Sample records for valley fill lvf

  1. Lineated valley fill (LVF) and lobate debris aprons (LDA) in the Deuteronilus Mensae northern dichotomy boundary region, Mars: Constraints on the extent, age and episodicity of Amazonian glacial events

    NASA Astrophysics Data System (ADS)

    Morgan, Gareth A.; Head, James W.; Marchant, David R.

    2009-07-01

    In order to assess the nature, degradational processes and history of the dichotomy boundary on Mars, we conducted a detailed morphological analysis of a 70,000 km2 region of its northern portion (north-central Deuteronilus Mensae, south of Lyot, in the vicinity of Sinton Crater). This region is characterized by the distinctive sinuous ∼2 km-high plateau scarp boundary, outlying massifs to the north, and extensive fretted valleys dissecting the plateau to the south. These features represent the first-order modification and retreat of the dichotomy boundary, and are further modified by processes that form lineated valley fill (LVF) in the fretted valleys, and lobate debris aprons (LDA) along the dichotomy scarp and surrounding the outlying massifs. We use new high-resolution image and topography data to examine the nature and origin of LVF and LDA and to investigate the climatic and accompanying degradational history of the escarpment. On the basis of our analysis, we conclude that: (1) LVF and LDA deposits within the study region are comprised of the same material, show integrated flow patterns, and originate as debris-covered valley glaciers; a significant amount of ice (hundreds of meters) is likely to remain today beneath a thin cover of sublimation till. (2) There is depositional evidence to suggest glacial highstands at least 800 m above the present level, implying previous conditions in which the distribution of ice was much more widespread; this is supported by similar deposits within many other areas across the dichotomy boundary. (3) The timing of the most recent large-scale activity of the LDA/LVF in this area is about 100-500 million years ago, similar to ages reported elsewhere along the dichotomy boundary. (4) There is evidence for a secondary, but significantly limited phase of glaciation; the deposits of which are limited to the vicinity of the alcoves; similar later phases have also been reported elsewhere along the dichotomy boundary. (5

  2. Estimating the volume of glacial ice on Mars: Geographic and geometric constraints on concentric crater fill, lineated valley fill, and lobate debris aprons along the Martian dichotomy boundary

    NASA Astrophysics Data System (ADS)

    Fassett, C.; Levy, J.; Head, J.

    2013-09-01

    Landforms inferred to have formed from glacial processes are abundant on Mars and include features such as concentric crater fill (CCF), lobate debris aprons (LDA), and lineated valley fill (LVF). Here, we present new mapping of the spatial extent of these landforms derived from CTX and THEMIS VIS image data, and new geometric constraints on the volume of glaciogenic fill material present in concentric crater fill deposits.

  3. Ring-mold craters in lineated valley fill and lobate debris aprons on Mars: Evidence for subsurface glacial ice

    NASA Astrophysics Data System (ADS)

    Kress, Ailish M.; Head, James W.

    2008-12-01

    Ring-mold craters (RMCs), concentric crater forms shaped like a truncated torus and named for their similarity to the cooking implement, are abundant in lobate debris aprons (LDA) and lineated valley fill (LVF) in the northern mid-latitudes on Mars, but are not seen in surrounding terrain. LDA and LVF have been interpreted to form by flow of debris, but uncertainty remains concerning the mechanism of flow, with hypotheses ranging from pore-ice-assisted creep of talus to debris-covered glaciers. RMCs average less than a few hundred meters in diameter and occur in association with normal bowl-shaped impact craters whose average diameters are commonly less than RMCs. On the basis of their morphologic similarities to laboratory impact craters formed in ice and the physics of impact cratering into layered material, we interpret the unusual morphology of RMCs to be the result of impact into a relatively pure ice substrate below a thin regolith, with strength-contrast properties, spallation, viscous flow and sublimation being factors in the development of the ring-mold shape. Associated smaller bowl-shaped craters are interpreted to have formed within a layer of regolith-like sublimation till overlying the ice substrate. Estimates of crater depths of excavation between populations of bowl-shaped and ring-mold craters suggest that the debris layer is relatively thin. These results support the hypothesis that LDA and LVF formed as debris-covered glaciers and predict that many hundreds of meters of ice remain today in LDA and LVF deposits, beneath a veneer of sublimation till. RMCs can be used in other parts of Mars to predict and assess the presence of ancient ice-related deposits.

  4. Flow patterns of lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars: Evidence for extensive mid-latitude glaciation in the Late Amazonian

    NASA Astrophysics Data System (ADS)

    Baker, David M. H.; Head, James W.; Marchant, David R.

    2010-05-01

    A variety of Late Amazonian landforms on Mars have been attributed to the dynamics of ice-related processes. Evidence for large-scale, mid-latitude glacial episodes existing within the last 100 million to 1 billion years on Mars has been presented from analyses of lobate debris aprons (LDA) and lineated valley fill (LVF) in the northern and southern mid-latitudes. We test the glacial hypothesis for LDA and LVF along the dichotomy boundary in the northern mid-latitudes by examining the morphological characteristics of LDA and LVF surrounding two large plateaus, proximal massifs, and the dichotomy boundary escarpment north of Ismeniae Fossae (centered at 45.3°N and 39.2°E). Lineations and flow directions within LDA and LVF were mapped using images from the Context (CTX) camera, the Thermal Emission Imaging Spectrometer (THEMIS), and the High Resolution Stereo Camera (HRSC). Flow directions were then compared to topographic contours derived from the Mars Orbiter Laser Altimeter (MOLA) to determine the down-gradient components of LDA and LVF flow. Observations indicate that flow patterns emerge from numerous alcoves within the plateau walls, are integrated over distances of up to tens of kilometers, and have down-gradient flow directions. Smaller lobes confined within alcoves and superposed on the main LDA and LVF represent a later, less extensive glacial phase. Crater size-frequency distributions of LDA and LVF suggest a minimum (youngest) age of 100 Ma. The presence of ring-mold crater morphologies is suggestive that LDA and LVF are formed of near-surface ice-rich bodies. From these observations, we interpret LDA and LVF within our study region to result from formerly active debris-covered glacial flow, consistent with similar observations in the northern mid-latitudes of Mars. Glacial flow was likely initiated from the accumulation and compaction of snow and ice on plateaus and in alcoves within the plateau walls as volatiles were mobilized to the mid

  5. Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Yu, Shui-Beih; Kuo, Long-Chen

    2001-04-01

    The NNE-striking Longitudinal Valley Fault (LVF) in eastern Taiwan is an extremely active high-angle thrust fault. It bounds the Coastal Range and the Longitudinal Valley, which is considered a collision boundary between the Philippine Sea and the Eurasian plates. Repeated GPS data in the Longitudinal Valley area from 1992 to 1999 are utilized to study the spatial variation of crustal motion along the LVF. With respect to Penghu in the Chinese continental margin, velocities for stations on the western side of the LVF (Longitudinal Valley and eastern Central Range) are 18-35 mm/yr in directions 283-311°, whereas those on the eastern side of the LVF, the Coastal Range, are 28-68 mm/yr in directions 303-324°. A major discontinuity of about 30 mm/yr on the rate of crustal motion across the Longitudinal Valley is attributed to the aseismic slip along the LVF as revealed by trilateration data previously. To the south of Fengping, the block motions of the Coastal Range are 31-40 mm/yr in 317-330° relative to the Central Range, while the near-fault motions are 13-33 mm/yr in 309-336°. Various partitions on the left-lateral strike-slip and convergent components along the LVF are found. In the southern Longitudinal Valley crustal motion is mainly accommodated on the LVF and the Luyeh Fault. In contrast, those in the central and northern Longitudinal Valley are partly taken up on the faults to the east of the LVF or result in the elastic deformation of the Coastal Range. The crustal motion in the northern Longitudinal Valley area is likely to be distributed in the several NE-striking thrusts in a horsetail pattern and obliquely cut the northern Coastal Range, with a small portion of fault-slips along the LVF. Data from dense-deployed GPS networks across the LVF can be employed to give better estimates of near-fault motions and delineate the surface traces of the LVF. Repeated GPS and leveling data from two stations on both ends of the Yuli Bridge that are 575 m apart

  6. Lineated Valley Fills and Lobate Debris Aprons in Coloe Fossae: Evolutionary characteristics and time-stratigraphic relationships.

    NASA Astrophysics Data System (ADS)

    Schreiner, Björn; van Gasselt, Stephan; Neukum, Gerhard; HRSC Co-Investigator Team

    2010-05-01

    Mid-latitude regions of Mars, especially the crustal dichotomy boundary between highlands and northern lowlands are characterized by lineated valley fills (LVF) and lobate debris aprons (LDA). These features reveal evidence of ice-rich deposits. LDAs are assumed to consist of a mixture of ice and rock/debris consistent with models of apron formation such as rock glacier ice assisted creep of talus, ice-rich landslides, or debris-covered glaciers. Deposition of ice at these latitudes is consistent with athmospheric circulation models and predictions of spin axis and orbital variations for the past history of Mars. In this study we measured crater size frequency distributions of LVS and LDA including unrelaxed glacier-like convex bodies in the Coloe Fossae region (35°N, 55°E) and determined late amazonian crater retention ages of 30-50 Ma and 80-100 Ma which gives evidence of repeated deposition of mantling material from surrounding head walls with continuous resurfacing between active periods. We use new HRSC data for topography and imaging in conjunction with high resolution CTX imaging data.

  7. A calibration method of infrared LVF based spectroradiometer

    NASA Astrophysics Data System (ADS)

    Liu, Jiaqing; Han, Shunli; Liu, Lei; Hu, Dexin

    2017-10-01

    In this paper, a calibration method of LVF-based spectroradiometer is summarize, including spectral calibration and radiometric calibration. The spectral calibration process as follow: first, the relationship between stepping motor's step number and transmission wavelength is derivative by theoretical calculation, including a non-linearity correction of LVF;second, a line-to-line method was used to corrected the theoretical wavelength; Finally, the 3.39 μm and 10.69 μm laser is used for spectral calibration validation, show the sought 0.1% accuracy or better is achieved.A new sub-region multi-point calibration method is used for radiometric calibration to improving accuracy, results show the sought 1% accuracy or better is achieved.

  8. Valley fill in the Roswell-Artesia area, New Mexico

    USGS Publications Warehouse

    Lyford, Forest P.

    1973-01-01

    Drill samples from 225 water and oil wells in an area 70 miles long and 20 miles wide in the Roswell-Artesia area, southeastern New Mexico were examined. A thickness map and a saturated thickness map of the valley-fill sediments were constructed. Maximum depth of valley fill is about 300 feet in large closed depressions near Roswell, Hagerman, and Artesia. The depressions were formed by the solution of carbonates and evaporites that underlie the fill. Maximum saturated thickness is about 250 feet in depressions near Hagerman and Artesia and about 300 feet in a depression near Roswell.

  9. Recharge of valley-fill aquifers in the glaciated northeast from upland runoff

    USGS Publications Warehouse

    Williams, J.H.; Morrissey, D.J.

    1996-01-01

    Channeled and unchanneled runoff from till-covered bedrock uplands is a major source of recharge to valley-fill aquifers in the glaciated northeastern United States. Streamflow measurements and model simulation of average steady-state conditions indicate that upland runoff accounted for more recharge to two valley-fill aquifers in moderately high topographic-relief settings than did direct infiltration of precipitation. Recharge from upland runoff to a modeled valley-fill aquifer in an area of lower relief was significant but less than that from direct infiltration of precipitation. The amount of upland runoff available for recharging valley-fill aquifers in the glaciated Northeast ranges from about 1.5 to 2.5 cubic feet per second per square mile of drainage area that borders the aquifer. Stream losses from tributaries that drain the uplands commonly range from 0.3 to 1.5 cubic feet per second per 1,000 feet of wetted channel where the tributaries cross alluvial fans in the main valleys. Recharge of valley-fill aquifers from channeled runoff was estimated from measured losses and average runoff rates and was represented in aquifer models as specified fluxes or simulated by head-dependent fluxes with streamflow routing in the model cells that represent the tributary streams. Unchanneled upland runoff, which includes overland and subsurface flow, recharges the valley-fill aquifers at the contact between the aquifer and uplands near the base of the bordering till-covered hillslopes. Recharge from unchanneled runoff was estimated from average runoff rates and the hillslope area that borders the aquifer and was represented as specified fluxes to model-boundary cells along the valley walls.

  10. The Effects of Mountaintop Mines and Valley Fills on Aquatic ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report, The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central Appalachian Coalfields. This report assesses the state of the science on the environmental impacts of mountaintop mines and valley fills (MTM-VF) on streams in the central Appalachian coalfields. These coalfields cover about 48,000 square kilometers (122 million acres) in West Virginia, Kentucky, Virginia and Tennessee, USA. Our reviews focused on the impacts on mountaintop removal coal mining, which as its name suggests, involves removing all or some portion of the top of a mountain or ridge to expose and mine one or more coal seams. The excess overburden is disposed of in constructed fills in small valleys or hollows adjacent to the mining site. Our conclusions, based on evidence from the peer-reviewed literature and from the U.S. Environmental Protection Agency's Programmatic Environmental Impact Statement released in 2005, are that mountaintop mines and valley fills lead directly to five principal alterations of stream ecosystems: springs and ephemeral, intermittent and perennial streams are permanently lost with the removal of the mountain and from burial under fill, concentrations of major chemical ions are persistently elevated downstream, degraded water quality reaches levels that are acutely lethal to organisms in standard aquatic toxicity tests, selenium concentrations are elevated, reaching concentrations t

  11. Three-thrust fault system at the plate suture of arc-continent collision in the southernmost Longitudinal Valley, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, J.; Chen, H.; Hsu, Y.; Yu, S.

    2013-12-01

    component. Taking into account of the recent study on the regional seismic Vp tomography, it shows a high velocity zone with steep east-dipping angle fills the gap under the Longitudinal Valley between the opposing verging LVF and the Central Range fault, implying a possible rolled-back forearc basement under the Coastal Range.

  12. The Effects of Mountaintop Mines and Valley Fills on Aquatic ...

    EPA Pesticide Factsheets

    This report assesses the state of the science on the environmental impacts of mountaintop mines and valley fills (MTM-VF) on streams in the Central Appalachian Coalfields. Our review focused on the aquatic impacts of mountaintop removal coal mining, which, as its name suggests, involves removing all or some portion of the top of a mountain or ridge to expose and mine one or more coal seams. The excess overburden is disposed of in constructed fills in small valleys or hollows adjacent to the mining site. MTM-VF lead directly to five principal alterations of stream ecosystems: (1) springs, intermittent streams, and small perennial streams are permanently lost with the removal of the mountain and from burial under fill, (2) concentrations of major chemical ions are persistently elevated downstream, (3) degraded water quality reaches levels that are acutely lethal to standard laboratory test organisms, (4) selenium concentrations are elevated, reaching concentrations that have caused toxic effects in fish and birds and (5) macroinvertebrate and fish communities are consistently and significantly degraded. This report assesses the state of the science on the environmental impacts of Mountaintop Mines and Valley Fills (MTM-VF) on streams in the Central Appalachian Coalfields. The draft report will be externally peer reviewed by EPA's Science Advisory Board in early 2010.

  13. Hydrogeology of a drift-filled bedrock valley near Lino Lakes, Anoka County, Minnesota

    USGS Publications Warehouse

    Winter, T.C.; Pfannkuch, H.O.

    1976-01-01

    The bedrock surface of east-central Minnesota is dissected by an intricate network of valleys. Outside the bedrock valley at site B, 3 mi (4. 8 km) from site A, 100 ft (30 m) of drift overlies the bedrock surface. Observation wells were installed at the two sites to determine the vertical ground-water movement between the various aquifer units and the lateral movement between the two sites. An aquifer test of the lowest valley-fill aquifer at site A showed that the observation well completed in the same aquifer as the pumping well responded immediately; whereas a lag of about 100 min occurred between the lower valley fill and uppermost body of sand and gravel. This indicates that the hydraulic connection between these two layers is poor at the immediate site. Test results show that the lower sand-and-gravel aquifer has a transmissivity between 14,000 and 27,000 ft2/d (1,300 and 2,500 m2/d). Although the hydraulic gradient is vertically downward in the valley, much of the drift fill is poorly permeable. This suggests that the quantity of downward-percolating water reaching the lowest valley-fill aquifer is relatively small at the test site. Because valley cut through a number of bedrock aquifers in the region, they could potentially be an important avenue of contamination from land-surface waste. In addition, the vast network of bedrock valleys in the Twin Cities area might cause contaminants to disseminate rather rapidly throughout a large area.

  14. Valley-fill sequences and onlap geometries, Lower Cretaceous Muddy Sandstone, Kitty Field, Powder River basin, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, M.H.; Gustason, E.R.

    1987-05-01

    The Muddy Sandstone at Kitty field is a valley-fill sequence that records a late Albian sea level rise and accompanying transgression. The valley was cut during a preceding sea level lowstand. Stratal geometries and facies successions within the valley fill demonstrate the history of transgression was not gradual and progressive. Rather, the valley fill comprises a series of discrete, time-bounded, depositional units which onlap the erosional surface. Five time-bounded depositional units were defined by facies successions and were used to define onlap geometries. Facies successions within individual units record progressive shoaling. Capping each succession, there may be a planar disconformity,more » a thin bioturbated interval, or the deepest water facies of the next depositional event. Thus, the termination of each depositional event is marked by an episode of rapid deepening. At a single geographic location, stratal successions within older depositional units represent more landward facies than those within younger units. Therefore, the onlap geometry of the valley-fill sequence consists of a landward-stepping arrangement of depositional units. The primary reservoirs within the valley-fill sequence, at Kitty field, are laterally coalesced, channel-belt sandstones at the base and barrier island sandstones at the top. Reservoir sandstones of lesser quality occur within the intermediate estuarine facies. The stacking pattern, developed by onlap of the units, results in multiple pay zones within mid-valley reaches. The boundaries of each depositional unit define a high-resolution, chronostratigraphic correlation of valley-fill strata, a correlation corroborated by bentonites. This correlation method gives an accurate description of the internal geometry of valley-fill strata and, therefore, provides a basis for understanding the process of transgressive onlap.« less

  15. Changes in biodiversity and ecosystem function downstream from mountaintop removal and valley fill coal mining

    EPA Science Inventory

    Mountaintop removal and valley fill coal mining has altered the physicochemical landscape of the Central Appalachian region in the U.S. Increased specific conductance and levels of component ions downstream from valley fill sites are toxic to aquatic life and can negatively impa...

  16. Impact of valley fills on streamside salamanders in southern West Virginia

    USGS Publications Warehouse

    Wood, Petra Bohall; Williams, Jennifer M.

    2013-01-01

    Valley fills associated with mountaintop-removal mining bury stream headwaters and affect water quality and ecological function of reaches below fills. We quantified relative abundance of streamside salamanders in southern West Virginia during 2002 in three streams below valley fills (VFS) and in three reference streams (RS). We surveyed 36 10- × 2-m stream transects, once in summer and fall, paired by order and structure. Of 2,343 salamanders captured, 66.7% were from RS. Total salamanders (adults plus larvae) were more abundant in RS than VFS for first-order and second-order reaches. Adult salamanders had greater abundance in first-order reaches of RS than VFS. Larval salamanders were more abundant in second-order reaches of RS than VFS. No stream width or mesohabitat variables differed between VFS and RS. Only two cover variables differed. Silt cover, greater in VFS than RS first-order reaches, is a likely contributor to reduced abundance of salamanders in VFS. Second-order RS had more boulder cover than second-order VFS, which may have contributed to the higher total and larval salamander abundance in RS. Water chemistry assessments of our VFS and RS reported elevated levels of metal and ion concentrations in VFS, which can depress macroinvertebrate populations and likely affect salamander abundance. Valley fills appear to have significant negative effects on stream salamander abundance due to alterations in habitat structure, water quality and chemistry, and macroinvertebrate communities in streams below fills.

  17. Recycling of Pleistocene valley fills dominates 125 ka of sediment flux, upper Indus River

    NASA Astrophysics Data System (ADS)

    Munack, Henry; Blöthe, Jan Henrik; Fülöp, Réka-Hajnalka; Codilean, Alexandru T.; Fink, David; Korup, Oliver

    2016-04-01

    Rivers draining the semiarid Transhimalayan Ranges along the western Tibetan Plateau margin underwent alternating phases of massive valley infill and incision in Pleistocene times. The imprints of these cut-and-fill cycles on long-term sediment fluxes have remained largely elusive. We investigate the timing and geomorphic consequences of headward incision of the Zanskar River, which taps the vast More Plains valley fill that currently impedes drainage of the endorheic high-altitude basins of Tso Kar and Tso Moriri. In situ 10Be exposure dating and topographic analyses indicate that a phase of valley infill gave way to net dissection of the >250-m thick sedimentary stacks ˜125 ka ago, i.e. during the last interglacial (MIS 5e). Rivers eroded >14.7 km3 of sediment from the Zanskar headwaters since then, fashioning specific sediment yields that surpass 10Be-derived denudation rates from neighbouring catchments by factors of two to ten. We conclude that recycling of Pleistocene valley fills has provided Transhimalayan headwater rivers with more sediment than bedrock denudation, at least since the beginning of the last glacial cycle. This protracted liberation of sediment stored in thick valley fills could bias rate estimates of current sediment loads and long-term bedrock denudation.

  18. Valley Fill Design and Construction Alternatives to Improve Ecological Performance

    EPA Pesticide Factsheets

    This presentation discusses; current challenges, comprehensive approaches, BMPs, the Middlefork Development, the Guy Cove project, and a path forward when looking at construction alternatives to improve the ecological performance of valley fills.

  19. Reservoir performance of Late Eocene incised valley fills, Cusiana Field, Llanos Foothills, Eastern Colombia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulham, A.; Edward, W.; App, J.

    1996-12-31

    The Cusiana Field is located in the Llanos Foothills of Eastern Colombia. The principal reservoir is the late Eocene Mirador Formation which comprises >50% of reserves. Currently the Mirador reservoir is providing nearly all of the 150,00bopd of production from the Cusiana Field. The Mirador reservoir comprises a stack of incised valley deposits. The fills of the valleys are dominated by quartz arenite sandstones. The average porosity of the valley sandstones is 8% which reflects abundant quartz cement ({approximately}14%) and significant compaction during deep burial ({approximately}20,000feet). Single valleys are up to 70 feet thick and exhibit a distinctive bipartite fillmore » that reflects changing energy conditions during filling. Bases of valleys have the coarsest grain size and have sedimentological and trace fossil evidence for deposition in highly stressed, brackish water environments. The upper parts of the valleys are typically finer grained and were deposited in more saline settings. Despite the low porosity of the Mirador valleys, drill stem tests and production log data show that they have phenomenal performance characteristics. Rates of {ge}10,000bopd are achieved from single valleys. Bases of the valley fills are the key contributors to flow. Integration of detailed core and pore system analysis with the reservoir performance data shows that the permeability fabric of the Mirador can be explained by original depositional architecture and simple loss of primary porosity. Comparison of Cusiana with other quartz-rich sandstones from around the world suggests that it`s low porosity/high performance is predictable.« less

  20. Intelligent electric vehicle charging: Rethinking the valley-fill

    NASA Astrophysics Data System (ADS)

    Valentine, Keenan; Temple, William G.; Zhang, K. Max

    This study proposes an intelligent PEV charging scheme that significantly reduces power system cost while maintaining reliability compared to the widely discussed valley-fill method of aggregated charging in the early morning. This study considers optimal PEV integration into the New York Independent System Operator's (NYISO) day-ahead and real-time wholesale energy markets for 21 days in June, July, and August of 2006, a record-setting summer for peak load. NYISO market and load data is used to develop a statistical Locational Marginal Price (LMP) and wholesale energy cost model. This model considers the high cost of ramping generators at peak-load and the traditional cost of steady-state operation, resulting in a framework with two competing cost objectives. Results show that intelligent charging assigns roughly 80% of PEV load to valley hours to take advantage of low steady-state cost, while placing the remaining 20% equally at shoulder and peak hours to reduce ramping cost. Compared to unregulated PEV charging, intelligent charging reduces system cost by 5-16%; a 4-9% improvement over the flat valley-fill approach. Moreover, a Charge Flexibility Constraint (CFC), independent of market modeling, is constructed from a vehicle-at-home profile and the mixture of Level 1 and Level 2 charging infrastructure. The CFC is found to severely restrict the ability to charge vehicles during the morning load valley. This study further shows that adding more Level 2 chargers without regulating PEV charging will significantly increase wholesale energy cost. Utilizing the proposed intelligent PEV charging method, there is a noticeable reduction in system cost if the penetration of Level 2 chargers is increased from 70/30 to 50/50 (Level 1/Level 2). However, the system benefit is drastically diminished for higher penetrations of Level 2 chargers.

  1. Stratigraphic architecture of back-filled incised-valley systems: Pennsylvanian-Permian lower Cutler beds, Utah, USA

    NASA Astrophysics Data System (ADS)

    Wakefield, Oliver J. W.; Mountney, Nigel P.

    2013-12-01

    The Pennsylvanian to Permian lower Cutler beds collectively form the lowermost stratigraphic unit of the Cutler Group in the Paradox Basin, southeast Utah. The lower Cutler beds represent a tripartite succession comprising lithofacies assemblages of aeolian, fluvial and shallow-marine origin, in near equal proportion. The succession results from a series of transgressive-regressive cycles, driven by repeated episodes of climatic variation and linked changes in relative sea-level. Relative sea-level changes created a number of incised-valleys, each forming through fluvial incision during lowered base-level. Aeolian dominance during periods of relative sea-level lowstand aids incised-valley identification as the erosive bounding surface juxtaposes incised-valley infill against stacked aeolian faces. Relative sea-level rises resulted in back-flooding of the incised-valleys and their infill via shallow-marine and estuarine processes. Back-flooded valleys generated marine embayments within which additional local accommodation was exploited. Back-filling is characterised by a distinctive suite of lithofacies arranged into a lowermost, basal fill of fluvial channel and floodplain architectural elements, passing upwards into barform elements with indicators of tidal influence, including inclined heterolithic strata and reactivation surfaces. The incised-valley fills are capped by laterally extensive and continuous marine limestone elements that record the drowning of the valleys and, ultimately, flooding and accumulation across surrounding interfluves (transgressive surface). Limestone elements are characterised by an open-marine fauna and represent the preserved expression of maximum transgression.

  2. Evaluation of methods for delineating areas that contribute water to wells completed in valley-fill aquifers in Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Madden, Thomas M.

    1994-01-01

    Valley-fill aquifers in Pennsylvania are the source of drinking water for many wells in the glaciated parts of the State and along major river valleys. These aquifers area subject to contamination because of their shallow water-table depth and highly transmissive sediments. The possibility for contamination of water-supply wells in valley-fill aquifers can be minimized by excluding activities that could contaminate areas that contribute water to supply wells. An area that contributes water to a well is identified in this report as either an area of diversion, time-of-travel area, or contributing area. The area of diversion is a projection to land surface of the valley-fill aquifer volume through which water is diverted to a well and the time-of travel area is that fraction of the area of diversion through which water moves to the well in a specified time. The contributing area, the largest of three areas, includes the area of diversion but also incorporates bedrock uplands and other area that contribute water. Methods for delineating areas of diversion and contributing areas in valley-fill aquifers, described and compared in order of increasing complexity, include fixed radius, uniform flow, analytical, semianalytical, and numerical modeling. Delineated areas are considered approximations because the hydraulic properties and boundary conditions of the real ground-water system are simplified even in the most complex numerical methods. Successful application of any of these methods depends on the investigator's understanding of the hydrologic system in and near the well field, and the limitations of the method. The hydrologic system includes not only the valley-fill aquifer but also the regional surface-water and ground-water flow systems within which the valley is situated. As shown by numerical flow simulations of a well field in the valley-fill aquifer along Marsh Creek Valley near Asaph, Pa., water from upland bedrock sources can provide nearly all the water

  3. Ring-Mold Craters on Lineated Valley Fill, Lobate Debris Aprons, and Concentric Crater Fill on Mars: Implications for Near-Surface Structure, Composition, and Age.

    NASA Astrophysics Data System (ADS)

    Kress, A.; Head, J. W.

    2009-03-01

    Analysis of ring-mold crater populations on lineated valley fill, lobate debris aprons, and concentric crater fill on Mars and of ice-impact experiments suggest crater-count-derived ages may be erroneously old.

  4. Seismic-refraction study of suspected drift-filled bedrock valleys in Ramsey County, Minnesota

    USGS Publications Warehouse

    Woodward, D.G.

    1985-01-01

    A drift-filled bedrock valley was thought to incise the St. Peter aquifer to an altitude between 770 and 800 feet above sea level at the Koppers site. The interpretation of a seismic profile just east of the Koppers site is not conclusive, but suggests that a bedrock valley may be present near the middle of the line. The interpretation of a second seismic profile across the westward extension of the same suspected valley also is not conclusive, but suggests that a bedrock valley may be present at the north end of the line. The optimal field layout for each line at the site (longer shot offsets) could not be obtained because of limited space available in the densely developed residential neighborhoods.

  5. Geohydrology and Water Quality of the Valley-Fill Aquifer System in the Upper Sixmile Creek and West Branch Owego Creek Valleys in the Town of Caroline, Tompkins County, New York

    USGS Publications Warehouse

    Miller, Todd S.

    2009-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Town of Caroline and Tompkins County Planning Department, began a study of the valley-fill aquifer system in upper Sixmile Creek and headwaters of West Branch Owego Creek valleys in the Town of Caroline, NY. The purpose of the study is to provide geohydrologic data to county and town planners as they develop a strategy to manage and protect their water resources. The first aquifer reach investigated in this series is in the Town of Caroline and includes the upper Sixmile Creek valley and part of West Branch Owego Creek valley. The portions of the valley-fill aquifer system that are comprised of saturated coarse-grained sediments including medium to coarse sand and sandy gravel form the major aquifers. Confined sand and gravel units form the major aquifers in the western and central portions of the upper Sixmile Creek valley, and an unconfined sand and gravel unit forms the major aquifer in the eastern portion of the upper Sixmile Creek valley and in the headwaters of the West Branch Owego Creek valley. The valley-fill deposits are thinnest near the edges of the valley where they pinch out along the till-mantled bedrock valley walls. The thickness of the valley fill in the deepest part of the valley, at the western end of the study area, is about 100 feet (ft); the thickness is greater than 165 ft on top of the Valley Heads Moraine in the central part of the valley. An estimated 750 people live over and rely on groundwater from the valley-fill aquifers in upper Sixmile Creek and West Branch Owego Creek valleys. Most groundwater withdrawn from the valley-fill aquifers is pumped from wells with open-ended 6-inch diameter casings; the remaining withdrawals are from shallow dug wells or cisterns that collect groundwater that discharges to springs (especially in the Brooktondale area). The valley-fill aquifers are the sources of water for about 200 households, several apartment complexes, two mobile home parks

  6. Ground-water hydrology of the upper Sevier River Basin, south-central Utah, and simulation of ground-water flow in the valley-fill in Panguitch Valley.

    USGS Publications Warehouse

    Thiros, Susan A.; Brothers, William C.

    1993-01-01

    The ground-water hydrology of the upper Sevier River basin, primarily of the unconsolidated valley-fill aquifers, was studied from 1988 to 1989. Recharge to the valley-fill aquifers is mostly by seepage from surface-water sources. Changes in soil-moisture content am water levels were measured in Panguitch Valley both at a flood-irrigated and at a sprinkler-irrigated alfalfa field to quantify seepage from unconsumed irrigation water. Lag time between irrigation and water-level response decreased from 6 to 2 days in the flood-irrigated field as the soil-moisture content increased. Water levels measured in the sprinkler-irrigated field did not respond to irrigation. Discharge from the valley-fill aquifer to the Sevier River in Panguitch Valley is about 53,570 acre-feet per year.Water levels measured in wells from 1951 to 1989 tend to fluctuate with the quantity of precipitation falling at higher elevations. Ground-water discharge to the Sevier River in Panguitch Valley causes a general increase in the specific conductance of the river in a downstream direction.A three-layered ground-water-flow model was used to simulate the effects of changes in irrigation practices am increased ground-water withdrawals in Panguitch Valley. The establishment of initial conditions consisted of comparing simulated water levels and simulated gains and losses from the Sevier River and selected canals with values measured during the 1988 irrigation season. The model was calibrated by comparing water-level changes measured from 1961 to 1963 to simulated changes. A simulated change from flood to sprinkler irrigation resulted in a maximum decline in water level of 0.9 feet after the first year of change. Simulating additional discharge from wells resulted in drawdowns of about 20 feet after the first year of pumping.

  7. Sequence stratigraphic controls on reservoir characterization and architecture: case study of the Messinian Abu Madi incised-valley fill, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Mohamed I.; Slatt, Roger M.

    2013-12-01

    Understanding sequence stratigraphy architecture in the incised-valley is a crucial step to understanding the effect of relative sea level changes on reservoir characterization and architecture. This paper presents a sequence stratigraphic framework of the incised-valley strata within the late Messinian Abu Madi Formation based on seismic and borehole data. Analysis of sand-body distribution reveals that fluvial channel sandstones in the Abu Madi Formation in the Baltim Fields, offshore Nile Delta, Egypt, are not randomly distributed but are predictable in their spatial and stratigraphic position. Elucidation of the distribution of sandstones in the Abu Madi incised-valley fill within a sequence stratigraphic framework allows a better understanding of their characterization and architecture during burial. Strata of the Abu Madi Formation are interpreted to comprise two sequences, which are the most complex stratigraphically; their deposits comprise a complex incised valley fill. The lower sequence (SQ1) consists of a thick incised valley-fill of a Lowstand Systems Tract (LST1)) overlain by a Transgressive Systems Tract (TST1) and Highstand Systems Tract (HST1). The upper sequence (SQ2) contains channel-fill and is interpreted as a LST2 which has a thin sandstone channel deposits. Above this, channel-fill sandstone and related strata with tidal influence delineates the base of TST2, which is overlain by a HST2. Gas reservoirs of the Abu Madi Formation (present-day depth ˜3552 m), the Baltim Fields, Egypt, consist of fluvial lowstand systems tract (LST) sandstones deposited in an incised valley. LST sandstones have a wide range of porosity (15 to 28%) and permeability (1 to 5080mD), which reflect both depositional facies and diagenetic controls. This work demonstrates the value of constraining and evaluating the impact of sequence stratigraphic distribution on reservoir characterization and architecture in incised-valley deposits, and thus has an important impact on

  8. AQUATIC IMPACTS STUDY OF MOUNTAINTOP MINING AND VALLEY FILL OPERATIONS IN WEST VIRGINIA

    EPA Science Inventory

    The practice of mountaintop mining and valley fill operations in West Virginia is fraught with controversy. In 1999, EPA, along with several state and federal agencies, initiated an environmental impact study (EIS) to investigate the economic, social and ecological impacts of th...

  9. Hydrogeologic Framework and Ground Water in Basin-Fill Deposits of the Diamond Valley Flow System, Central Nevada

    USGS Publications Warehouse

    Tumbusch, Mary L.; Plume, Russell W.

    2006-01-01

    The Diamond Valley flow system, an area of about 3,120 square miles in central Nevada, consists of five hydrographic areas: Monitor, Antelope, Kobeh, and Diamond Valleys and Stevens Basin. Although these five areas are in a remote part of Nevada, local government officials and citizens are concerned that the water resources of the flow system eventually could be further developed for irrigation or mining purposes or potentially for municipal use outside the study area. In order to better understand the flow system, the U.S. Geological Survey in cooperation with Eureka, Lander, and Nye Counties and the Nevada Division of Water Resources, is conducting a multi-phase study of the flow system. The principal aquifers of the Diamond Valley flow system are in basin-fill deposits that occupy structural basins comprised of carbonate rocks, siliciclastic sedimentary rocks, igneous intrusive rocks, and volcanic rocks. Carbonate rocks also function as aquifers, but their extent and interconnections with basin-fill aquifers are poorly understood. Ground-water flow in southern Monitor Valley is from the valley margins toward the valley axis and then northward to a large area of discharge by evapotranspiration (ET) that is formed south of a group of unnamed hills near the center of the valley. Ground-water flow from northern Monitor Valley, Antelope Valley, and northern and western parts of Kobeh Valley converges to an area of ground-water discharge by ET in central and eastern Kobeh Valley. Prior to irrigation development in the 1960s, ground-water flow in Diamond Valley was from valley margins toward the valley axis and then northward to a large discharge area at the north end of the valley. Stevens Basin is a small upland basin with internal drainage and is not connected with other parts of the flow system. After 40 years of irrigation pumping, a large area of ground-water decline has developed in southern Diamond Valley around the irrigated area. In this part of Diamond

  10. The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central Appalachian Coalfields (2011 Final)

    EPA Science Inventory

    EPA announced the availability of the final report, The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central Appalachian Coalfields. This report assesses the state of the science on the environmental impacts of mountaintop mines and valley ...

  11. Flow Patterns of Lobate Debris Aprons and Lineated Valley Fill North of Ismeniae Fossae, Mars

    NASA Astrophysics Data System (ADS)

    Baker, D. M.; Head, J. W.; Marchant, D. R.

    2009-03-01

    Flow patterns are mapped within lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars. Flowlines are sourced in plateau alcoves and form large, well-integrated systems, consistent with a debris-covered glacier interpretation.

  12. Sedimentology and reservoir heterogeneity of a valley-fill deposit-A field guide to the Dakota Sandstone of the San Rafael Swell, Utah

    USGS Publications Warehouse

    Kirschbaum, Mark A.; Schenk, Christopher J.

    2010-01-01

    Valley-fill deposits form a significant class of hydrocarbon reservoirs in many basins of the world. Maximizing recovery of fluids from these reservoirs requires an understanding of the scales of fluid-flow heterogeneity present within the valley-fill system. The Upper Cretaceous Dakota Sandstone in the San Rafael Swell, Utah contains well exposed, relatively accessible outcrops that allow a unique view of the external geometry and internal complexity of a set of rocks interpreted to be deposits of an incised valley fill. These units can be traced on outcrop for tens of miles, and individual sandstone bodies are exposed in three dimensions because of modern erosion in side canyons in a semiarid setting and by exhumation of the overlying, easily erodible Mancos Shale. The Dakota consists of two major units: (1) a lower amalgamated sandstone facies dominated by large-scale cross stratification with several individual sandstone bodies ranging in thickness from 8 to 28 feet, ranging in width from 115 to 150 feet, and having lengths as much as 5,000 feet, and (2) an upper facies composed of numerous mud-encased lenticular sandstones, dominated by ripple-scale lamination, in bedsets ranging in thickness from 5 to 12 feet. The lower facies is interpreted to be fluvial, probably of mainly braided stream origin that exhibits multiple incisions amalgamated into a complex sandstone body. The upper facies has lower energy, probably anastomosed channels encased within alluvial and coastal-plain floodplain sediments. The Dakota valley-fill complex has multiple scales of heterogeneity that could affect fluid flow in similar oil and gas subsurface reservoirs. The largest scale heterogeneity is at the formation level, where the valley-fill complex is sealed within overlying and underlying units. Within the valley-fill complex, there are heterogeneities between individual sandstone bodies, and at the smallest scale, internal heterogeneities within the bodies themselves. These

  13. Valley-fill alluviation during the Little Ice Age (ca. A.D. 1400-1880), Paria River basin and southern Colorado Plateau, United States

    USGS Publications Warehouse

    Hereford, R.

    2002-01-01

    Valley-fill alluvium deposited from ca. A.D. 1400 to 1880 is widespread in tributaries of the Paria River and is largely coincident with the Little Ice Age epoch of global climate variability. Previous work showed that alluvium of this age is a mappable stratigraphic unit in many of the larger alluvial valleys of the southern Colorado Plateau. The alluvium is bounded by two disconformities resulting from prehistoric and historic arroyo cutting at ca. A.D. 1200-1400 and 1860-1910, respectively. The fill forms a terrace in the axial valleys of major through-flowing streams. This terrace and underlying deposits are continuous and interfinger with sediment in numerous small tributary valleys that head at the base of hillslopes of sparsely vegetated, weakly consolidated bedrock, suggesting that eroded bedrock was an important source of alluvium along with in-channel and other sources. Paleoclimatic and high-resolution paleoflood studies indicate that valley-fill alluviation occured during a long-term decrease in the frequency of large, destructive floods. Aggradation of the valleys ended about A.D. 1880, if not two decades earlier, with the beginning of historic arroyo cutting. This shift from deposition to valley entrenchment near the close of the Little Ice Age generally coincided with the beginning of an episode of the largest floods in the preceding 400-500 yr, which was probably caused by an increased recurrence and intensity of flood-producing El Nin??o events beginning at ca. A.D. 1870.

  14. Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany

    NASA Astrophysics Data System (ADS)

    Schrott, Lothar; Hufschmidt, Gabi; Hankammer, Martin; Hoffmann, Thomas; Dikau, Richard

    2003-09-01

    Spatial patterns of sediment storage types and associated volumes using a novel approach for quantifying valley fill deposits are presented for a small alpine catchment (17 km 2) in the Bavarian Alps. The different sediment storage types were analysed with respect to geomorphic coupling and sediment flux activity. The most landforms in the valley in terms of surface area were found to be talus slopes (sheets and cones) followed by rockfall deposits and alluvial fans and plains. More than two-thirds of the talus slopes are relict landforms, completely decoupled from the geomorphic system. Notable sediment transport is limited to avalanche tracks, debris flows, and along floodplains. Sediment volumes were calculated using a combination of polynomial functions of cross sections, seismic refraction, and GIS modelling. A total of, 66 seismic refraction profiles were carried out throughout the valley for a more precise determination of sediment thicknesses and to check the bedrock data generated from geomorphometric analysis. We calculated the overall sediment volume of the valley fill deposits to be 0.07 km 3. This corresponds to a mean sediment thickness of 23.3 m. The seismic refraction data showed that large floodplains and sedimentation areas, which have been developed through damming effects from large rockfalls, are in general characterised by shallow sediment thicknesses (<20 m). By contrast, the thickness of several talus slopes is more than twice as much. For some locations (e.g., narrow sections of valley), the polynomial-generated cross sections resulted in overestimations of up to one order of magnitude; whereas in sections with a moderate valley shape, the modelled cross sections are in good accordance with the obtained seismic data. For the quantification of valley fill deposits, a combined application of bedrock data derived from polynomials and geophysical prospecting is highly recommended.

  15. Comparison of peak discharges among sites with and without valley fills for the July 8-9, 2001 flood in the headwaters of Clear Fork, Coal River basin, mountaintop coal-mining region, southern West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Brogan, Freddie D.

    2003-01-01

    The effects of mountaintop-removal mining practices on the peak discharges of streams were investigated in six small drainage basins within a 7-square-mile area in southern West Virginia. Two of the small basins had reclaimed valley fills, one basin had reclaimed and unreclaimed valley fills, and three basins did not have valley fills. Indirect measurements of peak discharge for the flood of July 8-9, 2001, were made at six sites on streams draining the small basins. The sites without valley fills had peak discharges with 10- to 25-year recurrence intervals, indicating that rainfall intensities and totals varied among the study basins. The flood-recurrence intervals for the three basins with valley fills were determined as though the peak discharges were those from rural streams without the influence of valley fills, and ranged from less than 2 years to more than 100 years.

  16. Catastrophic valley fills record large Himalayan earthquakes, Pokhara, Nepal

    NASA Astrophysics Data System (ADS)

    Stolle, Amelie; Bernhardt, Anne; Schwanghart, Wolfgang; Hoelzmann, Philipp; Adhikari, Basanta R.; Fort, Monique; Korup, Oliver

    2017-12-01

    Uncertain timing and magnitudes of past mega-earthquakes continue to confound seismic risk appraisals in the Himalayas. Telltale traces of surface ruptures are rare, while fault trenches document several events at best, so that additional proxies of strong ground motion are needed to complement the paleoseismological record. We study Nepal's Pokhara basin, which has the largest and most extensively dated archive of earthquake-triggered valley fills in the Himalayas. These sediments form a 148-km2 fan that issues from the steep Seti Khola gorge in the Annapurna Massif, invading and plugging 15 tributary valleys with tens of meters of debris, and impounding several lakes. Nearly a dozen new radiocarbon ages corroborate at least three episodes of catastrophic sedimentation on the fan between ∼700 and ∼1700 AD, coinciding with great earthquakes in ∼1100, 1255, and 1344 AD, and emplacing roughly >5 km3 of debris that forms the Pokhara Formation. We offer a first systematic sedimentological study of this formation, revealing four lithofacies characterized by thick sequences of mid-fan fluvial conglomerates, debris-flow beds, and fan-marginal slackwater deposits. New geochemical provenance analyses reveal that these upstream dipping deposits of Higher Himalayan origin contain lenses of locally derived river clasts that mark time gaps between at least three major sediment pulses that buried different parts of the fan. The spatial pattern of 14C dates across the fan and the provenance data are key to distinguishing these individual sediment pulses, as these are not evident from their sedimentology alone. Our study demonstrates how geomorphic and sedimentary evidence of catastrophic valley infill can help to independently verify and augment paleoseismological fault-trench records of great Himalayan earthquakes, while offering unparalleled insights into their long-term geomorphic impacts on major drainage basins.

  17. Lineated Valley Fill and Lobate Debris Aprons in the Deuteronilus Mensae Region, Mars: Implications for Regional Glaciation

    NASA Astrophysics Data System (ADS)

    Kress, A.; Head, J. W.

    2009-03-01

    Studies of lineated valley fill and lobate debris aprons in the Deuteronilus Mensae region, Mars, reveal that they are endmembers of a continuum of morphologies with the same mode of origin, which is that of debris-covered glacier.

  18. Geohydrology of the Unconsolidated Valley-Fill Aquifer in the Meads Creek Valley, Schuyler and Steuben Counties, New York

    USGS Publications Warehouse

    Miller, Todd S.; Bugliosi, Edward F.; Reddy, James E.

    2008-01-01

    The Meads Creek valley encompasses 70 square miles of predominantly forested uplands in the upper Susquehanna River drainage basin. The valley, which was listed as a Priority Waterbody by the New York State Department of Environmental Conservation in 2004, is prone to periodic flooding, mostly in its downstream end, where development is occurring most rapidly. Hydraulic characteristics of the unconsolidated valley-fill aquifer were evaluated, and seepage rates in losing and gaining tributaries were calculated or estimated, in an effort to delineate the aquifer geometry and identify the factors that contribute to flooding. Results indicated that (1) Meads Creek gained about 61 cubic feet of flow per second (about 6.0 cubic feet per second per mile of stream channel) from ground-water discharge and inflow from tributaries in its 10.2-mile reach between the northernmost and southernmost measurement sites; (2) major tributaries in the northern part of the valley are not significant sources of recharge to the aquifer; and (3) major tributaries in the central and southern part of the valley provide recharge to the aquifer. The ground-water portion of streamflow in Meads Creek (excluding tributary inflow) was 11.3 cubic feet per second (ft3/s) in the central part of the valley and 17.2 ft3/s in the southern part - a total of 28.5 ft3/s. Ground-water levels were measured in 29 wells finished in unconfined deposits for construction of a potentiometric-surface map to depict directions of ground-water flow within the valley. In general, ground water flows from the edges of the valley toward Meads Creek and ultimately discharges to it. The horizontal hydraulic gradient for the entire 12-mile-long aquifer averages about 30 feet per mile, whereas the gradient in the southern fourth of the valley averages about half that - about 17 feet per mile. A water budget for the aquifer indicated that 28 percent of recharge was derived from precipitation that falls on the aquifer, 32

  19. Spin-valley skyrmions in graphene at filling factor ν =-1

    NASA Astrophysics Data System (ADS)

    Lian, Yunlong; Goerbig, Mark O.

    2017-06-01

    We model quantum Hall skyrmions in graphene monolayer at quarter filling by a theory of CP3 fields and study the energy minimizing skyrmions in the presence of valley pseudospin anisotropy and Zeeman coupling. We present a diagram of all types of skyrmions in a wide range of the anisotropy parameters. For each type of skyrmion, we visualize it on three Bloch spheres, and present the profiles of its texture on the graphene honeycomb lattice, thus providing references for the scanning-tunneling microscopy and spectroscopy imaging of spin-pseudospin textures in graphene monolayer in the quantum Hall regime. Besides the spin and pseudospin skyrmions for the corresponding degrees of freedom of an electron in the N =0 Landau level, we discuss two unusual types—the "entanglement skyrmion", the texture of which lies in the space of the entanglement of spin and pseudospin, as well as the "deflated pseudospin skyrmion" with partial entanglement. For all skyrmion types, we study the dependence of the energy and the size of a skyrmion on the anisotropy parameters and perpendicular magnetic field. We also propose three ways to modify the anisotropy energy, namely, the sample tilting, the substrate anisotropy, and the valley pseudospin analog of Zeeman coupling.

  20. Hydrogeologic framework and estimates of groundwater storage for the Hualapai Valley, Detrital Valley, and Sacramento Valley basins, Mohave County, Arizona

    USGS Publications Warehouse

    Truini, Margot; Beard, L. Sue; Kennedy, Jeffrey; Anning, Dave W.

    2013-01-01

    We have investigated the hydrogeology of the Hualapai Valley, Detrital Valley, and Sacramento Valley basins of Mohave County in northwestern Arizona to develop a better understanding of groundwater storage within the basin fill aquifers. In our investigation we used geologic maps, well-log data, and geophysical surveys to delineate the sedimentary textures and lithology of the basin fill. We used gravity data to construct a basin geometry model that defines smaller subbasins within the larger basins, and airborne transient-electromagnetic modeled results along with well-log lithology data to infer the subsurface distribution of basin fill within the subbasins. Hydrogeologic units (HGUs) are delineated within the subbasins on the basis of the inferred lithology of saturated basin fill. We used the extent and size of HGUs to estimate groundwater storage to depths of 400 meters (m) below land surface (bls). The basin geometry model for the Hualapai Valley basin consists of three subbasins: the Kingman, Hualapai, and southern Gregg subbasins. In the Kingman subbasin, which is estimated to be 1,200 m deep, saturated basin fill consists of a mixture of fine- to coarse-grained sedimentary deposits. The Hualapai subbasin, which is the largest of the subbasins, contains a thick halite body from about 400 m to about 4,300 m bls. Saturated basin fill overlying the salt body consists predominately of fine-grained older playa deposits. In the southern Gregg subbasin, which is estimated to be 1,400 m deep, saturated basin fill is interpreted to consist primarily of fine- to coarse-grained sedimentary deposits. Groundwater storage to 400 m bls in the Hualapai Valley basin is estimated to be 14.1 cubic kilometers (km3). The basin geometry model for the Detrital Valley basin consists of three subbasins: northern Detrital, central Detrital, and southern Detrital subbasins. The northern and central Detrital subbasins are characterized by a predominance of playa evaporite and fine

  1. 75 FR 18499 - The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... environmental permitting requirements for Appalachian mountaintop removal and other surface coal mining projects.../guidance/mining.html ). Both documents will be reviewed by an independent review panel convened by EPA's... the state of the science on the ecological impacts of Mountaintop Mining and Valley Fill (MTM-VF...

  2. Coordinating plug-in electric vehicle charging with electric grid: Valley filling and target load following

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Jabbari, Faryar; Brown, Tim; Samuelsen, Scott

    2014-12-01

    Plug-in electric vehicles (PEVs) shift energy consumption from petroleum to electricity for the personal transportation sector. This work proposes a decentralized charging protocol for PEVs with grid operators updating the cost signal. Each PEV calculates its own optimal charging profile only once based on the cost signal, after it is plugged in, and sends the result back to the grid operators. Grid operators only need to aggregate charging profiles and update the load and cost. The existing PEV characteristics, national household travel survey (NHTS), California Independent System Operator (CAISO) demand, and estimates for future renewable generation in California are used to simulate PEV operation, PEV charging profiles, grid demand, and grid net load (demand minus renewable). Results show the proposed protocol has good performance for overnight net load valley filling if the costs to be minimized are proportional to the net load. Annual results are shown in terms of overnight load variation and comparisons are made with grid level valley filling results. Further, a target load can be approached in the same manner by using the gap between current load and the target load as the cost. The communication effort involved is quite modest.

  3. Assessing Different Mechanisms of Toxicity in Mountaintop Removal/Valley Fill Coal Mining-Affected Watershed Samples Using Caenorhabditis elegans

    PubMed Central

    Turner, Elena A.; Kroeger, Gretchen L.; Arnold, Mariah C.; Thornton, B. Lila; Di Giulio, Richard T.; Meyer, Joel N.

    2013-01-01

    Mountaintop removal-valley fill coal mining has been associated with a variety of impacts on ecosystem and human health, in particular reductions in the biodiversity of receiving streams. However, effluents emerging from valley fills contain a complex mixture of chemicals including metals, metalloids, and salts, and it is not clear which of these are the most important drivers of toxicity. We found that streamwater and sediment samples collected from mine-impacted streams of the Upper Mud River in West Virginia inhibited the growth of the nematode Caenorhabditis elegans. Next, we took advantage of genetic and transgenic tools available in this model organism to test the hypotheses that the toxicity could be attributed to metals, selenium, oxidative stress, or osmotic stress. Our results indicate that in general, the toxicity of streamwater to C. elegans was attributable to osmotic stress, while the toxicity of sediments resulted mostly from metals or metalloids. PMID:24066176

  4. Boundary of the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This vector data set delineates the approximate boundary of the Eagle River watershed valley-fill aquifer (ERWVFA). This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. The boundary of the ERWVFA was developed by combining information from two data sources. The first data source was a 1:250,000-scale geologic map of the Leadville quadrangle developed by Day and others (1999). The location of Quaternary sediments was used as a first approximation of the ERWVFA. The boundary of the ERWVFA was further refined by overlaying the geologic map with Digital Raster Graphic (DRG) scanned images of 1:24,000 topographic maps (U.S. Geological Survey, 2001). Where appropriate, the boundary of the ERWVFA was remapped to correspond with the edge of the valley-fill aquifer marked by an abrupt change in topography at the edge of the valley floor throughout the Eagle River watershed. The boundary of the ERWVFA more closely resembles a hydrogeomorphic region presented by Rupert (2003, p. 8) because it is based upon general geographic extents of geologic materials and not on an actual aquifer location as would be determined through a rigorous hydrogeologic investigation.

  5. Hydrology of the Valley-fill and carbonate-rock reservoirs, Pahrump Valley, Nevada-California

    USGS Publications Warehouse

    Malmberg, Glenn T.

    1967-01-01

    This is the second appraisal of the water supply of Pahrump Valley, made 15 years after the first cooperative study. In the first report the average recharge was estimated to be 23,000 acre-feet per year, only 1,000 acre-feet more than the estimate made in this report. All this recharge was considered to be available for development. Because of the difficulty in salvaging the subsurface outflow from the deep carbonate-rock reservoir, this report concludes that the perennial yield may be only 25,000 acre-feet. In 1875, Bennetts and Manse Springs reportedly discharged a total of nearly 10,000 acre-feet of water from the valley-fill reservoir. After the construction of several flowing wells in 1910, the spring discharge began to decline. In the mid-1940's many irrigation wells were drilled, and large-capacity pumps were installed. During the 4-year period of this study (1959-62), the net pumping draft averaged about 25,000 acre-feet per year, or about twice the estimated yield. In 1962 Bennetts Spring was dry, and the discharge from Marse Spring was only 1,400 acre-feet. During the period February 1959-February 1962, pumping caused an estimated storage depletion of 45,000 acre-feet, or 15,000 acre-feet per year. If the overdraft is maintained, depletion of stored water will continue and pumping costs will increase. Water levels in the vicinity of the Pahrump, Manse, and Fowler Ranches declined more than ]0 feet in response to the pumping during this period, and they can be expected to continue to decline at ,the projected rate of more than 3 feet per year. The chemical quality of the pumped water has been satisfactory for irrigation and domestic use. Recycling of water pumped or irrigation, however, could result in deterioration of the water quality with time.

  6. Valley-Fill Sandstones in the Kootenai Formation on the Crow Indian Reservation, South-Central Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, David A

    Subsurface data continues to be collected, organized, and a digital database is being prepared for the project. An ACCESS database and PC-Arcview is being used to manage and interpret the data. Well data and base map data have been successfully imported into Arcview and customized to meet the needs of this project. Log tops and other data from about ¾ of the exploration wells in the area have been incorporated into the data base. All of the four 30" X 60" geologic quadrangles have been scanned to produce a digital surface geologic data base for the Crow Reservation and allmore » are nearing completion. Formal technical review prior to publication has been completed for all the quadrangles; Billings, Bridger; Hardin, and Lodge Grass. Final GIS edits are being made before being forwarded to the Bureau's Publications Department. Field investigations were completed during the third quarter, 1997. With the help of a student field assistant from the Crow Tribe, the entire project area was inventoried for the presence of valley-fill deposits in the Kootenai Formation. Field inventory has resulted in the identification of nine exposures of thick valley-fill deposits. These appear to represent at least four major westward-trending valley systems. All the channel localities have been measured and described in detail and paleocurrent data has been collected from all but one locality. In addition, two stratigraphic sections were measured in areas where channels are absent. One channel has bee traced over a distance of about 60 miles and exhibits definite paleostructural control. An abstract describing this channel has been submitted and accepted for presentation at the Williston Basin Symposium in October, 1998.« less

  7. Structural and Functional Characteristics of Natural and Constructed Channels Draining a Reclaimed Mountaintop Removal and Valley Fill Coal Mine

    EPA Science Inventory

    Mountaintop removal and valley fill (MTR/VF) coal mining has altered the landscape of the Central Appalachian region in the USA. Among the changes are large-scale topographic recontouring, burial of headwater streams, and degradation of downstream water quality. The goals of our ...

  8. Natural heat storage in a brine-filled solar pond in the Tully Valley of central New York

    USGS Publications Warehouse

    Hayhurst, Brett; Kappel, William M.

    2014-01-01

    The Tully Valley, located in southern Onondaga County, New York, has a long history of unusual natural hydrogeologic phenomena including mudboils (Kappel, 2009), landslides (Tamulonis and others, 2009; Pair and others, 2000), landsurface subsidence (Hackett and others, 2009; Kappel, 2009), and a brine-filled sinkhole or “Solar pond” (fig. 1), which is documented in this report. A solar pond is a pool of salty water (brine) which stores the sun’s energy in the form of heat. The saltwater naturally forms distinct layers with increasing density between transitional zones (haloclines) of rapidly changing specific conductance with depth. In a typical solar pond, the top layer has a low salt content and is often times referred to as the upper convective zone (Lu and others, 2002). The bottom layer is a concentrated brine that is either convective or temperature stratified dependent on the surrounding environment. Solar insolation is absorbed and stored in the lower, denser brine while the overlying halocline acts as an insulating layer and prevents heat from moving upwards from the lower zone (Lu and others, 2002). In the case of the Tully Valley solar pond, water within the pond can be over 90 degrees Fahrenheit (°F) in late summer and early fall. The purpose of this report is to summarize observations at the Tully Valley brine-filled sinkhole and provide supplemental climate data which might affect the pond salinity gradients insolation (solar energy).

  9. The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central Appalachian Coalfields (External Review Draft)

    EPA Science Inventory

    This report assesses the state of the science on the environmental impacts of mountaintop mines and valley fills (MTM-VF) on streams in the Central Appalachian Coalfields. Our review focused on the aquatic impacts of mountaintop removal coal mining, which, as its name suggests, ...

  10. Hydrogeologic Appraisal of the Valley-Fill Aquifer in the Port Jervis Trough, Sullivan and Ulster Counties, New York

    USGS Publications Warehouse

    Reynolds, Richard J.

    2007-01-01

    The nature and extent of valley-fill aquifers in the Port Jervis Trough was evaluated for a 16 mile section of this valley from the Orange-Sullivan County line near Westbrookville to the village of Napanoch in Ulster County as part of the U.S. Geological Survey's Detailed Aquifer Mapping Program in New York State. The principal aquifer in the Port Jervis Trough is a 50 feet thick outwash aquifer that extends from the Phillipsport Moraine near Summitville, southward through the study area to Port Jervis, N.Y. Previous studies had estimated as much as 500 feet of saturated drift in parts of the Trough, but new well data show that much of the valley fill consists of fine-grained lacustrine sediments. Drillers' logs show that the outwash aquifer south of Summitville is underlain by as much as 275 feet of lacustrine silt and clay. North of the Phillipsport Moraine, three large glaciolacustrine deltas that were built into Glacial Lake Wawarsing provide some local and discontinuous confined aquifers through their coarser bottomset beds. Elsewhere in the Trough, collapsed and buried portions of kame deltas and terraces provide local confined aquifers. The outwash aquifer appears to be very transmissive, as evidenced by the high specific capacity of 130 gallons per minute per foot [(gal/min)/ft] of a commercial test well screened in the aquifer.

  11. Structural and functional characteristics of natural and constructed channels draining a reclaimed mountaintop removal and valley fill coal mine

    EPA Science Inventory

    Mountaintop removal and valley fill (MTR/VF) coal mining has altered the landscape of the Central Appalachian region in the United States. The goals of this study were to 1) compare the structure and function of natural and constructed stream channels in forested and MTR/VF catch...

  12. Paleovalley fills: Trunk vs. tributary

    USGS Publications Warehouse

    Kvale, E.P.; Archer, A.W.

    2007-01-01

    A late Mississippian-early Pennsylvanian eustatic sea level drop resulted in a complex lowstand drainage network being eroded across the Illinois Basin in the eastern United States. This drainage system was filled during the early part of the Pennsylvanian. Distinct differences can be recognized between the trunk and tributary paleovalley fills. Fills preserved within the trunk systems tend to be fluvially dominated and consist of bed-load deposits of coarse- to medium-grained sandstone and conglomerate. Conversely, the incised valleys of tributary systems tend to be filled with dark mudstone, thinly interbedded sandstones, and mudstones and siltstones. These finer grained facies exhibit marine influences manifested by tidal rhythmites, certain traces fossils, and macro- and microfauna. Examples of tributary and trunk systems, separated by no more than 7 km (4.3 mi) along strike, exhibit these styles of highly contrasting fills. Useful analogs for understanding this Pennsylvanian system include the Quaternary glacial sluiceways present in the lower Ohio, White, and Wabash river valleys of Indiana (United States) and the modern Amazon River (Brazil). Both the Amazon River and the Quaternary rivers of Indiana have (or had) trunk rivers that are (were) dominated by large quantities of bed load relative to their tributaries. The trunk valley systems of these analogs aggraded much more rapidly than their tributary valleys, which evolved into lakes because depositional rates along the trunk are (were) so high that the mouths of the tributaries have been dammed by bed-load deposits. These Holocene systems illustrate that sediment yields can significantly influence the nature of fill successions within incised valleys independent of rates of sea level changes or proximity to highstand coastlines. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  13. Impacts of Mountaintop Removal and Valley Fill Coal Mining on C and N Processing in Terrestrial Soils and Headwater Streams.

    EPA Science Inventory

    We measured C and N cycling indicators in Appalachian watersheds impacted by mountaintop removal and valley fill (MTR/VF) coal mining, and in nearby forested watersheds. These watersheds include ephemeral, intermittent, and perennial stream reaches, and the length of time since d...

  14. Export of detritus and invertebrate from headwater streams: linking mountaintop removal and valley fill coal mining to downstream receiving waters

    EPA Science Inventory

    Mountaintop removal and valley fill (MTR/VF) coal mining has resulted in large scale alteration of the topography, reduced forest productivity, and burial of headwater streams in the U.S. Central Appalachians. Although MTR/VF coal mining has occurred for several decades and the ...

  15. Using Seismic Refraction and Ground Penetrating Radar (GPR) to Characterize the Valley Fill in Beaver Meadows, Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Kramer, N.; Harry, D. L.; Wohl, E. E.

    2010-12-01

    This study is one of the first to use near surface geophysical techniques to characterize the subsurface stratigraphy in a high alpine, low gradient valley with a past glacial history and to obtain a preliminary grasp on the impact of Holocene beaver activity. Approximately 1 km of seismic refraction data and 5 km of GPR data were collected in Beaver Meadows, Rocky Mountain National Park. An asymmetric wedge of sediment ranging in depth from 0-20 m transverse to the valley profile was identified using seismic refraction. Complementary analysis of the GPR data suggests that the valley fill can be subdivided into till deposited during the Pleistocene glaciations and alluvium deposited during the Holocene. Two main facies were identified in the GPR profiles through pattern recognition. Facie Fd, which consists of chaotic discontinuous reflectors with an abundance of diffractions, is interpreted to be glacial till. Facie Fc, which is a combination of packages of complex slightly continuous reflectors interfingered with continuous horizontal to subhorizontal reflectors, is interpreted to be post-glacial alluvium and includes overbank, pond and in-channel deposits. Fc consistently overlies Fd throughout the study area and is no more than 7 m thick in the middle of the valley. The thickness of Holocene sedimentation (<7 m) is much less than the total amount of valley fill identified in the seismic refraction survey (0-20 m). A subfacie of Fc, Fch, which has reflectors with long periods was identified within Fc and is interpreted to be ponded sediments. The spatial distribution of facie Fch, along with: slight topographical features resembling buried beaver dams, a high abundance of fine sediment including silts and clays, historical records of beavers, and the name "Beaver Meadows" all suggest that Holocene beaver activity played a large role in sediment accumulation at this site, despite the lack of surficial relict beaver dams containing wood.

  16. Geology and water resources of Owens Valley, California

    USGS Publications Warehouse

    Hollett, Kenneth J.; Danskin, Wesley R.; McCaffrey, William F.; Walti, Caryl L.

    1991-01-01

    Owens Valley, a long, narrow valley located along the east flank of the Sierra Nevada in east-central California, is the main source of water for the city of Los Angeles. The city diverts most of the surface water in the valley into the Owens River-Los Angeles Aqueduct system, which transports the water more than 200 miles south to areas of distribution and use. Additionally, ground water is pumped or flows from wells to supplement the surface-water diversions to the river-aqueduct system. Pumpage from wells needed to supplement water export has increased since 1970, when a second aqueduct was put into service, and local concerns have been expressed that the increased pumpage may have had a detrimental effect on the environment and the indigenous alkaline scrub and meadow plant communities in the valley. The scrub and meadow communities depend on soil moisture derived from precipitation and the unconfined part of a multilayered aquifer system. This report, which describes the hydrogeology of the aquifer system and the water resources of the valley, is one in a series designed to (1) evaluate the effects that groundwater pumping has on scrub and meadow communities and (2) appraise alternative strategies to mitigate any adverse effects caused by, pumping. Two principal topographic features are the surface expression of the geologic framework--the high, prominent mountains on the east and west sides of the valley and the long, narrow intermountain valley floor. The mountains are composed of sedimentary, granitic, and metamorphic rocks, mantled in part by volcanic rocks as well as by glacial, talus, and fluvial deposits. The valley floor is underlain by valley fill that consists of unconsolidated to moderately consolidated alluvial fan, transition-zone, glacial and talus, and fluvial and lacustrine deposits. The valley fill also includes interlayered recent volcanic flows and pyroclastic rocks. The bedrock surface beneath the valley fill is a narrow, steep-sided graben

  17. Facies analysis of Tertiary basin-filling rocks of the Death Valley regional ground-water system and surrounding areas, Nevada and California

    USGS Publications Warehouse

    Sweetkind, Donald S.; Fridrich, Christopher J.; Taylor, Emily

    2001-01-01

    Existing hydrologic models of the Death Valley region typically have defined the Cenozoic basins as those areas that are covered by recent surficial deposits, and have treated the basin-fill deposits that are concealed under alluvium as a single unit with uniform hydrologic properties throughout the region, and with depth. Although this latter generalization was known to be flawed, it evidently was made because available geologic syntheses did not provide the basis for a more detailed characterization. As an initial attempt to address this problem, this report presents a compilation and synthesis of existing and new surface and subsurface data on the lithologic variations between and within the Cenozoic basin fills of this region. The most permeable lithologies in the Cenozoic basin fills are freshwater limestones, unaltered densely welded tuffs, and little-consolidated coarse alluvium. The least permeable lithologies are playa claystones, altered nonwelded tuffs, and tuffaceous and clay-matrix sediments of several types. In all but the youngest of the basin fills, permeability probably decreases strongly with depth owing to a typically increasing abundance of volcanic ash or clay in the matrices of the clastic sediments with increasing age (and therefore with increasing depth in general), and to increasing consolidation and alteration (both hydrothermal and diagenetic) with increasing depth and age. This report concludes with a categorization of the Cenozoic basins of the Death Valley region according to the predominant lithologies in the different basin fills and presents qualitative constraints on the hydrologic properties of these major lithologic categories.

