Sample records for valley ground-water model

  1. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    USGS Publications Warehouse

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  2. A guide for using the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Blainey, Joan B.; Faunt, Claudia C.; Hill, Mary C.

    2006-01-01

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  3. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    USGS Publications Warehouse

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  4. Modeling the Death Valley regional ground-water flow system

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Hill, M.C.

    2004-01-01

    The development of a regional ground-water flow model of the Death Valley region in the southwestern United States is discussed in the context of the fourteen guidelines of Hill. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and to direct further model development and data collection.

  5. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    USGS Publications Warehouse

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  6. Digital-computer model of ground-water flow in Tooele Valley, Utah

    USGS Publications Warehouse

    Razem, Allan C.; Bartholoma, Scott D.

    1980-01-01

    A two-dimensional, finite-difference digital-computer model was used to simulate the ground-water flow in the principal artesian aquifer in Tooele Valley, Utah. The parameters used in the model were obtained through field measurements and tests, from historical records, and by trial-and-error adjustments. The model was calibrated against observed water-level changes that occurred during 1941-50, 1951-60, 1961-66, 1967-73, and 1974-78. The reliability of the predictions is good in most parts of the valley, as is shown by the ability of the model to match historical water-level changes.

  7. Ground-water modeling of the Death Valley Region, Nevada and California

    USGS Publications Warehouse

    Belcher, W.R.; Faunt, C.C.; Sweetkind, D.S.; Blainey, J.B.; San Juan, C. A.; Laczniak, R.J.; Hill, M.C.

    2006-01-01

    The Death Valley regional ground-water flow system (DVRFS) of southern Nevada and eastern California covers an area of about 100,000 square kilometers and contains very complex geology and hydrology. Using a computer model to represent the complex system, the U.S. Geological Survey simulated ground-water flow in the Death Valley region for use with U.S. Department of Energy projects in southern Nevada. The model was created to help address contaminant cleanup activities associated with the underground nuclear testing conducted from 1951 to 1992 at the Nevada Test Site and to support the licensing process for the proposed geologic repository for high-level nuclear waste at Yucca Mountain, Nevada.

  8. Ground water in the San Joaquin Valley, California

    USGS Publications Warehouse

    Kunkel, Fred; Hofman, Walter

    1966-01-01

    Ladies and gentlemen, it is a pleasure to be invited to attend this Irrigation Institute conference and to describe the Geological Survey's program of ground-water studies in the San Joaquin Valley. The U.S. Geological Survey has been making water-resources studies in cooperation with the State of California and other agencies in California for more than 70 years. Three of the earliest Geological Survey Water-Supply Papers--numbers 17, 18, and 19--published in 1898 and 1899, describe "Irrigation near Bakersfield," "Irrigation near Fresno," and "Irrigation near Merced." However, the first Survey report on ground-water occurrence in the San Joaquin Valley was "Ground Water in the San Joaquin Valley," by Mendenhall and others. The fieldwork was done from 1905 to 1910, and the report was published in 1916 as U.S. Geological Survey Water-Supply Paper 398.The current series of ground-water studies in the San Joaquin Valley was begun in 1952 as part of the California Department of Water Resources-U.S. Geological Survey cooperative water-resources program. The first report of this series is Geological Survey Water-Supply Paper 1469, "Ground-Water Conditions and Storage Capacity in the San Joaquin Valley." Other reports are Water-Supply Paper 1618, "Use of Ground-Water Reservoirs for Storage of Surface Water in the San Joaquin Valley;" Water-Supply Paper 1656, "Geology and Ground-Water Features of the Edison-Maricopa Area;" Water-Supply Paper 1360-G, "Ground- Water Conditions in the Mendota-Huron Area;" Water-Supply Paper 1457, "Ground-Water Conditions in the Avenal-McKittrick Area;" and an open-file report, "Geology, Hydrology, and Quality of Water in the Terra Bella-Lost Hills Area."In addition to the preceding published reports, ground-water studies currently are being made of the Kern Fan area, the Hanford- Visalia area, the Fresno area, the Merced area, and of the clays of Tulare Lake. Also, detailed studies of both shallow and deep subsidence in the southern part of

  9. Ground-water conditions in southern Utah Valley and Goshen Valley, Utah

    USGS Publications Warehouse

    Cordova, R.M.

    1970-01-01

    The investigation of ground-water conditions in southern Utah Valley and Goshen Valley, Utah, was made by the U. S. Geological Survey as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights, to investigate the water resources of the State. The purposes of the investigation were to (1) determine the occurrence, recharge, discharge, movement, storage, chemical quality, and availability of ground water; (2) appraise the effects of increased withdrawal of water from wells; and (3) evaluate the effect of the Central Utah Project on the ground-water reservoir and the water supply of Utah Lake.This report presents a description of the aquifer system in the two valleys, a detailed description of the ground-water resources, and conclusions about potential development and its effect on the hydrologic conditions in the valleys. Two supplementary reports are products of the investigation. A basic-data release (Cordova, 1969) contains most of the basic data collected for the investigation, including well characteristics, drillers' logs, water levels, pumpage from wells, chemical analyses of ground and surface waters, and discharge of selected springs, drains, and streams. An interpretive report (Cordova and Mower, 1967) contains the results of a large-scale aquifer test in southern Utah Valley.

  10. Hydrology and simulation of ground-water flow in the Tooele Valley ground-water basin, Tooele County, Utah

    USGS Publications Warehouse

    Stolp, Bernard J.; Brooks, Lynette E.

    2009-01-01

    Ground water is the sole source of drinking water within Tooele Valley. Transition from agriculture to residential land and water use necessitates additional understanding of water resources. The ground-water basin is conceptualized as a single interconnected hydrologic system consisting of the consolidated-rock mountains and adjoining unconsolidated basin-fill valleys. Within the basin fill, unconfined conditions exist along the valley margins and confined conditions exist in the central areas of the valleys. Transmissivity of the unconsolidated basin-fill aquifer ranges from 1,000 to 270,000 square feet per day. Within the consolidated rock of the mountains, ground-water flow largely is unconfined, though variability in geologic structure, stratigraphy, and lithology has created some areas where ground-water flow is confined. Hydraulic conductivity of the consolidated rock ranges from 0.003 to 100 feet per day. Ground water within the basin generally moves from the mountains toward the central and northern areas of Tooele Valley. Steep hydraulic gradients exist at Tooele Army Depot and near Erda. The estimated average annual ground-water recharge within the basin is 82,000 acre-feet per year. The primary source of recharge is precipitation in the mountains; other sources of recharge are irrigation water and streams. Recharge from precipitation was determined using the Basin Characterization Model. Estimated average annual ground-water discharge within the basin is 84,000 acre-feet per year. Discharge is to wells, springs, and drains, and by evapotranspiration. Water levels at wells within the basin indicate periods of increased recharge during 1983-84 and 1996-2000. During these periods annual precipitation at Tooele City exceeded the 1971-2000 annual average for consecutive years. The water with the lowest dissolved-solids concentrations exists in the mountain areas where most of the ground-water recharge occurs. The principal dissolved constituents are calcium

  11. Ground-water hydrology of the upper Sevier River Basin, south-central Utah, and simulation of ground-water flow in the valley-fill in Panguitch Valley.

    USGS Publications Warehouse

    Thiros, Susan A.; Brothers, William C.

    1993-01-01

    The ground-water hydrology of the upper Sevier River basin, primarily of the unconsolidated valley-fill aquifers, was studied from 1988 to 1989. Recharge to the valley-fill aquifers is mostly by seepage from surface-water sources. Changes in soil-moisture content am water levels were measured in Panguitch Valley both at a flood-irrigated and at a sprinkler-irrigated alfalfa field to quantify seepage from unconsumed irrigation water. Lag time between irrigation and water-level response decreased from 6 to 2 days in the flood-irrigated field as the soil-moisture content increased. Water levels measured in the sprinkler-irrigated field did not respond to irrigation. Discharge from the valley-fill aquifer to the Sevier River in Panguitch Valley is about 53,570 acre-feet per year.Water levels measured in wells from 1951 to 1989 tend to fluctuate with the quantity of precipitation falling at higher elevations. Ground-water discharge to the Sevier River in Panguitch Valley causes a general increase in the specific conductance of the river in a downstream direction.A three-layered ground-water-flow model was used to simulate the effects of changes in irrigation practices am increased ground-water withdrawals in Panguitch Valley. The establishment of initial conditions consisted of comparing simulated water levels and simulated gains and losses from the Sevier River and selected canals with values measured during the 1988 irrigation season. The model was calibrated by comparing water-level changes measured from 1961 to 1963 to simulated changes. A simulated change from flood to sprinkler irrigation resulted in a maximum decline in water level of 0.9 feet after the first year of change. Simulating additional discharge from wells resulted in drawdowns of about 20 feet after the first year of pumping.

  12. Ground water in Pavant Valley

    USGS Publications Warehouse

    Dennis, P. E.; Maxey, G.B.; Thomas, H.E.

    1946-01-01

    The users of wells for irrigation in Pavant Valley, particularly in the Flowell district, have long been cognizant of their utter dependency upon ground water for livelihood, and were among the first in the State to make an organized effort to conserve supplies by prevention of waste. Since passage of the State ground-water law in 1935, the State Engineer has not approved applications for new wells in the areas of most concentrated development, and has deferred adjudication of existing water rights until adequate data concerning the ground-water resources become available. The investigation of ground-water resources in Pavant Valley was suggested by the State Engineer and constitutes one of a series that are being made in the important groundwater basins of Utah by the Federal Geological Survey in cooperation with the State Engineer. The investigation was under the general supervision of Oscar E. Meinzer, geologist in charge of the ground-water division of the Federal Geological Survey. H. E. Thomas, in charge of groundwater investigations in Utah, returned from military service overseas in time to assist in the completion of the manuscript, and edited the report.

  13. Three-dimensional numerical model of ground-water flow in northern Utah Valley, Utah County, Utah

    USGS Publications Warehouse

    Gardner, Philip M.

    2009-01-01

    A three-dimensional, finite-difference, numerical model was developed to simulate ground-water flow in northern Utah Valley, Utah. The model includes expanded areal boundaries as compared to a previous ground-water flow model of the valley and incorporates more than 20 years of additional hydrologic data. The model boundary was generally expanded to include the bedrock in the surrounding mountain block as far as the surface-water divide. New wells have been drilled in basin-fill deposits near the consolidated-rock boundary. Simulating the hydrologic conditions within the bedrock allows for improved simulation of the effect of withdrawal from these wells. The inclusion of bedrock also allowed for the use of a recharge model that provided an alternative method for spatially distributing areal recharge over the mountains.The model was calibrated to steady- and transient-state conditions. The steady-state simulation was developed and calibrated by using hydrologic data that represented average conditions for 1947. The transient-state simulation was developed and calibrated by using hydrologic data collected from 1947 to 2004. Areally, the model grid is 79 rows by 70 columns, with variable cell size. Cells throughout most of the model domain represent 0.3 mile on each side. The largest cells are rectangular with dimensions of about 0.3 by 0.6 mile. The largest cells represent the mountain block on the eastern edge of the model domain where the least hydrologic data are available. Vertically, the aquifer system is divided into 4 layers which incorporate 11 hydrogeologic units. The model simulates recharge to the ground-water flow system as (1) infiltration of precipitation over the mountain block, (2) infiltration of precipitation over the valley floor, (3) infiltration of unconsumed irrigation water from fields, lawns, and gardens, (4) seepage from streams and canals, and (5) subsurface inflow from Cedar Valley. Discharge of ground water is simulated by the model to (1

  14. Ground water in Tooele Valley, Utah

    USGS Publications Warehouse

    Gates, J.S.; Keller, O.A.

    1970-01-01

    This short report was written by condensing parts of a technical report on the ground water in Tooele Valley, which was prepared as part of a cooperative program between the Utah Department of Natural Resources, Division of Water Rights, and the U. S. Geological Survey to study water in Utah. If you would like to read the more detailed technical report, write for a copy of the Utah State Engineer Technical Publication 12, “Reevaluation of the ground-water resources of Tooele Valley, Utah” by J. S. Gates. Copies can be obtained free of charge from the Division of Water Rights, State Capitol, Salt Lake City, Utah 84114.

  15. Evaluation of the ground-water flow model for northern Utah Valley, Utah, updated to conditions through 2002

    USGS Publications Warehouse

    Thiros, Susan A.

    2006-01-01

    This report evaluates the performance of a numerical model of the ground-water system in northern Utah Valley, Utah, that originally simulated ground-water conditions during 1947-1980 and was updated to include conditions estimated for 1981-2002. Estimates of annual recharge to the ground-water system and discharge from wells in the area were added to the original ground-water flow model of the area.The files used in the original transient-state model of the ground-water flow system in northern Utah Valley were imported into MODFLOW-96, an updated version of MODFLOW. The main model input files modified as part of this effort were the well and recharge files. Discharge from pumping wells in northern Utah Valley was estimated on an annual basis for 1981-2002. Although the amount of average annual withdrawals from wells has not changed much since the previous study, there have been changes in the distribution of well discharge in the area. Discharge estimates for flowing wells during 1981-2002 were assumed to be the same as those used in the last stress period of the original model because of a lack of new data. Variations in annual recharge were assumed to be proportional to changes in total surface-water inflow to northern Utah Valley. Recharge specified in the model during the additional stress periods varied from 255,000 acre-feet in 1986 to 137,000 acre-feet in 1992.The ability of the updated transient-state model to match hydrologic conditions determined for 1981-2002 was evaluated by comparing water-level changes measured in wells to those computed by the model. Water-level measurements made in February, March, or April were available for 39 wells in the modeled area during all or part of 1981-2003. In most cases, the magnitude and direction of annual water-level change from 1981 to 2002 simulated by the updated model reasonably matched the measured change. The greater-than-normal precipitation that occurred during 1982-84 resulted in period-of-record high

  16. Analog model study of the ground-water basin of the Upper Coachella Valley, California

    USGS Publications Warehouse

    Tyley, Stephen J.

    1974-01-01

    An analog model of the ground-water basin of the upper Coachella Valley was constructed to determine the effects of imported water on ground-water levels. The model was considered verified when the ground-water levels generated by the model approximated the historical change in water levels of the ground-water basin caused by man's activities for the period 1986-67. The ground-water basin was almost unaffected by man's activities until about 1945 when ground-water development caused the water levels to begin to decline. The Palm Springs area has had the largest water-level decline, 75 feet since 1986, because of large pumpage, reduced natural inflow from the San Gorgonio Pass area, and diversions of natural inflows at Snow and Falls Creeks and Chino Canyon starting in 1945. The San Gorgonio Pass inflow had been reduced from about 18,000 acre-feet in 1986 to about 9,000 acre-feet by 1967 because of increased ground-water pumpage in the San Gorgonio Pass area, dewatering of the San Gorgonio Pass area that took place when the tunnel for the Metropolitan Water District of Southern California was drilled, and diversions of surface inflow at Snow and Falls Creeks. In addition, 1944-64 was a period of below-normal precipitation which, in part, contributed to the declines in water levels in the Coachella Valley. The Desert Hot Springs, Garnet Hill, and Mission Creek subbasins have had relatively little development; consequently, the water-level declines have been small, ranging from 5 to 15 feet since 1986. In the Point Happy area a decline of about 2 feet per year continued until 1949 when delivery of Colorado River water to the lower valley through the Coachella Canal was initiated. Since 1949 the water levels in the Point Happy area have been rising and by 1967 were above their 1986 levels. The Whitewater River subbasin includes the largest aquifer in the basin, having sustained ground-water pumpage of about 740,000 acre-feet from 1986 to 1967, and will probably

  17. Geohydrological characterization, water-chemistry, and ground-water flow simulation model of the Sonoma Valley area, Sonoma County, California

    USGS Publications Warehouse

    Farrar, Christopher D.; Metzger, Loren F.; Nishikawa, Tracy; Koczot, Kathryn M.; Reichard, Eric G.; Langenheim, V.E.

    2006-01-01

    The Sonoma Valley, located about 30 miles north of San Francisco, is one of several basins in Sonoma County that use a combination of ground water and water delivered from the Russian River for supply. Over the past 30 years, Sonoma Valley has experienced rapid population growth and land-use changes. In particular, there has been a significant increase in irrigated agriculture, predominantly vineyards. To provide a better understanding of the ground-water/surface-water system in Sonoma Valley, the U.S. Geological Survey compiled and evaluated existing data, collected and analyzed new data, and developed a ground-water flow model to better understand and manage the ground-water system. The new data collected include subsurface lithology, gravity measurements, groundwater levels, streamflow gains and losses, temperature, water chemistry, and stable isotopes. Sonoma Valley is drained by Sonoma Creek, which discharges into San Pablo Bay. The long-term average annual volume of precipitation in the watershed is estimated to be 269,000 acre-feet. Recharge to the ground-water system is primarily from direct precipitation and Sonoma Creek. Discharge from the ground-water system is predominantly outflow to Sonoma Creek, pumpage, and outflow to marshlands and to San Pablo Bay. Geologic units of most importance for groundwater supply are the Quaternary alluvial deposits, the Glen Ellen Formation, the Huichica Formation, and the Sonoma Volcanics. In this report, the ground-water system is divided into three depth-based geohydrologic units: upper (less than 200 feet below land surface), middle (between 200 and 500 feet), and lower (greater than 500 feet). Synoptic streamflow measurements were made along Sonoma Creek and indicate those reaches with statistically significant gains or losses. Changes in ground-water levels in wells were analyzed by comparing historical contour maps with the contour map for 2003. In addition, individual hydrographs were evaluated to assess temporal

  18. Hydrology and simulation of ground-water flow in Juab Valley, Juab County, Utah.

    USGS Publications Warehouse

    Thiros, Susan A.; Stolp, Bernard J.; Hadley, Heidi K.; Steiger, Judy I.

    1996-01-01

    Plans to import water to Juab Valley, Utah, primarily for irrigation, are part of the Central Utah Project. A better understanding of the hydrology of the valley is needed to help manage the water resources and to develop conjunctive-use plans.The saturated unconsolidated basin-fill deposits form the ground-water system in Juab Valley. Recharge is by seepage from streams, unconsumed irrigation water, and distribution systems; infiltration of precipitation; and subsurface inflow from consolidated rocks that surround the valley. Discharge is by wells, springs, seeps, evapotranspiration, and subsurface outflow to consolidated rocks. Ground-water pumpage is used to supplement surface water for irrigation in most of the valley and has altered the direction of groundwater flow from that of pre-ground-water development time in areas near and in Nephi and Levan.Greater-than-average precipitation during 1980-87 corresponds with a rise in water levels measured in most wells in the valley and the highest water level measured in some wells. Less-than average precipitation during 1988-91 corresponds with a decline in water levels measured during 1988-93 in most wells. Geochemical analyses indicate that the sources of dissolved ions in water sampled from the southern part of the valley are the Arapien Shale, evaporite deposits that occur in the unconsolidated basin-fill deposits, and possibly residual sea water that has undergone evaporation in unconsolidated basin-fill deposits in selected areas. Water discharging from a spring at Burriston Ponds is a mixture of about 70 percent ground water from a hypothesized flow path that extends downgradient from where Salt Creek enters Juab Valley and 30 percent from a hypothesized flow path from the base of the southern Wasatch Range.The ground-water system of Juab Valley was simulated by using the U.S. Geological Survey modular, three-dimensional, finite-difference, ground-water flow model. The numerical model was calibrated to simulate

  19. Ground-water quality in east-central Idaho valleys

    USGS Publications Warehouse

    Parliman, D.J.

    1982-01-01

    From May through November 1978, water quality, geologic, and hydrologic data were collected for 108 wells in the Lemhi, Pahsimeroi, Salman River (Stanley to Salmon), Big Lost River, and Little Lost River valleys in east-central Idaho. Data were assembled to define, on a reconnaissance level, water-quality conditions in major aquifers and to develop an understanding of factors that affected conditions in 1978 and could affect future ground-water quality. Water-quality characteristics determined include specific conductance, pH, water temperature, major dissolved cations, major dissolved anions, and coliform bacteria. Concentrations of hardness, nitrite plus nitrate, coliform bacteria, dissolved solids, sulfate, chloride, fluoride , iron, calcium, magnesium, sodium, potassium or bicarbonate exceed public drinking water regulation limits or were anomalously high in some water samples. Highly mineralized ground water probably is due to the natural composition of the aquifers and not to surface contamination. Concentrations of coliform bacteria that exceed public drinking water limits and anomalously high dissolved nitrite-plus-nitrite concentrations are from 15- to 20-year old irrigation wells in heavily irrigated or more densely populated areas of the valleys. Ground-water quality and quantity in most of the study area are sufficient to meet current (1978) population and economic demands. Ground water in all valleys is characterized by significant concentrations of calcium, magnesium, and bicarbonate plus carbonate ions. Variations in the general trend of ground-water composition (especially in the Lemhi Valley) probably are most directly related to variability in aquifer lithology and proximity of sampling site to source of recharge. (USGS)

  20. Use of a three-dimensional model for the analysis of the ground-water flow system in Parker Valley, Arizona and California

    USGS Publications Warehouse

    Tucci, Patrick

    1982-01-01

    A three-dimensional, finite-difference model was used to simulate ground-water flow conditions in Parker Valley. The study evaluated present knowledge and concepts of the ground-water system and the ability of the model to represent the system. Modeling assumptions and generalized physical parameters that were used may have transfer value in the construction and calibration of models of other basins along the lower Colorado River. The aquifer was simulated in two layers to represent the three-dimensional system. Ground-water conditions were simulated for 1940-41, the mid-1960's, and 1980. Overall model results generally compared favorably with available field information. The model results showed that for 1940-41 the Colorado River was a losing stream through out Parker Valley. Infiltration of surface water from the river was the major source of recharge. The dominant mechanism of discharge was evapotranspiration by phreatophytes. Agricultural development between 1941 and the mid-1960 's resulted in significant changes to the ground-water system. Model results for conditions in the mid-1960 's showed that the Colorado River had become a gaining stream in the northern part of the valley as a result of higher water levels. The rise in water levels was caused by infiltration of applied irrigation water. Diminished water-level gradients from the river in the rest of the valley reduced the amount of infiltration of surface water from the river. Models results for conditions in 1980 showed that ground-water level rises of several feet caused further reduction in the amount of surface-water infiltration from the river. (USGS)

  1. Update to the Ground-Water Withdrawals Database for the Death Valley Regional Ground-Water Flow System, Nevada and California, 1913-2003

    USGS Publications Warehouse

    Moreo, Michael T.; Justet, Leigh

    2008-01-01

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913-1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  2. Simulated ground-water flow and sources of water in the Killbuck Creek Valley near Wooster, Wayne County, Ohio

    USGS Publications Warehouse

    Breen, K.J.; Kontis, A.L.; Rowe, G.L.; Haefner, R.J.

    1995-01-01

    The stratified-drift aquifer in the 3,000-ft (feet)-wide and 100-ft-deep buried valley of Killbuck Creek near Wooster in northeastern Ohio was studied. The stratified drift with adjacent sandstone and shale bedrock produce a system of ground-water flow representative of the western part of the glaciated north-eastern United States. The stratified-drift aquifer is an excellent source of water for municipal and industrial wells. The aquifer is recharged locally by water from precipitation on the valley floor and uplands, by infiltration from streams, and by lateral flow to the valley from the uplands. As a result, the aquifer is vulnerable to surface or subsurface spills of contaminants in the valley or the adjacent uplands. Quality of water in the stratified drift is affected by influx of water from bedrock lateral to or beneath the valley. This influx is controlled, in part, by the pumping stress placed on the stratified-drift aquifer. Hydrogeologic and aqueous-geochemical data were analyzed to establish the framework necessary for stead-state and transient simulations of ground-water flow in stratified drift and bedrock with a three-layer ground-water-flow model. A new model routine, the Variable-Recharge procedure, was developed to simulate areal recharge and the contribution of the uplands to the drift system. This procedure allows for water applied to land surface to infiltrate or to be rejected. Rejected recharge and ground water discharged when the water table is at land surface form surface runoff-this excess upland water can be redirected as runoff to other parts of the model. Infiltration of streamwater, areal recharge to uplands and valley, and lateral subsurface flow from the uplands to the valley are sources of water to the stratufued0druft aquifer. Water is removed from the stratified-drift aquifer at Wooster primarily by production wells pumping at a rate of approximately 8.5 ft3/s (cubic feet per second). The ground-water budget resulting from two

  3. Hydrogeology, ground-water use, and ground-water levels in the Mill Creek Valley near Evendale, Ohio

    USGS Publications Warehouse

    Schalk, Charles; Schumann, Thomas

    2002-01-01

    Withdrawals of ground water in the central Mill Creek Valley near Evendale, Ohio, caused water-level declines of more than 100 feet by the 1950s. Since the 1950s, management practices have changed to reduce the withdrawals of ground water, and recovery of water levels in long-term monitoring wells in the valley has been documented. Changing conditions such as these prompted a survey of water use, streamflow conditions, and water levels in several aquifers in the central Mill Creek Valley, Hamilton and Butler Counties, Ohio. Geohydrologic information, water use, and water levels were compiled from historical records and collected during the regional survey. Data collected during the survey are presented in terms of updated geohydrologic information, water use in the study area, water levels in the aquifers, and interactions between ground water and surface water. Some of the data are concentrated at former Air Force Plant 36 (AFP36), which is collocated with the General Electric Aircraft Engines (GEAE) plant, and these data are used to describe geohydrology and water levels on a more local scale at and near the plant. A comparison of past and current ground-water use and levels indicates that the demand for ground water is decreasing and water levels are rising. Before 1955, most of the major industrial ground-water users had their own wells, ground water was mined from a confined surficial (lower) aquifer, and water levels were more than 100 feet below their predevelopment level. Since 1955, however, these users have been purchasing their water from the city of Cincinnati or a private water purveyor. The cities of Reading and Lockland, both producers of municipal ground-water supplies in the area, shut down their well fields within their city limits. Because the demand for ground-water supplies in the valley has lessened greatly since the 1950s, withdrawals have decreased, and, consequently, water levels in the lower aquifer are 65 to 105 feet higher than they were

  4. Ground-water areas and well logs, central Sevier Valley, Utah

    USGS Publications Warehouse

    Young, Richard A.

