever (ASF) is among the most significant of swine diseases for which no effective vaccines and antivirals are available. The disease, which is endemic in Africa, was introduced to Trans-Caucasian countries and the Russian Federation in 2007, where it remains prevalent today among domestic pigs and wild boars. Although some measures were implemented, ASF continues to pose a global risk for all countries, and thereby highlighting the importance of vaccine and antiviral research. In this review, an overview of research efforts toward the development of effective vaccines during the past decades is presented. As an alternative to vaccine development, the current state in antiviral research against ASFV is also presented. Finally, future perspectives in vaccine and antiviral research giving emphasis on some strategies that may allow researchers to develop effective countermeasures against ASF are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A dynamic, climate-driven model of Rift Valley fever.

    PubMed

    Leedale, Joseph; Jones, Anne E; Caminade, Cyril; Morse, Andrew P

    2016-03-31

    Outbreaks of Rift Valley fever (RVF) in eastern Africa have previously occurred following specific rainfall dynamics and flooding events that appear to support the emergence of large numbers of mosquito vectors. As such, transmission of the virus is considered to be sensitive to environmental conditions and therefore changes in climate can impact the spatiotemporal dynamics of epizootic vulnerability. Epidemiological information describing the methods and parameters of RVF transmission and its dependence on climatic factors are used to develop a new spatio-temporal mathematical model that simulates these dynamics and can predict the impact of changes in climate. The Liverpool RVF (LRVF) model is a new dynamic, process-based model driven by climate data that provides a predictive output of geographical changes in RVF outbreak susceptibility as a result of the climate and local livestock immunity. This description of the multi-disciplinary process of model development is accessible to mathematicians, epidemiological modellers and climate scientists, uniting dynamic mathematical modelling, empirical parameterisation and state-of-the-art climate information.

  10. Rift Valley fever on the east coast of Madagascar.

    PubMed

    Morvan, J; Saluzzo, J F; Fontenille, D; Rollin, P E; Coulanges, P

    1991-01-01

    In March 1990, a Rift Valley fever virus (RVFV) outbreak was suspected in the district of Fenerive on the east coast of Madagascar after an abnormally high incidence of abortions and disease in livestock. Sera from humans and cattle were tested for RVFV antibodies by immunofluorescence assay (IFA) and ELISA-IgM capture. Sera and mosquitoes collected in the same area were tested for virus isolation by tissue culture and suckling mouse intracerebral inoculation, and for antigen detection by an ELISA antigen capture assay. Among cattle from the area, RVFV antibody prevalence was 58.6% by IFA and 29.6% by ELISA-IgM. In contrast, human populations in the same area had a lower RVFV antibody prevalence, with 8.01% IFA and 5.4% IgM-positive sera. No RVFV antigen was detected and virus isolation was unsuccessful from the sera and mosquito pools tested. Different hypotheses concerning the emergence and diffusion of RVFV in this area and the occurrence of the outbreak are discussed.

  11. Rift Valley fever trasmission dynamics described by compartmental models.

    PubMed

    Danzetta, Maria Luisa; Bruno, Rossana; Sauro, Francesca; Savini, Lara; Calistri, Paolo

    2016-11-01

    Rift Valley fever (RVF) is one of the most important zoonotic Transboundary Animal Diseases able to cross international borders and cause devastating effect on animal health and food security. Climate changes and the presence of competent vectors in the most of the current RVF-free temperate countries strongly support the inclusion of RVF virus (RVFV) among the most significant emerging viral threats for public and animal health. The transmission of RVFV is driven by complex eco-climatic factors making the epidemiology of RVF infection difficult to study and to understand. Mathematical, statistical and spatial models are often used to explain the mechanisms underlying these biological processes, providing new and effective tools to plan measures for public health protection. In this paper we performed a systematic literature review on RVF published papers with the aim of identifying and describing the most recent papers developing compartmental models for the study of RVFV transmission dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Prevalence and titers of yellow fever virus neutralizing antibodies in previously vaccinated adults.

    PubMed

    Miyaji, Karina Takesaki; Avelino-Silva, Vivian Iida; Simões, Marisol; Freire, Marcos da Silva; Medeiros, Carlos Roberto de; Braga, Patrícia Emilia; Neves, Maria Angélica Acalá; Lopes, Marta Heloisa; Kallas, Esper Georges; Sartori, Ana Marli Christovam

    2017-04-03

    The World Health Organization (WHO) recommends one single dose of the Yellow Fever (YF) vaccine based on studies of antibody persistency in healthy adults. We assessed the prevalence and titers of YF virus neutralizing antibodies in previously vaccinated persons aged  60 years, in comparison to younger adults. We also evaluated the correlation between antibody titers and the time since vaccination among participants who received one vaccine dose, and the seropositivity among participants vaccinated prior to or within the past 10 years. previously vaccinated healthy persons aged  18 years were included. YF virus neutralizing antibody titers were determined by means of the 50% Plaque Reduction Neutralization Test. 46 persons aged  60 years and 48 persons aged 18 to 59 years were enrolled. There was no significant difference in the prevalence of YF virus neutralizing antibodies between the two groups (p = 0.263). However, titers were significantly lower in the elderly (p = 0.022). There was no correlation between YF virus neutralizing antibody titers and the time since vaccination. There was no significant difference in seropositivity among participants vaccinated prior to or within the past 10 years. the clinical relevance of the observed difference in YF virus neutralizing antibody titers between the two groups is not clear.

  13. Rift Valley Fever Outbreaks in Mauritania and Related Environmental Conditions

    PubMed Central

    Caminade, Cyril; Ndione, Jacques A.; Diallo, Mawlouth; MacLeod, Dave A.; Faye, Ousmane; Ba, Yamar; Dia, Ibrahima; Morse, Andrew P.

    2014-01-01

    Four large outbreaks of Rift Valley Fever (RVF) occurred in Mauritania in 1998, 2003, 2010 and 2012 which caused lots of animal and several human deaths. We investigated rainfall and vegetation conditions that might have impacted on RVF transmission over the affected regions. Our results corroborate that RVF transmission generally occurs during the months of September and October in Mauritania, similarly to Senegal. The four outbreaks were preceded by a rainless period lasting at least a week followed by heavy precipitation that took place during the second half of the rainy season. First human infections were generally reported three to five weeks later. By bridging the gap between meteorological forecasting centers and veterinary services, an early warning system might be developed in Senegal and Mauritania to warn decision makers and health services about the upcoming RVF risk. PMID:24413703

  14. Infection and Transmission of Rift Valley Fever Viruses Lacking the NSs and/or NSm Genes in Mosquitoes: Potential Role for NSm in Mosquito Infection

    PubMed Central

    Crabtree, Mary B.; Kent Crockett, Rebekah J.; Bird, Brian H.; Nichol, Stuart T.; Erickson, Bobbie Rae; Biggerstaff, Brad J.; Horiuchi, Kalanthe; Miller, Barry R.

    2012-01-01

    Background Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. Methodology and Principal Findings Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. Conclusions/Significance In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes. PMID:22563517

  15. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.

    PubMed

    Crabtree, Mary B; Kent Crockett, Rebekah J; Bird, Brian H; Nichol, Stuart T; Erickson, Bobbie Rae; Biggerstaff, Brad J; Horiuchi, Kalanthe; Miller, Barry R

    2012-01-01

    Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.

  16. Studies on the pathogenesis of fever. II. Identification of an endogenous pyrogen in the blood stream following the injection of typhoid vaccine.

    PubMed

    ATKINS, E; WOOD, W B

    1955-11-01

    Further studies have been made of a pyrogenic substance which appears in the circulation of rabbits during the course of experimental fever induced by injection of typhoid vaccine. With the use of a passive transfer method and pyrogen-tolerant recipients, the biological properties of this substance have been differentiated from those of the uncleared vaccine in the circulation. The newly identified factor resembles leucocytic pyrogen in the rapidity with which it produces fever and in its failure to exhibit cross-tolerance with bacterial pyrogen. This striking similarity of properties suggests that the circulating factor is of endogenous origin and may arise from cell injury. A close correlation between its presence in the circulation and the existence of fever has been demonstrated. The possible relationship of these findings to the pathogenesis of fever is evident.

  17. Rift Valley fever virus incorporates the 78kDa glycoprotein into virions matured in C6/36 2 mosquito cells

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV), genus Phlebovirus, family Bunyaviridae is a zoonotic arthropod-borne virus able to transition between distant host species, causing potentially severe disease in humans and ruminants. Viral proteins are encoded by three genomic segments, with the medium M segment codi...

  18. A Single 17D Yellow Fever Vaccination Provides Lifelong Immunity; Characterization of Yellow-Fever-Specific Neutralizing Antibody and T-Cell Responses after Vaccination.