  18. Comparison of storm response of streams in small, unmined and valley-filled watersheds, 1999-2001, Ballard fork, West Virginia

    USGS Publications Warehouse

    Messinger, Terence

    2003-01-01

    During storms when rainfall intensity exceeded about 1 inch per hour, peak unit runoff from the Unnamed Tributary (surface-mined and filled) Watershed exceeded peak unit runoff from the Spring Branch (unmined) Watershed in the Ballard Fork Watershed in southern West Virginia. During most storms, those with intensity less than about 1 inch per hour, peak unit (area-normalized) flows were greater from the Spring Branch Watershed than the Unnamed Tributary Watershed. One storm that produced less than an inch of rain before flow from the previous storm had receded caused peak unit flow from the Unnamed Tributary Watershed to exceed peak unit flow from the Spring Branch Watershed. Peak unit flow was usually similar in Spring Branch and Ballard Fork. Peak unit flows are expected to decrease with increasing watershed size in homogeneous watersheds; drainage area and proportion of the three watersheds covered by valley fills are 0.19 square mile (mi?) and 44 percent for the Unnamed Tributary Watershed, 0.53 mi? and 0 percent for the Spring Branch Watershed, and 2.12 mi? and 12 percent for the Ballard Fork Watershed. Following all storms with sufficient rainfall intensity, about 0.25 inches per hour, the storm hydrograph from the Unnamed Tributary Watershed showed a double peak, as a sharp initial rise was followed by a decrease in flow and then a delayed secondary peak of water that had apparently flowed through the valley fill. Hortonian (excess overland) flow may be important in the Unnamed Tributary Watershed during intense storms, and may cause the initial peak on the rising arm of storm hydrographs; the water composing the initial peaks may be conveyed by drainage structures on the mine. Ballard Fork and Spring Branch had hydrographs with single peaks, typical of elsewhere in West Virginia. During all storms with 1-hour rainfall greater than 0.75 inches or 24-hour rainfall greater than 1.75 inches during which all stream gages recorded a complete record, the Unnamed

  19. Selenium in ecosystems within the mountaintop coal mining and valley-fill region of southern West Virginia-assessment and ecosystem-scale modeling

    USGS Publications Warehouse

    Presser, Theresa S.

    2013-01-01

    Investigating the presence and variability of prey and predator species in demographically open systems such as streams also is key to model outcomes given the overall environmental stressors (for example, general landscape change, food-web disruption, recolonization potential) imposed on the composition of biological communities in coal mining and valley-fill affected watersheds

  20. Hydrogeology of, and ground-water flow in, a valley-fill and carbonate-rock aquifer system near Long Valley in the New Jersey Highlands

    USGS Publications Warehouse

    Nicholson, R.S.; McAuley, S.D.; Barringer, J.L.; Gordon, A.D.

    1996-01-01

    The hydrogeology of and ground-water flow in a valley-fill and carbonate-rock aquifer system were evaluated by using numerical-modeling techniques and geochemical interpretations to address concerns about the adequacy of the aquifer system to meet increasing demand for water. The study was conducted during 1987-90 by the U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection and Energy. The effects of recent and anticipated ground-water withdrawals on water levels, stream base flows, and water budgets were estimated. Simulation results indicate that recent withdrawals of 4.7 million gallons per day have resulted in water-level declines of up to 35 feet. Under conditions of increases in withdrawals of 121 percent, water levels would decline up to an additional 28 feet. The magnitude of predicted average base-flow depletion, when compared with historic low flows, indicates that projected increases in withdrawals may substantially deplete seasonal low flow of Drakes Brook and South Branch Raritan River. Results of a water-budget analysis indicate that the sources of water to additional supply wells would include leakage from the overlying valley-fill aquifer and induced leakage of surface water into the aquifer system. Results of water-quality analyses indicate that human activities are affecting the quality of the ground water. With the exception of an elevated iron concentration in water from one well, concentrations of inorganic constituents in water from 75 wells did not exceed New Jersey primary or secondary drinking-water regulations. Volatile organic compounds were detected in water from several wells; in two samples, concentrations of specific compounds exceeded drinking-water regulations.

  1. The environmental costs of mountaintop mining valley fill operations for aquatic ecosystems of the Central Appalachians.

    PubMed

    Bernhardt, Emily S; Palmer, Margaret A

    2011-03-01

    Southern Appalachian forests are recognized as a biodiversity hot spot of global significance, particularly for endemic aquatic salamanders and mussels. The dominant driver of land-cover and land-use change in this region is surface mining, with an ever-increasing proportion occurring as mountaintop mining with valley fill operations (MTVF). In MTVF, seams of coal are exposed using explosives, and the resulting noncoal overburden is pushed into adjacent valleys to facilitate coal extraction. To date, MTVF throughout the Appalachians have converted 1.1 million hectares of forest to surface mines and buried more than 2,000 km of stream channel beneath mining overburden. The impacts of these lost forests and buried streams are propagated throughout the river networks of the region as the resulting sediment and chemical pollutants are transmitted downstream. There is, to date, no evidence to suggest that the extensive chemical and hydrologic alterations of streams by MTVF can be offset or reversed by currently required reclamation and mitigation practices. © 2011 New York Academy of Sciences.

  2. Resolving Large Pre-glacial Valleys Buried by Glacial Sediment Using Electric Resistivity Imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Schmitt, D. R.; Welz, M.; Rokosh, C. D.; Pontbriand, M.-C.; Smith, D. G.

    2004-05-01

    Two-dimensional electric resistivity imaging (ERI) is the most exciting and promising geological tool in geomorphology and stratigraphy since development of ground-penetrating radar. Recent innovations in 2-D ERI provides a non-intrusive mean of efficiently resolving complex shallow subsurface structures under a number of different geological scenarios. In this paper, we test the capacity of ERI to image two large pre-late Wisconsinan-aged valley-fills in central Alberta and north-central Montana. Valley-fills record the history of pre-glacial and glacial sedimentary deposits. These fills are of considerable economical value as groundwater aquifers, aggregate resources (sand and gravel), placers (gold, diamond) and sometime gas reservoirs in Alberta. Although the approximate locations of pre-glacial valley-fills have been mapped, the scarcity of borehole (well log) information and sediment exposures make accurate reconstruction of their stratigraphy and cross-section profiles difficult. When coupled with borehole information, ERI successfully imaged three large pre-glacial valley-fills representing three contrasting geological settings. The Sand Coulee segment of the ancestral Missouri River, which has never been glaciated, is filled by electrically conductive pro-glacial lacustrine deposits over resistive sandstone bedrock. By comparison, the Big Sandy segment of the ancestral Missouri River valley has a complex valley-fill composed of till units interbedded with glaciofluvial gravel and varved clays over conductive shale. The fill is capped by floodplain, paludal and low alluvial fan deposits. The pre-glacial Onoway Valley (the ancestral North Saskatchewan River valley) is filled with thick, resistive fluvial gravel over conductive shale and capped with conductive till. The cross-sectional profile of each surveyed pre-glacial valley exhibits discrete benches (terraces) connected by steep drops, features that are hard to map using only boreholes. Best quality ERI

  3. Transgressive systems tract development and incised-valley fills within a quaternary estuary-shelf system: Virginia inner shelf, USA

    USGS Publications Warehouse

    Foyle, A.M.; Oertel, G.F.

    1997-01-01

    High-frequency Quaternary glacioeustasy resulted in the incision of six moderate- to high-relief fluvial erosion surfaces beneath the Virginia inner shelf and coastal zone along the updip edges of the Atlantic continental margin. Fluvial valleys up to 5 km wide, with up to 37 m of relief and thalweg depths of up to 72 m below modern mean sea level, cut through underlying Pleistocene and Mio-Pliocene strata in response to drops in baselevel on the order of 100 m. Fluvially incised valleys were significantly modified during subsequent marine transgressions as fluvial drainage basins evolved into estuarine embayments (ancestral generations of the Chesapeake Bay). Complex incised-valley fill successions are bounded by, or contain, up to four stacked erosional surfaces (basal fluvial erosion surface, bay ravinement, tidal ravinement, and ebb-flood channel-base diastem) in vertical succession. These surfaces, combined with the transgressive oceanic ravinement that generally caps incised-valley fills, control the lateral and vertical development of intervening seismic facies (depositional systems). Transgressive stratigraphy characterizes the Quaternary section beneath the Virginia inner shelf where six depositional sequences (Sequences I-VI) are identified. Depositional sequences consist primarily of estuarine depositional systems (subjacent to the transgressive oceanic ravinement) and shoreface-shelf depositional systems; highstand systems tract coastal systems are thinly developed. The Quaternary section can be broadly subdivided into two parts. The upper part contains sequences consisting predominantly of inner shelf facies, whereas sequences in the lower part of the section consist predominantly of estuarine facies. Three styles of sequence preservation are identified. Style 1, represented by Sequences VI and V, is characterized by large estuarine systems (ancestral generations of the Chesapeake Bay) that are up to 40 m thick, have hemicylindrical wedge geometries

  4. Hydrogeology of the Susquehanna River valley-fill aquifer system and adjacent areas in eastern Broome and southeastern Chenango Counties, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    2012-01-01

    The hydrogeology of the valley-fill aquifer system along a 32-mile reach of the Susquehanna River valley and adjacent areas was evaluated in eastern Broome and southeastern Chenango Counties, New York. The surficial geology, inferred ice-marginal positions, and distribution of stratified-drift aquifers were mapped from existing data. Ice-marginal positions, which represent pauses in the retreat of glacial ice from the region, favored the accumulation of coarse-grained deposits whereas more steady or rapid ice retreat between these positions favored deposition of fine-grained lacustrine deposits with limited coarse-grained deposits at depth. Unconfined aquifers with thick saturated coarse-grained deposits are the most favorable settings for water-resource development, and three several-mile-long sections of valley were identified (mostly in Broome County) as potentially favorable: (1) the southernmost valley section, which extends from the New York–Pennsylvania border to about 1 mile north of South Windsor, (2) the valley section that rounds the west side of the umlaufberg (an isolated bedrock hill within a valley) north of Windsor, and (3) the east–west valley section at the Broome County–Chenango County border from Nineveh to East of Bettsburg (including the lower reach of the Cornell Brook valley). Fine-grained lacustrine deposits form extensive confining units between the unconfined areas, and the water-resource potential of confined aquifers is largely untested. Recharge, or replenishment, of these aquifers is dependent not only on infiltration of precipitation directly on unconfined aquifers, but perhaps more so from precipitation that falls in adjacent upland areas. Surface runoff and shallow groundwater from the valley walls flow downslope and recharge valley aquifers. Tributary streams that drain upland areas lose flow as they enter main valleys on permeable alluvial fans. This infiltrating water also recharges valley aquifers. Current (2012) use of

  5. Hydrology of Northern Utah Valley, Utah County, Utah, 1975-2005

    USGS Publications Warehouse

    Cederberg, Jay R.; Gardner, Philip M.; Thiros, Susan A.

    2009-01-01

    The ground-water resources of northern Utah Valley, Utah, were assessed during 2003-05 to describe and quantify components of the hydrologic system, determine a hydrologic budget for the basin-fill aquifer, and evaluate changes to the system relative to previous studies. Northern Utah Valley is a horst and graben structure with ground water occurring in both the mountain-block uplands surrounding the valley and in the unconsolidated basin-fill sediments. The principal aquifer in northern Utah Valley occurs in the unconsolidated basin-fill deposits where a deeper unconfined aquifer occurs near the mountain front and laterally grades into multiple confined aquifers near the center of the valley. Sources of water to the basin-fill aquifers occur predominantly as either infiltration of streamflow at or near the interface of the mountain front and valley or as subsurface inflow from the adjacent mountain blocks. Sources of water to the basin-fill aquifers were estimated to average 153,000 (+/- 31,500) acre-feet annually during 1975-2004 with subsurface inflow and infiltration of streamflow being the predominant sources. Discharge from the basin-fill aquifers occurs in the valley lowlands as flow to waterways, drains, ditches, springs, as diffuse seepage, and as discharge from flowing and pumping wells. Ground-water discharge from the basin-fill aquifers during 1975-2004 was estimated to average 166,700 (+/- 25,900) acre-feet/year where discharge to wells for consumptive use and discharge to waterways, drains, ditches, and springs were the principal sources. Measured water levels in wells in northern Utah Valley declined an average of 22 feet from 1981 to 2004. Water-level declines are consistent with a severe regional drought beginning in 1999 and continuing through 2004. Water samples were collected from 36 wells and springs throughout the study area along expected flowpaths. Water samples collected from 34 wells were analyzed for dissolved major ions, nutrients, and

  6. Stratigraphy of the Mississippi-Alabama shelf and the Mobile River incised-valley system

    USGS Publications Warehouse

    Kindinger, Jack G.; Balson, Peter S.; Flocks, James G.; Dalrymple, Robert W.; Boyd, Ron; Zaitlin, Brian A.

    1994-01-01

    The Holocene incised-valley fill (estuarine facies) underlying Mobile Buy fit well into the conceptual facies model of a microtidal wave-dominated estuary. The model does not fit as well, however, with the rapidly transgressed shelf portion of the incised valley. The down dip section does not contain a clearly identifiable (from seismic profiles) estuarine facies; the valley fill is primarily fluvial and is overlain by marine shoals. In the Mobile River incised valley, the distal portion of the valley was rapidly drowned, allowing the thin estuarine facies to be reworked. The proximal portion was drowned more slowly, leaving the estuarine facies intact. Thus, the single incised valley contains two very different types of fill.

  7. Sedimentary architecture and chronostratigraphy of a late Quaternary incised-valley fill: A case study of the late Middle and Late Pleistocene Rhine system in the Netherlands

    NASA Astrophysics Data System (ADS)

    Peeters, J.; Busschers, F. S.; Stouthamer, E.; Bosch, J. H. A.; Van den Berg, M. W.; Wallinga, J.; Versendaal, A. J.; Bunnik, F. P. M.; Middelkoop, H.

    2016-01-01

    This paper describes the sedimentary architecture, chronostratigraphy and palaeogeography of the late Middle and Late Pleistocene (Marine Isotope Stage/MIS 6-2) incised Rhine-valley fill in the central Netherlands based on six geological transects, luminescence dating, biostratigraphical data and a 3D geological model. The incised-valley fill consists of a ca. 50 m thick and 10-20 km wide sand-dominated succession and includes a well-developed sequence dating from the Last Interglacial: known as the Eemian in northwest Europe. The lower part of the valley fill contains coarse-grained fluvio-glacial and fluvial Rhine sediments that were deposited under Late Saalian (MIS 6) cold-climatic periglacial conditions and during the transition into the warm Eemian interglacial (MIS 5e-d). This unit is overlain by fine-grained fresh-water flood-basin deposits, which are transgressed by a fine-grained estuarine unit that formed during marine high-stand. This ca. 10 m thick sequence reflects gradual drowning of the Eemian interglacial fluvial Rhine system and transformation into an estuary due to relative sea-level rise. The chronological data suggests a delay in timing of regional Eemian interglacial transgression and sea-level high-stand of several thousand years, when compared to eustatic sea-level. As a result of this glacio-isostatic controlled delay, formation of the interglacial lower deltaic system took only place for a relative short period of time: progradation was therefore limited. During the cooler Weichselian Early Glacial period (MIS 5d-a) deposition of deltaic sediments continued and extensive westward progradation of the Rhine system occurred. Major parts of the Eemian and Weichselian Early Glacial deposits were eroded and buried as a result of sea-level lowering and climate cooling during the early Middle Weichselian (MIS 4-3). Near complete sedimentary preservation occurred along the margins of the incised valley allowing the detailed reconstruction presented

  8. Fretted Terrain Valley in Coloe Fossae Region

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1 Click on image for larger version

    The image in figure 1 shows lineated valley fill in one of a series of enclosed, intersecting troughs known as Coloe (Choloe) Fossae. Lineated valley fill consists of rows of material in valley centers that are parallel to the valley walls. It is probably made of ice-rich material and boulders that are left behind when the ice-rich material sublimates. Very distinct rows can be seen near the south (bottom) wall of the valley. Lineated valley fill is thought to result from mass wasting (downslope movement) of ice-rich material from valley walls towards their centers. It is commonly found in valleys near the crustal dichotomy that separates the two hemispheres of Mars. The valley shown here joins four other valleys with lineated fill near the top left corner of this image. Their juncture is a topographic low, suggesting that the lineated valley fill from the different valleys may be flowing or creeping towards the low area (movement towards the upper left of the image). The valley walls appear smooth at first glance but are seen to be speckled with small craters several meters in diameter at HiRISE resolution (see contrast-enhanced subimage). This indicates that at least some of the wall material has been stable to mass wasting for some period of time. Also seen on the valley wall are elongated features shaped like teardrops. These are most likely slightly older craters that have been degraded due to potentially recent downhill creep. It is unknown whether the valley walls are shedding material today. The subimage is approximately 140 x 400 m (450 x 1280 ft).

    Image PSP_001372_2160 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 11, 2006. The complete image is centered at 35.5 degrees latitude, 56.8 degrees East longitude. The range to the target site was 290.3 km (181

  9. Gravity survey of Dixie Valley, west-central Nevada

    USGS Publications Warehouse

    Schaefer, Donald H.

    1983-01-01

    Dixie Valley, a northeast-trending structural trough typical of valleys in the Basin and Range Province, is filled with a maximum of about 10,000 feet of alluvial and lacustrine deposits , as estimated from residual-gravity measurements obtained in this study. On the basis of gravity measurements at 300 stations on nine east-west profiles, the gravity residuals reach a maximum of 30 milligals near the south-central part of the valley. Results from a three-dimensional inversion model indicate that the central depression of the valley is offset to the west of the geographic axis. This offset is probably due to major faulting along the west side of the valley adjacent to the Stillwater Range. Comparison of depths to bedrock obtained during this study and depths obtained from a previous seismic-refraction study indicates a reasonably good correlation. A heterogeneous distribution of densities within the valley-fill deposits would account for differing depths determined by the two methods. (USGS)

  10. Modelling the effect of buried valleys on groundwater flow: case study in Ventspils vicinity, Latvia

    NASA Astrophysics Data System (ADS)

    Delina, Aija; Popovs, Konrads; Bikse, Janis; Retike, Inga; Babre, Alise; Kalvane, Gunta

    2015-04-01

    Buried subglacial valleys are widely distributed in glaciated regions and they can have great influence on groundwater flow and hence on groundwater resources. The aim of this study is to evaluate the effect of the buried valleys on groundwater flow in a confined aquifer (Middle Devonian Eifelian stage Arukila aquifer, D2ar) applying numerical modelling. The study area is located at vicinity of Ventspils Town, near wellfield Ogsils where number of the buried valleys with different depth and filling material are present. Area is located close to the Baltic Sea at Piejūra lowland Rinda plain and regional groundwater flow is towards sea. Territory is covered by thin layer of Quaternary sediments in thicknesses of 10 to 20 meters although Prequaternary sediments are exposed at some places. Buried valleys are characterized as narrow, elongated and deep formations that is be filled with various, mainly Pleistocene glacigene sediments - either till loam of different ages or sand and gravel or interbedding of both above mentioned. The filling material of the valleys influences groundwater flow in the confined aquifers which is intercepted by the valleys. It is supposed that glacial till loam filled valleys serves as a barrier to groundwater flow and as a recharge conduit when filled with sand and gravel deposits. Numerical model was built within MOSYS modelling system (Virbulis et al. 2012) using finite element method in order to investigate buried valley influence on groundwater flow in the study area. Several conceptual models were tested in numerical model depending on buried valley filling material: sand and gravel, till loam or mixture of them. Groundwater flow paths and travel times were studied. Results suggested that valley filled with glacial till is acting as barrier and it causes sharp drop of piezometric head and downward flow. Valley filled with sand and gravel have almost no effect on piezometric head distribution, however it this case buried valleys

  11. Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise

    NASA Astrophysics Data System (ADS)

    Tjallingii, Rik; Stattegger, Karl; Wetzel, Andreas; Van Phach, Phung

    2010-06-01

    The abrupt transition from fluvial to marine deposition of incised-valley-fill sediments retrieved from the southeast Vietnamese shelf, accurately records the postglacial transgression after 14 ka before present (BP). Valley-filling sediments consist of fluvial mud, whereas sedimentation after the transgression is characterized by shallow-marine carbonate sands. This change in sediment composition is accurately marked in high-resolution X-ray fluorescence (XRF) core scanning records. Rapid aggradation of fluvial sediments at the river mouth nearly completely filled the Mekong incised valley prior to flooding. However, accumulation rates strongly reduced in the valley after the river-mouth system flooded and stepped back. This also affected the sediment supply to deeper parts of the southeast Vietnamese shelf. Comparison of the Mekong valley-filling with the East Asian sea-level history of sub- and inter-tidal sediment records shows that the transgressive surface preserved in the incised-valley-fill records is a robust sea-level indicator. The valley was nearly completely filled with fluvial sediments between 13.0 and 9.5 ka BP when sea-level rose rather constantly with approximately 10 mm/yr, as indicated by the East Asian sea-level record. At shallower parts of the shelf, significant sediment reworking and the establishment of estuarine conditions at the final stage of infilling complicates accurate dating of the transgressive surface. Nevertheless, incised-valley-fill records and land-based drill sites indicate a vast and rapid flooding of the shelf from the location of the modern Vietnamese coastline to the Cambodian lowlands between 9.5 ka and 8.5 ka BP. Fast flooding of this part of the shelf is related with the low shelf gradient and a strong acceleration of the East Asian sea-level rise from 34 to 9 meter below modern sea level (mbsl) corresponding to the sea-level jump of melt water pulse (MWP) 1C.

  12. Hydrogeologic framework and occurrence, movement, and chemical characterization of groundwater in Dixie Valley, west-central Nevada

    USGS Publications Warehouse

    Huntington, Jena M.; Garcia, C. Amanda; Rosen, Michael R.

    2014-01-01

    Dixie Valley, a primarily undeveloped basin in west-central Nevada, is being considered for groundwater exportation. Proposed pumping would occur from the basin-fill aquifer. In response to proposed exportation, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation and Churchill County, conducted a study to improve the understanding of groundwater resources in Dixie Valley. The objective of this report is to characterize the hydrogeologic framework, the occurrence and movement of groundwater, the general water quality of the basin-fill aquifer, and the potential mixing between basin-fill and geothermal aquifers in Dixie Valley. Various types of geologic, hydrologic, and geochemical data were compiled from previous studies and collected in support of this study. Hydrogeologic units in Dixie Valley were defined to characterize rocks and sediments with similar lithologies and hydraulic properties influencing groundwater flow. Hydraulic properties of the basin-fill deposits were characterized by transmissivity estimated from aquifer tests and specific-capacity tests. Groundwater-level measurements and hydrogeologic-unit data were combined to create a potentiometric surface map and to characterize groundwater occurrence and movement. Subsurface inflow from adjacent valleys into Dixie Valley through the basin-fill aquifer was evaluated using hydraulic gradients and Darcy flux computations. The chemical signature and groundwater quality of the Dixie Valley basin-fill aquifer, and potential mixing between basin-fill and geothermal aquifers, were evaluated using chemical data collected from wells and springs during the current study and from previous investigations. Dixie Valley is the terminus of the Dixie Valley flow system, which includes Pleasant, Jersey, Fairview, Stingaree, Cowkick, and Eastgate Valleys. The freshwater aquifer in the study area is composed of unconsolidated basin-fill deposits of Quaternary age. The basin-fill hydrogeologic unit

  13. Geohydrology of the valley-fill aquifer in the Bath area, Lower Cohocton River, Steuben County, New York

    USGS Publications Warehouse

    Pagano, Timothy S.; Terry, D.B.; Shaw, M.L.; Ingram, A.W.

    1984-01-01

    The Bath valley-fill aquifer, southern New York, composed of outwash, ice-contact, and ice-disintegration sand and gravel, is highly productive and is in many areas in hydraulic contact with the Cohocton River. Potential well yields range 50 to more than 1,000 gallons per minute. Most of the aquifer is under shallow water-table conditions and vulnerable to surface contamination. Thickness ranges from 20 to 40 feet. Buried aquifers are present locally. The aquifer system underlies an area containing only a few small communities and therefore is not heavily pumped. Geohydrologic data are compiled on six maps at 1:24,000 scale and on a sheet of geologic sections. The maps depict surficial geology, soil-infiltration capacity, potentiometric surface, aquifer thickness, well yields, and land use. This map report set is one in a series of four that depict selected aquifers in Wester New York. It supplements a series that is being done by the U.S. Geological Survey in cooperation with State agencies. The maps are based largely on published reports, data filled in several State agencies, and some additional field data collection. (USGS)

  14. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...

  15. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...

  16. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...

  17. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...

  18. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...

  19. Anatomy of major coal successions: Facies analysis and sequence architecture of a brown coal-bearing valley fill to lacustrine tract (Upper Valdarno Basin, Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Ielpi, Alessandro

    2012-07-01

    A late Pliocene incised valley fill to lacustrine succession, which contains an interbedded brown coal seam (< 20 m thick), is examined in terms of facies analysis, physical stratigraphy and sequence architecture. The succession (< 50 m thick) constitutes the first depositional event of the Castelnuovo Synthem, which is the oldest unconformity bounded stratigraphic unit of the nonmarine Upper Valdarno Basin, Northern Apennines (Italy). The integration of field surveys and borehole logs identified the following event sequence: first valley filling stages by coarse alluvial fan and channelised streams; the progressive setting of low gradient floodbasins with shallow floodplain lakes; subsequent major waterlogging and extensive peat mire development; and system drowning and establishment of permanent lacustrine conditions. The deposits are grouped in a set of nested valley fills and are arranged as high-frequency depositional sequences. The sequences are bounded by minor erosive truncations and have distinctive upward trends: lowstand system tract thinning; transgressive system tract thickening; highstand system tract thinning and eventual non-deposition; and the smoothing of along-sequence boundary sub-aerial incisions. Such features fit in with the notion of an idealised model where second-order (high-frequency) fluctuations, modulated by first-order (low-frequency) base-level rising, have short-lived standing + falling phases and prolonged transgressions, respectively. Furthermore, the general sequence architecture reveals how a mixed palustrine-siliciclastic system differs substantially from a purely siliciclastic one. In the transgressive phases, terrigenous starvation induces prevailing peat accumulation, generating abnormally thick transgressive system tracts that eventually come to occupy much of the same transgression-generated accommodation space. In the highstand phases, the development of thick highstand system tracts is then prevented by sediment upstream

  20. Preliminary groundwater flow model of the basin-fill aquifers in Detrital, Hualapai, and Sacramento Valleys, Mohave County, northwestern Arizona

    USGS Publications Warehouse

    Tillman, Fred D.; Garner, Bradley D.; Truini, Margot

    2013-01-01

    Preliminary numerical models were developed to simulate groundwater flow in the basin-fill alluvium in Detrital, Hualapai, and Sacramento Valleys in northwestern Arizona. The purpose of this exercise was to gather and evaluate available information and data, to test natural‑recharge concepts, and to indicate directions for improving future regional groundwater models of the study area. Both steady-state and transient models were developed with a single layer incorporating vertically averaged hydraulic properties over the model layer. Boundary conditions for the models were constant-head cells along the northern and western edges of the study area, corresponding to the location of the Colorado River, and no-flow boundaries along the bedrock ridges that bound the rest of the study area, except for specified flow where Truxton Wash enters the southern end of Hualapai Valley. Steady-state conditions were simulated for the pre-1935 period, before the construction of Hoover Dam in the northwestern part of the model area. Two recharge scenarios were investigated using the steady-state model—one in which natural aquifer recharge occurs directly in places where water is available from precipitation, and another in which natural aquifer recharge from precipitation occurs in the basin-fill alluvium that drains areas of available water. A transient model with 31 stress periods was constructed to simulate groundwater flow for the period 1935–2010. The transient model incorporates changing Colorado River, Lake Mead, and Lake Mohave water levels and includes time-varying groundwater withdrawals and aquifer recharge. Both the steady-state and transient models were calibrated to available water-level observations in basin-fill alluvium, and simulations approximate observed water-level trends throughout most of the study area.

  1. Hydrogeology of the Ramapo River-Woodbury Creek valley-fill aquifer system and adjacent areas in eastern Orange County, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    2015-01-01

    Valley-fill aquifers are modest resources within the area, as indicated by the common practice of completing supply wells in the underlying bedrock rather than the overlying glacial deposits. Groundwater turbidity problems curtail use of the resource. However, additional groundwater resources have been identified by test drilling, and there are remaining untested areas. New groundwater supplies that stress localized aquifer areas will alter the groundwater flow system. Considerations include potential water-quality degradation from nearby land use(s) and, where withdrawals induce infiltration of surface-water, balancing withdrawals with flow requirements for downstream users or for maintenance of stream ecological health.

  2. Ultrasonic extraction of arsenic and selenium from rocks associated with mountaintop removal/valley fills coal mining: Estimation of bioaccessible concentrations.

    PubMed

    Pumure, I; Renton, J J; Smart, R B

    2010-03-01

    Ultrasonic extraction (UE) was used to estimate the total bioaccessible fractions of arsenic and selenium released from rocks associated with mountaintop removal/valley fill coal mining. The combined readily bioaccessible amounts of arsenic and selenium in water soluble, exchangeable and NaOH fractions can be extracted from the solid phase within a 20 or 25 min application of 200 W cm(-2) ultrasound energy in nanopure water for selenium and arsenic, respectively. Application of a two-way ANOVA predicted that there are no significant differences (p0.001, n=12) in the extracted arsenic and selenium concentrations between the combined bioaccessible and ultrasonic extracts. The mechanisms for the UE of arsenic and selenium are thought to involve the formation of secondary minerals on the particle surfaces which eventually dissolve with continued sonication. This is supported by the presence of transient Si-O stretching and OH absorption and bending ATR-FTIR peaks at 795.33 cm(-1), 696.61 cm(-1) and 910.81 cm(-1). The subsequent dissolution of secondary minerals is followed by the release of chemical species that include selenium and arsenic. Release rates decrease after the ultrasound energy elastic limit for the particles is reached. Selenium and arsenic are bound differently within the rock lattice because no selenium was detected in the acid soluble fraction and no arsenic was found in the exchangeable fraction. However, selenium was found in the exchangeable fraction and arsenic was found in the acid soluble fraction. The characterization of coal associated rocks is essential to the design of methodologies and procedures that can be used to control the release of arsenic and selenium from valley fills. Published by Elsevier Ltd.

  3. The Salton Seismic Imaging Project: Tomographic characterization of a sediment-filled rift valley and adjacent ranges, southern California

    NASA Astrophysics Data System (ADS)

    Davenport, K.; Hole, J. A.; Stock, J. M.; Fuis, G. S.; Carrick, E.; Tikoff, B.

    2011-12-01

    The Salton Trough in Southern California represents the northernmost rift of the Gulf of California extensional system. Relative motion between the Pacific and North American plates is accommodated by continental rifting in step-over zones between the San Andreas, Imperial, and Cerro Prieto transform faults. Rapid sedimentation from the Colorado River has isolated the trough from the southern portion of the Gulf of California, progressively filling the subsiding rift basin. Based on data from previous seismic surveys, the pre-existing continent has ruptured completely, and a new ~22 km thick crust has been created entirely by sedimentation overlying rift-related magmatism. The MARGINS, EarthScope, and USGS-funded Salton Seismic Imaging Project (SSIP) was designed to investigate the nature of this new crust, the ongoing process of continental rifting, and associated earthquake hazards. SSIP, acquired in March 2011, comprises 7 lines of onshore seismic refraction / wide-angle reflection data, 2 lines of refraction / reflection data in the Salton Sea, and a line of broadband stations. This presentation focuses on the refraction / wide-angle reflection line across the Imperial Valley, extending ~220 km across California from Otay Mesa, near Tijuana, to the Colorado River. The data from this line includes seventeen 100-160 kg explosive shots and receivers at 100 m spacing across the Imperial Valley to constrain the structure of the Salton Trough rift basin, including the Imperial Fault. Eight larger shots (600-920 kg) at 20-35 km spacing and receivers at 200-500 m spacing extend the line across the Peninsular Ranges and the Chocolate Mountains. These data will contrast the structure of the rift to that of the surrounding crust and provide constraints on whole-crust and uppermost mantle structure. Preliminary work has included tomographic inversion of first-arrival travel times across the Valley, emphasizing a minimum-structure approach to create a velocity model of the

  4. Late Cenozoic surficial deposits and valley evolution of unglaciated northern New Jersey

    USGS Publications Warehouse

    Stanford, S.D.

    1993-01-01

    Multiple alluvial, colluvial, and eolian deposits in unglaciated northern New Jersey, and the eroded bedrock surfaces on which they rest, provide evidence of both long-term valley evolution driven by sustained eustatic baselevel lowering and short-term filling and excavation of valleys during glacial and interglacial climate cycles. The long-term changes occur over durations of 106 years, the short-term features evolve over durations of 104 to 105 years. Direct glacial effects, including blockage of valleys by glacial ice and sediment, and valley gradient reversals induced by crustal depression, are relatively sudden changes that account for several major Pleistocene drainage shifts. After deposition of the Beacon Hill fluvial gravel in the Late Miocene, lowering of sea level, perhaps in response to growth of the Antarctic ice sheet, led to almost complete dissection of the gravel. A suite of alluvial, colluvial, and eolian sediments was deposited in the dissected landscape. The fluvial Bridgeton Formation was deposited in the Raritan lowland, in the Amboy-Trenton lowland, and in the Delaware valley. Following southeastward diversion of the main Bridgeton river, perhaps during Late Pliocene or Early Pleistocene glaciation, northeastward drainage was established on the inactive Bridgeton fluvial plain. About 30 to 45 m of entrenchment followed, forming narrow, incised valleys within which Late Pleistocene deposits rest. This entrenchment may have occurred in response to lowered sea level caused by growth of ice sheets in the northern hemisphere. Under periglacial conditions in the Middle and Late Pleistocene, valleys were partially filled with alluvium and colluvium. During interglacials slopes were stabilized by vegetation and the alluvial and colluvial valley-fill was excavated by gullying, bank erosion, and spring sapping. During Illinoian and late Wisconsinan glaciation, the lower Raritan River was diverted when glacial deposits blocked its valley, and the

  5. A Study of the Connection Among Basin-Fill Aquifers, Carbonate-Rock Aquifers, and Surface-Water Resources in Southern Snake Valley, Nevada

    USGS Publications Warehouse

    ,

    2008-01-01

    The Secretary of the Interior through the Southern Nevada Public Lands Management Act approved funding for research to improve understanding of hydrologic systems that sustain numerous water-dependent ecosystems on Federal lands in Snake Valley, Nevada. Some of the streams and spring-discharge areas in and adjacent to Great Basin National Park have been identified as susceptible to ground-water withdrawals (Elliott and others, 2006) and research has shown a high potential for ground-water flow from southern Spring Valley into southern Snake Valley through carbonate rocks that outcrop along a low topographic divide known as the Limestone Hills (Welch and others, 2007). Comprehensive geologic, hydrologic, and chemical information will be collected and analyzed to assess the hydraulic connection between basin-fill aquifers and surface-water resources, water-dependent ecological features, and the regional carbonate-rock aquifer, the known source of many high-discharge springs. Understanding these connections is important because proposed projects to pump and export ground water from Spring and Snake Valleys in Nevada may result in unintended capture of water currently supplying springs, streams, wetlands, limestone caves, and other biologically sensitive areas (fig. 1). The methods that will be used in this study may be transferable to other areas in the Great Basin. The National Park Service, Bureau of Land Management, U.S. Fish and Wildlife Service, and U.S. Forest Service submitted the proposal for funding this research to facilitate science-based land management. Scientists from the U.S. Geological Survey (USGS) Water Resources and Geologic Disciplines, and the University of Nevada, Reno, will accomplish four research elements through comprehensive data collection and analysis that are concentrated in two distinct areas on the eastern and southern flanks of the Snake Range (fig. 2). The projected time line for this research is from July 2008 through September 2011.

  6. Water resources of Parowan Valley, Iron County, Utah

    USGS Publications Warehouse

    Marston, Thomas M.

    2017-08-29

    Parowan Valley, in Iron County, Utah, covers about 160 square miles west of the Red Cliffs and includes the towns of Parowan, Paragonah, and Summit. The valley is a structural depression formed by northwest-trending faults and is, essentially, a closed surface-water basin although a small part of the valley at the southwestern end drains into the adjacent Cedar Valley. Groundwater occurs in and has been developed mainly from the unconsolidated basin-fill aquifer. Long-term downward trends in groundwater levels have been documented by the U.S. Geological Survey (USGS) since the mid-1950s. The water resources of Parowan Valley were assessed during 2012 to 2014 with an emphasis on refining the understanding of the groundwater and surface-water systems and updating the groundwater budget.Surface-water discharge of five perennial mountain streams that enter Parowan Valley was measured from 2013 to 2014. The total annual surface-water discharge of the five streams during 2013 to 2014 was about 18,000 acre-feet (acre-ft) compared to the average annual streamflow of about 22,000 acre-ft from USGS streamgages operated on the three largest of these streams from the 1940s to the 1980s. The largest stream, Parowan Creek, contributes more than 50 percent of the annual surface-water discharge to the valley, with smaller amounts contributed by Red, Summit, Little, and Cottonwood Creeks.Average annual recharge to the Parowan Valley groundwater system was estimated to be about 25,000 acre-ft from 1994 to 2013. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall on the Markagunt Plateau east of the valley. Smaller amounts of recharge occur as infiltration of streamflow and unconsumed irrigation water near the east side of the valley on alluvial fans associated with mountain streams at the foot of the Red Cliffs. Subsurface flow from the mountain block to the east of the valley is a significant source of groundwater recharge to the basin-fill aquifer

  7. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    NASA Astrophysics Data System (ADS)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  8. Quaternary Sedimentary and Geomorphic History of River Valleys in the Lake Titicaca Basin, Peru and Bolivia

    NASA Astrophysics Data System (ADS)

    Rigsby, C. A.; Farabaugh, R. L.; Baker, P. A.

    2002-12-01

    Lacustrine sediments have become important archives of paleoclimatic history in the tropical Andes of South America. The history of lake level of Lake Titicaca (LT) has played a central role in these reconstructions. Here we report on our ongoing studies of the late Quaternary sedimentary and geomorphic histories of two of the major tributaries to LT (the Rios Ramis and Ilave) and on our earlier studies of LT's only outlet (the Rio Desaguadero). The strata and fluvial terraces in these valleys record large-scale aggradation and downcutting events that are apparently correlative with both climate changes in the LT basin and local complex response mechanisms (changes in sediment source, topographic variability, etc.). Both the Ramis and Ilave valleys have 5 terrace tracts, ranging from less than 1 m to approximately 53 m above the river level and occurring as both paired and unpaired tracts and as cut-fill, fill-, and strath terraces. The Rio Desaguadero valley has 4, locally paired, cut-fill and fill terrace tracts that range in height from approximately 2 m to 40 m above river level. In all three valleys, the terraces are underlain by meandering- and braided-river sands and gravels and by lacustrine muds. Radiocarbon dates from the Ilave and Desaguadero valleys suggest that strata in these valleys aggraded during periods of high or rising levels of LT, high or increasing sedimentation rates in the Rio Ilave delta, high (but variable) regional precipitation, and lacustrine sedimentation in the upstream-most reaches of the Rio Desaguadero valley. These same strata were downcut during periods of low or falling levels of LT, low or rapidly decreasing sedimentation rates in the Rio Ilave delta, and lower regional precipitation and runoff. In all three valleys, aggradational periods are punctuated by equilibrium periods of soil formation, downcutting events are episodic, and the most recent events are aggradation and subsequent downcutting of a low, young fill

  9. Geohydrology of the Valley-Fill Aquifers between the Village of Greene, Chenango County and Chenango Valley State Park, Broome County, New York

    USGS Publications Warehouse

    Hetcher-Aguila, Kari K.; Miller, Todd S.

    2005-01-01

    The confined aquifer is widely used by people living and working in the Chenango River valley. The confined aquifer consists of ice-contact sand and gravel, typically overlies bedrock, and underlies a confining unit consisting of lacustrine fine sand, silt, and clay. The confining unit is typically more than 100 feet thick in the central parts of the valley between Greene Landing Field and along the northern edge of the Chenango Valley State Park. The thickness of the confined aquifer is more than 40 feet near the Greene Landing Field.

  10. Grizzly Valley fault system, Sierra Valley, CA

    USGS Publications Warehouse

    Gold, Ryan; Stephenson, William; Odum, Jack; Briggs, Rich; Crone, Anthony; Angster, Steve

    2012-01-01

    The Grizzly Valley fault system (GVFS) strikes northwestward across Sierra Valley, California and is part of a network of active, dextral strike-slip faults in the northern Walker Lane (Figure 1). To investigate Quaternary motion across the GVFS, we analyzed high-resolution (0.25 m) airborne LiDAR data (Figure 2) in combination with six, high-resolution, P-wave, seismic-reflection profiles [Gold and others, 2012]. The 0.5- to 2.0-km-long seismic-reflection profiles were sited orthogonal to suspected tectonic lineaments identified from previous mapping and our analysis of airborne LiDAR data. To image the upper 400–700 m of subsurface stratigraphy of Sierra Valley (Figure 3), we used a 230-kg accelerated weight drop source. Geophone spacing ranged from 2 to 5 m and shots were co-located with the geophones. The profiles reveal a highly reflective, deformed basal marker that we interpret to be the top of Tertiary volcanic rocks, overlain by a 120- to 300-m-thick suite of subhorizontal reflectors we interpret as Plio-Pleistocene lacustrine deposits. Three profiles image the principle active trace of the GVFS, which is a steeply dipping fault zone that offsets the volcanic rocks and the basin fill (Figures 4 & 5).

  11. Hydrogeology of Valley-Fill Aquifers and Adjacent Areas in Eastern Chemung County, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    2015-10-19

    Water-resource potential is greatest within saturated sand and gravel in the Chemung River valley (nearly 1 mile wide), especially where induced infiltration of additional water from the Chemung River is possible. The second most favorable area is the Newtown Creek valley at the confluence of Newtown Creek with North Branch Newtown Creek east of Horseheads, N.Y. Extensive sand and gravel deposits within the Breesport, N.Y., area are largely unsaturated but may have greater saturation along the east side of Jackson Creek immediately north of Breesport. Till deposits confine sand and gravel along Newtown Creek at Erin, N.Y., and along much of the upper reach of North Branch Newtown Creek; this confining unit may limit recharge and potential well yield. The north-south oriented valleys of Baldwin and Wynkoop Creeks end at notched divides that imply input of glacial meltwater and limited sediment from outside of the present watersheds. These two valleys are relatively narrow but contain variably sorted sand and gravel, which, in places, may be capable of supplying modest-size community water systems.

  12. Dating the upper Cenozoic sediments in Fisher Valley, southeastern Utah ( USA).

    USGS Publications Warehouse

    Colman, Steven M.; Choquette, Anne F.; Rosholt, J.M.; Miller, G.H.; Huntley, D.J.

    1986-01-01

    More than 140 m of upper Cenozoic basin-fill sediments were deposited and then deformed in Fisher Valley between about 2.5 and 0.25 m.y. ago, in response to uplift of the adjacent Onion Creek salt diapir. In addition to these basin-fill sediments, minor amounts of eolian and fluvial sand were depositd in Holocene time. The sediments, whose relative ages are known from the stratigraphy, are predominantly sandy, second-cycle red beds derived from nearby Mesozoic rocks; most were deposited in a vertical sequence, filling a sedimentary basin now exposed by fluvial dissection. We have applied a variety of established and experimental dating methods to the sediments in Fisher Valley to establish their age and to provide time control for the recent history of the Onion Creek salt diapir.-from Authors

  13. Simulation of Ground-Water Flow and Areas Contributing Recharge to Production Wells in Contrasting Glacial Valley-Fill Settings, Rhode Island

    USGS Publications Warehouse

    Friesz, Paul J.; Stone, Janet Radway

    2007-01-01

    Areas contributing recharge and sources of water to a production well field in the Village of Harrisville and to a production well field in the Town of Richmond were delineated on the basis of calibrated, steady-state ground-water-flow models representing average hydrologic conditions. The study sites represent contrasting glacial valley-fill settings. The area contributing recharge to a well is defined as the surface area where water recharges the ground water and then flows toward and discharges to the well. In Harrisville, the production well field is composed of three wells in a narrow, approximately 0.5-mile-wide, valley-fill setting on opposite sides of Batty Brook, a small intermittent stream that drains 0.64 square mile at its confluence with the Clear River. Glacial stratified deposits are generally less areally extensive than previously published. The production wells are screened in a thin (30 feet) but transmissive aquifer. Paired measurements of ground-water and surface-water levels indicated that the direction of flow between the brook and the aquifer was generally downward during pumping conditions. Long-term mean annual streamflow from two streams upgradient of the well field totaled 0.72 cubic feet per second. The simulated area contributing recharge for the 2005 average well-field withdrawal rate of 224 gallons per minute extended upgradient to ground-water divides in upland areas and encompassed 0.17 square mile. The well field derived 62 percent of pumped water from intercepted ground water and 38 percent from infiltrated stream water from the Batty Brook watershed. For the maximum simulated well-field withdrawal of 600 gallons per minute, the area contributing recharge expanded to 0.44 square mile to intercept additional ground water and infiltration of stream water; the percentage of water derived from surface water, however, was the same as for the average pumping rate. Because of the small size of Batty Brook watershed, most of the

  14. Hydrogeologic and geochemical characterization of groundwater resources in Rush Valley, Tooele County, Utah

    USGS Publications Warehouse

    Gardner, Philip M.; Kirby, Stefan

    2011-01-01

    The water resources of Rush Valley were assessed during 2008–2010 with an emphasis on refining the understanding of the groundwater-flow system and updating the groundwater budget. Surface-water resources within Rush Valley are limited and are generally used for agriculture. Groundwater is the principal water source for most other uses including supplementing irrigation. Most groundwater withdrawal in Rush Valley is from the unconsolidated basin-fill aquifer where conditions are generally unconfined near the mountain front and confined at lower altitudes near the valley center. Productive aquifers also occur in fractured bedrock along the valley margins and beneath the basin-fill deposits in some areas.Drillers’ logs and geophysical gravity data were compiled and used to delineate seven hydrogeologic units important to basin-wide groundwater movement. The principal basin-fill aquifer includes the unconsolidated Quaternary-age alluvial and lacustrine deposits of (1) the upper basin-fill aquifer unit (UBFAU) and the consolidated and semiconsolidated Tertiary-age lacustrine and alluvial deposits of (2) the lower basin-fill aquifer unit (LBFAU). Bedrock hydrogeologic units include (3) the Tertiary-age volcanic unit (VU), (4) the Pennsylvanian- to Permian-age upper carbonate aquifer unit (UCAU), (5) the upper Mississippian- to lower Pennsylvanian-age upper siliciclastic confining unit (USCU), (6) the Middle Cambrian- to Mississippian-age lower carbonate aquifer unit (LCAU), and (7) the Precambrian- to Lower Cambrian-age noncarbonate confining unit (NCCU). Most productive bedrock wells in the Rush Valley groundwater basin are in the UCAU.Average annual recharge to the Rush Valley groundwater basin is estimated to be about 39,000 acre-feet. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall within the mountains with smaller amounts occurring as infiltration of streamflow and unconsumed irrigation water at or near the mountain front. Groundwater

  15. Ground-water resources investigation in the Amran Valley, Yeman Arab Republic

    USGS Publications Warehouse

    Tibbitts, G. Chase; Aubel, James

    1980-01-01

    A program of hydrologic studies and exploratory drilling was conducted intermittently between 1974 and 1978 to evaluate the water-bearing properties of the unconsolidated alluvial sediments and associated rocks in the semi-arid Amran Valley basin, an 800-square-kilometer area in north-central Yemen Arab Republic. Inventory data from 395 wells were compiled, observation well and rain-gage networks were established and 16 standard complete chemical analyses were made for samples from selected wells. The water resources of the area were overexploited. The chemical quality of the water is generally good. Four aquifer tests were run to determine transmissivity and storage characteristics. The pumping tests show that groundwater occurs under semi-confined leaky-aquifer conditions in the valley fill. Wells drilled in the alluvial fill of the south-central part of the valley have the highest yields. Wells penetrating the limestone and volcanic rocks generally have little or no yield except in fracture zones. Basalt flows occur interbedded with the wadi alluvium at several depths. Cropping out rocks in the Amran Valley range in age from late Jurassic to Holocene. (USGS)

  16. Water availability and subsidence in California's Central Valley

    USGS Publications Warehouse

    Faunt, Claudia C.; Sneed, Michelle

    2015-01-01

    California’s Central Valley covers about 52,000 square kilometers (km2) and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the broad alluvial filled structural trough, with an estimated value exceeding $20 billion per year (Faunt 2009) (Figure 1). Central Valley agriculture depends on state and federal water systems that divert surface water, predominantly originating from Sierra Nevada snowmelt, to agricultural fields. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture, as it grew, developed a reliance on groundwater for irrigation.

  17. Gravity survey and depth to bedrock in Carson Valley, Nevada-California

    USGS Publications Warehouse

    Maurer, D.K.

    1985-01-01

    Gravity data were obtained from 460 stations in Carson Valley, Nevada and California. The data have been interpreted to obtain a map of approximate depth to bedrock for use in a ground-water model of the valley. This map delineates the shape of the alluvium-filled basin and shows that the maximum depth to bedrock exceeds 5,000 feet, on the west side of the valley. A north-south trending offset in the bedrock surface shows that the Carson-Valley/Pine-Nut-Mountain block has not been tilted to the west as a simple unit, but is comprised of several smaller blocks. (USGS)

  18. Glade Valley School: 1909-1985.

    ERIC Educational Resources Information Center

    Dickson, Kay Reita

    This book is a comprehensive history of the Glade Valley School in Allegheny County, North Carolina. It is filled with letters, newspaper reports, first-hand accounts, and photographs that trace the lives of its students and faculty back to opening day in January 1911. The school's site was chosen in 1909 and was deemed favorable because it was…

  19. Meter-Scale Characteristics of Martian Channels and Valleys

    USGS Publications Warehouse

    Carr, M.H.; Malin, M.C.

    2000-01-01

    Mars Global Surveyor images, with resolutions as high as 1.5 m pixel, enable characterization of martian channels and valleys at resolutions one to two orders of magnitude better than was previously possible. A major surprise is the near-absence of valleys a few hundred meters wide and narrower. The almost complete absence of fine-scale valleys could be due to lack of precipitation, destruction of small valleys by erosion, or dominance of infiltration over surface runoff. V-shaped valleys with a central channel, such as Nanedi Vallis, provide compelling evidence for sustained or episodic flow of water across the surface. Larger valleys appear to have formed not by headward erosion as a consequence of groundwater sapping but by erosion from water sources upstream of the observed sections. The freshest appearing valleys have triangular cross sections, with talus from opposing walls meeting at the center of the valley. The relations suggest that the width of the valleys is controlled by the depth of incision and the angle of repose of the walls. The flat floors of less fresh-appearing valleys result primarily from later eolian fill. Several discontinuous valleys and lines of craters suggest massive subsurface solution or erosion. The climatic implications of the new images will remain obscure until the cause for the scarcity of fine-scale dissection is better understood. ?? 2000 Academic Press.

  20. Geophysical Investigation of Avon Valley, West-Central Montana, using Gravity and Seismic Reflection Profiling

    NASA Astrophysics Data System (ADS)

    Knatterud, L.; Mosolf, J.; Speece, M. A.; Zhou, X.

    2014-12-01

    The Avon Valley and adjacent mountains in west-central Montana lie within the Lewis and Clark Line, a major system of WNW-striking faults and folds that transect the more northerly structural grain of the northern Rockies and represent alternating episodes of transtensional and transpressional deformation. The northwest-trending valley has been previously interpreted as an extensional half graben filled with Tertiary sedimentary and volcanic deposits; however, little-to-no geophysical constraints on basin architecture or the thickness of Tertiary fill have been reported. A major northwest-striking fault with significant normal displacement clearly bounds the valley to the northeast, juxtaposing Tertiary sedimentary deposits against Proterozoic-Mesozoic units deformed by shortening structures and crosscut by Cretaceous granitic intrusions. Tertiary volcanic deposits unconformably overlying faulted and folded Phanerozoic-Proterozoic sequences in the eastern Garnet Range bound the valley to the southwest, but in the past no faults had been mapped along this margin. New mapping by the Montana Bureau of Mines and Geology (MBMG) has identified a system of high-angle, northwest- and northeast-striking, oblique-slip faults along the southwest border of the Avon calling into question if the valley is a half, full, or asymmetrical graben. Geophysical data has recently been acquired by Montana Tech to help define the structural architecture of the Avon Valley and the thickness of its Tertiary fill. Gravity data and a short seismic reflection profile have been collected and a preliminary interpretation of these data indicates a half graben with a series of normal faults bounding the western side of the valley. Ongoing gravity data collection throughout 2014 should refine this interpretation by better defining the bedrock-Tertiary interface at depth.

  1. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...

  2. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...

  3. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...

  4. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...

  5. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...

  6. Plant taphonomy in incised valleys: Implications for interpreting paleoclimate from fossil plants

    USGS Publications Warehouse

    Demko, T.M.; Dubiel, R.F.; Parrish, Judith T.

    1998-01-01

    Paleoclimatic interpretations of the Upper Triassic Chinle Formation (Colorado Plateau) based on plants conflict with those based on the sedimentary rocks. The plants are suggestive of a humid, equable climate, whereas the rocks are more consistent with deposition under highly seasonal precipitation and ground-water conditions. Fossil plant assemblages are limited to the lower members of the Chinle Formation, which were deposited within incised valleys that were cut into underlying Lower to Middle Triassic and older rocks. In contrast, the upper members of the formation, which were deposited across the fluvial plain after the incised valleys were filled, have few preserved fossil plants. The taphonomic characteristics of the plant fossil assemblages, within the stratigraphic and hydrologic context of the incised valley-fill sequence, explain the vertical and lateral distribution of these assemblages. The depositional, hydrological, and near-surface geochemical conditions were more conducive to preservation of the plants. Fossil plant assemblages in fully terrestrial incised-valley fills should be taphonomically biased toward riparian wetland environments. If those assemblages are used to interpret paleoclimate, the paleoclimatic interpretations will also be biased. The bias may be particularly strong in climates such as those during deposition of the Chinle Formation, when the riparian wetlands may reflect local hydrologic conditions rather than regional climate, and should be taken into account when using these types of plant assemblages in paleoclimatic interpretations.

  7. MX Siting Investigation. Gravity Survey - Big Smokey Valley, Nevada.

    DTIC Science & Technology

    1980-11-28

    Monte Cristo Range, on the south by Lone Mountain arid Tonopah, Nevada, and on the north by the T1i7 ,abhv i a7e. True area covered by this report lies...Royston Hills and Monte Cristo Range) are chiefly Tertiary tuffs, rhyolites, andesites, and basalts. Basin-fill deposits within the valley reach combined...east of Royston Hills and Monte Cristo Range. At the southern end where the valley bifurcates, faults are interpreted to be near both flanks of Lone

  8. Groundwater Quality, Age, and Probability of Contamination, Eagle River Watershed Valley-Fill Aquifer, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    The Eagle River watershed is located near the destination resort town of Vail, Colorado. The area has a fastgrowing permanent population, and the resort industry is rapidly expanding. A large percentage of the land undergoing development to support that growth overlies the Eagle River watershed valley-fill aquifer (ERWVFA), which likely has a high predisposition to groundwater contamination. As development continues, local organizations need tools to evaluate potential land-development effects on ground- and surface-water resources so that informed land-use and water management decisions can be made. To help develop these tools, the U.S. Geological Survey (USGS), in cooperation with Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority, conducted a study in 2006-2007 of the groundwater quality, age, and probability of contamination in the ERWVFA, north-central Colorado. Ground- and surface-water quality samples were analyzed for major ions, nutrients, stable isotopes of hydrogen and oxygen in water, tritium, dissolved gases, chlorofluorocarbons (CFCs), and volatile organic compounds (VOCs) determined with very low-level laboratory methods. The major-ion data indicate that groundwaters in the ERWVFA can be classified into two major groups: groundwater that was recharged by infiltration of surface water, and groundwater that had less immediate recharge from surface water and had elevated sulfate concentrations. Sulfate concentrations exceeded the USEPA National Secondary Drinking Water Regulations (250 milligrams per liter) in many wells near Eagle, Gypsum, and Dotsero. The predominant source of sulfate to groundwater in the Eagle River watershed is the Eagle Valley Evaporite, which is a gypsum deposit of Pennsylvanian age located predominantly in the western one-half of Eagle County.

  9. Neogene Seismic Stratigraphic Framework and Fill History of the Northeastern Albemarle Embayment, North Carolina

    NASA Astrophysics Data System (ADS)

    Mallinson, D. J.; Riggs, S. R.; Thieler, R.; Culver, S. J.; Corbett, D. R.; Hoffman, C. W.; Wehmiller, J.; Foster, D. S.

    2002-12-01

    Seismic and chirp sonar surveys were conducted in the eastern Albemarle Sound and adjacent tributaries and the inner continental shelf to define the geologic framework and evolution of the North Carolina coastal system. Surveys were utilized to target paleofluvial channels for drilling and core recovery for the assessment of sea level and climate change during the Quaternary. Lithostratigraphic and chronostratigraphic data are derived from eight drill sites on the Outer Banks, and the Mobil #1 well in the eastern Albemarle Sound. Within the study area, parallel-bedded, gently dipping Miocene beds occur at 100 to >180 mbsl, and are overlain by a southward-thickening Pliocene unit characterized by steeply inclined southward-prograding beds. The Quaternary section unconformably overlies the Pliocene unit, and consists of at least five depositional sequences exhibiting numerous incised channel-fill facies. The Quaternary section is 55 to 60 meters thick. Shallow stratigraphy (0-50 mbsl) is dominated by complex fill-stratigraphy within the incised paleo-Roanoke River valley. Radiocarbon and amino acid racemization (AAR) dates indicate that the valley-fill is late Pleistocene to Holocene in age. At least 6 distinct valley-fill units are identified in the seismic data based upon reflection geometry. Cores reveal a 3 to 6 meter thick basal fluvial channel lag that is overlain by a 15-meter thick unit of interbedded freshwater muds and sands. Organic materials within the freshwater deposits have ages of 13-11 cal. ka, and are overlain by several units comprised of shallow marine sediments. Shallow marine sediments within the valley are silty, fine- to medium-grained sands containing abundant neritic forams, suggesting that this area was an open embayment during much of the Holocene. Seismic data reveal that initial infilling occurred from the north and west during the late Pleistocene and early Holocene. Later infilling occurred from the east and is characterized by a large

  10. Hydrology and simulation of ground-water flow in Juab Valley, Juab County, Utah.

    USGS Publications Warehouse

    Thiros, Susan A.; Stolp, Bernard J.; Hadley, Heidi K.; Steiger, Judy I.

    1996-01-01

    Plans to import water to Juab Valley, Utah, primarily for irrigation, are part of the Central Utah Project. A better understanding of the hydrology of the valley is needed to help manage the water resources and to develop conjunctive-use plans.The saturated unconsolidated basin-fill deposits form the ground-water system in Juab Valley. Recharge is by seepage from streams, unconsumed irrigation water, and distribution systems; infiltration of precipitation; and subsurface inflow from consolidated rocks that surround the valley. Discharge is by wells, springs, seeps, evapotranspiration, and subsurface outflow to consolidated rocks. Ground-water pumpage is used to supplement surface water for irrigation in most of the valley and has altered the direction of groundwater flow from that of pre-ground-water development time in areas near and in Nephi and Levan.Greater-than-average precipitation during 1980-87 corresponds with a rise in water levels measured in most wells in the valley and the highest water level measured in some wells. Less-than average precipitation during 1988-91 corresponds with a decline in water levels measured during 1988-93 in most wells. Geochemical analyses indicate that the sources of dissolved ions in water sampled from the southern part of the valley are the Arapien Shale, evaporite deposits that occur in the unconsolidated basin-fill deposits, and possibly residual sea water that has undergone evaporation in unconsolidated basin-fill deposits in selected areas. Water discharging from a spring at Burriston Ponds is a mixture of about 70 percent ground water from a hypothesized flow path that extends downgradient from where Salt Creek enters Juab Valley and 30 percent from a hypothesized flow path from the base of the southern Wasatch Range.The ground-water system of Juab Valley was simulated by using the U.S. Geological Survey modular, three-dimensional, finite-difference, ground-water flow model. The numerical model was calibrated to simulate

  11. Geomorphic legacy of medieval Himalayan earthquakes in the Pokhara Valley

    NASA Astrophysics Data System (ADS)

    Schwanghart, Wolfgang; Bernhardt, Anne; Stolle, Amelie; Hoelzmann, Philipp; Adhikari, Basanta R.; Andermann, Christoff; Tofelde, Stefanie; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-04-01

    The Himalayas and their foreland belong to the world's most earthquake-prone regions. With millions of people at risk from severe ground shaking and associated damages, reliable data on the spatial and temporal occurrence of past major earthquakes is urgently needed to inform seismic risk analysis. Beyond the instrumental record such information has been largely based on historical accounts and trench studies. Written records provide evidence for damages and fatalities, yet are difficult to interpret when derived from the far-field. Trench studies, in turn, offer information on rupture histories, lengths and displacements along faults but involve high chronological uncertainties and fail to record earthquakes that do not rupture the surface. Thus, additional and independent information is required for developing reliable earthquake histories. Here, we present exceptionally well-dated evidence of catastrophic valley infill in the Pokhara Valley, Nepal. Bayesian calibration of radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments yields a robust age distribution that matches the timing of nearby M>8 earthquakes in ~1100, 1255, and 1344 AD. The upstream dip of tributary valley fills and X-ray fluorescence spectrometry of their provenance rule out local sediment sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from the Annapurna Massif >60 km away. The landscape-changing consequences of past large Himalayan earthquakes have so far been elusive. Catastrophic aggradation in the wake of two historically documented medieval earthquakes and one inferred from trench studies underscores that Himalayan valley fills should be considered as potential archives of past earthquakes. Such valley fills are pervasive in the Lesser Himalaya though high erosion rates reduce

  12. Landform Evolution of the Zanskar Valley, Ladakh Himalaya.

    NASA Astrophysics Data System (ADS)

    Chahal, P.; Kumar, A.; Sharma, P.; Sundriyal, Y.; Srivastava, P.

    2017-12-01

    Zanskar River flow from south-west to north-east, perpendicularly through Higher Himalayan crystalline sequences, Tethyan sedimentary sequences, and Indus Molasses; and finally merge with the Indus River at Nimu. Geologically, the Indus valley is bounded by Ladakh Batholith in the north and highly folded and thrusted Zanskar mountain ranges in the south. Sedimentary sequences of Zanskar ranges are largely of continental origin, which were uplifted and deformed via several north verging thrusts, where Zanskar counter thrust, Choksti and Indus-Bazgo thrusts are important thrust zone, and there is atleast 36 km of crustal shortening in the Zanskar section which continued from middle Miocene to the late Pleistocene. This shortening is accommodated mainly by north or north-east directed Zanskar backthrusts. Two major tributaries of Zanskar: Tsrapchu and Doda, flow in the headwaters, along the strike of South Tibetan Detachment System (STDs), an east-west trending regional fault. The present study incorporate field sedimentology, geomorphology and chronology of landform associated with Zanskar valley. In the upper Zanskar, alluvial fan, valley fill and strath terraces configured the major landforms with paleo-lake deposits­­­ in the area between the fans. The lower catchment, at the confluence of Zanskar and Indus rivers, exhibit mainly valley fill terraces and strath terraces. Chronology suggests diachronous aggradation in the upper and lower Zanskar catchments. In the upper Zanskar large scale valley aggradation took place with simultaneously fan progradation and flooding events from 45-15 ka. Luminescence chronology of the lower Zanskar indicates aggradation from 145-55 ka and 18-12 ka. The two aggradation basins are separated by a deep V-shaped gorge which is approximately 60 km long. The longitudinal profile of the Zanskar River shows several local convexities marking knick point zone, which suggests tectonically controlled topography.

  13. Geology and ground water of the Tualatin Valley, Oregon

    USGS Publications Warehouse

    Hart, D.H.; Newcomb, R.C.

    1965-01-01

    The Tualatin Valley proper consists of broad valley plains, ranging in altitude from 100 to 300 feet, and the lower mountain slopes of the drainage basin of the Tualatin River, a tributary of the Willamette River in northwestern Oregon. The valley is almost entirely farmed. Its population is increasing rapidly, partly because of the expansion of metropolitan Portland. Structurally, the bedrock of the basin is a saucer-shaped syncline almost bisected lengthwise by a ridge. The bedrock basin has been partly filled by alluvium, which underlies the valley plains. Ground water occurs in the Columbia River basalt, a lava unit that forms the top several hundred feet of the bedrock, and also in the zones of fine sand in the upper part of the alluvial fill. It occurs under unconfined, confined, and perched conditions. Graphs of the observed water levels in wells show that the ground water is replenished each year by precipitation. The graphs show also that the amount and time of recharge vary in different aquifers and for different modes of ground-water occurrence. The shallower alluvial aquifers are refilled each year to a level where further infiltration recharge is retarded and water drains away as surface runoff. No occurrences of undue depletion of the ground water by pumping are known. The facts indicate that there is a great quantity of additional water available for future development. The ground water is developed for use by some spring works and by thousands of wells, most of which are of small yield. Improvements are now being made in the design of the wells in basalt and in the use of sand or gravel envelopes for wells penetrating the fine-sand aquifers. The ground water in the basalt and the valley fill is in general of good quality, only slightly or moderately hard and of low salinity. Saline and mineralized water is present in the rocks of Tertiary age below the Columbia River basalt. Under certain structural and stratigraphic conditions this water of poor

  14. Advanced seismic imaging of overdeepened alpine valleys

    NASA Astrophysics Data System (ADS)

    Burschil, Thomas; Buness, Hermann; Tanner, David; Gabriel, Gerald; Krawczyk, Charlotte M.