    1960-01-01

    Between September 1959 and June 1960 the United States Geological Survey and the Utah State Engineer, with financial assistance from Garfield, Millard, Piute, Sanpete, and Sevier Counties and from local water-users’ associations, cooperated in an investigation to determine the structural framework of the central Sevier Valley and to evaluate the valley’s ground-water potential. An important aspect of the study was the drilling of 22 test holes under private contract. These data and other data collected during the course of the larger ground-water investigation of which the test drilling was a part will be evaluated in a report on the geology and ground-water resources of the central Sevier Valley. The present report has been prepared to make available the logs of test holes and to describe in general terms the availability of ground water in the different areas of the valley.

  5. Geology and ground water of the Tualatin Valley, Oregon

    USGS Publications Warehouse

    Hart, D.H.; Newcomb, R.C.

    1965-01-01

    The Tualatin Valley proper consists of broad valley plains, ranging in altitude from 100 to 300 feet, and the lower mountain slopes of the drainage basin of the Tualatin River, a tributary of the Willamette River in northwestern Oregon. The valley is almost entirely farmed. Its population is increasing rapidly, partly because of the expansion of metropolitan Portland. Structurally, the bedrock of the basin is a saucer-shaped syncline almost bisected lengthwise by a ridge. The bedrock basin has been partly filled by alluvium, which underlies the valley plains. Ground water occurs in the Columbia River basalt, a lava unit that forms the top several hundred feet of the bedrock, and also in the zones of fine sand in the upper part of the alluvial fill. It occurs under unconfined, confined, and perched conditions. Graphs of the observed water levels in wells show that the ground water is replenished each year by precipitation. The graphs show also that the amount and time of recharge vary in different aquifers and for different modes of ground-water occurrence. The shallower alluvial aquifers are refilled each year to a level where further infiltration recharge is retarded and water drains away as surface runoff. No occurrences of undue depletion of the ground water by pumping are known. The facts indicate that there is a great quantity of additional water available for future development. The ground water is developed for use by some spring works and by thousands of wells, most of which are of small yield. Improvements are now being made in the design of the wells in basalt and in the use of sand or gravel envelopes for wells penetrating the fine-sand aquifers. The ground water in the basalt and the valley fill is in general of good quality, only slightly or moderately hard and of low salinity. Saline and mineralized water is present in the rocks of Tertiary age below the Columbia River basalt. Under certain structural and stratigraphic conditions this water of poor

  6. Hydrology and simulation of ground-water flow in Cedar Valley, Iron County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.; Mason, James L.

    2005-01-01

    sufficient to meet demand. Water levels in many areas are at or close to historic lows.In 2000, withdrawal from wells was estimated to be 36,000 acre-feet per year. About 4,000 acre-feet per year are estimated to discharge to evapotranspiration or as subsurface outflow. Prior to large-scale ground-water development, ground-water discharge by evapotranspiration and discharge to springs was much larger.Ground water along the eastern margin of the valley between Cedar City and Enoch is unsuitable for domestic use because of high dissolved-solids and nitrate concentrations. The predominant ions of Ca and SO4 in this area indicate dissolution of gypsum in the Markagunt Plateau to the east. Data collected during this study were compared to historic data; there is no evidence to indicate deterioration in ground-water quality. The spatial distribution of ground water with high nitrate concentration does not appear to be migrating beyond its previously known extent. No single source can be identified as the cause for elevated nitrate concentrations in ground water. Low nitrogen-15 values north of Cedar City indicate a natural geologic source. Higher nitrogen-15 values toward the center of the basin and associated hydrologic data indicate probable recharge from waste-water effluent. Excess dissolved nitrogen gas and low nitrate concentrations in shallow ground water indicate that denitrification is occurring in some areas.A computer ground-water flow model was developed to simulate flow in the unconsolidated basin fill. The method of determining recharge from irrigation was changed during the calibration process to incorporate more areal and temporal variability. In general, the model accurately simulates water levels and water-level fluctuations and can be considered an adequate tool to help determine the valley-wide effects on water levels of additional ground-water withdrawals and changes in water use. The model was used to simulated water-level changes caused by projecting current

  7. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    D'Agnese, Frank A.; O'Brien, G. M.; Faunt, C.C.; Belcher, W.R.; San Juan, C.

    2002-01-01

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this 'second-generation' regional model was to enhance the knowledge an understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-state representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration. The Death Valley regional ground-water flow system is situated within the southern Great Basin, a subprovince of the Basin and Range physiographic province, bounded by latitudes 35 degrees north and 38 degrees 15 minutes north and by longitudes 115 and 118 degrees west. Hydrology in the region is a result of both the arid climatic conditions and the complex geology. Ground-water flow generally can be described as dominated by interbasinal flow and may be conceptualized as

  8. Characterization and simulation of ground-water flow in the Kansas River Valley at Fort Riley, Kansas, 1990-98

    USGS Publications Warehouse

    Myers, Nathan C.

    2000-01-01

    Hydrologic data and a ground-water flow model were used to characterize ground-water flow in the Kansas River alluvial aquifer at Fort Riley in northeast Kansas. The ground-water flow model was developed as a tool to project ground-water flow and potential contaminant-transport paths in the alluvial aquifer on the basis of past hydrologic conditions. The model also was used to estimate historical and hypothetical ground-water flow paths with respect to a private- and several public-supply wells. The ground-water flow model area extends from the Smoky Hill and Republican Rivers downstream to about 2.5 miles downstream from the city of Ogden. The Kansas River Valley has low relief and, except for the area within the Fort Riley Military Reservation, is used primarily for crop production. Sedimentary deposits in the Kansas River Valley, formed after the ancestral Kansas River eroded into bedrock, primarily are alluvial sediment deposited by the river during Quaternary time. The alluvial sediment consists of as much as about 75 feet of poorly sorted, coarse-to-fine sand, silt, and clay, 55 feet of which can be saturated with ground water. The alluvial aquifer is unconfined and is bounded on the sides and bottom by Permian-age shale and limestone bedrock. Hydrologic data indicate that ground water in the Kansas River Valley generally flows in a downstream direction, but flow direction can be quite variable near the Kansas River due to changes in river stage. Ground-water-level changes caused by infiltration of precipitation are difficult to detect because they are masked by larger changes caused by fluctuation in Kansas River stage. Ratios of strontium isotopes Sr87 and Sr86 in water collected from wells in the Camp Funston Area indicate that the ground water along the northern valley wall originates, in part, from upland areas north of the river valley. Water from Threemile Creek, which flows out of the uplands north of the river valley, had Sr87:Sr86 ratios similar to

  9. Hydrology and simulation of ground-water flow in Kamas Valley, Summit County, Utah

    USGS Publications Warehouse

    Brooks, L.E.; Stolp, B.J.; Spangler, L.E.

    2003-01-01

    Kamas Valley, Utah, is located about 50 miles east of Salt Lake City and is undergoing residential development. The increasing number of wells and septic systems raised concerns of water managers and prompted this hydrologic study. About 350,000 acre-feet per year of surface water flows through Kamas Valley in the Weber River, Beaver Creek, and Provo River, which originate in the Uinta Mountains east of the study area. The ground-water system in this area consists of water in unconsolidated deposits and consolidated rock; water budgets indicate very little interaction between consolidated rock and unconsolidated deposits. Most recharge to consolidated rock occurs at higher altitudes in the mountains and discharges to streams and springs upgradient of Kamas Valley. About 38,000 acre-feet per year of water flows through the unconsolidated deposits in Kamas Valley. Most recharge is from irrigation and seepage from major streams; most discharge is to Beaver Creek in the middle part of the valley. Long-term water-level fluctuations range from about 3 to 17 feet. Seasonal fluctuations exceed 50 feet. Transmissivity varies over four orders of magnitude in both the unconsolidated deposits and consolidated rock and is typically 1,000 to 10,000 feet squared per day in unconsolidated deposits and 100 feet squared per day in consolidated rock as determined from specific capacity. Water samples collected from wells, streams, and springs had nitrate plus nitrite concentrations (as N) substantially less than 10 mg/L. Total and fecal coliform bacteria were detected in some surface-water samples and probably originate from livestock. Septic systems do not appear to be degrading water quality. A numerical ground-water flow model developed to test the conceptual understanding of the ground-water system adequately simulates water levels and flow in the unconsolidated deposits. Analyses of model fit and sensitivity were used to refine the conceptual and numerical models.

  10. Ground-Water Flow Model for the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    USGS Publications Warehouse

    Hsieh, Paul A.; Barber, Michael E.; Contor, Bryce A.; Hossain, Md. Akram; Johnson, Gary S.; Jones, Joseph L.; Wylie, Allan H.

    2007-01-01

    This report presents a computer model of ground-water flow in the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in Spokane County, Washington, and Bonner and Kootenai Counties, Idaho. The aquifer is the sole source of drinking water for more than 500,000 residents in the area. In response to the concerns about the impacts of increased ground-water withdrawals resulting from recent and projected urban growth, a comprehensive study was initiated by the Idaho Department of Water Resources, the Washington Department of Ecology, and the U.S. Geological Survey to improve the understanding of ground-water flow in the aquifer and of the interaction between ground water and surface water. The ground-water flow model presented in this report is one component of this comprehensive study. The primary purpose of the model is to serve as a tool for analyzing aquifer inflows and outflows, simulating the effects of future changes in ground-water withdrawals from the aquifer, and evaluating aquifer management strategies. The scale of the model and the level of detail are intended for analysis of aquifer-wide water-supply issues. The SVRP aquifer model was developed by the Modeling Team formed within the comprehensive study. The Modeling Team consisted of staff and personnel working under contract with the Idaho Department of Water Resources, personnel working under contract with the Washington Department of Ecology, and staff of the U.S. Geological Survey. To arrive at a final model that has the endorsement of all team members, decisions on modeling approach, methodology, assumptions, and interpretations were reached by consensus. The ground-water flow model MODFLOW-2000 was used to simulate ground-water flow in the SVPR aquifer. The finite-difference model grid consists of 172 rows, 256 columns, and 3 layers. Ground-water flow was simulated from September 1990 through September 2005 using 181 stress periods of 1 month each. The areal extent of the model encompasses an area of

  11. Simulation of an urban ground-water-flow system in the Menomonee Valley, Milwaukee, Wisconsin using analytic element modeling

    USGS Publications Warehouse

    Dunning, C.P.; Feinstein, D.T.

    2004-01-01

    A single-layer, steady-state analytic element model was constructed to simulate shallow ground-water flow in the Menomonee Valley, an old industrial center southwest of downtown Milwaukee, Wisconsin. Project objectives were to develop an understanding of the shallow ground-water flow system and identify primary receptors of recharge to the valley. The analytic element model simulates flow in a 18.3 m (60 ft) thick layer of estuarine and alluvial sediments and man-made fill that comprises the shallow aquifer across the valley. The thin, laterally extensive nature of the shallow aquifer suggests horizontal-flow predominates, thus the system can appropriately be modeled with the Dupuit-Forchheimer approximation in an analytic element model. The model was calibrated to the measured baseflow increase between two USGS gages on the Menomonee River, 90 head measurements taken in and around the valley during December 1999, and vertical gradients measured at five locations under the river and estuary in the valley. Recent construction of the Milwaukee Metropolitan Sewer District Inline Storage System (ISS) in the Silurian dolomite under the Menomonee Valley has locally lowered heads in the dolomite appreciably, below levels caused by historic pumping. The ISS is a regional hydraulic sink which removes water from the bedrock even during dry weather. The potential effect on flow directions in the shallow aquifer of dry-weather infiltration to the ISS was evaluated by adjusting the resistance of the line-sink strings representing the ISS in the model to allow infiltration from 0 to 100% of the reported 9,500 m3/d. The best fit to calibration targets was found between 60% (5,700 m3/d) and 80% (7,600 m3/d) of the reported dry-weather infiltration. At 60% infiltration, 65% of the recharge falling on the valley terminates at the ISS and 35% at the Menomonee River and estuary. At 80% infiltration, 73% of the recharge terminates at the ISS, and 27% at the river and estuary. Model

  12. Hydraulic-property estimates for use with a transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Elliott, Peggy E.; Geldon, Arthur L.

    2001-01-01

    The Death Valley regional ground-water flow system encompasses an area of about 43,500 square kilometers in southeastern California and southern Nevada, between latitudes 35? and 38?15' north and longitudes 115? and 117?45' west. The study area is underlain by Quaternary to Tertiary basin-fill sediments and mafic-lava flows; Tertiary volcanic, volcaniclastic, and sedimentary rocks; Tertiary to Jurassic granitic rocks; Triassic to Middle Proterozoic carbonate and clastic sedimentary rocks; and Early Proterozoic igneous and metamorphic rocks. The rock assemblage in the Death Valley region is extensively faulted as a result of several episodes of tectonic activity. This study is comprised of published and unpublished estimates of transmissivity, hydraulic conductivity, storage coefficient, and anisotropy ratios for hydrogeologic units within the Death Valley region study area. Hydrogeologic units previously proposed for the Death Valley regional transient ground-water flow model were recognized for the purpose of studying the distribution of hydraulic properties. Analyses of regression and covariance were used to assess if a relation existed between hydraulic conductivity and depth for most hydrogeologic units. Those analyses showed a weak, quantitatively indeterminate, relation between hydraulic conductivity and depth.

  13. Simulation of ground-water flow, surface-water flow, and a deep sewer tunnel system in the Menomonee Valley, Milwaukee, Wisconsin

    USGS Publications Warehouse

    Dunning, C.P.; Feinstein, D.T.; Hunt, R.J.; Krohelski, J.T.

    2004-01-01

    Numerical models were constructed for simulation of ground-water flow in the Menomonee Valley Brownfield, in Milwaukee, Wisconsin. An understanding of ground-water flow is necessary to develop an efficient program to sample ground water for contaminants. Models were constructed in a stepwise fashion, beginning with a regional, single-layer, analytic-element model (GFLOW code) that provided boundary conditions for a local, eight layer, finite-difference model (MODFLOW code) centered on the Menomonee Valley Brownfield. The primary source of ground water to the models is recharge over the model domains; primary sinks for ground water within the models are surface-water features and the Milwaukee Metropolitan Sewerage District Inline Storage System (ISS). Calibration targets were hydraulic heads, surface-water fluxes, vertical gradients, and ground-water infiltration to the ISS. Simulation of ground-water flow by use of the MODFLOW model indicates that about 73 percent of recharge within the MODFLOW domain circulates to the ISS and 27 percent discharges to gaining surface-water bodies. In addition, infiltration to the ISS comes from the following sources: 36 percent from recharge within the model domain, 45 percent from lateral flow into the domain, 15 percent from Lake Michigan, and 4 percent from other surface-water bodies. Particle tracking reveals that the median traveltime from the recharge point to surface-water features is 8 years; the median time to the ISS is 255 years. The traveltimes to the ISS are least over the northern part of the valley, where dolomite is near the land surface. The distribution of traveltimes in the MODFLOW simulation is greatly influenced by the effective porosity values assigned to the various lithologies.

  14. A summary of ground-water pumpage in the Central Valley, California, 1961-77

    USGS Publications Warehouse

    Diamond, Jonathan; Williamson, A.K.

    1983-01-01

    In the Central Valley of California, a great agricultural economy has been developed in a semiarid environment. This economy is supported by imported surface water and 9 to 15 million acre-feet per year of ground water. Estimates of ground-water pumpage computed from power consumption have been compiled and summarized. Under ideal conditions, the accuracy of the methods used is about 3 percent. This level of accuracy is not sustained over the entire study area. When pumpage for the entire area is mapped, the estimates seem to be consistent areally and through time. A multiple linear-regression model was used to synthesize data for the years 1961 through 1977, when power data were not available. The model used a relation between ground-water pumpage and climatic indexes to develop a full suite of pumpage data to be used as input to a digital ground-water model, one of the products of the Central Valley Aquifer Project. Statistical analysis of well-perforation data from drillers ' logs and water-temperature data was used to determine the percentage of pumpage that was withdrawn from each of two horizontal layers. (USGS)

  15. Potential development and recharge of ground water in Mill Creek Valley, Butler and Hamilton Counties, Ohio, based on analog model analysis

    USGS Publications Warehouse

    Fidler, Richard E.

    1971-01-01

    Mill Creek valley is part of the greater Cincinnati industrial area in southwestern Ohio. In 1964, nearly 30 percent of the water supply in the study area of about 27 square miles was obtained from wells in the glacial-outwash aquifer underlying the valley. Ground-water demand has increased steadily since the late 1800's, and excessive pumpage during the years of World War II caused water levels to decline to critical levels. Natural recharge to the aquifer, from precipitation, is about 8.5 mgd (million gallons per day). In 1964, the total water use was about 30 mgd, of which 8.1 mgd was obtained from wells in Mill Creek valley, and the remainder was imported from outside the basin. With rapid industrial expansion and population growth, demand for ground water is continuing to increase. By the year 2000 ground-water pumpage is expected to exceed 25 mgd. At a public hearing before the Ohio Water Commission in 1961, artificial recharge of the aquifer through injection wells was proposed as a possible solution to the Mill Creek valley water-supply problem. The present study attempts to determine the feasibility of injection-well recharge systems in the Mill Creek valley. Although basically simple, the hydrologic system in Mill Creek valley is complex in detail and is difficult to evaluate using conventional quantitative methods. Because of this complexity, an electric analog model was used to test specific development plans. Three hypothetical pumping plans were developed by projecting past pumpage data to the years 1980 and 2000. Various combinations of injection wells were tested on the model under different hypothetical conditions of pumpage. Based on analog model analysis, from three to eight inject-ion wells, with an approximate input of 2 mgd each, would reverse the trend in declining groundwater levels and provide adequate water to meet anticipated future demands.

  16. Ground water in the Escalante Valley, Beaver, Iron, and Washington Counties, Utah

    USGS Publications Warehouse

    Fix, Philip F.; Nelson, W.B.; Lofgren, B.E.; Butler, R.G.

    1950-01-01

    Escalante Valley in southwestern Utah is one of the largest and most important ground-water areas of the State, with 1,300 square miles of arid land and an additional 1,500 square miles in its tributary drainage basin. Ground water is obtained from gravel and sand beds in the unconsolidated valley fill. In 1950 more irrigation wells were pumped than in any other basin of Utah, and their total pumpage exceeded 80,000 acre-feet. Farming is done chiefly in the Beryl-Enterprise district at the south (upper) end of the valley, where it depends almost entirely upon ground water, and in the Milford and Minersville districts in the northeast-central part of the valley. This progress report concerns chiefly the Beryl-Enterprise and Milford districts.

  17. Estimates of natural ground-water discharge and characterization of water quality in Dry Valley, Washoe County, West-Central Nevada, 2002-2003

    USGS Publications Warehouse

    Berger, David L.; Maurer, Douglas K.; Lopes, Thomas J.; Halford, Keith J.

    2004-01-01

    The Dry Valley Hydrographic Area is being considered as a potential source area for additional water supplies for the Reno-Sparks area, which is about 25 miles south of Dry Valley. Current estimates of annual ground-water recharge to Dry Valley have a considerable range. In undeveloped valleys, such as Dry Valley, long-term ground-water discharge can be assumed the same as long-term ground-water recharge. Because estimating ground-water discharge has more certainty than estimating ground-water recharge from precipitation, the U.S. Geological Survey, in cooperation with Washoe County, began a three-year study to re-evaluate the ground-water resources by estimating natural ground-water discharge and characterize ground-water quality in Dry Valley. In Dry Valley, natural ground-water discharge occurs as subsurface outflow and by ground-water evapotranspiration. The amount of subsurface outflow from the upper part of Dry Valley to Winnemucca and Honey Lake Valleys likely is small. Subsurface outflow from Dry Valley westward to Long Valley, California was estimated using Darcy's Law. Analysis of two aquifer tests show the transmissivity of poorly sorted sediments near the western side of Dry Valley is 1,200 to 1,500 square feet per day. The width of unconsolidated sediments is about 4,000 feet between exposures of tuffaceous deposits along the State line, and decreases to about 1,500 feet (0.5 mile) west of the State line. The hydraulic gradient east and west of the State line ranges from 0.003 to 0.005 foot per foot. Using these values, subsurface outflow to Long Valley is estimated to be 50 to 250 acre-feet per year. Areas of ground-water evapotranspiration were field mapped and partitioned into zones of plant cover using relations derived from Landsat imagery acquired July 8, 2002. Evapotranspiration rates for each plant-cover zone were multiplied by the corresponding area and summed to estimate annual ground-water evapotranspiration. About 640 to 790 acre-feet per

  18. Ground-water storage depletion in Pahrump Valley, Nevada-California, 1962-75

    USGS Publications Warehouse

    Harrill, James R.

    1982-01-01

    During the 13-year period, February 1962 to February 1975, about 540,000 acre-feet of ground water was pumped from Pahrump Valley. This resulted in significant water-level declines along the base of the Pahrump and Manse fans where pumping was concentrated. Maximum observed net decline was slightly more than 60 feet. Much smaller declines occurred in the central valley, and locally, water levels in some shallow wells rose due to recharge derived from the deep percolation of irrigation water. The pumping resulted in about 219,000 acre-feet of storage depletion. Of this, 155,000 acre-feet was from the draining of unconsolidated material, 46,000 was from compaction of fine-grained sediments, and 18,000 acre-feet was from the elastic response of the aquifer and water. The total storage depletion was equal to about 40 percent of the total pumpage. The remaining pumped water was derived from the capture of natural ground-water discharge and reuse of pumped water that had recirculated back to ground water. Natural recharge to and discharge from the ground-water system is estimated to be 37,000 acre-feet per year. Of this, 18,000 acre-feet per year leaves the area as subsurface outflow through carbonate-rock aquifers which form a multivalley flow system. The extent of this system was not precisely determined by this study. The most probable discharge area for this outflow is along the flood plain of the Amargosa River between the towns of Shoshone and Tecopa. This outflow probably cannot be economically captured by pumping from Pahrump Valley. Consequently, the maximum amount of natural discharge available for capture is 19,000 acre-feet per year. This is larger than the 12,000 acre-feet per year estimated in a previous study; the difference is due to different techniques used in the analysis. As of 1975, pumping was causing an overdraft of 11,000 acre-feet per year on the ground-water system. No new equilibrium is probable in the foreseeable future. Water levels will

  19. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: indicators of recharge and ground-water flow

    USGS Publications Warehouse

    Panno, S.V.; Hackley, Keith C.; Cartwright, K.; Liu, Chao-Li

    1994-01-01

    A conceptual model of the ground-water flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA), east-central Illinois, was developed using major ion chemistry and isotope geochemistry. The MVA is a 'basal' fill in the east-west trending buried bedrock valley composed of clean, permeable sand and gravel to thicknesses of up to 61 m. It is covered by a thick sequence of glacial till containing thinner bodies of interbedded sand and gravel. Ground water from the MVA was found to be characterized by clearly defined geochemical regions with three distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west. Ground water in the Onarga Valley, a northeastern tributary of the MVA, is of two types, a mixed cation-SO42- type and a mixed cation-HCO3- type. The ground water is enriched in Na+, Ca2+, Mg2+, and SO42- which appears to be the result of an upward hydraulic gradient and interaction of deeper ground water with oxidized pyritic coals and shale. We suggest that recharge to the Onarga Valley and overlying aquifers is 100% from bedrock (leakage) and lateral flow from the MVA to the south. The central MVA (south of the Onarga Valley) is composed of relatively dilute ground water of a mixed cation-HCO3- type, with low total dissolved solids, and very low concentrations of Cl- and SO42-. Stratigraphic relationships of overlying aquifers and ground-water chemistry of these and the MVA suggest recharge to this region of the MVA (predominantly in Champaign County) is relatively rapid and primarily from the surface. Midway along the westerly flow path of the MVA (western MVA), ground water is a mixed cation-HCO3- type with relatively high Cl-, where Cl- increases abruptly by one to ??? two orders of magnitude. Data suggest that the increase in Cl- is the result of leakage of saline ground water from bedrock into the MVA. Mass-balance calculations indicate that approximately 9.5% of

  20. Hydrogeology of, and Simulation of Ground-Water Flow In, the Pohatcong Valley, Warren County, New Jersey

    USGS Publications Warehouse

    Carleton, Glen B.; Gordon, Alison D.