    PubMed

    Wieten, Rosanne W; Jonker, Emile F F; van Leeuwen, Ester M M; Remmerswaal, Ester B M; Ten Berge, Ineke J M; de Visser, Adriëtte W; van Genderen, Perry J J; Goorhuis, Abraham; Visser, Leo G; Grobusch, Martin P; de Bree, Godelieve J

    2016-01-01

    Prompted by recent amendments of Yellow Fever (YF) vaccination guidelines from boost to single vaccination strategy and the paucity of clinical data to support this adjustment, we used the profile of the YF-specific CD8+ T-cell subset profiles after primary vaccination and neutralizing antibodies as a proxy for potentially longer lasting immunity. PBMCs and serum were collected in six individuals on days 0, 3, 5, 12, 28 and 180, and in 99 individuals >10 years after YF-vaccination. Phenotypic characteristics of YF- tetramer+ CD8+ T-cells were determined using class I tetramers. Antibody responses were measured using a standardized plaque reduction neutralization test (PRNT). Also, characteristics of YF-tetramer positive CD8+ T-cells were compared between individuals who had received a primary- and a booster vaccination. YF-tetramer+ CD8+ T-cells were detectable on day 12 (median tetramer+ cells as percentage of CD8+ T-cells 0.2%, range 0.07-3.1%). On day 180, these cells were still present (median 0.06%, range 0.02-0.78%). The phenotype of YF-tetramer positive CD8+ T-cells shifted from acute phase effector cells on day 12, to late differentiated or effector memory phenotype (CD45RA-/+CD27-) on day 28. Two subsets of YF-tetramer positive T-cells (CD45RA+CD27- and CD45RA+CD27+) persisted until day 180. Within all phenotypic subsets, the T-bet: Eomes ratio tended to be high on day 28 after vaccination and shifted towards predominant Eomes expression on day 180 (median 6.0 (day 28) vs. 2.2 (day 180) p = 0.0625), suggestive of imprinting compatible with long-lived memory properties. YF-tetramer positive CD8+ T-cells were detectable up to 18 years post vaccination, YF-specific antibodies were detectable up to 40 years after single vaccination. Booster vaccination did not increase titers of YF-specific antibodies (mean 12.5 vs. 13.1, p = 0.583), nor induce frequencies or alter phenotypes of YF-tetramer+ CD8+ T-cells. The presence of a functionally competent YF

  19. A Single 17D Yellow Fever Vaccination Provides Lifelong Immunity; Characterization of Yellow-Fever-Specific Neutralizing Antibody and T-Cell Responses after Vaccination

    PubMed Central

    van Leeuwen, Ester M. M.; Remmerswaal, Ester B. M.; ten Berge, Ineke J. M.; de Visser, Adriëtte W.; van Genderen, Perry J. J.; Goorhuis, Abraham; Visser, Leo G.; Grobusch, Martin P.; de Bree, Godelieve J.

    2016-01-01

    Introduction Prompted by recent amendments of Yellow Fever (YF) vaccination guidelines from boost to single vaccination strategy and the paucity of clinical data to support this adjustment, we used the profile of the YF-specific CD8+ T-cell subset profiles after primary vaccination and neutralizing antibodies as a proxy for potentially longer lasting immunity. Methods and Findings PBMCs and serum were collected in six individuals on days 0, 3, 5, 12, 28 and 180, and in 99 individuals >10 years after YF-vaccination. Phenotypic characteristics of YF- tetramer+ CD8+ T-cells were determined using class I tetramers. Antibody responses were measured using a standardized plaque reduction neutralization test (PRNT). Also, characteristics of YF-tetramer positive CD8+ T-cells were compared between individuals who had received a primary- and a booster vaccination. YF-tetramer+ CD8+ T-cells were detectable on day 12 (median tetramer+ cells as percentage of CD8+ T-cells 0.2%, range 0.07–3.1%). On day 180, these cells were still present (median 0.06%, range 0.02–0.78%). The phenotype of YF-tetramer positive CD8+ T-cells shifted from acute phase effector cells on day 12, to late differentiated or effector memory phenotype (CD45RA-/+CD27-) on day 28. Two subsets of YF-tetramer positive T-cells (CD45RA+CD27- and CD45RA+CD27+) persisted until day 180. Within all phenotypic subsets, the T-bet: Eomes ratio tended to be high on day 28 after vaccination and shifted towards predominant Eomes expression on day 180 (median 6.0 (day 28) vs. 2.2 (day 180) p = 0.0625), suggestive of imprinting compatible with long-lived memory properties. YF-tetramer positive CD8+ T-cells were detectable up to 18 years post vaccination, YF-specific antibodies were detectable up to 40 years after single vaccination. Booster vaccination did not increase titers of YF-specific antibodies (mean 12.5 vs. 13.1, p = 0.583), nor induce frequencies or alter phenotypes of YF-tetramer+ CD8+ T-cells. Conclusion The

  20. Remote Sensing Contributions to Prediction and Risk Assessment of Natural Diasters Caused by Large Scale Rift Valley fever Outbreaks

    USDA-ARS?s Scientific Manuscript database

    Remotely sensed vegetation measurements for the last 30 years combined with other climate data sets such as rainfall and sea surface temperatures have come to play an important role in the study of the ecology of vector-borne diseases. We show that episodic outbreaks of Rift Valley fever are influen...

  1. Surveillance for yellow Fever virus in non-human primates in southern Brazil, 2001-2011: a tool for prioritizing human populations for vaccination.

    PubMed

    Almeida, Marco A B; Cardoso, Jader da C; Dos Santos, Edmilson; da Fonseca, Daltro F; Cruz, Laura L; Faraco, Fernando J C; Bercini, Marilina A; Vettorello, Kátia C; Porto, Mariana A; Mohrdieck, Renate; Ranieri, Tani M S; Schermann, Maria T; Sperb, Alethéa F; Paz, Francisco Z; Nunes, Zenaida M A; Romano, Alessandro P M; Costa, Zouraide G; Gomes, Silvana L; Flannery, Brendan

    2014-03-01

    In Brazil, epizootics among New World monkey species may indicate circulation of yellow fever (YF) virus and provide early warning of risk to humans. Between 1999 and 2001, the southern Brazilian state of Rio Grande do Sul initiated surveillance for epizootics of YF in non-human primates to inform vaccination of human populations. Following a YF outbreak, we analyzed epizootic surveillance data and assessed YF vaccine coverage, timeliness of implementation of vaccination in unvaccinated human populations. From October 2008 through June 2009, circulation of YF virus was confirmed in 67 municipalities in Rio Grande do Sul State; vaccination was recommended in 23 (34%) prior to the outbreak and in 16 (24%) within two weeks of first epizootic report. In 28 (42%) municipalities, vaccination began more than two weeks after first epizootic report. Eleven (52%) of 21 laboratory-confirmed human YF cases occurred in two municipalities with delayed vaccination. By 2010, municipalities with confirmed YF epizootics reported higher vaccine coverage than other municipalities that began vaccination. In unvaccinated human populations timely response to epizootic events is critical to prevent human yellow fever cases.

  2. Evaluation of travel medicine practice by yellow fever vaccination centers in England, Wales, and Northern Ireland.

    PubMed

    Boddington, Nicola L; Simons, Hilary; Launders, Naomi; Gawthrop, Mary; Stillwell, Alexandra; Wong, Claire; Mathewson, John; Hill, David R

    2012-01-01

    The National Travel Health Network and Centre (NaTHNaC) introduced a program of registration, training, standards, and audit for yellow fever vaccination centers (YFVCs) in England, Wales, and Northern Ireland (EWNI) in 2005. Prior to rolling out the program, NaTHNaC surveyed YFVCs in England. To reassess the practice of YFVCs in 2009, 4 years after the institution of the NaTHNaC program, to identify areas for ongoing support, and to assess the impact of the program. In 2009, all YFVCs in EWNI were asked to complete a questionnaire on type of practice, administration of travel vaccines, staff training, vaccine storage and patient record keeping, use of travel health information, evaluation of NaTHNaC yellow fever (YF) training, and resource and training needs. Data were analyzed using Microsoft Excel® and STATA 9®. The questionnaire was completed by 1,438 YFVCs (41.5% of 3,465 YFVCs). Most YFVCs were based in General Practice (87.4%). In nearly all YFVCs (97.0%), nurses advised travelers and administered YF vaccine. An annual median of 50 doses of YF vaccine was given by each YFVC. A total of 96.7% of nurses had received training in travel medicine, often through study days run by vaccine manufacturers. The internet was frequently used for information during travel consultations (84.8%) and NaTHNaC's on-line and telephone advice resources were highly rated. Following YF training, 95.8% of attendees expressed improved confidence regarding YF vaccination issues. There was excellent adherence to vaccination standards: ≥ 94% correctly stored vaccines, recorded refrigerator temperatures, and maintained YF vaccination records. In the 4 years since institution of the NaTHNaC program for YFVCs, there has been improved adherence to basic standards of immunization practice and increased confidence of health professionals in YF vaccination. The NaTHNaC program could be a model for other national public health bodies, as they establish a program for YF centers. © 2012