    2017-04-01

    Major European alpine valleys and basins are densely populated areas with infrastructure of international importance. To protect the environment by, e.g., geohazard assessment or groundwater estimation, understanding of the geological structure of these valleys is essential. The shape and deposits of a valley can clarify its genesis and allows a prediction of behaviour in future glaciations. The term "overdeepened" refers to valleys and basins, in which pressurized melt-water under the glacier erodes the valley below the fluvial level. Most overdeepened valleys or basins were thus refilled during the ice melt or remain in the form of lakes. The ICDP-project Drilling Overdeepened Alpine Valleys (DOVE) intends to correlate the sedimentary succession from boreholes between valleys in the entire alpine range. Hereby, seismic exploration is essential to predict the most promising well path and drilling site. In a first step, this DFG-funded project investigates the benefit of multi-component techniques for seismic imaging. At two test sites, the Tannwald Basin and the Lienz Basin, the Leibniz Institute for Applied Geophysics acquired P-wave reflection profiles to gain structural and facies information. Built on the P-wave information, several S-wave reflection profiles were acquired in the pure SH-wave domain as well as 6-C reflection profiles using a horizontal S-wave source in inline and crossline excitation and 3-C receivers. Five P-wave sections reveal the structure of the Tannwald Basin, which is a distal branch basin of the Rhine Glacier. Strong reflections mark the base of the basin, which has a maximum depth of 240 metres. Internal structures and facies vary strongly and spatially, but allow a seismic facies characterization. We distinguish lacustrine, glacio-fluvial, and deltaic deposits, which make up the fill of the Tannwald Basin. Elements of the SH-wave and 6-C seismic imaging correlate with major structures in the P-wave image, but vary in detail. Based on

  15. Ground-Water Occurrence and Movement, 2006, and Water-Level Changes in the Detrital, Hualapai, and Sacramento Valley Basins, Mohave County, Arizona

    USGS Publications Warehouse

    Anning, David W.; Truini, Margot; Flynn, Marilyn E.; Remick, William H.

    2007-01-01

    Ground-water levels for water year 2006 and their change over time in Detrital, Hualapai, and Sacramento Valley Basins of northwestern Arizona were investigated to improve the understanding of current and past ground-water conditions in these basins. The potentiometric surface for ground water in the Basin-Fill aquifer of each basin is generally parallel to topography. Consequently, ground-water movement is generally from the mountain front toward the basin center and then along the basin axis toward the Colorado River or Lake Mead. Observed water levels in Detrital, Hualapai, and Sacramento Valley Basins have fluctuated during the period of historic water-level records (1943 through 2006). In Detrital Valley Basin, water levels in monitored areas have either remained the same, or have steadily increased as much as 3.5 feet since the 1980s. Similar steady conditions or water-level rises were observed for much of the northern and central parts of Hualapai Valley Basin. During the period of historic record, steady water-level declines as large as 60 feet were found in wells penetrating the Basin-Fill aquifer in areas near Kingman, northwest of Hackberry, and northeast of Dolan Springs within the Hualapai Valley Basin. Within the Sacramento Valley Basin, during the period of historic record, water-level declines as large as 55 feet were observed in wells penetrating the Basin-Fill aquifer in the Kingman and Golden Valley areas; whereas small, steady rises were observed in Yucca and in the Dutch Flat area.

  16. Middle Pleistocene infill of Hinkley Valley by Mojave River sediment and associated lake sediment: Depositional architecture and deformation by strike-slip faults

    USGS Publications Warehouse

    Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.

    2018-01-01

    Hinkley Valley in the Mojave Desert, near Barstow about 140 km northeast of Los Angeles and midway between Victorville Valley and the Lake Manix basin, contains a thick sedimentary sequence delivered by the Mojave River. Our study of sediment cores drilled in the valley indicates that Hinkley Valley was probably a closed playa basin with stream inflow from four directions prior to Mojave River inflow. The Mojave River deposited thick and laterally extensive clastic wedges originating from the southern valley that rapidly filled much of Hinkley Valley. Sedimentary facies representing braided stream, wetland, delta, and lacustrine depositional environments all are found in the basin fill; in some places, the sequence is greater than 74 m (245 ft) thick. The sediment is dated in part by the presence of the ~631 ka Lava Creek B ash bed low in the section, and thus represents sediment deposition after Victorville basin was overtopped by sediment and before the Manix basin began to be filled. Evidently, upstream Victorville basin filled with sediment by about 650 ka, causing the ancestral Mojave River to spill to the Harper and Hinkley basins, and later to Manix basin.Initial river sediment overran wetland deposits in many places in southern Hinkley Valley, indicating a rapidly encroaching river system. These sediments were succeeded by a widespread lake (“blue” clay) that includes the Lava Creek B ash bed. Above the lake sediment lies a thick section of interlayered stream sediment, delta and nearshore lake sediment, mudflat and/or playa sediment, and minor lake sediment. This stratigraphic architecture is found throughout the valley, and positions of lake sediment layers indicate a successive northward progression in the closed basin. A thin overlapping sequence at the north end of the valley contains evidence for a younger late Pleistocene lake episode. This late lake episode, and bracketing braided stream deposits of the Mojave River, indicate that the river

  17. Water-resources appraisal of the Wet Mountain Valley, in parts of Custer and Fremont counties, Colorado

    USGS Publications Warehouse

    Londquist, C.J.; Livingston, R.K.

    1978-01-01

    The Wet Mountain Valley is an intermontane trough filled to a depth of at least 6,700 feet with unconsolidated deposits. Ground water occurs under both artesian and water-table conditions within the basin-fill aquifer and ground-water moverment is toward Grape and Texas Creeks. The depth to the water table is less than 10 feet in an area of about 40 square miles along the central part of the valley and is less than 100 feet in most of the remainder of the valley. Ground water stored in the upper 200 feet of saturated basin-fill sediments is estimated to total 1.5 million acre-feet. Yields greater than 50 gallons per minute generally can be expected from wells in the central part of the basin-fill aquifer, and yields less than 50 gallons per minute are generally reported from wells around the edge of the basin-fill aquifer. Yields of wells in the mountainous areas are generally less than 20 gallons per minute. Most streamflow occurs as a result of snowmelt runoff during June and July. The long-term annual runoff at seven stations ranges from an estimated 0.02 cubic foot per second per square mile to an estimated 1.17 cubic feet per second per square mile, generaly increasing with station altitude. Generalized annyal water budgets for two areas in the Wet Mountain Valley indicate that surface-water outflow is only 7 to 11 percent of the total water supply from precipitation and other sources. The remaining water is lost to the atmosphere by evapotranspiration. The quality of both the surface and ground water is generally within the recommended limits for drinking water set by the U.S. Public Health Service. (Woodard-USGS)

  18. Ground water in the Escalante Valley, Beaver, Iron, and Washington Counties, Utah

    USGS Publications Warehouse

    Fix, Philip F.; Nelson, W.B.; Lofgren, B.E.; Butler, R.G.

    1950-01-01

    Escalante Valley in southwestern Utah is one of the largest and most important ground-water areas of the State, with 1,300 square miles of arid land and an additional 1,500 square miles in its tributary drainage basin. Ground water is obtained from gravel and sand beds in the unconsolidated valley fill. In 1950 more irrigation wells were pumped than in any other basin of Utah, and their total pumpage exceeded 80,000 acre-feet. Farming is done chiefly in the Beryl-Enterprise district at the south (upper) end of the valley, where it depends almost entirely upon ground water, and in the Milford and Minersville districts in the northeast-central part of the valley. This progress report concerns chiefly the Beryl-Enterprise and Milford districts.

  19. The Ogden Valley artesian reservoir

    USGS Publications Warehouse

    Thomas, H.E.

    1945-01-01

    Ogden Valley, in Weber County, Utah, contains an artesian reservoir from which the city of Ogden obtains all except a small part of its municipal water supply. A detailed investigation of the ground-water resources of Ogden Valley, and particularly of this artesian reservoir, was made by the Geological Survey, United States Department of the Interior, in cooperation with the city of Ogden between 1932 and 1934, and the results of this investigation have been reported by Leggette and Taylor.1 The present paper, which might be termed a sequel to that report, is based on data collected during those years, augmented by records that have been obtained (1935-1940) by the Geological Survey as part of a State-wide project in cooperation with the Utah State Engineer. The conclusions drawn from the study of these records and presented in detail in the following pages are as follows: (1) The artesian reservoir is filled to capacity nearly every year during the spring run-off from melting snow; (2) after the annual freshet, the recharge to the reservoir is insufficient to balance the discharge from artesian wells, which ordinarily is at a maximum during the summer; the reservoir is depleted and is not filled again until the following spring; (3) during the periods when the artesian reservoir is not full the rate of recharge is more or less proportional to the inflow to the valley by streams, except that rain on the recharge area may be of sufficient intensity to contribute some water by infiltration and deep penetration; and (4) the artesian reservoir thus serves to store water that would otherwise be lost to Great Salt Lake in the excess spring overflow, and available records indicate that water used by increased draft from wells would be replenished in normal years by increased recharge during the spring freshet.

  20. The Salzach Valley overdeeping: A most precise bedrock model of a major alpine glacial basin

    NASA Astrophysics Data System (ADS)

    Pomper, Johannes; Salcher, Bernhard; Eichkitz, Christoph

    2016-04-01

    Overdeepenings are impressive phenomena related to the erosion in the ablation zone of major glaciers. They are common features in glaciated and deglaciated regions worldwide and their sedimentary fillings may act as important archives for regional environmental change and glaciation history. Sedimentary fillings are also important targets of geotechnical exploration and construction including groundwater resource management, shallow geothermal exploitation, tunneling and the foundation of buildings. This is especially true in densely populated areas such as the European Alps and their foreland areas, regions which have been multiply glaciated during the last million years. However, due depths often exceeding some hundreds of meters, the overall knowledge on their geometry, formation and sedimentary content is still poor and commonly tied to some local spots. Here we present a bedrock model of the overall lower Salzach Valley, one of the largest glacial overdeepings in the European Alps. We utilized seismic sections from hydrocarbon exploration surveys and deep drillings together with topographic and modelling data to construct a 3D bedrock model. Through the existence of seismic inline and crossline valley sections, multiple drillings reaching the bedrock surface, log and abundant outcrop data we were, as far to our knowledge, able to create the most accurate digital bedrock topography of an alpine major overdeepening. We furthermore analyzed the sedimentary content of the valley as recorded by driller's lithologic logs. Our results suggest that the valley is far from being a regular U-shaped trough with constant depth, rather highlighting highs and lows of different magnitude and underground valley widths of variable extent. Data also indicates that the largest overdeepening of bedrock, reaching around 450 m below the alluvial fill, is not situated after a major glacial confluence following a prominent bedrock gorge but shifted several km down the valley. The

  1. Geologic evolution of the lower Connecticut River valley: Influence of bedrock geology, glacial deposits, and sea level

    USGS Publications Warehouse

    Stone, Janet R.; Lewis, Ralph S.

    2016-01-01

    This fieldtrip illustrates the character of the lower Connecticut River bedrock valley, in particular its depth, and the lithology and structure of bedrock units it crosses. It examines the character and distribution of the glaciodeltaic terraces that partially fill the valley and discusses the depth of postglacial incision into them.

  2. The Influence of Inherited Topography and/or Tectonics on Paleo-channel Systems and Incised Valleys Offshore of South Carolina

    NASA Astrophysics Data System (ADS)

    Long, A. M.; Hill, J. C.

    2016-12-01

    The Quaternary paleo-channel and incised valley systems of the Southeastern United States have been well documented onshore; however, few studies have focused on the positions and fill histories of these systems on the continental shelf. The effects of inherited topography can be studied through the integration of seismo-acoustic and core data. Existing offshore datasets have been used to document underlying structural and stratigraphic fabrics deeper than the Quaternary in the sedimentary record. By integrating these results with the published tectonic setting and onshore interpretations, some of the controls on paleo-channel/incised valley positions can be inferred. Preliminary results suggest the stress caused by the uplift along the Cape Fear Arch has been accommodated by shallow folding and reactivation of deeper structures in the South Carolina offshore province. The resultant topography may have dictated both the position and geometry of the fluvial incisions across the shelf. This in turn influences the accommodation space available to be filled in as sea level fluctuates. The depositional facies within the paleo-channel and incised valley range from single, uninterrupted fill to complex and repeated scour and fill with at least four different episodes of erosion and deposition. The observations and interpretations proposed here are the first steps in unraveling the complex interplay between sea level, climate, and tectonic changes on the morphology and stratigraphy of incised valleys and paleo-channels observed offshore of South Carolina.

  3. The hydrothermal system of Long Valley Caldera, California

    USGS Publications Warehouse

    Sorey, M.L.; Lewis, Robert Edward; Olmsted, F.H.

    1978-01-01

    Long Valley caldera, an elliptical depression covering 450 km 2 on the eastern front of the Sierra Nevada in east-central California, contains a hot-water convection system with numerous hot springs and measured and estimated aquifer temperatures at depths of 180?C to 280?C. In this study we have synthesized the results of previous geologic, geophysical, geochemical, and hydrologic investigations of the Long Valley area to develop a generalized conceptual and mathematical model which describes the gross features of heat and fluid flow in the hydrothermal system. Cenozoic volcanism in the Long Valley region began about 3.2 m.y. (million years) ago and has continued intermittently until the present time. The major event that resulted in the formation of the Long Valley caldera took place about 0.7 m.y. ago with the eruption of 600 km 3 or more of Bishop Tuff of Pleistocene age, a rhyolitic ash flow, and subsequent collapse of the roof of the magma chamber along one or more steeply inclined ring fractures. Subsequent intracaldera volcanism and uplift of the west-central part of the caldera floor formed a subcircular resurgent dome about 10 km in diameter surrounded by a moat containing rhyolitic, rhyodacitic, and basaltic rocks ranging in age from 0.5 to 0.05 m.y. On the basis of gravity and seismic studies, we estimate an aver- age thickness of fill of 2.4 km above the precaldera granitic and metamorphic basement rocks. A continuous layer of densely welded Bishop Tuff overlies the basement rocks, with an average thickness of 1.4 km; the fill above the welded Bishop Tuff consists of intercalated volcanic flows and tuffs and fluvial and lacustrine deposits. Assuming the average grain density of the fill is between 2.45 and 2.65 g/cm 3 , we calculate the average bulk porosity of the total fill as from 0.11 to 0.21. Comparison of published values of porosity of the welded Bishop Tuff exposed southeast of the caldera with calculated values indicates average bulk porosity

  4. Gravity Data from Newark Valley, White Pine County, Nevada

    USGS Publications Warehouse

    Mankinen, Edward A.; McKee, Edwin H.

    2007-01-01

    The Newark Valley area, eastern Nevada is one of thirteen major ground-water basins investigated by the BARCAS (Basin and Range Carbonate Aquifer Study) Project. Gravity data are being used to help characterize the geophysical framework of the region. Although gravity coverage was extensive over parts of the BARCAS study area, data were sparse for a number of the valleys, including the northern part of Newark Valley. We addressed this lack of data by establishing seventy new gravity stations in and around Newark Valley. All available gravity data were then evaluated to determine their reliability, prior to calculating an isostatic residual gravity map to be used for subsequent analyses. A gravity inversion method was used to calculate depths to pre-Cenozoic basement rock and estimates of maximum alluvial/volcanic fill. The enhanced gravity coverage and the incorporation of lithologic information from several deep oil and gas wells yields a view of subsurface shape of the basin and will provide information useful for the development of hydrogeologic models for the region.

  5. Geophysical reconnaissance of Lemmon Valley, Washoe County, Nevada

    USGS Publications Warehouse

    Schaefer, Donald H.; Maurer, Douglas K.

    1981-01-01

    Rapid growth in the Lemmon Valley area, Nevada, during recent years has put increasing importance on knowledge of stored ground water for the valley. Data that would fill voids left by previous studies are depth to bedrock and depth to good-quality water beneath the two playas in the valley. Depths to bedrock calculated from a gravity survey in Lemmon Valley indicate that the western part of Lemmon Valley is considerably deeper than the eastern part. Maximum depth in the western part is about 2 ,600 feet below land surface. This depression approximately underlies the Silver Lake playa. A smaller, shallower depression with a maximum depth of about 1,500 feet below land surface exists about 2.5 miles north of the playa. The eastern area is considerably shallower. The maximum calculated depth to bedrock is about 1,000 feet below land surface, but the depth throughout most the eastern area is only about 400 feet below land surface. An electrical resistivity survey in Lemmon Valley consisting of 10 Schlumberger soundings was conducted around the playas. The maximum depth of poor-quality water (characterized by a resistivity less than 20 ohm-meters) differed considerably from place to place. Maximum depths of poor-quality water beneath the playa east of Stead varied from about 120 feet to almost 570 feet below land surface. At the Silver Lake playa, the maximum depths varied from about 40 feet in the west to 490 feet in the east. (USGS)

  6. Geology and ground-water resources of the Deer Lodge Valley, Montana

    USGS Publications Warehouse

    Konizeski, Richard L.; McMurtrey, R.G.; Brietkrietz, Alex

    1968-01-01

    The Deer Lodge Valley is a basin trending north-south within Powell, Deer Lodge, and Silver Bow Counties in west-central Montana, near the center of the Northern Rocky Mountains physiographic province. It trends northward between a group of relatively low, rounded mountains to the east and the higher, more rugged Flint Creek Range to the west. The Clark Fork and its tributaries drain the valley in a northerly direction. The climate is semiarid and is characterized by long cold winters and short cool summers. Agriculture and ore refining are the principal industries. Both are dependent on large amounts of water. The principal topographic features are a broad lowland, the Clark Fork flood plain, bordered by low fringing terraces that are in turn bordered by broad, high terraces, which slope gently upward to the mountains. The high terraces have been mostly obscured in the south end of the valley by erosion and by recent deposition of great coalescent fans radiating outward frown the mouths of various tributary canyons. The mountains east of the Deer Lodge Valley are formed mostly of Cretaceous sedimentary and volcanic rocks and a great core of Upper Cretaceous to lower Tertiary granitic rocks; those west of the valley are formed of Precambrian to Cretaceous sedimentary rocks and a core of lower Tertiary granitic rocks. Field relationships, gravimetric data, and seismic data indicate that the valley is a deep graben, which formed in early Tertiary time after emplacement of the Boulder and Philipsburg batholiths. During the Tertiary Period the valley was partly filled to a maximum depth of more than 5,500 feet with erosional detritus that came from the surrounding mountains and was interbedded with minor amounts of volcanic ejecta. This material accumulated in a great variety of local environments. Consequently the resultant deposits are of extremely variable lithology in lateral and vertical sequence. The deposits grade from unconsolidated to well-cemented and from

  7. Paleolimnology of the McMurdo Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    Doran, P. T.; Wharton, R. A. Jr; Lyons, W. B.; Wharton RA, J. r. (Principal Investigator)

    1994-01-01

    The McMurdo Dry Valleys presently contain more than 20 permanent lakes and ponds, which vary markedly in character. All, with the exception of a hypersaline pond, have a perennial ice-cover. The dry valley lakes, and lakes in other ice-free regions of continental Antarctica, are unique on this planet in that they consistently maintain a thick year-round ice cover (2.8-6.0 m) over liquid water. The persistent ice covers minimize wind-generated currents and reduce light penetration, as well as restricting sediment deposition into a lake and the exchange of atmospheric gases between the water column and the atmosphere. From a paleolimnological perspective, the dry valley lakes offer an important record of catchment and environmental changes. These lakes are also modern-day equivalents of periglacial lakes that were common during glacial periods at temperate latitudes. The present lakes are mostly remnants of larger glacial lakes that occupied the valleys in the past, perhaps up to 4.6 Ma ago. Two of the valleys contain evidence of being filled with large glacial lakes within the last 10000 years. Repeated drying and filling events since then have left a characteristic impression on the salt profiles of some lakes creating a unique paleo-indicator within the water column. These events are also marked in the sediments by the concentration and dilution of certain chemical constituents, particularly salts, and are also corroborated by carbonate speciation and oxygen isotope analysis. Stratigraphic analysis of dry valley lake sediments is made difficult by the occurrence of an 'old carbon' reservoir creating spurious radiocarbon dates, and by the high degree of spatial variability in lake sedimentation. From a biological perspective, the lakes are relatively simple, containing various taxa of planktonic and benthic microorganisms, but no higher forms of life, which is an advantage to paleolimnologists because there is no bioturbation in the sediments. Useful biological

  8. Paleolimnology of the McMurdo Dry Valleys, Antarctica.

    PubMed

    Doran, P T; Wharton, R A; Lyons, W B

    1994-01-01

    The McMurdo Dry Valleys presently contain more than 20 permanent lakes and ponds, which vary markedly in character. All, with the exception of a hypersaline pond, have a perennial ice-cover. The dry valley lakes, and lakes in other ice-free regions of continental Antarctica, are unique on this planet in that they consistently maintain a thick year-round ice cover (2.8-6.0 m) over liquid water. The persistent ice covers minimize wind-generated currents and reduce light penetration, as well as restricting sediment deposition into a lake and the exchange of atmospheric gases between the water column and the atmosphere. From a paleolimnological perspective, the dry valley lakes offer an important record of catchment and environmental changes. These lakes are also modern-day equivalents of periglacial lakes that were common during glacial periods at temperate latitudes. The present lakes are mostly remnants of larger glacial lakes that occupied the valleys in the past, perhaps up to 4.6 Ma ago. Two of the valleys contain evidence of being filled with large glacial lakes within the last 10000 years. Repeated drying and filling events since then have left a characteristic impression on the salt profiles of some lakes creating a unique paleo-indicator within the water column. These events are also marked in the sediments by the concentration and dilution of certain chemical constituents, particularly salts, and are also corroborated by carbonate speciation and oxygen isotope analysis. Stratigraphic analysis of dry valley lake sediments is made difficult by the occurrence of an 'old carbon' reservoir creating spurious radiocarbon dates, and by the high degree of spatial variability in lake sedimentation. From a biological perspective, the lakes are relatively simple, containing various taxa of planktonic and benthic microorganisms, but no higher forms of life, which is an advantage to paleolimnologists because there is no bioturbation in the sediments. Useful biological

  9. DMRG study of fractional quantum Hall effect and valley skyrmions in graphene

    NASA Astrophysics Data System (ADS)

    Shibata, Naokazu

    2011-12-01

    The ground state and low-energy excitations of graphene and its bilayer are investigated by the density matrix renormalization group (DMRG) method. We analyze the effect of Coulomb interaction between the electrons including valley degrees of freedoms. The obtained results show finite charge excitation gap at various fractional fillings νn = 1/3, 2/5, 2/3 in the n = 0 and 1 Landau levels of single-layer graphene (SLG) and n = 2 Landau level of bilayer graphene (BLG). The lowest charge excitations at ν = 1/3, and 1 in SLG are valley skyrmions.

  10. Long-Term Impacts on Macroinvertebrates Downstream of Reclaimed Mountaintop Mining Valley Fills in Central Appalachia

    NASA Astrophysics Data System (ADS)

    Pond, Gregory J.; Passmore, Margaret E.; Pointon, Nancy D.; Felbinger, John K.; Walker, Craig A.; Krock, Kelly J. G.; Fulton, Jennifer B.; Nash, Whitney L.

    2014-10-01

    Recent studies have documented adverse effects to biological communities downstream of mountaintop coal mining and valley fills (VF), but few data exist on the longevity of these impacts. We sampled 15 headwater streams with VFs reclaimed 11-33 years prior to 2011 and sampled seven local reference sites that had no VFs. We collected chemical, habitat, and benthic macroinvertebrate data in April 2011; additional chemical samples were collected in September 2011. To assess ecological condition, we compared VF and reference abiotic and biotic data using: (1) ordination to detect multivariate differences, (2) benthic indices (a multimetric index and an observed/expected predictive model) calibrated to state reference conditions to detect impairment, and (3) correlation and regression analysis to detect relationships between biotic and abiotic data. Although VF sites had good instream habitat, nearly 90 % of these streams exhibited biological impairment. VF sites with higher index scores were co-located near unaffected tributaries; we suggest that these tributaries were sources of sensitive taxa as drifting colonists. There were clear losses of expected taxa across most VF sites and two functional feeding groups (% scrapers and %shredders) were significantly altered. Percent VF and forested area were related to biological quality but varied more than individual ions and specific conductance. Within the subset of VF sites, other descriptors (e.g., VF age, site distance from VF, the presence of impoundments, % forest) had no detectable relationships with biological condition. Although these VFs were constructed pursuant to permits and regulatory programs that have as their stated goals that (1) mined land be reclaimed and restored to its original use or a use of higher value, and (2) mining does not cause or contribute to violations of water quality standards, we found sustained ecological damage in headwaters streams draining VFs long after reclamation was completed.

  11. Subglacial tunnel valleys dissecting the Alpine landscape - an example from Bern, Switzerland

    NASA Astrophysics Data System (ADS)

    Dürst Stucki, Mirjam; Reber, Regina; Schlunegger, Fritz

    2010-05-01

    The morphology of the Alpine and adjacent landscapes is directly related to glacial erosion and associated sediment transport. Here we report the effects of glacio-hydrologic erosion on bedrock topography in the Swiss Mittelland. Specifically, we identify the presence of subsurface valleys beneath the city of Bern in Switzerland and discuss their genesis. Detailed stratigraphic investigations of more than 4000 borehole data within a 430 km2-large area reveal the presence of a network of >200 m-deep and 1000 m-wide valleys. They are flat floored with steep sided walls and are filled by Quaternary fluvio-glacial deposits. The main valley beneath Bern is straight and oriented towards the NNW, with valley flanks more than 20° steep. The valley bottom has an irregular undulating profile along the thalweg, with differences between sills and hollows higher than 50-100 m over a reach of 4 kilometers length. Approximately 200 m high bedrock uplands flank the valley network. The uplands are dissected by up to 80 m-deep and 500 m-broad hanging valleys that currently drain away from the axis of the main valley. We interpret the valleys beneath the city of Bern to be a tunnel valley network which originated from subglacial erosion by melt water. The upland valleys are hanging with respect to the trunk system, indicating that these incipient upland systems as well as the main gorge beneath Bern formed by glacial melt water under hydrostatic pressure. This explains the ascending flow of glacial water from the base towards the higher elevation hanging valleys where high water discharge resulted in the formation of broad valley geometries. Similarly, we relate efficient erosion, excavation of bedrock and the formation of the tunnel valley network with >20° steep shoulders to confined flow under pressure, caused by the overlying ice.

  12. Paleogeomorphology of the early Colorado River inferred from relationships in Mohave and Cottonwood Valleys, Arizona, California and Nevada

    USGS Publications Warehouse

    Pearthree, Philip; House, P. Kyle

    2014-01-01

    Geologic investigations of late Miocene–early Pliocene deposits in Mohave and Cottonwood valleys provide important insights into the early evolution of the lower Colorado River system. In the latest Miocene these valleys were separate depocenters; the floor of Cottonwood Valley was ∼200 m higher than the floor of Mohave Valley. When Colorado River water arrived from the north after 5.6 Ma, a shallow lake in Cottonwood Valley spilled into Mohave Valley, and the river then filled both valleys to ∼560 m above sea level (asl) and overtopped the bedrock divide at the southern end of Mohave Valley. Sediment-starved water spilling to the south gradually eroded the outlet as siliciclastic Bouse deposits filled the lake upstream. When sediment accumulation reached the elevation of the lowering outlet, continued erosion of the outlet resulted in recycling of stored lacustrine sediment into downstream basins; depth of erosion of the outlet and upstream basins was limited by the water levels in downstream basins. The water level in the southern Bouse basin was ∼300 m asl (modern elevation) at 4.8 Ma. It must have drained and been eroded to a level <150 m asl soon after that to allow for deep erosion of bedrock divides and basins upstream, leading to removal of large volumes of Bouse sediment prior to massive early Pliocene Colorado River aggradation. Abrupt lowering of regional base level due to spilling of a southern Bouse lake to the Gulf of California could have driven observed upstream river incision without uplift. Rapid uplift of the entire region immediately after 4.8 Ma would have been required to drive upstream incision if the southern Bouse was an estuary.

  13. Precipitation and Runoff Simulations of the Carson Range and Pine Nut Mountains, and Updated Estimates of Ground-Water Inflow and the Ground-Water Budgets for Basin-Fill Aquifers of Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Jeton, Anne E.; Maurer, Douglas K.

    2007-01-01

    Recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, Nevada, and California, from the adjacent Carson Range and Pine Nut Mountains ranged from 22,000 to 40,000 acre-feet per year using water-yield and chloride-balance methods. In this study, watershed models were developed for watersheds with perennial streams and for watersheds with ephemeral streams in the Carson Range and Pine Nut Mountains to provide an independent estimate of ground-water inflow. This report documents the development and calibration of the watershed models, presents model results, compares the results with recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, and presents updated estimates of the ground-water budget for basin-fill aquifers of Carson Valley. The model used for the study was the Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Geographic Information System software was used to manage spatial data, characterize model drainages, and to develop Hydrologic Response Units. Models were developed for * Two watersheds with gaged perennial streams in the Carson Range and two watersheds with gaged perennial streams in the Pine Nut Mountains using measured daily mean runoff, * Ten watersheds with ungaged perennial streams using estimated daily mean runoff, * Ten watershed with ungaged ephemeral streams in the Carson Range, and * A large area of ephemeral runoff near the Pine Nut Mountains. Models developed for the gaged watersheds were used as index models to guide the calibration of models for ungaged watersheds. Model calibration was constrained by daily mean runoff for 4 gaged watersheds and for 10 ungaged watersheds in the Carson Range estimated in a previous study. The models were further constrained by annual precipitation volumes estimated in a previous study to provide

  14. Ages of Quaternary Rio Grande terrace-fill deposits, Albuquerque area, New Mexico

    USGS Publications Warehouse

    ,; Mahan, Shannon; Stone, Byron D.; Shroba, Ralph R.

    2007-01-01

    Results from luminescence dating on 13 samples from the Albuquerque area show that major-drainage fluvial deposits represent significant periods of aggradation that formed paired, correlatable terraces on the east and west margins of the Rio Grande valley . The youngest terrace fills (Primero Alto) formed during late Pleistocene as a result of streamflow variations with climate cooling during Marine Oxygen-Isotope Stage 3; our ages suggest aggradation of the upper part of the fill occurred at about 47–40 ka . Deposits of the second (Segundo Alto) terraces reached maximum height during climate cooling in the early part of Marine Oxygen-Isotope Stage 5 as late as 90–98 ka (based on dated basalt flows) . Our luminescence ages show considerable scatter and tend to be younger (range from 63 ka to 162 ka) . The third (Tercero Alto) and fourth (Cuarto Alto) terraces are dated on the basis of included volcanic tephra. Tercero Alto terrace-fill deposits contain the Lava Creek B tephra (639 ka), and Cuarto Alto terrace-fill deposits contain tephra of the younger Bandelier Tuff eruption (1 .22 Ma), the Cerro Toledo Rhyolite (1 .47 Ma), and the older Bandelier Tuff eruption (1 .61 Ma). These periods of aggradation culminated in fluvial terraces that are preserved at maximum heights of 360 ft (Cuarto Alto), 300 ft. (Tercero Alto), 140 ft (Segundo Alto), and 60 ft. (Primero Alto) above the modern floodplain. Despite lithologic differences related to local source-area contributions, these terracefill deposits can be correlated across the Rio Grande and up- and down-valley for tens of miles based on maximum height of the terrace above the modern floodplain.

  15. Quaternary incised valleys in southern Brazil coastal zone

    NASA Astrophysics Data System (ADS)

    Weschenfelder, Jair; Baitelli, Ricardo; Corrêa, Iran C. S.; Bortolin, Eduardo C.; dos Santos, Cristiane B.

    2014-11-01

    High-resolution seismic records obtained in the Rio Grande do Sul coastal zone, southern Brazil, revealed that prominent valleys and channels developed in the area before the installation of actual coastal plain. Landwards, the paleoincisions can be linked with the present courses of the main river dissecting the area. Oceanwards, they can be linked with related features previously recognized in the continental shelf and slope by means of seismic and morphostructural studies. Based mainly on seismic, core data and geologic reasoning, it can be inferred that the coastal valleys were incised during forced regression events into the coastal prism deposited during previous sea level highstand events of the Quaternary. Seismic data has revealed paleovalleys up to 10 km wide and, in some places, infilled with up to 40 m thick of sediments. The results indicated two distinct periods of cut-and-fill events in the Patos Lagoon area. The filling of the younger incision system is mainly Holocene and its onset is related to the last main regressive event of the Pleistocene, when the sea level fell about 130 m below the actual position. The older incision and filling event is related to the previous regressive-transgressive events of the Middle and Late Pleistocene. The fluvial discharge fed delta systems on the shelf edge during the sea level lowstands. The subsequent transgressions drowned the incised drainage, infilling it and closing the inlets formerly connecting the coastal river to the ocean. The incised features may have played a significant role on the basin-margin architecture, facies distribution and accommodation space during the multitude of up and down sea level events of the Quaternary.

  16. M’zab Valley, Algeria

    NASA Image and Video Library

    2017-12-08

    NASA image acquired Feb. 9, 2011 Less than 5 percent of Algeria’s land surface is suitable for growing crops, and most precipitation falls on the Atlas Mountains along the coast. Inland, dust-laden winds blow over rocky plains and sand seas. However, in north central Algeria—off the tip of Grand Erg Occidental and about 450 kilometers (280 miles) south of Algiers—lies a serpentine stretch of vegetation. It is the M’zab Valley, filled with palm groves and dotted with centuries-old settlements. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA’s Terra satellite captured this image of M’zab Valley on February 9, 2011. ASTER combines infrared, red, and green wavelengths of light. Bare rock ranges in color from beige to peach. Buildings and paved surfaces appear gray. Vegetation is red, and brighter shades of red indicate more robust vegetation. This oasis results from water that is otherwise in short supply in the Sahara Desert, thanks to the valley’s approximately 3,000 wells. Chemical analysis of Algerian aquifers, as well studies of topography in Algeria and Tunisia, suggest this region experienced a cooler climate in the late Pleistocene, and potentially heavy monsoon rains earlier in the Holocene. The M’zab region shows evidence of meandering rivers and pinnate drainage patterns. The vegetation lining M’zab Valley highlights this old river valley’s contours. Cool summer temperatures and monsoon rains had long since retreated from the region by eleventh century, but this valley nevertheless supported the establishment of multiple fortified settlements, or ksours. Between 1012 A.D. and 1350 A.D., locals established the ksours of El-Atteuf, Bounoura, Melika, Ghardaïa, and Beni-Isguen. Collectively these cities are now a United Nations Educational, Scientific, and Cultural Organization (UNESCO) World Heritage site. NASA Earth Observatory image by Robert Simmon and Jesse Allen, using data from the GSFC

  17. Geohydrology of the Valley-Fill Aquifer in the Norwich-Oxford-Brisben Area, Chenango County, New York

    USGS Publications Warehouse

    Hetcher, Kari K.; Miller, Todd S.; Garry, James D.; Reynolds, Richard J.

    2003-01-01

    This set of maps and geohydrologic sections depicts the geology and hydrology of aquifers in the 21.9-square-mile reach of the Chenango River valley between Brisben and North Norwich, N.Y. This report depicts the principal geographic features of the study area; locations of domestic, commercial, and municipal wells from which data were obtained to construct water-table and saturated-thickness maps and five geohydrologic sections; surficial geology; water-table altitude; generalized saturated thickness of the unconfined (water-table) aquifer; generalized thickness of the discontinuous series of confined aquifers; and five geohydrologic sections, all of which are in the northern part of the study area.The unconsolidated material in the Chenango River valley consists primarily of three types of deposits: (1) glaciofluvial material consisting of stratified coarse-grained sediment (sand and gravel) that was deposited by meltwater streams flowing above, below, or next to a glacier; (2) glaciolacustrine material consisting of stratified fine-grained sediment (very fine sand, silt, and clay) that was deposited in lakes that formed at the front of a glacier; and (3) recent alluvial material consisting of stratified fine-to-medium grained sediment (fine-to-medium sand and silt) that was deposited on flood plains.The water-table map was compiled from water-level data obtained from wells completed in the unconfined aquifer, and from altitudes of stream and river surfaces indicated on 1:24,000-scale topographic maps. Depth to the water table ranged from less than 5 feet below land surface near major streams to more than 75 feet on some of the kame terraces along the valley walls. Saturated thickness of the unconfined aquifer ranged from less than 1 foot near Norwich to more than 200 feet at a kame delta north of Oxford.A discontinuous series of confined aquifers is present throughout much of the Chenango River valley north of Oxford. These aquifers consist of kame deposits

  18. Geophysical Surveys of the Hydrologic Basin Underlying Yosemite Valley, California.

    NASA Astrophysics Data System (ADS)

    Maher, E. L.; Shaw, K. A.; Carey, C.; Dunn, M. E.; Whitman, S.; Bourdeau, J.; Eckert, E.; Louie, J. N.; Stock, G. M.

    2017-12-01

    UNR students in an Applied Geophysics course conducted geophysical investigations in Yosemite Valley during the months of March and August 2017. The goal of the study is to understand better the depth to bedrock, the geometry of the bedrock basin, and the properties of stratigraphy- below the valley floor. Gutenberg and others published the only prior geophysical investigation in 1956, to constrain the depth to bedrock. We employed gravity, resistivity, and refraction microtremor(ReMi) methods to investigate the interface between valley fill and bedrock, as well as shallow contrasts. Resistivity and ReMi arrays along three north-south transects investigated the top 50-60m of the basin fill. Gravity results constrained by shallow measurements suggest a maximum depth of 1000 m to bedrock. ReMi and resistivity techniques identified shallow contrasts in shear velocity and electrical resistivity that yielded information about the location of the unconfined water table, the thickness of the soil zone, and spatial variation in shallow sediment composition. The upper several meters of sediment commonly showed shear velocities below 200 m/s, while biomass-rich areas and sandy river banks could be below 150 m/s. Vs30 values consistently increased towards the edge of the basin. The general pattern for resistivity profiles was a zone of relatively high resistivity, >100 ohm-m, in the top 4 meters, followed by one or more layers with decreased resistivity. According to gravity measurements, assuming either -0.5 g/cc or -0.7 g/cc density contrast between bedrock and basin sediments, a maximum depth to bedrock is found south of El Capitan at respectively, 1145 ± 215 m or 818 ± 150 m. Longitudinal basin geometry coincides with the basin depth geometry discussed by Gutenberg in 1956. Their results describe a "double camel" shape where the deepest points are near El Capitan and the Ahwahnee Hotel and is shallowest near Yosemite Falls, in a wider part of the valley. An August Deep

  19. Aeromagnetic survey map of Sacramento Valley, California

    USGS Publications Warehouse

    Langenheim, Victoria E.

    2015-01-01

    Three aeromagnetic surveys were flown to improve understanding of the geology and structure in the Sacramento Valley. The resulting data serve as a basis for geophysical interpretations, and support geological mapping, water and mineral resource investigations, and other topical studies. Local spatial variations in the Earth's magnetic field (evident as anomalies on aeromagnetic maps) reflect the distribution of magnetic minerals, primarily magnetite, in the underlying rocks. In many cases the volume content of magnetic minerals can be related to rock type, and abrupt spatial changes in the amount of magnetic minerals commonly mark lithologic or structural boundaries. Bodies of serpentinite and other mafic and ultramafic rocks tend to produce the most intense positive magnetic anomalies (for example, in the northwest part of the map). These rock types are the inferred sources, concealed beneath weakly magnetic, valley-fill deposits, of the most prominent magnetic features in the map area, the magnetic highs that extend along the valley axis. Cenozoic volcanic rocks are also an important source of magnetic anomalies and coincide with short-wavelength anomalies that can be either positive (strong central positive anomaly flanked by lower-amplitude negative anomalies) or negative (strong central negative anomaly flanked by lower-amplitude positive anomalies), reflecting the contribution of remanent magnetization. Rocks with more felsic compositions or even some sedimentary units also can cause measurable magnetic anomalies. For example, the long, linear, narrow north-trending anomalies (with amplitudes of <50 nanoteslas [nT]) along the western margin of the valley coincide with exposures of the Mesozoic Great Valley sequence. Note that isolated, short-wavelength anomalies, such as those in the city of Sacramento and along some of the major roads, are caused by manmade features.

  20. An aeromagnetic survey in the Valley of Ten Thousand Smokes, Alaska. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Anma, K.

    1971-01-01

    Geologic and magnetic studies of the Katmai area have further demonstrated the close relationship between the Katmai Caldera, Novarupta plug, and the pyroclastic flows in the Valley of Ten Thousand Smokes. The magnetic fields observed appear to be associated with the thickness of the pyroclastic flow and the different rock units within it for lower flight levels, and also the contrast between the valley fill and the rock units at the Valley margins. Consistent magnetic anomalies are associated with the larger fumarole lines, which were presumably sites of large scale activity, while the smaller fumaroles are not usually seen in the aeromagnetic map. A possible correlation between low positive anomalies and nuee ardente deposits was revealed by the aeromagnetic survey, but was not strong. A ground survey was also carried out in several parts of the Valley with a view to detailed delineation of the magnetic signatures of the pyroclastic flow, as an aid to interpreting the aeromagnetic date.

  1. Stable isotopic evidence for fluid flow and fluid/rock interaction during thrust faulting in Pumpkin Valley shale and Rome Formation, east Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, B.K.; Haase, C.S.

    1989-08-01

    The Pumpkin Valley Shale and the underlying Rome Formation form the lower portions of the Copper Creek and White Oak Mountain thrust sheets in east Tennessee. The Pumpkin Valley Shale consists of shale and mudstone with subordinate amounts of interbedded siltstone. The Rome Formation is composed predominantly of sandstone with interbedded shale and siltstone toward the base of the formation. The percentage of illite increases from 20% to over 80% of the bulk clay mineralogy toward the base of the section. Porosity is occluded by quartz, phyllosilicate, and calcite cements. Both formations contain calcite-filled and, less commonly, quartz-filled Alleghenian fracturesmore » and joints.« less

  2. Shallow Sub-Permafrost Groundwater Systems In A Buried Fjord: Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Foley, N.; Tulaczyk, S. M.; Auken, E.; Mikucki, J.

    2014-12-01

    The McMurdo Dry Valleys (MDV), Antarctica, represent a unique geologic setting where permanent lakes, ephemeral streams, and subglacial waters influence surface hydrology in a cold polar desert. Past research suggested that the MDV are underlain by several hundreds of meters of permafrost. Here, we present data collected from an Airborne EM (AEM) resistivity sensor flown over the MDV during the 2011-12 austral summer. A focus of our survey was over the Taylor Glacier where saline, iron-rich subglacial fluid releases at the glacier snout at a feature known as Blood Falls, and over Taylor Valley, where a series of isolated lakes lie between Taylor Glacier and the Ross Sea. Our data show that in Taylor Valley there are extensive areas of low resistivity, interpreted as hypersaline brines, beneath a relatively thin layer of high resistivity material, interpreted as dry- or ice-cemented permafrost. These hypersaline brines remain liquid at temperatures well below 0°C due to their salinity. They appear to be contained within the sedimentary fill deposited in Taylor Valley when it was still a fjord. This brine system continues up valley and has a subglacial extension beneath Taylor Glacier, where it may provide the source that feeds Blood Falls. By categorizing the resistivity measurements according to surficial land cover, we are able to distinguish between ice, permafrost, lake water, and seawater based on characteristic resistivity distributions. Furthermore, this technique shows that areas of surface permafrost become increasingly conductive (brine-filled) with depth, whereas the large lakes exhibit taliks that extend through the entire thickness of the permafrost. The subsurface brines represent a large, unstudied and potentially connected hydrogeologic system, in which subsurface flows may help transfer water and nutrients between lakes in the MDV and into the Ross Sea. Such a system is a potential habitat for extremophile life, similar to that already detected in

  3. Long Valley Coring Project

    USGS Publications Warehouse

    Sass, John; Finger, John; McConnel, Vicki

    1998-01-01

    In December 1997, the California Energy Commission (CEC) agreed to provide funding for Phase III continued drilling of the Long Valley Exploratory Well (LVEW) near Mammoth Lakes, CA, from its present depth. The CEC contribution of $1 million completes a funding package of $2 million from a variety of sources, which will allow the well to be cored continuously to a depth of between 11,500 and 12,500 feet. The core recovered from Phase III will be crucial to understanding the origin and history of the hydrothermal systems responsible for the filling of fractures in the basement rock. The borehole may penetrate the metamorphic roof of the large magmatic complex that has fed the volcanism responsible for the caldera and subsequent activity.

  4. Hydrogeologic implications of increased septic-tank-soil-absorption system density, Ogden Valley, Weber County, Utah

    USGS Publications Warehouse

    Lowe, Mike; Miner, Michael L.; ,

    1990-01-01

    Ground water in Ogden Valley occurs in perched, confined, and unconfined aquifers in the valley fill to depths of 600 feet and more. The confined aquifer, which underlies only the western portion of the valley, is overlain by cleyey silt lacustrine sediments probably deposited during the Bonneville Basin's Little Valley lake cycle sometime between 90,000 and 150,000 years ago. The top of this cleyey silt confining layer is generally 25 to 60 feet below the ground surface. Unconfined conditions occur above and beyond the outer margin of the confining layer. The sediments overlying the confining layer are primarily Lake Bonneville deposits. Water samples from springs, streams, and wells around Pineview Reservoir, and from the reservoir itself, were collected and analyzed. These samples indicate that water quality in Ogden Valley is presently good. Average nitrate concentrations in the shallow unconfined aquifer increase toward the center of Ogden Valley. This trend was not observed in the confined aquifer. There is no evidence, however, of significant water-quality deterioration, even in the vicinity of Huntsville, a town that has been densely developed using septic-tank-soil-absorption systems for much of the time since it was founded in 1860.

  5. Delineation of areas contributing recharge to selected public-supply wells in Glacial Valley-Fill and Wetland Settings, Rhode Island

    USGS Publications Warehouse

    Friesz, Paul J.

    2004-01-01

    . The Cumberland well field compensates by increasing the percentage of water it withdraws from the river by 11 percent. The upland area draining toward the Cumberland contributing area is 0.55 square mile. The area contributing recharge to the Lincoln well field is 0.08 square mile and infiltrated river water contributes 88 percent of the total water; the upland area draining toward the contributing area is 0.34 square mile. In North Smithfield, a public-supply well in a valley-fill setting is close to Trout Brook Pond, which is an extension of the Lower Slatersville Reservoir. A comparison of water levels from the pond and underlying sediments indicates that water is not infiltrated from Trout Brook Pond when the supply well is pumped at its maximum rate of 200 gallons per minute. Simulated areas contributing recharge for the maximum pumping rate and for the estimated maximum yield, 500 gallons per minute, of a proposed replacement well extend to the ground-water divides on both sides of Trout Brook Pond. For the 200 gallons-per-minute rate, the area contributing recharge is 0.23 square mile; the well derives almost all of its water from intercepted ground water that normally discharges to surface-water bodies. For the pumping rate of 500 gallons per minute, the area contributing recharge is 0.45 square mile. The increased pumping rate is balanced by additional intercepted ground water and by inducing 25 percent of the total withdrawn water from surface water. In Westerly, one public-supply well is in a watershed where the primarily hydrologic feature is a wetland. Water levels in piezometers surrounding the well site indicated a downward vertical gradient and the potential for water in the wetland to infiltrate the underlying aquifer. The simulated area contributing recharge for the average pumping rate (240 gallons per minute) and for the maximum pumping rate (700 gallons per minute) extends to the surrounding uplands (surficial materials not covered by t

  6. Refraction seismic studies in the Miami River, Whitewater River, and Mill Creek valleys, Hamilton and Butler Counties, Ohio

    USGS Publications Warehouse

    Watkins, Joel S.

    1963-01-01

    Between September 17 and November 9, 1962, the U.S. Geological Survey, in cooperation with Ohio Division of Water, Miami Conservancy District, and c,ty of Cincinnati, Ohio, co.,:ducted a refraction seismic study in Hamilton and Butler Counties, southwest Ohio. The area lies between Hamilton, Ohio, and the Ohio River and includes a preglacial valley now occupied by portions of the Miami River, Whitewater River, and Mill Creek. The valley is partially filled with glacial debris which yields large quantities of good-quality water. The object of the study was to determine the thickness of these glacial deposits and the shape of the preglacial valley.

  7. Early diagenetic microporosity in the Cotton Valley Limestone of east Texas

    NASA Astrophysics Data System (ADS)

    Ahr, Wayne M.

    1989-07-01

    The Upper Jurassic, Cotton Valley Limestone was deposited on a mature ramp where monotonous, regional slopes were punctuated by salt-generated structures and basement topography. The strandline and the crests of paleobathymetric highs were blanketed by oolitic and palletoidal grainstones. The ratio of grainstones to mudstones increases in the upper Cotton Valley, reflecting a regional shallowing phase. Thinner, shoaling-upward sequences are present but they do not correlate easily, especially from basement highs to salt domes, probably because salt movement occurred during deposition of Cotton Valley rocks. The complex diagenetic history of the Cotton Valley, inferred from cross-cutting features observed in thin section and from trace-element and stable-isotope content, includes the origin of "chalky" microporosity, especially in ooids. This intraparticle, intercrystalline porosity occurs in a fabric of equant, subhedral to euhedral, low-Mg calcite micro-rhombs which appear to have developed at the expense of an acicular precursor. Such microporous ooids are present mainly on the crests of paleobathymetric highs; nearby, offstructure ooids contain a mixture of micritic and well-preserved ooids. However, these micritic ooids are different from the micro-rhombic, microporous ones on the highs. The well-preserved low-Mg calcite ooids from offstructure positions exhibit relict acicular microstructures in some of their lamellae. The "chalky" microporosity is crosscut by virtually every other diagenetic feature in the Cotton Valley Limestone. The ɛ 13C values from individual microporous ooids range from +1.65 to +2.76% PDB, which is not in the range of values associated with precipitation in a hydrocarbon-rich environment. The formation of microporosity was followed by the formation of embayed grain contacts, pore-filling cementation, grain compaction, stylolite formation, replacements by quartz and rhombic dolomite, fracturing, fracture-filling cementation, saddle

  8. Hydrology and simulation of ground-water flow in Cedar Valley, Iron County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.; Mason, James L.

    2005-01-01

    Cedar Valley, located in the eastern part of Iron County in southwestern Utah, is experiencing rapid population growth. Cedar Valley traditionally has supported agriculture, but the growing population needs a larger share of the available water resources. Water withdrawn from the unconsolidated basin fill is the primary source for public supply and is a major source of water for irrigation. Water managers are concerned about increasing demands on the water supply and need hydrologic information to manage this limited water resource and minimize flow of water unsuitable for domestic use toward present and future public-supply sources.Surface water in the study area is derived primarily from snowmelt at higher altitudes east of the study area or from occasional large thunderstorms during the summer. Coal Creek, a perennial stream with an average annual discharge of 24,200 acre-feet per year, is the largest stream in Cedar Valley. Typically, all of the water in Coal Creek is diverted for irrigation during the summer months. All surface water is consumed within the basin by irrigated crops, evapotranspiration, or recharge to the ground-water system.Ground water in Cedar Valley generally moves from primary recharge areas along the eastern margin of the basin where Coal Creek enters, to areas of discharge or subsurface outflow. Recharge to the unconsolidated basin-fill aquifer is by seepage of unconsumed irrigation water, streams, direct precipitation on the unconsolidated basin fill, and subsurface inflow from consolidated rock and Parowan Valley and is estimated to be about 42,000 acre-feet per year. Stable-isotope data indicate that recharge is primarily from winter precipitation. The chloride mass-balance method indicates that recharge may be less than 42,000 acre-feet per year, but is considered a rough approximation because of limited chloride concentration data for precipitation and Coal Creek. Continued declining water levels indicate that recharge is not

  9. Surface Magnetism on pristine silicon thin film for spin and valley transport

    NASA Astrophysics Data System (ADS)

    Sun, Jia-Tao

    The spin and valley degree of freedom for an electron have received tremendous attention in condensed matters physics because of the potential application for spintronics and valleytronics. It has been widely accepted that d0 light elemental materials of single component are not taken as ferromagnetic candidates because of the absence of odd paired electrons. The ferromagnetism has to be introduced by ferromagnetic impurity, edge functionalization, or proximity with ferromagnetic neighbors etc. These special surface or interface structures require atomically precise control which significantly increases experimental uncertainty and theoretical understanding. By means of density functional theory (DFT) computations, we found that the spin- and valley- polarized state can be introduced in pristine silicon thin films without any alien components. The key point to this aim is the formation of graphene-like hexagonal structures making a spin-polarized Dirac fermion with half-filling. The resulting fundamental physics such as quantum valley Hall effect (QVHE), quantum anomalous Hall effect (QAHE) and magnetoelectric effect will be discussed.

  10. Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon

    USGS Publications Warehouse

    O'Connor, Jim E.; Sarna-Wojcicki, Andrei M.; Wozniak, Karl C.; Polette, Danial J.; Fleck, Robert J.

    2001-01-01

    Stratigraphic and chronologic information collected for Quaternary deposits in the Willamette Valley, Oregon, provides a revised stratigraphic framework that serves as a basis for a 1:250,000-scale map, as well as for thickness estimates of widespread Quaternary geologic units. We have mapped 11 separate Quaternary units that are differentiated on the basis of stratigraphic, topographic, pedogenic, and hydrogeologic properties. In summation, these units reflect four distinct episodes in the Quaternary geologic development of the Willamette Valley: 1) Fluvial sands and gravels that underlie terraces flanking lowland margins and tributary valleys were probably deposited between 2.5 and 0.5 million years ago. They are the oldest widespread surficial Quaternary deposits in the valley. Their present positions and preservation are undoubtedly due to postdepositional tectonic deformation - either by direct tectonic uplift of valley margins, or by regional tectonic controls on local base level. 2) Tertiary and Quaternary excavation or tectonic lowering of the Willamette Valley accommodated as much as 500 m (meters) of lacustrine and fluvial fill. Beneath the lowland floor, much of the upper 10 to 50 m of fill is Quaternary sand and gravel deposited by braided channel systems in subhorizontal sheets 2 to 10 m thick. These deposits grade to gravel fans 40 to 100 m thick where major Cascade Range rivers enter the valley and are traced farther upstream as much thinner valley trains of coarse gravel. The sand and gravel deposits have ages that range from greater than 420,000 to about 12,000 years old. A widely distributed layer of sand and gravel deposited at about 12 ka (kiloannum, thousands of years before the present) is looser and probably more permeable than older sand and gravel. Stratigraphic exposures and drillers' logs indicate that this late Pleistocene unit is mostly between 5 and 20 m thick where it has not been subsequently eroded by the Willamette River and its

  11. Hydrogeology of shallow basin-fill deposits in areas of Salt Lake Valley, Salt Lake County, Utah

    USGS Publications Warehouse

    Thiros, Susan A.

    2003-01-01

    A study of recently developed residential/commercial areas of Salt Lake Valley, Utah, was done from 1999 to 2001 in areas in which shallow ground water has the potential to move to a deeper aquifer that is used for public supply. Thirty monitoring wells were drilled and sampled in 1999 as part of the study. The ground water was either under unconfined or confined conditions, depending on depth to water and the presence or absence of fine-grained deposits. The wells were completed in the shallowest water-bearing zone capable of supplying water. Monitoring-well depths range from 23 to 154 feet. Lithologic, geophysical, hydraulic-conductivity, transmissivity, water-level, and water-temperature data were obtained for or collected from the wells.Silt and clay layers noted on lithologic logs correlate with increases in electrical conductivity and natural gamma radiation shown on many of the electromagnetic-induction and natural gamma logs. Relatively large increases in electrical conductivity, determined from the electromagnetic-induction logs, with no major changes in natural gamma radiation are likely caused by increased dissolved-solids content in the ground water. Some intervals with high electrical conductivity correspond to areas in which water was present during drilling.Unconfined conditions were present at 7 of 20 monitoring wells on the west side and at 2 of 10 wells on the east side of Salt Lake Valley. Fine-grained deposits confine the ground water. Anthropogenic compounds were detected in water sampled from most of the wells, indicating a connection with the land surface. Data were collected from 20 of the monitoring wells to estimate the hydraulic conductivity and transmissivity of the shallow ground-water system. Hydraulic-conductivity values of the shallow aquifer ranged from 30 to 540 feet per day. Transmissivity values of the shallow aquifer ranged from 3 to 1,070 feet squared per day. There is a close linear relation between transmissivity determined

  12. Principal facts for gravity stations in the Dry Valley area, west-central Nevada and east-central California

    USGS Publications Warehouse

    Sanger, Elizabeth A.; Ponce, David A.

    2003-01-01

    In June, 2002, the U.S. Geological Survey (USGS) established 143 new gravity stations and 12 new rock samples in the Dry Valley area, 30 miles north of Reno, Nevada, on the California - Nevada border (see fig. 1). This study reports on gravity, magnetic, and physical property data intended for use in modeling the geometry and depth of Dry Valley for groundwater analysis. It is part of a larger study that aims to characterize the hydrologic framework of several basins in Washoe County. Dry Valley is located south of the Fort Sage Mountains and south-east of Long Valley, on USGS 7.5’ quadrangles Constantia and Seven Lakes (fig. 2). The Cretaceous granitic rocks and Tertiary volcanic rocks that bound the sediment filled basin (fig. 3) may be especially important to future modeling because of their impact on groundwater flow. The granitic and volcanic rocks of Dry Valley exhibit densities and magnetic susceptibilities higher than the overlaying sediments, and create a distinguishable pattern of gravity and magnetic anomalies that reflect these properties.

  13. Hydrogeologic framework of Antelope Valley and Bedell Flat, Washoe County, west-central Nevada

    USGS Publications Warehouse

    Berger, D.L.; Ponce, D.A.; Ross, W.C.

    2001-01-01

    Description of the hydrogeologic framework of Antelope Valley and Bedell Flat in west-central Nevada adds to the general knowledge of regional ground-water flow north of the Reno-Sparks metropolitan area. The hydrogeologic framework is defined by the rocks and deposits that transmit ground water or impede its movement and by the combined thickness of Cenozoic deposits. When data are lacking about the subsurface geology of an area, geophysical methods can be used to provide additional information. In this study, gravimetric and seismic-refraction methods were used to infer the form of structural features and to estimate the thickness of Cenozoic deposits in each of the two valleys. In Antelope Valley, the thickness of these deposits probably does not exceed about 300 feet, suggesting that ground-water storage in the basin-fill aquifer is limited. Beneath Bedell Flat is an elongated, northeast-trending structural depression in the pre-Cenozoic basement; the maximum thickness of Cenozoic deposits is about 2,500 feet beneath the south-central part of the valley. Shallow ground water in the northwest corner of Bedell Flat may be a result of decreasing depth to the pre-Cenozoic basement.

  14. Geology and ground-water resources of the Big Sandy Creek Valley, Lincoln, Cheyenne, and Kiowa Counties, Colorado; with a section on Chemical quality of the ground water

    USGS Publications Warehouse

    Coffin, Donald L.; Horr, Clarence Albert

    1967-01-01

    This report describes the geology and ground-water resources of that part of the Big Sandy Creek valley from about 6 miles east of Limon, Colo., downstream to the Kiowa County and Prowers County line, an area of about 1,400 square miles. The valley is drained by Big Sandy Creek and its principal tributary, Rush Creek. The land surface ranges from flat to rolling; the most irregular topography is in the sandhills south and west of Big Sandy Creek. Farming and livestock raising are the principal occupations. Irrigated lands constitute only a sin311 part of the project area, but during the last 15 years irrigation has expanded. Exposed rocks range in age from Late Cretaceous to Recent. They comprise the Carlile Shale, Niobrara Formations, Pierre Shale (all Late Cretaceous), upland deposits (Pleistocene), valley-fill deposits (Pleistocene and Recent), and dune sand (Pleistocene and Recent). Because the Upper Cretaceous formations are relatively impermeable and inhibit water movement, they allow ground water to accumul3te in the overlying unconsolidated Pleistocene and Recent deposits. The valley-fill deposits constitute the major aquifer and yield as much as 800 gpm (gallons per mixture) to wells along Big Sandy and Rush Creeks. Transmissibilities average about 45,000 gallons per day per foot. Maximum well yields in the tributary valleys are about 200 gpm and average 5 to 10 gpm. The dune sand and upland deposits generally are drained and yield water to wells in only a few places. The ground-water reservoir is recharged only from direct infiltration of precipitation, which annually averages about 12 inches for the entire basin, and from infiltration of floodwater. Floods in the ephemeral Big Sandy Creek are a major source of recharge to ground-water reservoirs. Observations of a flood near Kit Carson indicated that about 3 acre-feet of runoff percolated into the ground-water reservoir through each acre of the wetted stream channel The downstream decrease in channel and

  15. Regional dust storm modeling for health services: The case of valley fever

    NASA Astrophysics Data System (ADS)

    Sprigg, William A.; Nickovic, Slobodan; Galgiani, John N.; Pejanovic, Goran; Petkovic, Slavko; Vujadinovic, Mirjam; Vukovic, Ana; Dacic, Milan; DiBiase, Scott; Prasad, Anup; El-Askary, Hesham

    2014-09-01

    On 5 July 2011, a massive dust storm struck Phoenix, Arizona (USA), raising concerns for increased cases of valley fever (coccidioidomycosis, or, cocci). A quasi-operational experimental airborne dust forecast system predicted the event and provides model output for continuing analysis in collaboration with public health and air quality communities. An objective of this collaboration was to see if a signal in cases of valley fever in the region could be detected and traced to the storm - an American haboob. To better understand the atmospheric life cycle of cocci spores, the DREAM dust model (also herein, NMME-DREAM) was modified to simulate spore emission, transport and deposition. Inexact knowledge of where cocci-causing fungus grows, the low resolution of cocci surveillance and an overall active period for significant dust events complicate analysis of the effect of the 5 July 2011 storm. In the larger context of monthly to annual disease surveillance, valley fever statistics, when compared against PM10 observation networks and modeled airborne dust concentrations, may reveal a likely cause and effect. Details provided by models and satellites fill time and space voids in conventional approaches to air quality and disease surveillance, leading to land-atmosphere modeling and remote sensing that clearly mark a path to advance valley fever epidemiology, surveillance and risk avoidance.

  16. Valley-dependent band structure and valley polarization in periodically modulated graphene

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  17. Retrieval of Compositional End-Members From Mars Exploration Rover Opportunity Observations in a Soil-Filled Fracture in Marathon Valley, Endeavour Crater Rim

    NASA Astrophysics Data System (ADS)

    Stein, N. T.; Arvidson, R. E.; O'Sullivan, J. A.; Catalano, J. G.; Guinness, E. A.; Politte, D. V.; Gellert, R.; VanBommel, S. J.

    2018-01-01

    The Opportunity rover investigated a gentle swale on the rim of Endeavour crater called Marathon Valley where a series of bright planar outcrops are cut into polygons by fractures. A wheel scuff performed on one of the soil-filled fracture zones revealed the presence of three end-members identified on the basis of Pancam multispectral imaging observations covering 0.4 to 1 μm: red and dark pebbles, and a bright soil clod. Multiple overlapping Alpha Particle X-ray Spectrometer (APXS) measurements were collected on three targets within the scuff zone. The field of view of each APXS measurement contained various proportions of the Pancam-based end-members. Application of a log maximum likelihood method for retrieving the composition of the end-members using the 10 APXS measurements shows that the dark pebble end-member is compositionally similar to average Mars soil, with slightly elevated S and Fe. In contrast, the red pebble end-member exhibits enrichments in Al and Si and is depleted in Fe and Mg relative to average Mars soil. The soil clod end-member is enriched in Mg, S, and Ni. Thermodynamic modeling of the soil clod end-member composition indicates a dominance of sulfate minerals. We hypothesize that acidic fluids in fractures leached and oxidized the basaltic host rock, forming the red pebbles, and then evaporated to leave behind sulfate-cemented soil.

  18. Ground-water potentialities in the Crescent Valley, Eureka and Lander Counties, Nevada

    USGS Publications Warehouse

    Zones, Christie Paul

    1961-01-01

    pumpage from wells in the valley was 2,300 acre-feet. The Crescent Valley is a basin in which has accumulated a large volume of sediments that had been eroded and transported by streams from the surrounding mountains. The deepest wells have penetrated only the upper 350 feet of these sediments, which on the basis of the known thickness of sediments in other intermontane basins in central Nevada may be as much as several thousand feet thick. Because this valley fill is saturated practically to the level of the valley floor, the total volume of ground water in storage amounts to millions of acre-feet. In practically all wells drilled to date, the water has been of a quality satisfactory for irrigation and domestic use. The amount of water that can be developed and used perennially is far smaller than the total in storage and is dependent upon the average annual recharge to the ground-water reservoir. This recharge comes principally from streams, fed largely by snowmelt, that drain the higher mountains. The average annum recharge to the valley fill is estimated to be about 13,000 acre-feet. This natural supply, which is largely consumed by native vegetation on the valley floor, constitutes a perennial supply for beneficial use only to the extent that the natural discharge can be reduced. In time, much of the natural discharge, can probably be salvaged, if it is economically feasible to pump ground water after water levels have been lowered as much as 100 feet in the areas that now appear to be favorable for the development of irrigation supplies. In 5 wells in the phreatophyte area, where the water table is within 3-8 feet of the land surface, the trends in water level have paralleled those, in precipitation-downward during the dry years 1952-55, upward in wetter 1956 and 1957, and as high in 1957 as at any time since 1948. In most wells there is also a seasonal fluctuation of 1-3 feet, from a high in the spring to a low in the fall. There is no evi

  19. Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya.

    PubMed

    Schwanghart, Wolfgang; Bernhardt, Anne; Stolle, Amelie; Hoelzmann, Philipp; Adhikari, Basanta R; Andermann, Christoff; Tofelde, Stefanie; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-01-08

    Geomorphic footprints of past large Himalayan earthquakes are elusive, although they are urgently needed for gauging and predicting recovery times of seismically perturbed mountain landscapes. We present evidence of catastrophic valley infill following at least three medieval earthquakes in the Nepal Himalaya. Radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments near Pokhara, Nepal's second-largest city, match the timing of nearby M > 8 earthquakes in ~1100, 1255, and 1344 C.E. The upstream dip of tributary valley fills and x-ray fluorescence spectrometry of their provenance rule out local sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from a Higher Himalayan source >60 kilometers away. Copyright © 2016, American Association for the Advancement of Science.

  20. Geomorphic and sedimentary responses of the Bull Creek Valley (Southern High Plains, USA) to Pleistocene and Holocene environmental change

    NASA Astrophysics Data System (ADS)

    Arauza, Hanna M.; Simms, Alexander R.; Bement, Leland C.; Carter, Brian J.; Conley, Travis; Woldergauy, Ammanuel; Johnson, William C.; Jaiswal, Priyank

    2016-01-01

    Fluvial geomorphology and stratigraphy often reflect past environmental and climate conditions. This study examines the response of Bull Creek, a small ephemeral creek in the Oklahoma panhandle, to environmental conditions through the late Pleistocene and Holocene. Fluvial terraces were mapped and their stratigraphy and sedimentology documented throughout the course of the main valley. Based on their elevations, terraces were broadly grouped into a late-Pleistocene fill terrace (T3) and two Holocene fill-cut terrace sets (T2 and T1). Terrace systems are marked by similar stratigraphies recording the general environmental conditions of the time. Sedimentary sequences preserved in terrace fills record the transition from a perennial fluvial system during the late glacial period and the Younger Dryas to a semiarid environment dominated by loess accumulation and punctuated by flood events during the middle to late Holocene. The highest rates of aeolian accumulation within the valley occurred during the early to middle Holocene. Our data provide significant new information regarding the late-Pleistocene and Holocene environmental history for this region, located between the well-studied Southern and Central High Plains of North America.