    2007-01-01

    A numerical ground-water-flow model was constructed to simulate ground-water flow in the Pohatcong Valley, including the area within the U.S. Environmental Protection Agency Pohatcong Valley Ground Water Contamination Site. The area is underlain by glacial till, alluvial sediments, and weathered and competent carbonate bedrock. The northwestern and southeastern valley boundaries are regional-scale thrust faults and ridges underlain by crystalline rocks. The unconsolidated sediments and weathered bedrock form a minor surficial aquifer and the carbonate rocks form a highly transmissive fractured-rock aquifer. Ground-water flow in the carbonate rocks is primarily downvalley towards the Delaware River, but the water discharges through the surficial aquifer to Pohatcong Creek under typical conditions. The hydraulic characteristics of the carbonate-rock aquifer are highly heterogeneous. Horizontal hydraulic conductivities span nearly five orders of magnitude, from 0.5 feet per day (ft/d) to 1,800 ft/d. The maximum transmissivity calculated is 37,000 feet squared per day. The horizontal hydraulic conductivities calculated from aquifer tests using public supply wells open to the Leithsville Formation and Allentown Dolomite are 34 ft/d (effective hydraulic conductivity) and 85 to 190 ft/d (minimum and maximum hydraulic conductivity, respectively, yielding a horizontal anisotropy ratio of 0.46). Stream base-flow data were used to estimate the net gain (or loss) for selected reaches on Brass Castle Creek, Shabbecong Creek, three smaller tributaries to Pohatcong Creek, and for five reaches on Pohatcong Creek. Estimated mean annual base flows for Brass Castle Creek, Pohatcong Creek at New Village, and Pohatcong Creek at Carpentersville (from correlations of partial- and continuous-record stations) are 2.4, 25, and 45 cubic feet per second (ft3/s) (10, 10, and 11 inches per year (in/yr)), respectively. Ground-water ages estimated using sulfur hexafluoride (SF6

  1. Hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction, San Joaquin Valley, California

    USGS Publications Warehouse

    Sneed, Michelle

    2001-01-01

    This report summarizes hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction in the San Joaquin Valley, a broad alluviated intermontane structural trough that constitutes the southern two-thirds of the Central Valley of California. These values will be used to constrain a coupled ground-water flow and aquifer-system compaction model of the western San Joaquin Valley called WESTSIM. A main objective of the WESTSIM model is to evaluate potential future land subsidence that might occur under conditions in which deliveries of imported surface water for agricultural use are reduced and ground-water pumping is increased. Storage values generally are components of the total aquifer-system storage and include inelastic and elastic skeletal storage values of the aquifers and the aquitards that primarily govern the potential amount of land subsidence. Vertical hydraulic conductivity values generally are for discrete thicknesses of sediments, usually aquitards, that primarily govern the rate of land subsidence. The data were compiled from published sources and include results of aquifer tests, stress-strain analyses of borehole extensometer observations, laboratory consolidation tests, and calibrated models of aquifer-system compaction.

  2. Hydrogeology of, and simulation of ground-water flow in a mantled carbonate-rock system, Cumberland Valley, Pennsylvania

    USGS Publications Warehouse

    Chichester, D.C.

    1996-01-01

    -annual precipitation range from 39.0 to 40.5 inches, and averages about 40 inches for the model area. Average-annual recharge, which was assumed equal to the average-annual base flow, ranged from 12 inches for the Conodoguinet Creek, and 15 inches for the Yellow Breeches Creek. The thickly-mantled carbonate system was modeled as a three- dimensional water-table aquifer. Recharge to, ground-water flow through, and discharge from the Cumberland Valley were simulated. The model was calibrated for steady-state conditions using average recharge and discharge data. Aquifer horizontal hydraulic conductivity was calculated from specific-capacity data for each geologic unit in the area. Particle-tracking analyses indicate that interbasin and intrabasin flows of groundwater occur within the Yellow Breeches Creek Basin and between the Yellow Breeches and Conodoguinet Creek Basins.

  3. Influence of fracture anisotropy on ground water ages and chemistry, Valley and Ridge province, Pennsylvania

    USGS Publications Warehouse

    Burton, W.C.; Plummer, Niel; Busenberg, E.; Lindsey, B.D.; Gburek, W.J.

    2002-01-01

    Model ground water ages based on chlorofluorocarbons (CFCs) and tritium/helium-3 (3H/3He) data were obtained from two arrays of nested piezometers located on the north limb of an anticline in fractured sedimentary rocks in the Valley and Ridge geologic province of Pennsylvania. The fracture geometry of the gently east plunging fold is very regular and consists predominately of south dipping to subhorizontal to north dipping bedding-plane parting and east striking, steeply dipping axial-plane spaced cleavage. In the area of the piezometer arrays, which trend north-south on the north limb of the fold, north dipping bedding-plane parting is a more dominant fracture set than is steeply south dipping axial-plane cleavage. The dating of ground water from the piezometer arrays reveals that ground water traveling along paths parallel to the dip direction of bedding-plane parting has younger 3H/3He and CFC model ages, or a greater component of young water, than does ground water traveling along paths opposite to the dip direction. In predominantly unmixed samples there is a strong positive correlation between age of the young fraction of water and dissolved sodium concentration. The travel times inferred from the model ages are significantly longer than those previously calculated by a ground water flow model, which assumed isotropically fractured layers parallel to topography. A revised model factors in the directional anisotropy to produce longer travel times. Ground water travel times in the watershed therefore appear to be more influenced by anisotropic fracture geometry than previously realized. This could have significant implications for ground water models in other areas underlain by similarly tilted or folded sedimentary rock, such as elsewhere in the Valley and Ridge or the early Mesozoic basins.

  4. Geology and ground water in Russian River Valley areas and in Round, Laytonville, and Little Lake Valleys, Sonoma and Mendocino Counties, California

    USGS Publications Warehouse

    Cardwell, G.T.

    1965-01-01

    This report describes the occurrence, availability, and quality of ground water in seven valley areas along the course of the Russian River in Sonoma and Mendocino Counties, Calif., and in three valleys in the upper drainage reach of the Eel River in Mendocino County. Except for the westward-trending lower Russian River valley, the remaining valley areas along the Russian River (Healdsburg, Alexander, Cloverdale, Sanel, Ukiah, and Potter Valleys) lie in northwest-trending structurally controlled depressions formed in marine rocks of Jurassic and Cretaceous age. The principal aquifer in all the valleys is the alluvium of Recent age, which includes highly permeable channel deposits of gravel and sand. Water for domestic, irrigation, industrial, and other uses is developed by (1) direct diversion from the Russian River and its tributaries, (2) withdrawal of ground water and river water from shallow wells near the river, and (3) withdrawals of ground water from wells in alluvial deposits at varying distances from the river. Surface water in the Russian River and most tributaries is of good chemical quality. The water is a calcium magnesium bicarbonate type and contains 75,200 parts per million of dissolved solids. Ground water is also of good chemical quality throughout most of the drainage basin, but the concentration of dissolved solids (100-300 parts per million) is somewhat higher than that in the surface water. Round, Laytonville, and Little Lake Valleys are in central and northern Mendocino County in the drainage basin of the northwestward flowing Eel River. In Round Valley the alluvium of Recent age yields water of good chemical quality in large quantities. Yields are lower and the chemical quality poorer in Laytonville Valley. Ground water in Little Lake Valley is relatively undeveloped. Selected descriptions of wells, drillers' logs, chemical analyses, and hydrographs showing water-level fluctuations are included in the report. Accompanying maps show the

  5. Ground-water quality in the southeastern Sacramento Valley aquifer, California, 1996

    USGS Publications Warehouse

    Milby Dawson, Barbara J.

    2001-01-01

    In 1996, the U.S. Geological Survey sampled 29 domestic wells and 2 monitoring wells in the southeastern Sacramento Valley as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This area, designated as the NAWQA Sacramento subunit study area, was chosen because it had the largest amount of ground-water use in the Sacramento River Basin. The Sacramento subunit study area is about 4,400 square kilometers and includes intense agricultural and urban development. The wells sampled ranged from 14.9 to 79.2 meters deep. Ground-water samples from 31 wells were analyzed for 6 field measurements, 14 inorganic constituents, 6 nutrient constituents, organic carbon, 86 pesticides, 87 volatile organic compounds, tritium (hydrogen-3), radon-222, deuterium (hydrogen-2), and oxygen-18. Nitrate levels were lower than the 2000 drinking-water standards in all but one well, but many detections were in the range that indicated an effect by human activities on ground-water quality. Radon was detected in all wells, and was measured at levels above the proposed Federal 2000 maximum contaminant level in 90 percent of the wells. Five pesticides and one pesticide degradation product were detected in ground-water samples and concentrations were below 2000 drinking-water standards. All pesticides detected during this study have been used in the Sacramento Valley. Thirteen volatile organic compounds were detected in ground water. One detection of trichloroethene was above Federal 2000 drinking-water standards, and another, tetrachloromethane, was above California 1997 drinking-water standards; both occurred in a well that had eight volatile organic compound detections and is near a known source of ground-water contamination. Pesticides and volatile organic compounds were detected in agricultural and urban areas; both pesticides and volatile organic compounds were detected at a higher frequency in urban wells. Ground-water chemistry indicates that natural

  6. Estimated Ground-Water Withdrawals from the Death Valley Regional Flow System, Nevada and California, 1913-98

    USGS Publications Warehouse

    Moreo, Michael T.; Halford, Keith J.; La Camera, Richard J.; Laczniak, Randell J.

    2003-01-01

    Ground-water withdrawals from 1913 through 1998 from the Death Valley regional flow system have been compiled to support a regional, three-dimensional, transient ground-water flow model. Withdrawal locations and depths of production intervals were estimated and associated errors were reported for 9,300 wells. Withdrawals were grouped into three categories: mining, public-supply, and commercial water use; domestic water use; and irrigation water use. In this report, groupings were based on the method used to estimate pumpage. Cumulative ground-water withdrawals from 1913 through 1998 totaled 3 million acre-feet, most of which was used to irrigate alfalfa. Annual withdrawal for irrigation ranged from 80 to almost 100 percent of the total pumpage. About 75,000 acre-feet was withdrawn for irrigation in 1998. Annual irrigation withdrawals generally were estimated as the product of irrigated acreage and application rate. About 320 fields totaling 11,000 acres were identified in six hydrographic areas. Annual application rates for high water-use crops ranged from 5 feet in Penoyer Valley to 9 feet in Pahrump Valley. The uncertainty in the estimates of ground-water withdrawals was attributed primarily to the uncertainty of application rate estimates. Annual ground-water withdrawal was estimated at about 90,000 acre-feet in 1998 with an assigned uncertainty bounded by 60,000 to 130,000 acre-feet.

  7. Ground-water quality and geochemistry in Dayton, Stagecoach, and Churchill Valleys, western Nevada

    USGS Publications Warehouse

    Thomas, James M.; Lawrence, Stephen J.

    1994-01-01

    The U.S. Geological Survey investigated the quality of ground water in the Dayton, Stagecoach, and Churchill Valleys as part of the Carson River Basin National Water-Quality Assessment (NAWQA) pilot study. Four aquifer systems have been de- lineated in the study area. Principal aquifers are unconsolidated deposits at altitudes of less than 4,900 feet above sea level and more than 50 feet below land surface. Shallow aquifers are at altitudes of less than 4,900 feet and less than 50 feet below land surface. Upland aquifers are above 4,900 feet and provide recharge to the principal aquifers. Thermal aquifers, defined as those having a water temperature greater than 30 degrees Celsius, are also present. Ground water used in Dayton, Stagecoach, and Churchill Valleys is pumped from principal aquifers in unconsolidated basin-fill deposits. Ground water in these aquifers originates as precipitation in the adjacent mountains and is recharged by the Carson River and by underflow from adjacent upstream valleys. Ground-water flow is generally parallel to the direction of surface-water flow in the Carson River. Ground water is discharged by pumping, evapo- transpiration, and underflow into the Carson River. The results of geochemical modeling indicate that as ground water moves from upland aquifers in mountainous recharge areas to principal aquifers in basin-fill deposits, the following processes probably occur: (1) plagioclase feldspar, sodium chloride, gypsum (or pyrite), potassium feldspar, and biotite dissolve; (2) calcite precipitates; (3) kaolinite forms; (4) small amounts of calcium and magnesium in the water exchange for potassium on aquifer minerals; and (5) carbon dioxide is gained or lost. The geochemical models are consistent with (1) phases identified in basin- fill sediments; (2) chemical activity of major cations and silica; (3) saturation indices of calcite and amorphous silica; (4) phase relations for aluminosilicate minerals indicated by activity diagrams; and

  8. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    USGS Publications Warehouse

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, J. LaRue; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  9. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    USGS Publications Warehouse

    Barton, Gary J.

    2004-01-01

    The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated

  10. Hydrogeologic Framework and Ground Water in Basin-Fill Deposits of the Diamond Valley Flow System, Central Nevada

    USGS Publications Warehouse

    Tumbusch, Mary L.; Plume, Russell W.

    2006-01-01

    The Diamond Valley flow system, an area of about 3,120 square miles in central Nevada, consists of five hydrographic areas: Monitor, Antelope, Kobeh, and Diamond Valleys and Stevens Basin. Although these five areas are in a remote part of Nevada, local government officials and citizens are concerned that the water resources of the flow system eventually could be further developed for irrigation or mining purposes or potentially for municipal use outside the study area. In order to better understand the flow system, the U.S. Geological Survey in cooperation with Eureka, Lander, and Nye Counties and the Nevada Division of Water Resources, is conducting a multi-phase study of the flow system. The principal aquifers of the Diamond Valley flow system are in basin-fill deposits that occupy structural basins comprised of carbonate rocks, siliciclastic sedimentary rocks, igneous intrusive rocks, and volcanic rocks. Carbonate rocks also function as aquifers, but their extent and interconnections with basin-fill aquifers are poorly understood. Ground-water flow in southern Monitor Valley is from the valley margins toward the valley axis and then northward to a large area of discharge by evapotranspiration (ET) that is formed south of a group of unnamed hills near the center of the valley. Ground-water flow from northern Monitor Valley, Antelope Valley, and northern and western parts of Kobeh Valley converges to an area of ground-water discharge by ET in central and eastern Kobeh Valley. Prior to irrigation development in the 1960s, ground-water flow in Diamond Valley was from valley margins toward the valley axis and then northward to a large discharge area at the north end of the valley. Stevens Basin is a small upland basin with internal drainage and is not connected with other parts of the flow system. After 40 years of irrigation pumping, a large area of ground-water decline has developed in southern Diamond Valley around the irrigated area. In this part of Diamond

  11. Ground-water resources of the Caguas-Juncos Valley, Puerto Rico

    USGS Publications Warehouse

    Puig, J.C.; Rodriguez, J.M.

    1993-01-01

    ?The Caguas-Juncos valley, which occupies an area of 35 square miles in east-central Puerto Rico, is underlain by the largely unconfined alluvial aquifer. Withdrawals from this aquifer for public water supply and for agricultural, industrial, and domestic water uses totalled about 3.0 million gallons per day in 1988. Some wells in the valley yield as much as 310 gallons per minute from the alluvial deposits along Rio Gurabo near Gurabo and near Juncos. Wells used at dairy farms in the area commonly yield about 30 gallons per minute. The potentiometric surface of the alluvial aquifer varies seasonally and generally is highest near the end of December and lowest in April. Transmissivity of the alluvial aquifer, estimated from specific capacity and slug test data, ranges from 65 to 4,800 feet squared per day. The estimated specific yield of the water-table is about 10 to 15 percent. The amount of water stored in the aquifer is estimated to be about 122,000 acre-feet. Analyses of ground-water samples revealed the presence of two distinct problems-- high natural concentrations of iron and manganese, and localized areas of human- related contamination scattered throughout the valley. The ground water is a calcium-bicarbonate type and typically has dissolved solids concentrations of less than 500 milligrams per liter.

  12. Ground-water hydrology of Pahvant Valley and adjacent areas, Utah

    USGS Publications Warehouse

    1990-01-01

    The primary ground-water reservoir in Pahvant Valley and adjacent areas is in the unconsolidated basin fill and interbedded basalt. Recharge in 1959 was estimated to be about 70,000 acre-feet per year and was mostly by seepage from streams, canals, and unconsumed irrigation water and by infiltration of precipitation. Discharge in 1959 was estimated to be about 109,000 acre-feet and was mostly from springs, evapotranspiration, and wells.Water-level declines of more than 50 feet occurred in some areas between 1953 and 1980 because of less-than-normal precipitation and extensive pumping for irrigation. Water levels recovered most of these declines between 1983 and 1986 because of reduced withdrawals and record quantities of precipitation.The quality of ground water in the area west of Kanosh has deteriorated since large ground-water withdrawals began in about 1953. The cause of the deterioration probably is movement of poor quality water into the area from the southwest and possibly the west during periods of large ground-water withdrawals and recycling of irrigation water. The quality of water from some wells has improved since 1983, due to increased recharge and decreased withdrawals for irrigation.Water-level declines of m:>re than 80 feet in some parts of Pahvant Valley are projected if ground-water withdrawals continue for 20 years at the 1977 rate of about 96,000 acre-feet. Rises of as much as 58 feet and declines of as much as 47 feet are projected with withdrawals of 48,000 acre-feet per year for 20 years. The elimination of recharge from the Central Utah Canal is projected to cause water-level declines of up to 8 feet near the canal.

  13. Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004

    USGS Publications Warehouse

    Bartolino, James R.

    2009-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Haley, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system which consists of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the ground-water resource. To help address these concerns this report describes a ground-water budget developed for the Wood River Valley aquifer system for three selected time periods: average conditions for the 10-year period 1995-2004, and the single years of 1995 and 2001. The 10-year period 1995-2004 represents a range of conditions in the recent past for which measured data exist. Water years 1995 and 2001 represent the wettest and driest years, respectively, within the 10-year period based on precipitation at the Ketchum Ranger Station. Recharge or inflow to the Wood River Valley aquifer system occurs through seven main sources (from largest to smallest): infiltration from tributary canyons, streamflow loss from the Big Wood River, areal recharge from precipitation and applied irrigation water, seepage from canals and recharge pits, leakage from municipal pipes, percolation from septic systems, and subsurface inflow beneath the Big Wood River in the northern end of the valley. Total estimated mean annual inflow or recharge to the aquifer system for 1995-2004 is 270,000 acre-ft/yr (370 ft3/s). Total recharge for the wet year 1995 and the dry year 2001 is estimated to be 270,000 acre-ft/yr (370 ft3/s) and 220,000 acre-ft/yr (300 ft3/s), respectively. Discharge or outflow from the Wood River Valley aquifer system occurs through

  14. Estimated ground-water discharge by evapotranspiration from Death Valley, California, 1997-2001

    USGS Publications Warehouse

    DeMeo, Guy A.; Laczniak, Randell J.; Boyd, Robert A.; Smith, J. LaRue; Nylund, Walter E.

    2003-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Inyo County, Calif., collected field data from 1997 through 2001 to accurately estimate the amount of annual ground-water discharge by evapotranspiration (ET) from the floor of Death Valley, California. Multispectral satellite-imagery and National Wetlands Inventory data are used to delineate evaporative ground-water discharge areas on the Death Valley floor. These areas are divided into five general units where ground-water discharge from ET is considered to be significant. Based upon similarities in soil type, soil moisture, vegetation type, and vegetation density; the ET units are salt-encrusted playa (21,287 acres), bare-soil playa (75,922 acres), low-density vegetation (6,625 acres), moderate-density vegetation (5,019 acres), and high-density vegetation (1,522 acres). Annual ET was computed for ET units with micrometeorological data which were continuously measured at six instrumented sites. Total ET was determined at sites that were chosen for their soil- and vegetated-surface conditions, which include salt-encrusted playa (extensive salt encrustation) 0.17 feet per year, bare-soil playa (silt and salt encrustation) 0.21 feet per year, pickleweed (pickleweed plants, low-density vegetation) 0.60 feet per year, Eagle Borax (arrowweed plants and salt grass, moderate-density vegetation) 1.99 feet per year, Mesquite Flat (mesquite trees, high-density vegetation) 2.86 feet per year, and Mesquite Flat mixed grasses (mixed meadow grasses, high-density vegetation) 3.90 feet per year. Precipitation, flooding, and ground-water discharge satisfy ET demand in Death Valley. Ground-water discharge is estimated by deducting local precipitation and flooding from cumulative ET estimates. Discharge rates from ET units were not estimated directly because the range of vegetation units far exceeded the five specific vegetation units that were measured. The rate of annual ground-water discharge by ET for

  15. Ground-Water Occurrence and Movement, 2006, and Water-Level Changes in the Detrital, Hualapai, and Sacramento Valley Basins, Mohave County, Arizona

    USGS Publications Warehouse

    Anning, David W.; Truini, Margot; Flynn, Marilyn E.; Remick, William H.

    2007-01-01

    Ground-water levels for water year 2006 and their change over time in Detrital, Hualapai, and Sacramento Valley Basins of northwestern Arizona were investigated to improve the understanding of current and past ground-water conditions in these basins. The potentiometric surface for ground water in the Basin-Fill aquifer of each basin is generally parallel to topography. Consequently, ground-water movement is generally from the mountain front toward the basin center and then along the basin axis toward the Colorado River or Lake Mead. Observed water levels in Detrital, Hualapai, and Sacramento Valley Basins have fluctuated during the period of historic water-level records (1943 through 2006). In Detrital Valley Basin, water levels in monitored areas have either remained the same, or have steadily increased as much as 3.5 feet since the 1980s. Similar steady conditions or water-level rises were observed for much of the northern and central parts of Hualapai Valley Basin. During the period of historic record, steady water-level declines as large as 60 feet were found in wells penetrating the Basin-Fill aquifer in areas near Kingman, northwest of Hackberry, and northeast of Dolan Springs within the Hualapai Valley Basin. Within the Sacramento Valley Basin, during the period of historic record, water-level declines as large as 55 feet were observed in wells penetrating the Basin-Fill aquifer in the Kingman and Golden Valley areas; whereas small, steady rises were observed in Yucca and in the Dutch Flat area.

  16. Use of environmental tracers to evaluate ground-water age and water-quality trends in a buried-valley aquifer, Dayton area, southwestern, Ohio

    USGS Publications Warehouse

    Rowe, Gary L.; Shapiro, Stephanie Dunkle; Schlosser, Peter

    1999-01-01

    Chlorofluorocarbons (CFC method) and tritium and helium isotopes (3H-3He method) were used as environmental tracers to estimate ground-water age in conjunction with efforts to develop a regional ground-water flow model of the buried-valley aquifer in the Dayton area, southwestern Ohio. This report describes results of CFC and water-quality sampling, summarizes relevant aspects of previously published work, and describes the use of 3H-3He ages to characterize temporal trends in ground-water quality of the buried-valley aquifer near Dayton, Ohio. Results of CFC sampling indicate that approximately 25 percent of the 137 sampled wells were contaminated with excess CFC's that rendered the ground water unsuitable for age dating. Evaluation of CFC ages obtained for the remaining samples indicated that the CFC compounds used for dating were being affected by microbial degradation. The degradation occurred under anoxic conditions that are found in most parts of the buried-valley aquifer. As a result, ground-water ages derived by the CFC method were too old and were inconsistent with measured tritium concentrations and independently derived 3H-3He ages. Limited data indicate that dissolved methane may play an important role in the degradation of the CFC's. In contrast, the 3H-3He technique was found to yield ground-water ages that were chemically and hydrologically reasonable. Ground-water ages derived by the 3H-3He technique were compared to values for selected water- quality characteristics to evaluate temporal trends in ground-water quality in the buried- valley aquifer. Distinct temporal trends were not identified for pH, alkalinity, or calcium and magnesium because of rapid equilibration of ground-water with calcite and dolomite in aquifer sediments. Temporal trends in which the amount of scatter and the number of outlier concentrations increased as ground-water age decreased were noted for sodium, potassium, boron, bromide, chloride, ammonia, nitrate, phosphate

  17. Three-dimensional hydrogeologic framework model for use with a steady-state numerical ground-water flow model of the Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Faunt, Claudia C.; D'Agnese, Frank A.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Department of Energy and other Federal, State, and local agencies, is evaluating the hydrogeologic characteristics of the Death Valley regional ground-water flow system. The ground-water flow system covers an area of about 100,000 square kilometers from latitude 35? to 38?15' North to longitude 115? to 118? West, with the flow system proper comprising about 45,000 square kilometers. The Death Valley regional ground-water flow system is one of the larger flow systems within the Southwestern United States and includes in its boundaries the Nevada Test Site, Yucca Mountain, and much of Death Valley. Part of this study includes the construction of a three-dimensional hydrogeologic framework model to serve as the foundation for the development of a steady-state regional ground-water flow model. The digital framework model provides a computer-based description of the geometry and composition of the hydrogeologic units that control regional flow. The framework model of the region was constructed by merging two previous framework models constructed for the Yucca Mountain Project and the Environmental Restoration Program Underground Test Area studies at the Nevada Test Site. The hydrologic characteristics of the region result from a currently arid climate and complex geology. Interbasinal regional ground-water flow occurs through a thick carbonate-rock sequence of Paleozoic age, a locally thick volcanic-rock sequence of Tertiary age, and basin-fill alluvium of Tertiary and Quaternary age. Throughout the system, deep and shallow ground-water flow may be controlled by extensive and pervasive regional and local faults and fractures. The framework model was constructed using data from several sources to define the geometry of the regional hydrogeologic units. These data sources include (1) a 1:250,000-scale hydrogeologic-map compilation of the region; (2) regional-scale geologic cross sections; (3) borehole information, and (4

  18. Regional ground-water evapotranspiration and ground-water budgets, Great Basin, Nevada

    USGS Publications Warehouse

    Nichols, William D.