  3. Description of a Prospective 17DD Yellow Fever Vaccine Cohort in Recife, Brazil

    PubMed Central

    de Melo, Andréa Barbosa; da Silva, Maria da Paz C.; Magalhães, Maria Cecília F.; Gonzales Gil, Laura Helena Vega; Freese de Carvalho, Eduardo M.; Braga-Neto, Ulisses M.; Bertani, Giovani Rota; Marques, Ernesto T. A.; Cordeiro, Marli Tenório

    2011-01-01

    From September 2005 to March 2007, 238 individuals being vaccinated for the first time with the yellow fever (YF) -17DD vaccine were enrolled in a cohort established in Recife, Brazil. A prospective study indicated that, after immunization, anti-YF immunoglobulin M (IgM) and anti-YF IgG were present in 70.6% (IgM) and 98.3% (IgG) of the vaccinated subjects. All vaccinees developed protective immunity, which was detected by the plaque reduction neutralization test (PRNT) with a geometric mean titer of 892. Of the 238 individuals, 86.6% had IgG antibodies to dengue virus; however, the presence of anti-dengue IgG did not interfere significantly with the development of anti-YF neutralizing antibodies. In a separate retrospective study of individuals immunized with the 17DD vaccine, the PRNT values at 5 and 10 years post-vaccination remained positive but showed a significant decrease in neutralization titer (25% with PRNT titers < 100 after 5 years and 35% after 10 years). PMID:21976581

  4. NSs protein of rift valley fever virus promotes posttranslational downregulation of the TFIIH subunit p62.

    PubMed

    Kalveram, Birte; Lihoradova, Olga; Ikegami, Tetsuro

    2011-07-01

    Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) is an important emerging pathogen of humans and ruminants. Its NSs protein has previously been identified as a major virulence factor that suppresses host defense through three distinct mechanisms: it directly inhibits beta interferon (IFN-β) promoter activity, it promotes the degradation of double-stranded RNA-dependent protein kinase (PKR), and it suppresses host transcription by disrupting the assembly of the basal transcription factor TFIIH through sequestration of its p44 subunit. Here, we report that in addition to PKR, NSs also promotes the degradation of the TFIIH subunit p62. Infection of cells with the RVFV MP-12 vaccine strain reduced p62 protein levels to below the detection limit early in the course of infection. This NSs-mediated downregulation of p62 was posttranslational, as it was unaffected by pharmacological inhibition of transcription or translation and MP-12 infection had no effect on p62 mRNA levels. Treatment of cells with proteasome inhibitors but not inhibition of lysosomal acidification or nuclear export resulted in a stabilization of p62 in the presence of NSs. Furthermore, p62 could be coprecipitated with NSs from lysates of infected cells. These data suggest that the RVFV NSs protein is able to interact with the TFIIH subunit p62 inside infected cells and promotes its degradation, which can occur directly in the nucleus.

  5. Haemorrhagic Fevers, Viral

    MedlinePlus

    ... Filoviridae (Ebola and Marburg) and Flaviviridae (yellow fever, dengue, Omsk haemorrhagic fever, Kyasanur forest disease). General information ... the Ebola vaccine trials in Guinea What is dengue and how is it treated? Fact sheets Crimean- ...

  6. A Recombinant Vesicular Stomatitis Virus-Based Lassa Fever Vaccine Protects Guinea Pigs and Macaques against Challenge with Geographically and Genetically Distinct Lassa Viruses

    PubMed Central

    Safronetz, David; Mire, Chad; Rosenke, Kyle; Feldmann, Friederike; Haddock, Elaine; Geisbert, Thomas; Feldmann, Heinz

    2015-01-01

    Background Lassa virus (LASV) is endemic in several West African countries and is the etiological agent of Lassa fever. Despite the high annual incidence and significant morbidity and mortality rates, currently there are no approved vaccines to prevent infection or disease in humans. Genetically, LASV demonstrates a high degree of diversity that correlates with geographic distribution. The genetic heterogeneity observed between geographically distinct viruses raises concerns over the potential efficacy of a “universal” LASV vaccine. To date, several experimental LASV vaccines have been developed; however, few have been evaluated against challenge with various genetically unique Lassa virus isolates in relevant animal models. Methodologies/principle findings Here we demonstrate that a single, prophylactic immunization with a recombinant vesicular stomatitis virus (VSV) expressing the glycoproteins of LASV strain Josiah from Sierra Leone protects strain 13 guinea pigs from infection / disease following challenge with LASV isolates originating from Liberia, Mali and Nigeria. Similarly, the VSV-based LASV vaccine yields complete protection against a lethal challenge with the Liberian LASV isolate in the gold-standard macaque model of Lassa fever. Conclusions/significance Our results demonstrate the VSV-based LASV vaccine is capable of preventing morbidity and mortality associated with non-homologous LASV challenge in two animal models of Lassa fever. Additionally, this work highlights the need for the further development of disease models for geographical distinct LASV strains, particularly those from Nigeria, in order to comprehensively evaluate potential vaccines and therapies against this prominent agent of viral hemorrhagic fever. PMID:25884628

  7. Observational study on immune response to yellow fever and measles vaccines in 9 to 15-month old children. Is it necessary to wait 4 weeks between two live attenuated vaccines?

    PubMed

    Michel, R; Berger, F; Ravelonarivo, J; Dussart, P; Dia, M; Nacher, M; Rogier, S; Moua, D; Sarr, F D; Diop, O M; Sall, A A; Baril, L

    2015-05-11

    The use of 2 live attenuated vaccines (LAV) is recommended to be simultaneous or after an interval of at least four weeks between injections. The primary objective of this study was to compare the humoral response to yellow fever (YF) and measles vaccines among children vaccinated against these two diseases, either simultaneously or separated by an interval of 7-28 days. A prospective, multicenter observational study was conducted among children aged 9-15 months. The primary endpoint was the occurrence of positive yellow fever antibodies after YF vaccine by estimating the titers of neutralizing antibodies from venous blood samples. Children vaccinated against YF 7-28 days after receiving the vaccine against measles (test group) were compared with children vaccinated the same day against these two diseases (referent group). Analysis was performed on 284 children. Of them, fifty-four belonged to the test group. Measles serology was positive in 91.7% of children. Neutralizing antibodies against YF were detected in 90.7% of the test group and 92.9 of the referent group (p=0.6). In addition, quantitative analysis of the immune response did not show a lower response to YF vaccination when it took place 1-28 days after measles vaccination. In 1965, Petralli showed a lower response to the smallpox vaccine when injected 4-20 days after measles vaccination. Since then, recommendations are to observe an interval of four weeks between LAV not injected on the same day. Other published studies failed to show a significant difference in the immune response to a LAV injected 1-28 days after another LAV. These results suggest that the usual recommendations for immunization with two LAV may not be correct. In low income countries, the current policy should be re-evaluated. This re-evaluation should also be applied to travelers to yellow fever endemic countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Development and validation of serological assays for viral hemorrhagic fevers and determination of the prevalence of Rift Valley fever in Borno State, Nigeria.

    PubMed

    Bukbuk, David Nadeba; Fukushi, Shuetsu; Tani, Hideki; Yoshikawa, Tomoki; Taniguchi, Satoshi; Iha, Koichiro; Fukuma, Aiko; Shimojima, Masayuki; Morikawa, Shigeru; Saijo, Masayuki; Kasolo, Francis; Baba, Saka Saheed

    2014-12-01

    Rift Valley fever (RVF) is endemic to the tropical regions of eastern and southern Africa. The seroprevalence of RVF was investigated among the human population in Borno State, Nigeria to determine the occurrence of the disease in the study area in comparison with that of Lassa fever and Crimean-Congo Hemorrhagic fever. Recombinant nucleoprotein (rNP)-based IgG-ELISAs for the detection of serum antibodies against RVF virus (RVFV), Lassa fever virus (LASV), and Crimean-Congo hemorrhagic fever virus (CCHFV) were used to test human sera in Borno State, Nigeria. The presence of neutralizing antibody against the RVFV-glycoprotein-bearing vesicular stomatitis virus pseudotype (RVFVpv) was also determined in the human sera. Of the 297 serum samples tested, 42 (14.1%) were positive for the presence of RVFV-IgG and 22 (7.4%) and 7 (2.4%) of the serum samples were positive for antibodies against LASV and CCHFV, respectively. There was a positive correlation between the titers of neutralizing antibodies obtained using RVFVpv and those obtained using the conventional neutralization assay with the attenuated RVFV-MP12 strain. The seroprevalence of RVF was significantly higher than that of LASV and CCHF in Borno State, Nigeria. The RVFVpv-based neutralization assay developed in this study has the potential to replace the traditional assays based on live viruses for the diagnosis and seroepidemiological studies of RVF. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Rift Valley fever virus infection induces activation of the NLRP3 inflammasome.