  1. Audiomagnetotelluric investigation of Snake Valley, eastern Nevada and western Utah

    USGS Publications Warehouse

    McPhee, Darcy K.; Pari, Keith; Baird, Frank

    2009-01-01

    As support for an exploratory well-drilling and hydraulic-testing program, AMT data were collected using a Geometrics Stratagem EH4 system along four profiles that extend roughly east-west from the southern Snake Range into Snake Valley. The profiles range from 3 to 5 kilometers in length, and station spacing was 200 to 400 meters. Two-dimensional inverse models were computed using the data from the transverse-electric (TE), transverse-magnetic (TM), and combined (TE+TM) mode using a conjugate gradient, finite-difference method. Interpretation of the 2-D AMT models defines several faults, some of which may influence ground-water flow in the basins, as well as identify underlying Paleozoic carbonate and clastic rocks and the thickness of basin-fill sediments. These AMT data and models, coupled with the geologic mapping and other surface geophysical methods, form the basis for identifying potential well sites and defining the subsurface structures and stratigraphy within Snake Valley.

  2. Valey-Fill Sandstones in the Kootenai Formation on the Crow Indian Reservation, South-Central Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, David A

    Subsurface data is being collected, organized, and a digital database is being prepared for the project. An ACCESS database and PC-Arcview is being used to manage and interpret the data. Well data and base map data have been successfully imported into Arcview and customized to meet the needs of this project. Log tops and other data from about ½ of the exploration wells in the area have been incorporated into the data base. All of the four 30" X 60" geologic quadrangles have been scanned to produce a digital surface geologic data base for the Crow Reservation and all aremore » nearing completion. Formal technical review prior to publication has been completed for the Billings and Bridger Quadrangles; and are underway for the Hardin and Lodge Grass Quadrangles. Field investigations were completed during the last quarter. With the help of a student field assistant from the Crow Tribe, the entire project area was inventoried for the presence of valley-fill deposits in the Kootenai Formation. Field inventory has resulted in the identification of nine exposures of thick valley-fill deposits. These appear to represent at least four major westward-trending valley systems. All the channel localities have been measured and described in detail and paleocurrent data has been collected from all but one locality. In addition, two stratigraphic sections were measured in areas where channels are absent. One channel has bee traced over a distance of about 60 miles and exhibits definite paleostructural control. An abstract describing this channel has been submitted and accepted for presentation at the Williston Basin Symposium in October, 1998.« less

  3. [Influence of the combination of antiplatelet agents on the occurrence of early left ventricular insufficiency in patients with acute coronary syndromes without persistent ST-segment elevation].

    PubMed

    Blancas Gómez-Casero, Rafael; Quintana Díaz, Manuel; Chana García, Miriam; Martín Parra, Carmen; López Matamala, Blanca; Estébanez Montiel, Belén; Ballesteros Ortega, Daniel; Martínez González, Oscar; Vigil Escribano, Dolores; Prieto Valderrey, Francisca; Marina Martínez, Luis; Castro Gallego, Olmos

    2014-04-07

    The frequency of left ventricular failure (LVF) in the early stages of non-ST-segment elevation acute coronary syndrome (NSTE ACS) has not been described so far. The objective of this study is to describe for the first time the frequency of LVF in the early course of NSTE ACS and to assess its association with other interventions. Observational prospective cohort multicenter study in intensive and coronary care units (ICCU). Patients with NSTE ACS admitted within 24h after onset were included. Main outcome was the occurrence of LVF. We evaluated the association between LVF and clinical and therapeutic variables. LVF occurred in 15.6% of patients. Coronary angiography (CA) during admission to the ICCU was a protective variable against the main outcome, performed before 72h (odds ratio [OR] 0.47; 95% confidence interval [95% CI] 0.25-0.89; P=.022) and later (OR 0,39; 95% CI 0,15-0,98; P=.044). The administration of beta-blockers was a protective variable against the occurrence of LVF (OR 0,54; 95% CI 0,32-0,87; P=.013). Patients receiving acetylsalicylic acid before admission to the ICCU had a higher risk of developing LVF (OR 1.74; 95% CI 1.06-2.86; P=.028). Age was also a factor of risk for LVF (OR 1.02; 95% CI 1.00-1.05; P=.032). CA and beta-blockers can decrease the occurrence of LVF. The association between previous administration of acetylsalicylic acid and age with the occurrence of LVF may reflect long-standing cardiovascular disease. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  4. Natural, but not artificial, facial movements elicit the left visual field bias in infant face scanning

    PubMed Central

    Xiao, Naiqi G.; Quinn, Paul C.; Wheeler, Andrea; Pascalis, Olivier; Lee, Kang

    2014-01-01

    A left visual field (LVF) bias has been consistently reported in eye movement patterns when adults look at face stimuli, which reflects hemispheric lateralization of face processing and eye movements. However, the emergence of the LVF attentional bias in infancy is less clear. The present study investigated the emergence and development of the LVF attentional bias in infants from 3 to 9 months of age with moving face stimuli. We specifically examined the naturalness of facial movements in infants’ LVF attentional bias by comparing eye movement patterns in naturally and artificially moving faces. Results showed that 3- to 5-month-olds exhibited the LVF attentional bias only in the lower half of naturally moving faces, but not in artificially moving faces. Six- to 9-month-olds showed the LVF attentional bias in both the lower and upper face halves only in naturally moving, but not in artificially moving faces. These results suggest that the LVF attentional bias for face processing may emerge around 3 months of age and is driven by natural facial movements. The LVF attentional bias reflects the role of natural face experience in real life situations that may drive the development of hemispheric lateralization of face processing in infancy. PMID:25064049

  5. Influence of system controls on the Late Quaternary geomorphic evolution of a rapidly-infilled incised-valley system: The lower Manawatu valley, North Island New Zealand

    NASA Astrophysics Data System (ADS)

    Clement, Alastair J. H.; Fuller, Ian C.

    2018-02-01

    The Manawatu incised-valley estuary was rapidly infilled between 12,000-4700 cal. yr BP. A combination of empirical measurements of sedimentation rates, a reconstruction of relative sea-level (RSL) change, and digital elevation models of key surfaces within the Holocene sedimentary fill of the valley were integrated to produce a numerical model to investigate the influence of the system controls of sea-level change, sediment flux, and accommodation space on the rapid infilling history of the palaeo-estuary. The numerical model indicates that sediment flux into the palaeo-estuary was greatest during the Holocene marine transgression between 12,000-8000 years BP. The average rate of sediment deposition in the estuary during this period was 1.0 M m3 yr- 1. This rapid rate of sedimentation was controlled by the rate of accommodation space creation, as regulated by the rate of sea-level rise and the antecedent configuration of the valley. By the time sea levels stabilised c. 7500 cal. yr BP, the palaeo-estuary had been substantively infilled. Limited accommodation space resulted in rapid infilling of the central basin, though sediment flux into the estuary between 7100 and 4500 cal. yr BP was at a lower rate of 234,000 m3 yr- 1. The limited accommodation space also influenced hydrodynamic conditions in the estuarine central basin, driving export of fine-grained sediment from the estuary. Once the accommodation space of the estuarine basin was infilled sediment bypassed the system, with a consequent reduction in the sedimentation rate in the valley. More accurate partitioning of the sources of sediment driving the infilling is necessary to quantify sediment bypassing. Post-depositional lowering of RSL index points from the valley is driven by neotectonics and sediment compaction.

  6. Probability of Elevated Nitrate Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated nitrate concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  7. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National Park, Inyo... an Environmental Impact Statement for the Saline Valley Warm Springs Management Plan, Death Valley... analysis process for the Saline Valley Warm Springs Management Plan for Death Valley [[Page 33238...

  8. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  9. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  10. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  11. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  12. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  13. Morphology of large valleys on Hawaii - Evidence for groundwater sapping and comparisons with Martian valleys

    NASA Technical Reports Server (NTRS)

    Kochel, R. Craig; Piper, Jonathan F.

    1986-01-01

    Morphometric data on the runoff and sapping valleys on the slopes of Hawaii and Molokai in Hawaii are analyzed. The analysis reveals a clear distinction between the runoff valleys and sapping valleys. The Hawaiian sapping valleys are characterized by: (1) steep valley walls and flat floors, (2) amphitheater heads, (3) low drainage density, (4) paucity of downstream tributaries, (5) low frequency of up-dip tributaries, and (6) structural and stratigraphic control on valley patterns. The characteristics of the Hawaiian sapping valleys are compared to Martian valleys and experimental systems, and good correlation between the data is detected. Flume experiments were also conducted to study the evolution of sapping valleys in response to variable structure and stratigraphy.

  14. Drought, Land-Use Change, and Water Availability in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Faunt, C. C.; Sneed, M.; Traum, J.

    2015-12-01

    The Central Valley is a broad alluvial-filled structural trough that covers about 52,000 square kilometers and is one of the most productive agricultural regions in the world. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture developed a reliance on groundwater for irrigation. During recent drought periods (2007-09 and 2012-present), groundwater pumping has increased due to a combination of factors including drought and land-use changes. In response, groundwater levels have declined to levels approaching or below historical low levels. In the San Joaquin Valley, the southern two thirds of the Central Valley, the extensive groundwater pumpage has caused aquifer system compaction, resulting in land subsidence and permanent loss of groundwater storage capacity. The magnitude and rate of subsidence varies based on geologic materials, consolidation history, and historical water levels. Spatially-variable subsidence has changed the land-surface slope, causing operational, maintenance, and construction-design problems for surface-water infrastructure. It is important for water agencies to plan for the effects of continued water-level declines, storage losses, and/or land subsidence. To combat these effects, excess surface water, when available, is artificially recharged. As surface-water availability, land use, and artificial recharge continue to vary, long-term groundwater-level and land-subsidence monitoring and modelling are critical to understanding the dynamics of the aquifer system. Modeling tools, such as the Central Valley Hydrologic Model, can be used in the analysis and evaluation of management strategies to mitigate adverse impacts due to subsidence, while also optimizing water availability. These analyses will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  15. Cenozoic tectonic reorganizations of the Death Valley region, southeast California and southwest Nevada

    USGS Publications Warehouse

    Fridrich, Christopher J.; Thompson, Ren A.

    2011-01-01

    The Death Valley region, of southeast California and southwest Nevada, is distinct relative to adjacent regions in its structural style and resulting topography, as well as in the timing of basin-range extension. Cenozoic basin-fill strata, ranging in age from greater than or equal to 40 to approximately 2 million years are common within mountain-range uplifts in this region. The tectonic fragmentation and local uplift of these abandoned basin-fills indicate a multistage history of basin-range tectonism. Additionally, the oldest of these strata record an earlier, pre-basin-range interval of weak extension that formed broad shallow basins that trapped sediments, without forming basin-range topography. The Cenozoic basin-fill strata record distinct stratigraphic breaks that regionally cluster into tight age ranges, constrained by well-dated interbedded volcanic units. Many of these stratigraphic breaks are long recognized formation boundaries. Most are angular unconformities that coincide with abrupt changes in depositional environment. Deposits that bound these unconformities indicate they are weakly diachronous; they span about 1 to 2 million years and generally decrease in age to the west within individual basins and regionally, across basin boundaries. Across these unconformities, major changes are found in the distribution and provenance of basin-fill strata, and in patterns of internal facies. These features indicate rapid, regionally coordinated changes in strain patterns defined by major active basin-bounding faults, coincident with step-wise migrations of the belt of active basin-range tectonism. The regionally correlative unconformities thus record short intervals of radical tectonic change, here termed "tectonic reorganizations." The intervening, longer (about 3- to 5-million-year) interval of gradual, monotonic evolution in the locus and style of tectonism are called "tectonic stages." The belt of active tectonism in the Death Valley region has abruptly

  16. Hydrogeology of the stratified-drift aquifers in the Cayuta Creek and Catatonk Creek valleys in parts of Tompkins, Schuyler, Chemung, and Tioga Counties, New York

    USGS Publications Warehouse

    Miller, Todd S.; Pitman, Lacey M.

    2012-01-01

    The surficial deposits, areal extent of aquifers, and the water-table configurations of the stratified-drift aquifer systems in the Cayuta Creek and Catatonk Creek valleys and their large tributary valleys in Tompkins, Schuyler, Chemung, and Tioga Counties, New York were mapped in 2009, in cooperation with the New York State Department of Environmental Conservation. Well and test-boring records, surficial deposit maps, Light Detection and Ranging (LIDAR) data, soils maps, and horizontal-to-vertical ambient-noise seismic surveys were used to map the extent of the aquifers, construct geologic sections, and determine the depth to bedrock (thickness of valley-fill deposits) at selected locations. Geologic materials in the study area include sedimentary bedrock, unstratified drift (till), stratified drift (glaciolacustrine and glaciofluvial deposits), and recent alluvium. Stratified drift consisting of glaciofluvial sand and gravel is the major component of the valley fill in this study area. The deposits are present in sufficient amounts in most places to form extensive unconfined aquifers throughout the study area and, in some places, confined aquifers. Stratified drift consisting of glaciolacustrine fine sand, silt, and clay are present locally in valleys underlying the surficial sand and gravel deposits in the southern part of the Catatonk Creek valley. These unconfined and confined aquifers are the source of water for most residents, farms, and businesses in the valleys. A generalized depiction of the water table in the unconfined aquifer was constructed using water-level measurements made from the 1950s through 2010, as well as LIDAR data that were used to determine the altitudes of perennial streams at 10-foot contour intervals and water surfaces of ponds and wetlands that are hydraulically connected to the unconfined aquifer. The configuration of the water-table contours indicate that the general direction of groundwater flow within Cayuta Creek and Catatonk

  17. Valley Fever (Coccidioidomycosis) Statistics

    MedlinePlus

    ... Valley fever may be under-recognized. 2 , 3 Public health surveillance for Valley fever Valley fever is reportable ... MMWR) . Check with your local, state, or territorial public health department for more information about disease reporting requirements ...

  18. Geology and water resources of the Spanish Valley area, Grand and San Juan Counties, Utah

    USGS Publications Warehouse

    Sumsion, C.T.

    1971-01-01

    This water-resources investigation was initiated in order to provide an estimate of the average annual water yield of the Mill Creek-Pack Creek drainage basin, the parts of that total yield available as surface water and ground water, the amount of ground water that might be recovered for beneficial use, and the effect of this use on the usable ground-water storage within the valley fill in Spanish and Moab Valleys. Detailed information has been sought which is basic to the establishment of sound policies for the development and management of water resources. The investigation was carried out as part of water-resources investigations in Utah with the Utah Division of Water Rights, Department of Natural Resources. Fieldwork was done during the period July 1967-November 1969.

  19. Valley polarization in bismuth

    NASA Astrophysics Data System (ADS)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  20. One hour of catastrophic landscape change in the upper Rhine River valley 9400 years ago

    NASA Astrophysics Data System (ADS)

    Clague, John; von Poschinger, Andreas; Calhoun, Nancy

    2017-04-01

    The Flims rockslide, which happened about 9400 years ago in the eastern Swiss Alps, is the largest postglacial terrestrial landslide in Europe. The landslide and the huge secondary mass flow it induced completely changed the floor and lower slopes of the Vorderrhein valley over a distance of several tens of kilometres, probably in one hour or less. The landslide began with the sudden detachment of 10-12 km3 of Jurassic and Cretaceous limestone from the north wall of the Vorderrhein valley. The detached rock mass rapidly fragmented as it accelerated and then struck the Rhein valley floor and the opposing valley wall. Tongues of debris traveled up and down the Vorderrhein. The impact liquefied approximately 1 km3 of valley-fill sediments, mainly fluvial and deltaic gravel and sand. The liquefied sediment moved as a slurry - the Bonaduz gravel - tens of kilometres downvalley from the impact site, carrying huge fragments of rockslide debris that became stranded on the valley floor, forming hills termed 'tumas'. Part of the flow was deflected by a cross-valley barrier and flowed 16 km up the Hinterrhein valley (the main tributary of the Vorderrhein), carrying tumas with it. Bonaduz gravel is >65 m thick and fines upward from massive sandy cobble gravel at its base to silty sand at its top. Sedimentologic and geomorphic evidence indicates that the liquefied sediment was transported as a hyperconcentated flow, possibly above a basal carpet of coarse diamictic sediment that behaved as a debris flow. The large amount of water involved in the Bonaduz flow indicates that at least part of the Flims rockslide entered a former lake in Vorderrhein valley. The rockslide debris impounded the Vorderrhein and formed Lake Ilanz, which persisted for decades or longer before the dam was breached in series of outburst floods. These floods further changed the valley floor below the downstream limit of the landslide. Today, Vorderrhein flows in a spectacular 8-km-long gorge incised up to

  1. Neural correlates of the eye dominance effect in human face perception: the left-visual-field superiority for faces revisited.

    PubMed

    Jung, Wookyoung; Kang, Joong-Gu; Jeon, Hyeonjin; Shim, Miseon; Sun Kim, Ji; Leem, Hyun-Sung; Lee, Seung-Hwan

    2017-08-01

    Faces are processed best when they are presented in the left visual field (LVF), a phenomenon known as LVF superiority. Although one eye contributes more when perceiving faces, it is unclear how the dominant eye (DE), the eye we unconsciously use when performing a monocular task, affects face processing. Here, we examined the influence of the DE on the LVF superiority for faces using event-related potentials. Twenty left-eye-dominant (LDE group) and 23 right-eye-dominant (RDE group) participants performed the experiments. Face stimuli were randomly presented in the LVF or right visual field (RVF). The RDE group exhibited significantly larger N170 amplitudes compared with the LDE group. Faces presented in the LVF elicited N170 amplitudes that were significantly more negative in the RDE group than they were in the LDE group, whereas the amplitudes elicited by stimuli presented in the RVF were equivalent between the groups. The LVF superiority was maintained in the RDE group but not in the LDE group. Our results provide the first neural evidence of the DE's effects on the LVF superiority for faces. We propose that the RDE may be more biologically specialized for face processing. © The Author (2017). Published by Oxford University Press.

  2. Neural correlates of the eye dominance effect in human face perception: the left-visual-field superiority for faces revisited

    PubMed Central

    Jung, Wookyoung; Kang, Joong-Gu; Jeon, Hyeonjin; Shim, Miseon; Sun Kim, Ji; Leem, Hyun-Sung

    2017-01-01

    Abstract Faces are processed best when they are presented in the left visual field (LVF), a phenomenon known as LVF superiority. Although one eye contributes more when perceiving faces, it is unclear how the dominant eye (DE), the eye we unconsciously use when performing a monocular task, affects face processing. Here, we examined the influence of the DE on the LVF superiority for faces using event-related potentials. Twenty left-eye-dominant (LDE group) and 23 right-eye-dominant (RDE group) participants performed the experiments. Face stimuli were randomly presented in the LVF or right visual field (RVF). The RDE group exhibited significantly larger N170 amplitudes compared with the LDE group. Faces presented in the LVF elicited N170 amplitudes that were significantly more negative in the RDE group than they were in the LDE group, whereas the amplitudes elicited by stimuli presented in the RVF were equivalent between the groups. The LVF superiority was maintained in the RDE group but not in the LDE group. Our results provide the first neural evidence of the DE’s effects on the LVF superiority for faces. We propose that the RDE may be more biologically specialized for face processing. PMID:28379584

  3. Long Valley Caldera Lake and reincision of Owens River Gorge

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy

    2016-12-16

    Owens River Gorge, today rimmed exclusively in 767-ka Bishop Tuff, was first cut during the Neogene through a ridge of Triassic granodiorite to a depth as great as its present-day floor and was then filled to its rim by a small basaltic shield at 3.3 Ma. The gorge-filling basalt, 200 m thick, blocked a 5-km-long reach of the upper gorge, diverting the Owens River southward around the shield into Rock Creek where another 200-m-deep gorge was cut through the same basement ridge. Much later, during Marine Isotope Stage (MIS) 22 (~900–866 ka), a piedmont glacier buried the diversion and deposited a thick sheet of Sherwin Till atop the basalt on both sides of the original gorge, showing that the basalt-filled reach had not, by then, been reexcavated. At 767 ka, eruption of the Bishop Tuff blanketed the landscape with welded ignimbrite, deeply covering the till, basalt, and granodiorite and completely filling all additional reaches of both Rock Creek canyon and Owens River Gorge. The ignimbrite rests directly on the basalt and till along the walls of Owens Gorge, but nowhere was it inset against either, showing that the basalt-blocked reach had still not been reexcavated. Subsidence of Long Valley Caldera at 767 ka produced a steep-walled depression at least 700 m deeper than the precaldera floor of Owens Gorge, which was beheaded at the caldera’s southeast rim. Caldera collapse reoriented proximal drainages that had formerly joined east-flowing Owens River, abruptly reversing flow westward into the caldera. It took 600,000 years of sedimentation in the 26-km-long, usually shallow, caldera lake to fill the deep basin and raise lake level to its threshold for overflow. Not until then did reestablishment of Owens River Gorge begin, by incision of the gorge-filling ignimbrite.

  4. Subsurface Constraints on Late Cenozoic Basin Geometry in Northern Fish Lake Valley and Displacement Transfer Along the Northern Fish Lake Valley Fault Zone, Western Nevada

    NASA Astrophysics Data System (ADS)

    Mueller, N.; Kerstetter, S. R.; Katopody, D. T.; Oldow, J. S.

    2016-12-01

    The NW-striking, right-oblique Fish Lake Valley fault zone (FLVFZ) forms the northern segment of the longest active structure in the western Great Basin; the Death Valley - Furnace Creek - Fish Lake Valley fault system. Since the mid-Miocene, 50 km of right-lateral displacement is documented on the southern FLVFZ and much of that displacement was and is transferred east and north on active WNW left-lateral faults. Prior to the Pliocene, displacement was transferred east and north on a low-angle detachment. Displacement on the northern part of the FLVFZ continues and is transferred to a fanned array of splays striking (west to east) WNW, NNW, ENE and NNE. To determine the displacement budget on these structures, we conducted a gravity survey to determine subsurface basin morphology and its relation to active faults. Over 2450 stations were collected and combined with existing PACES and proprietary data for a total of 3388 stations. The data were terrain corrected and reduced to a 2.67 g/cm3 density to produce a residual complete Bouguer anomaly. The eastern part of northern Fish Lake Valley is underlain by several prominent gravity lows forming several sub-basins with maximum RCBA values ranging from -24 to -28 mGals. The RCBA was inverted for depth using Geosoft Oasis Montaj GM-SYS 3D modeling software. Density values for the inversion were constrained by lithologic and density logs from wells that penetrate the entire Cenozoic section into the Paleozoic basement. Best fitting gravity measurements taken at the wellheads yielded an effective density of 2.4 g/cm3 for the basin fill. Modeled basement depths range between 2.1 to 3 km. The sub-basins form an arc opening to the NW and are bounded by ENE and NNE faults in the south and NS to NNW in the north. At the northern end of the valley, the faults merge with ENE left-lateral strike slip faults of the Mina deflection, which carries displacement to NW dextral strike-slip faults of the central Walker Lane.

  5. Subsurface valleys and geoarcheology of the Eastern Sahara revealed by shuttle radar

    USGS Publications Warehouse

    McCauley, J.F.; Schaber, G.G.; Breed, C.S.; Grolier, M.J.; Haynes, C.V.; Issawi, B.; Elachi, C.; Blom, R.

    1982-01-01

    The shuttle imaging radar (SIR-A) carried on the space shuttle Columbia in November 1981 penetrated the extremely dry Selima Sand Sheet, dunes, and drift sand of the eastern Sahara, revealing previously unknown buried valleys, geologic structures, and possible Stone Age occupation sites. Radar responses from bedrock and gravel surfaces beneath windblown sand several centimeters to possibly meters thick delineate sand- and alluvium-filled valleys, some nearly as wide as the Nile Valley and perhaps as old as middle Tertiary. The nov-vanished maijor river systems that carved these large valleys probably accomplished most of the erosional stripping of this extraordinarily flat, hyperarid region. Underfit and incised dry wadis, many superimposed on the large valleys, represent erosion by intermittent running water, probably during Quaternary pluvials. Stone Age artifacts associated with soils in the alluvium suggest that areas near the wadis may have been sites of early human occupation. The presence of old drainage networks beneath the sand sheet provides a geologic explanation for the locations of many playas and present-day oases which have been centers of episodic human habitation. Radar penetration of dry sand and soils varies with the wavelength of the incident signals (24 centimeters for the SIR-A system), incidence angle, and the electrical properties of the materials, which are largely determined by moisture content. The calculated depth of radar penetration of dry sand and granules, based on laboratory measurements of the electrical properties of samples from the Selima Sand Sheet, is at least 5 meters. Recent (September 1982) field studies in Egypt verified SIR-A signal penetration depths of at least 1 meter in the Selima Sand Sheet and in drift sand and 2 or more meters in sand dunes. Copyright ?? 1982 AAAS.

  6. Predicted liquefaction in the greater Oakland area and northern Santa Clara Valley during a repeat of the 1868 Hayward Fault (M6.7-7.0) earthquake

    USGS Publications Warehouse

    Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.

    2010-01-01

    Probabilities of surface manifestations of liquefaction due to a repeat of the 1868 (M6.7-7.0) earthquake on the southern segment of the Hayward Fault were calculated for two areas along the margin of San Francisco Bay, California: greater Oakland and the northern Santa Clara Valley. Liquefaction is predicted to be more common in the greater Oakland area than in the northern Santa Clara Valley owing to the presence of 57 km2 of susceptible sandy artificial fill. Most of the fills were placed into San Francisco Bay during the first half of the 20th century to build military bases, port facilities, and shoreline communities like Alameda and Bay Farm Island. Probabilities of liquefaction in the area underlain by this sandy artificial fill range from 0.2 to ~0.5 for a M7.0 earthquake, and decrease to 0.1 to ~0.4 for a M6.7 earthquake. In the greater Oakland area, liquefaction probabilities generally are less than 0.05 for Holocene alluvial fan deposits, which underlie most of the remaining flat-lying urban area. In the northern Santa Clara Valley for a M7.0 earthquake on the Hayward Fault and an assumed water-table depth of 1.5 m (the historically shallowest water level), liquefaction probabilities range from 0.1 to 0.2 along Coyote and Guadalupe Creeks, but are less than 0.05 elsewhere. For a M6.7 earthquake, probabilities are greater than 0.1 along Coyote Creek but decrease along Guadalupe Creek to less than 0.1. Areas with high probabilities in the Santa Clara Valley are underlain by young Holocene levee deposits along major drainages where liquefaction and lateral spreading occurred during large earthquakes in 1868 and 1906.

  7. Fog and Haze in California's San Joaquin Valley

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This illustration features images of southern California and southwestern Nevada acquired on January 3, 2001 (Terra orbit 5569), and includes data from three of MISR's nine cameras. The San Joaquin Valley, which comprises the southern extent of California's Central Valley, covers much of the viewed area. Also visible are several of the Channel Islands near the bottom, and Mono and Walker Lakes, which stand out as darker patches near the top center, especially in the vertical and backward oblique images. Near the lower right of each image is the Los Angeles Basin, with the distinctive chevron shape of the Mojave Desert to its north.

    The Central Valley is a well-irrigated and richly productive agricultural area situated between the Coast Range and the snow-capped Sierra Nevadas. During the winter, the region is noted for its hazy overcasts and a low, thick ground fog known as the Tule. Owing to the effects of the atmosphere on reflected sunlight, dramatic differences in the MISR images are apparent as the angle of view changes. An area of thick, white fog in the San Joaquin Valley is visible in all three of the images. However, the pervasive haze that fills most of the valley is only slightly visible in the vertical view. At the oblique angles, the haze is highly distinguishable against the land surface background, particularly in the forward-viewing direction. Just above image center, the forward view also reveals bluish-tinged plumes near Lava Butte in Sequoia National Forest, where the National Interagency Coordination Center reported an active forest fire.

    The changing surface visibility in the multi-angle data allows us to derive the amount of atmospheric haze. In the lower right quadrant is a map of haze amount determined from automated processing of the MISR imagery. Low amounts of haze are shown in blue, and a variation in hue through shades of green, yellow, and red indicates progressively larger amounts of airborne particulates. Due to the

  8. Potential effects of groundwater pumping on water levels, phreatophytes, and spring discharges in Spring and Snake Valleys, White Pine County, Nevada, and adjacent areas in Nevada and Utah

    USGS Publications Warehouse

    Halford, Keith J.; Plume, Russell W.

    2011-01-01

    Assessing hydrologic effects of developing groundwater supplies in Snake Valley required numerical, groundwater-flow models to estimate the timing and magnitude of capture from streams, springs, wetlands, and phreatophytes. Estimating general water-table decline also required groundwater simulation. The hydraulic conductivity of basin fill and transmissivity of basement-rock distributions in Spring and Snake Valleys were refined by calibrating a steady state, three-dimensional, MODFLOW model of the carbonate-rock province to predevelopment conditions. Hydraulic properties and boundary conditions were defined primarily from the Regional Aquifer-System Analysis (RASA) model except in Spring and Snake Valleys. This locally refined model was referred to as the Great Basin National Park calibration (GBNP-C) model. Groundwater discharges from phreatophyte areas and springs in Spring and Snake Valleys were simulated as specified discharges in the GBNP-C model. These discharges equaled mapped rates and measured discharges, respectively. Recharge, hydraulic conductivity, and transmissivity were distributed throughout Spring and Snake Valleys with pilot points and interpolated to model cells with kriging in geologically similar areas. Transmissivity of the basement rocks was estimated because thickness is correlated poorly with transmissivity. Transmissivity estimates were constrained by aquifer-test results in basin-fill and carbonate-rock aquifers. Recharge, hydraulic conductivity, and transmissivity distributions of the GBNP-C model were estimated by minimizing a weighted composite, sum-of-squares objective function that included measurement and Tikhonov regularization observations. Tikhonov regularization observations were equations that defined preferred relations between the pilot points. Measured water levels, water levels that were simulated with RASA, depth-to-water beneath distributed groundwater and spring discharges, land-surface altitudes, spring discharge at

  9. Hydrology and simulation of ground-water flow in the Tooele Valley ground-water basin, Tooele County, Utah

    USGS Publications Warehouse

    Stolp, Bernard J.; Brooks, Lynette E.

    2009-01-01

    Ground water is the sole source of drinking water within Tooele Valley. Transition from agriculture to residential land and water use necessitates additional understanding of water resources. The ground-water basin is conceptualized as a single interconnected hydrologic system consisting of the consolidated-rock mountains and adjoining unconsolidated basin-fill valleys. Within the basin fill, unconfined conditions exist along the valley margins and confined conditions exist in the central areas of the valleys. Transmissivity of the unconsolidated basin-fill aquifer ranges from 1,000 to 270,000 square feet per day. Within the consolidated rock of the mountains, ground-water flow largely is unconfined, though variability in geologic structure, stratigraphy, and lithology has created some areas where ground-water flow is confined. Hydraulic conductivity of the consolidated rock ranges from 0.003 to 100 feet per day. Ground water within the basin generally moves from the mountains toward the central and northern areas of Tooele Valley. Steep hydraulic gradients exist at Tooele Army Depot and near Erda. The estimated average annual ground-water recharge within the basin is 82,000 acre-feet per year. The primary source of recharge is precipitation in the mountains; other sources of recharge are irrigation water and streams. Recharge from precipitation was determined using the Basin Characterization Model. Estimated average annual ground-water discharge within the basin is 84,000 acre-feet per year. Discharge is to wells, springs, and drains, and by evapotranspiration. Water levels at wells within the basin indicate periods of increased recharge during 1983-84 and 1996-2000. During these periods annual precipitation at Tooele City exceeded the 1971-2000 annual average for consecutive years. The water with the lowest dissolved-solids concentrations exists in the mountain areas where most of the ground-water recharge occurs. The principal dissolved constituents are calcium

  10. Optical manipulation of valley pseudospin

    DOE PAGES

    Ye, Ziliang; Sun, Dezheng; Heinz, Tony F.

    2016-09-19

    The coherent manipulation of spin and pseudospin underlies existing and emerging quantum technologies, including quantum communication and quantum computation. Valley polarization, associated with the occupancy of degenerate, but quantum mechanically distinct valleys in momentum space, closely resembles spin polarization and has been proposed as a pseudospin carrier for the future quantum electronics. Valley exciton polarization has been created in the transition metal dichalcogenide monolayers using excitation by circularly polarized light and has been detected both optically and electrically. In addition, the existence of coherence in the valley pseudospin has been identified experimentally. The manipulation of such valley coherence has, however,more » remained out of reach. In this paper, we demonstrate all-optical control of the valley coherence by means of the pseudomagnetic field associated with the optical Stark effect. Using below-bandgap circularly polarized light, we rotate the valley exciton pseudospin in monolayer WSe 2 on the femtosecond timescale. Both the direction and speed of the rotation can be manipulated optically by tuning the dynamic phase of excitons in opposite valleys. Finally, this study unveils the possibility of generation, manipulation, and detection of the valley pseudospin by coupling to photons.« less

  11. Sedimentologic and Stratigraphic Aspects of Late Quaternary (<14 cal. ka?) Valley Fill (Paleo-Roanoke River) Beneath the Barrier Islands of the Outer Banks, North Carolina, USA

    NASA Astrophysics Data System (ADS)

    Farrell, K. M.; Brooks, R. W.

    2002-12-01

    Provided here is a preliminary interpretation of the late Pleistocene (<14 cal. ka) facies succession that infilled the paleo-Roanoke River valley, and its transition into the overlying barrier island complex beneath the Outer Banks of North Carolina. Previous work (e.g. Riggs and others, 1992) reported that the Albemarle Embayment of eastern N.C. is underlain by a series of Pleistocene paleovalley complexes and provided hypotheses to test regarding valley distribution, sea level changes, and the ages of facies and sequences generated in response to coastal evolution. This report provides stratigraphic and sedimentologic criteria to support collaborative interpretations of eight cores acquired by a coastal geology cooperative research program on the Outer Banks to test these hypotheses. In cores OBX-02, 03, and 05, the late Quaternary (<14 cal. ka) fill is about 41 m thick. Here it erosionally overlies a bioturbated marine shelf deposit (OBX-2, 3, 5) that Wehmiller (personal communication) correlated (at OBX-05, depth -41 m) with the early/middle Pleistocene aminozone, AZ-4 (see Riggs and others, 1992). Above this, the late Quaternary fill (in cores OBX-02, 03, 05, 06) includes a succession of four facies units: 1) a basal sandy gravel (<6 m), 2) a dark gray complexly interbedded mud and gravel (<9 m), 3) bioturbated muddy sand (<15 m), and 4) an upward fining sand, with a basal gravel (<15 m). (Dimensional aspects of these units remain undefined until integration with GPR and seismic profiles). Six radiocarbon dates (from Thieler, personal communication) on samples from unit 2 (OBX-05: from -32.3, -33.6 and -35 m; OBX-02: from -27.7, -33.0, and -33.0 m) fall within the range 10 to 14 cal. ka. These were deposited during the Younger Dryas (Mallinson and others, Thieler, personal communications). Stratigraphic relations suggest that unit 1, although not dated, was deposited at the onset of this phase of global cooling. Unit 1, interpreted as fluvial thalweg and

  12. Geophysical Data from Spring Valley to Delamar Valley, East-Central Nevada

    USGS Publications Warehouse

    Mankinen, Edward A.; Roberts, Carter W.; McKee, Edwin H.; Chuchel, Bruce A.; Morin, Robert L.

    2007-01-01

    Cenozoic basins in eastern Nevada and western Utah constitute major ground-water recharge areas in the eastern part of the Great Basin and these were investigated to characterize the geologic framework of the region. Prior to these investigations, regional gravity coverage was variable over the region, adequate in some areas and very sparse in others. Cooperative studies described herein have established 1,447 new gravity stations in the region, providing a detailed description of density variations in the middle to upper crust. All previously available gravity data for the study area were evaluated to determine their reliability, prior to combining with our recent results and calculating an up-to-date isostatic residual gravity map of the area. A gravity inversion method was used to calculate depths to pre-Cenozoic basement rock and estimates of maximum alluvial/volcanic fill in the major valleys of the study area. The enhanced gravity coverage and the incorporation of lithologic information from several deep oil and gas wells yields a much improved view of subsurface shapes of these basins and provides insights useful for the development of hydrogeologic models for the region.

  13. Effects of Spatial Attention on Motion Discrimination are Greater in the Left than Right Visual Field

    PubMed Central

    Bosworth, Rain G.; Petrich, Jennifer A.; Dobkins, Karen R.

    2012-01-01

    In order to investigate differences in the effects of spatial attention between the left visual field (LVF) and the right visual field (RVF), we employed a full/poor attention paradigm using stimuli presented in the LVF vs. RVF. In addition, to investigate differences in the effects of spatial attention between the Dorsal and Ventral processing streams, we obtained motion thresholds (motion coherence thresholds and fine direction discrimination thresholds) and orientation thresholds, respectively. The results of this study showed negligible effects of attention on the orientation task, in either the LVF or RVF. In contrast, for both motion tasks, there was a significant effect of attention in the LVF, but not in the RVF. These data provide psychophysical evidence for greater effects of spatial attention in the LVF/right hemisphere, specifically, for motion processing in the Dorsal stream. PMID:22051893

  14. Mohawk Lake or Mohawk meadow Sedimentary facies and stratigraphy of Quaternary deposits in Mohawk Valley, upper Middle Fork of the Feather River, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yount, J.C.; Harwood, D.S.; Bradbury, J.P.

    1993-04-01

    Mohawk Valley (MV) contain thick, well-exposed sections of Quaternary basin-fill sediments, with abundant interbedded tephra and a diverse assemblage of sedimentary facies. The eastern arm of MV, extending from Clio to Portola, contains as much as 100 m of trough cross-bedded cobble to pebble gravel and planar and trough cross-bedded coarse and medium sand, interpreted as braided stream deposits. Sections exposed in the western arm of MV consist in their lower parts of massive organic-rich silt and clay interbedded with blocky to fissile peat beds up to 1 m thick. Diatom assemblages are dominated by benthic species indicating fresh marshmore » environments with very shallow water depths of one meter or less. Proglacial lacustrine deposits of limited lateral extent are present within the outwash complexes as evidenced by varved fine sand and silt couplets, poorly sorted quartz-rich silt beds containing dropstones, and contorted beds of diamict grading laterally into slump blocks surrounded by wood-bearing silt and silty sand. The Rockland Ash (400 ka) is a prominent marker in the middle or lower part of many sections throughout MV, indicating that at least half of the basin-fill sequence is Late Quaternary in age. A log buried in diamict slumped into a proglacial lake lying approximately 3 km downstream from the Tioga Stage ice termini in Jamison and Gray Eagle Creeks yields an age of 18,715 [+-]235 C[sup 14] years BP. Previous interpretations of MV deposits originating in a large, deep lake with water depths in excess of 150 m are untenable given the sedimentary facies and diatom floras that dominate the valley. Unexhumed valleys such as Sierra Valley to the east and Long Valley to the northwest which contain large meadows traversed by braided streams are probably good analogs for the conditions that existed during the accumulation of the Mohawk Valley deposits.« less

  15. Groundwater quality in the Monterey Bay and Salinas Valley groundwater basins, California

    USGS Publications Warehouse

    Kulongoski, Justin T.; Belitz, Kenneth

    2011-01-01

    The Monterey-Salinas study unit is nearly 1,000 square miles and consists of the Santa Cruz Purisima Formation Highlands, Felton Area, Scotts Valley, Soquel Valley, West Santa Cruz Terrace, Salinas Valley, Pajaro Valley, and Carmel Valley groundwater basins (California Department of Water Resources, 2003; Kulongski and Belitz, 2011). These basins were grouped into four study areas based primarily on geography. Groundwater basins in the north were grouped into the Santa Cruz study area, and those to the south were grouped into the Monterey Bay, the Salinas Valley, and the Paso Robles study areas (Kulongoski and others, 2007). The study unit has warm, dry summers and cool, moist winters. Average annual rainfall ranges from 31 inches in Santa Cruz in the north to 13 inches in Paso Robles in the south. The study areas are drained by several rivers and their principal tributaries: the Salinas, Pajaro, and Carmel Rivers, and San Lorenzo Creek. The Salinas Valley is a large intermontane valley that extends southeastward from Monterey Bay to Paso Robles. It has been filled, up to a thickness of 2,000 feet, with Tertiary and Quaternary marine and terrestrial sediments that overlie granitic basement. The Miocene-age Monterey Formation and Pliocene- to Pleistocene-age Paso Robles Formation, and Pleistocene to Holocene-age alluvium contain freshwater used for supply. The primary aquifers in the study unit are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells are typically drilled to depths of 200 to 650 feet, consist of solid casing from the land surface to depths of about 175 to 500 feet, and are perforated below the solid casing. Water quality in the primary aquifers may differ from that in the shallower and deeper parts of the aquifer system. Groundwater movement is generally from the southern part of the Salinas Valley north towards the Monterey Bay

  16. Luminescence dating of paleolake deltas and glacial deposits in Garwood Valley, Antarctica: Implications for climate, Ross ice sheet dynamics, and paleolake duration

    USGS Publications Warehouse

    Levy, Joseph S.; Rittenour, Tammy M.; Fountain, Andrew G.; O'Connor, Jim E.

    2017-01-01

    The formation of perched deltas and other lacustrine deposits in the McMurdo Dry Valleys of Antarctica is widely considered to be evidence of valley-filling lakes dammed by the grounded Ross Sea ice sheet during the local Last Glacial Maximum, with lake drainage interpreted as a record of grounding line retreat. We used luminescence dating to determine the age of paleolake deltas and glacial tills in Garwood Valley, a coastal dry valley that opens to the Ross Sea. Luminescence ages are stratigraphically consistent with radiocarbon results from algal mats within the same delta deposits but suggest radiocarbon dates from lacustrine carbonates may overestimate deposit ages by thousands of years. Results suggest that late Holocene delta deposition into paleolake Howard in Garwood Valley persisted until ca. 3.5 ka. This is significantly younger than the date when grounded ice is thought to have retreated from the Ross Sea. Our evidence suggests that the local, stranded ice-cored till topography in Garwood Valley, rather than regional ice-sheet dynamics, may have controlled lake levels for some McMurdo Dry Valleys paleolakes. Age control from the supraglacial Ross Sea drift suggests grounding and up-valley advance of the Ross Sea ice sheet into Garwood valley during marine oxygen isotope stage (MIS) 4 (71–78 ka) and the local Last Glacial Maximum (9–10 ka). This work demonstrates the power of combining luminescence dating with existing radiocarbon data sets to improve understanding of the relationships among paleolake formation, glacial position, and stream discharge in response to climate change.

  17. Shifting sources and transport paths for the late Quaternary Escanaba Trough sediment fill (northeast Pacific)

    USGS Publications Warehouse

    Zuffa, G.G.; De Rosa, R.; Normark, W.R.

    1997-01-01

    Escanaba Trough, which forms the southernmost part of the axial valley of the actively spreading Gorda Ridge, is filled with several hundred meters of sediment of presumed late Quaternary age. Surficial sediment samples from gravity cores, deeper samples (as much as 390 m) from Site 35 of the Deep Sea Drilling Program (Leg 5), and the acoustic character of the sediment fill observed on seismic-reflection profiles indicate that much of the sediment fill is of turbidite origin. Gross composition and heavy- mineral analyses of sand samples show that two distinct petrofacies comprise the sediment fill. The lower part of the fill was derived primarily from the Klamath River source of northern California while the younger fill, including the surficial sand beds, are from the Columbia River drainage much farther north. The Escanaba Trough sediment provides an opportunity to evaluate concepts for paleogeographic and paleotectonic reconstructions that are based on facies analysis and compositional and textural data for the volcanic components because both intrabasinal and extrabasinal sources are present as well as coeval (neovolcanic) and non coeval (paleovolcanic) sourcre This study of a modern basin shows, that although the sediment sources could be identified, it was useful to have some knowledge of the sediment pathway(s), the effects of diagenesis, and the possible effects of sediment sorting as a result of long transport distances from the source area for some components. Application of these same techniques to ancient deposits without benefit of the additional parameters will face limitations.

  18. Chuckwalla Valley multiple-well monitoring site, Chuckwalla Valley, Riverside County

    USGS Publications Warehouse

    Everett, Rhett

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, is evaluating the geohydrology and water availability of the Chuckwalla Valley, California. As part of this evaluation, the USGS installed the Chuckwalla Valley multiple-well monitoring site (CWV1) in the southeastern portion of the Chuckwalla Basin. Data collected at this site provide information about the geology, hydrology, geophysics, and geochemistry of the local aquifer system, thus enhancing the understanding of the geohydrologic framework of the Chuckwalla Valley. This report presents construction information for the CWV1 multiple-well monitoring site and initial geohydrologic data collected from the site.

  19. Hydrochemical and water quality assessment of groundwater in Doon Valley of Outer Himalaya, Uttarakhand, India.

    PubMed

    Dudeja, Divya; Bartarya, Sukesh Kumar; Biyani, A K

    2011-10-01

    The present study discusses ion sources and assesses the chemical quality of groundwater of Doon Valley in Outer Himalayan region for drinking and irrigational purposes. Valley is almost filled with Doon gravels that are main aquifers supplying water to its habitants. Recharged only by meteoric water, groundwater quality in these aquifers is controlled essentially by chemical processes occurring between water and lithology and locally altered by human activities. Seventy-six water samples were collected from dug wells, hand pumps and tube wells and were analysed for their major ion concentrations. The pH is varying from 5.6 to 7.4 and electrical conductivity from 71 to 951 μmho/cm. Groundwater of Doon valley is dominated by bicarbonate contributing 83% in anionic abundance while calcium and magnesium dominate in cationic concentrations with 88%. The seasonal and spatial variation in ionic concentration, in general, is related to discharge and lithology. The high ratio of (Ca + Mg)/(Na + K), i.e. 10, low ratio of (Na + K)/TZ+, i.e.0.2 and also the presence of carbonate lithology in the northern part of valley, is indicative of carbonate dissolution as the main controlling solute acquisition process in the valley. The low abundance of silica content and high HCO₃/H₄SiO₄ ratio also supports carbonate dissolution and less significant role of silicate weathering as the major source for dissolved ions in Doon Valley. The analytical results computed for various indices show that water is of fairly good quality, although, hard but have moderate dissolved solid content. It is free from sodium hazard lying in C₁-S₁ and C₂-S₁ class of USSL diagram and in general suitable for drinking and irrigation except few locations having slightly high salinity hazard.

  20. Ages and potential drivers of fluvial fill terrace formation in the southern-central Andes, NW Argentina

    NASA Astrophysics Data System (ADS)

    Tofelde, S.; Savi, S.; Wickert, A. D.; Wittmann, H.; Alonso, R. N.; Strecker, M. R.; Schildgen, T. F.

    2015-12-01

    Fluvial fill terraces record changes in past sediment to water discharge ratios. Across the world, fill terrace formation in glaciated catchments has been linked to variable sediment production and river discharge over glacial-interglacial cycles. However, pronounced fill terraces far from major glaciers and ice sheets have the potential to record a different set of climate forcings. So far, little is known about how changes in global climate on multi-millenial timescales affected the rainfall patterns in the interior of South America, or how those changes might be reflected in the landscape. Nonetheless, several studies in the Central Andes have linked terrace formation to precessionally-controlled changes in precipitation. In this study, we investigate the timing of fluvial fill terrace planation and abandonment in the Quebrada del Toro, an intermontane basin located in the Eastern Cordillera of the southern-central Andes in NW Argentina. Fluvial fills in the valley reach more than 100 m above the current river level. Within the fills, we observe a minimum of 5 terrace levels with pronounced differences in their extent and preservation. These fills document successive episodes of incision, punctuated by periods of lateral planation and possible partial re-filling. The filling and re-incision has previously been associated with tectonic activity in the basin, but the potential superposed role of climate cycles in forming terraces has not been considered. We sampled four CRN (10Be) depth profiles to date the abandonment of the broadest terrace surfaces, least affected by later overwash and erosion. The ages fall within the late Pleistocene (~ 80 ka to 400 ka). While the presence of inflationary soils beneath desert pavements make precise age determinations difficult, our preliminary calculations suggest a potential link to orbital eccentricity (~100 kyr) cycles, pointing to a different timescale of landscape response to climate forcing compared to previous studies.

  1. Sacramento Valley, CA, USA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Sacramento Valley (40.5N, 121.5W) of California is the northern extension of the Central Valley, main agriculture region of the state. Hundreds of truck farms, vineyards and orchards can be seen throughout the length and breadth of the valley which was reclaimed from the desert by means of intensive and extensive irrigation projects.

  2. Regional variations in water quality and relationships to soil and bedrock weathering in the southern Sacramento Valley, California, USA

    USGS Publications Warehouse

    Wanty, R.B.; Goldhaber, M.B.; Morrison, J.M.; Lee, L.

    2009-01-01

    Regional patterns in ground- and surface-water chemistry of the southern Sacramento Valley in California were evaluated using publicly available geochemical data from the US Geological Survey's National Water Information System (NWIS). Within the boundaries of the study area, more than 2300 ground-water analyses and more than 20,000 surface-water analyses were available. Ground-waters from the west side of the Sacramento Valley contain greater concentrations of Na, Ca, Mg, B, Cl and SO4, while the east-side ground-waters contain greater concentrations of silica and K. These differences result from variations in surface-water chemistry as well as from chemical reactions between water and aquifer materials. Sediments that fill the Sacramento Valley were derived from highlands to the west (the Coast Ranges) and east (the Sierra Nevada Mountains), the former having an oceanic provenance and the latter continental. These geologic differences are at least in part responsible for the observed patterns in ground-water chemistry. Thermal springs that are common along the west side of the Sacramento Valley appear to have an effect on surface-water chemistry, which in turn may affect the ground-water chemistry.

  3. Eccentricity-driven fluvial fill terrace formation in the southern-central Andes, NW Argentina

    NASA Astrophysics Data System (ADS)

    Tofelde, Stefanie; Savi, Sara; Wickert, Andrew D.; Wittmann, Hella; Alonso, Ricardo; Strecker, Manfred R.; Schildgen, Taylor F.

    2016-04-01

    Across the world, fill-terrace formation in glaciated catchments has been linked to variable sediment production and river discharge over glacial-interglacial cycles. Little is known, however, how variability in global climate may have affected rainfall patterns and associated surface-processes on multi-millennial timescales in regions far from major glaciers and ice sheets, and how those changes might be reflected in the landscape. Here, we investigate the timing of fluvial fill terrace planation and abandonment in the Quebrada del Toro, an intermontane basin located in the Eastern Cordillera of the southern-central Andes of NW Argentina. Fluvial fills in the valley reach more than 150 m above the current river level. Sculpted into the fills, we observe at least 5 terrace levels with pronounced differences in their extent and preservation. We sampled four TCN (in situ 10Be) depth profiles to date the abandonment of the most extensive terrace surfaces in locations, where subsequent overprint by erosion and deposition was not pronounced. We interpret unexpectedly low 10Be concentrations at shallow depths and surface samples to be related to aeolian input, causing surface inflation. Correcting the depth profiles for inflation results in a reduction of the terrace surface ages by up to 70 ka. The inflation-corrected ages fall within the late Pleistocene (~140 - 370 ka) and suggest a potential link to orbital eccentricity (~100 ka) cycles. The studied fills in the Toro Basin document successive episodes of incision, punctuated by periods of lateral planation and possible partial re-filling. We propose climate cycles as a potentially-dominant factor in forming these terraces. To our knowledge, none of the previously studied fluvial terraces in the Andes date back more than 2 glacial cycles, thus making the Quebrada del Toro an important archive of paleoenvironmental conditions over longer timescales.

  4. Reconnaissance of Stream Geomorphology, Low Streamflow, and Stream Temperature in the Mountaintop Coal-Mining Region, Southern West Virginia, 1999-2000

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Evaldi, Ronald D.; Eychaner, James H.; Chambers, Douglas B.

    2001-01-01

    The effects of mountaintop removal coal mining and the valley fills created by this mining method in southern West Virginia were investigated by comparing data collected at valley-fill, mined, and unmined sites. Bed material downstream of valley-fill sites had a greater number of particles less than 2 millimeters and a smaller median particle size than the mined and unmined sites. At the 84th percentile of sampled data, however, bed material at each site type had about the same size particles. Bankfull cross-sectional areas at a riffle section were approximately equal at valley-fill and unmined sites, but not enough time has passed and insufficient streamflows since the land was disturbed may have prevented the stream channel at valley-fill sites from reaching equilibrium. The 90-percent flow durations at valley-fill sites generally were 6-7 times greater than at unmined sites. Some valley-fill sites, however, exhibited streamflows similar to unmined sites, and some unmined sites exhibited streamflows similar to valley-fill sites. Daily streamflows from valley-fill sites generally are greater than daily streamflows from unmined sites during periods of low streamflow. Valley-fill sites have a greater percentage of base-flow and a lower percentage of flow from storm runoff than unmined sites. Water temperatures from a valley-fill site exhibited lower daily fluctuations and seasonal variations than water temperatures from an unmined site.

  5. The Muralla Pircada: an ancient Andean debris flow retention dam, Santa Rita B archaeological site, Chao Valley, Northern Peru

    USGS Publications Warehouse

    Brooks, William E.; Willett, Jason C.; Kent, Jonathan D.; Vasquez, Victor; Rosales, Teresa

    2005-01-01

    Debris flows caused by El Niño events, earthquakes, and glacial releases have affected northern Perú for centuries. The Muralla Pircada, a northeast-trending, 2.5 km long stone wall east of the Santa Rita B archaeological site (Moche-Chimú) in the Chao Valley, is field evidence that ancient Andeans recognized and, more importantly, attempted to mitigate the effects of debris flows. The Muralla is upstream from the site and is perpendicular to local drainages. It is 1–2 m high, up to 5 m wide, and is comprised of intentionally-placed, well-sorted, well-rounded, 20–30 cm cobbles and boulders from nearby streams. Long axes of the stones are gently inclined and parallel local drainage. Case-and-fill construction was used with smaller cobbles and pebbles used as fill. Pre-Muralla debris flows are indicated by meter-sized, angular boulders that were incorporated in-place into construction of the dam and are now exposed in breeches in the dam. Post-Muralla debris flows in the Chao Valley are indicated by meter-sized, angular boulders that now abut the retention dam.

  6. Intermittent Surface Water Connectivity: Fill and Spill vs. Fill ...

    EPA Pesticide Factsheets

    Intermittent surface connectivity can influence aquatic systems, since chemical and biotic movements are often associated with water flow. Although often referred to as fill and spill, wetlands also fill and merge. We examined the effects of these connection types on water levels, ion concentrations, and biotic communities of eight prairie pothole wetlands between 1979 and 2015. Fill and spill caused pulsed surface water connections that were limited to periods following spring snow melt. In contrast, two wetlands connected through fill and merge experienced a nearly continuous, 20-year surface water connection and had completely coincident water levels. Fill and spill led to minimal convergence in dissolved ions and macroinvertebrate composition, while these constituents converged under fill and merge. The primary factor determining difference in responses was duration of the surface water connection between wetland pairs. Our findings suggest that investigations into the effects of intermittent surface water connections should not consider these connections generically, but need to address the specific types of connections. In particular, fill and spill promotes external water exports while fill and merge favors internal storage. The behaviors of such intermittent connections will likely be accentuated under a future with more frequent and severe climate extremes. Under the Safe and Sustainable Water Resources National Program, work is being done to qu

  7. Intermittent Surface Water Connectivity: Fill and Spill Vs. Fill ...

    EPA Pesticide Factsheets

    Intermittent surface connectivity can influence aquatic systems, since chemical and biotic movements are often associated with water flow. Although often referred to as fill and spill, wetlands also fill and merge. We examined the effects of these connection types on water levels, ion concentrations, and biotic communities of eight prairie pothole wetlands between 1979 and 2015. Fill and spill caused pulsed surface water connections that were limited to periods following spring snow melt. In contrast, two wetlands connected through fill and merge experienced a nearly continuous, 20-year surface water connection and had completely coincident water levels. Fill and spill led to minimal convergence in dissolved ions and macroinvertebrate composition, while these constituents converged under fill and merge. The primary factor determining difference in responses was duration of the surface water connection between wetland pairs. Our findings suggest that investigations into the effects of intermittent surface water connections should not consider these connections generically, but need to address the specific types of connections. In particular, fill and spill promotes external water exports while fill and merge favors internal storage. The behaviors of such intermittent connections will likely be accentuated under a future with more frequent and severe climate extremes. Under the Safe and Sustainable Water Resources National Program, work is being done to qu

  8. Sacramento Valley, CA, USA

    NASA Image and Video Library

    1973-06-22

    SL2-04-179 (22 June 1973) --- The Sacramento Valley (40.5N, 121.5W) of California is the northern extension of the Central Valley, main agriculture region of the state. Hundreds of truck farms, vineyards and orchards can be seen throughout the length and breadth of the valley which was reclaimed from the desert by means of intensive and extensive irrigation projects. Photo credit: NASA

  9. Clinical outcome of patients with heart failure and preserved left ventricular function.

    PubMed

    Gotsman, Israel; Zwas, Donna; Planer, David; Azaz-Livshits, Tanya; Admon, Dan; Lotan, Chaim; Keren, Andre

    2008-11-01

    Patients with heart failure have a poor prognosis. However, it has been presumed that patients with heart failure and preserved left ventricular function (LVF) may have a more benign prognosis. We evaluated the clinical outcome of patients with heart failure and preserved LVF compared with patients with reduced function and the factors affecting prognosis. We prospectively evaluated 289 consecutive patients hospitalized with a definite clinical diagnosis of heart failure based on typical symptoms and signs. They were divided into 2 subsets based on echocardiographic LVF. Patients were followed clinically for a period of 1 year. Echocardiography showed that more than one third (36%) of the patients had preserved systolic LVF. These patients were more likely to be older and female and have less ischemic heart disease. The survival at 1 year in this group was poor and not significantly different from patients with reduced LVF (75% vs 71%, respectively). The adjusted survival by Cox regression analysis was not significantly different (P=.25). However, patients with preserved LVF had fewer rehospitalizations for heart failure (25% vs 35%, P<.05). Predictors of mortality in the whole group by multivariate analysis were age, diabetes, chronic renal failure, atrial fibrillation, residence in a nursing home, and serum sodium < or = 135 mEq/L. The prognosis of patients with clinical heart failure with or without preserved LVF is poor. Better treatment modalities are needed in both subsets.

  10. Observation of acoustic valley vortex states and valley-chirality locked beam splitting

    NASA Astrophysics Data System (ADS)

    Ye, Liping; Qiu, Chunyin; Lu, Jiuyang; Wen, Xinhua; Shen, Yuanyuan; Ke, Manzhu; Zhang, Fan; Liu, Zhengyou

    2017-05-01

    We report an experimental observation of the classical version of valley polarized states in a two-dimensional hexagonal sonic crystal. The acoustic valley states, which carry specific linear momenta and orbital angular momenta, were selectively excited by external Gaussian beams and conveniently confirmed by the pressure distribution outside the crystal, according to the criterion of momentum conservation. The vortex nature of such intriguing bulk crystal states was directly characterized by scanning the phase profile inside the crystal. In addition, we observed a peculiar beam-splitting phenomenon, in which the separated beams are constructed by different valleys and locked to the opposite vortex chirality. The exceptional sound transport, encoded with valley-chirality locked information, may serve as the basis of designing conceptually interesting acoustic devices with unconventional functions.

  11. Probability of Elevated Volatile Organic Compound (VOC) Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated volatile organic compound (VOC) concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  12. Dry Valleys, Antarctica

    NASA Image and Video Library

    2009-11-02

    The McMurdo Dry Valleys are a row of valleys west of McMurdo Sound, Antarctica. They are so named because of their extremely low humidity and lack of snow and ice cover. This image was acquired December 8, 2002 by NASA Terra spacecraft.

  13. Maps of estimated nitrate and arsenic concentrations in basin-fill aquifers of the southwestern United States

    USGS Publications Warehouse

    Beisner, Kimberly R.; Anning, David W.; Paul, Angela P.; McKinney, Tim S.; Huntington, Jena M.; Bexfield, Laura M.; Thiros, Susan A.

    2012-01-01

    Human-health concerns and economic considerations associated with meeting drinking-water standards motivated a study of the vulnerability of basin-fill aquifers to nitrate contamination and arsenic enrichment in the southwestern United States. Statistical models were developed by using the random forest classifier algorithm to predict concentrations of nitrate and arsenic across a model grid representing about 190,600 square miles of basin-fill aquifers in parts of Arizona, California, Colorado, Nevada, New Mexico, and Utah. The statistical models, referred to as classifiers, reflect natural and human-related factors that affect aquifer vulnerability to contamination and relate nitrate and arsenic concentrations to explanatory variables representing local- and basin-scale measures of source and aquifer susceptibility conditions. Geochemical variables were not used in concentration predictions because they were not available for the entire study area. The models were calibrated to assess model accuracy on the basis of measured values.Only 2 percent of the area underlain by basin-fill aquifers in the study area was predicted to equal or exceed the U.S. Environmental Protection Agency drinking-water standard for nitrate as N (10 milligrams per liter), whereas 43 percent of the area was predicted to equal or exceed the standard for arsenic (10 micrograms per liter). Areas predicted to equal or exceed the drinking-water standard for nitrate include basins in central Arizona near Phoenix; the San Joaquin Valley, the Santa Ana Inland, and San Jacinto Basins of California; and the San Luis Valley of Colorado. Much of the area predicted to equal or exceed the drinking-water standard for arsenic is within a belt of basins along the western portion of the Basin and Range Physiographic Province that includes almost all of Nevada and parts of California and Arizona. Predicted nitrate and arsenic concentrations are substantially lower than the drinking-water standards in much of

  14. Processes of Terrace Formation on the Piedmont of the Santa Cruz River Valley During Quaternary Time, Green Valley-Tubac Area, Southeastern Arizona

    USGS Publications Warehouse

    Lindsey, David A.; Van Gosen, Bradley S.

    2010-01-01

    In this report we describe a series of stepped Quaternary terraces on some piedmont tributaries of the Santa Cruz River valley in southeastern Arizona. These terraces began to form in early Pleistocene time, after major basin-and-range faulting ceased, with lateral planation of basin fill and deposition of thin fans of alluvium. At the end of this cycle of erosion and deposition, tributaries of the Santa Cruz River began the process of dissection and terrace formation that continues to the present. Vertical cutting alternated with periods of equilibrium, during which streams cut laterally and left thin deposits of channel fill. The distribution of terraces was mapped and compiled with adjacent mapping to produce a regional picture of piedmont stream history in the middle part of the Santa Cruz River valley. For selected tributaries, the thickness of terrace fill was measured, particle size and lithology of gravel were determined, and sedimentary features were photographed and described. Mapping of terrace stratigraphy revealed that on two tributaries, Madera Canyon Wash and Montosa Canyon Wash, stream piracy has played an important role in piedmont landscape development. On two other tributaries, Cottonwood Canyon Wash and Josephine Canyon Wash, rapid downcutting preempted piracy. Two types of terraces are recognized: erosional and depositional. Gravel in thin erosional terraces has Trask sorting coefficients and sedimentary structures typical of streamflood deposits, replete with bar-and-swale surface topography on young terraces. Erosional-terrace fill represents the channel fill of the stream that cuts the terrace; the thickness of the fill indicates the depth of channel scour. In contrast to erosional terraces, depositional terraces show evidence of repeated deposition and net aggradation, as indicated by their thickness (as much as 20+ m) and weakly bedded structure. Depositional terraces are common below mountain-front canyon mouths where streams drop their

  15. ECO fill: automated fill modification to support late-stage design changes

    NASA Astrophysics Data System (ADS)

    Davis, Greg; Wilson, Jeff; Yu, J. J.; Chiu, Anderson; Chuang, Yao-Jen; Yang, Ricky

    2014-03-01

    One of the most critical factors in achieving a positive return for a design is ensuring the design not only meets performance specifications, but also produces sufficient yield to meet the market demand. The goal of design for manufacturability (DFM) technology is to enable designers to address manufacturing requirements during the design process. While new cell-based, DP-aware, and net-aware fill technologies have emerged to provide the designer with automated fill engines that support these new fill requirements, design changes that arrive late in the tapeout process (as engineering change orders, or ECOs) can have a disproportionate effect on tapeout schedules, due to the complexity of replacing fill. If not handled effectively, the impacts on file size, run time, and timing closure can significantly extend the tapeout process. In this paper, the authors examine changes to design flow methodology, supported by new fill technology, that enable efficient, fast, and accurate adjustments to metal fill late in the design process. We present an ECO fill methodology coupled with the support of advanced fill tools that can quickly locate the portion of the design affected by the change, remove and replace only the fill in that area, while maintaining the fill hierarchy. This new fill approach effectively reduces run time, contains fill file size, minimizes timing impact, and minimizes mask costs due to ECO-driven fill changes, all of which are critical factors to ensuring time-to-market schedules are maintained.

  16. Identification of Variables Determining Intrahemispheric Interference between Processing Demands

    DTIC Science & Technology

    1989-04-01

    Abstract Concrete Nonword Visual Field + LVF RVF LVF RVF LVF RVF Measure + RT %Err RT %Err RT %Err RT %Err RT %Err RT %Err Hand + I Left (N-6) 1205 39 1070...LUME I 113. SAND 50 6.89 NADS 114. TENT 50 6.92 ENTT 115. MILK 99 6.92 KLIM 116. FLAG 50 6.92 GLAF 117. TIRE 99 6.92 RETE 118. GIRL 99 6.95 LIRG 119

  17. Ground-water conditions in southern Utah Valley and Goshen Valley, Utah

    USGS Publications Warehouse

    Cordova, R.M.

    1970-01-01

    The investigation of ground-water conditions in southern Utah Valley and Goshen Valley, Utah, was made by the U. S. Geological Survey as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights, to investigate the water resources of the State. The purposes of the investigation were to (1) determine the occurrence, recharge, discharge, movement, storage, chemical quality, and availability of ground water; (2) appraise the effects of increased withdrawal of water from wells; and (3) evaluate the effect of the Central Utah Project on the ground-water reservoir and the water supply of Utah Lake.This report presents a description of the aquifer system in the two valleys, a detailed description of the ground-water resources, and conclusions about potential development and its effect on the hydrologic conditions in the valleys. Two supplementary reports are products of the investigation. A basic-data release (Cordova, 1969) contains most of the basic data collected for the investigation, including well characteristics, drillers' logs, water levels, pumpage from wells, chemical analyses of ground and surface waters, and discharge of selected springs, drains, and streams. An interpretive report (Cordova and Mower, 1967) contains the results of a large-scale aquifer test in southern Utah Valley.

  18. Hydrology of Cache Valley, Cache County, Utah, and adjacent part of Idaho, with emphasis on simulation of ground-water flow

    USGS Publications Warehouse

    Kariya, Kim A.; Roark, D. Michael; Hanson, Karen M.