    2000-01-01

    PART A: Ground-water evapotranspiration data from five sites in Nevada and seven sites in Owens Valley, California, were used to develop equations for estimating ground-water evapotranspiration as a function of phreatophyte plant cover or as a function of the depth to ground water. Equations are given for estimating mean daily seasonal and annual ground-water evapotranspiration. The equations that estimate ground-water evapotranspiration as a function of plant cover can be used to estimate regional-scale ground-water evapotranspiration using vegetation indices derived from satellite data for areas where the depth to ground water is poorly known. Equations that estimate ground-water evapotranspiration as a function of the depth to ground water can be used where the depth to ground water is known, but for which information on plant cover is lacking. PART B: Previous ground-water studies estimated groundwater evapotranspiration by phreatophytes and bare soil in Nevada on the basis of results of field studies published in 1912 and 1932. More recent studies of evapotranspiration by rangeland phreatophytes, using micrometeorological methods as discussed in Chapter A of this report, provide new data on which to base estimates of ground-water evapotranspiration. An approach correlating ground-water evapotranspiration with plant cover is used in conjunction with a modified soil-adjusted vegetation index derived from Landsat data to develop a method for estimating the magnitude and distribution of ground-water evapotranspiration at a regional scale. Large areas of phreatophytes near Duckwater and Lockes in Railroad Valley are believed to subsist on ground water discharged from nearby regional springs. Ground-water evapotranspiration by the Duckwater phreatophytes of about 11,500 acre-feet estimated by the method described in this report compares well with measured discharge of about 13,500 acre-feet from the springs near Duckwater. Measured discharge from springs near Lockes

  19. Preliminary report on geology and ground water of the Pajaro Valley area, Santa Cruz and Monterey counties, California

    USGS Publications Warehouse

    Muir, K.S.

    1972-01-01

    The Pajaro Valley area, California, covering about 120 square miles, extends from the southern part of Santa Cruz County to several miles south of the county line into Monterey County. It borders the Pacific Ocean on the west and the Santa Cruz Mountains on the east. The city of Watsonville is the largest center of population. Deposits that range in age from Pliocene to Holocene make up the ground-water reservoir. These include, from oldest to youngest, the Purisima Formation, Aromas Red Sands of Allen (1946), terrace deposits, alluvium, and dune sand. These deposits underlie an area of about 80 square miles and have a maximum thickness of about 4,000 feet. The alluvium yields most of the water pumped from wells in the area. Pre-Pliocene rocks underlie and form the boundaries of the ground-water reservoir. These rocks contain ground water in fractures and in sandstone beds. However, they are not an important source of ground water. There is close continuity between the geology of the Pajaro Valley area and that of the Soquel-Aptos area, which is contiguous on the north. Ground water in the Pajaro Valley area is derived from three sources: (1) Precipitation within the Pajaro Valley area that reaches the ground-water body by direct infiltration or by seepage from streams, (2) seepage from the Pajaro River as it crosses the Pajaro Valley carrying runoff which originates upstream from the valley, and (3) precipitation in the Soquel-Aptos area that infiltrates and then moves southeastward at depth into the Pajaro Valley area. Ground water in most wells in the Pajaro Valley area occurs under confined (artesian) conditions; the only exception is ground water in the upper, near-surface part of the alluvium and that in the dune sand. It moves south from the north part of the area and southwest away from the San Andreas fault toward and out under Monterey Bay. In the south part of the area, ground-water movement is almost due west. The San Andreas fault probably is the only

  20. Potential for using the Upper Coachella Valley ground-water basin, California, for storage of artificially recharged water

    USGS Publications Warehouse

    Mallory, Michael J.; Swain, Lindsay A.; Tyley, Stephen J.

    1980-01-01

    This report presents a preliminary evaluation of the geohydrologic factors affecting storage of water by artificial recharge in the upper Coachella Valley, Calif. The ground-water basin of the upper Coachella Valley seems to be geologically suitable for large-scale artificial recharge. A minimum of 900 ,000 acre-feet of water could probably be stored in the basin without raising basinwide water levels above those that existed in 1945. Preliminary tests indicate that a long-term artificial recharge rate of 5 feet per day may be feasible for spreading grounds in the basin if such factors as sediment and bacterial clogging can be controlled. The California Department of Water Resources, through the Future Water Supply Program, is investigating the use of ground-water basins for storage of State Water Project water in order to help meet maximum annual entitlements to water project contractors. (USGS)

  1. Geology and ground-water resources of the Big Sandy Creek Valley, Lincoln, Cheyenne, and Kiowa Counties, Colorado; with a section on Chemical quality of the ground water

    USGS Publications Warehouse

    Coffin, Donald L.; Horr, Clarence Albert

    1967-01-01

    This report describes the geology and ground-water resources of that part of the Big Sandy Creek valley from about 6 miles east of Limon, Colo., downstream to the Kiowa County and Prowers County line, an area of about 1,400 square miles. The valley is drained by Big Sandy Creek and its principal tributary, Rush Creek. The land surface ranges from flat to rolling; the most irregular topography is in the sandhills south and west of Big Sandy Creek. Farming and livestock raising are the principal occupations. Irrigated lands constitute only a sin311 part of the project area, but during the last 15 years irrigation has expanded. Exposed rocks range in age from Late Cretaceous to Recent. They comprise the Carlile Shale, Niobrara Formations, Pierre Shale (all Late Cretaceous), upland deposits (Pleistocene), valley-fill deposits (Pleistocene and Recent), and dune sand (Pleistocene and Recent). Because the Upper Cretaceous formations are relatively impermeable and inhibit water movement, they allow ground water to accumul3te in the overlying unconsolidated Pleistocene and Recent deposits. The valley-fill deposits constitute the major aquifer and yield as much as 800 gpm (gallons per mixture) to wells along Big Sandy and Rush Creeks. Transmissibilities average about 45,000 gallons per day per foot. Maximum well yields in the tributary valleys are about 200 gpm and average 5 to 10 gpm. The dune sand and upland deposits generally are drained and yield water to wells in only a few places. The ground-water reservoir is recharged only from direct infiltration of precipitation, which annually averages about 12 inches for the entire basin, and from infiltration of floodwater. Floods in the ephemeral Big Sandy Creek are a major source of recharge to ground-water reservoirs. Observations of a flood near Kit Carson indicated that about 3 acre-feet of runoff percolated into the ground-water reservoir through each acre of the wetted stream channel The downstream decrease in channel and

  2. Precipitation and Runoff Simulations of the Carson Range and Pine Nut Mountains, and Updated Estimates of Ground-Water Inflow and the Ground-Water Budgets for Basin-Fill Aquifers of Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Jeton, Anne E.; Maurer, Douglas K.

    2007-01-01

    Recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, Nevada, and California, from the adjacent Carson Range and Pine Nut Mountains ranged from 22,000 to 40,000 acre-feet per year using water-yield and chloride-balance methods. In this study, watershed models were developed for watersheds with perennial streams and for watersheds with ephemeral streams in the Carson Range and Pine Nut Mountains to provide an independent estimate of ground-water inflow. This report documents the development and calibration of the watershed models, presents model results, compares the results with recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, and presents updated estimates of the ground-water budget for basin-fill aquifers of Carson Valley. The model used for the study was the Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Geographic Information System software was used to manage spatial data, characterize model drainages, and to develop Hydrologic Response Units. Models were developed for * Two watersheds with gaged perennial streams in the Carson Range and two watersheds with gaged perennial streams in the Pine Nut Mountains using measured daily mean runoff, * Ten watersheds with ungaged perennial streams using estimated daily mean runoff, * Ten watershed with ungaged ephemeral streams in the Carson Range, and * A large area of ephemeral runoff near the Pine Nut Mountains. Models developed for the gaged watersheds were used as index models to guide the calibration of models for ungaged watersheds. Model calibration was constrained by daily mean runoff for 4 gaged watersheds and for 10 ungaged watersheds in the Carson Range estimated in a previous study. The models were further constrained by annual precipitation volumes estimated in a previous study to provide

  3. Geology and ground-water resources of the Deer Lodge Valley, Montana

    USGS Publications Warehouse

    Konizeski, Richard L.; McMurtrey, R.G.; Brietkrietz, Alex

    1968-01-01

    clay to boulder-sized aggregates. Throughout most of the area the strata dip gently towards the valley axis, but along the western margins of the valley they dip steeply into the mountains. In late Pliocene or early Pleistocene the Tertiary strata were eroded to a nearly regular valley divide surface. In the western part of the valley the erosion surface was thinly mantled by glacial debris from the Flint Creek Range. Still later, probably during several interglacial intervals, the Clark Fork and its tributaries entrenched themselves in the Tertiary strata to an average depth of about 150 feet. The resultant erosional features were further modified by Wisconsin to Recent glaciofluvial deposition. Three east-west cross .sections and a corrected gravity map were drawn for the valley. They indicate a maximum depth of fill of more than 5,500 feet in the southern part. Depths decrease to the north to approximately 2,300 feet near the town of Deer Lodge. The principal source of ground water in the Deer Lodge Valley is the upper few hundred feet of unconsolidated valley fill. Most of the wells tapping these deposits range in depth from a few feet to 250 feet. Water levels range from somewhat above land surface (in flowing wells) to about 150 feet below. Yields of the wells range from a few gallons per minute to 1,000 gallons per minute. Generally, wells having the highest yields are on the flood plain of the Clark Fork or the coalescent fans of Warm Springs and Mill Creeks. Discharge of ground water by seepage into streams, by evapotranspiration, and by pumping from wells causes a gradual lowering of the water table. Each spring and early summer, seepage of water from irrigation and streams and infiltration of water from snowmelt and precipitation replenish the ground-water reservoir. Seasonal fluctuation of the water table generally is less than 10 feet. The small yearly water table fluctuation indicates that recharge about balances discharge from th

  4. Geology and ground-water resources of the Ahtanum Valley, Yakima County, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.

    1962-01-01

    The Ahtanum Valley covers an area of about 100 square miles in an important agricultural district in central Yakima County, Wash. Because the area is semiarid, virtually all crops require irrigation. Surface-water supplies are inadequate in most of the area, and ground water is being used increasingly for irrigation. The purpose of this investigation was the collection and interpretation of data, pertaining to ground water in the area as an aid in the proper development and management of the water resources. The occurrence and movement of ground water in the Ahtanum Valley are directly related to the geology. The valley occupies part of a structural trough (Ahtanum-Moxee subbasin) that is underlain by strongly folded flow layers of a thick sequence of the Yakima basalt. The upper part of the basalt sequence interfingers with, and is conformably overlying by, sedimentary rocks of the Ellensburg formation which are as much as 1,000 feet thick. These rocks are in turn overlying unconformably by cemented basalt gravel as much as 400 feet thick. Unconsolidated alluvial sand and gravel, as much as 30 feet thick, form the valley floor. Although ground water occurs in each of the rock units within the area, the Yakima basalt and the unconsolidated alluvium yield about three-fourths of the ground water currently used. Wells in the area range in depth from a few feet to more than 1,200 feet and yield from less than 1 to more than 1,030 gallons per minute. Although water levels in water-table wells usually are shallow--often less than 5 feet below the land surface--levels in deeper wells tapping confined water range from somewhat above the land surface (in flowing wells) to about 200 feet below. Wells drilled into aquifers in the Yakima basalt, the Ellensburg formation, and the cemented gravel usually tap confined water, and at least 12 wells in the area flow or have flowed in the past. Ground-water levels fluctuate principally in response to changes in stream levels

  5. Hydrology of the Sevier-Sigurd ground-water basin and other ground-water basins, central Sevier Valley, Utah.

    USGS Publications Warehouse

    Lambert, P.M.; Mason, J.L.; Puchta, R.W

    1995-01-01

    The hydrologic system in the central Sevier Valley, and more specifically the Sevier-Sigurd basin, is a complex system in which surface- and ground-water systems are interrelated. Seepage from an extensive irrigation system is the primary source of recharge to the basin-fill aquifer in the Sevier-Sigurd basin.Water-quality data indicate that inflow from streams and subsurface inflow that intersect evaporite deposits in the Arapien Shale does not adversely affect ground-water quality in the Sevier-Sigurd basin. Stable-isotope data indicate that large sulfate concentrations in water from wells are from the dissolution of gypsum within the basin fill rather than inflow from the Arapien Shale.A ground-water-flow model of the basin-fill aquifer in the Sevier-Sigurd basin was calibrated to steady-state conditions and transient conditions using yearly water-level changes from 1957-88 and monthly water-level changes from 1958-59. Predictive simulations were made to test the effects of reduced recharge from irrigation and increased well discharge. To simulate the effects of conversion from flood to sprinkler irrigation, recharge from irrigated fields was reduced by 50 percent. After twenty years, this reduction resulted in water-level declines of 1 to 8 feet in most of the basin, and a reduction in ground-water discharge to the Sevier River of 4,800 acre-ft/yr. Water-level declines of as much as 12 feet and a reduction in recharge to the Sevier River of 4,800 acre-ft/yr were the result of increasing well discharge near Richfield and Monroe by 25,000 acre-ft/yr. 

  6. Ground water recharge to the aquifers of northern San Luis Valley, Colorado: A remote sensing investigation

    NASA Technical Reports Server (NTRS)

    Lee, K. (Principal Investigator); Huntley, D.

    1976-01-01

    The author has identified the following significant results. Ground water recharge to the aquifers of San Luis Valley west of San Luis Creek was primarily from ground water flow in the volcanic aquifers of the San Juan Mountains. The high permeability and anisotropic nature of the volcanic rocks resulted in very little contrast in flow conditions between the San Juan Mountains and San Luis Valley. Ground water recharge to aquifers of eastern San Luis Valley was primarily from stream seepage into the upper reaches of the alluvial fans at the base of the Sangre de Cristo Mountains. The use of photography and thermal infrared imagery resulted in a savings of time and increase in accuracy in regional hydrogeologic studies. Volcanic rocks exhibited the same spectral reflectance curve as sedimentary rocks, with only the absolute magnitude of reflectance varying. Both saline soils and vegetation were used to estimate general ground water depths.

  7. Shallow ground-water quality beneath rice areas in the Sacramento Valley, California, 1997

    USGS Publications Warehouse

    Dawson, Barbara J.

    2001-01-01

    In 1997, the U.S. Geological Survey installed and sampled 28 wells in rice areas in the Sacramento Valley as part of the National Water-Quality Assessment Program. The purpose of the study was to assess the shallow ground-water quality and to determine whether any effects on water quality could be related to human activities and particularly rice agriculture. The wells installed and sampled were between 8.8 and 15.2 meters deep, and water levels were between 0.4 and 8.0 meters below land surface. Ground-water samples were analyzed for 6 field measurements, 29 inorganic constituents, 6 nutrient constituents, dissolved organic carbon, 86 pesticides, tritium (hydrogen- 3), deuterium (hydrogen-2), and oxygen-18. At least one health-related state or federal drinking-water standard (maximum contaminant or long-term health advisory level) was exceeded in 25 percent of the wells for barium, boron, cadmium, molybdenum, or sulfate. At least one state or federal secondary maximum contaminant level was exceeded in 79 percent of the wells for chloride, iron, manganese, specific conductance, or dissolved solids. Nitrate and nitrite were detected at concentrations below state and federal 2000 drinking-water standards; three wells had nitrate concentrations greater than 3 milligrams per liter, a level that may indicate impact from human activities. Ground-water redox conditions were anoxic in 26 out of 28 wells sampled (93 percent). Eleven pesticides and one pesticide degradation product were detected in ground-water samples. Four of the detected pesticides are or have been used on rice crops in the Sacramento Valley (bentazon, carbofuran, molinate, and thiobencarb). Pesticides were detected in 89 percent of the wells sampled, and rice pesticides were detected in 82 percent of the wells sampled. The most frequently detected pesticide was the rice herbicide bentazon, detected in 20 out of 28 wells (71 percent); the other pesticides detected have been used for rice, agricultural

  8. Ground water in Fountain and Jimmy Camp Valleys, El Paso County, Colorado with a section on Computations of drawdowns caused by the pumping of wells in Fountain Valley

    USGS Publications Warehouse

    Jenkins, Edward D.; Glover, Robert E.

    1964-01-01

    The part of Fountain Valley considered in this report extends from Colorado Springs to the Pueblo County line. It is 23 miles long and has an area of 26 square miles. The part of Jimmy Camp Valley discussed is 11 miles long and has an area of 9 square miles. The topography is characterized by level flood plains and alluvial terraces that parallel the valley and by rather steep hills along the valley sides. The climate is semiarid, average annual precipitation being about 13 inches. Farming and stock raising are the principal occupations in the valleys; however, some of the agricultural land near Colorado Springs is being used for housing developments. The Pierre Shale and alluvium underlie most of the area, and mesa gravel caps the shale hills adjacent to Fountain Valley. The alluvium yields water to domestic, stock, irrigation, and public-supply wells and is capable of yielding large quantities of water for intermittent periods. Several springs issue along the sides of the valley at the contact of the mesa gravel and the underlying Pierre Shale. The water table ranges in depth from less than 10 feet along the bottom lands to about 80 feet along the sides of the valleys; the saturated thickness ranges from less than a foot to about 50 feet. The ground-water reservoir in Fountain Valley is recharged by precipitation that falls within the area, by percolation from Fountain Creek, which originates in the Pikes Peak, Monument Valley, and Rampart Range areas, and by seepage from irrigation water. This reservoir contains about 70,000 acre-feet of ground water in storage. The ground-water reservoir in Jimmy Camp Valley is recharged from precipitation that falls within the area, by percolation from Jimmy Camp Creek during periods of streamflow, and by seepage from irrigation water. The Jimmy Camp ground-water reservoir contains about 25,000 acre-feet of water in storage. Ground water is discharged from the area by movement to the south, by evaporation and transpiration in

  9. Progress report on the geology and ground-water hydrology of the lower Platte River Valley, Nebraska, with a section on the chemical quality of the ground water

    USGS Publications Warehouse

    Waite, Herbert A.; Swenson, Herbert A.

    1949-01-01

    The occurrence of abundant ground-water supplies in the lower Platte River Valley has made possible the present agricultural and industrial economy of the area. Likewise, the future development of the area is dependent on the wise use of this important resource. The current investigation, on which this report is based, is a necessary step in the planning for the greatest ultimate utilization of the water resources in the lower Platte River Valley.The area covered by this study is the floor of the lower Platte River Valley between North Platte and Fremont and embraces about 2,500 square miles. The entire valley floor is underlain by unconsolidated Pleistocene sediments which consist of clay, silt, sand and gravel and range in thickness from less than 20 feet to nearly 200 feet. Westward from Cozad these sediments were deposited in a valley entrenched in bedrock, but east of Cozad they are continuous with similar deposits which underlie the adjacent uplands. Bedrock formations of Tertiary age are in contact with the basal Pleistocene sediments from the west end of the area to about Central City. From Central City eastward, formations of Cretaceous age immediately underlie the Pleistocene deposits.The Pleistocene sediments and underlying pervious formations are water saturated below depths which range from less than 1 foot to about 90 feet below the surface. In general, the configuration of the water table is similar to the topography of the land surface, but the relief on the water table is considerably less by comparison. Movement of ground water is either toward the river or parallel to it. Based on present information, movement of ground water out of the valley is not indicated but additional water-level control is needed south of the valley between Grand Island and Columbus to determine the possibility of ground-water loss in this stretch of the valley.Periodic observations of water-table fluctuations have constituted an important phase of ground-water studies in

  10. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  11. Questa baseline and pre-mining ground-water quality investigation. 3. Historical ground-water quality for the Red River Valley, New Mexico

    USGS Publications Warehouse

    LoVetere, Sara H.; Nordstrom, D. Kirk; Maest, Ann S.; Naus, Cheryl A.

    2003-01-01

    Historical ground-water quality data for 100 wells in the Red River Valley between the U.S. Geological Survey streamflow-gaging station (08265000), near Questa, and Placer Creek east of the town of Red River, New Mexico, were compiled and reviewed. The tabulation included 608 water-quality records from 23 sources entered into an electronic database. Groundwater quality data were first collected at the Red River wastewater-treatment facility in 1982. Most analyses, however, were obtained between 1994 and 2002, even though the first wells were developed in 1962. The data were evaluated by considering (a) temporal consistency, (b) quality of sampling methods, (c) charge imbalance, and (d) replicate analyses. Analyses that qualified on the basis of these criteria were modeled to obtain saturation indices for gypsum, calcite, fluorite, gibbsite, manganite, and rhodocrosite. Plots created from the data illustrate that water chemistry in the Red River Valley is predominantly controlled by calcite dissolution, congruent gypsum dissolution, and pyrite oxidation.

  12. Analysis of the Carmel Valley alluvial ground-water basin, Monterey County, California

    USGS Publications Warehouse

    Kapple, Glenn W.; Mitten, Hugh T.; Durbin, Timothy J.; Johnson, Michael J.

    1984-01-01

    A two-dimensional, finite-element, digital model was developed for the Carmel Valley alluvial ground-water basin using measured, computed, and estimated discharge and recharge data for the basin. Discharge data included evapotranspiration by phreatophytes and agricultural, municipal, and domestic pumpage. Recharge data included river leakage, tributary runoff, and pumping return flow. Recharge from subsurface boundary flow and rainfall infiltration was assumed to be insignificant. From 1974 through 1978, the annual pumping rate ranged from 5,900 to 9,100 acre-feet per year with 55 percent allotted to municipal use principally exported out of the valley, 44 percent to agricultural use, and 1 percent to domestic use. The pumpage return flow within the valley ranged from 900 to 1,500 acre-feet per year. The aquifer properties of transmissivity (about 5,900 feet squared per day) and of the storage coefficient (0.19) were estimated from an average alluvial thickness of 75 feet and from less well-defined data on specific capacity and grain-size distribution. During calibration the values estimated for hydraulic conductivity and storage coefficient for the lower valley were reduced because of the smaller grain size there. The river characteristics were based on field and laboratory analyses of hydraulic conductivity and on altitude survey data. The model is intended principally for simulation of flow conditions using monthly time steps. Time variations in transmissivity and short-term, highrecharge potential are included in the model. The years 1974 through 1978 (including "pre-" and "post-" drought) were selected because of the extreme fluctuation in water levels between the low levels measured during dry years and the above-normal water levels measured during the preceding and following wet years. Also, during this time more hydrologic information was available. Significantly, computed water levels were generally within a few feet of the measured levels, and computed

  13. Hydrology of Cache Valley, Cache County, Utah, and adjacent part of Idaho, with emphasis on simulation of ground-water flow

    USGS Publications Warehouse

    Kariya, Kim A.; Roark, D. Michael; Hanson, Karen M.

    1994-01-01

    A hydrologic investigation of Cache Valley was done to better understand the ground-water system in unconsolidated basin-fill deposits and the interaction between ground water and surface water. Ground-water recharge occurs by infiltration of precipitation and unconsumed irrigation water, seepage from canals and streams, and subsurface inflow from adjacent consolidated rock and adjacent unconsolidated basin-fill deposit ground-water systems. Ground-water discharge occurs as seepage to streams and reservoirs, spring discharge, evapotranspiration, and withdrawal from wells.Water levels declined during 1984-90. Less-than-average precipitation during 1987-90 and increased pumping from irrigation and public-supply wells contributed to the declines.A ground-water-flow model was used to simulate flow in the unconsolidated basin-fill deposits. Data primarily from 1969 were used to calibrate the model to steady-state conditions. Transient-state calibration was done by simulating ground-water conditions on a yearly basis for 1982-90.A hypothetical simulation in which the dry conditions of 1990 were continued for 5 years projected an average lO-foot water-level decline between Richmond and Hyrum. When increased pumpage was simulated by adding three well fields, each pumping 10 cubic feet per second, in the Logan, Smithfield, and College Ward areas, water-level declines greater than 10 feet were projected in most of the southeastern part of the valley and discharge from springs and seepage to streams and reservoirs decreased.

  14. Recalibration of a ground-water flow model of the Mississippi River Valley alluvial aquifer in Southeastern Arkansas, 1918, with simulations of hydraulic heads caused by projected ground-water withdrawals through 2049

    USGS Publications Warehouse

    Stanton, Gregory P.; Clark, Brian R.

    2003-01-01

    The Mississippi River Valley alluvial aquifer, encompassing parts of Arkansas, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee supplies an average of 5 billion gallons of water per day. However, withdrawals from the aquifer in recent years have caused considerable drawdown in the hydraulic heads in southeastern Arkansas and other areas. The effects of current ground-water withdrawals and potential future withdrawals on water availability are major concerns of water managers and users as well as the general public. A full understanding of the behavior of the aquifer under various water-use scenarios is critical for the development of viable water-management and alternative source plans. To address these concerns, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Vicksburg District, and the Arkansas Soil and Water Conservation Commission developed and calibrated a ground-water flow model for the Mississippi River valley alluvial aquifer in southeastern Arkansas to simulate hydraulic heads caused by projected ground-water withdrawals. A previously published ground-water flow model for the alluvial aquifer in southeastern Arkansas was updated and recalibrated to reflect more current pumping stresses with additional stress periods added to bring the model forward from 1982 to 1998. The updated model was developed and calibrated with MODFLOW-2000 finite difference numerical modeling and parameter estimation software. The model was calibrated using hydraulic-head data collected during 1972 and 1982 and hydraulic-head measurements made during spring (February to April) of 1992 and 1998. The residuals for 1992 and 1998 have a mean absolute value of 4.74 and 5.45 feet, respectively, and a root mean square error of 5.9 and 6.72 feet, respectively. The effects of projected ground-water withdrawals were simulated through 2049 in three predictive scenarios by adding five additional stress periods of 10 years each. In the three scenarios

  15. Ground-water hydrology of the Hollister and San Juan Valleys, San Benito County, California, 1913-68

    USGS Publications Warehouse

    Kilburn, Chabot

    1973-01-01

    The Hollister and San Juan Valleys are within the Gilroy-Hollister ground-water basin. That part of the ground-water basin underlying the valleys consists of three subbasins each of which contains two or more ground-water subunits. The subbasin and subunit boundaries are formed by known or postulated faults, folded sedimentary rocks, and igneous rocks. The principal water-bearing units are lenticular beds of sand and gavel interbedded with clay, silt, sand, and gravel, or their locally consolidated equivalents, which range from Pliocene to Holocene, in age. Ground water occurs mainly under artesian or semiartesian conditions but also under unconfined (water-table) conditions in areas adjacent to most surface streams and, locally, under perched or semiperched conditions. In 1968 the depth to water in wells ranged from approximately 20 feet above land surface to more than 200 feet below land surface. Water-level differences in wells across the boundaries of adjacent subunits ranged from about 1 to more than 100 feet.