    PubMed

    Ermler, Megan E; Traylor, Zachary; Patel, Krupen; Schattgen, Stefan A; Vanaja, Sivapriya K; Fitzgerald, Katherine A; Hise, Amy G

    2014-01-20

    Inflammasome activation is gaining recognition as an important mechanism for protection during viral infection. Here, we investigate whether Rift Valley fever virus, a negative-strand RNA virus, can induce inflammasome responses and IL-1β processing in immune cells. We have determined that RVFV induces NLRP3 inflammasome activation in murine dendritic cells, and that this process is dependent upon ASC and caspase-1. Furthermore, absence of the cellular RNA helicase adaptor protein MAVS/IPS-1 significantly reduces extracellular IL-1β during infection. Finally, direct imaging using confocal microscopy shows that the MAVS protein co-localizes with NLRP3 in the cytoplasm of RVFV infected cells. © 2013 Published by Elsevier Inc.

  10. Prediction, Assessment of the Rift Valley fever Activity in East and Southern Africa 2006 - 2008 and Possible Vector Control Strategies

    USDA-ARS?s Scientific Manuscript database

    Historical outbreaks of Rift Valley fever (RVF) since the early 1950s have been associated with cyclical patterns of the El Nino/Southern Oscillation (ENSO) phenomenon which results in elevated and widespread rainfall over the RVF endemic areas of Africa. Using satellite measurements of global and ...

  11. Travel characteristics and yellow fever vaccine usage among US Global TravEpiNet travelers visiting countries with risk of yellow fever virus transmission, 2009-2011.

    PubMed

    Jentes, Emily S; Han, Pauline; Gershman, Mark D; Rao, Sowmya R; LaRocque, Regina C; Staples, J Erin; Ryan, Edward T

    2013-05-01

    Yellow fever (YF) vaccine-associated serious adverse events and changing YF epidemiology have challenged healthcare providers to vaccinate only travelers whose risk of YF during travel is greater than their risk of adverse events. We describe the travel characteristics and YF vaccine use among US travelers visiting Global TravEpiNet clinics from January of 2009 to March of 2011. Of 16,660 travelers, 5,588 (34%) had itineraries to areas with risk of YF virus transmission. Of those travelers visiting one country with YF risk (N = 4,517), 71% were vaccinated at the visit, and 20% were presumed to be immune from prior vaccination. However, travelers visiting friends and relatives (odds ratio [OR] = 2.57, 95% confidence interval [95% CI] = 1.27-5.22) or going to Nigeria (OR = 3.01, 95% CI = 1.37-6.62) were significantly more likely to decline vaccination. To optimize YF vaccine use, clinicians should discuss an individual's risk-benefit assessment of vaccination and close knowledge gaps regarding vaccine use among at-risk populations.

  12. Spectrum of Rift Valley Fever Virus Transmission in Kenya: Insights from three Distinct Regions

    PubMed Central

    Labeaud, A. Desiree; Ochiai, Yoshitsugu; Peters, C.J.; Muchiri, Eric M.; King, Charles H.

    2008-01-01

    Rift Valley fever virus (RVFV) is an emerging pathogen that maintains high biodefense priority based on its threat to livestock, its ability to cause human hemorrhagic fever, and its potential for aerosol spread. To define the range of human transmission during inter-epidemic and epidemic periods in Kenya, we tested archived sera from defined populations (N = 1,263) for anti-RVFV IgG by ELISA and plaque reduction neutralization testing. RVFV seroprevalence was 10.8% overall and varied significantly by location, sex, and age. In NW Kenya, high seroprevalence among those born before 1980 indicates that an undetected epidemic may have occurred then. Seroconversion documented in highland areas suggests previously unsuspected inter-epidemic transmission. RVFV seroprevalence is strikingly high in certain Kenyan areas, suggesting endemic transmission patterns that may preclude accurate estimation of regional acute outbreak incidence. The extent of both epidemic and inter-epidemic RVFV transmission in Kenya is greater than previously documented. PMID:17488893

  13. RESPONSE OF VOLTA CHILDREN TO JET INOCULATION OF COMBINED LIVE MEASLES, SMALLPOX AND YELLOW FEVER VACCINES.

    PubMed

    MEYER, H M; HOSTETLER, D D; BERNHEIN, B C; ROGERS, N G; LAMBIN, P; CHASSARY, A; LABUSQUIERE, R; SMADEL, J E

    1964-01-01

    An earlier study established that Upper Volta children respond to vaccination with the Enders live attenuated measles strain in the same general fashion as do children in the USA. The present report describes a second pilot project carried out in Ouagadougou, Upper Volta. During this investigation various mixtures of live measles, smallpox and 17D yellow fever vaccines were introduced into susceptible infants by jet injection. Combining the attenuated virus vaccines did not alter or accentuate the characteristic clinical reactions elicited by the individual components, nor was there evidence of significant immunological interference. From this experience it is concluded that combined vaccination with these agents may be safely and effectively employed in larger programmes as the need dictates.

  14. Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene.

    PubMed

    Ikegami, Tetsuro; Won, Sungyong; Peters, C J; Makino, Shinji

    2006-03-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) has a tripartite negative-strand genome, causes a mosquito-borne disease that is endemic in sub-Saharan African countries and that also causes large epidemics among humans and livestock. Furthermore, it is a bioterrorist threat and poses a risk for introduction to other areas. In spite of its danger, neither veterinary nor human vaccines are available. We established a T7 RNA polymerase-driven reverse genetics system to rescue infectious clones of RVFV MP-12 strain entirely from cDNA, the first for any phlebovirus. Expression of viral structural proteins from the protein expression plasmids was not required for virus rescue, whereas NSs protein expression abolished virus rescue. Mutants of MP-12 partially or completely lacking the NSs open reading frame were viable. These NSs deletion mutants replicated efficiently in Vero and 293 cells, but not in MRC-5 cells. In the latter cell line, accumulation of beta interferon mRNA occurred after infection by these NSs deletion mutants, but not after infection by MP-12. The NSs deletion mutants formed larger plaques than MP-12 did in Vero E6 cells and failed to shut off host protein synthesis in Vero cells. An MP-12 mutant carrying a luciferase gene in place of the NSs gene replicated as efficiently as MP-12 did, produced enzymatically active luciferase during replication, and stably retained the luciferase gene after 10 virus passages, representing the first demonstration of foreign gene expression in any bunyavirus. This reverse genetics system can be used to study the molecular virology of RVFV, assess current vaccine candidates, produce new vaccines, and incorporate marker genes into animal vaccines.

  15. A Meta-Analysis of Serological Response Associated with Yellow Fever Vaccination.

    PubMed

    Jean, Kévin; Donnelly, Christl A; Ferguson, Neil M; Garske, Tini

    2016-12-07

    Despite previous evidence of high level of efficacy, no synthetic metric of yellow fever (YF) vaccine efficacy is currently available. Based on the studies identified in a recent systematic review, we conducted a random-effects meta-analysis of the serological response associated with YF vaccination. Eleven studies conducted between 1965 and 2011 representing 4,868 individual observations were included in the meta-analysis. The pooled estimate of serological response was 97.5% (95% confidence interval [CI] = 82.9-99.7%). There was evidence of between-study heterogeneity (I 2 = 89.1%), but this heterogeneity did not appear to be related to study size, study design, or seroconversion measurement or definition. Pooled estimates were significantly higher (P < 0.0001) among studies conducted in nonendemic settings (98.9%, 95% CI = 98.2-99.4%) than among those conducted in endemic settings (94.2%, 95% CI = 83.8-98.1%). These results provide background information against which to evaluate the efficacy of fractional doses of YF vaccine that may be used in outbreak situations. © The American Society of Tropical Medicine and Hygiene.