    1994-01-01

    A hydrologic investigation of Cache Valley was done to better understand the ground-water system in unconsolidated basin-fill deposits and the interaction between ground water and surface water. Ground-water recharge occurs by infiltration of precipitation and unconsumed irrigation water, seepage from canals and streams, and subsurface inflow from adjacent consolidated rock and adjacent unconsolidated basin-fill deposit ground-water systems. Ground-water discharge occurs as seepage to streams and reservoirs, spring discharge, evapotranspiration, and withdrawal from wells.Water levels declined during 1984-90. Less-than-average precipitation during 1987-90 and increased pumping from irrigation and public-supply wells contributed to the declines.A ground-water-flow model was used to simulate flow in the unconsolidated basin-fill deposits. Data primarily from 1969 were used to calibrate the model to steady-state conditions. Transient-state calibration was done by simulating ground-water conditions on a yearly basis for 1982-90.A hypothetical simulation in which the dry conditions of 1990 were continued for 5 years projected an average lO-foot water-level decline between Richmond and Hyrum. When increased pumpage was simulated by adding three well fields, each pumping 10 cubic feet per second, in the Logan, Smithfield, and College Ward areas, water-level declines greater than 10 feet were projected in most of the southeastern part of the valley and discharge from springs and seepage to streams and reservoirs decreased.

  19. Crustal shortening followed by extensional collapse of the Cordilleran orogenic belt in northwestern Montana: Evidence from vintage seismic reflection profiles acquired in the Swan Range and Swan Valley

    NASA Astrophysics Data System (ADS)

    Rutherford, B. S.; Speece, M. A.; Stickney, M. C.; Mosolf, J. G.

    2013-12-01

    half-graben fill suggest up to 1.5 km of Cenozoic basin filling sediments are present. Refraction tomography velocity modeling of distinct refracted arrivals, prevalent in the gathers, constrain a half-graben geometry for the Swan Valley. Signal attenuation within the low-velocity valley fill make correlation of reflectors at the depth of the décollement impossible underneath the Swan Valley. Prestack depth migration of the sections is anticipated to improve geometric constraints on major structural features of the Swan Range and Swan Valley.

  20. Analysis of Mining-induced Valley Closure Movements

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.

    2016-05-01

    Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.

  1. The Inter-Valley Soil Comparative Survey: the ecology of Dry Valley edaphic microbial communities

    PubMed Central

    Lee, Charles K; Barbier, Béatrice A; Bottos, Eric M; McDonald, Ian R; Cary, Stephen Craig

    2012-01-01

    Recent applications of molecular genetics to edaphic microbial communities of the McMurdo Dry Valleys and elsewhere have rejected a long-held belief that Antarctic soils contain extremely limited microbial diversity. The Inter-Valley Soil Comparative Survey aims to elucidate the factors shaping these unique microbial communities and their biogeography by integrating molecular genetic approaches with biogeochemical analyses. Although the microbial communities of Dry Valley soils may be complex, there is little doubt that the ecosystem's food web is relatively simple, and evidence suggests that physicochemical conditions may have the dominant role in shaping microbial communities. To examine this hypothesis, bacterial communities from representative soil samples collected in four geographically disparate Dry Valleys were analyzed using molecular genetic tools, including pyrosequencing of 16S rRNA gene PCR amplicons. Results show that the four communities are structurally and phylogenetically distinct, and possess significantly different levels of diversity. Strikingly, only 2 of 214 phylotypes were found in all four valleys, challenging a widespread assumption that the microbiota of the Dry Valleys is composed of a few cosmopolitan species. Analysis of soil geochemical properties indicated that salt content, alongside altitude and Cu2+, was significantly correlated with differences in microbial communities. Our results indicate that the microbial ecology of Dry Valley soils is highly localized and that physicochemical factors potentially have major roles in shaping the microbiology of ice-free areas of Antarctica. These findings hint at links between Dry Valley glacial geomorphology and microbial ecology, and raise previously unrecognized issues related to environmental management of this unique ecosystem. PMID:22170424

  2. 27 CFR 9.132 - Rogue Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Rogue Valley. 9.132... Rogue Valley. (a) Name. The name of the viticultural area described in this section is “Rouge Valley.” (b) Approved map. The appropriate map for determining the boundaries of the Rogue Valley viticultural...

  3. Different states of the transient luminous phenomena in Hessdalen valley, Norway.

    NASA Astrophysics Data System (ADS)

    Hauge, B. G.; Montebugnoli, S.

    2012-04-01

    The transient luminous phenomena's in Hessdalen valley has at least been observed for 200 years, since 1811, when the priest Jacob T. Krogh did the first written documentation. The valley is located in the middle of Norway, isolated and with sub arctic climate. The former mining district has no more than 140 inhabitants, and the deep mines are closed and filled with water. The valley has been under scientific surveillance since 1998 when the first automated and remote controlled observatory was put into action. Today a Norwegian, Italian and French collaboration runs 3 different research stations inside the valley. Each year a scientific field campaign establishes 4 temporary bases in the mountains, and up to 100 students and researchers man these bases for up to 14 days in september when the moon is down. The Hessdalen phenomena is not easy to detect, and approximately only 20 observations is done each year. The work done the last 14 years suggests that the phenomenon has different states, at least 6 detected so far. The states are so different that to se a coupling between them is difficult. New work done into dusty plasma physics suggest that the different phenomena's may be of the same origin, since the ionized grains of dusty plasma can change states from weakly coupled (gaseous) to crystalline, altering shape/formation and leading to different phenomena. Optical spectrometry from 2007 suggested that the luminous phenomena consisted of burning air and dust from the valley. Work done by G.S Paiva and C.A Taft suggests that radon decay from closed mines may be the mechanism that ionizes dust and triggers this phenomena. The 6 different main states of the Hessdalen phenomena, Doublet, Fireball, Plasma ray, Dust cloud, Flash and Invisible state is described and discussed. Investigation of the atmosphere inside the Hessdalen valley with low frequency directional RADAR, reveals large areas of ionized matter, giving a reflecting area big enough to saturate the input

  4. A comparison of avian communities and habitat characteristics in floodplain forests associated with valley plugs and unchannelized streams

    USGS Publications Warehouse

    Pierce, Aaron R.; King, Sammy L.

    2011-01-01

    Channelization of streams associated with floodplain forested wetlands has occurred extensively throughout the world and specifically in the southeastern United States. Channelization of fluvial systems alters the hydrologic and sedimentation processes that sustain these systems. In western Tennessee, channelization and past land-use practices have caused drastic geomorphic and hydrologic changes, resulting in altered habitat conditions that may affect avian communities. The objective of this study was to determine if there were differences in avian communities utilizing floodplain forests along unchannelized streams compared to channelized streams with valley plugs, areas where sediment has completely filled the channel. During point count surveys, 58 bird species were observed at unchannelized sites and 60 species were observed at valley plug sites. Species associated with baldcypress-tupelo (Taxodium-Nyssa) swamps (e.g. Great Egret (Ardea albus) and Black-crowned Night Heron (Nycticorax nycticorax)) and mature hardwood forests with open midstories (e.g. Eastern Wood-Pewee (Contopus virens), Yellow-throated Vireo (Vireo flavifrons), Cerulean Warbler (Dendroica cerulea) and Scarlet Tanager (Piranga olivacea)) were either only found at unchannelized sites or were more abundant at unchannelized sites. Conversely, species associated with open and early successional habitats (e.g. Tree Swallow (Tachycineta bicolor), Northern Mockingbird (Mimus polyglottos) and Blue Grosbeak (Passerina caerulea)) were either only found at valley plug sites or were more abundant at valley plug sites. Results of habitat modelling suggest that the habitat characteristics of floodplain forests at unchannelized sites are more suitable for Neotropical migrant bird species of conservation concern in the region than at valley plug sites. This study, in combination with previous research, demonstrates the ecological impacts of valley plugs span across abiotic and biotic processes and tropic

  5. Geophysical Studies Based on Gravity and Seismic Data of Tule Desert, Meadow Valley Wash, and California Wash Basins, Southern Nevada

    USGS Publications Warehouse

    Scheirer, Daniel S.; Page, William R.; Miller, John J.

    2006-01-01

    Gravity and seismic data from Tule Desert, Meadow Valley Wash, and California Wash, Nevada, provide insight into the subsurface geometry of these three basins that lie adjacent to rapidly developing areas of Clark County, Nevada. Each of the basins is the product of Tertiary extension accommodated with the general form of north-south oriented, asymmetrically-faulted half-grabens. Geophysical inversion of gravity observations indicates that Tule Desert and Meadow Valley Wash basins are segmented into subbasins by shallow, buried basement highs. In this study, basement refers to pre-Cenozoic bedrock units that underlie basins filled with Cenozoic sedimentary and volcanic units. In Tule Desert, a small, buried basement high inferred from gravity data appears to be a horst whose placement is consistent with seismic reflection and magnetotelluric observations. Meadow Valley Wash consists of three subbasins separated by basement highs at structural zones that accommodated different styles of extension of the adjacent subbasins, an interpretation consistent with geologic mapping of fault traces oblique to the predominant north-south fault orientation of Tertiary extension in this area. California Wash is a single structural basin. The three seismic reflection lines analyzed in this study image the sedimentary basin fill, and they allow identification of faults that offset basin deposits and underlying basement. The degree of faulting and folding of the basin-fill deposits increases with depth. Pre-Cenozoic units are observed in some of the seismic reflection lines, but their reflections are generally of poor quality or are absent. Factors that degrade seismic reflector quality in this area are rough land topography due to erosion, deformed sedimentary units at the land surface, rock layers that dip out of the plane of the seismic profile, and the presence of volcanic units that obscure underlying reflectors. Geophysical methods illustrate that basin geometry is more

  6. Subsurface Density Structure of Taurus Littrow Valley Using Apollo 17 Gravity Data

    NASA Astrophysics Data System (ADS)

    Urbancic, N.; Ghent, R. R.; Johnson, C.; Stanley, S.; Hatch, D.; Carroll, K. A.; Williamson, M. C.; Garry, W. B.; Talwani, M.

    2016-12-01

    The Traverse Gravimeter Experiment (TGE) from the Apollo 17 mission was the first and only successful gravity survey on the surface of the Moon, revealing the local gravity field at Taurus Littrow Valley (TLV). Satellite surveys are resolution-limited due to their altitudes, making the TGE dataset a novel tool to probe the near-surface, fine-scale (<1 km) subsurface density structure of the Moon. TLV is hypothesized to be a basalt-filled graben oriented radial to Serenitatis basin. Talwani et al. [Apollo 17 Preliminary Science Report, 13 (1973)] used 2D correction and modelling techniques to derive a 1 km thickness for the subsurface basalt, assuming a rectangular geometry and densities derived from Apollo samples. We used modern 3D correction and modelling techniques and recent high-resolution Lunar Reconnaisance Orbiter topographic and image datasets to reinvestigate the subsurface structure of TLV, assuming a trapezoidal geometry for the valley. Updated topographic maps led to significant improvements in the accuracy of free-air, Bouguer and terrain corrections applied to the data. To determine the underlying geometry for TLV, we tested a range of possible thicknesses (T), dips (θ) and positions for the graben fill. We found that the thickness and position used by Talwani et al. represent the best fit to the data, but with walls that dip 30°. From sensitivity analyses we quantified the effect that different noise levels have on determining the correct model parameters. We found that less than 4 mgal noise in the gravity measurements is required to determine the valley position to within 1 km. At the noise level from the TGE data of ˜3.1 mgal, for an input model with θ=90° and a T=1 km, there will be a range in model dips and thicknesses, with θ=45-90° and T=0.9-1.1 km. Even for noise levels of 1 mgal, the range in parameters is θ=72-90° and T=0.95-1.05 km. These noise constraints are crucial for informing the design of future lunar gravimetry

  7. Geochemistry of waters in the Valley of Ten Thousand Smokes region, Alaska

    USGS Publications Warehouse

    Keith, T.E.C.; Thompson, J.M.; Hutchinson, R.A.; White, L.D.

    1992-01-01

    Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8??C in early summer and from 15 to 17??C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the downvalley parts of the rivers draining the 1912 deposits are mainly mixtures of cold meteoric waters and thermal waters of which the mid-valley thermal spring waters are representative. The weathering reactions of cold waters with the 1912 deposits appear to have stabilized and add only subordinate amounts of chemical constituents to the rivers relative to those contributed by the thermal waters. Isotopic data indicate that the mid-valley thermal spring waters are meteoric, but data is inconclusive regarding the heat source. The thermal waters could be either from a shallow part of a hydrothermal system beneath the 1912 vent region or from an incompletely cooled, welded tuff lens deep in the 1912 ash-flow sheet of the upper River Lethe area. Bicarbonate-sulfate waters resulting from interaction of near-surface waters and the cooling 1953-1968 southwest Trident plug issue from thermal springs south of Katmai Pass and near Mageik Creek, although the Mageik Creek spring waters are from a well-established, more deeply circulating hydrothermal system. Katmai caldera lake waters are a result of acid gases from vigorous drowned fumaroles dissolving in lake waters composed of snowmelt and precipitation. ?? 1992.

  8. Mass wasting deposits in the upper Sehonghong valley, eastern Lesotho: Late Pleistocene climate implications

    NASA Astrophysics Data System (ADS)

    Mills, S. C.; Grab, S. W.

    2009-04-01

    Despite considerable research attention on apparent periglacial, glacial and sedimentary phenomena in the Maluti-Drakensberg alpine environment, knowledge on the Quaternary environmental history of this important watershed and climate-divide is still rather rudimentary. The dearth of Quaternary environmental indicators (proxy data) in the high Drakensberg is partly owing to the harsh climate (e.g. high wind speeds and high seasonal precipitation), which offers a poor preservation of past biological remains (e.g. bones, dung, middens, pollen). Possibly the best opportunity to reconstruct high Drakensberg palaeoenvironments is from sedimentary sequences exposed along fluvially-incised valley fills. The upper Sehonghong River (3000 to 3200 m a.s.l.) flows in a westerly direction and is flanked by north- and south-facing slopes reaching 3465 m a.s.l. Sediment is exposed on both the north- and south-facing slopes along the river. Despite uniform regional environmental conditions (geology, topography, climate, vegetation), there is a notable absence of similar north-facing deposits in adjacent upper valley catchments to the north and south of Sehonghong Valley. The upper Sehonghong Valley thus presents somewhat ‘unique' evidence for palaeo-slope mass movement in this alpine region. Thick colluvial deposits are most prominent on the south-facing slopes along the Sehonghong River and occur at altitudes between 3100 m a.s.l. and 3150 m a.s.l. The colluvial mantles are approximately 7 m in thickness, however reach up to 13 m in some areas. Although the north-facing lower valley side-slopes are generally absent of deposits, the notable exception is the thick stratified deposit located a few kilometres upstream. Whilst the south-facing deposits are relatively uniform in nature, the north-facing deposits consist of alternating units of gravel and organic sediment, dated to 36 600 ± 1400 14C yrs BP, and reflecting environmental changes during the Late Pleistocene. Mass

  9. Fretted Terrain Valleys

    NASA Technical Reports Server (NTRS)

    2004-01-01

    30 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows shallow tributary valleys in the Ismenius Lacus fretted terrain region of northern Arabia Terra. These valleys exhibit a variety of typical fretted terrain valley wall and floor textures, including a lineated, pitted material somewhat reminiscent of the surface of a brain. Origins for these features are still being debated within the Mars science community; there are no clear analogs to these landforms on Earth. This image is located near 39.9oN, 332.1oW. The picture covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  10. A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California

    USGS Publications Warehouse

    Goff, F.; Wollenberg, H.A.; Brookins, D.C.; Kistler, R.W.

    1991-01-01

    The 87Sr/86Sr values of thermal waters and hydrothermal calcites of the Long Valley caldera geothermal system are more radiogenic than those of young intracaldera volcanic rocks. Five thermal waters display 87Sr/86Sr of 0.7081-0.7078 but show systematically lighter values from west to east in the direction of lateral flow. We believe the decrease in ratio from west to east signifies increased interaction of deeply circulating thermal water with relatively fresh volcanic rocks filling the caldera depression. All types of pre-, syn-, and post-caldera volcanic rocks in the west and central caldera have (87Sr/86Sr)m between about 0.7060 and 0.7072 and values for Sierra Nevada granodiorites adjacent to the caldera are similar. Sierran pre-intrusive metavolcanic and metasedimentary rocks can have considerably higher Sr-isotope ratios (0.7061-0.7246 and 0.7090-0.7250, respectively). Hydrothermally altered volcanic rocks inside the caldera have (87Sr/86Sr)m slightly heavier than their fresh volcanic equivalents and hydrothermal calcites (0.7068-0.7105) occupy a midrange of values between the volcanic/plutonic rocks and the Sierran metamorphic rocks. These data indicate that the Long Valley geothermal reservoir is first equilibrated in a basement complex that contains at least some metasedimentary rocks. Reequilibration of Sr-isotope ratios to lower values occurs in thermal waters as convecting geothermal fluids flow through the isotopically lighter volcanic rocks of the caldera fill. ?? 1991.

  11. Hydrologic Evaluation of the Jungo Area, Southern Desert Valley, Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.

    2010-01-01

    RecologyTM, the primary San Francisco waste-disposal entity, is proposing to develop a Class 1 landfill near Jungo, Nevada. The proposal calls for the landfill to receive by rail about 20,000 tons of waste per week for up to 50 years. On September 22, 2009, the Interior Appropriation (S.A. 2494) was amended to require the U.S. Geological Survey to evaluate the proposed Jungo landfill site for: (1) potential water-quality impacts on nearby surface-water resources, including Rye Patch Reservoir and the Humboldt River; (2) potential impacts on municipal water resources of Winnemucca, Nevada; (3) locations and altitudes of aquifers; (4) how long it will take waste seepage from the site to contaminate local aquifers; and (5) the direction and distance that contaminated groundwater would travel at 95 and 190 years. This evaluation was based on review of existing data and information. Desert Valley is tributary to the Black Rock Desert via the Quinn River in northern Desert Valley. The Humboldt River and Rye Patch Reservoir would not be affected by surface releases from the proposed Jungo landfill site because they are in the Humboldt basin. Winnemucca, on the Humboldt River, is 30 miles east of the Jungo landfill site and in the Humboldt basin. Groundwater-flow directions indicate that subsurface flow near the proposed Jungo landfill site is toward the south-southwest. Therefore, municipal water resources of Winnemucca would not be affected by surface or subsurface releases from the proposed Jungo landfill site. Basin-fill aquifers underlie the 680-square-mile valley floor in Desert Valley. Altitudes around the proposed Jungo landfill site range from 4,162 to 4,175 feet. Depth to groundwater is fairly shallow in southern Desert Valley and is about 60 feet below land surface at the proposed Jungo landfill site. A groundwater divide exists about 7 miles north of the proposed Jungo landfill site. Groundwater north of the divide flows north towards the Quinn River. South of

  12. Interbasin flow in the Great Basin with special reference to the southern Funeral Mountains and the source of Furnace Creek springs, Death Valley, California, U.S.

    USGS Publications Warehouse

    Belcher, W.R.; Bedinger, M.S.; Back, J.T.; Sweetkind, D.S.

    2009-01-01

    Interbasin flow in the Great Basin has been established by scientific studies during the past century. While not occurring uniformly between all basins, its occurrence is common and is a function of the hydraulic gradient between basins and hydraulic conductivity of the intervening rocks. The Furnace Creek springs in Death Valley, California are an example of large volume springs that are widely accepted as being the discharge points of regional interbasin flow. The flow path has been interpreted historically to be through consolidated Paleozoic carbonate rocks in the southern Funeral Mountains. This work reviews the preponderance of evidence supporting the concept of interbasin flow in the Death Valley region and the Great Basin and addresses the conceptual model of pluvial and recent recharge [Nelson, S.T., Anderson, K., Mayo, A.L., 2004. Testing the interbasin flow hypothesis at Death Valley, California. EOS 85, 349; Anderson, K., Nelson, S., Mayo, A., Tingey, D., 2006. Interbasin flow revisited: the contribution of local recharge to high-discharge springs, Death Valley, California. Journal of Hydrology 323, 276-302] as the source of the Furnace Creek springs. We find that there is insufficient modern recharge and insufficient storage potential and permeability within the basin-fill units in the Furnace Creek basin for these to serve as a local aquifer. Further, the lack of high sulfate content in the spring waters argues against significant flow through basin-fill sediments and instead suggests flow through underlying consolidated carbonate rocks. The maximum temperature of the spring discharge appears to require deep circulation through consolidated rocks; the Tertiary basin fill is of insufficient thickness to generate such temperatures as a result of local fluid circulation. Finally, the stable isotope data and chemical mass balance modeling actually support the interbasin flow conceptual model rather than the alternative presented in Nelson et al. [Nelson

  13. Ongoing hydrothermal heat loss from the 1912 ash-flow sheet, Valley of Ten Thousand Smokes, Alaska

    USGS Publications Warehouse

    Hogeweg, N.; Keith, T.E.C.; Colvard, E.M.; Ingebritsen, S.E.

    2005-01-01

    The June 1912 eruption of Novarupta filled nearby glacial valleys on the Alaska Peninsula with ash-flow tuff (ignimbrite), and post-eruption observations of thousands of steaming fumaroles led to the name 'Valley of Ten Thousand Smokes' (VTTS). By the late 1980s most fumarolic activity had ceased, but the discovery of thermal springs in mid-valley in 1987 suggested continued cooling of the ash-flow sheet. Data collected at the mid-valley springs between 1987 and 2001 show a statistically significant correlation between maximum observed chloride (Cl) concentration and temperature. These data also show a statistically significant decline in the maximum Cl concentration. The observed variation in stream chemistry across the sheet strongly implies that most solutes, including Cl, originate within the area of the VTTS occupied by the 1912 deposits. Numerous measurements of Cl flux in the Ukak River just below the ash-flow sheet suggest an ongoing heat loss of ???250 MW. This represents one of the largest hydrothermal heat discharges in North America. Other hydrothermal discharges of comparable magnitude are related to heat obtained from silicic magma bodies at depth, and are quasi-steady on a multidecadal time scale. However, the VTTS hydrothermal flux is not obviously related to a magma body and is clearly declining. Available data provide reasonable boundary and initial conditions for simple transient modeling. Both an analytical, conduction-only model and a numerical model predict large rates of heat loss from the sheet 90 years after deposition.

  14. Geologic history of the Yosemite Valley

    USGS Publications Warehouse

    Matthes, Francois E.

    1930-01-01

    Projection of the longitudinal profiles of these hanging valleys forward to the axis of the Merced Canyon shows that they are closely accordant in height. Their profiles indicate a series of points on a former profile of the Merced with respect to which the side streams had graded their courses prior to the last uplift. This old profile can be extended upward into the glaciated part of the Merced Canyon above El Portal and even into the profoundly glaciated Yosemite Valley, accordant points being furnished by a number of hanging side valleys (due allowance being made for glacial erosion suffered by those valleys). However, not all the hanging valleys of the Yosemite region are accordant with this set. Several of them, including the upland valley of Yosemite Creek, constitute a separate set indicating another old profile of the Merced at a level 600 to 1,000 feet higher than the first. Others, including the hanging gulch of lower Bridalveil Creek, point to an old profile of the Merced about 1,200 feet lower than the first. There are thus three distinct sets of hanging valleys produced in three cycles of stream erosion. The valleys of the upper set, like those of the middle set, were left hanging as a result of rapid trenching by the Merced induced by an uplift of the range, there having been two such uplifts. Only the valleys of the lower set hang because of glacial deepening and widening of the Yosemite Valley, the cycle in which they were cut having been interrupted by the advent of the Pleistocene glaciers. They consequently indicate the preglacial depth of the Yosemite Valley. That depth, measured from the brow of El Capitan, was about 2,400 feet; measured from the rim at Glacier Point it was about 2,000 feet.

  15. 76 FR 22746 - Conecuh Valley Railway, LLC-Acquisition and Operation Exemption-Conecuh Valley Railroad Co., Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... Railway, LLC--Acquisition and Operation Exemption--Conecuh Valley Railroad Co., Inc. Conecuh Valley Railway, LLC (CVR), a noncarrier, has filed a verified notice of exemption under 49 CFR 1150.31 to acquire from Conecuh Valley Railroad Co., Inc. (COEH), and to operate [[Page 22747

  16. Geology and ground water in Napa and Sonoma Valleys, Napa and Sonoma Counties, California

    USGS Publications Warehouse

    Kunkel, Fred; Upson, Joseph Edwin

    1960-01-01

    Napa and Sonoma Valleys are adjacent alluvium-filled valleys about 40 miles northeast of San Francisco. They occupy alined and structurally controlled depressions in the northern Coast Ranges physiographic province and drain south into San Pablo Bay. The valleys are surrounded and underlain by unconsolidated marine and continental sediments and volcanic rocks of Pliocene and Pleistocene age, which are water bearing in large part and together make up relatively extensive ground-water basins. Napa Valley, the eastern valley, is the larger and has a valley-floor area of about 85 square miles. Sonoma Valley has a valley-floor area of about 35 square miles; in addition, about 10 square miles is unreclaimed tidal marsh. The rock units of Napa and Sonoma Valleys are divided into four classes on the basis of their distribution and relative capacity to yield water: (a) Consolidated virtually non-water-bearing chiefly sedimentary (some metamorphic) rocks that range in age from Jurassic ( ?) to Pliocene; (b) marine shale and sand of the Petaluma formation (Pliocene) and the Merced formation (Pliocene and Pleistocene) that do not crop out within Napa or Sonoma Valleys but perhaps are penetrated by some deep wells drilled in Sonoma Valley; (c) Sonoma volcanics of Pliocene age, parts of which are non-water-bearing and parts of which locally yield large quantities of water; and (d) unconsolidated alluvial deposits mainly of Quaternary age. The deposits of classes (c) and (d) contain the most important aquifers in the area. Most of the water used in these valleys is pumped from wells in the younger and older alluvium in the Huichica and Glen Ellen formations. and in the Sonoma volcanics. The principal aquifers are the younger and older alluvium. but appreciable quantities of water are pumped locally from the Sonoma volcanics. The Huichica and Glen Ellen formations yield water in small quantities and at most places supply water only for limited domestic uses. The younger alluvium

  17. Topological Valley Currents in Gapped Dirac Materials

    NASA Astrophysics Data System (ADS)

    Lensky, Yuri D.; Song, Justin C. W.; Samutpraphoot, Polnop; Levitov, Leonid S.

    2015-06-01

    Gapped 2D Dirac materials, in which inversion symmetry is broken by a gap-opening perturbation, feature a unique valley transport regime. Topological valley currents in such materials are dominated by bulk currents produced by electronic states just beneath the gap rather than by edge modes. The system ground state hosts dissipationless persistent valley currents existing even when topologically protected edge modes are absent. Valley currents induced by an external bias are characterized by a quantized half-integer valley Hall conductivity. The undergap currents dominate magnetization and the charge Hall effect in a light-induced valley-polarized state.

  18. Field Surveys, IOC Valleys. Volume III, Part II. Cultural Resources Survey, Pine and Wah Wah Valleys, Utah.

    DTIC Science & Technology

    1981-08-01

    valleys are typical of the Basin and Range Province, characterized by parallel, north-south trending mountain ranges, separated by hydrologically closed... basins . Pine and Wah Wah valleys each have hardpan-playas in their lowest areas. State Highway 21 runs roughly northwest-southeast through both val...have been important for prehis- toric and historic use of the area. Pine Valley: Pine and Wah Wah valleys are closed alluvial basins . The central part

  19. Evaluation of areas of contribution and water quality at receptors related to TCE plumes in a valley fill aquifer system

    NASA Astrophysics Data System (ADS)

    Lefebvre, R.; Ouellon, T.; Blais, V.; Ballard, J.; Brunet, P.

    2009-05-01

    The Val-Belair sector is located within Quebec City, about 20 km from downtown. Potential source zones and TCE plumes in groundwater are found at the western limit of the sector. At the center of the sector, four municipal water supply wells pump groundwater from an aquifer in surficial sediments where dissolved TCE is found. Private residential wells are also found in the sector. The Nelson River and its tributaries drain the sector and flows from west to east. New characterization results and available data were used to develop a numerical model of groundwater flow and mass transport to 1) define geological and hydrogeological contexts, 2) delineate the distribution of TCE and identify its migration paths and 3) evaluate the effect of TCE on the water quality of receptors (Nelson River, municipal and residential wells). In the sector, 30 to 40 m of sediments filling a buried valley form two aquifers separated by an aquitard: an unconfined deltaic aquifer at surface, an underlying silty prodeltaic aquitard and a semi-confined aquifer of deltaic sands and diamictons. Groundwater exchanges between the aquifers are generally downward through the aquitard, but near the Nelson River there is upward flow. Monitoring has led to sparse TCE detections in the Nelson River, regular detections at a mean value of 0.62 μg/L at one municipal well, occasional detections at another well and no detection at the other two wells. No TCE was detected in private wells, which are located outside the migration paths of TCE plumes. The context and numerical modeling with particle tracking and mass transport show the relationships between the two source zones, three TCE plumes and three receptors. Municipal wells pump in the semi-confined aquifer at a level appearing sustainable, but use most of the recharge in the sub-watershed. Areas of contribution to the wells thus cover almost all the study area with a complex pattern. These wells compete with the effect of the Nelson River to drain

  20. Aquifer-test results, direction of ground-water flow, and 1984-90 annual ground-water pumpage for irrigation, lower Big Lost River Valley, Idaho

    USGS Publications Warehouse

    Bassick, M.D.; Jones, M.L.

    1992-01-01

    The study area (see index map of Idaho), part of the Big Lost River drainage basin, is at the northern side of the eastern Snake River Plain. The lower Big Lost River Valley extends from the confluence of Antelope Creek and the Big Lost River to about 4 mi south of Arco and encompasses about 145 mi2 (see map showing water-level contours). The study area is about 18 mi long and, at its narrowest, 4 mi wide. Arco, Butte City, and Moore, with populations of 1,016, 59, and 190, respectively, in 1990, are the only incorporated towns. The entire study area, except the extreme northwestern part, is in Butte City. The study area boundary is where alluvium and colluvium pinch out and abut against the White Knob Mountains (chiefly undifferentiated sedimentary rock with lesser amounts of volcanic rock) on the west and the Lost River Range (chiefly sedimentary rock) on the east. Gravel and sand in the valley fill compose the main aquifer. The southern boundary is approximately where Big Lost River valley fill intercalates with or abuts against basalt of the Snake River Group. Spring ground-water levels and flow in the Big Lost River depend primarily on temperature and the amount and timing of precipitation within the entire drainage basin. Periods of abundant water supply and water shortages are, therefore, related to the amount of annual precipitation. Surface reservoir capacity in the valley (Mackay Reservoir, about 20 mi northwest of Moore) is only 20 percent of the average annual flow of the Big Lost River (Crosthwaite and others, 1970, p. 3). Stored surface water is generally unavailable for carryover from years of abundant water supply to help relieve drought conditions in subsequent years. Many farmers have drilled irrigation wells to supplement surface-water supplies and to increase irrigated acreage. Average annual flow of the Big Lost River below Mackay Reservoir near Mackay (gaging station 13127000, not shown) in water years 1905, 1913-14, and 1920-90 was about 224

  1. Concentric Crater Fill in Utopia Planitia: Timing and Transitions Between Glacial and Periglacial Processes.

    NASA Astrophysics Data System (ADS)

    Levy, J.; Head, J.

    2008-09-01

    Concentric crater fill (CCF), lobate debris aprons (LDA), and lineated valley fill (LVF) have long been used as indicators of ground ice on Mars [1-3]. Formation models for these features range from aeolian modification [4], to rock-glacier processes [5], to debris-covered glacier processes [6-7], but are now largely constrained by the detection of material within lobate debris aprons that is 100s of meters thick, and which has dielectric properties consistent with water ice [8-9]. At ~30 cm/pixel HiRISE resolution, LVF, LDA, and CCF show complex surface textures, termed "brain coral terrain" [9], or, succinctly, "brain terrain" (BT) [10]. Polygonally patterned ground commonly is present in proximity to brain terrain, overlying it as "brain terrain-covering" polygons (BTC) [10]. Here we document spatial patterns of BT and BTC morphology present in four CCF-filled, ~10 km diameter craters in Utopia Planitia. We then evaluate formation processes for BT and BTC units. Brain Terrain (BT) Morphology At HiRISE resolution (~30 cm/pixel), concentric crater fill brain terrain displays a complex surface texture. Two distinct sub-textures are commonly present in brain terrain [9]: filled brain terrain (FBT) and hollow brain terrain (HBT) (Figure 1). Filled brain terrain (FBT) is composed of arcuate and cuspate mounds, commonly ~10-20 m wide and 10 - <100 m long. Some FBT mounds have surface grooves located near the centreline of the long axis. FBT mounds occur singly, or in linked groups. FBT mounds are commonly oriented in lineations which are concentric to the crater in which the unit is present. FBT mound lineation spacing is variable, but commonly has a wavelength of ~20 m. FBT is commonly present on undulating topography, at the top of concentric ridges (and sometimes in the concentric valleys between ridges). Hollow brain terrain (HBT) is composed of arcuate and cuspate features that are delimited by a convex-up boundary band, commonly ~4-6 m wide, surrounding a

  2. A landscape scale valley confinement algorithm: Delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications

    Treesearch

    David E. Nagel; John M. Buffington; Sharon L. Parkes; Seth Wenger; Jaime R. Goode

    2014-01-01

    Valley confinement is an important landscape characteristic linked to aquatic habitat, riparian diversity, and geomorphic processes. This report describes a GIS program called the Valley Confinement Algorithm (VCA), which identifies unconfined valleys in montane landscapes. The algorithm uses nationally available digital elevation models (DEMs) at 10-30 m resolution to...

  3. Graphene Nanobubbles as Valley Filters and Beam Splitters

    NASA Astrophysics Data System (ADS)

    Settnes, Mikkel; Power, Stephen R.; Brandbyge, Mads; Jauho, Antti-Pekka

    2016-12-01

    The energy band structure of graphene has two inequivalent valleys at the K and K' points of the Brillouin zone. The possibility to manipulate this valley degree of freedom defines the field of valleytronics, the valley analogue of spintronics. A key requirement for valleytronic devices is the ability to break the valley degeneracy by filtering and spatially splitting valleys to generate valley polarized currents. Here, we suggest a way to obtain valley polarization using strain-induced inhomogeneous pseudomagnetic fields (PMFs) that act oppositely on the two valleys. Notably, the suggested method does not involve external magnetic fields, or magnetic materials, unlike previous proposals. In our proposal the strain is due to experimentally feasible nanobubbles, whose associated PMFs lead to different real space trajectories for K and K' electrons, thus allowing the two valleys to be addressed individually. In this way, graphene nanobubbles can be exploited in both valley filtering and valley splitting devices, and our simulations reveal that a number of different functionalities are possible depending on the deformation field.

  4. Magnetotelluric study of the Pahute Mesa and Oasis Valley regions, Nye County, Nevada

    USGS Publications Warehouse

    Schenkel, Clifford J.; Hildenbrand, Thomas G.; Dixon, Gary L.

    1999-01-01

    Magnetotelluric data delineate distinct layers and lateral variations above the pre-Tertiary basement. On Pahute Mesa, three resistivity layers associated with the volcanic rocks are defined: a moderately resistive surface layer, an underlying conductive layer, and a deep resistive layer. Considerable geologic information can be derived from the conductive layer which extents from near the water table down to a depth of approximately 2 km. The increase in conductivity is probably related to zeolite zonation observed in the volcanic rock on Pahute Mesa, which is relatively impermeable to groundwater flow unless fractured. Inferred faults within this conductive layer are modeled on several profiles crossing the Thirsty Canyon fault zone. This fault zone extends from Pahute Mesa into Oasis Valley basin. Near Colson Pond where the basement is shallow, the Thirsty Canyon fault zone is several (~2.5) kilometers wide. Due to the indicated vertical offsets associated with the Thirsty Canyon fault zone, the fault zone may act as a barrier to transverse (E-W) groundwater flow by juxtaposing rocks of different permeabilities. We propose that the Thirsty Canyon fault zone diverts water southward from Pahute Mesa to Oasis Valley. The electrically conductive nature of this fault zone indicates the presence of abundant alteration minerals or a dense network of open and interconnected fractures filled with electrically conductive groundwater. The formation of alteration minerals require the presence of water suggesting that an extensive interconnected fracture system exists or existed at one time. Thus, the fractures within the fault zone may be either a barrier or a conduit for groundwater flow, depending on the degree of alteration and the volume of open pore space. In Oasis Valley basin, a conductive surface layer, composed of alluvium and possibly altered volcanic rocks, extends to a depth of 300 to 500 m. The underlying volcanic layer, composed mostly of tuffs, fills the

  5. Strong ground motion in the Kathmandu Valley during the 2015 Gorkha, Nepal, earthquake

    NASA Astrophysics Data System (ADS)

    Takai, Nobuo; Shigefuji, Michiko; Rajaure, Sudhir; Bijukchhen, Subeg; Ichiyanagi, Masayoshi; Dhital, Megh Raj; Sasatani, Tsutomu

    2016-01-01

    On 25 April 2015, a large earthquake of Mw 7.8 occurred along the Main Himalayan Thrust fault in central Nepal. It was caused by a collision of the Indian Plate beneath the Eurasian Plate. The epicenter was near the Gorkha region, 80 km northwest of Kathmandu, and the rupture propagated toward east from the epicentral region passing through the sediment-filled Kathmandu Valley. This event resulted in over 8000 fatalities, mostly in Kathmandu and the adjacent districts. We succeeded in observing strong ground motions at our four observation sites (one rock site and three sedimentary sites) in the Kathmandu Valley during this devastating earthquake. While the observed peak ground acceleration values were smaller than the predicted ones that were derived from the use of a ground motion prediction equation, the observed peak ground velocity values were slightly larger than the predicted ones. The ground velocities observed at the rock site (KTP) showed a simple velocity pulse, resulting in monotonic-step displacements associated with the permanent tectonic offset. The vertical ground velocities observed at the sedimentary sites had the same pulse motions that were observed at the rock site. In contrast, the horizontal ground velocities as well as accelerations observed at three sedimentary sites showed long duration with conspicuous long-period oscillations, due to the valley response. The horizontal valley response was characterized by large amplification (about 10) and prolonged oscillations. However, the predominant period and envelope shape of their oscillations differed from site to site, indicating a complicated basin structure. Finally, on the basis of the velocity response spectra, we show that the horizontal long-period oscillations on the sedimentary sites had enough destructive power to damage high-rise buildings with natural periods of 3 to 5 s.

  6. The Long Valley Caldera GIS database

    USGS Publications Warehouse

    Battaglia, Maurizio; Williams, M.J.; Venezky, D.Y.; Hill, D.P.; Langbein, J.O.; Farrar, C.D.; Howle, J.F.; Sneed, M.; Segall, P.

    2003-01-01

    This database provides an overview of the studies being conducted by the Long Valley Observatory in eastern California from 1975 to 2001. The database includes geologic, monitoring, and topographic datasets related to Long Valley caldera. The CD-ROM contains a scan of the original geologic map of the Long Valley region by R. Bailey. Real-time data of the current activity of the caldera (including earthquakes, ground deformation and the release of volcanic gas), information about volcanic hazards and the USGS response plan are available online at the Long Valley observatory web page (http://lvo.wr.usgs.gov). If you have any comments or questions about this database, please contact the Scientist in Charge of the Long Valley observatory.

  7. Summary of public water-supply withdrawals and geohydrologic data for the lower Connecticut River valley from Windsor to Vernon, Vermont

    USGS Publications Warehouse

    Ayotte, Joseph

    1989-01-01

    Public water supply withdrawal data and geohydrologic data were collected along a 50 mile segment of the Connecticut River valley from Windsor to Vernon, Vermont. An inventory of wells indicates that domestic groundwater supplies come primarily from bedrock, whereas public water supplies are derived from discontinuous, glacial sand and gravel deposits. Self supplied industries generally use surface water supplies. Data from eight seismic-refraction surveys, and from a seismic-reflection survey along this 50-mile reach of the Connecticut River, were compared with stratigraphic information from 217 drillers ' logs. Stratified-drift deposits range from 0 to 270 ft and average about 65 ft. Stratigraphic information from drillers ' logs and seismic-reflection records show that predominantly fine-grained stratified drift fills the valley and that coarse sand and gravel deposits exist discontinuously within this area. (USGS)

  8. 27 CFR 9.78 - Ohio River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ohio River Valley. 9.78... River Valley. (a) Name. The name of the viticultural area described in this section is “Ohio River Valley.” (b) Approved maps. The approved maps for determining the boundary of the Ohio River Valley...

  9. Valley dependent transport in graphene L junction

    NASA Astrophysics Data System (ADS)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  10. Uranium in Holocene valley-fill sediments, and uranium, radon, and helium in waters, Lake Tahoe-Carson Range area, Nevada and California, U.S.A.

    USGS Publications Warehouse

    Otton, J.K.; Zielinski, R.A.; Been, J.M.

    1989-01-01

    Uraniferous Holocene sediments occur in the Carson Range of Nevada and California, U.S.A., between Lake Tahoe and Carson Valley. The hosts for the uranium include peat and interbedded organic-rich sand, silt, and mud that underly valley floors, fens, and marshes along stream valleys between the crest of the range and the edge of Lake Tahoe. The known uranium accumulations extend along the Carson Range from the area just southeast of South Lake Tahoe northward to the area just east of Carson City; however, they almost certainly continue beyond the study area to the north, west, and south. Due to the young age of the accumulations, uranium in them is in gross disequilibrium with its highly radioactive daughter products. These accumulations have thus escaped discovery with radiation detection equipment in the past. The uranium content of these sediments approaches 0.6 percent; however, the average is in the range of 300-500 ppm. Waters associated with these sediments locally contain as much as 177 ppb uranium. Modest levels of helium and radon also occur in these waters. Uraniferous waters are clearly entering the private and public water supply systems in some parts of the study area; however, it is not known how much uranium is reaching users of these water supplies. Many of the waters sampled in the study area exceed the published health effects guidance level of the Environmental Protection Agency. Regulatory standards for uranium in waters have not been published, however. Much uranium is stored in the sediments along these stream valleys. Estimates for a marsh and a fen along one drainage are 24,000 and 15,000 kg, respectively. The potential effects of man-induced environmental changes on the uranium are uncertain. Laboratory studies of uraniferous sediment rich in organic matter may allow us to evaluate the potential of liberating uranium from such sediments and creating transient increases in the level of uranium moving in water in the natural environment

  11. The Cenozoic evolution of the San Joaquin Valley, California

    USGS Publications Warehouse

    Bartow, J. Alan

    1991-01-01

    The San Joaquin Valley, which is the southern part of the 700-km-long Great Valley of California, is an asymmetric structural trough that is filled with a prism of upper Mesozoic and Cenozoic sediments up to 9 km thick; these sediments rest on crystalline basement rocks of the southwestward-tilted Sierran block. The San Joaquin sedimentary basin is separated from the Sacramento basin to the north by the buried Stockton arch and associated Stockton fault. The buried Bakersfield arch near the south end of the valley separates the small Maricopa-Tejon subbasin at the south end of the San Joaquin basin from the remainder of the basin. Cenozoic strata in the San Joaquin basin thicken southeastward from about 800 m in the north to over 9,000 m in the south. The San Joaquin Valley can be subdivided into five regions on the basis of differing structural style. They are the northern Sierran block, the southern Sierran block, the northern Diablo homocline, the westside fold belt, and the combined Maricopa-Tejon subbasin and southmargin deformed belt. Considerable facies variation existed within the sedimentary basin, particularly in the Neogene when a thick section of marine sediment accumulated in the southern part of the basin, while a relatively thin and entirely nonmarine section was deposited in the northern part. The northern Sierran block, the stable east limb of the valley syncline between the Stockton fault and the San Joaquin River, is the least deformed region of the valley. Deformation consists mostly of a southwest tilt and only minor late Cenozoic normal faulting. The southern Sierran block, the stable east limb of the valley syncline between the San Joaquin River and the Bakersfield arch, is similar in style to the northern part of the block, but it has a higher degree of deformation. Miocene or older normal faults trend mostly north to northwest and have a net down-to-the-west displacement with individual offsets of as much as 600 m. The northern Diablo

  12. Down in the Valley.

    ERIC Educational Resources Information Center

    Salter, Linda Graef

    1999-01-01

    Describes the partnerships formed by West Valley Mission Community College District (California) with its surrounding Silicon Valley business community in an effort to benefit workforce development. Asserts that community colleges are uniquely positioned to provide a lifelong education that will yield a skilled workforce to meet the needs of…

  13. Hazardous Waste Cleanup: West Valley Demonstration Project USDOE in West Valley, New York

    EPA Pesticide Factsheets

    The U.S. Department of Energy's West Valley Demonstration Project is located at 10282 Rock Spring Road in West Valley, New York. This is a 167 acre, Department of Energy (DOE)-operated portion of a 3,300-acre site owned by the New York State Energy

  14. Defect-enhanced void filling and novel filled phases of open-structure skutterudites

    DOE PAGES

    Xi, Lili; Qiu, Yuting; Shi, Xun; ...

    2015-05-14

    Here, we report the design of novel filled CoSb 3 skutterudite phases based on a combination of filling and Sb-substituted Ga/In defects. Ga/In doped skutterudite phases with Li-, Nd-, and Sm-fillings can be formed via this strategy, which can have relatively wider ranges of carrier concentration than other conventional filled skutterudite phases.

  15. Geologic map of the upper Arkansas River valley region, north-central Colorado

    USGS Publications Warehouse

    Kellogg, Karl S.; Shroba, Ralph R.; Ruleman, Chester A.; Bohannon, Robert G.; McIntosh, William C.; Premo, Wayne R.; Cosca, Michael A.; Moscati, Richard J.; Brandt, Theodore R.

    2017-11-17

    This 1:50,000-scale U.S. Geological Survey geologic map represents a compilation of the most recent geologic studies of the upper Arkansas River valley between Leadville and Salida, Colorado. The valley is structurally controlled by an extensional fault system that forms part of the prominent northern Rio Grande rift, an intra-continental region of crustal extension. This report also incorporates new detailed geologic mapping of previously poorly understood areas within the map area and reinterprets previously studied areas. The mapped region extends into the Proterozoic metamorphic and intrusive rocks in the Sawatch Range west of the valley and the Mosquito Range to the east. Paleozoic rocks are preserved along the crest of the Mosquito Range, but most of them have been eroded from the Sawatch Range. Numerous new isotopic ages better constrain the timing of both Proterozoic intrusive events, Late Cretaceous to early Tertiary intrusive events, and Eocene and Miocene volcanic episodes, including widespread ignimbrite eruptions. The uranium-lead ages document extensive about 1,440-million years (Ma) granitic plutonism mostly north of Buena Vista that produced batholiths that intruded an older suite of about 1,760-Ma metamorphic rocks and about 1,700-Ma plutonic rocks. As a result of extension during the Neogene and possibly latest Paleogene, the graben underlying the valley is filled with thick basin-fill deposits (Dry Union Formation and older sediments), which occupy two sub-basins separated by a bedrock high near the town of Granite. The Dry Union Formation has undergone deep erosion since the late Miocene or early Pliocene. During the Pleistocene, ongoing steam incision by the Arkansas River and its major tributaries has been interrupted by periodic aggradation. From Leadville south to Salida as many as seven mapped alluvial depositional units, which range in age from early to late Pleistocene, record periodic aggradational events along these streams that are

  16. Hydroclimatic signal and LBK cultural activity in the Upper and Lower Rhine, inferred from abandoned channel fill deposits

    NASA Astrophysics Data System (ADS)

    Berger, J. F.; Salvador, P. G.; Erkens, G.; Toonen, W. H. J.; Purdue, L.; Barra, A.; Houben, P.

    2012-04-01

    The Linear Band Ceramic (LBK) culture represents a major event in the spread of agriculture in Europe. Occupation particularly occurred in river valleys, with largest densities found along the rivers Danube, Elbe and Rhine. The interaction between the emergence of this culture and the dominant climatic and hydrological conditions is not yet fully established. As part of the ANR OBRESOC project, in which LBK activity is investigated in a transect from France (Marne river) to the catchment of the Danube river (Tisza), we studied palaeo-environmental changes in the Rhine valley between 7600-6600 cal. yrs. BP. Focus is on the Upper Rhine Graben and the Lower Rhine valley near the Rhine Delta apex, which is thought to be a peripheral region of LBK-activity. In these regions, a total of five cores from abandoned channels were analysed to reconstruct palaeo-environmental dynamics in vegetation and fluvial activity during the period of LBK development. Abandoned channel fills are excellent sites to perform detailed studies of palaeo-environmental dynamics, as they (i) form proximal locations to occupation sites of the LBK culture, (ii) act as efficient traps of sediments in which different environmental proxies are well preserved, (iii) contain well-datable material for the construction of detailed age-depth models, and (iv) provide a long proxy record, potentially over more than a millennium at a single site. On all cores, high resolution analysis of channel fill deposits (grain size and geophysical properties) and biotic proxies (micro-charcoal fluxes and pollen assemblages) were preformed to reconstruct palaeo-environmental signals, such as changes in fluvial activity, forest fires, and vegetation evolution, which may be related to agricultural activity, and climatic and hydrogeomorphic changes in the region. In this contribution we compare the results of the high-resolution core analyses (1,5 to 5m sequences for the studied timeframe) derived from the more densely

  17. Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  18. Transient Electromagnetic Soundings Near Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado (2006 Field Season)

    USGS Publications Warehouse

    Fitterman, David V.; de Sozua Filho, Oderson A.

    2009-01-01

    Time-domain electromagnetic (TEM) soundings were made near Great Sand Dunes National Park and Preserve in the San Luis Valley of southern Colorado to obtain subsurface information of use to hydrologic modeling. Seventeen soundings were made to the east and north of the sand dunes. Using a small loop TEM system, maximum exploration depths of about 75 to 150 m were obtained. In general, layered earth interpretations of the data found that resistivity decreases with depth. Comparison of soundings with geologic logs from nearby wells found that zones logged as having increased clay content usually corresponded with a significant resistivity decrease in the TEM determined model. This result supports the use of TEM soundings to map the location of the top of the clay unit deposited at the bottom of the ancient Lake Alamosa that filled the San Luis Valley from Pliocene to middle Pleistocene time.

  19. Hydraulic-property estimates for use with a transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Elliott, Peggy E.; Geldon, Arthur L.

    2001-01-01

    The Death Valley regional ground-water flow system encompasses an area of about 43,500 square kilometers in southeastern California and southern Nevada, between latitudes 35? and 38?15' north and longitudes 115? and 117?45' west. The study area is underlain by Quaternary to Tertiary basin-fill sediments and mafic-lava flows; Tertiary volcanic, volcaniclastic, and sedimentary rocks; Tertiary to Jurassic granitic rocks; Triassic to Middle Proterozoic carbonate and clastic sedimentary rocks; and Early Proterozoic igneous and metamorphic rocks. The rock assemblage in the Death Valley region is extensively faulted as a result of several episodes of tectonic activity. This study is comprised of published and unpublished estimates of transmissivity, hydraulic conductivity, storage coefficient, and anisotropy ratios for hydrogeologic units within the Death Valley region study area. Hydrogeologic units previously proposed for the Death Valley regional transient ground-water flow model were recognized for the purpose of studying the distribution of hydraulic properties. Analyses of regression and covariance were used to assess if a relation existed between hydraulic conductivity and depth for most hydrogeologic units. Those analyses showed a weak, quantitatively indeterminate, relation between hydraulic conductivity and depth.

  20. Canyon incision chronology based on ignimbrite stratigraphy and cut-and-fill sediment sequences in SW Peru documents intermittent uplift of the western Central Andes

    NASA Astrophysics Data System (ADS)

    Thouret, Jean-Claude; Gunnell, Yanni; Jicha, Brian R.; Paquette, Jean-Louis; Braucher, Régis

    2017-12-01

    Based on an 40Ar/39Ar- and U/Pb-based chronostratigraphy of ignimbrite sheets and the geomorphological features of watersheds, river profiles and slope deposits in the Ocoña-Cotahuasi-Marán (OCM) and Colca valleys of southwest Peru, we reconstruct the valley incision history of the western Central Andes over the last c. 25 Myr. We further document the Pleistocene and Holocene evolution of deep valleys on the basis of 14 10Be surface-exposure ages obtained on debris-avalanche deposits and river straths. The data suggest that uplift was gradual over the past 25 Myr, but accelerated after c. 9 Ma. Valley incision started around 11-9 Ma and accelerated between 5 and 4 Ma. Incision was followed by several pulses of valley cut-and-fill after 2.3 Ma. Evidence presented suggest that the post-5 Ma sequence of accelerated canyon incision probably resulted from a combination of drainage piracy from the Cordilleran drainage divide towards the Altiplano, accentuated flexural tilting of the Western Cordillera towards the SE, and increased rainfall on the Altiplano after late Miocene uplift of the Eastern Cordillera. The valley deepening and slope steepening driven by tectonic uplift gave rise to large occurrences of rockslope failure. The collapsed rock masses periodically obstructed the canyons, thus causing abrupt changes in local base levels and interfering with the steadiness of fluvial incision. As a result, channel aggradation has prevailed in the lower-gradient, U-shaped Pacific-rim canyons, whereas re-incision through landslide deposits has occurred more rapidly across the steeper V-shaped, upper valleys. Existing canyon knickpoints are currently arrested at the boundary between the plutonic bedrock and widespread outcrops of middle Miocene ignimbritic caprock, where groundwater sapping favouring rock collapse may be the dominant process driving headward erosion.

  1. An evaluation of Skylab (EREP) remote sensing techniques applied to investigation of crustal structure. [Death Valley and Greenwater Valley (CA)

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. A study of Greenwater Valley indicates that the valley is bounded on the north and east by faults, on the south by a basement high, and on the west by the dip slope of the black mountains, movement of ground water from the valley is thus Movement of ground water from the valley is thus restricted, indicating the valley is a potential water reservoir.

  2. Ground-water quality and geochemistry in Dayton, Stagecoach, and Churchill Valleys, western Nevada

    USGS Publications Warehouse

    Thomas, James M.; Lawrence, Stephen J.

    1994-01-01

    The U.S. Geological Survey investigated the quality of ground water in the Dayton, Stagecoach, and Churchill Valleys as part of the Carson River Basin National Water-Quality Assessment (NAWQA) pilot study. Four aquifer systems have been de- lineated in the study area. Principal aquifers are unconsolidated deposits at altitudes of less than 4,900 feet above sea level and more than 50 feet below land surface. Shallow aquifers are at altitudes of less than 4,900 feet and less than 50 feet below land surface. Upland aquifers are above 4,900 feet and provide recharge to the principal aquifers. Thermal aquifers, defined as those having a water temperature greater than 30 degrees Celsius, are also present. Ground water used in Dayton, Stagecoach, and Churchill Valleys is pumped from principal aquifers in unconsolidated basin-fill deposits. Ground water in these aquifers originates as precipitation in the adjacent mountains and is recharged by the Carson River and by underflow from adjacent upstream valleys. Ground-water flow is generally parallel to the direction of surface-water flow in the Carson River. Ground water is discharged by pumping, evapo- transpiration, and underflow into the Carson River. The results of geochemical modeling indicate that as ground water moves from upland aquifers in mountainous recharge areas to principal aquifers in basin-fill deposits, the following processes probably occur: (1) plagioclase feldspar, sodium chloride, gypsum (or pyrite), potassium feldspar, and biotite dissolve; (2) calcite precipitates; (3) kaolinite forms; (4) small amounts of calcium and magnesium in the water exchange for potassium on aquifer minerals; and (5) carbon dioxide is gained or lost. The geochemical models are consistent with (1) phases identified in basin- fill sediments; (2) chemical activity of major cations and silica; (3) saturation indices of calcite and amorphous silica; (4) phase relations for aluminosilicate minerals indicated by activity diagrams; and

  3. Intermittent surface water connectivity: Fill and spill vs. fill and merge dynamics

    USGS Publications Warehouse

    Leibowitz, Scott G.; Mushet, David M.; Newton, Wesley E.

    2016-01-01

    Intermittent surface connectivity can influence aquatic systems, since chemical and biotic movements are often associated with water flow. Although often referred to as fill and spill, wetlands also fill and merge. We examined the effects of these connection types on water levels, ion concentrations, and biotic communities of eight prairie pothole wetlands between 1979 and 2015. Fill and spill caused pulsed surface water connections that were limited to periods following spring snow melt. In contrast, two wetlands connected through fill and merge experienced a nearly continuous, 20-year surface water connection and had completely coincident water levels. Fill and spill led to minimal convergence in dissolved ions and macroinvertebrate composition, while these constituents converged under fill and merge. The primary factor determining differences in response was duration of the surface water connection between wetland pairs. Our findings suggest that investigations into the effects of intermittent surface water connections should not consider these connections generically, but need to address the specific types of connections. In particular, fill and spill promotes external water exports while fill and merge favors internal storage. The behaviors of such intermittent connections will likely be accentuated under a future with more frequent and severe climate extremes.

  4. Simulation And Forecasting of Daily Pm10 Concentrations Using Autoregressive Models In Kagithane Creek Valley, Istanbul

    NASA Astrophysics Data System (ADS)

    Ağaç, Kübra; Koçak, Kasım; Deniz, Ali

    2015-04-01

    A time series approach using autoregressive model (AR), moving average model (MA) and seasonal autoregressive integrated moving average model (SARIMA) were used in this study to simulate and forecast daily PM10 concentrations in Kagithane Creek Valley, Istanbul. Hourly PM10 concentrations have been measured in Kagithane Creek Valley between 2010 and 2014 periods. Bosphorus divides the city in two parts as European and Asian parts. The historical part of the city takes place in Golden Horn. Our study area Kagithane Creek Valley is connected with this historical part. The study area is highly polluted because of its topographical structure and industrial activities. Also population density is extremely high in this site. The dispersion conditions are highly poor in this creek valley so it is necessary to calculate PM10 levels for air quality and human health. For given period there were some missing PM10 concentration values so to make an accurate calculations and to obtain exact results gap filling method was applied by Singular Spectrum Analysis (SSA). SSA is a new and efficient method for gap filling and it is an state-of-art modeling. SSA-MTM Toolkit was used for our study. SSA is considered as a noise reduction algorithm because it decomposes an original time series to trend (if exists), oscillatory and noise components by way of a singular value decomposition. The basic SSA algorithm has stages of decomposition and reconstruction. For given period daily and monthly PM10 concentrations were calculated and episodic periods are determined. Long term and short term PM10 concentrations were analyzed according to European Union (EU) standards. For simulation and forecasting of high level PM10 concentrations, meteorological data (wind speed, pressure and temperature) were used to see the relationship between daily PM10 concentrations. Fast Fourier Transformation (FFT) was also applied to the data to see the periodicity and according to these periods models were built

  5. 27 CFR 9.154 - Chiles Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Chiles Valley. (a) Name. The name of the viticultural area described in this section is “Chiles Valley... viticultural area are four 1:24,000 Scale U.S.G.S. topography maps. They are titled: (1) St. Helena, CA 1960 photorevised 1980; (2) Rutherford, CA 1951 photorevised 1968; (3) Chiles Valley, CA 1958 photorevised 1980; (4...

  6. Ground-water storage depletion in Pahrump Valley, Nevada-California, 1962-75

    USGS Publications Warehouse

    Harrill, James R.

    1982-01-01

    probably continue to slowly decline until the pumping is reduced. The moderate rates of decline and very large amounts of ground water stored in the valley-fill reservoir suggest that a long time will be required before the valley-wide depletion of ground-water storage becomes critical. Problems involving water quality, land subsidence, and well interference will probably occur first.

  7. Upper Cenozoic sediments of the lower Delaware Valley and the northern Delmarva Peninsula, New Jersey, Pennsylvania, Delaware, and Maryland

    USGS Publications Warehouse

    Owens, James Patrick; Minard, James Pierson

    1979-01-01

    The 'yellow gravels' referred to by R. D. Salisbury in 1898 and the 'Trenton gravel,' as defined by H. C. Lewis in 1880, were investigated along the inner edge of the New Jersey Coastal Plain in southern New Jersey and in the northern Delmarva Peninsula. The highest level deposits, the Beacon Hill gravel, are found on only the highest hills in the New Jersey Coastal Plain. Their distribution suggests deposition from north to south across the plain. After deposition of the Beacon Hill, probably in middle or late Miocene time, a narrow valley was formed paralleling the inner edge of the New Jersey Coastal Plain between Raritan Bay and Camden. South of Camden, the valley broadened, covering much of southern New Jersey. The deposits in this valley are largely the Bridgeton Formation as we have redefined it. A second narrow valley was entrenched through the Bridgeton between Trenton and Salem, N.J. This valley broadens and covers much of the northern Delmarva Peninsula west of the Delaware River. The fill in the valley is largely the Pensauken Formation, as we have redefined it in our report. Collectively, the Beacon Hill, the Bridgeton, and the Pensauken were originally the 'yellow gravels' of Salisbury. These deposits are all fluviatile in origin and were largely formed as a series of step like downcutting channels. The Delaware Valley between Trenton and the lower Delaware Bay region is occupied by the 'Trenton gravel,' which is below the average level of the 'yellow gravels.' Two units recognized throughout the area and informally named the Spring Lake beds and the Van Sciver Lake beds are lithologically distinct from the 'yellow gravel' formations. The lithologies of the Spring Lake beds and the Van Sciver Lake beds are much more heterogeneous than those of the older formations. These two units, particularly, contain much greater amounts of silt and clay, often in thick beds. The depositional environments associated with the two units include fluviatile, estuarine

  8. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California

    NASA Astrophysics Data System (ADS)

    Schubert, Brian A.; Lowenstein, Tim K.; Timofeeff, Michael N.

    2009-06-01

    Primary fluid inclusions in halite crystallized in Saline Valley, California, in 1980, 2004-2005, and 2007, contain rod- and coccoid-shaped microparticles the same size and morphology as archaea and bacteria living in modern brines. Primary fluid inclusions from a well-dated (0-100,000 years), 90 m long salt core from Badwater Basin, Death Valley, California, also contain microparticles, here interpreted as halophilic and halotolerant prokaryotes. Prokaryotes are distinguished from crystals on the basis of morphology, optical properties (birefringence), and uniformity of size. Electron micrographs of microparticles from filtered modern brine (Saline Valley), dissolved modern halite crystals (Saline Valley), and dissolved ancient halite crystals (Death Valley) support in situ microscopic observations that prokaryotes are present in fluid inclusions in ancient halite. In the Death Valley salt core, prokaryotes in fluid inclusions occur almost exclusively in halite precipitated in perennial saline lakes 10,000 to 35,000 years ago. This suggests that trapping and preservation of prokaryotes in fluid inclusions is influenced by the surface environment in which the halite originally precipitated. In all cases, prokaryotes in fluid inclusions in halite from the Death Valley salt core are miniaturized (<1 μm diameter cocci, <2.5 μm long, very rare rod shapes), which supports interpretations that the prokaryotes are indigenous to the halite and starvation survival may be the normal response of some prokaryotes to entrapment in fluid inclusions for millennia. These results reinforce the view that fluid inclusions in halite and possibly other evaporites are important repositories of microbial life and should be carefully examined in the search for ancient microorganisms on Earth, Mars, and elsewhere in the Solar System.

  9. Valley Vortex States in Sonic Crystals

    NASA Astrophysics Data System (ADS)

    Lu, Jiuyang; Qiu, Chunyin; Ke, Manzhu; Liu, Zhengyou

    2016-03-01

    Valleytronics is quickly emerging as an exciting field in fundamental and applied research. In this Letter, we study the acoustic version of valley states in sonic crystals and reveal a vortex nature of such states. In addition to the selection rules established for exciting valley polarized states, a mimicked valley Hall effect of sound is proposed further. The extraordinary chirality of valley vortex states, detectable in experiments, may open a new possibility in sound manipulations. This is appealing to scalar acoustics that lacks a spin degree of freedom inherently. In addition, the valley selection enables a handy way to create vortex matter in acoustics, in which the vortex chirality can be controlled flexibly. Potential applications can be anticipated with the exotic interaction of acoustic vortices with matter, such as to trigger the rotation of the trapped microparticles without contact.

  10. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    PubMed

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  11. Optical tuning of electronic valleys (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sie, Edbert J.; Gedik, Nuh

    2017-02-01

    Monolayer transition-metal dichalcogenides such as MoS2 and WS2 are prime examples of atomically thin semiconducting crystals that exhibit remarkable electronic and optical properties. They have a pair of valleys that can serve as a new electronic degree of freedom, and these valleys obey optical selection rules with circularly polarized light. Here, we discuss how ultrafast laser pulses can be used to tune their energy levels in a controllable valley-selective manner. The energy tunability is extremely large, comparable to what would be obtained using a hundred Tesla of magnetic field. We will also show that such valley tunability can be performed while we effectively manipulate the valley selection rules. Finally, we will explore the prospect of using this technique through photoemission spectroscopy to create a new phase of matter called a valley Floquet topological insulator.

  12. Probability of Unmixed Young Groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of unmixed young groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps were developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  13. Martian oceans, valleys and climate

    USGS Publications Warehouse

    Carr, M.H.

    2000-01-01

    The new Mars Global Surveyor altimetry shows that the heavily cratered southern hemisphere of Mars is 5 km higher that the sparely cratered plains of the northern hemisphere. Previous suggestions that oceans formerly occupied that northern plains as evidenced by shorelines are partly supported by the new data. A previously identified outer boundary has a wide range of elevations and is unlikely to be a shoreline but an inner contact with a narrow range of elevations is a more likely candidate. No shorelines are visible in the newly acquired, 2.5 metre/pixel imaging. Newly imaged valleys provide strong support for sustained or episodic flow of water across the Martian surface. A major surprise, however, is the near absence of valleys less than 100 m across. Martian valleys seemingly do not divide into ever smaller valleys as terrestrial valleys commonly do. This could be due to lack of precipitation or lack of surface runoff because of high infiltration rates. High erosion rates and supports warm climates and presence of large bodies of water during heavy bombardment. The climate history and fate of the water after heavy bombardment remain cotroversial.

  14. Knickpoints and Hanging Valleys of Licus Vallis, Mars

    NASA Astrophysics Data System (ADS)

    Goudge, T. A.; Fassett, C.

    2016-12-01

    Licus Vallis is a 350 km long valley system located along the dichotomy boundary on Mars. The main trunk of the valley is incised 200-700 m into the surrounding terrain. The valley heads at an outlet breach of a shallow, 30 km diameter impact crater, and is also fed by a system of tributaries incised into the plateau surrounding Licus Vallis. Many of the tributary valleys, as well as the main stem of the valley fed by the paleolake outlet, have profiles that are not smoothly graded, but rather have distinct reaches with concave downward topography. These sections are either knickpoints or hanging valleys that develop in response to changes in the effective local base level, changes in climate conditions during incision of the valley, or lithologic boundaries in the substrate. Here we present remote sensing observations from images and topography to test these competing hypotheses and further characterize the evolution of this large valley system. Slope-watershed area relationships for the tributaries and main trunk valley are used to distinguish between knickpoints and hanging valleys. Analysis of orbital images does not reveal any distinct layer above which knickpoints develop, and the elevation of knickpoints show no systematic trends that might be expected of a regional lithologic unit(s). Our preliminary results suggest that the distance of knickpoint retreat is correlated with the position of the tributary valley and not the watershed area. Downstream valleys have retreated the most, suggesting they have had the most time to adjust to lowering of the local base level associated with incision of the main valley. These results are most consistent with a wave of incision sweeping up the valley system as it adjusts to a low base level in the northern plains. This conclusion is also consistent with observations of the incision depth of Licus Vallis, which increases approximately linearly downstream. Understanding this signature of base level control on the incision

  15. Fresh Shallow Valleys (FSVs) in Northern Arabia Terra, Mars

    NASA Astrophysics Data System (ADS)

    Wilson, S. A.; Howard, A. D.; Moore, J. M.