  16. Ground-water potentialities in the Crescent Valley, Eureka and Lander Counties, Nevada

    USGS Publications Warehouse

    Zones, Christie Paul

    1961-01-01

    pumpage from wells in the valley was 2,300 acre-feet. The Crescent Valley is a basin in which has accumulated a large volume of sediments that had been eroded and transported by streams from the surrounding mountains. The deepest wells have penetrated only the upper 350 feet of these sediments, which on the basis of the known thickness of sediments in other intermontane basins in central Nevada may be as much as several thousand feet thick. Because this valley fill is saturated practically to the level of the valley floor, the total volume of ground water in storage amounts to millions of acre-feet. In practically all wells drilled to date, the water has been of a quality satisfactory for irrigation and domestic use. The amount of water that can be developed and used perennially is far smaller than the total in storage and is dependent upon the average annual recharge to the ground-water reservoir. This recharge comes principally from streams, fed largely by snowmelt, that drain the higher mountains. The average annum recharge to the valley fill is estimated to be about 13,000 acre-feet. This natural supply, which is largely consumed by native vegetation on the valley floor, constitutes a perennial supply for beneficial use only to the extent that the natural discharge can be reduced. In time, much of the natural discharge, can probably be salvaged, if it is economically feasible to pump ground water after water levels have been lowered as much as 100 feet in the areas that now appear to be favorable for the development of irrigation supplies. In 5 wells in the phreatophyte area, where the water table is within 3-8 feet of the land surface, the trends in water level have paralleled those, in precipitation-downward during the dry years 1952-55, upward in wetter 1956 and 1957, and as high in 1957 as at any time since 1948. In most wells there is also a seasonal fluctuation of 1-3 feet, from a high in the spring to a low in the fall. There is no evi

  17. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2008-01-01

    Active and inactive mine sites are challenging to remediate because of their complexity and scale. Regulations meant to achieve environmental restoration at mine sites are equally challenging to apply for the same reasons. The goal of environmental restoration should be to restore contaminated mine sites, as closely as possible, to pre-mining conditions. Metalliferous mine sites in the Western United States are commonly located in hydrothermally altered and mineralized terrain in which pre-mining concentrations of metals were already anomalously high. Typically, those pre-mining concentrations were not measured, but sometimes they can be reconstructed using scientific inference. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The State of New Mexico requires that ground-water quality standards be met on closure unless it can be shown that potential contaminant concentrations were higher than the standards before mining. No ground water at the mine site had been chemically analyzed before mining. The aim of this investigation, in cooperation with the New Mexico Environment Department (NMED), is to infer the pre-mining ground-water quality by an examination of the geologic, hydrologic, and geochemical controls on ground-water quality in a nearby, or proximal, analog site in the Straight Creek drainage basin. Twenty-seven reports contain details of investigations on the geological, hydrological, and geochemical characteristics of the Red River Valley that are summarized in this report. These studies include mapping of surface mineralogy by Airborne Visible-Infrared Imaging Spectrometry (AVIRIS); compilations of historical surface- and ground- water quality data; synoptic/tracer studies with mass loading and temporal water-quality trends of the Red River; reaction-transport modeling of the Red River; environmental geology of the Red River Valley; lake

  18. Ground-water flow and simulated effects of development in Paradise Valley, a basin tributary to the Humboldt River in Humboldt County, Nevada

    USGS Publications Warehouse

    Prudic, David E.; Herman, M.E.

    1996-01-01

    A computer model was used to characterize ground-water flow in Paradise Valley, Nevada, and to evaluate probable long-term effects of five hypothetical development scenarios. One finding of the study is that concentrating pumping at the south end of Paradise Valley may increase underflow from the adjacent Humboldt River valley, and might affect flow in the river.

  19. Ground-water flow and quality, and geochemical processes, in Indian Wells Valley, Kern, Inyo, and San Bernardino counties, California, 1987-88

    USGS Publications Warehouse

    Berenbrock, Charles; Schroeder, R.A.

    1994-01-01

    An existing water-quality data base for the 300- square-mile Indian Wells Valley was updated by means of chemical and isotopic analysis of ground water. The wide range in measured concentrations of major ions and of minor constituents such as fluoride, borate, nitrate, manganese, and iron is attributed to geochemical reactions within lacustrine deposits of the valley floor. These reactions include sulfate reduction accompanied by generation of alkalinity, precipitation of carbonates, exchange of aqueous alkaline-earth ions for sodium on clays, and dissolution of evaporite minerals. Differences in timing and location of recharge, which originates primarily in the Sierra Nevada to the west, and evapotranspiration from a shallow water table on the valley floor result in a wide range in ratios of stable hydrogen and oxygen isotopes. As ground water moves from alluvium into lustrine deposits of the ancestral China Lake, dissolved-solids concen- trations increase from about 200 to more than 1,000 milligrams per liter; further large increases to several thousand milligrams per liter occur beneath the China Lake playa. Historical data show an increase during the past 20 years in dissolved- solids concentration in several wells in the principal pumping areas at Ridgecrest and between Ridgecrest and Inyokern. The increase apparently is caused by induced flow of saline ground water from nearby China, Mirror, and Satellite Lakes. A simplified advective-transport model calculates ground-water travel times between parts of the valley of at least several thousand years, indi- cating the presence of old ground water. A local ground-water line and an evaporation line estimated using isotopic data from the China Lake area inter- sect at a delta-deuterium value of about -125 permil. This indicates that late Pleistocene recharge was 15 to 35 permil more negative than current recharge.

  20. Ground water in Dale Valley, New York

    USGS Publications Warehouse

    Randall, Allan D.

    1979-01-01

    Dale Valley is a broad valley segment, enlarged by glacial erosion, at the headwaters of Little Tonawanda Creek near Warsaw , New York. A thin, shallow alluvial aquifer immediately underlies the valley floor but is little used. A deeper gravel aquifer, buried beneath many feet of lake deposits, is tapped by several industrial wells. A finite-difference digital model treated the deep aquifer as two-dimensional with recharge and discharge through a confining layer. It was calibrated by simulating (1) natural conditions, (2) an 18-day aquifer test, and (3) 91 days of well-field operation. Streamflow records and model simulations suggest that in moderately wet years such as 1974, a demand of 750 gallons per minute could be met by withdrawal from the creek and from the aquifer without excessive drawdown at production wells or existing domestic wells. With reasonable but unverified model adjustments to simulate an unusually dry year, the model predicts that a demand of 600 gallons per minute could be met from the same sources. Water high in chloride has migrated from bedrock into parts of the deep aquifer. Industrial pumpage, faults in the bedrock, and the natural flow system may be responsible. (Woodard-USGS)

  1. Comparison of ground-water flow model particle-tracking results and isotopic data in the Mojave River ground-water basin, southern California, USA

    USGS Publications Warehouse

    Izbicki, John A.; Stamos, Christina L.; Nishikawa, Tracy; Martin, Peter

    2004-01-01

    Flow-path and time-of-travel results for the Mojave River ground-water basin, southern California, calculated using the ground-water flow model MODFLOW and particle-tracking model MODPATH were similar to flow path and time-of-travel interpretations derived from delta-deuterium and carbon-14 data. Model and isotopic data both show short flow paths and young ground-water ages throughout the floodplain aquifer along most the Mojave River. Longer flow paths and older ground-water ages as great as 10,000 years before present were measured and simulated in the floodplain aquifer near the Mojave Valley. Model and isotopic data also show movement of water between the floodplain and regional aquifer and subsequent discharge of water from the river to dry lakes in some areas. It was not possible to simulate the isotopic composition of ground-water in the regional aquifer away from the front of the San Gabriel and San Bernardino Mountains - because recharge in these areas does not occur under the present-day climatic conditions used for calibration of the model.

  2. Ground water in Tooele Valley, Tooele County, Utah

    USGS Publications Warehouse

    Thomas, H.E.

    1946-01-01

    Tooele Valley is a typical basin of the Basin and Range Province located about 30 miles southwest of Salt Lake City. It is roughly 15 miles long and 10 miles wide and has a population of about 7,000. Bordered on the west by the Stansbury Range, on the east by the Oquirrh Range, and on the south by South Mountain, it opens northward to Great Salt Lake. The bordering mountain ranges are formed by Paleozoic rocks ranging in age from Lower Cambrian to Pennsylvanian but with the Ordovician and Silurian periods unrepresented. There is no sedimentary record of the interval between Pennsylvanian and Tertiary times, and the Tertiary, Quaternary, and Recent sediments are of continental origin. These continental deposits play the dominant role in the ground-water hydrology of the basin, and were mapped and studied in detail. Pleistocene sediments are of major importance because they form the surface rock over most of the area, and give rise to conditions which yield water by artesian flow in the lower part of the valley.The development of the present land forms in this area began with the folding of Paleozoic and probably Mesozoic sediments during the Laramide revolution. The cycle of highland erosion and lowland deposition thus initiated has continued through recurrent uplift along Basin-Range faults to the present day. The principal physiographic subdivisions of the valley were developed as a result of the Basin-Range faulting, which began early in the Tertiary and has continued to Recent times.There are about 1,100 wells in Tooele Valley, about 90 per cent of which yield or have yielded water by artesian flow. Most of them are located in the lower part of the valley below an altitude of 4,400 feet. These wells and many of the springs derive their water from the unconsolidated Quaternary sediments, which include discontinuous, lenticular and commonly elongated bodies of sand, clay, gravel, and boulders of alluvial origin alternating and inter-fingered with lacustrine beds

  3. Ground-water conditions and effects of mine dewatering in Desert Valley, Humboldt and Pershing Counties, northwestern Nevada, 1962-91

    USGS Publications Warehouse

    Berger, D.L.

    1995-01-01

    Desert Valley is a 1,200-square-mile, north- trending, structural basin, about 30 miles northwest of Winnemucca, Nevada. Unconsolidated basin-fill deposits exceeding 7,000 feet in thickness constitute the primary ground-water reservoir. Dewatering operations at an open-pit mine began in the Spring of 1985 in the northeast part of Desert Valley. Ground-water withdrawal for mine dewatering in 1991 was greater than three times the estimated average annual recharge from precipitation. The mine discharge water has been allowed to flow to areas west of the mine where it has created an artificial wetlands. This report documents the 1991 hydrologic conditions in Desert Valley and the change in conditions since predevelopment (pre-1962). It also summarizes the results of analyzing the simulated effects of open-pit mine dewatering on a basin-wide scale over time. Water-level declines associated with the dewatering have propagated north and south of the mine, but have been attenuated to the west due to the infiltration beneath the artificial wetlands. Maximum water-level declines beneath the open pits at the mine, as of Spring 1991, are about 300 feet. Changes in the hydrologic conditions since predevelopment are observed predominantly near the dewatering operations and the associated discharge lakes. General ground-water chemistry is essentially unchanged since pre- development. On the basis of a ground-water flow model used to simulate mine dewatering, a new equilibrium may slowly be approached only after 100 years of recovery from the time mine dewatering ceases.

  4. Hydrogeology of, and ground-water flow in, a valley-fill and carbonate-rock aquifer system near Long Valley in the New Jersey Highlands

    USGS Publications Warehouse

    Nicholson, R.S.; McAuley, S.D.; Barringer, J.L.; Gordon, A.D.

    1996-01-01

    The hydrogeology of and ground-water flow in a valley-fill and carbonate-rock aquifer system were evaluated by using numerical-modeling techniques and geochemical interpretations to address concerns about the adequacy of the aquifer system to meet increasing demand for water. The study was conducted during 1987-90 by the U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection and Energy. The effects of recent and anticipated ground-water withdrawals on water levels, stream base flows, and water budgets were estimated. Simulation results indicate that recent withdrawals of 4.7 million gallons per day have resulted in water-level declines of up to 35 feet. Under conditions of increases in withdrawals of 121 percent, water levels would decline up to an additional 28 feet. The magnitude of predicted average base-flow depletion, when compared with historic low flows, indicates that projected increases in withdrawals may substantially deplete seasonal low flow of Drakes Brook and South Branch Raritan River. Results of a water-budget analysis indicate that the sources of water to additional supply wells would include leakage from the overlying valley-fill aquifer and induced leakage of surface water into the aquifer system. Results of water-quality analyses indicate that human activities are affecting the quality of the ground water. With the exception of an elevated iron concentration in water from one well, concentrations of inorganic constituents in water from 75 wells did not exceed New Jersey primary or secondary drinking-water regulations. Volatile organic compounds were detected in water from several wells; in two samples, concentrations of specific compounds exceeded drinking-water regulations.

  5. Geology and ground water in Napa and Sonoma Valleys, Napa and Sonoma Counties, California

    USGS Publications Warehouse

    Kunkel, Fred; Upson, Joseph Edwin

    1960-01-01

    Napa and Sonoma Valleys are adjacent alluvium-filled valleys about 40 miles northeast of San Francisco. They occupy alined and structurally controlled depressions in the northern Coast Ranges physiographic province and drain south into San Pablo Bay. The valleys are surrounded and underlain by unconsolidated marine and continental sediments and volcanic rocks of Pliocene and Pleistocene age, which are water bearing in large part and together make up relatively extensive ground-water basins. Napa Valley, the eastern valley, is the larger and has a valley-floor area of about 85 square miles. Sonoma Valley has a valley-floor area of about 35 square miles; in addition, about 10 square miles is unreclaimed tidal marsh. The rock units of Napa and Sonoma Valleys are divided into four classes on the basis of their distribution and relative capacity to yield water: (a) Consolidated virtually non-water-bearing chiefly sedimentary (some metamorphic) rocks that range in age from Jurassic ( ?) to Pliocene; (b) marine shale and sand of the Petaluma formation (Pliocene) and the Merced formation (Pliocene and Pleistocene) that do not crop out within Napa or Sonoma Valleys but perhaps are penetrated by some deep wells drilled in Sonoma Valley; (c) Sonoma volcanics of Pliocene age, parts of which are non-water-bearing and parts of which locally yield large quantities of water; and (d) unconsolidated alluvial deposits mainly of Quaternary age. The deposits of classes (c) and (d) contain the most important aquifers in the area. Most of the water used in these valleys is pumped from wells in the younger and older alluvium in the Huichica and Glen Ellen formations. and in the Sonoma volcanics. The principal aquifers are the younger and older alluvium. but appreciable quantities of water are pumped locally from the Sonoma volcanics. The Huichica and Glen Ellen formations yield water in small quantities and at most places supply water only for limited domestic uses. The younger alluvium

  6. Chemical quality of ground water in the central Sacramento Valley, California

    USGS Publications Warehouse

    Fogelman, Ronald P.

    1978-01-01

    The study area includes about 1,200 square miles in the central Sacramento Valley adjacent to the Sacramento River from Knights Landing to Los Molinos, Calif. With recent agricultural development in the area, additional land has been brought under irrigation from land which had been used primarily for dry farming and grazing. This report documents the chemical character of the ground water prior to water-level declines resulting from extensive pumping for irrigation or to changes caused by extensive use of imported surface water. Chemical analyses of samples from 209 wells show that most of the area is underlain by ground water of a quality suitable for most agricultural and domestic purposes. Most of the water sampled in the area has dissolved-solids concentrations ranging from 100 to 700 milligrams per liter. The general water types for the area are a calcium magnesium bicarbonate or magnesium calcium bicarbonate and there are negligible amounts of toxic trace elements. (Woodard-USGS)

  7. Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico, and Texas; shallow ground-water quality of a land-use area in the San Luis Valley, south-central Colorado, 1993

    USGS Publications Warehouse

    Anderholm, S.K.

    1996-01-01

    This report describes the quality of shallow ground water in an agricultural area in the San Luis Valley, Colorado, and discusses how natural and human factors affect the quality of shallow ground water. Thirty-five wells were installed, and water samples were collected from these wells and analyzed for selected dissolved common constituents, nutrients, trace elements, radionuclides, and synthetic organic compounds. The San Luis Valley is a high intermontane valley that is partially drained by the Rio Grande. The San Luis Valley land-use study area was limited to a part of the valley where the depth to water is generally less than 25 feet. The area where the 35 monitor wells were installed was further limited to the part of the study area where center-pivot overhead sprinklers are used to irrigate crops. Precipitation, runoff from adjacent mountainous areas, and ground-water inflow from the adjacent mountainous areas are the main sources of water to the aquifers in the San Luis Valley. Discharge of water from the shallow, unconfined aquifer in the valley is mainly from evapotranspiration. The dominant land use in the San Luis Valley is agriculture, although nonirrigated land and residential land are interspersed with agricultural land. Alfalfa, native hay, barley, wheat, potatoes, and other vegetables are the main crops. Dissolved-solids concentrations in shallow ground water sampled ranged from 75 to 1,960 milligrams per liter. The largest median concentration of cations was for calcium, and the largest median concentration of anions was for bicarbonate in shallow ground water in the San Luis Valley. Calcium concentrations ranged from 7.5 to 300 milligrams per liter, and bicarbonate concentrations ranged from 28 to 451 milligrams per liter. Nitrite plus nitrate concentrations ranged from less than 0.1 to 58 milligrams per liter as N; water from 11 wells had nitrite plus nitrate concentrations greater than 10 milligrams per liter as N. With the exception of the

  8. Ground-water discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; Elliott, Peggy E.; DeMeo, Guy A.; Chatigny, Melissa A.; Roemer, Gaius J.

    2001-01-01

    The Death Valley regional flow system (DVRFS) is one of the larger ground-water flow systems in the southwestern United States and includes much of southern Nevada and the Death Valley region of eastern California. Centrally located within the ground-water flow system is the Nevada Test Site (NTS). The NTS, a large tract covering about 1,375 square miles, historically has been used for testing nuclear devices and currently is being studied as a potential repository for the long-term storage of high-level nuclear waste generated in the United States. The U.S. Department of Energy, as mandated by Federal and State regulators, is evaluating the risk associated with contaminants that have been or may be introduced into the subsurface as a consequence of any past or future activities at the NTS. Because subsurface contaminants can be transported away from the NTS by ground water, components of the ground-water budget are of great interest. One such component is regional ground-water discharge. Most of the ground water leaving the DVRFS is limited to local areas where geologic and hydrologic conditions force ground water upward toward the surface to discharge at springs and seeps. Available estimates of ground-water discharge are based primarily on early work done as part of regional reconnaissance studies. These early efforts covered large, geologically complex areas and often applied substantially different techniques to estimate ground-water discharge. This report describes the results of a study that provides more consistent, accurate, and scientifically defensible measures of regional ground-water losses from each of the major discharge areas of the DVRFS. Estimates of ground-water discharge presented in this report are based on a rigorous quantification of local evapotranspiration (ET). The study identifies areas of ongoing ground-water ET, delineates different ET areas based on similarities in vegetation and soil-moisture conditions, and determines an ET rate for

  9. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 17. Geomorphology of the Red River Valley, Taos County, New Mexico, and Influence on Ground-Water Flow in the Shallow Alluvial Aquifer

    USGS Publications Warehouse

    Vincent, Kirk R.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley of north-central New Mexico. This report is one in a series of reports that can be used to determine pre-mining ground-water conditions at the mine site. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The bedrock of the Taos Range surrounding the Red River is composed of Proterozoic rocks of various types, which are intruded and overlain by Oligocene volcanic rocks associated with the Questa caldera. Locally, these rocks were altered by hydrothermal activity. The alteration zones that contain sulfide minerals are particularly important because they constitute the commercial ore bodies of the region and, where exposed to weathering, form sites of rapid erosion referred to as alteration scars. Over the past thousand years, if not over the entire Holocene, erosion rates were spatially variable. Forested hillslopes eroded at about 0.04 millimeter per year, whereas alteration scars eroded at about 2.7 millimeters per year. The erosion rate of the alteration scars is unusually rapid for naturally occurring sites that have not been disturbed by humans. Watersheds containing large alteration scars delivered more sediment to the Red River Valley than the Red River could remove. Consequently, large debris fans, as much as 80 meters thick, developed within the valley. The geomorphology of the Red River Valley has had several large influences on the hydrology of the shallow alluvial aquifer, and those influences were in effect before the onset of mining within the watershed. Several reaches where alluvial ground water emerges to become Red River streamflow were observed by a tracer dilution study conducted in 2001. The aquifer narrows

  10. Ground-water resources of the Acu Valley, Rio Grande Norte, Brazil

    USGS Publications Warehouse

    Rodis, Harry G.; de Castro Araujo, Jonas Maria.

    1968-01-01

    The Acu Valley is the lower part of the Rio Piranhas valley in the northwestern part of the State of Rio Grande do Norte, Brazil. It begins where the Rio Piranhas leaves the crystalline Precambrian rocks to flow across the outcrop of sedimentary rocks. The area considered in this report extends northward for about 45 kilometers; it is terminated arbitrarily where encroachment by sea water has contaminated the aquifer and imparted a disagreeable saline taste to the water in it. The boundary was not determined in the field, however, for lack of special equipment. Part of the extensive uplands on either side of the valley are included. This makes the total area approximately 2,500 square kilometers. The largest town, Acu, had a population of about 8,000 in 1960. The area is considered to be part of the Drought Polygon of northeast Brazil because the precipitation, although averaging 448 millimeters annually at Acu, varies widely from year to year and often is deficient for many months. The precipitation has been supplemented by use of irrigation wells, but irrigated agriculture is not yet far advanced, and the quantities of water used in irrigation are small. Geologically, the area consists of basement crystalline rocks (Precambrian), a wedge of sedimentary rocks thickening northward (Cretaceous), and alluvial sediments constituting a narrow band in the bottom of the valley (Alluvium and terrace deposits). The crystalline rocks contain water mainly in fractures and, in general, are impermeable. The sedimentary rocks of Cretaceous age comprise two units: a thick but fine-grained sandstone grading upward into siltstone and shale (Acu Sandstone), and limestone and dolomite with an included shale zone (Jandaira Limestone). The sandstone especially and the limestone to a lesser degree are ground-water reservoirs of large capacity. The limestone has been tapped at several places, but the sandstone and its contained water are practically untested and, hence, imperfectly

  11. Ground-Water Data for Indian Wells Valley, Kern, Inyo, and San Bernardino Counties, California, 1977-84

    USGS Publications Warehouse

    Berenbrock, Charles

    1987-01-01

    Ground water is the sole source of water in Indian Wells Valley. Since 1966, annual ground-water pumpage has exceeded estimates of mean annual recharge, and continued and increased stresses on the aquifer system of the valley are expected. In 1981 the U.S. Geological Survey began a 10-year program to develop a data base that could be used in evaluating future water-management alternatives for the valley. This report tabulates existing water-level and water-quality data in order to provide a basis for the design of a ground-water monitoring network for Indian Wells Valley. Water-levels were measured in 131 wells during 1977-84. About 62 percent of the wells that have water-level measurements spanning at least 3 years during the period 1977-84 show a net water-level decline; the decline in 23 percent of the wells is greater than 5 feet. Water-quality samples from 85 wells were analyzed for major dissolved constituents. At selected wells water samples were also analyzed for nutrients and trace metals. Seventy-nine of the wells sampled contained water with concentrations of one or more dissolved constituents that equaled or exceeded U.S. Environmental Protection Agency primary or secondary maximum contaminant levels for drinking water. Dissolved-solids concentrations, which ranged from 190 to 67,000 milligrams per liter, equaled or exceeded 500 milligrams per liter (the Environmental Protection Agency secondary maximum contaminant level) in 85 percent of the sampled wells and 1,000 milligrams per liter in 59 percent. Water samples collected in 1984 from eight wells near the industrial-waste ponds of the China Lake Naval Weapons Center were analyzed for the presence of organic compounds designated 'priority pollutants' by the U.S. Environmental Protection Agency. Priority pollutants were detected in three wells. Trichloroethylene, methylene chloride, vinyl chloride, and chloroform were identified; concentrations were less than 10 micrograms per liter except for

  12. Simulation of Ground-Water Flow in the Shenandoah Valley, Virginia and West Virginia, Using Variable-Direction Anisotropy in Hydraulic Conductivity to Represent Bedrock Structure

    USGS Publications Warehouse

    Yager, Richard M.; Southworth, Scott C.; Voss, Clifford I.

    2008-01-01

    Ground-water flow was simulated using variable-direction anisotropy in hydraulic conductivity to represent the folded, fractured sedimentary rocks that underlie the Shenandoah Valley in Virginia and West Virginia. The anisotropy is a consequence of the orientations of fractures that provide preferential flow paths through the rock, such that the direction of maximum hydraulic conductivity is oriented within bedding planes, which generally strike N30 deg E; the direction of minimum hydraulic conductivity is perpendicular to the bedding. The finite-element model SUTRA was used to specify variable directions of the hydraulic-conductivity tensor in order to represent changes in the strike and dip of the bedding throughout the valley. The folded rocks in the valley are collectively referred to as the Massanutten synclinorium, which contains about a 5-km thick section of clastic and carbonate rocks. For the model, the bedrock was divided into four units: a 300-m thick top unit with 10 equally spaced layers through which most ground water is assumed to flow, and three lower units each containing 5 layers of increasing thickness that correspond to the three major rock units in the valley: clastic, carbonate and metamorphic rocks. A separate zone in the carbonate rocks that is overlain by colluvial gravel - called the western-toe carbonate unit - was also distinguished. Hydraulic-conductivity values were estimated through model calibration for each of the four rock units, using data from 354 wells and 23 streamflow-gaging stations. Conductivity tensors for metamorphic and western-toe carbonate rocks were assumed to be isotropic, while conductivity tensors for carbonate and clastic rocks were assumed to be anisotropic. The directions of the conductivity tensor for carbonate and clastic rocks were interpolated for each mesh element from a stack of 'form surfaces' that provided a three-dimensional representation of bedrock structure. Model simulations were run with (1

  13. Ground-Water Storage Change and Land Subsidence in Tucson Basin and Avra Valley, Southeastern Arizona, 1998-2002

    USGS Publications Warehouse

    Pool, Donald R.; Anderson, Mark T.