  16. Fatal Yellow Fever in Travelers to Brazil, 2018.

    PubMed

    Hamer, Davidson H; Angelo, Kristina; Caumes, Eric; van Genderen, Perry J J; Florescu, Simin A; Popescu, Corneliu P; Perret, Cecilia; McBride, Angela; Checkley, Anna; Ryan, Jenny; Cetron, Martin; Schlagenhauf, Patricia

    2018-03-23

    Yellow fever virus is a mosquito-borne flavivirus that causes yellow fever, an acute infectious disease that occurs in South America and sub-Saharan Africa. Most patients with yellow fever are asymptomatic, but among the 15% who develop severe illness, the case fatality rate is 20%-60%. Effective live-attenuated virus vaccines are available that protect against yellow fever (1). An outbreak of yellow fever began in Brazil in December 2016; since July 2017, cases in both humans and nonhuman primates have been reported from the states of São Paulo, Minas Gerais, and Rio de Janeiro, including cases occurring near large urban centers in these states (2). On January 16, 2018, the World Health Organization updated yellow fever vaccination recommendations for Brazil to include all persons traveling to or living in Espírito Santo, São Paulo, and Rio de Janeiro states, and certain cities in Bahia state, in addition to areas where vaccination had been recommended before the recent outbreak (3). Since January 2018, 10 travel-related cases of yellow fever, including four deaths, have been reported in international travelers returning from Brazil. None of the 10 travelers had received yellow fever vaccination.

  17. Climate-disease connections: Rift Valley Fever in Kenya

    NASA Technical Reports Server (NTRS)

    Anyamba, A.; Linthicum, K. J.; Tucker, C. J.

    2001-01-01

    All known Rift Valley fever(RVF) outbreaks in Kenya from 1950 to 1998 followed periods of abnormally high rainfall. On an interannual scale, periods of above normal rainfall in East Africa are associated with the warm phase of the El Nino/Southern Oscillation (ENSO) phenomenon. Anomalous rainfall floods mosquito-breeding habitats called dambos, which contain transovarially infected mosquito eggs. The eggs hatch Aedes mosquitoes that transmit the RVF virus preferentially to livestock and to humans as well. Analysis of historical data on RVF outbreaks and indicators of ENSO (including Pacific and Indian Ocean sea surface temperatures and the Southern Oscillation Index) indicates that more than three quarters of the RVF outbreaks have occurred during warm ENSO event periods. Mapping of ecological conditions using satellite normalized difference vegetation index (NDVI) data show that areas where outbreaks have occurred during the satellite recording period (1981-1998) show anomalous positive departures in vegetation greenness, an indicator of above-normal precipitation. This is particularly observed in arid areas of East Africa, which are predominantly impacted by this disease. These results indicate a close association between interannual climate variability and RVF outbreaks in Kenya.

  18. Climate-disease connections: Rift Valley Fever in Kenya.

    PubMed

    Anyamba, A; Linthicum, K J; Tucker, C J

    2001-01-01

    All known Rift Valley fever(RVF) outbreaks in Kenya from 1950 to 1998 followed periods of abnormally high rainfall. On an interannual scale, periods of above normal rainfall in East Africa are associated with the warm phase of the El Niño/Southern Oscillation (ENSO) phenomenon. Anomalous rainfall floods mosquito-breeding habitats called dambos, which contain transovarially infected mosquito eggs. The eggs hatch Aedes mosquitoes that transmit the RVF virus preferentially to livestock and to humans as well. Analysis of historical data on RVF outbreaks and indicators of ENSO (including Pacific and Indian Ocean sea surface temperatures and the Southern Oscillation Index) indicates that more than three quarters of the RVF outbreaks have occurred during warm ENSO event periods. Mapping of ecological conditions using satellite normalized difference vegetation index (NDVI) data show that areas where outbreaks have occurred during the satellite recording period (1981-1998) show anomalous positive departures in vegetation greenness, an indicator of above-normal precipitation. This is particularly observed in arid areas of East Africa, which are predominantly impacted by this disease. These results indicate a close association between interannual climate variability and RVF outbreaks in Kenya.

  19. Fractional Dosing of Yellow Fever Vaccine to Extend Supply: A Modeling Study

    PubMed Central

    Peak, Corey M.; Leung, Gabriel M.

    2016-01-01

    Background The ongoing yellow fever (YF) epidemic in Angola strains the global vaccine supply, prompting WHO to adopt dose sparing for its vaccination campaign in Kinshasa in July–August 2016. Although a 5-fold fractional-dose vaccine is similar to standard-dose vaccine in safety and immunogenicity, efficacy is untested. There is an urgent need to ensure the robustness of fractional-dose vaccination by elucidating the conditions under which dose fractionation would reduce transmission. Methods We estimate the effective reproductive number for YF in Angola using disease natural history and case report data. With simple mathematical models of YF transmission, we calculate the infection attack rate (IAR, the proportion of population infected over the course of an epidemic) under varying levels of transmissibility and five-fold fractional-dose vaccine efficacy for two vaccination scenarios: (i) random vaccination in a hypothetical population that is completely susceptible; (ii) the Kinshasa vaccination campaign in July–August 2016 with different age cutoff for fractional-dose vaccines. Findings We estimate the effective reproductive number early in the Angola outbreak was between 5·2 and 7·1. If vaccine action is all-or-nothing (i.e. a proportion VE of vaccinees receives complete and the remainder receive no protection), n-fold fractionation can dramatically reduce IAR as long as efficacy VE exceeds 1/n. This benefit threshold becomes more stringent if vaccine action is leaky (i.e. the susceptibility of each vaccinee is reduced by a factor that is equal to the vaccine efficacy VE). The age cutoff for fractional-dose vaccines chosen by the WHO for the Kinshasa vaccination campaign (namely, 2 years) provides the largest reduction in IAR if the efficacy of five-fold fractional-dose vaccines exceeds 20%. Interpretation Dose fractionation is a very effective strategy for reducing infection attack rate that would be robust with a large margin for error in case

  20. Dissection of Antibody Specificities Induced by Yellow Fever Vaccination

    PubMed Central

    Vratskikh, Oksana; Stiasny, Karin; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Jarmer, Johanna; Karrer, Urs; Roggendorf, Michael; Roggendorf, Hedwig; Allwinn, Regina; Heinz, Franz X.

    2013-01-01

    The live attenuated yellow fever (YF) vaccine has an excellent record of efficacy and one dose provides long-lasting immunity, which in many cases may last a lifetime. Vaccination stimulates strong innate and adaptive immune responses, and neutralizing antibodies are considered to be the major effectors that correlate with protection from disease. Similar to other flaviviruses, such antibodies are primarily induced by the viral envelope protein E, which consists of three distinct domains (DI, II, and III) and is presented at the surface of mature flavivirions in an icosahedral arrangement. In general, the dominance and individual variation of antibodies to different domains of viral surface proteins and their impact on neutralizing activity are aspects of humoral immunity that are not well understood. To gain insight into these phenomena, we established a platform of immunoassays using recombinant proteins and protein domains that allowed us to dissect and quantify fine specificities of the polyclonal antibody response after YF vaccination in a panel of 51 vaccinees as well as determine their contribution to virus neutralization by serum depletion analyses. Our data revealed a high degree of individual variation in antibody specificities present in post-vaccination sera and differences in the contribution of different antibody subsets to virus neutralization. Irrespective of individual variation, a substantial proportion of neutralizing activity appeared to be due to antibodies directed to complex quaternary epitopes displayed on the virion surface only but not on monomeric E. On the other hand, DIII-specific antibodies (presumed to have the highest neutralizing activity) as well as broadly flavivirus cross-reactive antibodies were absent or present at very low titers. These data provide new information on the fine specificity as well as variability of antibody responses after YF vaccination that are consistent with a strong influence of individual-specific factors

  1. Dissection of antibody specificities induced by yellow fever vaccination.

    PubMed

    Vratskikh, Oksana; Stiasny, Karin; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Jarmer, Johanna; Karrer, Urs; Roggendorf, Michael; Roggendorf, Hedwig; Allwinn, Regina; Heinz, Franz X

    2013-01-01

    The live attenuated yellow fever (YF) vaccine has an excellent record of efficacy and one dose provides long-lasting immunity, which in many cases may last a lifetime. Vaccination stimulates strong innate and adaptive immune responses, and neutralizing antibodies are considered to be the major effectors that correlate with protection from disease. Similar to other flaviviruses, such antibodies are primarily induced by the viral envelope protein E, which consists of three distinct domains (DI, II, and III) and is presented at the surface of mature flavivirions in an icosahedral arrangement. In general, the dominance and individual variation of antibodies to different domains of viral surface proteins and their impact on neutralizing activity are aspects of humoral immunity that are not well understood. To gain insight into these phenomena, we established a platform of immunoassays using recombinant proteins and protein domains that allowed us to dissect and quantify fine specificities of the polyclonal antibody response after YF vaccination in a panel of 51 vaccinees as well as determine their contribution to virus neutralization by serum depletion analyses. Our data revealed a high degree of individual variation in antibody specificities present in post-vaccination sera and differences in the contribution of different antibody subsets to virus neutralization. Irrespective of individual variation, a substantial proportion of neutralizing activity appeared to be due to antibodies directed to complex quaternary epitopes displayed on the virion surface only but not on monomeric E. On the other hand, DIII-specific antibodies (presumed to have the highest neutralizing activity) as well as broadly flavivirus cross-reactive antibodies were absent or present at very low titers. These data provide new information on the fine specificity as well as variability of antibody responses after YF vaccination that are consistent with a strong influence of individual-specific factors