    2014-12-01

    Fresh Shallow Valleys (FSVs) on Mars are part of a growing inventory of post-Noachian landforms that may be related to late, widespread aqueous activity that occurred during a period once thought to be less favorable for precipitation and runoff. Constraining the source, magnitude, timing and duration of FSVs will provide insight into the mechanism and extent of fluvial activity on Mars and the geologic and climatic environments in which they formed. Unlike the older Noachian-Hesperian valleys that are characterized by integrated, dissected and degraded networks that cover large spatial extents, FSVs are typically narrow, short or discontinuous valleys with low drainage densities. They are generally incised no more than a few decameters, slightly degraded at multi-meter scales, and cluster in the mid-latitudes (35-50° in both hemispheres). A high concentration of FSVs occurs in Northern Arabia Terra (~33°N, 8°E), a Noachian-aged landscape characterized by broad, irregular depressions. Many of the FSVs in this region are 150+ km long and some appear to cross depressions that were likely filled with ice or water at the time of formation. Examples of broad, flat floored FSVs with incised channels could either indicate a complex history of a single flow event or multiple flow events. The occurrence of "pollywogs," fairly fresh, small (typically 2-10 km in diameter) craters with a single channel extending from the rim outward, implies overflow of the crater, the presence of a deep lake and the involvement of artesian groundwater flow. Roughly 25% of the FSVs in our northern Arabia Terra study region occur on relatively fresh crater ejecta, which may be related to formation age, topography, surface materials and (or) substrate. Ejecta with dense concentrations of FSVs average 25.5 km in diameter, have more degraded crater interiors, and well developed petal-like ejecta. Ejecta with sparse or no FSVs have radial ejecta with less distinct petals and are associated with

  16. Water resources of the Rio Grande de Anasco lower valley, Puerto Rico

    USGS Publications Warehouse

    Diaz, Jose Raul; Jordan, Donald G.

    1987-01-01

    A large amount of water suitable for most uses is available in the lower Rio Grande de Anasco Valley, the major source of which is the Rio Grande de Anasco which contributes about 95% of the surface water inflow to the lower valley. River flow at El Espino exceeds 100 cu ft/sec about 85% of the time and 200 cu ft/sec 50% of the time. Average daily flow for the driest months of the year (February, March, and April), is almost always <100 cu ft/sec. In contrast, the average daily flow for the wettest, months of the year (September, October, and November), is > 120 cu ft/sec. During the study period, flows of the Rio Canas averaged about 5 cu ft/sec. The lower valley is underlain by igneous rocks that have been eroded to depths of 350 ft or more below sea level. The valley is filled with 250 ft or more of limestone and clay, that in turn is overlain by as much as 100 ft of alluvium. The amount of groundwater available is unknown. There are large volumes of water in the saturated mostly fine-grained alluvium of Zone II, but as a whole the alluvium does not yield water readily to wells. Sand and gravel deposits associated with former river channels yield an estimated 100 to 150 gal/min to wells. The principal source of groundwater is the limestone of Zone III, that reportedly yields as much as 500 gal/min to wells. The quality of surface water especially that of Rio Grande de Anasco was very good. Specific conductance seldom exceeds 250 microsiemens/cm, even at low flows. Both salinity and sodium are low, falling in the Cl-S1 irrigation water classification. Water quality in the lower 5,000 ft or so of the river was affected by saltwater encroachment from the sea. The water quality of the other streams and canals in the lower valley was variable depending on susceptibility of saltwater encroachment, contamination from man-made sources, and concentration of minerals by evapotranspiration. Specific conductance however seldom exceeded 500 microsiemens/cm and the water

  17. Seismic imaging of the metamorphism of young sediment into new crystalline crust in the actively rifting Imperial Valley, California

    USGS Publications Warehouse

    Han, Liang; Hole, John; Stock, Joann; Fuis, Gary S.; Williams, Colin F.; Delph, Jonathan; Davenport, Kathy; Livers, Amanda

    2016-01-01

    Plate-boundary rifting between transform faults is opening the Imperial Valley of southern California and the rift is rapidly filling with sediment from the Colorado River. Three 65–90 km long seismic refraction profiles across and along the valley, acquired as part of the 2011 Salton Seismic Imaging Project, were analyzed to constrain upper crustal structure and the transition from sediment to underlying crystalline rock. Both first arrival travel-time tomography and frequency-domain full-waveform inversion were applied to provide P-wave velocity models down to ∼7 km depth. The valley margins are fault-bounded, beyond which thinner sediment has been deposited on preexisting crystalline rocks. Within the central basin, seismic velocity increases continuously from ∼1.8 km/s sediment at the surface to >6 km/s crystalline rock with no sharp discontinuity. Borehole data show young sediment is progressively metamorphosed into crystalline rock. The seismic velocity gradient with depth decreases approximately at the 4 km/s contour, which coincides with changes in the porosity and density gradient in borehole core samples. This change occurs at ∼3 km depth in most of the valley, but at only ∼1.5 km depth in the Salton Sea geothermal field. We interpret progressive metamorphism caused by high heat flow to be creating new crystalline crust throughout the valley at a rate comparable to the ≥2 km/Myr sedimentation rate. The newly formed crystalline crust extends to at least 7–8 km depth, and it is shallower and faster where heat flow is higher. Most of the active seismicity occurs within this new crust.

  18. Seismic imaging of the metamorphism of young sediment into new crystalline crust in the actively rifting Imperial Valley, California

    NASA Astrophysics Data System (ADS)

    Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Williams, Colin F.; Delph, Jonathan R.; Davenport, Kathy K.; Livers, Amanda J.

    2016-11-01

    Plate-boundary rifting between transform faults is opening the Imperial Valley of southern California and the rift is rapidly filling with sediment from the Colorado River. Three 65-90 km long seismic refraction profiles across and along the valley, acquired as part of the 2011 Salton Seismic Imaging Project, were analyzed to constrain upper crustal structure and the transition from sediment to underlying crystalline rock. Both first arrival travel-time tomography and frequency-domain full-waveform inversion were applied to provide P-wave velocity models down to ˜7 km depth. The valley margins are fault-bounded, beyond which thinner sediment has been deposited on preexisting crystalline rocks. Within the central basin, seismic velocity increases continuously from ˜1.8 km/s sediment at the surface to >6 km/s crystalline rock with no sharp discontinuity. Borehole data show young sediment is progressively metamorphosed into crystalline rock. The seismic velocity gradient with depth decreases approximately at the 4 km/s contour, which coincides with changes in the porosity and density gradient in borehole core samples. This change occurs at ˜3 km depth in most of the valley, but at only ˜1.5 km depth in the Salton Sea geothermal field. We interpret progressive metamorphism caused by high heat flow to be creating new crystalline crust throughout the valley at a rate comparable to the ≥2 km/Myr sedimentation rate. The newly formed crystalline crust extends to at least 7-8 km depth, and it is shallower and faster where heat flow is higher. Most of the active seismicity occurs within this new crust.

  19. Effects of partial La filling and Sb vacancy defects on CoS b 3 skutterudites

    DOE PAGES

    Hu, Chongze; Zeng, Xiaoyu; Liu, Yufei; ...

    2017-04-25

    Over the past decade, the open frame ("cagey") structure of CoSb 3 skutterudite has invited intensive filling studies with various rare-earth elements for delivering state-of-the-art mid-temperature thermoelectric performance. In order to rationalize previously reported experimental results and provide new insight into the underexplored roles of La fillers and Sb vacancies, ab initio density functional theory studies, along with semi-classical Boltzmann transport theory calculations, are performed for pristine CoSb 3 of different lattice settings and La-filled CoSb 3 with and without Sb s mono- and di-vacancy defects. We examine the effects of van der Waals (vdW) interactions, spin-orbit coupling (SOC), spinmore » polarization, partial La-filling, and Sb vacancy defects on the structural, electronic, and thermoelectric properties. The vdW interactions profoundly affect the lattice constant, which in turn affects the band gap. The SOC shows minor effects on the electronic and thermoelectric properties. The peculiar quasi-Dirac band in the pristine CoSb 3 largely survives La filling but not Sb vacancies, which instead introduce dispersive bands in the band gap region. Importantly, the band structure, density of states, and Fermi surface of La-filled CoSb 3 are significantly spin polarized, giving rise to spin-dependent thermoelectric properties. Seebeck coefficients directly calculated as a function of chemical potential are interpreted in connection with the electronic structures. Temperature-dependent Seebeck coefficients derived for the experimentally studied materials agree well with available experimental data. Seebeck coefficients obtained as a function of charge carrier concentration corroborate a thermoelectrically favorable role at high filling fractions played by the electron/hole pockets on the Fermi surface associated with the degenerate valleys/hills in the conduction/valence bands, respectively. Our results serve to advance the understanding of CoSb 3

  20. Effects of partial La filling and Sb vacancy defects on CoS b 3 skutterudites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Chongze; Zeng, Xiaoyu; Liu, Yufei

    Over the past decade, the open frame ("cagey") structure of CoSb 3 skutterudite has invited intensive filling studies with various rare-earth elements for delivering state-of-the-art mid-temperature thermoelectric performance. In order to rationalize previously reported experimental results and provide new insight into the underexplored roles of La fillers and Sb vacancies, ab initio density functional theory studies, along with semi-classical Boltzmann transport theory calculations, are performed for pristine CoSb 3 of different lattice settings and La-filled CoSb 3 with and without Sb s mono- and di-vacancy defects. We examine the effects of van der Waals (vdW) interactions, spin-orbit coupling (SOC), spinmore » polarization, partial La-filling, and Sb vacancy defects on the structural, electronic, and thermoelectric properties. The vdW interactions profoundly affect the lattice constant, which in turn affects the band gap. The SOC shows minor effects on the electronic and thermoelectric properties. The peculiar quasi-Dirac band in the pristine CoSb 3 largely survives La filling but not Sb vacancies, which instead introduce dispersive bands in the band gap region. Importantly, the band structure, density of states, and Fermi surface of La-filled CoSb 3 are significantly spin polarized, giving rise to spin-dependent thermoelectric properties. Seebeck coefficients directly calculated as a function of chemical potential are interpreted in connection with the electronic structures. Temperature-dependent Seebeck coefficients derived for the experimentally studied materials agree well with available experimental data. Seebeck coefficients obtained as a function of charge carrier concentration corroborate a thermoelectrically favorable role at high filling fractions played by the electron/hole pockets on the Fermi surface associated with the degenerate valleys/hills in the conduction/valence bands, respectively. Our results serve to advance the understanding of CoSb 3

  1. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 4. Quantity and quality of ground-water and tributary contributions to stream base flow in selected main-valley reaches

    USGS Publications Warehouse

    Heisig, Paul M.

    2004-01-01

    Estimates of the quantity and quality of ground-water discharge from valley-fill deposits were calculated for nine valley reaches within the Pepacton watershed in southeastern New York in July and August of 2001. Streamflow and water quality at the upstream and downstream end of each reach and at intervening tributaries were measured under base-flow conditions and used in mass-balance equations to determine quantity and quality of ground-water discharge. These measurements and estimates define the relative magnitudes of upland (tributary inflow) and valley-fill (ground-water discharge) contributions to the main-valley streams and provide a basis for understanding the effects of hydrogeologic setting on these contributions. Estimates of the water-quality of ground-water discharge also provide an indication of the effects of road salt, manure, and human wastewater from villages on the water quality of streams that feed the Pepacton Reservoir. The most common contaminant in ground-water discharge was chloride from road salt; concentrations were less than 15 mg/L.Investigation of ground-water quality within a large watershed by measurement of stream base-flow quantity and quality followed by mass-balance calculations has benefits and drawbacks in comparison to direct ground-water sampling from wells. First, sampling streams is far less expensive than siting, installing, and sampling a watershed-wide network of wells. Second, base-flow samples represent composite samples of ground-water discharge from the most active part of the ground-water flow system across a drainage area, whereas a well network would only be representative of discrete points within local ground-water flow systems. Drawbacks to this method include limited reach selection because of unfavorable or unrepresentative hydrologic conditions, potential errors associated with a large number of streamflow and water-quality measurements, and limited ability to estimate concentrations of nonconservative

  2. Magnetic control of valley pseudospin in monolayer WSe 2

    DOE PAGES

    Aivazian, G.; Gong, Zhirui; Jones, Aaron M.; ...

    2015-01-26

    Local energy extrema of the bands in momentum space, or valleys, can endow electrons in solids with pseudo-spin in addition to real spin 1-5. In transition metal dichalcogenides this valley pseudo-spin, like real spin, is associated with a magnetic moment1,6 which underlies the valley-dependent circular dichroism 6 that allows optical generation of valley polarization 7-9, intervalley quantum coherence 10, and the valley Hall effect 11. However, magnetic manipulation of valley pseudospin via this magnetic moment 12-13, analogous to what is possible with real spin, has not been shown before. Here we report observation of the valley Zeeman splitting and magneticmore » tuning of polarization and coherence of the excitonic valley pseudospin, by performing polarization-resolved magneto-photoluminescence on monolayer WSe 2. Our measurements reveal both the atomic orbital and lattice contributions to the valley orbital magnetic moment; demonstrate the deviation of the band edges in the valleys from an exact massive Dirac fermion model; and reveal a striking difference between the magnetic responses of neutral and charged valley excitons which is explained by renormalization of the excitonic spectrum due to strong exchange interactions.« less

  3. Spin and valley filter across line defect in silicene

    NASA Astrophysics Data System (ADS)

    Wang, Sake; Ren, Chongdan; Li, Yunfang; Tian, Hongyu; Lu, Weitao; Sun, Minglei

    2018-05-01

    We propose a new scheme to achieve an effective spin/valley filter in silicene with extended line defect on the basis of spin–valley coupling due to the intrinsic spin-orbit coupling (SOC). The transmission coefficient of the spin/valley states is seriously affected by the SOC. When a perpendicular magnetic field is applied on one side of the line defect, one valley state will experience backscattering, but the other valley will not; this leads to high valley polarization in all transmission directions. Moreover, the spin/valley polarization can be enhanced to 96% with the aid of a perpendicular electric field.

  4. About Dental Amalgam Fillings

    MedlinePlus

    ... and Medical Procedures Dental Devices Dental Amalgam About Dental Amalgam Fillings Share Tweet Linkedin Pin it More ... should I have my fillings removed? What is dental amalgam? Dental amalgam is a dental filling material ...

  5. 27 CFR 9.36 - McDowell Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....” (b) Approved maps. The appropriate map for determining the boundaries of the McDowell Valley... and the ridge line (highest elevation line) between the McDowell Creek Valley and the Dooley Creek Valley. (3) Then southeasterly along the ridge line (highest elevation line) to the intersection of the...

  6. 27 CFR 9.36 - McDowell Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....” (b) Approved maps. The appropriate map for determining the boundaries of the McDowell Valley... and the ridge line (highest elevation line) between the McDowell Creek Valley and the Dooley Creek Valley. (3) Then southeasterly along the ridge line (highest elevation line) to the intersection of the...

  7. Middle Jurassic incised valley fill (eolian/estuarine) and nearshore marine petroleum reservoirs, Powder River Basin

    USGS Publications Warehouse

    Ahlbrandt, T.S.; Fox, J.E.

    1997-01-01

    Paleovalleys incised into the Triassic Spearfish Formation (Chugwater equivalent) are filled with a vertical sequence of eolian, estuarine, and marine sandstones of the Middle Jurassic (Bathonian age) Canyon Springs Sandstone Member of the Sundance Formation. An outcrop exemplifying this is located at Red Canyon in the southern Black Hills, Fall River County, South Dakota. These paleovalleys locally have more than 300 ft of relief and are as much as several miles wide. Because they slope in a westerly direction, and Jurassic seas transgressed into the area from the west there was greater marine-influence and more stratigraphic complexity in the subsurface, to the west, as compared to the Black Hills outcrops. In the subsurface two distinctive reservoir sandstone beds within the Canyon Springs Sandstone Member fill the paleovalleys. These are the eolian lower Canyon Springs unit (LCS) and the estuarine upper Canyon Springs unit (UCS), separated by the marine "Limestone Marker" and estuarine "Brown Shale". The LCS and UCS contain significant proven hydrocarbon reservoirs in Wyoming (about 500 MMBO in-place in 9 fields, 188 MMBO produced through 1993) and are prospective in western South Dakota, western Nebraska and northern Colorado. Also prospective is the Callovian-age Hulett Sandstone Member which consists of multiple prograding shoreface to foreshore parasequences, as interpreted from the Red Canyon locality. Petrographic, outcrop and subsurface studies demonstrate the viability of both the Canyon Springs Sandstone and Hulett Sandstone members as superior hydrocarbon reservoirs in both stratigraphic and structural traps. Examples of fields with hydrocarbon production from the Canyon Springs in paleovalleys include Lance Creek field (56 MMBO produced) and the more recently discovered Red Bird field (300 MBO produced), both in Niobrara County, Wyoming. At Red Bird field the primary exploration target was the Pennsylvanian "Leo sands" of the Minnelusa Formation, and

  8. Dirichlet boundary conditions for arbitrary-shaped boundaries in stellarator-like magnetic fields for the Flux-Coordinate Independent method

    NASA Astrophysics Data System (ADS)

    Hill, Peter; Shanahan, Brendan; Dudson, Ben

    2017-04-01

    We present a technique for handling Dirichlet boundary conditions with the Flux Coordinate Independent (FCI) parallel derivative operator with arbitrary-shaped material geometry in general 3D magnetic fields. The FCI method constructs a finite difference scheme for ∇∥ by following field lines between poloidal planes and interpolating within planes. Doing so removes the need for field-aligned coordinate systems that suffer from singularities in the metric tensor at null points in the magnetic field (or equivalently, when q → ∞). One cost of this method is that as the field lines are not on the mesh, they may leave the domain at any point between neighbouring planes, complicating the application of boundary conditions. The Leg Value Fill (LVF) boundary condition scheme presented here involves an extrapolation/interpolation of the boundary value onto the field line end point. The usual finite difference scheme can then be used unmodified. We implement the LVF scheme in BOUT++ and use the Method of Manufactured Solutions to verify the implementation in a rectangular domain, and show that it does not modify the error scaling of the finite difference scheme. The use of LVF for arbitrary wall geometry is outlined. We also demonstrate the feasibility of using the FCI approach in no n-axisymmetric configurations for a simple diffusion model in a "straight stellarator" magnetic field. A Gaussian blob diffuses along the field lines, tracing out flux surfaces. Dirichlet boundary conditions impose a last closed flux surface (LCFS) that confines the density. Including a poloidal limiter moves the LCFS to a smaller radius. The expected scaling of the numerical perpendicular diffusion, which is a consequence of the FCI method, in stellarator-like geometry is recovered. A novel technique for increasing the parallel resolution during post-processing, in order to reduce artefacts in visualisations, is described.

  9. Valley Near Nilus Chaos

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-504, 5 October 2003

    This August 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a valley near Nilus Chaos, around 25.2oN, 80.3oW. The scene has a uniform albedo, indicating that all of the landforms are probably mantled by fine, bright dust. Dark streaks on the valley walls indicate places where recent dust avalanches have occurred. The ripple-like dune features on the valley floor were formed by wind, but today they are inactive and covered with dust. A few craters, created by impacting debris, have formed on the dunes, again attesting to their inactivity in the modern martian environment. The image covers an area 3 km (1.9 mi) wide; it is illuminated by sunlight from the lower left.

  10. 27 CFR 9.194 - San Antonio Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... significance. (b) Approved Maps. The appropriate maps for determining the boundary of the San Antonio Valley...) Hames Valley, California, 1949, photorevised 1978; (2) Tierra Redonda Mountain, California, 1949... southeast corner of section 14, T23S, R9E, on the Hames Valley map; (2) From the beginning point, proceed...

  11. Morning Transition Tracer Experiments in a Deep Narrow Valley.

    NASA Astrophysics Data System (ADS)

    Whiteman, C. David

    1989-07-01

    Three sulfur hexafluoride atmospheric tracer experiments were conducted during the post-sunrise temperature inversion breakup period in the deep, narrow Brush Creek Valley of Colorado. Experiments were conducted under clear, undisturbed weather conditions.A continuous elevated tracer plume was produced along the axis of the valley before sunrise and the behavior of the plume during the inversion breakup period was detected down-valley from the release point using an array of radio-controlled sequential bag samplers, a vertical SF6 profiling system carried on a tethered balloon, two portable gas chromatographs operated on a sidewall of the valley, and a continuous real-time SF6 monitor operated from a research aircraft. Supporting meteorological data came primarily from tethered balloon profilers. The nocturnal elevated plume was carried and diffused in down-valley flows. After sunrise, convective boundary layers grew upward from the sunlit valley surfaces, fumigating the elevated plume onto the valley floor and sidewalls. Upslope flow developed in the growing convective boundary layers, carrying fumigated SF6 up the sidewalls and causing a compensating subsidence over the valley center. High post-sunrise SF6 concentrations were experienced on the northeast-facing sidewall of the northwest-southeast oriented valley as a result of cross-valley flow, which developed due to differential solar heating of the sidewalls. Reversal of the down-valley wind system brought air with lower SF6 concentrations into the lower valley.

  12. Shockley-Read-Hall recombination in pre-filled and photo-filled intermediate band solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayani, Maryam Gholami; Reenaas, Turid Worren, E-mail: turid.reenaas@ntnu.no

    2014-08-18

    In this work, we study how Shockley-Read-Hall (SRH) recombination via energy levels in the bandgap, caused by defects or impurities, affects the performance of both photo-filled and pre-filled intermediate band solar cells (IBSCs). For a pre-filled cell, the IB is half-filled in equilibrium, while it is empty for the photo-filled cell in equilibrium. The energy level, density, and capture cross-sections of the defects/impurities are varied systematically. We find that the photo-filled cells are, in general, less efficient than pre-filled cells, except when the defect level is between the conduction band and the IB. In that case, for a range ofmore » light intensities, the photo-filled cell performs better than the pre-filled. When the defect level is at the same energy as the IB, the efficiency is above 82% of the defect-free case, when less than 50% of the states at the IB lead to SRH recombination. This shows that even if SRH recombination via the IB takes place, high efficiencies can be achieved. We also show that band gap optimization can be used to reduce the SRH recombination.« less

  13. The Central Valley Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Faunt, C.; Belitz, K.; Hanson, R. T.

    2009-12-01

    Historically, California’s Central Valley has been one of the most productive agricultural regions in the world. The Central Valley also is rapidly becoming an important area for California’s expanding urban population. In response to this competition for water, a number of water-related issues have gained prominence: conjunctive use, artificial recharge, hydrologic implications of land-use change, subsidence, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS made a detailed assessment of the Central Valley aquifer system that includes the present status of water resources and how these resources have changed over time. The principal product of this assessment is a tool, referred to as the Central Valley Hydrologic Model (CVHM), that simulates surface-water flows, groundwater flows, and land subsidence in response to stresses from human uses and from climate variability throughout the entire Central Valley. The CVHM utilizes MODFLOW combined with a new tool called “Farm Process” to simulate groundwater and surface-water flow, irrigated agriculture, land subsidence, and other key processes in the Central Valley on a monthly basis. This model was discretized horizontally into 20,000 1-mi2 cells and vertically into 10 layers ranging in thickness from 50 feet at the land surface to 750 feet at depth. A texture model constructed by using data from more than 8,500 drillers’ logs was used to estimate hydraulic properties. Unmetered pumpage and surface-water deliveries for 21 water-balance regions were simulated with the Farm Process. Model results indicate that human activities, predominately surface-water deliveries and groundwater pumping for irrigated agriculture, have dramatically influenced the hydrology of the Central Valley. These human activities have increased flow though the aquifer system by about a factor of six compared to pre-development conditions. The simulated hydrology reflects spatial

  14. Simulation of an urban ground-water-flow system in the Menomonee Valley, Milwaukee, Wisconsin using analytic element modeling

    USGS Publications Warehouse

    Dunning, C.P.; Feinstein, D.T.

    2004-01-01

    A single-layer, steady-state analytic element model was constructed to simulate shallow ground-water flow in the Menomonee Valley, an old industrial center southwest of downtown Milwaukee, Wisconsin. Project objectives were to develop an understanding of the shallow ground-water flow system and identify primary receptors of recharge to the valley. The analytic element model simulates flow in a 18.3 m (60 ft) thick layer of estuarine and alluvial sediments and man-made fill that comprises the shallow aquifer across the valley. The thin, laterally extensive nature of the shallow aquifer suggests horizontal-flow predominates, thus the system can appropriately be modeled with the Dupuit-Forchheimer approximation in an analytic element model. The model was calibrated to the measured baseflow increase between two USGS gages on the Menomonee River, 90 head measurements taken in and around the valley during December 1999, and vertical gradients measured at five locations under the river and estuary in the valley. Recent construction of the Milwaukee Metropolitan Sewer District Inline Storage System (ISS) in the Silurian dolomite under the Menomonee Valley has locally lowered heads in the dolomite appreciably, below levels caused by historic pumping. The ISS is a regional hydraulic sink which removes water from the bedrock even during dry weather. The potential effect on flow directions in the shallow aquifer of dry-weather infiltration to the ISS was evaluated by adjusting the resistance of the line-sink strings representing the ISS in the model to allow infiltration from 0 to 100% of the reported 9,500 m3/d. The best fit to calibration targets was found between 60% (5,700 m3/d) and 80% (7,600 m3/d) of the reported dry-weather infiltration. At 60% infiltration, 65% of the recharge falling on the valley terminates at the ISS and 35% at the Menomonee River and estuary. At 80% infiltration, 73% of the recharge terminates at the ISS, and 27% at the river and estuary. Model

  15. NV PFA - Steptoe Valley

    DOE Data Explorer

    Jim Faulds

    2015-10-29

    All datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.

  16. 27 CFR 9.27 - Lime Kiln Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lime Kiln Valley. 9.27... OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.27 Lime Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln Valley...

  17. Valley Pearl’ table grape

    USDA-ARS?s Scientific Manuscript database

    Valley Pearl’ is an early to mid-season, white seedless table grape (Vitis vinifera L.) suitable for commercial table grape production where V. vinifera can be grown. Significant characteristics of ‘Valley Pearl’ are its high and consistent fruit production on spur pruned vines and large round berr...

  18. Extraction of Martian valley networks from digital topography

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Collier, M. L.

    2004-01-01

    We have developed a novel method for delineating valley networks on Mars. The valleys are inferred from digital topography by an autonomous computer algorithm as drainage networks, instead of being manually mapped from images. Individual drainage basins are precisely defined and reconstructed to restore flow continuity disrupted by craters. Drainage networks are extracted from their underlying basins using the contributing area threshold method. We demonstrate that such drainage networks coincide with mapped valley networks verifying that valley networks are indeed drainage systems. Our procedure is capable of delineating and analyzing valley networks with unparalleled speed and consistency. We have applied this method to 28 Noachian locations on Mars exhibiting prominent valley networks. All extracted networks have a planar morphology similar to that of terrestrial river networks. They are characterized by a drainage density of approx.0.1/km, low in comparison to the drainage density of terrestrial river networks. Slopes of "streams" in Martian valley networks decrease downstream at a slower rate than slopes of streams in terrestrial river networks. This analysis, based on a sizable data set of valley networks, reveals that although valley networks have some features pointing to their origin by precipitation-fed runoff erosion, their quantitative characteristics suggest that precipitation intensity and/or longevity of past pluvial climate were inadequate to develop mature drainage basins on Mars.

  19. Dynamics of Katabatic Winds in Colorado' Brush Creek Valley.

    NASA Astrophysics Data System (ADS)

    Vergeiner, I.; Dreiseitl, E.; Whiteman, C. David

    1987-01-01

    A method is proposed to evaluate the coupled mass, momentum and thermal energy budget equations for a deep valley under two-dimensional, steady-state flow conditions. The method requires the temperature, down- valley wind and valley width fields to be approximated by simple analytical functions. The vertical velocity field is calculated using the mass continuity equation. Advection terms in the momentum and energy equations are then calculated using finite differences computed on a vertical two-dimensional grid that runs down the valley's axis. The pressure gradient term in the momentum equation is calculated from the temperature field by means of the hydrostatic equation. The friction term is then calculated as a residual in the xmomentum equation, and the diabatic cooling term is calculated as a residual in the thermal energy budget equation.The method is applied to data from an 8-km-long segment of Colorado's; Brush Creek Valley on the night of 30-31 July 1982. Pressure decreased with distance down the peak on horizontal surfaces, with peak horizontal pressure gradients of 0.04 hPa km1. The valley mass budget indicated that subsidence was required in the valley to support calculated mean along-valley mass flux divergence. Peak subsidence rates on the order of 0.10 m s1 were calculated. Subsiding motions in the valley produced negative vertical down-valley momentum fluxes in the upper valley atmosphere, but produced positive down-valley momentum fluxes below the level of the jet. Friction, calculated as a residual in the x momentum equation, was negative, as expected on physical grounds. and attained reasonable quantitative values.The strong subsidence field in the stable valley atmosphere produced subsidence warming that was only partly counteracted by down-valley cold air advection. Strong diabatic cooling was therefore required in order to account for the weak net cooling of the valley atmosphere during the nighttime period when tethered balloon observations

  20. Hemifield memory for attractiveness.

    PubMed

    Deblieck, C; Zaidel, D W

    2003-07-01

    In order to determine whether or not facial attractiveness plays a role in hemispheric facial memory, 35 right-handed participants first assigned attractiveness ratings to faces and then performed a recognition test on those faces in the left visual half-field (LVF) and right visual half-field (RVF). We found significant interactions between the experimental factors and visual half-field. There were significant differences in the extreme ends of the rating scale, that is, the very unattractive versus the very attractive faces: Female participants remembered very attractive faces of both women and men, with memory being superior in the RVF than in the LVF. In contrast, the male participants remembered very unattractive faces of both women and men; RVF memory was better than the LVF for women faces while for men faces memory was superior in the LVF. The interactions with visual half-field suggest that hemispheric biases in remembering faces are influenced by degree of attractiveness.

  1. Soils, surficial geology, and geomorphology of the Bear Creek Valley Low-Level Waste Disposal Development and Demonstration Program site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lietzke, D.A.; Lee, S.Y.; Lambert, R.E.

    1988-04-01

    An intensive soil survey was conducted on the proposed Low-Level Waste Disposal Development and Demonstration Program site (LLWDDD) in Bear Creek Valley. Soils on the site were related to the underlying residuum and to the surficial colluvium and alluvium. Within any particular geologic formation, soils were subdivided based mostly on the degree of weathering, as reflected by saprolite weathering and morphologic features of the soils. Degree of weathering was related both to slope shape and gradient and to the joint-fracture system. Erosion classes were also used to make further subdivisions of any particular soil. Deep pits were dug in eachmore » of the major Conasauga Group formations (Pumpkin Valley, Rogersville, Maryville, and Nolichucky) for soil and saprolite characterization. Because of the widespread presence of alluvium and colluvium, which are potential sources of fill and final cover material, pits and trenches were dug to characterize the properties of these soils and to try to understand the past geomorphic history of the site. The results of the soil survey investigation indicated that the deeply weathered Pumpkin Valley residuum has good potential for the construction of tumuli or other types of belowground or aboveground burial of prepackaged compacted waste. 11 refs., 30 figs., 3 tabs.« less

  2. Linear variable narrow bandpass optical filters in the far infrared (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rahmlow, Thomas D.

    2017-06-01

    We are currently developing linear variable filters (LVF) with very high wavelength gradients. In the visible, these filters have a wavelength gradient of 50 to 100 nm/mm. In the infrared, the wavelength gradient covers the range of 500 to 900 microns/mm. Filter designs include band pass, long pass and ulta-high performance anti-reflection coatings. The active area of the filters is on the order of 5 to 30 mm along the wavelength gradient and up to 30 mm in the orthogonal, constant wavelength direction. Variation in performance along the constant direction is less than 1%. Repeatable performance from filter to filter, absolute placement of the filter relative to a substrate fiducial and, high in-band transmission across the full spectral band is demonstrated. Applications include order sorting filters, direct replacement of the spectrometer and hyper-spectral imaging. Off-band rejection with an optical density of greater than 3 allows use of the filter as an order sorting filter. The linear variable order sorting filters replaces other filter types such as block filters. The disadvantage of block filters is the loss of pixels due to the transition between filter blocks. The LVF is a continuous gradient without a discrete transition between filter wavelength regions. If the LVF is designed as a narrow band pass filter, it can be used in place of a spectrometer thus reducing overall sensor weight and cost while improving the robustness of the sensor. By controlling the orthogonal performance (smile) the LVF can be sized to the dimensions of the detector. When imaging on to a 2 dimensional array and operating the sensor in a push broom configuration, the LVF spectrometer performs as a hyper-spectral imager. This paper presents performance of LVF fabricated in the far infrared on substrates sized to available detectors. The impact of spot size, F-number and filter characterization are presented. Results are also compared to extended visible LVF filters.

  3. Victor Valley College Agreement between the Victor Valley Community College District and the Victor Valley College California Teachers Association Chapter 1170. July 1989 - June 1992.

    ERIC Educational Resources Information Center

    Victor Valley Community Coll. District, Victorville, CA.

    The collective bargaining agreement between the Victor Valley College Board of Trustees and the Victor Valley College California Teachers Association/National Education Association is presented. This contract, covering the period from July 1989 through June 1992, deals with the following topics: bargaining agent recognition; district and…

  4. Valley spin polarization of Tl/Si(111)

    NASA Astrophysics Data System (ADS)

    Stolwijk, Sebastian D.; Schmidt, Anke B.; Sakamoto, Kazuyuki; Krüger, Peter; Donath, Markus

    2017-11-01

    The metal/semiconductor hybrid system Tl/Si(111)-(1 ×1 ) exhibits a unique Tl-derived surface state with remarkable properties. It lies within the silicon band gap and forms spin-momentum-locked valleys close to the Fermi energy at the K ¯ and K¯' points. These valleys are completely spin polarized with opposite spin orientation at K ¯ and K¯' and show a giant spin splitting of more than 0.5 eV. We present a detailed preparation study of the surface system and demonstrate that the electronic valleys are extremely robust, surviving exposure to 100 L hydrogen and 500 L oxygen. We investigate the influence of additional Tl atoms on the spin-polarized valleys. By combining photoemission and inverse photoemission, we prove the existence of fully spin-polarized valleys crossing the Fermi level. Moreover, these metallic valleys carry opposite Berry curvature at K ¯ and K¯', very similar to WSe2, promising a large spin Hall effect. Thus, Tl/Si(111)-(1 ×1 ) possesses all necessary key properties for spintronic applications.

  5. Electrical valley filtering in transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Hsieh, Tzu-Chi; Chou, Mei-Yin; Wu, Yu-Shu

    2018-03-01

    This work investigates the feasibility of electrical valley filtering for holes in transition metal dichalcogenides. We look specifically into the scheme that utilizes a potential barrier to produce valley-dependent tunneling rates, and perform the study with both a k .p -based analytic method and a recursive Green's function-based numerical method. The study yields the transmission coefficient as a function of incident energy and transverse wave vector, for holes going through lateral quantum barriers oriented in either armchair or zigzag directions, in both homogeneous and heterogeneous systems. The main findings are the following: (1) The tunneling current valley polarization increases with increasing barrier width or height; (2) both the valley-orbit interaction and band structure warping contribute to valley-dependent tunneling, with the former contribution being manifest in structures with asymmetric potential barriers, and the latter being orientation dependent and reaching maximum for transmission in the armchair direction; and (3) for transmission ˜0.1 , a tunneling current valley polarization of the order of 10 % can be achieved.

  6. Observation of valley-dependent beams in photonic graphene.

    PubMed

    Deng, Fusheng; Sun, Yong; Wang, Xiao; Xue, Rui; Li, Yuan; Jiang, Haitao; Shi, Yunlong; Chang, Kai; Chen, Hong

    2014-09-22

    Valley-dependent propagation of light in an artificial photonic hexagonal lattice, akin to electrons in graphene, is investigated in microwave regime. Both numerical and experimental results show that the valley degeneracy in the photonic graphene is broken when the frequency is away from the Dirac point. The peculiar anisotropic wave transport property due to distinct valleys is analyzed using the equifrequency contours. More interestingly, the valley-dependent self-collimation and beam splitting phenomena are experimentally demonstrated with the armchair and zigzag interfaces, respectively. Our results confirm that there are two inequivalent Dirac points that lead to two distinct valleys in photonic graphene, which could be used to control the flow of light and might be used to carry information in valley polarized beam splitter, collimator or guiding device.

  7. 27 CFR 9.58 - Carmel Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....” (b) Approved maps. The approved maps for determining the boundary of the Carmel Valley viticultural... Ridge, Calif., dated 1956; and (5) Rana Creek, Calif., dated 1956. (c) Boundary. The Carmel Valley...

  8. 27 CFR 9.58 - Carmel Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....” (b) Approved maps. The approved maps for determining the boundary of the Carmel Valley viticultural... Ridge, Calif., dated 1956; and (5) Rana Creek, Calif., dated 1956. (c) Boundary. The Carmel Valley...

  9. Single crowns versus conventional fillings for the restoration of root filled teeth.

    PubMed

    Fedorowicz, Zbys; Carter, Ben; de Souza, Raphael Freitas; Chaves, Carolina de Andrade Lima; Nasser, Mona; Sequeira-Byron, Patrick

    2012-05-16

    Endodontic treatment, involves removal of the dental pulp and its replacement by a root canal filling. Restoration of root filled teeth can be challenging due to structural differences between vital and non-vital root filled teeth. Direct restoration involves placement of a restorative material e.g. amalgam or composite directly into the tooth. Indirect restorations consist of cast metal or ceramic (porcelain) crowns. The choice of restoration depends on the amount of remaining tooth which may influence long term survival and cost. The comparative in service clinical performance of crowns or conventional fillings used to restore root filled teeth is unclear. To assess the effects of restoration of endodontically treated teeth (with or without post and core) by crowns versus conventional filling materials. We searched the following databases: the Cochrane Oral Health Group's Trials Register, CENTRAL, MEDLINE via OVID, EMBASE via OVID, CINAHL via EBSCO, LILACS via BIREME and the reference lists of articles as well as ongoing trials registries.There were no restrictions regarding language or date of publication. Date of last search was 13 February 2012. Randomised controlled trials (RCTs) or quasi-randomised controlled trials in participants with permanent teeth which have undergone endodontic treatment. Single full coverage crowns compared with any type of filling materials for direct restoration, as well as indirect partial restorations (e.g. inlays and onlays). Comparisons considered the type of post and core used (cast or prefabricated post), if any. Two review authors independently assessed trial quality and extracted data. One trial judged to be at high risk of bias due to missing outcome data, was included. 117 participants with a root filled premolar tooth restored with a carbon fibre post, were randomised to either a full coverage metal-ceramic crown or direct adhesive composite restoration. At 3 years there was no reported difference between the non

  10. Optical manipulation of valley pseduospin in 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Ye, Ziliang

    Valley polarization associated with the occupancy in the energy degenerate but quantum mechanically distinct valleys in the momentum space closely resembles spin polarization and has been proposed as a pseudospin carrier for future quantum information technologies. Monolayers of transition metal dichalcogenide (TMDC) crystals, with broken inversion symmetry and large spin-orbital coupling, support robust valley polarization and therefore provide an important platform for studying valley-dependent physics. Besides optical excitation and photoluminescence detection, valley polarization has been electrically measured through the valley Hall effect and created through spin injection from ferromagnetic semiconductor contacts. Moreover, the energy degeneracy of the valley degree of freedom has been lifted by the optical Stark effect. Recently, we have demonstrated optical manipulation of valley coherence, i.e., of the valley pseudospin, by the optical Stark effect in monolayer WSe2. Using below-bandgap circularly polarized light, we rotated the valley pseudospin on the femtosecond time scale. Both the direction and speed of the rotation can be optically controlled by tuning the dynamic phase of excitons in opposite valleys. The pseudospin rotation was identified by changes in the polarization of the photoluminescence. In addition, by varying the time delay between the excitation and control pulses, we directly probed the lifetime of the intervalley coherence. Similar rotation levels have also been observed in static magneto-optic experiments. Our work presents an important step towards the full control of the valley degree of freedom in 2D semiconductors. The work was done in collaboration with Dr. Dezheng Sun and Prof. Tony F. Heinz.

  11. Three-dimensional numerical model of ground-water flow in northern Utah Valley, Utah County, Utah

    USGS Publications Warehouse

    Gardner, Philip M.

    2009-01-01

    A three-dimensional, finite-difference, numerical model was developed to simulate ground-water flow in northern Utah Valley, Utah. The model includes expanded areal boundaries as compared to a previous ground-water flow model of the valley and incorporates more than 20 years of additional hydrologic data. The model boundary was generally expanded to include the bedrock in the surrounding mountain block as far as the surface-water divide. New wells have been drilled in basin-fill deposits near the consolidated-rock boundary. Simulating the hydrologic conditions within the bedrock allows for improved simulation of the effect of withdrawal from these wells. The inclusion of bedrock also allowed for the use of a recharge model that provided an alternative method for spatially distributing areal recharge over the mountains.The model was calibrated to steady- and transient-state conditions. The steady-state simulation was developed and calibrated by using hydrologic data that represented average conditions for 1947. The transient-state simulation was developed and calibrated by using hydrologic data collected from 1947 to 2004. Areally, the model grid is 79 rows by 70 columns, with variable cell size. Cells throughout most of the model domain represent 0.3 mile on each side. The largest cells are rectangular with dimensions of about 0.3 by 0.6 mile. The largest cells represent the mountain block on the eastern edge of the model domain where the least hydrologic data are available. Vertically, the aquifer system is divided into 4 layers which incorporate 11 hydrogeologic units. The model simulates recharge to the ground-water flow system as (1) infiltration of precipitation over the mountain block, (2) infiltration of precipitation over the valley floor, (3) infiltration of unconsumed irrigation water from fields, lawns, and gardens, (4) seepage from streams and canals, and (5) subsurface inflow from Cedar Valley. Discharge of ground water is simulated by the model to (1

  12. Origin of the Valley Networks On Mars: A Hydrological Perspective

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.

    2000-01-01

    The geomorphology of the Martian valley networks is examined from a hydrological perspective for their compatibility with an origin by rainfall, globally higher heat flow, and localized hydrothermal systems. Comparison of morphology and spatial distribution of valleys on geologic surfaces with terrestrial fluvial valleys suggests that most Martian valleys are probably not indicative of a rainfall origin, nor are they indicative of formation by an early global uniformly higher heat flow. In general, valleys are not uniformly distributed within geologic surface units as are terrestrial fluvial valleys. Valleys tend to form either as isolated systems or in clusters on a geologic surface unit leaving large expanses of the unit virtually untouched by erosion. With the exception of fluvial valleys on some volcanoes, most Martian valleys exhibit a sapping morphology and do not appear to have formed along with those that exhibit a runoff morphology. In contrast, terrestrial sapping valleys form from and along with runoff valleys. The isolated or clustered distribution of valleys suggests localized water sources were important in drainage development. Persistent ground-water outflow driven by localized, but vigorous hydrothermal circulation associated with magmatism, volcanism, impacts, or tectonism is, however, consistent with valley morphology and distribution. Snowfall from sublimating ice-covered lakes or seas may have provided an atmospheric water source for the formation of some valleys in regions where the surface is easily eroded and where localized geothermal/hydrothermal activity is sufficient to melt accumulated snowpacks.

  13. EPA Region 1 - Valley Depth in Meters

    EPA Pesticide Factsheets

    Raster of the Depth in meters of EPA-delimited Valleys in Region 1.Valleys (areas that are lower than their neighbors) were extracted from a Digital Elevation Model (USGS, 30m) by finding the local average elevation, subtracting the actual elevation from the average, and selecting areas where the actual elevation was below the average. The landscape was sampled at seven scales (circles of 1, 2, 4, 7, 11, 16, and 22 km radius) to take into account the diversity of valley shapes and sizes. Areas selected in at least four scales were designated as valleys.

  14. STEM education for teachers in the Rio Grande Valley

    NASA Astrophysics Data System (ADS)

    Ries, Judit Gyorgyey; Baguio, Margaret R.

    2015-11-01

    We have worked with elementary and middle school teachers in the Rio Grande Valley for the last 10 years bringing Earth and Space Science themed workshops to underserved areas of Texas. The Texas curriculum was also changed to include Astronomy and Space Science requirement in the tests students need to take to prove their academic preparedness. The teachers worked through a variety of inquiry-based, hands-on activities after a short presentation on the background science. In order to evaluate our effectiveness, we have asked the teachers to take pre- and post-workshop tests, and we asked them to fill out a self-reflective survey. We will report on our experiences, what works best with the teachers, and in what areas we still have a long way to go.This work was supported by various NASA education grants and Cooperative agreements, as well as grants provided by the Texas Space Grant Consortium.

  15. Preliminary hydrogeologic assessment near the boundary of the Antelope Valley and El Mirage Valley groundwater basins, California

    USGS Publications Warehouse

    Stamos, Christina L.; Christensen, Allen H.; Langenheim, Victoria

    2017-07-19

    The increasing demands on groundwater for water supply in desert areas in California and the western United States have resulted in the need to better understand groundwater sources, availability, and sustainability. This is true for a 650-square-mile area that encompasses the Antelope Valley, El Mirage Valley, and Upper Mojave River Valley groundwater basins, about 50 miles northeast of Los Angeles, California, in the western part of the Mojave Desert. These basins have been adjudicated to ensure that groundwater rights are allocated according to legal judgments. In an effort to assess if the boundary between the Antelope Valley and El Mirage Valley groundwater basins could be better defined, the U.S. Geological Survey began a cooperative study in 2014 with the Mojave Water Agency to better understand the hydrogeology in the area and investigate potential controls on groundwater flow and availability, including basement topography.Recharge is sporadic and primarily from small ephemeral washes and streams that originate in the San Gabriel Mountains to the south; estimates range from about 400 to 1,940 acre-feet per year. Lateral underflow from adjacent basins has been considered minor in previous studies; underflow from the Antelope Valley to the El Mirage Valley groundwater basin has been estimated to be between 100 and 1,900 acre-feet per year. Groundwater discharge is primarily from pumping, mostly by municipal supply wells. Between October 2013 and September 2014, the municipal pumpage in the Antelope Valley and El Mirage Valley groundwater basins was reported to be about 800 and 2,080 acre-feet, respectively.This study was motivated by the results from a previously completed regional gravity study, which suggested a northeast-trending subsurface basement ridge and saddle approximately 3.5 miles west of the boundary between the Antelope Valley and El Mirage Valley groundwater basins that might influence groundwater flow. To better define potential basement

  16. Anthropogenic Influence On Groundwater Quality In Jericho and And Adjoining Wadis (Lower Jordan Valley, Palestine)

    NASA Astrophysics Data System (ADS)

    Geyer, S.; Khayat, S.; Roediger, T.; Siebert, C.

    2008-12-01

    The Lower Jordan Valley is part of the Jordan-Dead Sea Rift. The graben is filled by sedmiments of limnological and marine origin. Towards the Dead Sea, the occurance of gipseous and salty sediments on the valley floor increase. The southern part of the Lower Jordan Valley, where the city of Jericho is situated, is an arid area (<150 mm precipitation/year), with less amount of exploitable fresh groundwater or surface water. Jericho was founded on an alluvial fan, closely to the western mountain range in front of mouth of Wadi Qilt. The fan serves as reservoir for infiltrating water from wadi runoff and groundwater from the crataceous aquifers of the western shoulder. The fan is surrounded by unsuitable aquifers of the graben, which are filled with saline water. The aim of this study, which takes place inside the multilateral SMART-project, is to understand the vulnerability of the Jericho groundwater aquifers in connection with lowering the groundwater table by overexploitation and the intensively use of pesticides Jericho and its vicinity are of most importance for the Palestinians. However, beside the about 25,000 residents, the tourism industry and the vital agriculture depend on sufficient and expoitable fresh water resources. Because the demand of water is increasing, overexpoitaion takes place. Due to over extraction of groundwater a huge depression cone is evolving during the dry season which is filled up again according to the groundwater recharge in the rainy season. Concomitantly, depression cone in the fresh water aquifers leads to an infiltration of the surrounding saltwater. The amount of saltwater which infiltrates into the freshwater resource was calculated by different stable isotope methods (d2H, d18O) and hydrochemical analyses of wellwater. The agriculture is main consumer of groundwater - over 60% of the pumped water is used for inefficient irrigation. Additionally, an intensive use of pesticides in concentrated liquid and gaseous forms for

  17. Fluid Dynamics of Bottle Filling

    NASA Astrophysics Data System (ADS)

    McGough, Patrick; Gao, Haijing; Appathurai, Santosh; Basaran, Osman

    2011-11-01

    Filling of bottles is a widely practiced operation in a large number of industries. Well known examples include filling of ``large'' bottles with shampoos and cleaners in the household products and beauty care industries and filling of ``small'' bottles in the pharmaceutical industry. Some bottle filling operations have recently drawn much attention from the fluid mechanics community because of the occurrence of a multitude of complex flow regimes, transitions, and instabilities such as mounding and coiling that occur as a bottle is filled with a fluid. In this talk, we present a primarily computational study of the fluid dynamical challenges that can arise during the rapid filling of bottles. Given the diversity of fluids used in filling applications, we consider four representative classes of fluids that exhibit Newtonian, shear-thinning, viscoelastic, and yield-stress rheologies. The equations governing the dynamics of bottle filling are solved either in their full 3D but axisymmetric form or using the slender-jet approximation.

  18. Control of Exciton Valley Coherence in Transition Metal Dichalcogenide Monolayers

    NASA Astrophysics Data System (ADS)

    Wang, Gang

    Current research on Transition Metal Dichalcogenide (TMD) Monolayers is stimulated by their strong light-matter interaction and the possibility to use the valley index in addition to spin as an information carrier. The direct gap interband transitions in TMD monolayers are governed by chiral optical selection rules. Determined by laser helicity, optical transitions in either the K+ or K- valley in momentum space are induced. Very recently the optical generation of valley polarization and valley coherence (coherent superposition of valley states) have been reported. In this work we go a step further by discussing the coherent manipulation of valley states. Linearly polarized laser excitation prepares a coherent superposition of valley states. We demonstrate the control of the exciton valley coherence in monolayer WSe2 by tuning the applied magnetic field perpendicular to the monolayer plane. The induced valley Zeeman splitting between K+ and K- results in a change of the oscillation frequency of the superposition of the valley states, which corresponds to a rotation of the exciton valley pseudo-spin. We show rotation of this coherent superposition of valley states by angles as large as 30 degrees in applied fields up to 9T and discuss valley coherence in other TMD monolayer materials. This exciton valley coherence control on ps time scale could be an important step towards complete control of qubits based on the valley degree of freedom. In collaboration with X. Marie, T. Amand, C. Robert, F. Cadiz, P. Renucci, B. Urbaszek (Université de Toulouse, INSA-CNRS-UPS, LPCNO, France), B. L. Liu (Institute of Physics, Chinese Academy of Sciences, China) and we acknowledge ERC Grant No. 306719.

  19. Intraoperative assessment of intraocular pressure in vitrectomized air-filled and fluid-filled eyes.

    PubMed

    Moon, Chan Hee; Choi, Kyung Seek; Rhee, Mi Ri; Lee, Sung Jin

    2013-11-01

    To ascertain the difference of intraocular pressure (IOP) measurement between vitrectomized air-filled and fluid-filled eyes. Thirty-one eyes of 31 consecutive patients who underwent conventional vitrectomy and intraocular gas tamponade were assessed. After vitrectomy, IOP of the fluid-filled eyes was measured by Tono-Pen. Thereafter, fluid-air exchange was performed, and IOP of the air-filled eyes was measured again. The IOP within each fluid- and air-filled eye was varied by selecting settings on the vitrectomy system, from 10 to 50 mmHg with 5-mmHg increments. Postoperatively, IOP was assessed by both Tono-Pen and Goldmann applanation tonometry (GAT). Linear and nonlinear regression analyses were conducted between intraoperatively measured Tono-Pen readings and actual IOPs. Bland-Altman plot was used to assess the agreements between postoperatively measured Tono-Pen readings and GAT readings. The discrepancy between Tono-Pen readings and actual IOP in fluid-filled eyes was not significant, except for the profound high pressures over 45 mmHg. However, Tono-Pen readings in air-filled eyes were significantly lower than actual IOPs in all ranges, and Tono-Pen increasingly underestimates IOP at higher levels. Intraoperative Tono-Pen readings were correlated significantly with actual IOP and a quadratic equation evidenced the best fit (R(2) = 0.996). Postoperatively, difference of the measurements between Tono-Pen and GAT was not significant. Tono-Pen and GAT significantly underestimate actual IOP in air-filled eyes. It should be considered that actual IOP would be greater than the measured IOP in gas-filled eyes, even though the IOP is measured as normal. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  20. Modeling and validation of a 3D velocity structure for the Santa Clara Valley, California, for seismic-wave simulations

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.

    2006-01-01

    A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of 1 Hz using a parallelized finite-difference code that utilizes two regions with a factor of 3 difference in grid spacing to reduce memory requirements. Cenozoic basins trap and strongly amplify ground motions. This effect is particularly strong in the Evergreen Basin on the northeastern side of the Santa Clara Valley, where the steeply dipping Silver Creek fault forms the southwestern boundary of the basin. In comparison, the Cupertino Basin on the southwestern side of the valley has a more moderate response, which is attributed to a greater age and velocity of the Cenozoic fill. Surface waves play a major role in the ground motion of sedimentary basins, and they are seen to strongly develop along the western margins of the Santa Clara Valley for our simulation of the Loma Prieta earthquake.

  1. Co-modified MCM-41 as an effective adsorbent for levofloxacin removal from aqueous solution: optimization of process parameters, isotherm, and thermodynamic studies.

    PubMed

    Jin, Ting; Yuan, Wenhua; Xue, Yujie; Wei, Hong; Zhang, Chaoying; Li, Kebin

    2017-02-01

    Antibiotics are emerging contaminants due to their potential risks to human health and ecosystems. Poor biodegradability makes it necessary to develop effective physical-chemical methods to eliminate these contaminants from water. The cobalt-modified MCM-41 was prepared by a one-pot hydrothermal method and characterized by SAXRD, N 2 adsorption-desorption, SEM, UV-Vis DR, and FTIR spectroscopy. The results revealed that the prepared 3% Co-MCM-41 possessed mesoporous structure with BET surface areas at around 898.5 m 2 g -1 . The adsorption performance of 3% Co-MCM-41 toward levofloxacin (LVF) was investigated by batch experiments. The adsorption of LVF on 3% Co-MCM-41 was very fast and reached equilibrium within 2 h. The adsorption kinetics followed the pseudo-second-order kinetic model with the second-order rate constants in the range of 0.00198-0.00391 g mg -1  min -1 . The adsorption isotherms could be well represented by the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm equations. Nevertheless, D-R isotherm provided the best fit based on the coefficient of determination and average relative error values. The mean free energy of adsorption (E) calculated from D-R model was about 11 kJ mol -1 , indicating that the adsorption was mainly governed by a chemisorption process. Moreover, the adsorption capacity was investigated as a function of pH, adsorbent dosage, LVF concentration, and temperature with help of respond surface methodology (RSM). A quadratic model was established, and an optimal condition was obtained as follows: pH 8.5, adsorbent dosage of 1 g L -1 , initial LVF concentration of 119.8 mg L -1 , and temperature of 31.6 °C. Under the optimal condition, the adsorption capacity of 3% Co-MCM-41 to LVF could reach about 108.1 mg g -1 . The solution pH, adsorbent dosage, LVF concentration, and a combination of adsorbent dose and LVF concentration were significant factors affecting the adsorption process. The adsorption

  2. Observation of valley-selective microwave transport in photonic crystals

    NASA Astrophysics Data System (ADS)

    Ye, Liping; Yang, Yuting; Hong Hang, Zhi; Qiu, Chunyin; Liu, Zhengyou

    2017-12-01

    Recently, the discrete valley degree of freedom has attracted extensive attention in condensed matter physics. Here, we present an experimental observation of the intriguing valley transport for microwaves in photonic crystals, including the bulk valley transport and the valley-projected edge modes along the interface separating different photonic insulating phases. For both cases, valley-selective excitations are realized by a point-like chiral source located at proper locations inside the samples. Our results are promising for exploring unprecedented routes to manipulate microwaves.

  3. Subsurface density structure of Taurus-Littrow Valley using Apollo 17 gravity data

    NASA Astrophysics Data System (ADS)

    Urbancic, N.; Ghent, R.; Johnson, C. L.; Stanley, S.; Hatch, D.; Carroll, K. A.; Garry, W. B.; Talwani, M.

    2017-06-01

    The Traverse Gravimeter Experiment (TGE) from the Apollo 17 mission was the first and only successful gravity survey on the surface of the Moon, revealing the local gravity field at Taurus-Littrow Valley (TLV). TLV is hypothesized to be a basalt-filled graben, oriented radial to Serenitatis basin. We implemented modern 3-D modeling techniques using recent high-resolution Lunar Reconnaisance Orbiter topography and image data sets to reinvestigate the subsurface structure of TLV and constrain the volcanic and tectonic history of the region. Updated topography led to significant improvements in the accuracy of free-air, Bouguer, and terrain corrections. To determine the underlying geometry for TLV, we tested a range of possible thicknesses, dips, and wall positions for the graben fill. We found that the thickness and position previously determined by Talwani et al. (1973) represent our preferred model for the data, but with walls with dips of 30°, rather than 90°. We found large model misfits due to unmodeled 3-D structure and density anomalies, as well as parameter trade-offs. We performed a sensitivity analysis to quantify the parameter trade-offs in an ideal future survey, assuming dominantly 2-D geological structure. At the TGE survey noise level (2.5 mGal), the fill thickness was constrained to ±150 m, the wall angle to ±5∘20∘ and the wall positions to ±1 km of the preferred model. This information can be used to inform the design of future lunar gravimetry experiments in regions similar to TLV.

  4. Evaluation of the hydrologic system and selected water-management alternatives in the Owens Valley, California

    USGS Publications Warehouse

    Danskin, Wesley R.

    1998-01-01

    The Owens Valley, a long, narrow valley along the east side of the Sierra Nevada in eastcentral California, is the main source of water for the city of Los Angeles. The city diverts most of the surface water in the valley into the Owens River?Los Angeles Aqueduct system, which transports the water more than 200 miles south to areas of distribution and use. Additionally, ground water is pumped or flows from wells to supplement the surface-water diversions to the river? aqueduct system. Pumpage from wells needed to supplement water export has increased since 1970, when a second aqueduct was put into service, and local residents have expressed concerns that the increased pumping may have a detrimental effect on the environment and the native vegetation (indigenous alkaline scrub and meadow plant communities) in the valley. Native vegetation on the valley floor depends on soil moisture derived from precipitation and from the unconfined part of a multilayered ground-water system. This report, which describes the evaluation of the hydrologic system and selected water-management alternatives, is one in a series designed to identify the effects that ground-water pumping has on native vegetation and evaluate alternative strategies to mitigate any adverse effects caused by pumping. The hydrologic system of the Owens Valley can be conceptualized as having three parts: (1) an unsaturated zone affected by precipitation and evapotranspiration; (2) a surface-water system composed of the Owens River, the Los Angeles Aqueduct, tributary streams, canals, ditches, and ponds; and (3) a saturated ground-water system contained in the valley fill. Analysis of the hydrologic system was aided by development of a ground-water flow model of the ?aquifer system,? which is defined as the most active part of the ground-water system and which includes nearly all of the Owens Valley except for the area surrounding the Owens Lake. The model was calibrated and verified for water years 1963?88 and

  5. California's Central Valley Groundwater Study: A Powerful New Tool to Assess Water Resources in California's Central Valley

    USGS Publications Warehouse

    Faunt, Claudia C.; Hanson, Randall T.; Belitz, Kenneth; Rogers, Laurel

    2009-01-01

    Competition for water resources is growing throughout California, particularly in the Central Valley. Since 1980, the Central Valley's population has nearly doubled to 3.8 million people. It is expected to increase to 6 million by 2020. Statewide population growth, anticipated reductions in Colorado River water deliveries, drought, and the ecological crisis in the Sacramento-San Joaquin Delta have created an intense demand for water. Tools and information can be used to help manage the Central Valley aquifer system, an important State and national resource.

  6. 27 CFR 9.90 - Willamette Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) “Roseburg,” Location Diagram NL 10-2, 1958 (revised 1970). (c) Boundaries. The Willamette Valley... valleys of Little River, Mosby Creek, Sharps Creek and Lost Creek to the intersection of R1W/R1E and State...

  7. Lateralization of spatial rather than temporal attention underlies the left hemifield advantage in rapid serial visual presentation.

    PubMed

    Asanowicz, Dariusz; Kruse, Lena; Śmigasiewicz, Kamila; Verleger, Rolf

    2017-11-01

    In bilateral rapid serial visual presentation (RSVP), the second of two targets, T1 and T2, is better identified in the left visual field (LVF) than in the right visual field (RVF). This LVF advantage may reflect hemispheric asymmetry in temporal attention or/and in spatial orienting of attention. Participants performed two tasks: the "standard" bilateral RSVP task (Exp.1) and its unilateral variant (Exp.1 & 2). In the bilateral task, spatial location was uncertain, thus target identification involved stimulus-driven spatial orienting. In the unilateral task, the targets were presented block-wise in the LVF or RVF only, such that no spatial orienting was needed for target identification. Temporal attention was manipulated in both tasks by varying the T1-T2 lag. The results showed that the LVF advantage disappeared when involvement of stimulus-driven spatial orienting was eliminated, whereas the manipulation of temporal attention had no effect on the asymmetry. In conclusion, the results do not support the hypothesis of hemispheric asymmetry in temporal attention, and provide further evidence that the LVF advantage reflects right hemisphere predominance in stimulus-driven orienting of spatial attention. These conclusions fit evidence that temporal attention is implemented by bilateral parietal areas and spatial attention by the right-lateralized ventral frontoparietal network. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Valley photonic crystals for control of spin and topology

    NASA Astrophysics Data System (ADS)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  9. A review of empirical evidence on different uncanny valley hypotheses: support for perceptual mismatch as one road to the valley of eeriness

    PubMed Central

    Kätsyri, Jari; Förger, Klaus; Mäkäräinen, Meeri; Takala, Tapio

    2015-01-01

    The uncanny valley hypothesis, proposed already in the 1970s, suggests that almost but not fully humanlike artificial characters will trigger a profound sense of unease. This hypothesis has become widely acknowledged both in the popular media and scientific research. Surprisingly, empirical evidence for the hypothesis has remained inconsistent. In the present article, we reinterpret the original uncanny valley hypothesis and review empirical evidence for different theoretically motivated uncanny valley hypotheses. The uncanny valley could be understood as the naïve claim that any kind of human-likeness manipulation will lead to experienced negative affinity at close-to-realistic levels. More recent hypotheses have suggested that the uncanny valley would be caused by artificial–human categorization difficulty or by a perceptual mismatch between artificial and human features. Original formulation also suggested that movement would modulate the uncanny valley. The reviewed empirical literature failed to provide consistent support for the naïve uncanny valley hypothesis or the modulatory effects of movement. Results on the categorization difficulty hypothesis were still too scarce to allow drawing firm conclusions. In contrast, good support was found for the perceptual mismatch hypothesis. Taken together, the present review findings suggest that the uncanny valley exists only under specific conditions. More research is still needed to pinpoint the exact conditions under which the uncanny valley phenomenon manifests itself. PMID:25914661

  10. Analysis and high resolution modelling of black carbon vertical profiles measured over three Italian valleys

    NASA Astrophysics Data System (ADS)

    Gandolfi, Ilaria; Curci, Gabriele; Falasca, Serena; Ferrero, Luca

    2017-04-01

    Analysis and high resolution modelling of black carbon vertical profiles measured over three Italian valleys Ilaria Gandolfi1,2, Gabriele Curci1,2, Serena Falasca1,2, Luca Ferrero3 1 Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy 2 Center of Excellence CETEMPS, University of L'Aquila, L'Aquila, Italy 3 POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy Last decades were characterized by a growing interest in aerosols: mainly for their effect on human health and on the energy balance of solar and planetary radiation, thus their role in climate change. In this study, we analyze the evolution of vertical profile of black carbon (BC) through tethered balloon observations and chemistry-transport modelling. Black carbon is regarded as the second most important anthropogenic climate forcing agent and its concentration varies significantly depending on the altitude and the sources on the territory. In winter of 2010 University Of Milan Bicocca conducted three intensive measurements campaigns over three Italian basin valleys (Terni, Po Valley, Passiria Valley). The choice of the valleys was made taking into consideration the orography and the river basin structure. The measurement campaign was based on a helium-filled tethered balloon, on which the instrumentation for the analysis has been mounted; the instrumentation consisted on a meteorological station, an OPC, a cascade impactor and a micro-Aethalometer. Subsequently, at University of L'Aquila simulations were produced to help interpretation of these vertical aerosol profiles (mass, composition and distribution) and related optical properties (scattering, absorption) using a chemistry-transport model (WRF-CHIMERE) at high horizontal resolution (1 km). The analysis focused primarily on the calculation of the heating rate and of the Direct Radiative Effect (DRE), and on the analysis of the

  11. Shoals and valley plugs in the Hatchie River watershed

    USGS Publications Warehouse

    Diehl, Timothy H.

    2000-01-01

    its natural character. The Hatchie River flows through a wide valley bottom occupied mostly by riverine wetland. Historically, the valley bottom has supported hardwood forests. Since publication of the first Hatchie River report (U.S. Department of Agriculture, 1970), the channel of the river has become shallower, and flooding has increased (U.S. Department of Agriculture 1986b). These wetter conditions inhibit growth of hardwoods and lead to premature hardwood mortality. The NRCS has predicted that despite efforts to control erosion in the uplands, most of the valley-bottom forest will die. '...swamping may be so prevalent as to change most of the Hatchie River Basin flood plain into a marsh condition, with the only remnants of the present bottomland hardwood timber remaining. (U.S. Department of Agriculture, 1986b) Loss of channel depth has been concentrated in short reaches near tributary mouths. At the mouths of Richland, Porters, Clover, and Muddy Creeks, navigation has become difficult for recreational users (Johnny Carlin, West Tennessee River Basin Authority, oral commun., 1998).As the low-gradient alluvial system of the Hatchie River accumulates sediment, another common outcome has been the formation of valley plugs, areas where 'channels are filled with sediment, and all the additional bedload brought downstream is then spread out over the flood plain until a new channel has been formed' (Happ, 1975). Valley plugs typically form where the slope of a sand-laden tributary decreases downstream, or where the tributary joins its parent stream (Happ and others, 1940; Diehl, 1994, 1997; Smith and Diehl, 2000).

  12. Napa Valley Community College District and Napa Valley College Faculty Association/CTA/NEA 1988-89 Agreement.

    ERIC Educational Resources Information Center

    Napa Valley Community Coll. District, Napa, CA.

    The collective bargaining agreement between the Board of Trustees of the Napa Valley Community College District and the Napa Valley College Faculty Association/California Teachers Association/National Education Association is presented. This contract, in effect from June 1988 through July 1989, deals with the following topics: bargaining agent…

  13. Channels and valleys on Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1983-01-01

    Tentative conclusions about the origins of channels and valleys on Mars based on the consensus of investigators who have studied the problem are presented. The morphology of outflow channels is described in detail, and the morphology, distribution, and genesis of Martian valleys are addressed. Secondary modification of channels and valleys by mass-wasting phenomena, eolian processes, cratering, and mantling by lava flows is discussed. The physics of the flows needed to account for the immense volumes of Martian outflow channels is considered in detail, including the possible influence of debris flows and mudflows, glaciers, and ice sheets. It is concluded that Mars once probably possessed an atmosphere with higher temperatures and pressures than at present which played an essential role in an active hydrological cycle.