    2008-01-01

    Gravity and land subsidence were measured annually at wells and benchmarks within two networks in Tucson Basin and Avra Valley from 1998 to 2002. Both networks are within the Tucson Active Management Area. Annual estimates of ground-water storage change, ground-water budgets, and land subsidence were made based on the data. Additionally, estimates of specific yield were made at wells within the monitored region. Increases in gravity and water-level rises followed above-average natural recharge during winter 1998 in Tucson Basin. Overall declining gravity and water-level trends from 1999 to 2002 in Tucson Basin reflected general declining ground-water storage conditions and redistribution of the recent recharge throughout a larger region of the aquifer. The volume of stored ground-water in the monitored portion of Tucson Basin increased 200,000 acre-feet from December 1997 to February 1999; however, thereafter an imbalance in ground-water pumpage in excess of recharge led to a net storage loss for the monitoring period by February 2002. Ground-water storage in Avra Valley increased 70,000 acre-feet during the monitoring period, largely as a result of artificial and incidental recharge in the monitored region. The water-budget for the combined monitored regions of Tucson Basin and Avra Valley was dominated by about 460,000 acre-feet of recharge during 1998 followed by an average-annual recharge rate of about 80,000 acre-feet per year from 1999 to 2002. Above-average recharge during winter 1998, followed by average-annual deficit conditions, resulted in an overall balanced water budget for the monitored period. Monitored variations in storage compared well with simulated average-annual conditions, except for above-average recharge from 1998 to 1999. The difference in observed and simulated conditions indicate that ground-water flow models can be improved by including climate-related variations in recharge rates rather than invariable rates of average-annual recharge

  14. Records of wells, water levels, and chemical quality of ground water in the French Prairie-Mission Bottom area, northern Willamette Valley, Oregon

    USGS Publications Warehouse

    Price, Don

    1961-01-01

    An investigation of the ground-water resources of the northern Willamette Valley was begun in 1960 as a cooperative program between the Ground Water Branch, U.S. Geological Survey, and the Oregon State Engineer. The northern Willamette Valley area is one of the fastest growing areas of ground-water use within the state. The purpose of the investigation is to obtain an understanding of the availability, movement, and chemical quality of the ground-water resources of the area. This information is needed to attain an optimum development of the ground-water resources of the area and to aid in the prevention of problems of overdevelopment and pollution. The first phase of the program was the collection of well records, water level records, and chemical quality data in the central part of this area, which is known as the French Prairie-Mission Bottom area. The records collected in this phase of the study are essential in the preparation of an interpretive report describing the occurrence and movement of ground-water in the French Prairie-Mission Bottom area. These records, which will not be included in the interpretive report that is being prepared at this time, are being made available in this publication to aid in the location and the development of the ground-water resources of the area, and to serve as a supplement to the forthcoming interpretive report.

  15. Evaluation of the hydrologic system and selected water-management alternatives in the Owens Valley, California

    USGS Publications Warehouse

    Danskin, Wesley R.

    1998-01-01

    The Owens Valley, a long, narrow valley along the east side of the Sierra Nevada in eastcentral California, is the main source of water for the city of Los Angeles. The city diverts most of the surface water in the valley into the Owens River?Los Angeles Aqueduct system, which transports the water more than 200 miles south to areas of distribution and use. Additionally, ground water is pumped or flows from wells to supplement the surface-water diversions to the river? aqueduct system. Pumpage from wells needed to supplement water export has increased since 1970, when a second aqueduct was put into service, and local residents have expressed concerns that the increased pumping may have a detrimental effect on the environment and the native vegetation (indigenous alkaline scrub and meadow plant communities) in the valley. Native vegetation on the valley floor depends on soil moisture derived from precipitation and from the unconfined part of a multilayered ground-water system. This report, which describes the evaluation of the hydrologic system and selected water-management alternatives, is one in a series designed to identify the effects that ground-water pumping has on native vegetation and evaluate alternative strategies to mitigate any adverse effects caused by pumping. The hydrologic system of the Owens Valley can be conceptualized as having three parts: (1) an unsaturated zone affected by precipitation and evapotranspiration; (2) a surface-water system composed of the Owens River, the Los Angeles Aqueduct, tributary streams, canals, ditches, and ponds; and (3) a saturated ground-water system contained in the valley fill. Analysis of the hydrologic system was aided by development of a ground-water flow model of the ?aquifer system,? which is defined as the most active part of the ground-water system and which includes nearly all of the Owens Valley except for the area surrounding the Owens Lake. The model was calibrated and verified for water years 1963?88 and

  16. Aquifer-test results, direction of ground-water flow, and 1984-90 annual ground-water pumpage for irrigation, lower Big Lost River Valley, Idaho

    USGS Publications Warehouse

    Bassick, M.D.; Jones, M.L.

    1992-01-01

    The study area (see index map of Idaho), part of the Big Lost River drainage basin, is at the northern side of the eastern Snake River Plain. The lower Big Lost River Valley extends from the confluence of Antelope Creek and the Big Lost River to about 4 mi south of Arco and encompasses about 145 mi2 (see map showing water-level contours). The study area is about 18 mi long and, at its narrowest, 4 mi wide. Arco, Butte City, and Moore, with populations of 1,016, 59, and 190, respectively, in 1990, are the only incorporated towns. The entire study area, except the extreme northwestern part, is in Butte City. The study area boundary is where alluvium and colluvium pinch out and abut against the White Knob Mountains (chiefly undifferentiated sedimentary rock with lesser amounts of volcanic rock) on the west and the Lost River Range (chiefly sedimentary rock) on the east. Gravel and sand in the valley fill compose the main aquifer. The southern boundary is approximately where Big Lost River valley fill intercalates with or abuts against basalt of the Snake River Group. Spring ground-water levels and flow in the Big Lost River depend primarily on temperature and the amount and timing of precipitation within the entire drainage basin. Periods of abundant water supply and water shortages are, therefore, related to the amount of annual precipitation. Surface reservoir capacity in the valley (Mackay Reservoir, about 20 mi northwest of Moore) is only 20 percent of the average annual flow of the Big Lost River (Crosthwaite and others, 1970, p. 3). Stored surface water is generally unavailable for carryover from years of abundant water supply to help relieve drought conditions in subsequent years. Many farmers have drilled irrigation wells to supplement surface-water supplies and to increase irrigated acreage. Average annual flow of the Big Lost River below Mackay Reservoir near Mackay (gaging station 13127000, not shown) in water years 1905, 1913-14, and 1920-90 was about 224

  17. Quality and sources of ground water used for public supply in Salt Lake Valley, Salt Lake County, Utah, 2001

    USGS Publications Warehouse

    Thiros, Susan A.; Manning, Andrew H.

    2004-01-01

    Ground water supplies about one-third of the water used by the public in Salt Lake Valley, Utah. The occurrence and distribution of natural and anthropogenic compounds in ground water used for public supply in the valley were evaluated. Water samples were collected from 31 public-supply wells in 2001 and analyzed for major ions, trace elements, radon, nutrients, dissolved organic carbon, methylene blue active substances, pesticides, and volatile organic compounds. The samples also were analyzed for the stable isotopes of water (oxygen-18 and deuterium), tritium, chlorofluorocarbons, and dissolved gases to determine recharge sources and ground-water age.Dissolved-solids concentration ranged from 157 to 1,280 milligrams per liter (mg/L) in water from the 31 public-supply wells. Comparison of dissolved-solids concentration of water sampled from the principal aquifer during 1988-92 and 1998-2002 shows a reduction in the area where water with less than 500 mg/L occurs. Nitrate concentration in water sampled from 12 of the 31 public-supply wells was higher than an estimated background level of 2 mg/L, indicating a possible human influence. At least one pesticide or pesticide degradation product was detected at a concentration much lower than drinking-water standards in water from 13 of the 31 wells sampled. Chloroform was the most frequently detected volatile organic compound (17 of 31 samples). Its widespread occurrence in deeper ground water is likely a result of the recharge of chlorinated public-supply water used to irrigate lawns and gardens in residential areas of Salt Lake Valley.Environmental tracers were used to determine the sources of recharge to the principal aquifer used for public supply in the valley. Oxygen-18 values and recharge temperatures computed from dissolved noble gases in the ground water were used to differentiate between mountain and valley recharge. Maximum recharge temperatures in the eastern part of the valley generally are below the range

  18. Induced infiltration from the Rockaway River and water chemistry in a stratified-drift aquifer at Dover, New Jersey, with a section on modeling ground-water flow in the Rockaway River Valley

    USGS Publications Warehouse

    Dysart, Joel E.; Rheaume, Stephen J.; Kontis, Angelo L.

    1999-01-01

    The vertical hydraulic conductivity per unit thickness (streambed leakance) of unconsolidated sediment immediately beneath the channel of the Rockaway River near a municipal well field at Dover, N.J., is between 0.2 and 0.6 feet per day per foot and is probably near the low end of this range. This estimate is based on evaluation of three lines of evidence: (1) Streamflow measurements, which indicated that induced infiltration of river water near the well field averaged 0.67 cubic feet per second; (2) measurements of the rate of downward propagation of diurnal fluctuations in dissolved oxygen and water temperature at three piezometers, which indicated vertical Darcian flow velocities of 0.6 and 1.5 feet per day, respectively; and (3) chemical mixing models based on stable isotopes of oxygen and hydrogen, which indicated that 30 percent of the water reaching a well near the center of the well field was derived from the river. The estimated streambed-leakance values are compatible with other aquifer properties and with hydraulic stresses observed over a 2-year period, as demonstrated by a set of six alternative groundwater flow models of the Rockaway River valley. Simulated water levels rose 0.5 to 1.7 feet near the well field when simulated streambed leakance was changed from 0.2 to 0.6 feet per day per foot, or when a former reach of the Rockaway River valley that is now blocked by glacial drift was simulated as containing a continuous sand aquifer (rather than impermeable till). Model recalibration to observed water levels could accommodate either of these changes, however, by plausible adjustments in hydraulic conductivity of 35 percent or less.The ground-water flow models incorporate a new procedure for simulating areal recharge, in which water available for recharge in any time interval is accepted as recharge only where the water level in the uppermost model layer is below land surface. Water rejected as recharge on upland hillsides is allowed to recharge

  19. Chemical quality of ground water in the eastern Sacramento Valley, California

    USGS Publications Warehouse

    Fogelman, Ronald P.

    1979-01-01

    The study area is about 1,300 square miles in the eastern Sacramento Valley, Calif., extending from the latitude of Roseville on the south to thelatitude of Chico on the north. Considering the increased agricultural development of the area, this report documents the chemical character of the ground water prior to water-level declines that could result from extensive pumping for irrigation or to changes caused by extensive use of imported surface water. Chemical analyses of samples from 222 wells show that most of the area is underlain by ground water of a quality suitable for most agricultural and domestic purposes. Ninety-five percent of the water sampled has dissolved-solids concentrations of less than 700 milligrams per liter. The general water type for the area is a calcium and magnesium bicarbonate water and there are negligible amounts of toxic trace elements. The potential for water-quality problems exists in the area south of Yuba City along the west bank of the Feather River. There, concentrations of chloride, sulfate, and dissolved solids are higher than in other parts of the area, and they could limit future agricultural activities if chloride- and sulfate-sensitive crops are grown. (Woodard-USGS)

  20. Evaluation of ground-water quality in the Santa Maria Valley, California

    USGS Publications Warehouse

    Hughes, Jerry L.

    1977-01-01

    The quality and quantity of recharge to the Santa Maria Valley, Calif., ground-water basin from natural sources, point sources, and agriculture are expressed in terms of a hydrologic budget, a solute balance, and maps showing the distribution of select chemical constituents. Point sources includes a sugar-beet refinery, oil refineries, stockyards, golf courses, poultry farms, solid-waste landfills, and municipal and industrial wastewater-treatment facilities. Pumpage has exceeded recharge by about 10,000 acre-feet per year. The result is a declining potentiometric surface with an accumulation of solutes and an increase in nitrogen in ground water. Nitrogen concentrations have reached as much as 50 milligrams per liter. In comparison to the solutes from irrigation return, natural recharge, and rain, discharge of wastewater from municipal and industrial wastewater-treatment facilities contributes less than 10 percent. The quality of treated wastewater is often lower in select chemical constituents than the receiving water. (Woodard-USGS)

  1. Validation of a Ground-Water Flow Model of the Mississippi River Valley Alluvial Aquifer Using Water-Level and Water-Use Data for 1998-2005 and Evaluation of Water-Use Scenarios

    USGS Publications Warehouse

    Gillip, Jonathan A.; Czarnecki, John B.

    2009-01-01

    A ground-water flow model of the Mississippi River Valley alluvial aquifer in eastern Arkansas, developed in 2003 to simulate the period of 1918-98, was validated with the addition of water-level and water-use data that extended the observation period to 2005. The original model (2003) was calibrated using water-level observations from 1972, 1982, 1992, and 1998, and water-use data through 1997. The original model subsequently was used to simulate water levels from 1999 to 2049 and showed that simulation of continued pumping at the 1997 water-use rate could not be sustained indefinitely without causing dry cells in the model. After publication of the original ground-water flow model, a total of 3,616 water-level observations from 698 locations measured during the period of 1998 to 2005 became available. Additionally, water-use data were compiled and used for the same period, totaling 290,005 discrete water-use values from 43,440 wells with as many as 39,169 wells pumping in any one year. Total pumping (which is primarily agricultural) for this 8-year period was about 2.3 trillion cubic feet of water and was distributed over approximately 10,340 square miles within the model area. An updated version of the original ground-water flow model was used to simulate the period of 1998-2005 with the additional water-level and water-use data. Water-level observations for 1998-2005 ranged from 74 to 293 feet above National Geodetic Vertical Datum of 1929 across the model area. The maximum water-level residual (observed minus simulated water-level values) for the 3,616 water-level observations was 52 feet, the minimum water-level residual was 60 feet, the average annual root mean squared error was 8.2 feet, and the annual average absolute residual was 6.0 feet. A correlation coefficient value of 0.96 was calculated for the line of best fit for observed to simulated water levels for the combined 1998-2005 dataset, indicating a good fit to the data and an acceptable validation

  2. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 4. Quantity and quality of ground-water and tributary contributions to stream base flow in selected main-valley reaches

    USGS Publications Warehouse

    Heisig, Paul M.

    2004-01-01

    Estimates of the quantity and quality of ground-water discharge from valley-fill deposits were calculated for nine valley reaches within the Pepacton watershed in southeastern New York in July and August of 2001. Streamflow and water quality at the upstream and downstream end of each reach and at intervening tributaries were measured under base-flow conditions and used in mass-balance equations to determine quantity and quality of ground-water discharge. These measurements and estimates define the relative magnitudes of upland (tributary inflow) and valley-fill (ground-water discharge) contributions to the main-valley streams and provide a basis for understanding the effects of hydrogeologic setting on these contributions. Estimates of the water-quality of ground-water discharge also provide an indication of the effects of road salt, manure, and human wastewater from villages on the water quality of streams that feed the Pepacton Reservoir. The most common contaminant in ground-water discharge was chloride from road salt; concentrations were less than 15 mg/L.Investigation of ground-water quality within a large watershed by measurement of stream base-flow quantity and quality followed by mass-balance calculations has benefits and drawbacks in comparison to direct ground-water sampling from wells. First, sampling streams is far less expensive than siting, installing, and sampling a watershed-wide network of wells. Second, base-flow samples represent composite samples of ground-water discharge from the most active part of the ground-water flow system across a drainage area, whereas a well network would only be representative of discrete points within local ground-water flow systems. Drawbacks to this method include limited reach selection because of unfavorable or unrepresentative hydrologic conditions, potential errors associated with a large number of streamflow and water-quality measurements, and limited ability to estimate concentrations of nonconservative

  3. Documentation of a finite-element two-layer model for simulation of ground-water flow

    USGS Publications Warehouse

    Mallory, Michael J.

    1979-01-01

    This report documents a finite-element model for simulation of ground-water flow in a two-aquifer system where the two aquifers are coupled by a leakage term that represents flow through a confining layer separating the two aquifers. The model was developed by Timothy J. Durbin (U.S. Geological Survey) for use in ground-water investigations in southern California. The documentation assumes that the reader is familiar with the physics of ground-water flow, numerical methods of solving partial-differential equations, and the FORTRAN IV computer language. It was prepared as part of the investigations made by the U.S. Geological Survey in cooperation with the San Bernardino Valley Municipal Water District. (Kosco-USGS)

  4. Hydrogeology and ground-water quality of Valley Forge National Historical Park, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; McManus, B. Craig

    1996-01-01

    Valley Forge National Historical Park is just southwest of the Commodore Semiconductor Group (CSG) National Priorities List (Superfund) Site, a source of volatile organic compounds (VOC's) in ground water. The 7.5-square-mile study area includes the part of the park in Lower Providence and West Norriton Townships in Montgomery County, Pa., and surrounding vicinity. The park is underlain by sedimentary rocks of the Upper Triassic age stockton Formation. A potentiometric-surface map constructed from water levels measured in 59 wells shows a cone of depression, approximately 0.5 mile in diameter, centered near the CSG Site. The cone of depression is caused by the pumping of six public supply wells. A ground-water divide between the cone of depression and Valley Forge National Historical Park provides a hydraulic barrier to the flow of ground water and contaminants from the CSG Site to the park. If pumping in the cone of depression was to cease, water levels would recover, and the ground-water divide would shift to the north. A hydraulic gradient between the CSG Site and the Schuylkill River would be established, causing contaminated ground water to flow to the park.Water samples were collected from 12 wells within the park boundary and 9 wells between the park boundary and the ground-water divide to the north of the park. All water samples were analyzed for physical properties (field determinations), nutrients, common ions, metals and other trace constituents, and VOC's. Water samples from the 12 wells inside the park boundary also were analyzed for pesticides. Concentrations of inorganic constituents in the water samples did not exceed U.S. Environmental Protection Agency maximum contaminant levels. Very low concentrations of organic compounds were detected in some of the water samples. VOC's were detected in water from 76 percent of the wells sampled; the maximum concentration detected was 5.8 micrograms per liter of chloroform. The most commonly detected VOC was

  5. Simulation of Ground-Water Flow and Areas Contributing Recharge to Production Wells in Contrasting Glacial Valley-Fill Settings, Rhode Island

    USGS Publications Warehouse

    Friesz, Paul J.; Stone, Janet Radway

    2007-01-01

    Areas contributing recharge and sources of water to a production well field in the Village of Harrisville and to a production well field in the Town of Richmond were delineated on the basis of calibrated, steady-state ground-water-flow models representing average hydrologic conditions. The study sites represent contrasting glacial valley-fill settings. The area contributing recharge to a well is defined as the surface area where water recharges the ground water and then flows toward and discharges to the well. In Harrisville, the production well field is composed of three wells in a narrow, approximately 0.5-mile-wide, valley-fill setting on opposite sides of Batty Brook, a small intermittent stream that drains 0.64 square mile at its confluence with the Clear River. Glacial stratified deposits are generally less areally extensive than previously published. The production wells are screened in a thin (30 feet) but transmissive aquifer. Paired measurements of ground-water and surface-water levels indicated that the direction of flow between the brook and the aquifer was generally downward during pumping conditions. Long-term mean annual streamflow from two streams upgradient of the well field totaled 0.72 cubic feet per second. The simulated area contributing recharge for the 2005 average well-field withdrawal rate of 224 gallons per minute extended upgradient to ground-water divides in upland areas and encompassed 0.17 square mile. The well field derived 62 percent of pumped water from intercepted ground water and 38 percent from infiltrated stream water from the Batty Brook watershed. For the maximum simulated well-field withdrawal of 600 gallons per minute, the area contributing recharge expanded to 0.44 square mile to intercept additional ground water and infiltration of stream water; the percentage of water derived from surface water, however, was the same as for the average pumping rate. Because of the small size of Batty Brook watershed, most of the

  6. Preliminary evaluation of ground-water flow in Bear Creek Valley, the Oak Ridge Reservation, Tennessee

    USGS Publications Warehouse

    Bailey, Z.C.

    1988-01-01

    Bear Creek Valley, Tennessee contains hazardous waste disposal sites where contaminants leach into ground and surface water. Groundwater flow and the potential migration of contaminants is poorly understood. The Valley is underlain by calcareous shale that contains limestone units. Ridges to the north and south are underlain by interbedded sandstones, siltstone and shale, and by massive, siliceous dolomite, respectively. The bedrock, which dips about 45 degrees southeast, is overlain by regolith to a maximum thickness of 80 ft. Observed hydraulic conductivities for the regolith range from 0.01 to 13 ft/day, and for the bedrock, from 0.001 to 11 ft/day. Groundwater flow is probably toward streams and is preferential along strike because of an areal anisotropy in hydraulic conductivity. A cross sectional groundwater flow model was used to test the conceptualized flow system and to help identify areas where additional data are needed. The preliminary model shows a pattern of recharge at both ridges, flow toward the valley, and upward flow that discharges into Bear Creek. Final model values of hydraulic conductivity in the bedrock range from 0.01 to 0.1 ft/day and reflect an areal anisotropy ratio of 1:5. Simulated recharge was 10 inches/year. (USGS)

  7. Quantification of the contribution of nitrogen from septic tanks to ground water in Spanish Springs Valley, Nevada

    USGS Publications Warehouse

    Rosen, Michael R.; Kropf, Christian; Thomas, Karen A.

    2006-01-01

    Analysis of total dissolved nitrogen concentrations from soil water samples collected within the soil zone under septic tank leach fields in Spanish Springs Valley, Nevada, shows a median concentration of approximately 44 milligrams per liter (mg/L) from more than 300 measurements taken from four septic tank systems. Using two simple mass balance calculations, the concentration of total dissolved nitrogen potentially reaching the ground-water table ranges from 25 to 29 mg/L. This indicates that approximately 29 to 32 metric tons of nitrogen enters the aquifer every year from natural recharge and from the 2,070 houses that use septic tanks in the densely populated portion of Spanish Springs Valley. Natural recharge contributes only 0.25 metric tons because the total dissolved nitrogen concentration of natural recharge was estimated to be low (0.8 mg/L). Although there are many uncertainties in this estimate, the sensitivity of these uncertainties to the calculated load is relatively small, indicating that these values likely are accurate to within an order of magnitude. The nitrogen load calculation will be used as an input function for a ground-water flow and transport model that will be used to test management options for controlling nitrogen contamination in the basin.

  8. The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations

    NASA Astrophysics Data System (ADS)

    Stwertka, C.; Strong, C.

    2012-12-01

    A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.

  9. Ground-water models for water resource planning

    USGS Publications Warehouse

    Moore, J.E.

    1983-01-01

    In the past decade hydrogeologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the ground-water system. These models have been used to provide information and predictions for water managers. Too frequently, ground-water was neglected in water resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface-water supplies. Now, however, with newly developed digital ground-water models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last ten years from simple one-layer models to three-dimensional simulations of ground-water flow, which may include solute transport, heat transport, effects of land subsidence, and encroachment of saltwater. Case histories illustrate how predictive ground-water models have provided the information needed for the sound planning and management of water resources in the USA. ?? 1983 D. Reidel Publishing Company.

  10. Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas ground-water basin, Ventura County, California

    USGS Publications Warehouse

    Hanson, Randall T.; Martin, Peter; Koczot, Kathryn M.

    2003-01-01

    the compilation of geographic, geologic, and hydrologic data and estimation of hydraulic properties and flows. The model was calibrated to historical surface-water and ground-water flow for the period 1891-1993. Sources of water to the regional ground-water flow system are natural and artificial recharge, coastal landward flow from the ocean (seawater intrusion), storage in the coarse-grained beds, and water from compaction of fine-grained beds (aquitards). Inflows used in the regional flow model simulation include streamflows routed through the major rivers and tributaries; infiltration of mountain-front runoff and infiltration of precipitation on bedrock outcrops and on valley floors; and artificial ground-water recharge of diverted streamflow, irrigation return flow, and treated sewage effluent. Most natural recharge occurs through infiltration (losses) of streamflow within the major rivers and tributaries and the numerous arroyos that drain the mountain fronts of the basin. Total simulated natural recharge was about 114,100 acre-feet per year (acre-ft/yr) for 1984-93: 27,800 acre-ft/yr of mountain-front and bedrock recharge, 24,100 acre-ft/yr of valley-floor recharge, and 62,200 acre-ft/yr of net streamflow recharge. Artificial recharge (spreading of diverted streamflow, irrigation return, and sewage effluent) is a major source of ground-water replenishment. During the 1984-93 simulation period, the average rate of artificial recharge at the spreading grounds was about 54,400 acre-ft/yr, 13 percent less than the simulated natural recharge rate for streamflow infiltration within the major rivers and tributaries. Estimated recharge from infiltration of irrigation return flow on the valley floors averaged about 51,000 acre-ft/yr, and treated sewage effluent averaged about 9,000 acre-ft/yr. Artificial recharge as streamflow diversion to the spreading grounds has occurred since 1929, and treated-sewage effluent has been discharged to stream channels since 1930. Under

  11. Evaluation of processes affecting 1,2-dibromo-3-chloropropane (DBCP) concentrations in ground water in the eastern San Joaquin Valley, California : analysis of chemical data and ground-water flow and transport simulations

    USGS Publications Warehouse

    Burow, Karen R.; Panshin, Sandra Y.; Dubrovsky, Neil H.; Vanbrocklin, David; Fogg, Graham E.