  2. Molecular characterization of the 17D-204 yellow fever vaccine.

    PubMed

    Salmona, Maud; Gazaignes, Sandrine; Mercier-Delarue, Severine; Garnier, Fabienne; Korimbocus, Jehanara; Colin de Verdière, Nathalie; LeGoff, Jerome; Roques, Pierre; Simon, François

    2015-10-05

    The worldwide use of yellow fever (YF) live attenuated vaccines came recently under close scrutiny as rare but serious adverse events have been reported. The population identified at major risk for these safety issues were extreme ages and immunocompromised subjects. Study NCT01426243 conducted by the French National Agency for AIDS research is an ongoing interventional study to evaluate the safety of the vaccine and the specific immune responses in HIV-infected patients following 17D-204 vaccination. As a preliminary study, we characterized the molecular diversity from E gene of the single 17D-204 vaccine batch used in this clinical study. Eight vials of lyophilized 17D-204 vaccine (Stamaril, Sanofi-Pasteur, Lyon, France) of the E5499 batch were reconstituted for viral quantification, cloning and sequencing of C/prM/E region. The average rate of virions per vial was 8.68 ± 0.07 log₁₀ genome equivalents with a low coefficient of variation (0.81%). 246 sequences of the C/prM/E region (29-33 per vials) were generated and analyzed for the eight vials, 25 (10%) being defective and excluded from analyses. 95% of sequences had at least one nucleotide mutation. The mutations were observed on 662 variant sites distributed through all over the 1995 nucleotides sequence and were mainly non-synonymous (66%). Genome variability between vaccine vials was highly homogeneous with a nucleotide distance ranging from 0.29% to 0.41%. Average p-distances observed for each vial were also homogeneous, ranging from 0.15% to 0.31%. This study showed a homogenous YF virus RNA quantity in vaccine vials within a single lot and a low clonal diversity inter and intra vaccine vials. These results are consistent with a recent study showing that the main mechanism of attenuation resulted in the loss of diversity in the YF virus quasi-species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Crimean-Congo Hemorrhagic Fever Virus Subunit Vaccines Induce High Levels of Neutralizing Antibodies But No Protection in STAT1 Knockout Mice.

    PubMed

    Kortekaas, Jeroen; Vloet, Rianka P M; McAuley, Alexander J; Shen, Xiaoli; Bosch, Berend Jan; de Vries, Laura; Moormann, Rob J M; Bente, Dennis A

    2015-12-01

    Crimean-Congo hemorrhagic fever virus is a tick-borne bunyavirus of the Nairovirus genus that causes hemorrhagic fever in humans with high case fatality. Here, we report the development of subunit vaccines and their efficacy in signal transducer and activator of transcription 1 (STAT1) knockout mice. Ectodomains of the structural glycoproteins Gn and Gc were produced using a Drosophila insect cell-based expression system. A single vaccination of STAT129 mice with adjuvanted Gn or Gc ectodomains induced neutralizing antibody responses, which were boosted by a second vaccination. Despite these antibody responses, mice were not protected from a CCHFV challenge infection. These results suggest that neutralizing antibodies against CCHFV do not correlate with protection of STAT1 knockout mice.

  4. A Case of Yellow Fever Vaccine–Associated Viscerotropic Disease in Ecuador

    PubMed Central

    Douce, Richard W.; Freire, Diana; Tello, Betzabe; Vásquez, Gavino A.

    2010-01-01

    We report the first case of viscerotropic syndrome in Ecuador. Because of similarities between yellow fever and viscerotropic syndrome, the incidence of this recently described complication of vaccination with the 17D yellow fever vaccine is not known. There is a large population in South America that is considered at risk for possible reemergence of urban yellow fever. Knowledge of potentially fatal complications of yellow fever vaccine should temper decisions to vaccinate populations where the disease is not endemic. PMID:20348528

  5. Induction of Cell Cycle and NK Cell Responses by Live-Attenuated Oral Vaccines against Typhoid Fever

    PubMed Central

    Blohmke, Christoph J.; Hill, Jennifer; Darton, Thomas C.; Carvalho-Burger, Matheus; Eustace, Andrew; Jones, Claire; Schreiber, Fernanda; Goodier, Martin R.; Dougan, Gordon; Nakaya, Helder I.; Pollard, Andrew J.

    2017-01-01

    The mechanisms by which oral, live-attenuated vaccines protect against typhoid fever are poorly understood. Here, we analyze transcriptional responses after vaccination with Ty21a or vaccine candidate, M01ZH09. Alterations in response profiles were related to vaccine-induced immune responses and subsequent outcome after wild-type Salmonella Typhi challenge. Despite broad genetic similarity, we detected differences in transcriptional responses to each vaccine. Seven days after M01ZH09 vaccination, marked cell cycle activation was identified and associated with humoral immunogenicity. By contrast, vaccination with Ty21a was associated with NK cell activity and validated in peripheral blood mononuclear cell stimulation assays confirming superior induction of an NK cell response. Moreover, transcriptional signatures of amino acid metabolism in Ty21a recipients were associated with protection against infection, including increased incubation time and decreased severity. Our data provide detailed insight into molecular immune responses to typhoid vaccines, which could aid the rational design of improved oral, live-attenuated vaccines against enteric pathogens. PMID:29075261

  6. Development of a Live Attenuated Bivalent Oral Vaccine Against Shigella sonnei Shigellosis and Typhoid Fever.

    PubMed

    Wu, Yun; Chakravarty, Sumana; Li, Minglin; Wai, Tint T; Hoffman, Stephen L; Sim, B Kim Lee

    2017-01-15

    Shigella sonnei and Salmonella Typhi cause significant morbidity and mortality. We exploited the safety record of the oral, attenuated S. Typhi vaccine (Ty21a) by using it as a vector to develop a bivalent oral vaccine to protect against S. sonnei shigellosis and typhoid fever. We recombineered the S. sonnei form I O-antigen gene cluster into the Ty21a chromosome to create Ty21a-Ss, which stably expresses S. sonnei form I O antigen. To enhance survivability in the acid environment of the stomach, we created an acid-resistant strain, Ty21a-AR-Ss, by inserting Shigella glutaminase-glutamate decarboxylase systems coexpressed with S. sonnei form I O-antigen gene. Mice immunized intranasally with Ty21a-AR-Ss produced antibodies against S. sonnei and S. Typhi, and survived lethal intranasal S. sonnei challenge. This paves the way for proposed good manufacturing practices manufacture and clinical trials intended to test the clinical effectiveness of Ty21a-AR-Ss in protecting against S. sonnei shigellosis and typhoid fever, as compared with the current Ty21a vaccine. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  7. Characterization of recombinant yellow fever-dengue vaccine viruses with human monoclonal antibodies targeting key conformational epitopes.