  14. The geochemistry of groundwater resources in the Jordan Valley: The impact of the Rift Valley brines

    USGS Publications Warehouse

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Polak, A.; Shavit, U.

    2007-01-01

    The chemical composition of groundwater in the Jordan Valley, along the section between the Sea of Galilee and the Dead Sea, is investigated in order to evaluate the origin of the groundwater resources and, in particular, to elucidate the role of deep brines on the chemical composition of the regional groundwater resources in the Jordan Valley. Samples were collected from shallow groundwater in research boreholes on two sites in the northern and southern parts of the Jordan Valley, adjacent to the Jordan River. Data is also compiled from previous published studies. Geochemical data (e.g., Br/Cl, Na/Cl and SO4/Cl ratios) and B, O, Sr and S isotopic compositions are used to define groundwater groups, to map their distribution in the Jordan valley, and to evaluate their origin. The combined geochemical tools enabled the delineation of three major sources of solutes that differentially affect the quality of groundwater in the Jordan Valley: (1) flow and mixing with hypersaline brines with high Br/Cl (>2 ?? 10-3) and low Na/Cl (<0.8) ratios; (2) dissolution of highly soluble salts (e.g., halite, gypsum) in the host sediments resulting in typically lower Br/Cl signal (<2 ?? 10-3); and (3) recharge of anthropogenic effluents, primarily derived from evaporated agricultural return flow that has interacted (e.g., base-exchange reactions) with the overlying soil. It is shown that shallow saline groundwaters influenced by brine mixing exhibit a north-south variation in their Br/Cl and Na/Cl ratios. This chemical trend was observed also in hypersaline brines in the Jordan valley, which suggests a local mixing process between the water bodies. ?? 2007 Elsevier Ltd. All rights reserved.

  15. 36 CFR 7.26 - Death Valley National Monument.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Death Valley National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.26 Death Valley National Monument. (a) Mining. Mining in Death Valley National Monument is subject to the following regulations, which are...

  16. A postglacial chronology for some alluvial valleys in Wyoming

    USGS Publications Warehouse

    Leopold, Luna Bergere; Miller, John P.

    1954-01-01

    Alluvial terraces were studied in several major river basins in eastern Wyoming. Three terraces are present along nearly all the streams and large tributaries. There are several extensive dissected erosion surfaces in the area, but these are much older than, and stand well above, the recent alluvial terraces with which this report is concerned.The three alluvial terraces stand respectively about 40, 10, and 5 feet above the present streams. The uppermost and oldest is a fill terrace comprised of three stratigraphic units of varying age. The oldest unit is Pleistocene and the youngest unit postdates the development of a soil zone, or paleosol, which is characterized by strong accumulation of calcium carbonate and gypsum. This paleosol is an important stratigraphic marker. The middle terrace is generally a cut terrace and is developed on the material making up the youngest alluvium of the high terrace. The lowest is a fill terrace, the surface of which is only slightly higher than the present flood plain.The oldest terrace can tentatively be traced into mountain valleys of the Bighorn Range on the basis of discontinuous remnants. The terrace remnants occur far upstream from the youngest moraine in the valleys studied. On this basis, the terrace sequence is considered to postdate the last Wisconsin ice in the Bighorn Mountains. The paleosol is tentatively correlated with Altithermal time, called in Europe the Climatic Optimum. The terrace sequence is very similar to that suggested by various workers in the southwestern United States.Two streams, Clear Creek and the Powder River, deposited comparable silty alluvium, the surface of which now comprises the highest alluvial terrace. The gradients of these former flood plains differed markedly between the two streams despite the comparability in size of material deposited. This difference in gradient is believed to have required different relative contributions of water from mountain and plain areas than now exist

  17. Total carbon and nitrogen in mineral soil after 26 years of prescribed fire: Long Valley and Fort Valley Experimental Forests

    Treesearch

    Daniel G. Neary; Sally M. Haase; Steven T. Overby

    2008-01-01

    Prescribed fire was introduced to high density ponderosa pine stands at Fort Valley and Long Valley Experimental Forests in 1976. This paper reports on mineral soil total carbon (C) and nitrogen (N) at Long Valley. Total soil C and N levels were highly variable and exhibited an increasing, but inconsistent, concentration trend related to burn interval. Total N ranged...

  18. Ice-load induced tectonics controlled tunnel valley evolution - instances from the southwestern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Al Hseinat, M.; Hübscher, C.

    2014-08-01

    Advancing ice sheets have a strong impact on the earth's topography. For example, they leave behind an erosional unconformity, bulldozer the underlying strata and form tunnel valleys, primarily by subglacial melt-water erosion and secondarily by direct glacial erosion. The conceptual models of the reactivation of faults within the upper crust, due to the ice sheets' load, are also established. However, this phenomenon is also rather under-explored. Here, we propose a causal link between ice-load induced tectonics, the generation of near-vertical faults in the upper crust above an inherited deep-rooted fault and the evolution of tunnel valleys. The Kossau tunnel valley in the southeastern Bay of Kiel has been surveyed by means of high-resolution multi-channel seismic and echosounder data. It strikes almost south to north and can be mapped over a distance of ca 50 km. It is 1200-8000 m wide with a valley of up to 200 m deep. Quaternary deposits fill the valley and cover the adjacent glaciogenic unconformity. A near-vertical fault system with an apparent dip angle of >80°, which reaches from the top Zechstein upwards into the Quaternary, underlies the valley. The fault partially pierces the seafloor and growth is observed within the uppermost Quaternary strata only. Consequently, the fault evolved in the Late Quaternary. The fault is associated with an anticline that is between 700 and 3000 m wide and about 20-40 m high. The fault-anticline assemblage neither resembles any typical extensional, compressional or strike-slip deformation pattern, nor is it related to salt tectonics. Based on the observed position and deformation pattern of the fault-anticline assemblage, we suggest that these structures formed as a consequence of the differential ice-load induced tectonics above an inherited deep-rooted sub-salt fault related to the Glückstadt Graben. Lateral variations in the ice-load during the ice sheet's advance caused differential subsidence, thus rejuvenating the

  19. Valley-polarized quantum transport generated by gauge fields in graphene

    NASA Astrophysics Data System (ADS)

    Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan

    2017-09-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.

  20. Groundwater availability of the Central Valley Aquifer, California

    USGS Publications Warehouse

    Faunt, Claudia C.

    2009-01-01

    California's Central Valley covers about 20,000 square miles and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year. This irrigated agriculture relies heavily on surface-water diversions and groundwater pumpage. Approximately one-sixth of the Nation's irrigated land is in the Central Valley, and about one-fifth of the Nation's groundwater demand is supplied from its aquifers. The Central Valley also is rapidly becoming an important area for California's expanding urban population. Since 1980, the population of the Central Valley has nearly doubled from 2 million to 3.8 million people. The Census Bureau projects that the Central Valley's population will increase to 6 million people by 2020. This surge in population has increased the competition for water resources within the Central Valley and statewide, which likely will be exacerbated by anticipated reductions in deliveries of Colorado River water to southern California. In response to this competition for water, a number of water-related issues have gained prominence: conservation of agricultural land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS Groundwater Resources Program made a detailed assessment of groundwater availability of the Central Valley aquifer system, that includes: (1) the present status of groundwater resources; (2) how these resources have changed over time; and (3) tools to assess system responses to stresses from future human uses and climate variability and change. This effort builds on previous investigations, such as the USGS Central Valley Regional Aquifer System and Analysis (CV-RASA) project and several other groundwater studies in the Valley completed by Federal, State and local agencies at differing scales. The

  1. Valley-selective optical Stark effect in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Gedik, Nuh

    Monolayer semiconducting transition-metal dichalcogenides (TMDs) have a pair of valleys that, by time-reversal symmetry, are energetically degenerate. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley specific band engineering and offer additional control in valleytronic applications. In this talk, I will show that circularly polarized light, which breaks time-reversal symmetry, can be used to lift the valley degeneracy by means of the optical Stark effect. We demonstrate that this effect is capable of raising the exciton level in monolayer TMD WS2 by as much as 18 meV in a controllable valley-selective manner. The resulting energy shift is extremely large, comparable to the shift that would be obtained using a very high magnetic field (approximately 100 Tesla). These results offer a novel way to control valley degree of freedom, and may provide a means to realize new valley-selective Floquet topological state of matter.

  2. When is visual information used to control locomotion when descending a kerb?

    PubMed

    Buckley, John G; Timmis, Matthew A; Scally, Andy J; Elliott, David B

    2011-04-18

    Descending kerbs during locomotion involves the regulation of appropriate foot placement before the kerb-edge and foot clearance over it. It also involves the modulation of gait output to ensure the body-mass is safely and smoothly lowered to the new level. Previous research has shown that vision is used in such adaptive gait tasks for feedforward planning, with vision from the lower visual field (lvf) used for online updating. The present study determined when lvf information is used to control/update locomotion when stepping from a kerb. 12 young adults stepped down a kerb during ongoing gait. Force sensitive resistors (attached to participants' feet) interfaced with an high-speed PDLC 'smart glass' sheet, allowed the lvf to be unpredictably occluded at either heel-contact of the penultimate or final step before the kerb-edge up to contact with the lower level. Analysis focussed on determining changes in foot placement distance before the kerb-edge, clearance over it, and in kinematic measures of the step down. Lvf occlusion from the instant of final step contact had no significant effect on any dependant variable (p>0.09). Occlusion of the lvf from the instant of penultimate step contact had a significant effect on foot clearance and on several kinematic measures, with findings consistent with participants becoming uncertain regarding relative horizontal location of the kerb-edge. These findings suggest concurrent feedback of the lower limb, kerb-edge, and/or floor area immediately in front/below the kerb is not used when stepping from a kerb during ongoing gait. Instead heel-clearance and pre-landing-kinematic parameters are determined/planned using lvf information acquired in the penultimate step during the approach to the kerb-edge, with information related to foot placement before the kerb-edge being the most salient.

  3. Groundwater sapping valleys: Experimental studies, geological controls and implications to the interpretation of valley networks on Mars

    NASA Technical Reports Server (NTRS)

    Kochel, R. Craig

    1988-01-01

    An integrated approach using experimental laboratory models, field studies of terrestrial analogs, and remote studies of terrestrial field sites were applied to the goals of understanding the nature and morphology of valley networks formed by groundwater sapping. In spite of problems with scaling, the experimental studies provide valuable insights into concepts relating to the initiation, development, and evolution of valleys by groundwater sapping. These investigations are also aimed at developing geomorphic criteria for distinguishing valleys formed by surface runoff from those formed by groundwater sapping processes. Channels that were field classified as sapping vs. runoff were successfully distinguished using statistical analysis of their respective morphologies; therefore, it may be possible to use similar techniques to interpret channel genesis on Mars. The terrestrial and flume studies provide the ground truth dataset which can be used (and will be during the present year) to help interpret the genesis of valley networks on Mars.

  4. Hydrologic effects of stress-relief fracturing in an Appalachian Valley

    USGS Publications Warehouse

    Wyrick, Granville G.; Borchers, James W.

    1981-01-01

    A hydrologic study at Twin Falls State Park, Wyoming County, West Virginia, was made to determine how fracture systems affect the occurrence and movement of ground water in a typical valley of the Appalachian Plateaus Physiographic Province. Twin Falls was selected because it is generally unaffected by factors that would complicate an analysis of the data. The study area was the Black Fork Valley at Twin Falls. The valley is about 3 miles long and 400 to 600 feet wide and is cut into massive sandstone units interbedded with thin coal and shale beds. The study was made to determine how aquifer characteristics were related to fracture systems in this valley, so that the relation could be applied to studies of other valleys. Two sites were selected for test drilling, pumping tests, and geophysical studies. One site is in the upper part of the valley, and the second is near the lower central part. At both sites, ground water occurs mainly in horizontal bedding-plane fractures under the valley floor and in nearly vertical and horizontal slump fractures along the valley wall. The aquifer is under confined conditions under the valley floor and unconfined conditions along the valley wall. The fractures pinch out under the valley walls, which form impermeable barriers. Tests of wells near the valley center indicated a change in storage coefficient as the cone of depression caused by pumping reached the confined-unconfined boundaries; the tests also indicated barrier-image effects when the cone reached the impermeable boundaries. Drawdown from pumping near the center of the valley affected water levels at both sites, indicating a hydraulic connection from the upper to the lower end of the valley. Stream gain-and-loss studies show that ground water discharges to the stream from horizontal fractures beneath Black Fork Falls, near the mouth of Black Fork. The fracture systems that constitute most of the transmissive part of the aquifer at Twin Falls are like those described as

  5. The role of laryngeal electromyography in vagus nerve stimulation-related vocal fold dysmotility.

    PubMed

    Saibene, Alberto M; Zambrelli, Elena; Pipolo, Carlotta; Maccari, Alberto; Felisati, Giovanni; Felisati, Elena; Furia, Francesca; Vignoli, Aglaia; Canevini, Maria Paola; Alfonsi, Enrico

    2017-03-01

    Vagus nerve stimulation (VNS) is a useful tool for drug-resistant epilepsy, but it induces known laryngeal side effects, with a significant role on patients' quality of life. VNS patients may show persistent left vocal fold (LVF) palsy at rest and/or recurrent LVF adduction during stimulation. This study aims at electromyographically evaluating laryngeal muscles abnormalities in VNS patients. We compared endoscopic laryngeal evaluation data in six VNS patients with laryngeal muscle electromyography (LMEMG) carried out on the thyroarytenoid, cricothyroid, posterior cricoarytenoid, and cricopharyngeal muscles. Endoscopy showed LVF palsy at rest in 3/6 patients in whom LMEMG documented a tonic spastic activity with reduced phasic modulation. In four out of six patients with recurrent LVF adduction during VNS activation, LMEMG showed a compound muscle action potential persisting for the whole stimulation. This is the first LMEMG report of VNS-induced motor unit activation via recurrent laryngeal nerve and upper laryngeal nerve stimulation. LMEMG data were could, therefore, be considered consistent with the endoscopic laryngeal examination in all patient.

  6. Groundwater quality in the Santa Clara River Valley, California

    USGS Publications Warehouse

    Burton, Carmen A.; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    The Santa Clara River Valley (SCRV) study unit is located in Los Angeles and Ventura Counties, California, and is bounded by the Santa Monica, San Gabriel, Topatopa, and Santa Ynez Mountains, and the Pacific Ocean. The 460-square-mile study unit includes eight groundwater basins: Ojai Valley, Upper Ojai Valley, Ventura River Valley, Santa Clara River Valley, Pleasant Valley, Arroyo Santa Rosa Valley, Las Posas Valley, and Simi Valley (California Department of Water Resources, 2003; Montrella and Belitz, 2009). The SCRV study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 12 to 28 inches. The study unit is drained by the Ventura and Santa Clara Rivers, and Calleguas Creek. The primary aquifer system in the Ventura River Valley, Ojai Valley, Upper Ojai Valley, and Simi Valley basins is largely unconfined alluvium. The primary aquifer system in the remaining groundwater basins mainly consists of unconfined sands and gravels in the upper portion and partially confined marine and nonmarine deposits in the lower portion. The primary aquifer system in the SCRV study unit is defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. Public-supply wells typically are completed in the primary aquifer system to depths of 200 to 1,100 feet below land surface (bls). The wells contain solid casing reaching from the land surface to a depth of about 60-700 feet, and are perforated below the solid casing to allow water into the well. Water quality in the primary aquifer system may differ from the water in the shallower and deeper parts of the aquifer. Land use in the study unit is approximately 40 percent (%) natural (primarily shrubs, grassland, and wetlands), 37% agricultural, and 23% urban. The primary crops are citrus, avocados, alfalfa, pasture, strawberries, and dry beans. The largest urban areas in the study unit are the cities of

  7. US Army Corps of Engineers Section 404: permitting of valley fills - red flag or red tape?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas R. Johnston, Jr.

    2009-03-15

    Since 2001 the US Army Corps of Engineers has been permitting most surface coal mines as Individual Permits rather than Nationwide Permits under the Section 404 program. This was shown in a survey by Skelly & Loy of permits published by Huntingdon Crops District and the state of Kentucky. Nationwide Permit 21 (NWP21) authorises the filling of waters of the United States associated with surface coal mining and reclamation operations already authorised or currently being processed as part of the integrated permit processing procedure. NWP21 has received much opposition and two noticeable court cases involving it, in West Virginia andmore » Kentucy, are briefly reported. The article first appeared in Skelly & Loy's newsletter, Portal to the mining industry, Vol II, Issue 1. 4 photos.« less

  8. California's restless giant: the Long Valley Caldera

    USGS Publications Warehouse

    Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.; Marcaida, Mae

    2014-01-01

    Scientists have monitored geologic unrest in the Long Valley, California, area since 1980. In that year, following a swarm of strong earthquakes, they discovered that the central part of the Long Valley Caldera had begun actively rising. Unrest in the area persists today. The U.S. Geological Survey (USGS) continues to provide the public and civil authorities with current information on the volcanic hazard at Long Valley and is prepared to give timely warnings of any impending eruption.

  9. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined withmore » geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells

  10. Geology of the Greenwater Range, and the dawn of Death Valley, California—Field guide for the Death Valley Natural History Conference, 2013

    USGS Publications Warehouse

    Calzia, J.P.; Rämö, O.T.; Jachens, Robert; Smith, Eugene; Knott, Jeffrey

    2016-05-02

    Much has been written about the age and formation of Death Valley, but that is one—if not the last—chapter in the fascinating geologic history of this area. Igneous and sedimentary rocks in the Greenwater Range, one mountain range east of Death Valley, tell an earlier story that overlaps with the formation of Death Valley proper. This early story has been told by scientists who have studied these rocks for many years and continue to do so. This field guide was prepared for the first Death Valley Natural History Conference and provides an overview of the geology of the Greenwater Range and the early history (10–0 Ma) of Death Valley.

  11. 27 CFR 9.191 - Ramona Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Ramona Valley. 9.191 Section 9.191 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT...) Borrego Valley, California, 1982 edition; and (2) El Cajon, California, 1979 edition. (c) Boundary. The...

  12. 27 CFR 9.191 - Ramona Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ramona Valley. 9.191 Section 9.191 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT...) Borrego Valley, California, 1982 edition; and (2) El Cajon, California, 1979 edition. (c) Boundary. The...

  13. A Quantitative Analysis of the Fretted Terrain Valleys, Arabia Terra, Mars

    NASA Astrophysics Data System (ADS)

    Mason, Kelsey Anne

    Fretted terrain describes regions on Mars with low-lying, flat valleys separated by steep cliffs that often form polygonal-shaped mesas. The fretted terrain valleys have a morphology distinct from other valleys found on Mars, and their unknown origin may hold insights into critical questions about Mars' tectonic, magmatic, and hydrologic history. Current hypothesis for the formation of the fretted terrain include fracturing as well as hydrological flow processes such as fluvial or glacial erosion. The region for this study is located in eastern Arabia Terra and is the type-location for fretted terrain. By qualitatively and quantitatively documenting the planform, or map-view, valley geometries and orientations throughout the fretted terrain, this study better constrains the origin of the valleys. Valleys were mapped using automated routines in ArcGIS including the D8 flow direction algorithm. Valleys were then grouped geographically into basins and also by Strahler order. The valleys were then segmented every 50 km and the azimuth of each segment was calculated. The resulting valley azimuths were analyzed using rose diagrams to quantitatively describe the planform geometries of the valleys. Qualitatively, the majority of basins were found to have rectangular valley geometries. The downslope direction was calculated for each basin, and it was compared to the corresponding valley azimuths. The basins with rectangular valley geometries had valleys with an azimuth mode nearly parallel to the downslope direction and another azimuth mode perpendicular to the downslope direction. The valley azimuth mode parallel to the downslope direction is attributed to hydrological flow processes while the mode perpendicular to the downslope direction is attributed to fracturing related to the formation or existence of the Mars global dichotomy boundary.

  14. Re-Examining Format Distortion and Orthographic Neighbourhood Size Effects in the Left, Central and Right Visual Fields

    ERIC Educational Resources Information Center

    Mano, Quintino R.; Patrick, Cory J.; Andresen, Elizabeth N.; Capizzi, Kyle; Biagioli, Raschel; Osmon, David C.

    2010-01-01

    Research has shown orthographic neighbourhood size effects (ONS) in the left visual field (LVF) but not in the right visual field (RVF). An earlier study examined the combined effects of ONS and font distortion in the LVF and RVF, but did not find an interaction. The current lexical decision experiment re-examined the interaction between ONS and…

  15. Dynamics of valley pseudospin in single-layer WSe2. Inter-valley scattering mediated by electron-phonon interaction

    NASA Astrophysics Data System (ADS)

    Molina-Sanchez, Alejandro; Sangalli, Davide; Wirtz, Ludger; Marini, Andrea

    In a time-dependent Kerr experiment a circularly polarized laser field is used to selectively populate the K+/- electronic valleys of single-layer WSe2. This carrier population corresponds to a finite pseudospin polarization that dictates the valleytronic properties of WSe2, but whose decay mechanism still remains largely debated. Time-dependent Kerr experiments provide an accurate way to visualize the pseudospin dynamics by measuring the rotation of a linearly polarized probe pulse applied after a circularly polarized and short pump pulse. We present here a clear, accurate and parameter-free description of the valley pseudospin dynamics in single-layer WSe2. By using an ab-initio approach we solve unambiguously the long standing debate about the dominant mechanism that drives the valley depolarization. Our results are in excellent agreement with recent time-dependent Kerr experiments. The decay dynamics and peculiar temperature dependence is explained in terms of electron phonon mediated processes that induce spin-flip inter-valley transitions.

  16. Scaling relationships and concavity of small valley networks on Mars

    NASA Astrophysics Data System (ADS)

    Penido, Julita C.; Fassett, Caleb I.; Som, Sanjoy M.

    2013-01-01

    Valley networks are widely interpreted as the preserved erosional record of water flowing across the martian surface. The manner in which valley morphometric properties scale with drainage area has been widely examined on Earth. Earlier studies assessing these properties on Mars have suggested that martian valleys are morphometrically distinct from those on Earth. However, these earlier measurements were generally made on large valley systems because of the limited topographic data available. In this study, we determine the scaling properties of valley networks at smaller scales than have been previously assessed, using digital elevation models from the High Resolution Stereo Camera (HRSC). We find a Hack's law exponent of 0.74, larger than on Earth, and our measurements also reveal that individual small valleys have concave up, concave down, and quasi-linear longitudinal profiles, consistent with earlier studies of dissected terrain on Mars. However, for many valleys, widths are observed to increase downstream similarly to how they scale in terrestrial channels. The similarities and differences between valley networks on Mars and Earth are consistent with the idea that valleys on Mars are comparatively immature, and precipitation was a likely mechanism for delivering water to these networks.

  17. Gravity and magnetic study of the Pahute Mesa and Oasis Valley region, Nye County, Nevada

    USGS Publications Warehouse

    Mankinen, Edward A.; Hildenbrand, Thomas G.; Dixon, Gary L.; McKee, Edwin H.; Fridrich, Christopher J.; Laczniak, Randell J.

    1999-01-01

    Regional gravity and aeromagnetic maps reveal the existence of deep basins underlying much of the southwestern Nevada volcanic field, approximately 150 km northwest of Las Vegas. These maps also indicate the presence of prominent features (geophysical lineaments) within and beneath the basin fill. Detailed gravity surveys were conducted in order to characterize the nature of the basin boundaries, delineate additional subsurface features, and evaluate their possible influence on the movement of ground-water. Geophysical modeling of gravity and aeromagnetic data indicates that many of the features may be related to processes of caldera formation. Collapse of the various calderas within the volcanic field resulted in dense basement rocks occurring at greater depths within caldera boundaries. Modeling indicates that collapse occurred along faults that are arcuate and steeply dipping. There are indications that the basement in the western Pahute Mesa - Oasis Valley region consists predominantly of granitic and/or fine-grained siliceous sedimentary rocks that may be less permeable to groundwater flow than the predominantly fractured carbonate rock basement to the east and southeast of the study area. The northeast-trending Thirsty Canyon lineament, expressed on gravity and basin thickness maps, separates dense volcanic rocks on the northwest from less dense intracaldera accumulations in the Silent Canyon and Timber Mountain caldera complexes. The source of the lineament is an approximately 2-km wide ring fracture system with step-like differential displacements, perhaps localized on a pre-existing northeast-trending Basin and Range fault. Due to vertical offsets, the Thirsty Canyon fault zone probably juxtaposes rock types of different permeability and, thus, it may act as a barrier to ground-water flow and deflect flow from Pahute Mesa along its flanks toward Oasis Valley. Within the Thirsty Canyon fault zone, highly fractured rocks may serve also as a conduit

  18. 27 CFR 9.100 - Mesilla Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Mesilla Valley. 9.100 Section 9.100 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Mesilla Valley viticultural area is located within Dona Ana County, New Mexico, and El Paso County, Texas...

  19. 27 CFR 9.100 - Mesilla Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Mesilla Valley. 9.100 Section 9.100 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Mesilla Valley viticultural area is located within Dona Ana County, New Mexico, and El Paso County, Texas...

  20. Seismic local site effects characterization in the Andarax River Valley (SE Spain) from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Carmona, Enrique; García-Jerez, Antonio; Luzón, Francisco; Sánchez-Martos, Francisco; Sánchez-Sesma, Francisco J.; Piña, José

    2014-05-01

    This work is focused on the characterization of seismic local effects in the Low Andarax River Valley (SE Spain). The Low Andarax River valley is located in an active seismic region, with the higher seismic hazard values in Spain. The landform is composed mainly by sedimentary materials which increase its seismic hazard due to the amplification of the seismic inputs and spectral resonances. We study seismic local effects in the Low Andarax River by analyzing the Horizontal-to-Vertical Spectral Ratio (HVSR) of ambient noise records. The noise data were recorded during two field campaigns in 2012 and 2013. There have been a total of 374 noise measurements with 15 and 30 minutes duration. The acquisition was performed with a Digital Broadband Seismometer Guralp CMG-6TD. The distance between measurements was about 200 meters, covering an area around 40 km2. There have been 6 significant peak frequencies between 0.3 Hz and 5 Hz. It was possible to find interesting areas with similar spectral peaks that coincide with zones with similar microgravimetric anomalies at the alluvial valley. It is also observed a decrease in the frequency peaks from West to East suggesting increased sediment layer. We also compute the soil models at those sites where geotechnical information is available, assuming that the seismic noise is diffuse. We invert the HVSR for these places using horizontally layered models and in the imaginary part the Green functions at the source. It is observed that the S wave velocity inverted models are consistent with the known geotechnical information obtained from drilled boreholes. We identify the elastodynamic properties of the limestone-dolomite materials with a formation of phyllites and quartzite that form the basement of the depression, and those properties of the Miocene and Pliocene detrital deposits (marls, sandy silts, sands and conglomerates) that fill the valley. These results together with the observed resonant frequencies along the Andarax

  1. 27 CFR 9.78 - Ohio River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Valley.” (b) Approved maps. The approved maps for determining the boundary of the Ohio River Valley... boundary proceeds in a straight line westerly to the town of Dry Ridge in Grant County, Kentucky...

  2. Numerical Simulation of Nocturnal Drainage Flows in Idealized Valley-Tributary Systems.

    NASA Astrophysics Data System (ADS)

    O'Steen, Lance B.

    2000-11-01

    Numerical simulations of nocturnal drainage flow and transport in idealized valley-tributary systems are compared with the Atmospheric Science in Complex Terrain (ASCOT) meteorological field data and tracer studies from the Brush Creek valley of western Colorado. Much of the general valley-tributary flow behavior deduced from observations is qualitatively reproduced in the numerical results. The spatially complex, unsteady nature of the tributary flow found in the field data is also seen in the simulations. Oscillations in the simulated tributary flow are similar to some field observations. However, observed oscillations in the valley flow at the mouth of the tributary could not be reproduced in the numerical results. Thus, hypotheses of strongly coupled valley-tributary flow oscillations, based on field data, cannot be supported by these simulations. Along-valley mass flux calculations based on model results for the valley-tributary system indicate an increase of 5%-10% over a valley without a tributary. Enhanced valley mass fluxes were found from 8 km above the tributary to almost the valley mouth. However, the valley mass fluxes for topography with and without a tributary were nearly equal at the valley outflow. ASCOT field data suggested a tributary mass flow contribution of 5%-15% for a Brush Creek tributary of similar drainage area to the model tributary employed here. Numerical simulations of transport in the nocturnal valley-tributary flow strongly support ASCOT tracer studies in the Pack Canyon tributary of Brush Creek. These results suggest that the valley-tributary interaction can significantly increase plume dispersion under stable conditions. Overall, the simulation results presented here indicate that simple terrain geometries are able to capture many of the salient features of drainage flow in real valley-tributary systems.

  3. The Valley Networks on Mars

    NASA Astrophysics Data System (ADS)

    Gulick, V. C.

    2002-12-01

    Despite three decades of exploration, the valley networks on Mars still seem to raise more questions than they answer. Valley systems have formed in the southern highlands, along some regions of the dichotomy boundary and the south rim of Valles Marineris, around the rim of some impact craters, and on the flanks of some volcanoes. They are found on some of the oldest and youngest terrains as well as on intermediate aged surfaces. There is surprisingly little consensus as to the formation and the paleoclimatic implications of the valley networks. Did the valleys require a persistent solar-driven atmospheric hydrological cycle involving precipitation, surface runoff, infiltration and groundwater outflow as they typically do on Earth? Or are they the result of magmatic or impact-driven thermal cycling of ground water involving persistent outflow and subsequent runoff? Are they the result of some other process(es)? Ground-water sapping, surface-water runoff, debris flows, wind erosion, and formation mechanisms involving other fluids have been proposed. Until such basic questions as these are definitively answered, their significance for understanding paleoclimatic change on Mars remains cloudy. I will review what is known about valley networks using data from both past and current missions. I will discuss what we have learned about their morphology, environments in which they formed, their spatial and temporal associations, possible formation mechanisms, relation to outflow channel and gully formation, as well as the possible implications for past climate change on Mars. Finally I will discuss how future, meter to submeter scale imaging and other remote sensing observations may shed new light on the debate over the origin of these enigmatic features.

  4. Death Valley California as seen from STS-59

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This oblique handheld Hasselblad 70mm photo shows Death Valley, near California's border with Nevada. The valley -- the central feature of Death Valley National Monument -- extends north to south for some 140 miles (225 kilometers). Hemmed in to the east by the Amargosa Range and to the west by the Panamints, its width varies from 5 to 15 miles (8 to 24 kilometers).

  5. Filling a Conical Cavity

    NASA Astrophysics Data System (ADS)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  6. Intermittent Surface Water Connectivity: Fill and Spill Vs. Fill and Merge Dynamics.

    EPA Science Inventory

    Intermittent surface connectivity can influence aquatic systems, since chemical and biotic movements are often associated with water flow. Although often referred to as fill and spill, wetlands also fill and merge. We examined the effects of these connection types on water level...

  7. Intermittent Surface Water Connectivity: Fill and Spill vs. Fill and Merge Dynamics

    EPA Science Inventory

    Intermittent surface connectivity can influence aquatic systems, since chemical and biotic movements are often associated with water flow. Although often referred to as fill and spill, wetlands also fill and merge. We examined the effects of these connection types on water level...

  8. Single crowns versus conventional fillings for the restoration of root-filled teeth.

    PubMed

    Sequeira-Byron, Patrick; Fedorowicz, Zbys; Carter, Ben; Nasser, Mona; Alrowaili, Eman F

    2015-09-25

    Endodontic treatment involves removal of the dental pulp and its replacement by a root canal filling. Restoration of root filled teeth can be challenging due to structural differences between vital and non-vital root-filled teeth. Direct restoration involves placement of a restorative material e.g. amalgam or composite, directly into the tooth. Indirect restorations consist of cast metal or ceramic (porcelain) crowns. The choice of restoration depends on the amount of remaining tooth, and may influence durability and cost. The decision to use a post and core in addition to the crown is clinician driven. The comparative clinical performance of crowns or conventional fillings used to restore root-filled teeth is unknown. This review updates the original, which was published in 2012. To assess the effects of restoration of endodontically treated teeth (with or without post and core) by crowns versus conventional filling materials. We searched the following databases: the Cochrane Oral Health Group's Trials Register, CENTRAL, MEDLINE via OVID, EMBASE via OVID, CINAHL via EBSCO, LILACS via BIREME. We also searched the reference lists of articles and ongoing trials registries.There were no restrictions regarding language or date of publication. The search is up-to-date as of 26 March 2015. Randomised controlled trials (RCTs) or quasi-randomised controlled trials in participants with permanent teeth that have undergone endodontic treatment. Single full coverage crowns compared with any type of filling materials for direct restoration or indirect partial restorations (e.g. inlays and onlays). Comparisons considered the type of post and core used (cast or prefabricated post), if any. Two review authors independently extracted data from the included trial and assessed its risk of bias. We carried out data analysis using the 'treatment as allocated' patient population, expressing estimates of intervention effect for dichotomous data as risk ratios, with 95% confidence

  9. Relations between precipitation and daily and monthly mean flows in gaged, unmined and valley-filled watersheds, Ballard Fork, West Virginia, 1999-2001

    USGS Publications Warehouse

    Messinger, Terence; Paybins, Katherine S.

    2003-01-01

    Large-scale surface mining using valley fills has changed hydrologic storage and processes in the Ballard Fork Watershed in West Virginia. Total unit flow for the 2-year study period (November 15, 1999?November 14, 2001) on the Unnamed Tributary (extensively mined) (11,700 cubic feet per second per square mile) was almost twice that on Spring Branch (unmined) (6,260 cubic feet per second per square mile), and about 1.75 times that on Ballard Fork (downstream, partly mined) (6,690 cubic feet per second per square mile). Unit flow from the Unnamed Tributary exceeded that from the other two streams for all flows analyzed (5?95 percent duration). Unit flow from Ballard Fork exceeded unit flow from Spring Branch about 80 percent of the time, but was about the same for high flows (less than 20 percent duration). The proportional differences among sites were greatest at low flows. Spring Branch was dry for several days in October and November 2000 and for most of October 2001, and the Unnamed Tributary had flow throughout the study period. The increase in flows from mined parts of the Ballard Fork Watershed appears to result from decreases in evapotranspiration caused by removal of trees and soil during mining. During both years, evapotranspiration from the Spring Branch Watershed greatly exceeded that from the Unnamed Tributary Watershed during May through October, when leaves were open. Evapotranspiration from the Unnamed Tributary Watershed slightly exceeded that from the Spring Branch Watershed in February and March during both years. Evapotranspiration, as a percentage of total rainfall, decreased from the first to the second, drier, year from the Unnamed Tributary Watershed (from 61 percent to 49 percent) but changed little from the Spring Branch (from 77 to 76 percent) and Ballard Fork (73 to 76 percent) Watersheds. Precipitation and flow during the study period at three nearby long-term sites, the U.S. Geological Survey stream-gaging station East Fork Twelvepole

  10. Cuyahoga Valley National Park : comprehensive rail study

    DOT National Transportation Integrated Search

    2013-07-25

    Cuyahoga Valley Scenic Railroad (CVSR) has been operating in partnership with Cuyahoga Valley National Park (CVNP) since 1989 under a cooperative agreement. The railroad has been successfully developing and expanding services and ridership for the pa...

  11. Valley photonic crystals for control of spin and topology.

    PubMed

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  12. Valley Hall effect and Nernst effect in strain engineered graphene

    NASA Astrophysics Data System (ADS)

    Niu, Zhi Ping; Yao, Jian-ming

    2018-04-01

    We theoretically predict the existence of tunneling valley Hall effect and Nernst effect in the normal/strain/normal graphene junctions, where a strained graphene is sandwiched by two normal graphene electrodes. By applying an electric bias a pure transverse valley Hall current with longitudinal charge current is generated. If the system is driven by a temperature bias, a valley Nernst effect is observed, where a pure transverse valley current without charge current propagates. Furthermore, the transverse valley current can be modulated by the Fermi energy and crystallographic orientation. When the magnetic field is further considered, we obtain a fully valley-polarized current. It is expected these features may be helpful in the design of the controllable valleytronic devices.

  13. Scaling relations for large Martian valleys

    NASA Astrophysics Data System (ADS)

    Som, Sanjoy M.; Montgomery, David R.; Greenberg, Harvey M.

    2009-02-01

    The dendritic morphology of Martian valley networks, particularly in the Noachian highlands, has long been argued to imply a warmer, wetter early Martian climate, but the character and extent of this period remains controversial. We analyzed scaling relations for the 10 large valley systems incised in terrain of various ages, resolvable using the Mars Orbiter Laser Altimeter (MOLA) and the Thermal Emission Imaging System (THEMIS). Four of the valleys originate in point sources with negligible contributions from tributaries, three are very poorly dissected with a few large tributaries separated by long uninterrupted trunks, and three exhibit the dendritic, branching morphology typical of terrestrial channel networks. We generated width-area and slope-area relationships for each because these relations are identified as either theoretically predicted or robust terrestrial empiricisms for graded precipitation-fed, perennial channels. We also generated distance-area relationships (Hack's law) because they similarly represent robust characteristics of terrestrial channels (whether perennial or ephemeral). We find that the studied Martian valleys, even the dendritic ones, do not satisfy those empiricisms. On Mars, the width-area scaling exponent b of -0.7-4.7 contrasts with values of 0.3-0.6 typical of terrestrial channels; the slope-area scaling exponent $\\theta$ ranges from -25.6-5.5, whereas values of 0.3-0.5 are typical on Earth; the length-area, or Hack's exponent n ranges from 0.47 to 19.2, while values of 0.5-0.6 are found on Earth. None of the valleys analyzed satisfy all three relations typical of terrestrial perennial channels. As such, our analysis supports the hypotheses that ephemeral and/or immature channel morphologies provide the closest terrestrial analogs to the dendritic networks on Mars, and point source discharges provide terrestrial analogs best suited to describe the other large Martian valleys.

  14. The Role of Source Material in Basin Sedimentation, as Illustrated within Eureka Valley, Death Valley National Park, CA.

    NASA Astrophysics Data System (ADS)

    Lawson, M. J.; Yin, A.; Rhodes, E. J.

    2015-12-01

    Steep landscapes are known to provide sediment to sink regions, but often petrological factors can dominate basin sedimentation. Within Eureka Valley, in northwestern Death Valley National Park, normal faulting has exposed a steep cliff face on the western margin of the Last Chance range with four kilometers of vertical relief from the valley floor and an angle of repose of nearly 38 degrees. The cliff face is composed of Cambrian limestone and dolomite, including the Bonanza King, Carrara and Wood Canyon formations. Interacting with local normal faulting, these units preferentially break off the cliff face in coherent blocks, which result in landslide deposits rather than as finer grained material found within the basin. The valley is well known for a large sand dune, which derives its sediment from distal sources to the north, instead of from the adjacent Last Chance Range cliff face. During the Holocene, sediment is sourced primary from the northerly Willow Wash and Cucomungo canyon, a relatively small drainage (less than 80 km2) within the Sylvan Mountains. Within this drainage, the Jurassic quartz monzonite of Beer Creek is heavily fractured due to motion of the Fish Valley Lake - Death Valley fault zone. Thus, the quartz monzonite is more easily eroded than the well-consolidated limestone and dolomite that forms the Last Change Range cliff face. As well, the resultant eroded material is smaller grained, and thus more easily transported than the limestone. Consequently, this work highlights an excellent example of the strong influence that source material can have on basin sedimentation.

  15. Boulder Valley Schools Teen Parenting Program.

    ERIC Educational Resources Information Center

    Parmerlee-Greiner, Gloria

    To meet the needs of pregnant and parenting adolescents in Boulder Valley (Colorado), the local public school district has developed the Boulder Valley Schools Teen Parenting Program, now in its 12th year. The program was designed to help teen parents to mature to meet the challenges of parenting, enhance the school district's dropout/intervention…

  16. Collective Bargaining Agreement between Antelope Valley Community College and Antelope Valley College Faculty Association, June 13, 1988.

    ERIC Educational Resources Information Center

    Antelope Valley Coll., Lancaster, CA.

    The collective bargaining agreement between Antelope Valley Community College and the Antelope Valley College Faculty Association outlines the terms of employment for all full- and part-time certificated employees of the District, covering the period from June 1988 to June 1990. The articles in the agreement set forth provisions related to: (1)…

  17. Volume of Valley Networks on Mars and Its Hydrologic Implications

    NASA Astrophysics Data System (ADS)

    Luo, W.; Cang, X.; Howard, A. D.; Heo, J.

    2015-12-01

    Valley networks on Mars are river-like features that offer the best evidence for water activities in its geologic past. Previous studies have extracted valley network lines automatically from digital elevation model (DEM) data and manually from remotely sensed images. The volume of material removed by valley networks is an important parameter that could help us infer the amount of water needed to carve the valleys. A progressive black top hat (PBTH) transformation algorithm has been adapted from image processing to extract valley volume and successfully applied to simulated landform and Ma'adim Valles, Mars. However, the volume of valley network excavation on Mars has not been estimated on a global scale. In this study, the PBTH method was applied to the whole Mars to estimate this important parameter. The process was automated with Python in ArcGIS. Polygons delineating the valley associated depressions were generated by using a multi-flow direction growth method, which started with selected high point seeds on a depth grid (essentially an inverted valley) created by PBTH transformation and grew outward following multi-flow direction on the depth grid. Two published versions of valley network lines were integrated to automatically select depression polygons that represent the valleys. Some crater depressions that are connected with valleys and thus selected in the previous step were removed by using information from a crater database. Because of large distortion associated with global dataset in projected maps, the volume of each cell within a valley was calculated using the depth of the cell multiplied by the spherical area of the cell. The volumes of all the valley cells were then summed to produce the estimate of global valley excavation volume. Our initial result of this estimate was ~2.4×1014 m3. Assuming a sediment density of 2900 kg/m3, a porosity of 0.35, and a sediment load of 1.5 kg/m3, the global volume of water needed to carve the valleys was

  18. Valley excitons in two-dimensional semiconductors

    DOE PAGES

    Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; ...

    2014-12-30

    Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibitmore » remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.« less

  19. Morphogenetic evolution of the Têt river valley (eastern Pyrenees) using 10Be/21Ne cosmogenic burial dating

    NASA Astrophysics Data System (ADS)

    Sartégou, Amandine; Blard, Pierre-Henri; Braucher, Régis; Bourlès, Didier L.; Calvet, Marc; Zimmermann, Laurent; Tibari, Bouchaïb; Hez, Gabriel; Gunnell, Yanni; Aumaitre, Georges; Keddadouche, Karim

    2016-04-01

    The rates and chronologies of valley incision are closely modulated by the tectonic uplift of active mountain ranges and were controlled by repeated climate changes during the Quaternary. The continental collision between the Iberian and Eurasian plates induced a double vergence orogen, the Pyrenees, which has been considered as a mature mountain range in spite of significant seismicity (e.g. Chevrot et al., 2011) and evidence of neotectonics (e.g. Goula et al., 1999). Nevertheless, recent studies indicate that the range may have never reached a steady state (Ford et al., in press). One option for resolving this controversy is to quantify the incision rates since the Miocene by reconstructing the vertical movement of geometric markers such as fluvial terraces. However, the few available ages from the Pyrenean terrace systems do not exceed the middle Pleistocene. Thus, to enlarge the time span of this dataset, we studied alluvium-filled horizontal epiphreatic passages in limestone karstic networks. Such landforms are used as substitutes of fluvial terraces because they represent former valley floors (e.g. Palmer, 2007; Audra et al., 2013). They record the transient position of former local base levels during the process of valley deepening. The Têt river valley (southern Pyrenees) was studied near the Villefranche-de-Conflent limestone gorge where 8 cave levels have been recognized over a vertical height of 600 meters. Given that 26Al/10Be cosmogenic burial dating in this setting was limited to the last ~5 Ma (Calvet et al., 2015), here we used the cosmogenic 10Be/21Ne method in order to restore a more complete chronology of valley incision (e.g. Balco & Shuster, 2009; McPhilipps et al., 2016). Burial age results for alluvial deposits from 12 caves document incision rates since the Langhian (~14 Ma). Preliminary results indicate a history of valley deepening in successive stages. The data show a regular incision rate of 70-80 mm/a from the Langhian to the Messinian

  20. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: indicators of recharge and ground-water flow

    USGS Publications Warehouse

    Panno, S.V.; Hackley, Keith C.; Cartwright, K.; Liu, Chao-Li

    1994-01-01

    A conceptual model of the ground-water flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA), east-central Illinois, was developed using major ion chemistry and isotope geochemistry. The MVA is a 'basal' fill in the east-west trending buried bedrock valley composed of clean, permeable sand and gravel to thicknesses of up to 61 m. It is covered by a thick sequence of glacial till containing thinner bodies of interbedded sand and gravel. Ground water from the MVA was found to be characterized by clearly defined geochemical regions with three distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west. Ground water in the Onarga Valley, a northeastern tributary of the MVA, is of two types, a mixed cation-SO42- type and a mixed cation-HCO3- type. The ground water is enriched in Na+, Ca2+, Mg2+, and SO42- which appears to be the result of an upward hydraulic gradient and interaction of deeper ground water with oxidized pyritic coals and shale. We suggest that recharge to the Onarga Valley and overlying aquifers is 100% from bedrock (leakage) and lateral flow from the MVA to the south. The central MVA (south of the Onarga Valley) is composed of relatively dilute ground water of a mixed cation-HCO3- type, with low total dissolved solids, and very low concentrations of Cl- and SO42-. Stratigraphic relationships of overlying aquifers and ground-water chemistry of these and the MVA suggest recharge to this region of the MVA (predominantly in Champaign County) is relatively rapid and primarily from the surface. Midway along the westerly flow path of the MVA (western MVA), ground water is a mixed cation-HCO3- type with relatively high Cl-, where Cl- increases abruptly by one to ??? two orders of magnitude. Data suggest that the increase in Cl- is the result of leakage of saline ground water from bedrock into the MVA. Mass-balance calculations indicate that approximately 9.5% of

  1. Geology and ground water in Russian River Valley areas and in Round, Laytonville, and Little Lake Valleys, Sonoma and Mendocino Counties, California

    USGS Publications Warehouse

    Cardwell, G.T.

    1965-01-01

    This report describes the occurrence, availability, and quality of ground water in seven valley areas along the course of the Russian River in Sonoma and Mendocino Counties, Calif., and in three valleys in the upper drainage reach of the Eel River in Mendocino County. Except for the westward-trending lower Russian River valley, the remaining valley areas along the Russian River (Healdsburg, Alexander, Cloverdale, Sanel, Ukiah, and Potter Valleys) lie in northwest-trending structurally controlled depressions formed in marine rocks of Jurassic and Cretaceous age. The principal aquifer in all the valleys is the alluvium of Recent age, which includes highly permeable channel deposits of gravel and sand. Water for domestic, irrigation, industrial, and other uses is developed by (1) direct diversion from the Russian River and its tributaries, (2) withdrawal of ground water and river water from shallow wells near the river, and (3) withdrawals of ground water from wells in alluvial deposits at varying distances from the river. Surface water in the Russian River and most tributaries is of good chemical quality. The water is a calcium magnesium bicarbonate type and contains 75,200 parts per million of dissolved solids. Ground water is also of good chemical quality throughout most of the drainage basin, but the concentration of dissolved solids (100-300 parts per million) is somewhat higher than that in the surface water. Round, Laytonville, and Little Lake Valleys are in central and northern Mendocino County in the drainage basin of the northwestward flowing Eel River. In Round Valley the alluvium of Recent age yields water of good chemical quality in large quantities. Yields are lower and the chemical quality poorer in Laytonville Valley. Ground water in Little Lake Valley is relatively undeveloped. Selected descriptions of wells, drillers' logs, chemical analyses, and hydrographs showing water-level fluctuations are included in the report. Accompanying maps show the

  2. Geologic features of the Connecticut Valley, Massachusetts, as related to recent floods

    USGS Publications Warehouse

    Jahns, Richard Henry

    1947-01-01

    gorge is due to a filling by glacial debris, notably by sediments deposited in late glacial lakes. Following disappearance of the last ice sheet and draining of the associated, lakes, the Connecticut River resumed existence and began a new chapter in its history. In those areas where the river regained its preglacial course, it now flows on sediments considerably above the rock floor of the old gorge. Where the gorge was narrow and deep, the upper parts of its walls have confined the postglacial river within rather narrow limits, as in the northern part of the state. Where it was sufficiently wide to be filled by glacial sediments over large areas, the postglacial river has meandered broadly, as in the area north of the Holyoke-Mount Tom Range. In two areas in Massachusetts and in one immediately south in Connecticut, however, the river was forced from its preglacial gorge, and its new channel has been superimposed on bedrock, with development of rapids and falls. Each of these postglacial rock channels acts as a spillway whose level controls the local base level of the river as far upstream as the next spillway. These spillways are not to be confused with other, more spectacular gorges, which are of preglacial origin and in which the present river does not flow on bedrock. The Recent Connecticut has formed extensive flood plains and terraces through repeated sequences of erosion by lateral corrosion and downward scour, followed by deposition of .silt and sand veneers. These features, although irregular in detail, appear to be assignable to five general levels, whose means are approximately 49, 37, 30, 18, and 10 feet above present mean river level. In addition, an 80-foot terrace in the northern part of the valley was left perched, in its present position when the Connecticut abandoned its course over. a rock barrier near Turners Falls in favor of an adjacent much lower gap. The normal terraces and flood plains, slope very gently away from their riverw

  3. In-stream wetlands and their significance for channel filling and the catchment sediment budget, Jugiong Creek, New South Wales

    NASA Astrophysics Data System (ADS)

    Zierholz, C.; Prosser, I. P.; Fogarty, P. J.; Rustomji, P.

    2001-06-01

    Evidence is presented here of recent and extensive infilling of the incised channel network of the Jugiong Creek catchment, SE Australia. The present channel network resulted from widespread stream and gully incision in the period between 1880 and 1920. Our survey shows that gully floors have been colonised extensively by emergent macrophyte vegetation since before 1944, forming continuous, dense, in-stream wetlands, which now cover 25% of the channel network in the 2175 km 2 catchment and have so far trapped almost 2,000,000 t of nutrient-enriched, fine sediments. This mass of sediments represents the equivalent of 4.7 years of annual sediment production across the catchment and in some tributaries, more than 20 years of annual yield is stored within in-stream wetlands. Previous work on the late Quaternary stratigraphy of the region has shown that there were repeated phases of channel incision in the past following which the channels quickly stabilised by natural means and then filled with fine-grained sediment to the point of channel extinction, creating unchannelled swampy valley floors. The current formation and spread of in-stream wetlands is interpreted to be the onset of the next infill phase but it is not known whether present conditions will allow complete channel filling and reformation of the pre-existing swampy valley floors. Nevertheless, further spread of in-stream wetlands is likely to increase the sediment trapping capacity and further reduce the discharge of sediments and nutrients into the Murrumbidgee River. The in-stream wetlands may provide a significant capacity to buffer erosion from gullied catchments of considerable size (up to 300 km 2) as an adjunct to current riparian management options. They may also assist the recovery of sediment-impacted channels downstream.

  4. Observation of ultralong valley lifetime in WSe 2/MoS 2 heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jonghwan; Jin, Chenhao; Chen, Bin

    The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcogenides (TMD) is expected to be markedly long due to the unique spin-valley locking behavior, where the intervalley scattering of the electron simultaneously requires a large momentum transfer to the opposite valley and a flip of the electron spin. However, the experimentally observed valley lifetime in 2D TMDs has been limited to tens of nanoseconds thus far. We report efficient generation of microsecond-long-lived valley polarization in WSe 2/MoS 2 heterostructuresmore » by exploiting the ultrafast charge transfer processes in the heterostructure that efficiently creates resident holes in the WSe 2 layer. These valley-polarized holes exhibit near-unity valley polarization and ultralong valley lifetime: We observe a valley-polarized hole population lifetime of more than 1 μs and a valley depolarization lifetime (that is, intervalley scattering lifetime) of more than 40 μs at 10 K. The near-perfect generation of valley-polarized holes in TMD heterostructures, combined with ultralong valley lifetime, which is orders of magnitude longer than previous results, opens up new opportunities for novel valleytronics and spintronics applications.« less

  5. Observation of ultralong valley lifetime in WSe 2/MoS 2 heterostructures

    DOE PAGES

    Kim, Jonghwan; Jin, Chenhao; Chen, Bin; ...

    2017-07-26

    The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcogenides (TMD) is expected to be markedly long due to the unique spin-valley locking behavior, where the intervalley scattering of the electron simultaneously requires a large momentum transfer to the opposite valley and a flip of the electron spin. However, the experimentally observed valley lifetime in 2D TMDs has been limited to tens of nanoseconds thus far. We report efficient generation of microsecond-long-lived valley polarization in WSe 2/MoS 2 heterostructuresmore » by exploiting the ultrafast charge transfer processes in the heterostructure that efficiently creates resident holes in the WSe 2 layer. These valley-polarized holes exhibit near-unity valley polarization and ultralong valley lifetime: We observe a valley-polarized hole population lifetime of more than 1 μs and a valley depolarization lifetime (that is, intervalley scattering lifetime) of more than 40 μs at 10 K. The near-perfect generation of valley-polarized holes in TMD heterostructures, combined with ultralong valley lifetime, which is orders of magnitude longer than previous results, opens up new opportunities for novel valleytronics and spintronics applications.« less

  6. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  7. 27 CFR 9.29 - Sonoma Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Sonoma Valley. 9.29 Section 9.29 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.29 Sonoma Valley. (a) Name. The name of the viticultural...

  8. 27 CFR 9.23 - Napa Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Napa Valley. 9.23 Section 9.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.23 Napa Valley. (a) Name. The name of the viticultural area...

  9. 27 CFR 9.23 - Napa Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Napa Valley. 9.23 Section 9.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.23 Napa Valley. (a) Name. The name of the viticultural area...

  10. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  11. 27 CFR 9.29 - Sonoma Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Sonoma Valley. 9.29 Section 9.29 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.29 Sonoma Valley. (a) Name. The name of the viticultural...

  12. 27 CFR 9.23 - Napa Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Napa Valley. 9.23 Section 9.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.23 Napa Valley. (a) Name. The name of the viticultural area...

  13. 27 CFR 9.23 - Napa Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Napa Valley. 9.23 Section 9.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.23 Napa Valley. (a) Name. The name of the viticultural area...

  14. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Bennett Valley. 9.142 Section 9.142 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.142 Bennett Valley. (a) Name. The name of the...

  15. 27 CFR 9.29 - Sonoma Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Sonoma Valley. 9.29 Section 9.29 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.29 Sonoma Valley. (a) Name. The name of the viticultural...

  16. 27 CFR 9.29 - Sonoma Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Sonoma Valley. 9.29 Section 9.29 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.29 Sonoma Valley. (a) Name. The name of the viticultural...

  17. 27 CFR 9.53 - Alexander Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Alexander Valley. 9.53 Section 9.53 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.53 Alexander Valley. (a) Name. The name of the...

  18. 27 CFR 9.53 - Alexander Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Alexander Valley. 9.53 Section 9.53 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.53 Alexander Valley. (a) Name. The name of the...

  19. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  20. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  1. 27 CFR 9.23 - Napa Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Napa Valley. 9.23 Section 9.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.23 Napa Valley. (a) Name. The name of the viticultural area...

  2. 27 CFR 9.29 - Sonoma Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Sonoma Valley. 9.29 Section 9.29 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.29 Sonoma Valley. (a) Name. The name of the viticultural...

  3. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Bennett Valley. 9.142 Section 9.142 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.142 Bennett Valley. (a) Name. The name of the...

  4. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bennett Valley. 9.142 Section 9.142 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.142 Bennett Valley. (a) Name. The name of the...

  5. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bennett Valley. 9.142 Section 9.142 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.142 Bennett Valley. (a) Name. The name of the...

  6. 27 CFR 9.53 - Alexander Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Alexander Valley. 9.53 Section 9.53 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.53 Alexander Valley. (a) Name. The name of the...

  7. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  8. 27 CFR 9.53 - Alexander Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Alexander Valley. 9.53 Section 9.53 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.53 Alexander Valley. (a) Name. The name of the...

  9. 27 CFR 9.53 - Alexander Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Alexander Valley. 9.53 Section 9.53 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.53 Alexander Valley. (a) Name. The name of the...

  10. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Bennett Valley. 9.142 Section 9.142 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.142 Bennett Valley. (a) Name. The name of the...

  11. Rift Valley fever in Namibia, 2010.

    PubMed

    Monaco, Federica; Pinoni, Chiara; Cosseddu, Gian Mario; Khaiseb, Siegfried; Calistri, Paolo; Molini, Umberto; Bishi, Alec; Conte, Annamaria; Scacchia, Massimo; Lelli, Rossella

    2013-12-01

    During May-July 2010 in Namibia, outbreaks of Rift Valley fever were reported to the National Veterinary Service. Analysis of animal specimens confirmed virus circulation on 7 farms. Molecular characterization showed that all outbreaks were caused by a strain of Rift Valley fever virus closely related to virus strains responsible for outbreaks in South Africa during 2009-2010.

  12. Numerical modeling of incised-valley deposits in Tokyo lowland for the last 13 kyrs

    NASA Astrophysics Data System (ADS)

    Kubo, Y.; Syvitski, J. P.; Hutton, E. W.; Tanabe, S.

    2006-12-01

    A coupled-simulation by the hydrologic model HydroTrend and the stratigraphic model SedFlux is applied to the incised-valley-fill deposits in the Tokyo lowland for the last 13,000 years. The postglacial sediments supplied by paleo Tonegawa River have formed deltaic deposits controlled by eustatic sea-level rise after LGM. The effects of changes in sea level, climate, and morphology on the resultant architecture of the deposits are simulated and analyzed by the numerical models. Synthetic sediment flux from the paleo Tonegawa is computed by the hydrologic model HydroTrend. The model predicts variation in average rate of sediment production over geological time scale from changes in drainage area, precipitation, temperature and morphology. Random variation based on statistic climate data is added to the predicted average values to provide daily sediment discharge. The model prediction indicates that, despite 80% increase in drainage area in the past, competing effects of decreased precipitation resulted in relatively stable sediment discharge over the last 13,000 years. On the other hand, variation in daily sediment discharge shows drastic increase during infrequent storm events. Possible occurrence of hyperpycnal flows at the river mouth was indicated during such storms, which produced daily sediment load ten times larger than average yearly sediment discharge. The estimated sediment supply is used as input to the process-based forward-model 2D-SedFlux. SedFlux is able to simulate transport and deposition of sediments by such processes as river plume, bedload dumping and ocean storms with changing boundary conditions of sea level and basement morphology. The simulation is based on the initial paleo-morphology reconstructed from integrated core analysis from the area. 2D-SedFlux successfully predicts the formation of transgressive deposits and subsequent prograding delta deposits, and the results are comparable to general architecture of incised-valley fills in the

  13. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  14. Total carbon and nitrogen in mineral soil after 26 years of prescribed fire: Long Valley and Fort Valley Experimental Forests (P-53)

    Treesearch

    Daniel G. Neary; Sally M. Haase; Steven T. Overby

    2008-01-01

    Prescribed fire was introduced to high density ponderosa pine stands at Fort Valley and Long Valley Experimental Forests in 1976. This paper reports on mineral soil total carbon (C) and nitrogen (N) at Long Valley. Total soil C and N levels were highly variable and exhibited an increasing, but inconsistent, concentration trend related to burn interval. Total N ranged...

  15. Hydrology of the Little Androscoggin River Valley aquifer, Oxford County, Maine

    USGS Publications Warehouse

    Morrissey, D.J.

    1983-01-01

    The Little Androscoggin River valley aquifer, a 15-square-mile sand and gravel valley-fill aquifer in southwestern Maine, is the source of water for the towns of Norway, Oxford, and South Paris. Estimated inflows to the aquifer during the 1981 water year were 16.4 cubic feet per second from precipitation directly on the aquifer, 11.2 cubic feet per second from till covered uplands adjacent to the aquifer, and 1.4 cubic feet per second from surface-water leakage. Outflows from the aquifer were 26.7 cubic feet per second to surface water and 2.3 cubic feet per second to wells. A finite-difference ground-water flow model was used to simulate conditions observed in the aquifer during 1981. Model conditions observed in the aquifer during 1981. Model simulations indicate that a 50 percent reduction of average 1981 recharge to the aquifer would cause water level declines of up to 20 feet in some areas. Model simulations of increased pumping at a high yield well in the northern part of the aquifer indicate that resulting changes in the water table will not be sufficient to intercept groundwater contaminated by a sludge disposal site. Water in the aquifer is low in dissolved solids (average for 38 samples was 67 mg/L), slightly acidic and soft. Ground-water contamination has occurred near a sludge-disposal site and in the vicinity of a sanitary landfill. Dissolved solids in ground water near the sludge disposal site were as much as ten times greater than average background values for the aquifer. (USGS)

  16. Inverse steptoes in Las Bombas volcano, as an evidence of explosive volcanism in a solidified lava flow field. Southern Mendoza-Argentina

    NASA Astrophysics Data System (ADS)

    Risso, Corina; Prezzi, Claudia; Orgeira, María Julia; Nullo, Francisco; Margonari, Liliana; Németh, Karoly

    2015-11-01

    Here we describe the unusual genesis of steptoes in Las Bombas volcano- Llancanelo Volcanic Field (LVF) (Pliocene - Quaternary), Mendoza, Argentina. Typically, a steptoe forms when a lava flow envelops a hill, creating a well-defined stratigraphic relationship between the older hill and the younger lava flow. In the Llancanelo Volcanic Field, we find steptoes formed with an apparent normal stratigraphic relationship but an inverse age-relationship. Eroded remnants of scoria cones occur in ;circular depressions; in the lava field. To express the inverse age-relationship between flow fields and depression-filled cones here we define this landforms as inverse steptoes. Magnetometric analysis supports this inverse age relationship, indicating reverse dipolar magnetic anomalies in the lava field and normal dipolar magnetization in the scoria cones (e.g. La Bombas). Negative Bouguer anomalies calculated for Las Bombas further support the interpretation that the scoria cones formed by secondary fracturing on already solidified basaltic lava flows. Advanced erosion and mass movements in the inner edge of the depressions created a perfectly excavated circular depression enhancing the ;crater-like; architecture of the preserved landforms. Given the unusual genesis of the steptoes in LVF, we prefer the term inverse steptoe for these landforms. The term steptoe is a geomorphological name that has genetic implications, indicating an older hill and a younger lava flow. Here the relationship is reversed.

  17. Valley switch in a graphene superlattice due to pseudo-Andreev reflection

    NASA Astrophysics Data System (ADS)

    Beenakker, C. W. J.; Gnezdilov, N. V.; Dresselhaus, E.; Ostroukh, V. P.; Herasymenko, Y.; Adagideli, I.; Tworzydło, J.

    2018-06-01

    Dirac electrons in graphene have a valley degree of freedom that is being explored as a carrier of information. In that context of "valleytronics" one seeks to coherently manipulate the valley index. Here, we show that reflection from a superlattice potential can provide a valley switch: Electrons approaching a pristine-graphene-superlattice-graphene interface near normal incidence are reflected in the opposite valley. We identify the topological origin of this valley switch, by mapping the problem onto that of Andreev reflection from a topological superconductor, with the electron-hole degree of freedom playing the role of the valley index. The valley switch is ideal at a symmetry point of the superlattice potential, but remains close to 100% in a broad parameter range.

  18. Wilderness, water, and quality of life in the Bitterroot Valley

    Treesearch

    Kari Gunderson; Clint Cook

    2007-01-01

    The Bitterroot Valley is located in western Montana, U.S.A. Most of the Bitterroot Range above the Bitterroot Valley is protected as wilderness, and is a source of much of the water that flows down and through the valley floor. With an annual precipitation of only 12.3 inches, the Bitterroot Valley is classified as a high desert environment. Today the quality of life...

  19. Fracture controls on valley persistence: the Cairngorm Granite pluton, Scotland

    NASA Astrophysics Data System (ADS)

    Hall, A. M.; Gillespie, M. R.

    2017-09-01

    Valleys are remarkably persistent features in many different tectonic settings, but the reasons for this persistence are rarely explored. Here, we examine the structural controls on valleys in the Cairngorms Mountains, Scotland, part of the passive margin of the eastern North Atlantic. We consider valleys at three scales: straths, glens and headwater valleys. The structural controls on valleys in and around the Cairngorm Granite pluton were examined on satellite and aerial photographs and by field survey. Topographic lineaments, including valleys, show no consistent orientation with joint sets or with sheets of microgranite and pegmatitic granite. In this granite landscape, jointing is not a first-order control on valley development. Instead, glens and headwater valleys align closely to quartz veins and linear alteration zones (LAZs). LAZs are zones of weakness in the granite pluton in which late-stage hydrothermal alteration and hydro-fracturing have greatly reduced rock mass strength and increased permeability. LAZs, which can be kilometres long and >700 m deep, are the dominant controls on the orientation of valleys in the Cairngorms. LAZs formed in the roof zone of the granite intrusion. Although the Cairngorm pluton was unroofed soon after emplacement, the presence of Old Red Sandstone (ORS) outliers in the terrain to the north and east indicates that the lower relief of the sub-ORS basement surface has been lowered by <500 m. Hence, the valley patterns in and around the Cairngorms have persisted through >1 km of vertical erosion and for 400 Myr. This valley persistence is a combined product of regionally low rates of basement exhumation and of the existence of LAZs in the Cairngorm pluton and sub-parallel Caledonide fractures in the surrounding terrain with depths that exceed 1 km.

  20. Airborne Dust Models in Valley Fever Research

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.; Galgiani, J. N.; Vujadinovic, M.; Pejanovic, G.; Vukovic, A. J.; Prasad, A. K.; Djurdjevic, V.; Nickovic, S.

    2011-12-01

    Dust storms (haboobs) struck Phoenix, Arizona, in 2011 on July 5th and again on July 18th. One potential consequence: an estimated 3,600 new cases of Valley Fever in Maricopa County from the first storm alone. The fungi, Coccidioides immitis, the cause of the respiratory infection, Valley Fever, lives in the dry desert soils of the American southwest and southward through Mexico, Central America and South America. The fungi become part of the dust storm and, a few weeks after inhalation, symptoms of Valley Fever may appear, including pneumonia-like illness, rashes, and severe fatigue. Some fatalities occur. Our airborne dust forecast system predicted the timing and extent of the storm, as it has done with other, often different, dust events. Atmosphere/land surface models can be part of public health services to reduce risk of Valley Fever and exacerbation of other respiratory and cardiovascular illness.

  1. Statistical evaluation of metal fill widths for emulated metal fill in parasitic extraction methodology

    NASA Astrophysics Data System (ADS)

    J-Me, Teh; Noh, Norlaili Mohd.; Aziz, Zalina Abdul

    2015-05-01

    In the chip industry today, the key goal of a chip development organization is to develop and market chips within a short time frame to gain foothold on market share. This paper proposes a design flow around the area of parasitic extraction to improve the design cycle time. The proposed design flow utilizes the usage of metal fill emulation as opposed to the current flow which performs metal fill insertion directly. By replacing metal fill structures with an emulation methodology in earlier iterations of the design flow, this is targeted to help reduce runtime in fill insertion stage. Statistical design of experiments methodology utilizing the randomized complete block design was used to select an appropriate emulated metal fill width to improve emulation accuracy. The experiment was conducted on test cases of different sizes, ranging from 1000 gates to 21000 gates. The metal width was varied from 1 x minimum metal width to 6 x minimum metal width. Two-way analysis of variance and Fisher's least significant difference test were used to analyze the interconnect net capacitance values of the different test cases. This paper presents the results of the statistical analysis for the 45 nm process technology. The recommended emulated metal fill width was found to be 4 x the minimum metal width.