    1999-01-01

    A conceptual two-dimensional numerical flow and transport modeling approach was used to test hypotheses addressing dispersion, transformation rate, and in a relative sense, the effects of ground- water pumping and reapplication of irrigation water on DBCP concentrations in the aquifer. The flow and transport simulations, which represent hypothetical steady-state flow conditions in the aquifer, were used to refine the conceptual understanding of the aquifer system rather than to predict future concentrations of DBCP. Results indicate that dispersion reduces peak concentrations, but this process alone does not account for the apparent decrease in DBCP concentrations in ground water in the eastern San Joaquin Valley. Ground-water pumping and reapplication of irrigation water may affect DBCP concentrations to the extent that this process can be simulated indirectly using first-order decay. Transport simulation results indicate that the in situ 'effective' half-life of DBCP caused by processes other than dispersion and transformation to BAA could be on the order of 6 years.

  12. Water-Quality Assessment of the Rio Grande Valley, Colorado, New Mexico, and Texas--Surface-Water Quality, Shallow Ground-Water Quality, and Factors Affecting Water Quality in the Rincon Valley, South-Central New Mexico, 1994-95

    USGS Publications Warehouse

    Anderholm, Scott K.

    2002-01-01

    As part of the National Water-Quality Assessment Program, surface-water and ground-water samples were collected in 1994 and 1995 for analysis of common constituents, nutrients, dissolved organic carbon, trace elements, radioactivity, volatile organic compounds, and pesticides to characterize surface- water quality and shallow ground-water quality and to determine factors affecting water quality in the Rincon Valley, south-central New Mexico. Samples of surface water were collected from three sites on the Rio Grande and from sites on three agricultural drains in the Rincon Valley in January 1994 and 1995, April 1994, and October 1994. Ground-water samples were collected in late April and early May 1994 from 30 shallow wells that were installed during the investigation. Dissolved-solids concentrations in surface water ranged from 434 to 1,510 milligrams per liter (mg/L). Dissolved-solids concentrations were smallest in water from the Rio Grande below Caballo Dam and largest in the drains. Nitrite plus nitrate concentrations ranged from less than 0.05 to 3.3 mg/L as nitrogen, and ammonia concentrations ranged from less than 0.015 to 0.33 mg/L as nitrogen in surface-water samples. Trace-element concentrations in surface water were significantly smaller than the acute-fisheries standards. One or more pesticides were detected in 34 of 37 surface-water samples. DCPA (dacthal) and metolachlor were the most commonly detected pesticides. No standards have been established for the pesticides analyzed for in this study. Dissolved-solids concentrations in shallow ground water ranged from 481 to 3,630 mg/L. All but 2 of 30 samples exceeded the secondary maximum contaminant level for dissolved solids of 500 mg/L. Water from about 73 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for sulfate, and water from about 7 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for chloride. Nitrite plus nitrate

  13. Effects of Proposed Additional Ground-Water Withdrawals from the Mississippi River Valley Alluvial Aquifer on Water Levels in Lonoke County, Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.

    2006-01-01

    The Grand Prairie Water Users Association, located in Lonoke County, Arkansas, plans to increase ground-water withdrawals from the Mississippi River Valley alluvial aquifer from their current (2005) rate of about 400 gallons per minute to 1,400 gallons per minute (2,016,000 gallons per day). The effect of pumping from a proposed well was simulated using a digital model of ground-water flow. The proposed additional withdrawals were added to an existing pumping cell specified in the model, with increased pumping beginning in 2005, and specified to pump at a total combined rate of 2,016,000 gallons per day for a period of 46 years. In addition, pumping from wells owned by Cabot Water Works, located about 2 miles from the proposed pumping, was added to the model beginning in 2001 and continuing through to the end of 2049. Simulated pumping causes a cone of depression to occur in the alluvial aquifer with a maximum decline in water level of about 8.5 feet in 46 years in the model cell of the proposed well compared to 1998 withdrawals. However, three new dry model cells occur south of the withdrawal well after 46 years. This total water-level decline takes into account the cumulative effect of all wells pumping in the vicinity, although the specified pumping rate from all other model cells in 2005 is less than for actual conditions in 2005. After 46 years with the additional pumping, the water-level altitude in the pumped model cell was about 177.4 feet, which is 41.7 feet higher than 135.7 feet, the altitude corresponding to half of the original saturated thickness of the alluvial aquifer (a metric used to determine if the aquifer should be designated as a Critical Ground-Water Area (Arkansas Natural Resources Commission, 2006)).

  14. Ground-water contamination near a uranium tailings disposal site in Colorado

    USGS Publications Warehouse

    Goode, Daniel J.; Wilder, Russell J.

    1987-01-01

    Contaminants from uranium tailings disposed of at an active mill in Colorado have seeped into the shallow ground water onsite. This ground water discharges into the Arkansas River Valley through a superposed stream channel cut in the resistant sandstone ridge at the edge of a synclinal basin. In the river valley, seasonal surface-water irrigation has a significant impact on hydrodynamics. Water levels in residential wells fluctuate up to 20 ft and concentrations of uranium, molybdenum, and other contaminants also vary seasonally, with highest concentrations in the Spring, prior to irrigation, and lowest concentrations in the Fall. Results of a simple transient mixing cell model support the hypothesis that lateral ground-water inflow, and not irrigation recharge, is the source of ground-water contamination.

  15. Computer program for simulation of variable recharge with the U. S. Geological Survey modular finite-difference ground-water flow model (MODFLOW)

    USGS Publications Warehouse

    Kontis, A.L.

    2001-01-01

    The Variable-Recharge Package is a computerized method designed for use with the U.S. Geological Survey three-dimensional finitedifference ground-water flow model (MODFLOW-88) to simulate areal recharge to an aquifer. It is suitable for simulations of aquifers in which the relation between ground-water levels and land surface can affect the amount and distribution of recharge. The method is based on the premise that recharge to an aquifer cannot occur where the water level is at or above land surface. Consequently, recharge will vary spatially in simulations in which the Variable- Recharge Package is applied, if the water levels are sufficiently high. The input data required by the program for each model cell that can potentially receive recharge includes the average land-surface elevation and a quantity termed ?water available for recharge,? which is equal to precipitation minus evapotranspiration. The Variable-Recharge Package also can be used to simulate recharge to a valley-fill aquifer in which the valley fill and the adjoining uplands are explicitly simulated. Valley-fill aquifers, which are the most common type of aquifer in the glaciated northeastern United States, receive much of their recharge from upland sources as channeled and(or) unchanneled surface runoff and as lateral ground-water flow. Surface runoff in the uplands is generated in the model when the applied water available for recharge is rejected because simulated water levels are at or above land surface. The surface runoff can be distributed to other parts of the model by (1) applying the amount of the surface runoff that flows to upland streams (channeled runoff) to explicitly simulated streams that flow onto the valley floor, and(or) (2) applying the amount that flows downslope toward the valley- fill aquifer (unchanneled runoff) to specified model cells, typically those near the valley wall. An example model of an idealized valley- fill aquifer is presented to demonstrate application of the

  16. Geology and water resources of Owens Valley, California

    USGS Publications Warehouse

    Hollett, Kenneth J.; Danskin, Wesley R.; McCaffrey, William F.; Walti, Caryl L.

    1991-01-01

    Owens Valley, a long, narrow valley located along the east flank of the Sierra Nevada in east-central California, is the main source of water for the city of Los Angeles. The city diverts most of the surface water in the valley into the Owens River-Los Angeles Aqueduct system, which transports the water more than 200 miles south to areas of distribution and use. Additionally, ground water is pumped or flows from wells to supplement the surface-water diversions to the river-aqueduct system. Pumpage from wells needed to supplement water export has increased since 1970, when a second aqueduct was put into service, and local concerns have been expressed that the increased pumpage may have had a detrimental effect on the environment and the indigenous alkaline scrub and meadow plant communities in the valley. The scrub and meadow communities depend on soil moisture derived from precipitation and the unconfined part of a multilayered aquifer system. This report, which describes the hydrogeology of the aquifer system and the water resources of the valley, is one in a series designed to (1) evaluate the effects that groundwater pumping has on scrub and meadow communities and (2) appraise alternative strategies to mitigate any adverse effects caused by, pumping. Two principal topographic features are the surface expression of the geologic framework--the high, prominent mountains on the east and west sides of the valley and the long, narrow intermountain valley floor. The mountains are composed of sedimentary, granitic, and metamorphic rocks, mantled in part by volcanic rocks as well as by glacial, talus, and fluvial deposits. The valley floor is underlain by valley fill that consists of unconsolidated to moderately consolidated alluvial fan, transition-zone, glacial and talus, and fluvial and lacustrine deposits. The valley fill also includes interlayered recent volcanic flows and pyroclastic rocks. The bedrock surface beneath the valley fill is a narrow, steep-sided graben

  17. Ground-water conditions and geologic reconnaissance of the Upper Sevier River basin, Utah

    USGS Publications Warehouse

    Carpenter, Carl H.; Robinson, Gerald B.; Bjorklund, Louis Jay

    1967-01-01

    The upper Sevier River basin is in south-central Utah and includes an area of about 2,400 .square miles of high plateaus and valleys. It comprises the entire Sevier River drainage basin above Kingston, including the East Fork Sevier River and its tributaries. The basin was investigated to determine general ground-water conditions, the interrelation of ground water and surface water, the effects of increasing the pumping of ground water, and the amount of ground water in storage.The basin includes four main valleys - Panguitch Valley, Circle Valley, East Fork Valley, and Grass Valley - which are drained by the Sevier River, the East Fork Sevier River, and Otter Creek. The plateaus surrounding the valleys consist of sedimentary and igneous rocks that range in age from Triassic to Quaternary. The valley fill, which is predominantly alluvial gravel, sand, silt, and clay, has a maximum thickness of more than 800 feet.The four main valleys constitute separate ground-water basins. East Fork Valley basin is divided into Emery Valley, Johns Valley, and Antimony subbasins, and Grass Valley basin is divided into Koosharem and Angle subbasins. Ground water occurs under both artesian and water-table conditions in all the basins and subbasins except Johns Valley, Emery Valley, and Angle subbasins, where water is only under water-table conditions. The water is under artesian pressure in beds of gravel and sand confined by overlying beds of silt and clay in the downstream parts of Panguitch Valley basin, Circle Valley basin, and Antimony subbasin, and in most of Koosharem subbasin. Along the sides and upstream ends of these basins, water is usually under water-table conditions.About 1 million acre-feet of ground water that is readily available to wells is stored in the gravel and sand of the upper 200 feet of saturated valley fill. About 570,000 acre-feet is stored in Panguitch Valley basin, about 210,000 in Circle Valley basin, about 6,000 in Emery Valley subbasin, about 90

  18. Isotopic compositions and sources of nitrate in ground water from western Salt River Valley, Arizona

    USGS Publications Warehouse

    Gellenbeck, D.J.

    1994-01-01

    Isotopic and chemical compositions of ground water from western Salt River Valley near Phoenix, Arizona, were used to develop identification tech- niques for sources of nitrate in ground water. Four possible sources of nitrate were studied: dairies and feedlots, sewage-treatment plants, agricultural activities, and natural source. End members that represent these sources were analyzed for a variety of chemical and isotopic constituents; contents of the end-member and the ground water were compared to identify nitrate from these sources. Nitrate from dairies and feedlots was identified by delta 15N values higher than +9.0 per mil. Nitrate from sewage treatment plants was identified by some chemical constituents and values of delta 15N, delta 34S, delta 7Li, and delta 11B that were lighter than the values determined for ground water not affected by sewage-treatment plants. Nitrate from agricultural activities was identified by delta 15N, 3H, and delta 34S compositions. Natural nitrate derived from decomposing plants and accumulated by biological fixation was identified by delta 15N values that range between +2 and +8 per mil. In addition to identifying nitrate sources, some chemical and isotopic charabteristics of ground water were determined on the basis of data collected during this study. Concentrations of major ions, lithium, and boron and delta 7Li, delta 11B, 3H, delta D, and delta 18O data identify ground water in different geographic regions in the study area. These differences probably are related to different sources of ground water, geochemical processes, or geologic deposits. The Luke salt body and a geothermal anomaly alter the chemical and isotopic content of some ground water.

  19. Ground water in the Thousand Oaks area, Ventura County, California

    USGS Publications Warehouse

    French, James J.

    1980-01-01

    The ground-water basin beneath the city of Thousand Oaks, Calif. , corresponds closely in area with the surface-water drainage basin of Conejo Valley. Before World War II there was little ground-water development. After World War II, urban development put a stress on the ground-water basin; many wells were drilled and water levels in wells were drawn down as much as 300 feet in places. Beginning in 1963, imported water replaced domestic and municipal ground-water systems, and water levels rapidly recovered to predevelopment levels or nearly so. Most of the ground water in the Thousand Oaks area is stored in fractured basalt of the middle Miocene Conejo Volcanics. Depending on the degree of occurrence of open fractures and cavities in the basalt, recoverable ground water in the upper 300 to 500 feet of aquifer is estimated to be between 400,000 and 600,000 acre-feet. The yield of water from wells in the area ranges from 17 to 1,080 gallons per minute. Most of the ground-water in the eastern part of the valley is high insulfate and has a dissolved-solids concentration greater than 1,000 milligrams per liter. In the western part of the valley the ground-water is mostly of a bicarbonate type, and the dissolved-solids concentration is less than 800 milligrams per liter. In most areas of Conejo Valley, ground-water is a viable resource for irrigation of public lands and recreation areas. (USGS)

  20. Effects of ground-water withdrawals on flow in the Sauk River Valley Aquifer and on streamflow in the Cold Spring area, Minnesota

    USGS Publications Warehouse

    Lindgren, R.J.

    2001-01-01

    The simulated contributing areas for selected watersupply wells in the Cold Spring area generally extend to and possibly beyond the model boundaries to the north and to the southeast. The contributing areas for the Gold'n Plump Poultry Processing Plant supply wells extend: (1) to the Sauk River, (2) to the north to and possibly beyond to the northern model boundary, and (3) to the southeast to and possibly beyond the southeastern model boundary. The primary effects of projected increased ground-water withdrawals of 0.23 cubic feet per second (7.5 percent increase) were to: (1) decrease outflow from the Sauk River Valley aquifer through constant-head boundaries and (2) decrease leakage from the valley unit of the Sauk River Valley aquifer to the streams. No appreciable differences were discernible between the simulated steady-state contributing areas to wells with 1998 pumpage and those with the projected pumpage.

  1. Effects of ground-water chemistry and flow on quality of drainflow in the western San Joaquin Valley, California

    USGS Publications Warehouse

    Fio, John L.; Leighton, David A.

    1994-01-01

    Chemical and geohydrologic data were used to assess the effects of regional ground-water flow on the quality of on-farm drainflows in a part of the western San Joaquin Valley, California. Shallow ground water beneath farm fields has been enriched in stable isotopes and salts by partial evaporation from the shallow water table and is being displaced by irrigation, drainage, and regional ground-water flow. Ground-water flow is primarily downward in the study area but can flow upward in some down- slope areas. Transitional areas exist between the downward and upward flow zones, where ground water can move substantial horizontal distances (0.3 to 3.6 kilometers) and can require 10 to 90 years to reach the downslope drainage systems. Simulation of ground-water flow to drainage systems indicates that regional ground water contributes to about 11 percent of annual drainflow. Selenium concentrations in ground water and drainwater are affected by geologic source materials, partial evaporation from a shallow water table, drainage-system, and regional ground-water flow. Temporal variability in drainflow quality is affected in part by the distribution of chemical constituents in ground water and the flow paths to the drainage systems. The mass flux of selenium in drainflows, or load, generally is proportional to flow, and reductions in drainflow quantity should reduce selenium loads over the short-term. Uncertain changes in the distribution of ground-water quality make future changes in drainflow quality difficult to quantify.

  2. Tracing ground-water movement by using the stable isotopes of oxygen and hydrogen, upper Penitencia Creek alluvial fan, Santa Clara Valley, California

    USGS Publications Warehouse

    Muir, K.S.; Coplen, Tyler B.

    1981-01-01

    Starting in 1965 the Santa Clara Valley Water District began importing about i00,000 acre-feet per year of northern California water. About one-half of this water was used to artificially recharge the Upper Penitencia Creek alluvial fan in Santa Clara Valley. In order to determine the relative amounts of local ground water and recharged imported water being pumped from the wells, stable isotopes of oxygen and hydrogen were used to trace the movement of the imported water in the alluvial fan. To trace the movement of imported water in the Upper Penitencia Creek alluvial fan, well samples were selected to give areal and depth coverage for the whole fan. The stable isotopes of oxygen-16, oxygen-18, and deuterium were measured in the water samples of imported water and from the wells and streams in the Santa Clara Valley. The d18oand dD compositions of the local runoff were about -6.00 o/oo (parts per thousand) and -40 o/oo, respectively; the average compositions for the local native ground-water samples were about -6.1 o/oo and -41 o/oo, respectively; and the average compositions of the imported water samples were -10.2 o/oo and -74 o/oo, respectively. (The oxygen isotopic composition of water samples is reported relative to Standard Mean Ocean Water, in parts per thousand.) The difference between local ground water and recharged imported water was about 4.1 o/oo in d18o and 33 o/oo in dL. The isotopic data indicate dilution of northern California water with local ground water in a downgradient direction. Two wells contain approximately 74 percent northern California water, six wells more than 50 percent. Data indicate that there may be a correlation between the percentage of northern California water and the depth or length of perforated intervals in wells.

  3. Selected ground-water data, Bonneville Salt Flats and Pilot Valley, western Utah

    USGS Publications Warehouse

    Lines, Gregory C.

    1978-01-01

    This report contains ground-water data collected at wells and springs on the Bonneville Salt Flats and in Pilot Valley, western Utah. Most of the data were collected during a study of the hydrology and surface morphology of these two salt-crust areas during the period July 1975 - June 1977. The study was carried out in cooperation with the U.S. Bureau of Land Management. This report is intended to make the basic data conveniently available and to supplement an interpretive report that will be published separately. Some earlier data that were collected by the Geological Survey and other organizations are also included.

  4. Occurrence of anthropogenic organic compounds in ground water and finished water of community water systems in Eagle and Spanish Springs Valleys, Nevada, 2002-2004

    USGS Publications Warehouse

    Rosen, Michael R.; Shaefer, Donald H.; Toccalino, Patricia A.; Delzer, Gregory C.

    2006-01-01

    As a part of the U.S. Geological Survey's National Water-Quality Assessment Program, an effort to characterize the quality of major rivers and aquifers used as a source of supply to some of the largest community water systems (CWSs) in the United States has been initiated. These studies, termed Source Water-Quality Assessments (SWQAs), consist of two sampling phases. Phase 1 was designed to determine the frequency of detection and concentrations of about 260 volatile organic compounds (VOCs), pesticides and pesticide degradates, and other anthropogenic organic compounds in source water of 15 CWS wells in each study. Phase 2 monitors concentrations in the source water and also the associated finished water of CWSs for compounds most frequently detected during phase 1. One SWQA was completed in the Nevada Basin and Range area in Nevada. Ten CWS wells in Eagle Valley and five CWS wells in Spanish Springs Valley were sampled. For phase 2, two wells were resampled in Eagle Valley. Samples were collected during 2002-2004 for both phases. Water use in Eagle Valley is primarily for domestic purposes and is supplied through CWSs. Ground-water sources provide about 55 percent of the public-water supply, and surface-water sources supply about 45 percent. Lesser amounts of water are provided by domestic wells. Very little water is used for agriculture or manufacturing. Spanish Springs Valley has water-use characteristics similar to those in Eagle Valley, although there is more agricultural water use in Spanish Springs Valley than in Eagle Valley. Maximum contaminant concentrations were compared to two human-health benchmarks, if available, to describe the water-quality data in a human-health context for these findings. Measured concentrations of regulated contaminants were compared to U.S. Environmental Protection Agency and Nevada Maximum Contaminant Level (MCL) values. Measured concentrations of unregulated contaminants were compared to Health-Based Screening Levels, which

  5. FUNDAMENTALS OF GROUND-WATER MODELING

    EPA Science Inventory

    Ground-water flow and contaminant transport modeling has been used at many hazardous waste sites with varying degrees of success. odels may be used throughout all phases of the site investigation and remediation processes. eveloping a better understanding of ground-water modeling...

  6. Water-quality conditions and an evaluation of ground- and surface-water sampling programs in the Livermore-Amador Valley, California

    USGS Publications Warehouse

    Sorenson, S.K.; Cascos, P.V.; Glass, R.L.

    1984-01-01

    A program to monitor the ground- and surface water quality in the Livermore-Amador Valley has been operated since 1976. As of 1982, this monitoring network consisted of approximately 130 wells, about 100 of which were constructed specifically for this program, and 9 surface water stations. Increased demand on the groundwater for municipal and industrial water supply in the past has caused a decline in water levels and a gradual buildup of salts from natural surface-water recharge and land disposal of treated wastewater from waste treatment plants. Results of this study identify the salt buildup to be the major problem with the groundwater quality. Established water quality objectives for dissolved solids are exceeded in 52 of 130 wells. Concentrations of dissolved nitrate are also in excess of basin objectives and health standards. Water quality in both surface and groundwater is highly variable areally. Magnesium to calcium magnesium bicarbonate groundwater are found in the areas where most of the high volume municipal wells are located. Large areas of sodium bicarbonate water occur in the northern part of the valley. Except for two stations on Arroyo Las Positas which has sodium chloride water, surface water is mixed-cation bicarbonate water. (USGS)

  7. Methods and applications of electrical simulation in ground-water studies in the lower Arkansas and Verdigris River Valleys, Arkansas and Oklahoma

    USGS Publications Warehouse

    Bedinger, M.S.; Reed, J.E.; Wells, C.J.; Swafford, B.F.

    1970-01-01

    The Arkansas River Multiple-Purpose Plan will provide year-round navigation on the Arkansas River from near its mouth to Muskogee, Okla., and on the Verdigris River from Muskogee to Catoosa, Okla. The altered regimen in the Arkansas and Verdigris Rivers will affect ground-water conditions in the adjacent alluvial aquifers. In 1957 the U.S. Geological Survey and U.S. Army Corps of Engineers entered into a cooperative agreement for a comprehensive ground-water study of the lower Arkansas and Verdigris River valleys. At the request of the Corps of Engineers, the Geological Survey agreed to provide (1) basic ground-water data before, during, and after construction of the Multiple-Purpose Plan and (2) interpretation and projections of postconstruction ground-water conditions. The data collected were used by the Corps of Engineers in preliminary foundation and excavation estimates and by the Geological Survey as the basis for defining the hydrologic properties of, and the ground-water conditions in, the aquifer. The projections of postconstruction ground-water conditions were used by the Corps of Engineers in the planning, design, construction, and operation of the Multiple-Purpose Plan. Analysis and projections of ground-water conditions were made by use of electrical analog models. These models use the analogy between the flow of electricity in a resistance-capacitance circuit and the flow of a liquid in a porous and permeable medium. Verification provides a test of the validity of the analog to perform as the aquifer would, within the range of historic forces. The verification process consists of simulating the action of historic forces which have acted upon the aquifer and of duplicating the aquifer response with the analog. The areal distribution of accretion can be treated as an unknown and can be determined by analog simulation of the piezometric surface in an aquifer. Comparison of accretion with depth to piezometric surface below land surface shows that

  8. Nitrate and pesticides in ground water in the eastern San Joaquin Valley, California : occurrence and trends

    USGS Publications Warehouse

    Burow, Karen R.; Stork, Sylvia V.; Dubrovsky, N.M.

    1998-01-01

    The occurrence of nitrate and pesticides in ground water in California's eastern San Joaquin Valley may be greatly influenced by the long history of intensive farming and irrigation and the generally permeable sediments. This study, which is part of the U.S. Geological Survey National Water-Quality Assessment Program, was done to assess the quality of the ground water and to do a preliminary evaluation of the temporal trends in nitrate and pesticides in the alluvial fans of the eastern San Joaquin Valley. Ground-water samples were collected from 30 domestic wells in 1995 (each well was sampled once during 1995). The results of the analyses of these samples were related to various physical and chemical factors in an attempt to understand the processes that control the occurrence and the concentrations of nitrate and pesticides. A preliminary evaluation of the temporal trends in the occurrence and the concentration of nitrate and pesticides was done by comparing the results of the analyses of the 1995 ground-water samples with the results of the analyses of the samples collected in 1986-87 as part of the U.S. Geological Survey Regional Aquifer-System Analysis Program. Nitrate concentrations (dissolved nitrate plus nitrite, as nitrogen) in ground water sampled in 1995 ranged from less than 0.05 to 34 milligrams per liter, with a median concentration of 4.6 milligrams per liter. Nitrate concentrations exceeded the maximum contaminant level of 10 milligrams per liter (as nitrogen) in 5 of the 30 ground-water samples (17 percent), whereas 12 of the 30 samples (40 percent) had nitrate concentrations less than 3.0 milligrams per liter. The high nitrate concentrations were associated with recently recharged, well-oxygenated ground water that has been affected by agriculture (indicated by the positive correlations between nitrate, dissolved-oxygen, tritium, and specific conductance). Twelve pesticides were detected in 21 of the 30 ground-water samples (70 percent) in 1995

  9. Ground-water data: Beaver, Escalante, Cedar City, and Parowan Valleys; parts of Washington, Iron, Beaver, and Millard Counties, Utah

    USGS Publications Warehouse

    Sandberg, George W.