    PubMed

    Lecouturier, Valerie; Berry, Catherine; Saulnier, Aure; Naville, Sophie; Manin, Catherine; Girerd-Chambaz, Yves; Crowe, James E; Jackson, Nicholas; Guy, Bruno

    2018-04-26

    The recombinant yellow fever-17D-dengue virus, live, attenuated, tetravalent dengue vaccine (CYD-TDV) is licensed in several dengue-endemic countries. Although the vaccine provides protection against dengue, the level of protection differs by serotype and warrants further investigation. We characterized the antigenic properties of each vaccine virus serotype using highly neutralizing human monoclonal antibodies (hmAbs) that bind quaternary structure-dependent epitopes. Specifically, we monitored the binding of dengue virus-1 (DENV-1; 1F4), DENV-2 (2D22) or DENV-3 (5J7) serotype-specific or DENV-1-4 cross-reactive (1C19) hmAbs to the four chimeric yellow fever-dengue vaccine viruses (CYD-1-4) included in phase III vaccine formulations using a range of biochemical and functional assays (dot blot, ELISA, surface plasmon resonance and plaque reduction neutralization assays). In addition, we used the "classic" live, attenuated DENV-2 vaccine serotype, immature CYD-2 viruses and DENV-2 virus-like particles as control antigens for anti-serotype-2 reactivity. The CYD vaccine serotypes were recognized by each hmAbs with the expected specificity, moreover, surface plasmon resonance indicated a high functional affinity interaction with the CYD serotypes. In addition, the hmAbs provided similar protection against CYD and wild-type dengue viruses in the in vitro neutralization assay. Overall, these findings demonstrate that the four CYD viruses used in clinical trials display key conformational and functional epitopes targeted by serotype-specific and/or cross-reactive neutralizing human antibodies. More specifically, we showed that CYD-2 displays serotype- specific epitopes present only on the mature virus. This indicates that the CYD-TDV has the ability to elicit antibody specificities which are similar to those induced by the wild type DENV. Future investigations will be needed to address the nature of CYD-TDV-induced responses after vaccine administration, and how these

  8. Travel Characteristics and Yellow Fever Vaccine Usage Among US Global TravEpiNet Travelers Visiting Countries with Risk of Yellow Fever Virus Transmission, 2009–2011

    PubMed Central

    Jentes, Emily S.; Han, Pauline; Gershman, Mark D.; Rao, Sowmya R.; LaRocque, Regina C.; Staples, J. Erin; Ryan, Edward T.

    2013-01-01

    Yellow fever (YF) vaccine-associated serious adverse events and changing YF epidemiology have challenged healthcare providers to vaccinate only travelers whose risk of YF during travel is greater than their risk of adverse events. We describe the travel characteristics and YF vaccine use among US travelers visiting Global TravEpiNet clinics from January of 2009 to March of 2011. Of 16,660 travelers, 5,588 (34%) had itineraries to areas with risk of YF virus transmission. Of those travelers visiting one country with YF risk (N = 4,517), 71% were vaccinated at the visit, and 20% were presumed to be immune from prior vaccination. However, travelers visiting friends and relatives (odds ratio [OR] = 2.57, 95% confidence interval [95% CI] = 1.27–5.22) or going to Nigeria (OR = 3.01, 95% CI = 1.37–6.62) were significantly more likely to decline vaccination. To optimize YF vaccine use, clinicians should discuss an individual's risk–benefit assessment of vaccination and close knowledge gaps regarding vaccine use among at-risk populations. PMID:23458961

  9. Detection of Rift Valley fever viral activity in Kenya by satellite remote sensing imagery

    NASA Technical Reports Server (NTRS)

    Linthicum, Kenneth J.; Bailey, Charles L.; Davies, F. Glyn; Tucker, Compton J.

    1987-01-01

    Data from the advanced very high resolution radiometer on board the National Oceanic and Atmospheric Administration's polar-orbiting meteorological satellites have been used to infer ecological parameters associated with Rift Valley fever (RVF) viral activity in Kenya. An indicator of potential viral activity was produced from satellite data for two different ecological regions in Kenya, where RVF is enzootic. The correlation between the satellite-derived green vegetation index and the ecological parameters associated with RVF virus suggested that satellite data may become a forecasting tool for RVF in Kenya and, perhaps, in other areas of sub-Saharan Africa.

  10. Contrasting female-male mortality ratios after routine vaccinations with pentavalent vaccine versus measles and yellow fever vaccine. A cohort study from urban Guinea-Bissau.

    PubMed

    Fisker, Ane B; Biering-Sørensen, Sofie; Lund, Najaaraq; Djana, Queba; Rodrigues, Amabelia; Martins, Cesario L; Benn, Christine S

    2016-08-31

    In addition to protection against the target diseases, vaccines may have non-specific effects (NSEs). Measles vaccine (MV) has beneficial NSEs, providing protection against non-measles deaths, most so for girls. By contrast, though protecting against diphtheria, tetanus and pertussis, DTP vaccine is associated with increased female mortality relative to male mortality. In 2008, Guinea-Bissau replaced DTP with the DTP-containing pentavalent vaccine (Penta; DTP-H. influenza type B-Hepatitis B) at 6, 10 and 14weeks and yellow fever vaccine (YF) was to be given with MV. We investigated possible sex-differential mortality rates following Penta and MV+YF vaccination. Bandim Health Project (BHP) registers vaccines given by the three government health centres in the study area and vital status through demographic surveillance. We assessed the association between sex and mortality by vaccination status in Cox proportional hazards models with age as underlying timescale. Follow-up was censored at a subsequent vaccination contact or after 6months of follow-up. Between September 2008 and April 2011, we registered 23,448 vaccination contacts for children aged 42-365days; 17,313 were for Penta and 3028 for MV (2907 co-administered with YF). During follow-up 112 children died. The female/male mortality rate ratio was 1.73 (1.11-2.70) following Penta and 0.38 (0.12-1.19) after MV (p=0.02 for same effect). Adjusting for maternal education or weight-for-age at the time of vaccination did not change the estimates. Penta appears to have the same negative effects on mortality as those seen for DTP. Assessing post-vaccination mortality for boys and girls is necessary to improve the vaccination programme. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Low-Dose Priming Before Vaccination with the Phase I Chloroform-Methanol Residue Vaccine Against Q Fever Enhances Humoral and Cellular Immune Responses to Coxiella Burnetii

    DTIC Science & Technology

    2008-10-01

    type LPS (HENIS). Coxiella burnetii was propagated in the yolk sac cells of embryonated chicken eggs and separated from host components by Renografin...After the third passage, infected spleens were pooled and a suspension was used to infect the yolk sac cells of fertile White Leghorn chicken eggs...1966. Vaccination against Q fever, p. 528–531. In Vaccines against viral and rickettsial diseases in man. PAHO science publication number 147. Pan

  12. Development of real-time RT-PCR for the detection of low concentrations of Rift Valley fever virus.

    PubMed

    Maquart, Marianne; Temmam, Sarah; Héraud, Jean-Michel; Leparc-Goffart, Isabelle; Cêtre-Sossah, Catherine; Dellagi, Koussay; Cardinale, Eric; Pascalis, Hervé

    2014-01-01

    In recent years, Madagascar and the Comoros archipelago have been affected by epidemics of Rift Valley fever (RVF), however detection of Rift Valley fever virus (RVFV) in zebu, sheep and goats during the post epidemic periods was frequently unsuccessful. Thus, a highly sensitive real-time RT-PCR assay was developed for the detection of RVFV at low viral loads. A new RVF SYBR Green RT-PCR targeting the M segment was tested on serum from different RVF seronegative ruminant species collected from May 2010 to August 2011 in Madagascar and the Comoros archipelago and compared with a RVF specific quantitative real time RT-PCR technique, which is considered as the reference technique. The specificity was tested on a wide range of arboviruses or other viruses giving RVF similar clinical signs. A total of 38 out of 2756 serum samples tested positive with the new RT-PCR, whereas the reference technique only detected 5 out of the 2756. The described RT-PCR is an efficient diagnostic tool for the investigation of enzootic circulation of the RVF virus. It allows the detection of low viral RNA loads adapted for the investigations of reservoirs or specific epidemiological situations such as inter-epizootic periods. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Yellow Fever outbreaks in unvaccinated populations, Brazil, 2008-2009.

    PubMed

    Romano, Alessandro Pecego Martins; Costa, Zouraide Guerra Antunes; Ramos, Daniel Garkauskas; Andrade, Maria Auxiliadora; Jayme, Valéria de Sá; Almeida, Marco Antônio Barreto de; Vettorello, Kátia Campomar; Mascheretti, Melissa; Flannery, Brendan

    2014-03-01

    Due to the risk of severe vaccine-associated adverse events, yellow fever vaccination in Brazil is only recommended in areas considered at risk for disease. From September 2008 through June 2009, two outbreaks of yellow fever in previously unvaccinated populations resulted in 21 confirmed cases with 9 deaths (case-fatality, 43%) in the southern state of Rio Grande do Sul and 28 cases with 11 deaths (39%) in Sao Paulo state. Epizootic deaths of non-human primates were reported before and during the outbreak. Over 5.5 million doses of yellow fever vaccine were administered in the two most affected states. Vaccine-associated adverse events were associated with six deaths due to acute viscerotropic disease (0.8 deaths per million doses administered) and 45 cases of acute neurotropic disease (5.6 per million doses administered). Yellow fever vaccine recommendations were revised to include areas in Brazil previously not considered at risk for yellow fever.

  14. Low and declining attack rates of imported typhoid fever in the Netherlands 1997-2014, in spite of a restricted vaccination policy.