  2. California: Diamond Valley

    Atmospheric Science Data Center

    2014-05-15

    ... article title:  Watching the Creation of Southern California's Largest Reservoir     ... Valley Lake is designed to provide protection against drought and a six-month emergency supply in the event of earthquake damage to a ...

  3. Mzab Valley, Algeria

    NASA Image and Video Library

    2011-03-24

    Located 600 km south of Algiers, Algeria in the heart of the Sahara Desert, the five ksour fortified villages of the MZab Valley form an extraordinarily homogenous ensemble in this image captured by NASA Terra spacecraft.

  4. Spin- and Valley-Dependent Electronic Structure in Silicene Under Periodic Potentials

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao; Li, Yun-Fang; Tian, Hong-Yu

    2018-03-01

    We study the spin- and valley-dependent energy band and transport property of silicene under a periodic potential, where both spin and valley degeneracies are lifted. It is found that the Dirac point, miniband, band gap, anisotropic velocity, and conductance strongly depend on the spin and valley indices. The extra Dirac points appear as the voltage potential increases, the critical values of which are different for electron with different spins and valleys. Interestingly, the velocity is greatly suppressed due to the electric field and exchange field, other than the gapless graphene. It is possible to achieve an excellent collimation effect for a specific spin near a specific valley. The spin- and valley-dependent band structure can be used to adjust the transport, and perfect transmissions are observed at Dirac points. Therefore, a remarkable spin and valley polarization is achieved which can be switched effectively by the structural parameters. Importantly, the spin and valley polarizations are greatly enhanced by the disorder of the periodic potential.

  5. Human-induced stream channel abandonment/capture and filling of floodplain channels within the Atchafalaya River Basin, Louisiana

    USGS Publications Warehouse

    Kroes, Daniel E.; Kraemer, Thomas F.

    2013-01-01

    The Atchafalaya River Basin is a distributary system of the Mississippi River containing the largest riparian area in the lower Mississippi River Valley and the largest remaining forested bottomland in North America. Reductions in the area of open water in the Atchafalaya have been occurring over the last 100 years, and many historical waterways are increasingly filled by sediment. This study examines two cases of swamp channels (3/s) that are filling and becoming unnavigable as a result of high sediment loads and slow water velocities. The water velocities in natural bayous are further reduced because of flow capture by channels constructed for access. Bathymetry, flow, suspended sediment, deposited bottom-material, isotopes, and photointerpretation were used to characterize the channel fill. On average, water flowing through these two channels lost 23% of the suspended sediment load in the studied reaches. Along one of the studied reaches, two constructed access channels diverted significant flow out of the primary channel and into the adjacent swamp. Immediately downstream of each of the two access channels, the cross-sectional area of the studied channel was reduced. Isotopic analyses of bottom-material cores indicate that bed filling has been rapid and occurred after detectable levels of Cesium-137 were no longer being deposited. Interpretation of aerial photography indicates that water is bypassing the primary channels in favor of the more hydraulically efficient access channels, resulting in low or no-velocity flow conditions in the primary channel. These swamp channel conditions are typical in the Atchafalaya River Basin where relict large channel dimensions result in flow velocities that are normally too low to carry fine-grained sediment. Constructed channels increase the rate of natural channel avulsion and abandonment as a result of flow capture.

  6. 2012-2013 Delaware Valley Household Travel Survey | Transportation Secure

    Science.gov Websites

    Data Center | NREL 12-2013 Delaware Valley Household Travel Survey 2012-2013 Delaware Valley Household Travel Survey The 2012-2013 Delaware Valley Household Travel Survey collected data for multiple ) sponsored the survey in collaboration with AbtSRBI. Methodology A sampling strategy was designed to recruit

  7. The Impact of Soil Properties on Valley-Bottom Gully Form, Northwest Highlands of Ethiopia.

    NASA Astrophysics Data System (ADS)

    Amare, S. D.; Langendoen, E. J.; Keesstra, S.; van der Ploeg, M. J.; Steenhuis, T. S.; Tilahun, S. A.

    2017-12-01

    Gully erosion is an important environmental and food security challenge facing the world. Despite the immense damages resulting from gully erosion, comprehensive studies on the processes of gully formation and its management strategies are limited. This is especially true for valley-bottom gullies, which form under different conditions and are caused by different processes than hillslope gullies. A recent review on valley-bottom gully erosion causes and controlling factors identified that gully geomorphological processes, particularly related to gully bank retreat, governed gully occurrence and reclamations. However, most valley-bottom gully erosion studies do not consider gully bank stability and how it is impacted by soil hydrology and soil intrinsic properties. The aim is to analyze these impacts on gully bank retreat in the Koga river watershed, Ethiopia, for Nitisol and Vertisols, using field and numerical modeling approaches. Field observations showed gully network in Vertisols were greater than those in Nitisols. On the other hand, Nitisol gullies are wider and deeper than Vertisols. Monitoring of hydro-meteorological and soil data was started in June 2017 and will continue until the end of the 2017 rainy season (September) and for 2018 rainy periods as well. Thirty-six piezometers were installed at 4m average depth covering an area of 20 km2 near the gully reaches. Ground anchors were used to measure soil swelling and shrinkage. Soil moisture content and potential were measured using GS1 Soil Moisture sensors and MPS-6 Water Potential sensors. Gully bank soil physicochemical and engineering properties have been sampled and analyzed. Preliminary results from the early portion of the rainy season showed that most piezometers were already filled up with water. However, relatively deep (2m) water tables were recorded in piezometers located near the gully banks. The soil matric potential dropped from the onset of the rainy season (-6800 kPa ) towards the middle

  8. Fluvial valleys on Martian volcanoes

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.; Gulick, Virginia C.

    1987-01-01

    Channels and valleys were known on the Martian volcanoes since their discovery by the Mariner 9 mission. Their analysis has generally centered on interpretation of possible origins by fluvial, lava, or viscous flows. The possible fluvial dissection of Martian volcanoes has received scant attention in comparison to that afforded outflow, runoff, and fretted channels. Photointerpretative, mapping, and morphometric studies of three Martian volcanoes were initiated: Ceraunius Tholus, Hecate Tholus, and Alba Patera. Preliminary morphometric results indicate that, for these three volcanoes, valley junction angles increase with decreasing slope. Drainage densities are quite variable, apparently reflecting complex interactions in the landscape-forming factors described. Ages of the Martian volcanoes were recently reinterpreted. This refined dating provides a time sequence in which to evaluate the degradational forms. An anomaly has appeared from the initial study: fluvial valleys seem to be present on some Martian volcanoes, but not on others of the same age. Volcanic surfaces characterized only by high permeability lava flows may have persisted without fluvial dissection.

  9. Directional interlayer spin-valley transfer in two-dimensional heterostructures

    DOE PAGES

    Schaibley, John R.; Rivera, Pasqual; Yu, Hongyi; ...

    2016-12-14

    Van der Waals heterostructures formed by two different monolayer semiconductors have emerged as a promising platform for new optoelectronic and spin/valleytronic applications. In addition to its atomically thin nature, a two-dimensional semiconductor heterostructure is distinct from its three-dimensional counterparts due to the unique coupled spin-valley physics of its constituent monolayers. In this paper, we report the direct observation that an optically generated spin-valley polarization in one monolayer can be transferred between layers of a two-dimensional MoSe 2–WSe 2 heterostructure. Using non-degenerate optical circular dichroism spectroscopy, we show that charge transfer between two monolayers conserves spin-valley polarization and is only weaklymore » dependent on the twist angle between layers. Finally, our work points to a new spin-valley pumping scheme in nanoscale devices, provides a fundamental understanding of spin-valley transfer across the two-dimensional interface, and shows the potential use of two-dimensional semiconductors as a spin-valley generator in two-dimensional spin/valleytronic devices for storing and processing information.« less

  10. 76 FR 67055 - Amendment of Class E Airspace; Valley City, ND

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ...-0605; Airspace Docket No. 11-AGL-13] Amendment of Class E Airspace; Valley City, ND AGENCY: Federal... Valley City, ND. Decommissioning of the Valley City non-directional beacon (NDB) at Barnes County Municipal Airport, Valley City, ND, has made this action necessary to enhance the safety and management of...

  11. Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986-2000

    USGS Publications Warehouse

    Doran, P.T.; McKay, C.P.; Clow, G.D.; Dana, G.L.; Fountain, A.G.; Nylen, T.; Lyons, W.B.

    2002-01-01

    Climate observations from the McMurdo dry valleys, East Antarctica are presented from a network of seven valley floor automatic meteorological stations during the period 1986 to 2000. Mean annual temperatures ranged from -14.8??C to -30.0??C, depending on the site and period of measurement. Mean annual relative humidity is generally highest near the coast. Mean annual wind speed increases with proximity to the polar plateau. Site-to-site variation in mean annual solar flux and PAR is due to exposure of each station and changes over time are likely related to changes in cloudiness. During the nonsummer months, strong katabatic winds are frequent at some sites and infrequent at others, creating large variation in mean annual temperature owing to the warming effect of the winds. Katabatic wind exposure appears to be controlled to a large degree by the presence of colder air in the region that collects at low points and keeps the warm less dense katabatic flow from the ground. The strong influence of katabatic winds makes prediction of relative mean annual temperature based on geographical position (elevation and distance from the coast) alone, not possible. During the summer months, onshore winds dominate and warm as they progress through the valleys creating a strong linear relationship (r2 = 0.992) of increasing potential temperature with distance from the coast (0.09??C km-1). In contrast to mean annual temperature, summer temperature lends itself quite well to model predictions, and is used to construct a statistical model for predicting summer dry valley temperatures at unmonitored sites. Copyright 2002 by the American Geophysical Union.

  12. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers

    NASA Astrophysics Data System (ADS)

    Tong, Wen-Yi; Duan, Chun-Gang

    2017-08-01

    In analogy to all-electric spintronics, all-electric valleytronics, i.e., valley manipulation via electric means, becomes an exciting new frontier as it may bring revolutions in the field of data storage with ultra-high speed and ultra-low power consumption. The existence of the anomalous valley Hall effect in ferrovalley materials demonstrates the possibility of electrical detection for valley polarization. However, in previously proposed valley-polarized monolayers, the anomalous valley Hall effect is controlled by external magnetic fields. Here, through elaborate structural design, we propose the antiferrovally bilayer as an ideal candidate for realizing all-electric valleytronic devices. Using the minimal k.p model, we show that the energy degeneracy between valley indexes in such system can be lifted by electric approaches. Subsequently, the anomalous valley Hall effect strongly depends on the electric field as well. Taking the bilayer VSe2 as an example, all-electric tuning and detecting of anomalous valley Hall effect is confirmed by density-functional theory calculations, indicating that the valley information in such antiferrovalley bilayer can be reversed by an electric field perpendicular to the plane of the system and easily probed through the sign of the Hall voltage.

  13. Hydrologic reconnaissance of Rush Valley, Tooele County, Utah

    USGS Publications Warehouse

    Hood, James W.; Price, Don; Waddell, K.M.

    1969-01-01

    This report is the third in a series by the U. S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes the water resources of the western basins of Utah. Its purpose is to present available hydrologic data for Rush Valley, to provide an evaluation of the potential water-resources development of the valley, and to identify needed studies that would help provide an understanding of the valley's water supply.

  14. Hydrologic reconnaissance of Skull Valley, Tooele County, Utah

    USGS Publications Warehouse

    Hood, James W.; Waddell, K.M.

    1968-01-01

    This report is the second in a series by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes the water resources of the western basins of Utah. Its purpose is to present available hydrologic data on Skull Valley, to provide an evaluation of the potential water-resource development of the valley, and to identify needed studies that would help provide an understandingof the valley's water supply.

  15. Build-and-fill sequences: How subtle paleotopography affects 3-D heterogeneity of potential reservoir facies

    USGS Publications Warehouse

    McKirahan, J.R.; Goldstein, R.H.; Franseen, E.K.

    2005-01-01

    This study analyzes the three-dimensional variability of a 20-meter-thick section of Pennsylvanian (Missourian) strata over a 600 km2 area of northeastern Kansas, USA. It hypothesizes that sea-level changes interact with subtle variations in paleotopography to influence the heterogeneity of potential reservoir systems in mixed carbonate-silidclastic systems, commonly produdng build-and-fill sequences. For this analysis, ten lithofacies were identified: (1) phylloid algal boundstone-packstone, (2) skeletal wackestone-packstone, (3) peloidal, skeletal packstone, (4) sandy, skeletal grainstone-packstone, (5) oolite grainstone-packstone, (6) Osagia-brachiopod packstone, (7) fossiliferous siltstone, (8) lenticular bedded-laminated siltstone and fine sandstone, (9) organic-rich mudstone and coal, and (10) massive mudstone. Each facies can be related to depositional environment and base-level changes to develop a sequence stratigraphy consisting of three sequence boundaries and two flooding surfaces. Within this framework, eighteen localities are used to develop a threedimensional framework of the stratigraphy and paleotopography. The studied strata illustrate the model of "build-and-fill". In this example, phylloid algal mounds produce initial relief, and many of the later carbonate and silidclastic deposits are focused into subtle paleotopographic lows, responding to factors related to energy, source, and accommodation, eventually filling the paleotopography. After initial buildup of the phylloid algal mounds, marine and nonmarine siliciclastics, with characteristics of both deltaic lobes and valley fills, were focused into low areas between mounds. After a sea-level rise, oolitic carbonates formed on highs and phylloid algal facies accumulated in lows. A shift in the source direction of siliciclastics resulted from flooding or filling of preexisting paleotopographic lows. Fine-grained silidclastics were concentrated in paleotopographic low areas and resulted in clay

  16. Death Valley, California

    NASA Image and Video Library

    2009-06-29

    Death Valley, Calif., has the lowest point in North America, Badwater at 85.5 meters 282 feet below sea level. It is also the driest and hottest location in North America. This image is from NASA Terra spacecraft.

  17. Sedimentation architecture of the volcanically-dammed Alf valley in the West Eifel Volcanic Field, Germany

    NASA Astrophysics Data System (ADS)

    Eichhorn, Luise; Lange, Thomas; Engelhardt, Jörn; Polom, Ulrich; Pirrung, Michael; Büchel, Georg

    2015-04-01

    In the southeastern part of the Quaternary West Eifel Volcanic Field, the Alf valley with its morphologically wide (~ 500 m) and flat valley bottom is visibly outstanding. This flat valley bottom was formed during the Marine Isotope Stage 2 due to fluviolacustrine sediments which deposited upstream of a natural volcanic dam. The dam consisted of lava and scoria breccia from the Wartgesberg Volcano complex (Cipa 1958, Hemfler et al. 1991) that erupted ~ 31 BP (40Ar/ 39Ar dating on glass shards, Mertz, pers. communication 2014). Due to this impoundment, the Alf creek turned into a dendritic lake, trapping the catchment sediments. The overall aim is to create the sedimentation architecture of the Alf valley. In comparison to maar archives like Holzmaar or Meerfelder Maar in the vicinity, the fluviolacustrine sediments of the Alf valley show clay-silt lamination despite the water percolation. This archive covers the transition from the Last Glacial Maximum to Early Holocene (Pirrung et al. 2007). Focus of this study is the creation of a 3D model by applying the program ESRI ArcGIS 10.2 to reconstruct the pre-volcanic Alf valley. Moreover, the sedimentation architecture is reconstructed and the sediment fill quantified. Therefore, the digital elevation model with 5 m resolution from the State Survey and Geobasis Information of Rhineland-Palatinate, polreduced magnetic data measured on top of the Strohn lava stream, shear seismic data and core stratigraphies were utilized. Summarizing previous results, Lake Alf had a catchment area of ~ 55 km² (Meerfelder Maar: 1.27 km²) and a surface area of 8.2 km² (Meerfelder Maar: 0.24 km²) considering a maximum lake water level of 410 m a.s.l.. In the deepest parts (~ 50 m) of Lake Alf, lake sediments are laminated, up to 21 m thick and show a very high sedimentation rate ~ 3 mm a-1 (Dehner Maar ~ 1.5 mm a-1, (Sirocko et al. 2013)). The sediments become coarser upstream und stratigraphically above the fine-grained lake sediments

  18. Systolic ventricular filling.

    PubMed

    Torrent-Guasp, Francisco; Kocica, Mladen J; Corno, Antonio; Komeda, Masashi; Cox, James; Flotats, A; Ballester-Rodes, Manel; Carreras-Costa, Francesc

    2004-03-01

    The evidence of the ventricular myocardial band (VMB) has revealed unavoidable coherence and mutual coupling of form and function in the ventricular myocardium, making it possible to understand the principles governing electrical, mechanical and energetical events within the human heart. From the earliest Erasistratus' observations, principal mechanisms responsible for the ventricular filling have still remained obscured. Contemporary experimental and clinical investigations unequivocally support the attitude that only powerful suction force, developed by the normal ventricles, would be able to produce an efficient filling of the ventricular cavities. The true origin and the precise time frame for generating such force are still controversial. Elastic recoil and muscular contraction were the most commonly mentioned, but yet, still not clearly explained mechanisms involved in the ventricular suction. Classical concepts about timing of successive mechanical events during the cardiac cycle, also do not offer understandable insight into the mechanism of the ventricular filling. The net result is the current state of insufficient knowledge of systolic and particularly diastolic function of normal and diseased heart. Here we summarize experimental evidence and theoretical backgrounds, which could be useful in understanding the phenomenon of the ventricular filling. Anatomy of the VMB, and recent proofs for its segmental electrical and mechanical activation, undoubtedly indicates that ventricular filling is the consequence of an active muscular contraction. Contraction of the ascendent segment of the VMB, with simultaneous shortening and rectifying of its fibers, produces the paradoxical increase of the ventricular volume and lengthening of its long axis. Specific spatial arrangement of the ascendent segment fibers, their interaction with adjacent descendent segment fibers, elastic elements and intra-cavitary blood volume (hemoskeleton), explain the physical principles

  19. Air flow analysis in the upper Río Negro Valley (Argentina)

    NASA Astrophysics Data System (ADS)

    Cogliati, M. G.; Mazzeo, N. A.

    2006-06-01

    The so called Upper Río Negro Valley in Argentina is one of the most important fruit and vegetable production regions of the country. It comprises the lower valleys of the Limay and Neuquén rivers and the upper Negro river valley. Out of the 41,671 cultivated hectares, 84.6% are cultivated with fruit trees, especially apple, pear and stone fruit trees. Late frosts occurring when trees are sensitive to low temperatures have a significant impact on the regional production. This study presents an analysis of air flow characteristics in the Upper Río Negro Valley and its relationship with ambient air flow. To such effect, observations made when synoptic-scale weather patterns were favorable for radiative frosts (light wind and clear sky) or nocturnal temperature inversion in the lower layer were used. In the Negro river valley, both wind channeling and downward horizontal momentum transport from ambient wind were observed; in nighttime, very light wind events occurred, possibly associated with drainage winds from the nearby higher levels of the barda. In the Neuquén river valley, the prevailing effect appeared to be forced channeling, consistent with the results obtained in valleys where the synoptic scale wind crossed the axis of the valley. In the Limay river valley, the flow was observed to blow parallel to the longitudinal valley axis, possibly influenced by pressure gradient and forced channeling.

  20. Titan's fluvial valleys: Morphology, distribution, and spectral properties

    USGS Publications Warehouse

    Langhans, M.H.; Jaumann, R.; Stephan, K.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Baines, K.H.; Nicholson, P.D.; Lorenz, R.D.; Soderblom, L.A.; Soderblom, J.M.; Sotin, Christophe; Barnes, J.W.; Nelson, R.

    2012-01-01

    Titan's fluvial channels have been investigated based on data obtained by the Synthetic Aperture Radar (SAR) instrument and the Visible and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. In this paper, a database of fluvial features is created based on radar-SAR data aiming to unveil the distribution and the morphologic and spectral characteristics of valleys on Titan on a global scale. It will also study the spatial relations between fluvial valleys and Titan's geologic units and spectral surface units which have become accessible thanks to Cassini-VIMS data. Several distinct morphologic types of fluvial valleys can be discerned by SAR-images. Dendritic valley networks appear to have much in common with terrestrial dendritic systems owing to a hierarchical and tree-shaped arrangement of the tributaries which is indicative of an origin from precipitation. Dry valleys constitute another class of valleys resembling terrestrial wadis, an indication of episodic and strong flow events. Other valley types, such as putative canyons, cannot be correlated with rainfall based on their morphology alone, since it cannot be ruled out that they may have originated from volcanic/tectonic action or groundwater sapping. Highly developed and complex fluvial networks with channel lengths of up to 1200 km and widths of up to 10 km are concentrated only at a few locations whereas single valleys are scattered over all latitudes. Fluvial valleys are frequently found in mountainous areas. Some terrains, such as equatorial dune fields and undifferentiated plains at mid-latitudes, are almost entirely free of valleys. Spectrally, fluvial terrains are often characterized by a high reflectance in each of Titan's atmospheric windows, as most of them are located on Titan's bright 'continents'. Nevertheless, valleys are spatially associated with a surface unit appearing blue due to its higher reflection at 1.3??m in a VIMS false color RGB composite with R: 1.59/1.27??m, G: 2

  1. Erosion of steepland valleys by debris flows

    USGS Publications Warehouse

    Stock, J.D.; Dietrich, W.E.

    2006-01-01

    Episodic debris flows scour the rock beds of many steepland valleys. Along recent debris-flow runout paths in the western United States, we have observed evidence for bedrock lowering, primarily by the impact of large particles entrained in debris flows. This evidence may persist to the point at which debris-flow deposition occurs, commonly at slopes of less than ???0.03-0.10. We find that debris-flow-scoured valleys have a topographic signature that is fundamentally different from that predicted by bedrock river-incision models. Much of this difference results from the fact that local valley slope shows a tendency to decrease abruptly downstream of tributaries that contribute throughgoing debris flows. The degree of weathering of valley floor bedrock may also decrease abruptly downstream of such junctions. On the basis of these observations, we hypothesize that valley slope is adjusted to the long-term frequency of debris flows, and that valleys scoured by debris flows should not be modeled using conventional bedrock river-incision laws. We use field observations to justify one possible debris-flow incision model, whose lowering rate is proportional to the integral of solid inertial normal stresses from particle impacts along the flow and the number of upvalley debris-flow sources. The model predicts that increases in incision rate caused by increases in flow event frequency and length (as flows gain material) downvalley are balanced by rate reductions from reduced inertial normal stress at lower slopes, and stronger, less weathered bedrock. These adjustments lead to a spatially uniform lowering rate. Although the proposed expression leads to equilibrium long-profiles with the correct topographic signature, the crudeness with which the debris-flow dynamics are parameterized reveals that we are far from a validated debris-flow incision law. However, the vast extent of steepland valley networks above slopes of ???0.03-0.10 illustrates the need to understand debris

  2. Groundwater quality in Coachella Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  3. Filling the blanks in temporal intervals: the type of filling influences perceived duration and discrimination performance

    PubMed Central

    Horr, Ninja K.; Di Luca, Massimiliano

    2015-01-01

    In this work we investigate how judgments of perceived duration are influenced by the properties of the signals that define the intervals. Participants compared two auditory intervals that could be any combination of the following four types: intervals filled with continuous tones (filled intervals), intervals filled with regularly-timed short tones (isochronous intervals), intervals filled with irregularly-timed short tones (anisochronous intervals), and intervals demarcated by two short tones (empty intervals). Results indicate that the type of intervals to be compared affects discrimination performance and induces distortions in perceived duration. In particular, we find that duration judgments are most precise when comparing two isochronous and two continuous intervals, while the comparison of two anisochronous intervals leads to the worst performance. Moreover, we determined that the magnitude of the distortions in perceived duration (an effect akin to the filled duration illusion) is higher for tone sequences (no matter whether isochronous or anisochronous) than for continuous tones. Further analysis of how duration distortions depend on the type of filling suggests that distortions are not only due to the perceived duration of the two individual intervals, but they may also be due to the comparison of two different filling types. PMID:25717310

  4. [Mutant prevention concentrations of antibacterial agents to ocular pathogenic bacteria].

    PubMed

    Liang, Qing-Feng; Wang, Zhi-Qun; Li, Ran; Luo, Shi-Yun; Deng, Shi-Jing; Sun, Xu-Guang

    2009-01-01

    To establish a method to measure mutant prevention concentration (MPC) in vitro, and to measure MPC of antibacterial agents for ocular bacteria caused keratitis. It was an experimental study. Forty strains of ocular bacteria were separated from cornea in Beijing Institute of Ophthalmology, which included 8 strains of Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Pseudomonas aeruginosa and Klebsiella pneumoniae respectively. The minimal inhibitory concentration (MIC) of the levofloxacin (LVF), ofloxacin (OFL), ciprofloxacin (CIP), norfloxacin (NFL), tobramycin (TOB) and chloromycetin (CHL) were determined by agar dilution method from National Committee of Clinical Laboratory Standard (NCCLS). The MPC were measured by accumulate-bacterial methods with bacterial population inoculated more than 1.2 x 10(10) colony forming units per milliliter with Mueller-Hinton broth and tryptic soy agar plate. With the software of SPSS 11.0, the datum such as the range of MIC, MPC, MIC90 and MPC90 were calculated, and the selection index (MPC90/ MI90) and mutant selection window (MSW) were obtained. The MI90 of LVF and TOB (4 mg/L) to Staphylococcus aureus strains were the lowest. CIP showed the lowest MIC90 (0.25 mg/L) to Pseudomonas aeruginosa among six kinds of antibacterial agents. The MIC90 of LVF to Staphylococcus epidermidis (256 mg/L), Streptococcus pneumoniae (1 mg/L) and Klebsiella pneumoniae (0.25 mg/L) were lower than other antibacterial agents. The MPC90, MSW and the MPC90/MIC90 of levofloxacin showed lower values compared with other antibacterial medicines. From all the datum, the MIC90 of CHL was the highest and the activity was the weakest. Although the activity of LVF was higher to every kind of bacteria, CIP had the highest activity antibacterial to Pseudomonas aeruginosa. The capacity of CHL and TOB was weaker than Quinolones for restricting resistant mutants on ocular bacteria. LVF had the strongest capacity for restricting resistant

  5. Rift Valley fever outbreak, southern Mauritania, 2012.

    PubMed

    Sow, Abdourahmane; Faye, Ousmane; Ba, Yamar; Ba, Hampathé; Diallo, Diawo; Faye, Oumar; Loucoubar, Cheikh; Boushab, Mohamed; Barry, Yahya; Diallo, Mawlouth; Sall, Amadou Alpha

    2014-02-01

    After a period of heavy rainfall, an outbreak of Rift Valley fever occurred in southern Mauritania during September-November 2012. A total of 41 human cases were confirmed, including 13 deaths, and 12 Rift Valley fever virus strains were isolated. Moudjeria and Temchecket Departments were the most affected areas.

  6. Crack sealing and filling: best practices.

    DOT National Transportation Integrated Search

    2015-10-01

    This study investigated the current state of practice for crack sealing/filling. In addition, the INDOT crack sealing/filling practice was : experimentally evaluated for the effectiveness of crack sealing/filling, the effectiveness of routing, the pe...

  7. 27 CFR 9.37 - California Shenandoah Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false California Shenandoah Valley. 9.37 Section 9.37 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Boundaries. The Shenandoah Valley viticultural Area is located in portions of Amador and El Dorado Counties...

  8. 27 CFR 9.37 - California Shenandoah Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false California Shenandoah Valley. 9.37 Section 9.37 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Boundaries. The Shenandoah Valley viticultural Area is located in portions of Amador and El Dorado Counties...

  9. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  10. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  11. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  12. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  13. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  14. Detection and Response for Rift Valley fever

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever is a viral disease that impacts domestic livestock and humans in Africa and the Middle East, and poses a threat to military operations in these areas. We describe a Rift Valley fever Risk Monitoring website, and its ability to predict risk of disease temporally and spatially. We al...

  15. Illinois Valley Industry Retention Program. Final Report.

    ERIC Educational Resources Information Center

    Allen, John P.

    The Illinois Valley Industry Retention Program was conceived with the goals of retaining existing industries in the area and saving presently available jobs for the area's citizens. A program committee, formed in March 1982 of representatives from state government, Illinois Valley Community College (IVCC), and local businesses, undertook a survey…

  16. Stable isotopic compositions of early calcite cements in the Middle Devonian Coralville Formation (Cedar Valley Group), eastern Iowa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludvigson, G.A.; Gonzalez, L.S.; Witzke, B.J.

    1993-03-01

    The Middle-Upper Devonian Cedar Valley Gp in Iowa is subdivided into four formations each representing a broad transgressive-regressive (T-R) cycle of deposition. Cycles consist of basal open marine facies that shallow upward into capping peritidal facies. Results from ongoing diagenetic studies of the Coralville Fm (late Givetian), the second T-R cycle of the Cedar Valley Gp, have focused attention on the origins of early cements. Early calcite cements in the Coralville Fm of Johnson County, Iowa, include blocky equant spars filling fenestral voids in birdseye limestones of the Iowa City Mbr and isopachous bladed spars that occur throughout the Coralville.more » Bladed spars fill stromatactis and microkarstic voids in the Iowa City Mbr, and sheltered voids in underlying open-marine skeletal packstones of the Cou Falls Mbr (lower Coralville cycle). The bladed spars include nonluminescent inclusion-free domains that contain up to 4,000 ppm Mg, and luminescent inclusion-rich domains that contain less than 2,000 ppm Mg. Birdseye spars have a constructive oscillatory luminescent-nonluminescent zonation controlled by Mn contents and contain less than 1,000 ppm Mg. Nonluminescent domains in bladed spars have the heaviest oxygen isotopic compositions of all components in the Coralville, similar to the isotopically heaviest nonluminescent brachiopods but have [delta][sup 13]C values ranging from [minus]3 to [minus]5 [per thousand]. They are interpreted to have precipitated from marine fluids saturated by CO[sub 2] produced from bacterial oxidation of organic matter. Altered luminescent domains in the bladed spars have the same [delta][sup 13]C compositions, but have widely varying [delta][sup 18]O compositions, ranging to [minus]9 [per thousand].« less

  17. An Ancient Valley Network

    NASA Image and Video Library

    2017-05-09

    Most of the oldest terrains on Mars have eroded into branching valleys, as seen here in by NASA's Mars Reconnaisance Orbiter, much like many land regions of Earth are eroded by rain and snowmelt runoff. This is the primary evidence for major climate change on Mars billions of years ago. How the climate of Mars could have supported a warmer and wetter environment has been the subject of scientific debates for 40 years. A full-resolution enhanced color closeup reveals details in the bedrock and dunes on the valley floor (upper left). The bedrock of ancient Mars has been hardened and cemented by groundwater. https://photojournal.jpl.nasa.gov/catalog/PIA21630

  18. Shear design expressions for concrete filled steel tube and reinforced concrete filled tube components.

    DOT National Transportation Integrated Search

    2016-06-01

    Concrete-filled steel tubes (CFSTs) and reinforced concrete-filled steel tubes (RCFSTs) are increasingly : used in transportation structures as piers, piles, caissons or other foundation components. While the axial : and flexural properties of CFTs h...

  19. EPA Region 1 - Map Layers for Valley ID Tool (Hosted Feature Service)

    EPA Pesticide Factsheets

    The Valley Service Feature Layer hosts spatial data for EPA Region 1's Valley Identification Tool. These layers contain attribute information added by EPA R1 GIS Center to help identify populated valleys:- Fac_2011NEI: Pollution sources selected from the National Emissions Inventory (EPA, 2011).- NE_Towns_PopValleys: New England Town polygons (courtesy USGS), with Population in Valleys and Population Density in Valleys calculated by EPA R1 GIS, from 2010 US Census blocks. - VT_E911: Vermont residences (courtesy VT Center for Geographic Information E-911).

  20. Valley photonic crystals for control of spin and topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu

    2016-11-28

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing1,2,3,4. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points5,6,7,8,9,10. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials11,12,13,14,15. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley–spin locking behaviour results in selective net spin flow insidemore » bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.« less

  1. Valley Physics in Non-Hermitian Artificial Acoustic Boron Nitride

    NASA Astrophysics Data System (ADS)

    Wang, Mudi; Ye, Liping; Christensen, J.; Liu, Zhengyou

    2018-06-01

    The valley can serve as a new degree of freedom in the manipulation of particles or waves in condensed matter physics, whereas systems containing combinations of gain and loss elements constitute rich building units that can mimic non-Hermitian properties. By introducing gain and loss in artificial acoustic boron nitride, we show that the acoustic valley states and the valley-projected edge states display exotic behaviors in that they sustain either attenuated or amplified wave propagation. Our findings show how non-Hermiticity introduces a mechanism in tuning topological protected valley transports, which may have significance in advanced wave control for sensing and communication applications.

  2. Smart Valley Infrastructure.

    ERIC Educational Resources Information Center

    Maule, R. William

    1994-01-01

    Discusses prototype information infrastructure projects in northern California's Silicon Valley. The strategies of the public and private telecommunications carriers vying for backbone services and industries developing end-user infrastructure technologies via office networks, set-top box networks, Internet multimedia, and "smart homes"…

  3. Acoustic valley edge states in a graphene-like resonator system

    NASA Astrophysics Data System (ADS)

    Yang, Yahui; Yang, Zhaoju; Zhang, Baile

    2018-03-01

    The concept of valley physics, as inspired by the recent development in valleytronic materials, has been extended to acoustic crystals for manipulation of air-borne sound. Many valleytronic materials follow the model of a gapped graphene. Yet the previously demonstrated valley acoustic crystal adopted a mirror-symmetry-breaking mechanism, lacking a direct counterpart in condensed matter systems. In this paper, we investigate a two-dimensional (2D) periodic acoustic resonator system with inversion symmetry breaking, as an analogue of a gapped graphene monolayer. It demonstrates the quantum valley Hall topological phase for sound waves. Similar to a gapped graphene, gapless topological valley edge states can be found at a zigzag domain wall separating different domains with opposite valley Chern numbers, while an armchair domain wall hosts no gapless edge states. Our study offers a route to simulate novel valley phenomena predicted in gapped graphene and other 2D materials with classical acoustic waves.

  4. Observation of topological valley transport of sound in sonic crystals

    NASA Astrophysics Data System (ADS)

    Lu, Jiuyang; Qiu, Chunyin; Ye, Liping; Fan, Xiying; Ke, Manzhu; Zhang, Fan; Liu, Zhengyou

    2017-04-01

    The concept of valley pseudospin, labelling quantum states of energy extrema in momentum space, is attracting attention because of its potential as a new type of information carrier. Compared with the non-topological bulk valley transport, realized soon after predictions, topological valley transport in domain walls is extremely challenging owing to the inter-valley scattering inevitably induced by atomic-scale imperfections--but an electronic signature was recently observed in bilayer graphene. Here, we report the experimental observation of topological valley transport of sound in sonic crystals. The macroscopic nature of sonic crystals permits a flexible and accurate design of domain walls. In addition to a direct visualization of the valley-selective edge modes through spatial scanning of the sound field, reflection immunity is observed in sharply curved interfaces. The topologically protected interface transport of sound, strikingly different from that in traditional sound waveguides, may serve as the basis for designing devices with unconventional functions.

  5. Unravelling recent environmental change in a lowland river valley, eastern Ireland: geoarchaeological applications

    NASA Astrophysics Data System (ADS)

    Foster, Gez; Turner, Jonathan

    2010-05-01

    This paper reports the preliminary findings of an Irish Heritage Council INSTAR funded research project on the geoarchaeology and fluvial geomorphology of the lower River Boyne valley, eastern Ireland. The nature and evolution of the contemporary Boyne floodplain at Dunmoe, Co. Meath (53° 40' 22.8" N, 6° 37' 54.7" W) has been investigated using a multi-technique approach combining field and terrestrial LiDAR-based geomorphological mapping, radiocarbon dating of channel migration activity, electrical resistivity tomography surveys of sub-surface topography and high-resolution X-ray and XRF geochemical characterisation of fine-grained sediment fill sequences. All of these lines of evidence support a tripartite sub-division of the floodplain. Valley marginal floodplain Zone 1 is characterised by a colluvial sediment fill which has buried an irregular ditch-basin-platform surface containing recent archaeological material. Subtle variations in mapped elevation suggest that the buried surface may represent the site of an abandoned river-side complex, possibly a small docking area or port. Geomorphological field relationships suggest that the possible archaeological site was connected to a former bank line position of the main River Boyne (floodplain Zone 2) via a small canal. Radiocarbon dating of Zone 2 channel gravels suggests that the channel associated with this bank position was abandoned some time before 1490-1610 AD. Subsequent vertical and lateral channel migration, the onset of which has been radiocarbon dated to the 17th or 18th century AD, led to the development of the lowest and most recent floodplain surface (Zone 3). The sedimentology and geochemistry of the Zone 2 and 3 fluvial sediment sequences suggests that recent centuries have involved an increase in fluvial flood risk, evidenced by the burial of alluvial soils by bedded, shell-rich sands. A more complete understanding of the timing and environmental drivers of increasing flood risk is anticipated

  6. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field.

    PubMed

    Zhao, Chuan; Norden, Tenzin; Zhang, Peiyao; Zhao, Puqin; Cheng, Yingchun; Sun, Fan; Parry, James P; Taheri, Payam; Wang, Jieqiong; Yang, Yihang; Scrace, Thomas; Kang, Kaifei; Yang, Sen; Miao, Guo-Xing; Sabirianov, Renat; Kioseoglou, George; Huang, Wei; Petrou, Athos; Zeng, Hao

    2017-08-01

    Exploiting the valley degree of freedom to store and manipulate information provides a novel paradigm for future electronics. A monolayer transition-metal dichalcogenide (TMDC) with a broken inversion symmetry possesses two degenerate yet inequivalent valleys, which offers unique opportunities for valley control through the helicity of light. Lifting the valley degeneracy by Zeeman splitting has been demonstrated recently, which may enable valley control by a magnetic field. However, the realized valley splitting is modest (∼0.2 meV T -1 ). Here we show greatly enhanced valley spitting in monolayer WSe 2 , utilizing the interfacial magnetic exchange field (MEF) from a ferromagnetic EuS substrate. A valley splitting of 2.5 meV is demonstrated at 1 T by magnetoreflectance measurements and corresponds to an effective exchange field of ∼12 T. Moreover, the splitting follows the magnetization of EuS, a hallmark of the MEF. Utilizing the MEF of a magnetic insulator can induce magnetic order and valley and spin polarization in TMDCs, which may enable valleytronic and quantum-computing applications.

  7. Principal facts for gravity stations in the Elko, Steptoe Valley, Coyote Spring Valley, and Sheep Range areas, eastern and southern Nevada

    USGS Publications Warehouse

    Berger, D.L.; Schaefer, D.H.; Frick, E.A.

    1990-01-01

    Principal facts for 537 gravity stations in the carbonate-rock province of eastern and southern Nevada are tabulated and presented. The gravity data were collected in support of groundwater studies in several valleys. The study areas include the Elko area, northern Steptoe Valley, Coyote Spring Valley, and the western Sheep Range area. The data for each site include values for latitude, longitude, altitude, observed gravity, free- air anomaly, terrain correction, and Bouguer anomaly (calculated at a bedrock density of 2.67 g/cu cm. (USGS)

  8. Scaling the Morphology of Sapping and Pressurized Groundwater Experiments to Martian Valleys

    NASA Astrophysics Data System (ADS)

    Marra, W. A.; Kleinhans, M. G.

    2013-12-01

    Various valleys exist on Mars, which shows the former existence of fluvial activity and thus liquid water at the surface. Although these valleys show similarities with some valleys on Earth, many morphological features are unique for Mars or are very rare on Earth. Therefore, we lack knowledge about the formative processes of these enigmatic valleys. In this study, we explored possible groundwater scenarios for the formation of these valleys using flume experiments, as there are no pure Earth analogues for these systems. We aim to infer their formative processes from morphological properties. A series of flume experiments were carried out in a 4x6x1 m experimental setup, where we observed the valley formation as result from seeping groundwater by both local and distal groundwater sources and by pressurized groundwater release. Time-lapse imagery and DEMs of the experiments show the morphological development, associated processes, and landscape evolution. Indicators of the processes where we particularly looked at were changes in valley slope, cross-sectional shape, the relations between valley dimensions, and regional landscape properties as drainage density and valley size distributions. Hydrological modelling assists in scaling the observed experimental features to real-world systems. Additionally, we looked at valleys on Earth in the Atacama Desert, at Box canyon in Idaho, valleys around Kohala on Hawaii and Apalachicola bluffs in Florida to test the applicability of our methods to real-world systems. In the seeping groundwater valleys, valleys develop due to a combination of mass-wasting failures, mudflows and fluvial flow. The latter two processes are expressed in the final morphology by a break in slope. The mass wasting processes result in U-shaped valleys, which are more pronounced in distal groundwater cases. However, in real-world cases of similar shaped valleys, the cross-sectional shape seems strongly influenced by the strength of the material as well

  9. Crustal Spreading in Southern California: The Imperial Valley and the Gulf of California formed by the rifting apart of a continental plate.

    PubMed

    Elders, W A; Rex, R W; Robinson, P T; Biehler, S; Meidav, T

    1972-10-06

    The current excitement among geologists and geophysicists stemming from the "new global tectonics" has led to a widespread, speculative reinterpretation of continental geology. The Gulf of California and its continuation into the Imperial Valley provide an excellent opportunity for studying the border zone between the North American and Pacific plates, and an interface of continental and oceanic tectonics. The Salton trough, the landward extension of the gulf, is a broad structural depression, comparable in size with the deeper marine basins of the southern part of the gulf, but here partially filled with sediments deposited by the Colorado River.

  10. Development of a design space and predictive statistical model for capsule filling of low-fill-weight inhalation products.

    PubMed

    Faulhammer, E; Llusa, M; Wahl, P R; Paudel, A; Lawrence, S; Biserni, S; Calzolari, V; Khinast, J G

    2016-01-01

    The objectives of this study were to develop a predictive statistical model for low-fill-weight capsule filling of inhalation products with dosator nozzles via the quality by design (QbD) approach and based on that to create refined models that include quadratic terms for significant parameters. Various controllable process parameters and uncontrolled material attributes of 12 powders were initially screened using a linear model with partial least square (PLS) regression to determine their effect on the critical quality attributes (CQA; fill weight and weight variability). After identifying critical material attributes (CMAs) and critical process parameters (CPPs) that influenced the CQA, model refinement was performed to study if interactions or quadratic terms influence the model. Based on the assessment of the effects of the CPPs and CMAs on fill weight and weight variability for low-fill-weight inhalation products, we developed an excellent linear predictive model for fill weight (R(2 )= 0.96, Q(2 )= 0.96 for powders with good flow properties and R(2 )= 0.94, Q(2 )= 0.93 for cohesive powders) and a model that provides a good approximation of the fill weight variability for each powder group. We validated the model, established a design space for the performance of different types of inhalation grade lactose on low-fill weight capsule filling and successfully used the CMAs and CPPs to predict fill weight of powders that were not included in the development set.

  11. MX Siting Investigation. Gravity Survey - Sevier Desert Valley, Utah.

    DTIC Science & Technology

    1981-01-24

    Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix Al.0). The Defense Mapping Agency Aerospace Center...Desert Valley, Utah ......... 2 2 Topographic Setting - Sevier Desert Valley, Utah . 3 LIST OF DRAWINGS Drawing Number 1 Complete Bouguer Anomaly...gravity stations were distributed throughout the valley at an approxi- mate interval of 1.4 miles (2.3 km). Drawing 1 is a Complete Bouguer Anomaly

  12. Lithologic controls on valley width and strath terrace formation

    NASA Astrophysics Data System (ADS)

    Schanz, Sarah A.; Montgomery, David R.

    2016-04-01

    Valley width and the degree of bedrock river terrace development vary with lithology in the Willapa and Nehalem river basins, Pacific Northwest, USA. Here, we present field-based evidence for the mechanisms by which lithology controls floodplain width and bedrock terrace formation in erosion-resistant and easily friable lithologies. We mapped valley surfaces in both basins, dated straths using radiocarbon, compared valley width versus drainage area for basalt and sedimentary bedrock valleys, and constructed slope-area plots. In the friable sedimentary bedrock, valleys are 2 to 3 times wider, host flights of strath terraces, and have concavity values near 1; whereas the erosion-resistant basalt bedrock forms narrow valleys with poorly developed, localized, or no bedrock terraces and a channel steepness index half that of the friable bedrock and an average channel concavity of about 0.5. The oldest dated strath terrace on the Willapa River, T2, was active for nearly 10,000 years, from 11,265 to 2862 calibrated years before present (cal YBP), whereas the youngest terrace, T1, is Anthropocene in age and recently abandoned. Incision rates derived from terrace ages average 0.32 mm y- 1 for T2 and 11.47 mm y- 1 for T1. Our results indicate bedrock weathering properties influence valley width through the creation of a dense fracture network in the friable bedrock that results in high rates of lateral erosion of exposed bedrock banks. Conversely, the erosion-resistant bedrock has concavity values more typical of detachment-limited streams, exhibits a sparse fracture network, and displays evidence for infrequent episodic block erosion and plucking. Lithology thereby plays a direct role on the rates of lateral erosion, influencing valley width and the potential for strath terrace planation and preservation.

  13. Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Dong; Zhao, Fu-Li; Chen, Min; Dong, Jian-Wen

    2017-07-01

    The valley has been exploited as a binary degree of freedom to realize valley-selective Hall transport and circular dichroism in two-dimensional layered materials, in which valley-contrasting physics is indispensable in making the valley index an information carrier. In this Rapid Communication, we reveal valley-contrasting physics in all-dielectric valley photonic crystals. The link between the angular momentum of light and the valley state is discussed, and unidirectional excitation of the valley chiral bulk state is realized by sources carrying orbital angular momentum with proper chirality. Characterized by the nonzero valley Chern number, valley-dependent edge states and the resultant broadband robust transport is found in such an all-dielectric system. Our work has potential in the orbital angular momentum assisted light manipulation and the discovery of valley-protected topological states in nanophotonics and on-chip integration.

  14. Filling of orbital fluid management systems

    NASA Technical Reports Server (NTRS)

    Merino, F.; Blatt, M. H.; Thies, N. C.

    1978-01-01

    A study was performed with three objectives: (1) analyze fluid management system fill under orbital conditions; (2) determine what experimentation is needed; and (3) develop an experimental program. The fluid management system was a 1.06m (41.7 in) diameter pressure vessel with screen channel device. Analyses were conducted using liquid hydrogen and N2O4. The influence of helium and autogenous pressurization systems was considered. Analyses showed that fluid management system fill will be more difficult with a cryogen than with an earth storable. The key to a successful fill with cryogens is in devising techniques for filling without vent liquid, and removing trapped vapor from the screen device at tank fill completion. This will be accomplished with prechill, fill, and vapor condensation processes. Refill will require a vent and purge process, to dilute the residual helium, prior to introducing liquid. Neither prechill, chill, nor purge processes will be required for earth storables.

  15. Valley-polarized edge pseudomagnetoplasmons in graphene: A two-component hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Guo, Bin; Zhai, Feng; Jiang, Wei

    2018-03-01

    By means of a nonlinear two-component hydrodynamic model, we study the valley-polarized collective motion of electrons in a strained graphene sheet. The self-consistent numerical solution in real space indicates the existence of valley-polarized edge plasmons due to a strain-induced pseudomagnetic field. The valley polarization of the edge pseudomagnetoplasmon can occur in a specific valley, depending on the pseudomagnetic field and the electron density in equilibrium. A full valley polarization is achieved at the edge of the graphene sheet for a pseudomagnetic field of tens of Tesla, which is a realistic value in current experimental technologies.

  16. Orbital and Rover-based Exploration of Perseverance Valley, Endeavour Crater, Mars

    NASA Astrophysics Data System (ADS)

    Morgan, A. M.; Arvidson, R. E.; Duran Vinent, O.; Craddock, R. A.; Holo, S.; Gadal, C.; Blois, G.; Palucis, M. C.; Goudge, T. A.; Morgan, A. M.; Day, M.; Sullivan, R. J., Jr.; Umurhan, O. M.; Pähtz, T.; Birch, S.; Morgan, A. M.; Goudge, T. A.; Palucis, M. C.; Arvidson, R. E.; Duran Vinent, O.; Craddock, R. A.; Holo, S.; Blois, G.; Gadal, C.; Morgan, A. M.; Sullivan, R. J., Jr.; Day, M.; Arvidson, R. E.

    2017-12-01

    Perseverance Valley, based on orbital observations from the Mars Reconnaisance Orbiter HiRISE image data, is a 180 m long, 20 m wide anastomosing shallow channel system superimposed on the Cape Byron rim segment of the 22 km diameter Noachian-age Endeavour Crater on Mars. Several impact craters are superimposed on the valley system, indicating antiquity, although the valley's high degree of preservation indicates that it formed after significant regional-scale fluvial erosion and diffusive smoothing of Endeavour and its rim segments. The valley cuts into the inner, eastern rim on a 10˚ to 15˚ slope, and starts at a local low area on the rim crest. A set of shallow channels, some lined with perimeter rocks, extends from the west to meet the entrance to the valley. The western rim tilts to the west 0.8˚ and thus the channels tilt away from the valley entrance. The Mars Rover Opportunity has explored the western shallow channels leading up to the entrance to the valley. As of this writing Opportunity is located on the southern side of the valley entrance, with the Athena Science Team waiting until after solar conjunction to command the rover to descend into the valley to search for geomorphic and sedimentologic evidence related to valley formation. Wind erosion along radial fractures extending into and down Cape Byron is a possibility. Debris flows are also under consideration, perhaps enabled by melting ice at the rim crest. Dry avalanches are unlikely due to the low slopes. A fluvial origin is a strong contender based on models that show it is possible to have had a western catchment present when the Burns formation hydrated sulfates were being emplaced, followed by self-compaction of these sediments that tilted the western plains away from the rim crest. The key to testing among the various hypotheses for formation of the valley and shallow channels leading into the entrance will be the detailed stereo and multispectral imaging observations Opportunity will make

  17. Sutter Buttes-the lone volcano in California's Great Valley

    USGS Publications Warehouse

    Hausback, Brain P.; Muffler, L.J. Patrick; Clynne, Michael A.

    2011-01-01

    The volcanic spires of the Sutter Buttes tower 2,000 feet above the farms and fields of California's Great Valley, just 50 miles north-northwest of Sacramento and 11 miles northwest of Yuba City. The only volcano within the valley, the Buttes consist of a central core of volcanic domes surrounded by a large apron of fragmental volcanic debris. Eruptions at the Sutter Buttes occurred in early Pleistocene time, 1.6 to 1.4 million years ago. The Sutter Buttes are not part of the Cascade Range of volcanoes to the north, but instead are related to the volcanoes in the Coast Ranges to the west in the vicinity of Clear Lake, Napa Valley, and Sonoma Valley.

  18. 27 CFR 9.66 - Russian River Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Russian River Valley. 9.66 Section 9.66 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.66 Russian River Valley. (a) Name. The name of the...

  19. 27 CFR 9.66 - Russian River Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Russian River Valley. 9.66 Section 9.66 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.66 Russian River Valley. (a) Name. The name of the...

  20. 27 CFR 9.66 - Russian River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Russian River Valley. 9.66 Section 9.66 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.66 Russian River Valley. (a) Name. The name of the...

  1. 27 CFR 9.66 - Russian River Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Russian River Valley. 9.66 Section 9.66 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.66 Russian River Valley. (a) Name. The name of the...

  2. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Dry Creek Valley. 9.64 Section 9.64 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.64 Dry Creek Valley. (a) Name. The name of the...

  3. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Dry Creek Valley. 9.64 Section 9.64 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.64 Dry Creek Valley. (a) Name. The name of the...

  4. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Dry Creek Valley. 9.64 Section 9.64 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.64 Dry Creek Valley. (a) Name. The name of the...

  5. 27 CFR 9.66 - Russian River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Russian River Valley. 9.66 Section 9.66 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.66 Russian River Valley. (a) Name. The name of the...

  6. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Dry Creek Valley. 9.64 Section 9.64 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.64 Dry Creek Valley. (a) Name. The name of the...

  7. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Dry Creek Valley. 9.64 Section 9.64 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.64 Dry Creek Valley. (a) Name. The name of the...

  8. 27 CFR 9.214 - Haw River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Haw River Valley. 9.214... River Valley. (a) Name. The name of the viticultural area described in this section is “Haw River Valley”. For purposes of part 4 of this chapter, “Haw River Valley” and “Haw River” are terms of viticultural...

  9. Gate-tunable valley-spin filtering in silicene with magnetic barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, X. Q., E-mail: xianqiangzhe@126.com; Meng, H.

    2015-05-28

    We theoretically study the valley- and spin-resolved scattering through magnetic barrier in a one layer thick silicene, using the mode-matching method for the Dirac equation. We show that the spin-valley filtering effect can be achieved and can also be tuned completely through both a top and bottom gate. Moreover, when reversing the sign of the staggered potential, we find the direction of the valley polarization is switched while the direction of spin polarization is unchanged. These results can provide some meaningful information to design valley valve residing on silicene.

  10. Ground-water hydrology of Pahvant Valley and adjacent areas, Utah

    USGS Publications Warehouse

    1990-01-01

    The primary ground-water reservoir in Pahvant Valley and adjacent areas is in the unconsolidated basin fill and interbedded basalt. Recharge in 1959 was estimated to be about 70,000 acre-feet per year and was mostly by seepage from streams, canals, and unconsumed irrigation water and by infiltration of precipitation. Discharge in 1959 was estimated to be about 109,000 acre-feet and was mostly from springs, evapotranspiration, and wells.Water-level declines of more than 50 feet occurred in some areas between 1953 and 1980 because of less-than-normal precipitation and extensive pumping for irrigation. Water levels recovered most of these declines between 1983 and 1986 because of reduced withdrawals and record quantities of precipitation.The quality of ground water in the area west of Kanosh has deteriorated since large ground-water withdrawals began in about 1953. The cause of the deterioration probably is movement of poor quality water into the area from the southwest and possibly the west during periods of large ground-water withdrawals and recycling of irrigation water. The quality of water from some wells has improved since 1983, due to increased recharge and decreased withdrawals for irrigation.Water-level declines of m:>re than 80 feet in some parts of Pahvant Valley are projected if ground-water withdrawals continue for 20 years at the 1977 rate of about 96,000 acre-feet. Rises of as much as 58 feet and declines of as much as 47 feet are projected with withdrawals of 48,000 acre-feet per year for 20 years. The elimination of recharge from the Central Utah Canal is projected to cause water-level declines of up to 8 feet near the canal.

  11. VALDRIFT 1.0: A valley atmospheric dispersion model with deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allwine, K.J.; Bian, X.; Whiteman, C.D.

    1995-05-01

    VALDRIFT version 1.0 is an atmospheric transport and diffusion model for use in well-defined mountain valleys. It is designed to determine the extent of ddft from aedal pesticide spraying activities, but can also be applied to estimate the transport and diffusion of various air pollutants in valleys. The model is phenomenological -- that is, the dominant meteorological processes goveming the behavior of the valley atmosphere are formulated explicitly in the model, albeit in a highly parameterized fashion. The key meteorological processes treated are: (1) nonsteady and nonhomogeneous along-valley winds and turbulent diffusivities, (2) convective boundary layer growth, (3) inversion descent,more » (4) noctumal temperature inversion breakup, and (5) subsidence. The model is applicable under relatively cloud-free, undisturbed synoptic conditions and is configured to operate through one diumal cycle for a single valley. The inputs required are the valley topographical characteristics, pesticide release rate as a function of time and space, along-valley wind speed as a function of time and space, temperature inversion characteristics at sunrise, and sensible heat flux as a function of time following sunrise. Default values are provided for certain inputs in the absence of detailed observations. The outputs are three-dimensional air concentration and ground-level deposition fields as a function of time.« less

  12. Silicone Gel-Filled Breast Implants

    MedlinePlus

    ... and Medical Procedures Implants and Prosthetics Breast Implants Silicone Gel-Filled Breast Implants Share Tweet Linkedin Pin ... sharing options Linkedin Pin it Email Print Description: Silicone gel-filled breast implants have a silicone outer ...

  13. The vertical structure of the circulation and dynamics in Hudson Shelf Valley

    USGS Publications Warehouse

    Lentz, Steven J.; Butman, Bradford; Harris, Courtney K.

    2014-01-01

    Hudson Shelf Valley is a 20–30 m deep, 5–10 km wide v-shaped submarine valley that extends across the Middle Atlantic Bight continental shelf. The valley provides a conduit for cross-shelf exchange via along-valley currents of 0.5 m s−1 or more. Current profile, pressure, and density observations collected during the winter of 1999–2000 are used to examine the vertical structure and dynamics of the flow. Near-bottom along-valley currents having times scales of a few days are driven by cross-shelf pressure gradients setup by wind stresses, with eastward (westward) winds driving onshore (offshore) flow within the valley. The along-valley momentum balance in the bottom boundary layer is predominantly between the pressure gradient and bottom stress because the valley bathymetry limits current veering. Above the bottom boundary layer, the flow veers toward an along-shelf (cross-valley) orientation and a geostrophic balance with some contribution from the wind stress (surface Ekman layer). The vertical structure and strength of the along-valley current depends on the magnitude and direction of the wind stress. During offshore flows driven by westward winds, the near-bottom stratification within the valley increases resulting in a thinner bottom boundary layer and weaker offshore currents. Conversely, during onshore flows driven by eastward winds the near-bottom stratification decreases resulting in a thicker bottom boundary layer and stronger onshore currents. Consequently, for wind stress magnitudes exceeding 0.1 N m−2, onshore along-valley transport associated with eastward wind stress exceeds the offshore transport associated with westward wind stress of the same magnitude.

  14. View From Within 'Perseverance Valley' on Mars

    NASA Image and Video Library

    2017-12-06

    This view from within "Perseverance Valley," on the inner slope of the western rim of Endurance Crater on Mars, includes wheel tracks from the Opportunity rover's descent of the valley. The Panoramic Camera (Pancam) on Opportunity's mast took the component images of the scene during the period Sept. 4 through Oct. 6, 2017, corresponding to sols (Martian days) 4840 through 4871 of the rover's work on Mars. Perseverance Valley is a system of shallow troughs descending eastward about the length of two football fields from the crest of the crater rim to the floor of the crater. This panorama spans from northeast on the left to northwest on the right, including portions of the crater floor (eastward) in the left half and of the rim (westward) in the right half. Opportunity began descending Perseverance Valley in mid-2017 (see map) as part of an investigation into how the valley formed. Rover wheel tracks are darker brown, between two patches of bright bedrock, receding toward the horizon in the right half of the scene. This view combines multiple images taken through three different Pancam filters. The selected filters admit light centered on wavelengths of 753 nanometers (near-infrared), 535 nanometers (green) and 432 nanometers (violet). The three color bands are combined here to show approximately true color. A map and high-resolution TIFF file is available at https://photojournal.jpl.nasa.gov/catalog/PIA22074

  15. The Breakup of Temperature Inversions In Steep Valleys

    NASA Astrophysics Data System (ADS)

    Colette, A.; Street, R.

    The purpose of this research is to model and provide a better understanding of tem- perature inversions breakup in steep valleys. The Advanced Regional Prediction Sys- tem (ARPS), a three-dimensional, compressible, and non-hydrostatic modeling tool developed by the Center for Analysis and Prediction of Storms at the University of Oklahoma was used. Many field studies indicate that the evolution of the convective and inversion layers are strongly dependant on the surrounding topography. In relatively open valleys, the convective boundary layer usually grows from the bottom of the valley while in steeper cases, the upslope morning winds affects the dynamic of the mixing layer resulting in the destruction of the inversion from its bottom and its top (see Whiteman 1980). ARPS allows one to perform accurate simulation of such situations. First, written in terrain following coordinates, it handles steep topographies; then its extensive radi- ation and surface flux packages provide a good treatment of land related processes. Moreover, ARPS accounts for the incidence angle of sunrays, differencing the ex- posed and non-exposed mountain slopes. However, it neglects the topographic shade which can delay the sunrise of a hour or more in steep valleys. A new subroutine described by Colette etal. 2002 is thus used to compute the projected shade on the surrounding topography. Simulations of temperature inversion breakup for various two-dimensional valleys are presented. The time scale of evolution of the mixing layer is in good agreement with field studies and, as expected, the convective boundary layer shows an asymmetry between east and west facing slopes. The different patterns of inversion breakup doc- umented by Whiteman are also reproduced. These simulations of idealized cases give a better understanding of inversion breakup in steep valleys. Our code is now being applied to a real case: the study of a peculiar wind, la Ora del Garda, caused by the interaction between a

  16. Ground water in the San Joaquin Valley, California

    USGS Publications Warehouse

    Kunkel, Fred; Hofman, Walter

    1966-01-01

    Ladies and gentlemen, it is a pleasure to be invited to attend this Irrigation Institute conference and to describe the Geological Survey's program of ground-water studies in the San Joaquin Valley. The U.S. Geological Survey has been making water-resources studies in cooperation with the State of California and other agencies in California for more than 70 years. Three of the earliest Geological Survey Water-Supply Papers--numbers 17, 18, and 19--published in 1898 and 1899, describe "Irrigation near Bakersfield," "Irrigation near Fresno," and "Irrigation near Merced." However, the first Survey report on ground-water occurrence in the San Joaquin Valley was "Ground Water in the San Joaquin Valley," by Mendenhall and others. The fieldwork was done from 1905 to 1910, and the report was published in 1916 as U.S. Geological Survey Water-Supply Paper 398.The current series of ground-water studies in the San Joaquin Valley was begun in 1952 as part of the California Department of Water Resources-U.S. Geological Survey cooperative water-resources program. The first report of this series is Geological Survey Water-Supply Paper 1469, "Ground-Water Conditions and Storage Capacity in the San Joaquin Valley." Other reports are Water-Supply Paper 1618, "Use of Ground-Water Reservoirs for Storage of Surface Water in the San Joaquin Valley;" Water-Supply Paper 1656, "Geology and Ground-Water Features of the Edison-Maricopa Area;" Water-Supply Paper 1360-G, "Ground- Water Conditions in the Mendota-Huron Area;" Water-Supply Paper 1457, "Ground-Water Conditions in the Avenal-McKittrick Area;" and an open-file report, "Geology, Hydrology, and Quality of Water in the Terra Bella-Lost Hills Area."In addition to the preceding published reports, ground-water studies currently are being made of the Kern Fan area, the Hanford- Visalia area, the Fresno area, the Merced area, and of the clays of Tulare Lake. Also, detailed studies of both shallow and deep subsidence in the southern part of

  17. Sociocultural and Economic Dimensions of Rift Valley Fever

    PubMed Central

    Muga, Geoffrey Otieno; Onyango-Ouma, Washington; Sang, Rosemary; Affognon, Hippolyte

    2015-01-01

    Health researchers have advocated for a cross-disciplinary approach to the study and prevention of infectious zoonotic diseases, such as Rift Valley Fever. It is believed that this approach can help bring out the social determinants and effects of the zoonotic diseases for the design of appropriate interventions and public health policy. A comprehensive literature review using a systematic search strategy was undertaken to explore the sociocultural and economic factors that influence the transmission and spread of Rift Valley Fever. Although the findings reveal a paucity of social research on Rift Valley Fever, they suggest that livestock sacrificial rituals, food preparation and consumption practices, gender roles, and inadequate resource base for public institutions are the key factors that influence the transmission. It is concluded that there is need for cross-disciplinary studies to increase the understanding of Rift Valley Fever and facilitate appropriate and timely response and mitigation measures. PMID:25688166

  18. 19. PIPELINE INTERSECTION AT THE MOUTH OF WAIKOLU VALLEY ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. PIPELINE INTERSECTION AT THE MOUTH OF WAIKOLU VALLEY ON THE BEACH. VALVE AT RIGHT (WITH WRENCH NEARBY) OPENS TO FLUSH VALLEY SYSTEM OUT. VALVE AT LEFT CLOSES TO KEEP WATER FROM ENTERING SYSTEM ALONG THE PALI DURING REPAIRS. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  19. Source regions and water release mechanisms of Martian Valley Networks

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Reiss, D.; Sander, T.; Gwinner, K.; Roatsch, T.; Matz, K.-D.; Hauber, E.; Mertens, V.; Hoffmann, H.; Neukum, G.; HRSC Co-Investigator Team

    Martian valley networks have been cited as the best evidence that Mars maintained flow of liquid water across the surface. Although internal structures associated with a fluvial origin within valleys like inner channels, terraces, slip-off and undercut slopes are extremely rare on Mars (Carr and Malin, 2000) such features can be identified in high-resolution imagery (e.g. Malin and Edgett, 2001; Jaumann et al., 2005). However, besides internal features the source regions are an important indicator for the flow processes in Martian valleys because they define the drainage area and thus constrain the amount of available water for eroding the valley network. Furthermore, the morphology of the source regions and their topographic characteristics provide information about the origin of the water. On Mars valley networks are thought to be formed by retreating erosion where the water is supplied from the sub-surface. However, the mechanisms that are responsible for the release of ground water are poorly understood. The three dimensional highly resolved data of the High Resolution Stereo Camera (HRSC) on the Mars Express Mission (Neukum et al., 2004) allow the detailed examination of valley network source regions. A valley network in the western Lybia Montes region valley between 1.4°N to 3.5°N and 81.6°E to 82.5°E originates at a highland mountain region and drains down to Isidis Planitia over a distance of 400 km. Most of its distance the valley exhibits an interior channel that allows to constraint discharge and erosion budgets (Jaumann, et al., 2005). The valley was formed in the Noachian/Hesperian between 3.7 and 3.3 billion years. However, discharge and erosion budgets restrict the erosion time to a few million years in total, indicating single events rather than continuous flow over long periods. The source region of the valley is covered by a series of lava flows. Even the upstream part of the valley is covered by lava flows that cover the interior channel

  20. Valley-spin filtering through a nonmagnetic resonant tunneling structure in silicene

    NASA Astrophysics Data System (ADS)

    Wu, Xiuqiang; Meng, Hao; Zhang, Haiyang; Bai, Yujie; Xu, Xing

    2018-07-01

    We theoretically investigate how a silecene-based nonmagnetic resonant-tunneling structure, i.e. a double electrostatic potential structure, can be tailored to generate valley- and spin-polarized filtering by using the scattering matrix method. This method allows us to find simple analytical expressions for the scattering amplitudes. It is found that the transmissions of electrons from opposite spin and valley show exactly opposite behaviors, leading to valley and spin filtering in a wide range of transmission directions. These directional-dependent valley-spin polarization behaviors can be used to select preferential directions along which the valley-spin polarization of an initially unpolarized carrier can be strongly enhanced. We also find that this phenomenon arises from the combinations of the coherent effect, electrostatic potential and external electric field. Especially when the direction of the external electric field is changed, the spin filtering properties are contained, while the valley filtering properties can be switched. In addition, the filtering behaviors can be conveniently controlled by electrical gating. Therefore, the results can offer an all-electric method to construct a valley-spin filter in silicene.