    PubMed

    Suryapranata, F S T; Prins, M; Sonder, G J B

    2016-12-01

    Typhoid fever mainly occurs in (sub) tropical regions where sanitary conditions remain poor. In other regions it occurs mainly among returning travelers or their direct contacts. The aim of this study was to evaluate the current Dutch guidelines for typhoid vaccination. Crude annual attack rates (AR) per 100,000 Dutch travelers were calculated during the period 1997 to 2014 by dividing the number of typhoid fever cases by the estimated total number of travelers to a specific country or region. Regions of exposure and possible risk factors were evaluated. During the study period 607 cases of typhoid fever were reported. Most cases were imported from Asia (60%). Almost half of the cases were ethnically related to typhoid risk regions and 37% were cases visiting friends and relatives. The overall ARs for travelers to all regions declined significantly. Countries with the highest ARs were India (29 per 100,000), Indonesia (8 per 100,000), and Morocco (10 per 100,000). There was a significant decline in ARs among travelers to popular travel destinations such as Morocco, Turkey, and Indonesia. ARs among travelers to intermediate-risk areas according to the Dutch guidelines such as Latin America or Sub-Saharan Africa remained very low, despite the restricted vaccination policy for these areas compared to many other guidelines. The overall AR of typhoid fever among travelers returning to the Netherlands is very low and has declined in the past 20 years. The Dutch vaccination policy not to vaccinate short-term travelers to Latin-America, Sub-Saharan Africa, Thailand and Malaysia seems to be justified, because the ARs for these destinations remain very low. These results suggest that further restriction of the Dutch vaccination policy is justified.

  15. [Spotted fever and the invention of its serodiagnosis and vaccination in the Austro-Hungarian army in World War I].

    PubMed

    Flamm, Heinz

    2015-04-01

    After description of the medical institutions and epidemiological situations of the Austro-Hungarian army in World War I the provisions against spotted fever focused on louse control are discussed. The letter specified for the army had to be adjusted for the local populations. 1915 in the k.u.k. military service in Galicia Edmund Weil and Arthur Felix cultivated Proteus strains from urine of soldiers with spotted fever. As sera of such patients agglutinated these bacteria in considerable titers the investigators developed the reliable diagnostic "Weil-Felix-Test" used still today. In the same military area and time Rudolf Weigl invented the anal infection of lice. This enabled him to harvest a great amount of louse intestines containing the spotted fever Rickettsiae in their epithelial cells. Lots with defined numbers of intestines were homogenized, sterilized and used with success as vaccine for medical staff. This sort of vaccine still was used in World War II.

  16. Prediction, Assessment of the Rift Valley Fever Activity in East and Southern Africa 2006 - 2008 and Possible Vector Control Strategies

    USDA-ARS?s Scientific Manuscript database

    Historical episodic outbreaks of Rift Valley fever (RVF) since the early 1950s have been associated with cyclical patterns (El Niño and La Niña) of El Niño Southern Oscillation (ENSO) phenomenon which results in elevated and widespread rainfall over the RVF endemic areas of Africa. Using satellite ...

  17. A novel Sin Nombre virus DNA vaccine and its inclusion in a candidate pan-hantavirus vaccine against hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS).

    PubMed

    Hooper, Jay W; Josleyn, Matthew; Ballantyne, John; Brocato, Rebecca

    2013-09-13

    Sin Nombre virus (SNV; family Bunyaviridae, genus Hantavirus) causes a hemorrhagic fever known as hantavirus pulmonary syndrome (HPS) in North America. There have been approximately 200 fatal cases of HPS in the United States since 1993, predominantly in healthy working-age males (case fatality rate 35%). There are no FDA-approved vaccines or drugs to prevent or treat HPS. Previously, we reported that hantavirus vaccines based on the full-length M gene segment of Andes virus (ANDV) for HPS in South America, and Hantaan virus (HTNV) and Puumala virus (PUUV) for hemorrhagic fever with renal syndrome (HFRS) in Eurasia, all elicited high-titer neutralizing antibodies in animal models. HFRS is more prevalent than HPS (>20,000 cases per year) but less pathogenic (case fatality rate 1-15%). Here, we report the construction and testing of a SNV full-length M gene-based DNA vaccine to prevent HPS. Rabbits vaccinated with the SNV DNA vaccine by muscle electroporation (mEP) developed high titers of neutralizing antibodies. Furthermore, hamsters vaccinated three times with the SNV DNA vaccine using a gene gun were completely protected against SNV infection. This is the first vaccine of any kind that specifically elicits high-titer neutralizing antibodies against SNV. To test the possibility of producing a pan-hantavirus vaccine, rabbits were vaccinated by mEP with an HPS mix (ANDV and SNV plasmids), or HFRS mix (HTNV and PUUV plasmids), or HPS/HFRS mix (all four plasmids). The HPS mix and HFRS mix elicited neutralizing antibodies predominantly against ANDV/SNV and HTNV/PUUV, respectively. Furthermore, the HPS/HFRS mix elicited neutralizing antibodies against all four viruses. These findings demonstrate a pan-hantavirus vaccine using a mixed-plasmid DNA vaccine approach is feasible and warrants further development. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Development of a Real-Time Reverse Transcription-PCR Assay for Global Differentiation of Yellow Fever Virus Vaccine-Related Adverse Events from Natural Infections.

    PubMed

    Hughes, Holly R; Russell, Brandy J; Mossel, Eric C; Kayiwa, John; Lutwama, Julius; Lambert, Amy J

    2018-06-01

    Yellow fever (YF) is a reemerging public health threat, with frequent outbreaks prompting large vaccination campaigns in regions of endemicity in Africa and South America. Specific detection of vaccine-related adverse events is resource-intensive, time-consuming, and difficult to achieve during an outbreak. To address this, we have developed a highly transferable rapid yellow fever virus (YFV) vaccine-specific real-time reverse transcription-PCR (RT-PCR) assay that distinguishes vaccine from wild-type lineages. The assay utilizes a specific hydrolysis probe that includes locked nucleic acids to enhance specific discrimination of the YFV17D vaccine strain genome. Promisingly, sensitivity and specificity analyses reveal this assay to be highly specific to vaccine strain(s) when tested on clinical samples and YFV cell culture isolates of global origin. Taken together, our data suggest the utility of this assay for use in laboratories of varied capacity for the identification and differentiation of vaccine-related adverse events from wild-type infections of both African and South American origin. Copyright © 2018 American Society for Microbiology.

  19. Inactivated yellow fever 17D vaccine: development and nonclinical safety, immunogenicity and protective activity.

    PubMed

    Monath, Thomas P; Lee, Cynthia K; Julander, Justin G; Brown, Alicja; Beasley, David W; Watts, Douglas M; Hayman, Edward; Guertin, Patrick; Makowiecki, Joseph; Crowell, Joseph; Levesque, Philip; Bowick, Gavin C; Morin, Merribeth; Fowler, Elizabeth; Trent, Dennis W

    2010-05-14

    In the last 10 years new concerns have arisen about safety of the live, attenuated yellow fever (YF) 17D vaccine, in particular viscerotropic adverse events, which have a case-fatality rate of 64%. A non-replicating cell culture-based vaccine would not cause these adverse events, and potentially could be used in persons with precautions or contraindications to use of the live vaccine, including age <9 months and >60 years, egg allergy, immune suppression, and pregnancy. We developed a whole virion vaccine from the 17D strain inactivated with beta-propiolactone, and adsorbed to aluminum hydroxide. The inactivated vaccine was highly immunogenic in mice, hamsters, and cynomolgus macaques. After a single dose in hamsters and macaques, neutralizing antibody titers were similar to those elicited by the live 17D vaccine (YF-VAX, Sanofi Pasteur). After two doses of inactivated vaccine, neutralizing antibody titers in hamsters were significantly higher than after a single dose of YF-VAX [geometric mean titer (GMT) 20,480 vs. 1940, respectively (P<0.001, ANOVA)]. Hamsters given a single dose or two doses of inactivated vaccine or a single dose of YF-VAX were fully protected against hepatitis, viremia, weight loss and death after challenge with YF virus (Jimenez strain). A clinical trial of the inactivated vaccine (XRX-001) has been initiated. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Yellow Fever 17DD Vaccine Virus Infection Causes Detectable Changes in Chicken Embryos.

    PubMed

    Manso, Pedro Paulo de Abreu; Dias de Oliveira, Barbara C E P; de Sequeira, Patrícia Carvalho; Maia de Souza, Yuli Rodrigues; Ferro, Jessica Maria dos Santos; da Silva, Igor José; Caputo, Luzia Fátima Gonçalves; Guedes, Priscila Tavares; dos Santos, Alexandre Araujo Cunha; Freire, Marcos da Silva; Bonaldo, Myrna Cristina; Pelajo-Machado, Marcelo

    2015-01-01

    The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system.