    1963-01-01

    This report is intended to serve two purposes: (1) to make available to the public basic ground-water data useful in planning and studying development of water resources, and (2) to supplement an interpretive report that will be published later.Records were collected during the period 1935-62 by the U.S. Geological Survey in cooperation with the Utah State Engineer as part of the investigation of ground-water conditions in the Beaver, Escalante, Cedar City, and Parowan Walleys. This report will include records collected subsequent to data published in earlier reports listed in the bibliography. The interpretive material will be published in a companion report by George W. Sandberg.This report is most useful in predicting conditions likely to be found in areas that are being considered as well sites. The person considering the new well can spot the proposed site on plate 1 and examine the records of nearby wells as shown in the tables and figure 2. From table 1 he can note such things as diameter, depth, water level, yield, use of water, and depth to aquifers in wells in the vicinity, and from the well logs in table 3 he can note the type of material that yields water to the wells. Table 2 gives several years record of yields and pumping levels of irrigation wells, and in table 4 are the chemical analyses of water from wells and springs. Figure 2 shows the historic fluctuations and trends of water levels in the four valleys. If the reader decides from his examination that conditions are favorable, he can place an application to drill a well with the State Engineer. During the past several years, however, the State Engineer has rejected new applications to appropriate water in major portions of Beaver Valley, Milford and Beryl-Enterprise districts in Escalante Valley, and Cedar City Valley. Anyone seeking to initiate a new ground-water right in any of these areas should obtain information from the State Engineer's Office in either Salt Lake City or Cedar City to

  10. Ground-Water Quality Data in the Coachella Valley Study Unit, 2007: Results from the California GAMA Program

    USGS Publications Warehouse

    Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 820 square-mile Coachella Valley Study Unit (COA) was investigated during February and March 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of raw ground water used for public-water supplies within the Coachella Valley, and to facilitate statistically consistent comparisons of ground-water quality throughout California. Samples were collected from 35 wells in Riverside County. Nineteen of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Sixteen additional wells were sampled to evaluate changes in water chemistry along selected ground-water flow paths, examine land use effects on ground-water quality, and to collect water-quality data in areas where little exists. These wells were referred to as 'understanding wells'. The ground-water samples were analyzed for a large number of organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (uranium, tritium, carbon-14, and stable isotopes of hydrogen, oxygen, and boron), and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory) also were measured to help identify the source and age of the sampled

  11. Ground-water-quality and ground-water-level data, Bernalillo County, central New Mexico, 1990-1993

    USGS Publications Warehouse

    Kues, G.E.; Garcia, B.M.

    1995-01-01

    Ground-water-quality and ground-water-level data were collected in four unincorporated areas of Bernalillo County during 1990-93. Twenty wells in the east mountain area of Bernalillo County were sampled approximately monthly between January 1990 and June 1993. The water samples were analyzed for concentrations of chloride and selected nutrient species; many of the samples also were analyzed for concentrations of total organic carbon and dissolved boron and iron. Eleven wells northeast of the city of Albuquerque, 20 wells in the Rio Grande Valley immediately north of Albuquerque, and 30 wells in the Rio Grande Valley immediately south of Albuquerque were sampled once each between December 1992 and September 1993; all water samples were analyzed for chloride and selected nutrient species, and selected samples from wells in the north and south valley areas were also analyzed for major dissolved constituents, iron, manganese, and methylene blue active substances. Samples from 10 of the wells in the north and south valley areas were analyzed for 47 selected pesticides. Field measurements of specific conductance, pH, temperature, and alkalinity were made on most samples at the time of sample collection. Water levels also were measured at the time of sample collection when possible. Results of the monthly water-quality and water-level monitoring in the east mountain area of Bernalillo County are presented in graphical form. Water-quality and water-level data collected from the other areas are presented in tabular form.

  12. Recalibration of a ground-water flow model of the Mississippi River Valley alluvial aquifer of northeastern Arkansas, 1918-1998, with simulations of water levels caused by projected ground-water withdrawals through 2049

    USGS Publications Warehouse

    Reed, Thomas B.

    2003-01-01

    A digital model of the Mississippi River Valley alluvial aquifer in eastern Arkansas was used to simulate ground-water flow for the period from 1918 to 2049. The model results were used to evaluate effects on water levels caused by demand for ground water from the alluvial aquifer, which has increased steadily for the last 40 years. The model results showed that water currently (1998) is being withdrawn from the aquifer at rates greater than what can be sustained for the long term. The saturated thickness of the alluvial aquifer has been reduced in some areas resulting in dry wells, degraded water quality, decreased water availability, increased pumping costs, and lower well yields. The model simulated the aquifer from a line just north of the Arkansas-Missouri border to south of the Arkansas River and on the east from the Mississippi River westward to the less permeable geologic units of Paleozoic age. The model consists of 2 layers, a grid of 184 rows by 156 columns, and comprises 14,118 active cells each measuring 1 mile on a side. It simulates time periods from 1918 to 1998 along with further time periods to 2049 testing different pumping scenarios. Model flux boundary conditions were specified for rivers, general head boundaries along parts of the western side of the model and parts of Crowleys Ridge, and a specified head boundary across the aquifer further north in Missouri. Model calibration was conducted for observed water levels for the years 1972, 1982, 1992, and 1998. The average absolute residual was 4.69 feet and the root-mean square error was 6.04 feet for the hydraulic head observations for 1998. Hydraulic-conductivity values obtained during the calibration process were 230 feet per day for the upper layer and ranged from 230 to 730 feet per day for the lower layer with the maximum mean for the combined aquifer of 480 feet per day. Specific yield values were 0.30 throughout the model and specific storage values were 0.000001 inverse-feet throughout

  13. Simulated Ground-Water Withdrawals by Cabot WaterWorks from the Mississippi River Valley Alluvial Aquifer, Lonoke County, Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.

    2007-01-01

    Cabot WaterWorks, located in Lonoke County, Arkansas, plans to increase ground-water withdrawals from the Mississippi River Valley alluvial aquifer from a 2004 rate of approximately 2.24 million gallons per day to between 4.8 and 8 million gallons per day by the end of 2049. The effects of increased pumping from several wells were simulated using a digital model of ground-water flow. The proposed additional withdrawals by Cabot WaterWorks were specified in three 1-square-mile model cells with increased pumping beginning in 2007. Increased pumping was specified at various combined rates for a period of 44 years. In addition, augmented pumping from wells owned by Grand Prairie Water Users Association, located about 2 miles from the nearest Cabot WaterWorks wells, was added to the model beginning in 2007 and continuing through to the end of 2049 in 10 of the 16 scenarios analyzed. Eight of the scenarios included reductions in pumping rates in model cells corresponding to either the Grand Prairie Water Users Association wells or to wells contained within the Grand Prairie Area Demonstration Project. Drawdown at the end of 44 years of pumping at 4.8 million gallons per day from the Cabot WaterWorks wells ranged from 15 to 25 feet in the three model cells; pumping at 8 million gallons per day resulted in water-level drawdown ranging from about 15 to 40 feet. Water levels in those cells showed no indication of leveling out at the end of the simulation period, indicating non-steady-state conditions after 44 years of pumping. From one to four new dry cells occurred in each of the scenarios by the end of 2049 when compared to a baseline scenario in which pumping was maintained at 2004 rates, even in scenarios with reduced pumping in the Grand Prairie Area Demonstration Project; however, reduced pumping produced cells that were no longer dry when compared to the baseline scenario at the end of 2049. Saturated thickness at the end of 2049 in the three Cabot WaterWorks wells

  14. Modeled ground water age distributions

    USGS Publications Warehouse

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  15. Calibration of a texture-based model of a ground-water flow system, western San Joaquin Valley, California

    USGS Publications Warehouse

    Phillips, Steven P.; Belitz, Kenneth

    1991-01-01

    The occurrence of selenium in agricultural drain water from the western San Joaquin Valley, California, has focused concern on the semiconfined ground-water flow system, which is underlain by the Corcoran Clay Member of the Tulare Formation. A two-step procedure is used to calibrate a preliminary model of the system for the purpose of determining the steady-state hydraulic properties. Horizontal and vertical hydraulic conductivities are modeled as functions of the percentage of coarse sediment, hydraulic conductivities of coarse-textured (Kcoarse) and fine-textured (Kfine) end members, and averaging methods used to calculate equivalent hydraulic conductivities. The vertical conductivity of the Corcoran (Kcorc) is an additional parameter to be evaluated. In the first step of the calibration procedure, the model is run by systematically varying the following variables: (1) Kcoarse/Kfine, (2) Kcoarse/Kcorc, and (3) choice of averaging methods in the horizontal and vertical directions. Root mean square error and bias values calculated from the model results are functions of these variables. These measures of error provide a means for evaluating model sensitivity and for selecting values of Kcoarse, Kfine, and Kcorc for use in the second step of the calibration procedure. In the second step, recharge rates are evaluated as functions of Kcoarse, Kcorc, and a combination of averaging methods. The associated Kfine values are selected so that the root mean square error is minimized on the basis of the results from the first step. The results of the two-step procedure indicate that the spatial distribution of hydraulic conductivity that best produces the measured hydraulic head distribution is created through the use of arithmetic averaging in the horizontal direction and either geometric or harmonic averaging in the vertical direction. The equivalent hydraulic conductivities resulting from either combination of averaging methods compare favorably to field- and laboratory

  16. Appraisal of the water resources of Death Valley, California-Nevada

    USGS Publications Warehouse

    Miller, Glenn Allen

    1977-01-01

    The hydrologic system in Death Valley is probably in a steady-state condition--that is, recharge and discharge are equal, and net changes in the quantity of ground water in storage are not occurring. Recharge to ground water in the valley is derived from interbasin underflow and from local precipitation. The two sources may be of the same magnitude. Ground water beneath the valley moves toward the lowest area, a 200-square-mile saltpan, much of which is underlain by rock salt and other saline minerals, probably to depths of hundreds of feet or even more than 1,000 feet. Some water discharges from the saltpan by evaportranspiration. Water beneath the valley floor, excluding the saltpan, typically contains between 3,000 and 5,000 milligrams per liter of dissolved solids. Water from most springs and seeps in the mountains contains a few hundred to several hundred milligrams per liter of dissolved solids. Water from large springs that probably discharge from interbasin flow systems typically contains between 500 and 1,000 milligrams per liter dissolved solids. Present sites of intensive use by man are supplied by springs, with the exception of the Stovepipe Wells Hotel area. Potential sources of supply for this area include (1) Emigrant Spring area, (2) Cottonwood Spring, and (3) northern Mesquite Flat. (Woodard-USGS)

  17. Annual ground-water discharge by evapotranspiration from areas of spring-fed riparian vegetation along the eastern margin of Death Valley, 2000-02

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; DeMeo, Guy A.

    2006-01-01

    Flow from major springs and seeps along the eastern margin of Death Valley serves as the primary local water supply and sustains much of the unique habitat in Death Valley National Park. Together, these major spring complexes constitute the terminus of the Death Valley Regional Ground-Water Flow System--one of the larger flow systems in the Southwestern United States. The Grapevine Springs complex is the least exploited for water supply and consequently contains the largest area of undisturbed riparian habitat in the park. Because few estimates exist that quantify ground-water discharge from these spring complexes, a study was initiated to better estimate the amount of ground water being discharged annually from these sensitive, spring-fed riparian areas. Results of this study can be used to establish a basis for estimating water rights and as a baseline from which to assess any future changes in ground-water discharge in the park. Evapotranspiration (ET) is estimated volumetrically as the product of ET-unit (general vegetation type) acreage and a representative ET rate. ET-unit acreage is determined from high-resolution multi-spectral imagery; and a representative ET rate is computed from data collected in the Grapevine Springs area using the Bowen-ratio solution to the energy budget, or from rates given in other ET studies in the Death Valley area. The ground-water component of ET is computed by removing the local precipitation component from the ET rate. Two different procedures, a modified soil-adjusted vegetation index using the percent reflectance of the red and near-infrared wavelengths and land-cover classification using multi-spectral imagery were used to delineate the ET units within each major spring-discharge area. On the basis of the more accurate procedure that uses the vegetation index, ET-unit acreage for the Grapevine Springs discharge area totaled about 192 acres--of which 80 acres were moderate-density vegetation and 112 acres were high

  18. Regional nitrate and pesticide trends in ground water in the eastern San Joaquin Valley, California

    USGS Publications Warehouse

    Burow, K.R.; Shelton, James L.; Dubrovsky, N.M.

    2008-01-01

    Protection of ground water for present and future use requires monitoring and understanding of the mechanisms controlling long-term quality of ground water. In this study, spatial and temporal trends in concentrations of nitrate and pesticides in ground water in the eastern San Joaquin Valley, California, were evaluated to determine the long-term effects of agricultural and urban development on regional ground-water quality. Trends in concentrations of nitrate, the nematocide 1,2-dibromo-3-chloropropane, and the herbicide simazine during the last two decades are generally consistent with known nitrogen fertilizer and pesticide use and with the position of the well networks in the regional ground-water flow system. Concentrations of nitrate and pesticides are higher in the shallow part of the aquifer system where domestic wells are typically screened, whereas concentrations are lower in the deep part of the aquifer system where public-supply wells are typically screened. Attenuation processes do not seem to significantly affect concentrations. Historical data indicate that concentrations of nitrate have increased since the 1950s in the shallow and deep parts of the aquifer system. Concentrations of nitrate and detection of pesticides in the deep part of the aquifer system will likely increase as the proportion of highly affected water contributed to these wells increases with time. Because of the time of travel between the water table and the deep part of the aquifer system, current concentrations in public-supply wells likely reflect the effects of 40- to 50-yr-old management practices. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  19. Ground-water resources investigation in the Amran Valley, Yeman Arab Republic

    USGS Publications Warehouse

    Tibbitts, G. Chase; Aubel, James

    1980-01-01

    A program of hydrologic studies and exploratory drilling was conducted intermittently between 1974 and 1978 to evaluate the water-bearing properties of the unconsolidated alluvial sediments and associated rocks in the semi-arid Amran Valley basin, an 800-square-kilometer area in north-central Yemen Arab Republic. Inventory data from 395 wells were compiled, observation well and rain-gage networks were established and 16 standard complete chemical analyses were made for samples from selected wells. The water resources of the area were overexploited. The chemical quality of the water is generally good. Four aquifer tests were run to determine transmissivity and storage characteristics. The pumping tests show that groundwater occurs under semi-confined leaky-aquifer conditions in the valley fill. Wells drilled in the alluvial fill of the south-central part of the valley have the highest yields. Wells penetrating the limestone and volcanic rocks generally have little or no yield except in fracture zones. Basalt flows occur interbedded with the wadi alluvium at several depths. Cropping out rocks in the Amran Valley range in age from late Jurassic to Holocene. (USGS)

  20. Regional Water Table (1998) and Ground-Water-Level Changes in the Mojave River, and the Morongo Ground-Water Basins, San Bernardino County, California

    USGS Publications Warehouse

    Smith, Gregory A.; Pimentel, M. Isabel

    2000-01-01

    The Mojave River and the Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The rapid and continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The continuing collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems and, consequently, water availability. During 1998 the U.S. Geological Survey and other agencies made approximately 2,370 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and changes in ground-water levels. A water-level contour map was drawn using data from 450 wells, providing coverage for most of both basins. Twenty-three hydrographs show long-term (as much as 70 years) water-level trends throughout the basins. To help show effects of late seasonal recharge along the Mojave River, 14 short-term (13 years) hydrographs were created. A water-level change map was compiled to enable comparison of 1996 and 1998 water levels. The Mojave River and the Morongo ground-water basins had little change in water levels between 1996 and 1998 - with the exception of the areas of the Yucca Valley affected by artificial recharge. Other water-level changes were localized and reflected pumping or measurements made before seasonal recharge. Three areas of perched ground water were identified: El Mirage Lake (dry), Adelanto, and Lucerne Valley.

  1. COMPILATION OF GROUND-WATER MODELS

    EPA Science Inventory

    Ground-water modeling is a computer-based methodology for mathematical analysis of the mechanisms and controls of ground-water systems for the evaluation of policies, action, and designs that may affect such systems. n addition to satisfying scientific interest in the workings of...

  2. Hydrogeology and water quality of the West Valley Creek Basin, Chester County, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Sloto, Ronald A.; Reif, Andrew G.

    1997-01-01

    The West Valley Creek Basin drains 20.9 square miles in the Piedmont Physiographic Province of southeastern Pennsylvania and is partly underlain by carbonate rocks that are highly productive aquifers. The basin is undergoing rapid urbanization that includes changes in land use and increases in demand for public water supply and wastewater disposal. Ground water is the sole source of supply in the basin.West Valley Creek flows southwest in a 1.5-mile-wide valley that is underlain by folded and faulted carbonate rocks and trends east-northeast, parallel to regional geologic structures. The valley is flanked by hills underlain by quartzite and gneiss to the north and by phyllite and schist to the south. Surface water and ground water flow from the hills toward the center of the valley. Ground water in the valley flows west-southwest parallel to the course of the stream. Seepage investigations identified losing reaches in the headwaters area where streams are underlain by carbonate rocks and gaining reaches downstream. Tributaries contribute about 75 percent of streamflow. The ground-water and surface-water divides do not coincide in the carbonate valley. The ground-water divide is about 0.5 miles west of the surface-water divide at the eastern edge of the carbonate valley. Underflow to the east is about 1.1 inches per year. Quarry dewatering operations at the western edge of the valley may act partly as an artificial basin boundary, preventing underflow to the west. Water budgets for 1990, a year of normal precipitation (45.8 inches), and 1991, a year of sub-normal precipitation (41.5 inches), were calculated. Streamflow was 14.61 inches in 1990 and 12.08 inches in 1991. Evapotranspiration was estimated to range from 50 to 60 percent of precipitation. Base flow was about 62 percent of streamflow in both years. Exportation by sewer systems was about 3 inches from the basin and, at times, equaled base flow during the dry autumn of 1991. Recharge was estimated to be 18

  3. Water in the Humboldt River Valley near Winnemucca, Nevada

    USGS Publications Warehouse

    Cohen, Philip M.

    1966-01-01

    Most of the work of the interagency Humboldt River Research Project in the Winnemucca reach of the Humboldt River valley has been completed. More than a dozen State and Federal agencies and several private organizations and individuals participated in the study. The major objective of the project, which began in 1959, is to evaluate the water resources of the entire Humboldt River basin. However, because of the large size of the basin, most of the work during the first 5 years of the project was done in the Winnemucca area. The purpose of this report is to summarize briefly and simply the information regarding the water resources of the Winnemucca area-especially the quantitative aspects of the flow system-given in previous reports of the project. The Winnemucca reach of the Humboldt River valley, which is in north-central Nevada, is about 200 miles downstream from the headwaters of the Humboldt River and includes that part of the valley between the Comus and Rose Creek gaging stations. Average annual inflow to the storage area (the valley lowlands) in the Winnemucca reach in water years 1949-62 was about 250,000 acre-feet. Of this amount, about 68 percent was Humboldt River streamflow, as measured at the Comus gaging station, 23 percent was precipitation directly on the storage area, 6 percent was ground-water inflow, and about 3 percent was tributary streamflow. Average annual streamflow at the Rose Creek gaging station during the same period was about 155,000 acre-feet, or about 17,000 acre-feet less than that at the Comus gaging station. Nearly all the streamflow lost was consumed by evapotranspiration in the project area. Total average annual evapotranspiration loss during the period was about 115,000 acre-feet, or about 42 percent of the total average annual outflow. The most abundant ions in the ground and surface water in the area are commonly sodium and bicarbonate. Much of the water has a dissolved-solids content that ranges from 500 to 750 parts per

  4. Ground-water hydrology of the San Pitch River drainage basin, Sanpete County, Utah

    USGS Publications Warehouse

    Robinson, Gerald B.

    1971-01-01

    The San Pitch River drainage basin in central Utah comprises an area of about 850 square miles; however, the investigation was concerned primarily with the Sanpete and Arapien Valleys, which comprise about 250 square miles and contain the principal ground-water reservoirs in the basin. Sanpete Valley is about 40 miles long and has a maximum width of 13 miles, and Arapien Valley is about 8 miles long and 1 mile wide. The valleys are bordered by mountains and plateaus that range in altitude from 5,200 to 11,000 feet above mean sea level.The average annual precipitation on the valleys is about 12 inches, but precipitation on the surrounding mountains reaches a maximum of about 40 inches per year. Most of the precipitation on the mountains falls as snow, and runoff from snowmelt during the spring and summer is conveyed to the valleys by numerous tributaries of the San Pitch River. Seepage from the tributary channels and underflow beneath the channels are the major sources of recharge to the ground-water reservoir in the valleys.Unconsolidated valley fill constitutes the main ground-water reservoir in Sanpete and Arapien Valleys. The fill, which consists mostly of coalescing alluvial fans and flood deposits of the San Pitch River, ranges in particle size from clay to boulders. Where they are well sorted, these deposits yield large quantities of water to wells.Numerous springs discharge from consolidated rocks in the mountains adjacent to the valleys and along the west margin of Sanpete Valley, which is marked by the Sevier fault. The Green River Formation of Tertiary age and several other consolidated formations yield small to large quantities of water to wells in many parts of Sanpete Valley. Most water in the bedrock underlying the valley is under artesian pressure, and some of this water discharges upward into the overlying valley fill.The water in the valley fill in Sanpete Valley moves toward the center of the valley and thence downstream. The depth to water along

  5. Testing alternative ground water models using cross-validation and other methods

    USGS Publications Warehouse

    Foglia, L.; Mehl, S.W.; Hill, M.C.; Perona, P.; Burlando, P.

    2007-01-01

    Many methods can be used to test alternative ground water models. Of concern in this work are methods able to (1) rank alternative models (also called model discrimination) and (2) identify observations important to parameter estimates and predictions (equivalent to the purpose served by some types of sensitivity analysis). Some of the measures investigated are computationally efficient; others are computationally demanding. The latter are generally needed to account for model nonlinearity. The efficient model discrimination methods investigated include the information criteria: the corrected Akaike information criterion, Bayesian information criterion, and generalized cross-validation. The efficient sensitivity analysis measures used are dimensionless scaled sensitivity (DSS), composite scaled sensitivity, and parameter correlation coefficient (PCC); the other statistics are DFBETAS, Cook's D, and observation-prediction statistic. Acronyms are explained in the introduction. Cross-validation (CV) is a computationally intensive nonlinear method that is used for both model discrimination and sensitivity analysis. The methods are tested using up to five alternative parsimoniously constructed models of the ground water system of the Maggia Valley in southern Switzerland. The alternative models differ in their representation of hydraulic conductivity. A new method for graphically representing CV and sensitivity analysis results for complex models is presented and used to evaluate the utility of the efficient statistics. The results indicate that for model selection, the information criteria produce similar results at much smaller computational cost than CV. For identifying important observations, the only obviously inferior linear measure is DSS; the poor performance was expected because DSS does not include the effects of parameter correlation and PCC reveals large parameter correlations. ?? 2007 National Ground Water Association.

  6. Quality and sources of shallow ground water in areas of recent residential development in Salt Lake Valley, Salt Lake County, Utah

    USGS Publications Warehouse

    Thiros, Susan A.

    2003-01-01

    Residential and commercial development of about 80 square miles that primarily replaced undeveloped and agricultural areas occurred in Salt Lake Valley, Utah, from 1963 to 1994. This study evaluates the occurrence and distribution of natural and anthropogenic compounds in shallow ground water underlying recently developed (post 1963) residential and commercial areas. Monitoring wells from 23 to 153 feet deep were installed at 30 sites. Water-quality data for the monitoring wells consist of analyses of field parameters, major ions, trace elements, nutrients, dissolved organic carbon, pesticides, and volatile organic compounds.Dissolved-solids concentration ranged from 134 to 2,910 milligrams per liter (mg/L) in water from the 30 monitoring wells. Dissolved arsenic concentration in water from 12 wells exceeded the drinking-water maximum contaminant level of 10 micrograms per liter. Water from monitoring wells in the northwestern part of the valley generally contained higher arsenic concentrations than did water from other areas. Nitrate concentration in water sampled from 26 of the 30 monitoring wells (86.7 percent) was higher than a background level of 2 mg/L, indicating a possible human influence. Nitrate concentrations ranged from less than 0.05 to 13.3 mg/L.Fifteen of the 104 pesticides and pesticide degradation products analyzed for were detected in 1 or more water samples from the monitoring wells. No pesticides were detected at concentrations that exceeded U.S. Environmental Protection Agency drinking-water standards or guidelines for 2002. The high detection frequency of atrazine, a restricted-use pesticide, in residential areas on the west side of Salt Lake Valley may be the result of application in agricultural or industrial areas that have been converted to residential uses or application in areas upgradient from the residential areas that was then transported by ground water.Fifteen of the 86 volatile organic compounds analyzed for were detected in 1 or

  7. Ground-Water Quality Data in the Middle Sacramento Valley Study Unit, 2006 - Results from the California GAMA Program

    USGS Publications Warehouse

    Schmitt, Stephen J.; Fram, Miranda S.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,340 square mile Middle Sacramento Valley study unit (MSACV) was investigated from June through September, 2006, as part of the California Groundwater Ambient Monitoring and Assessment (GAMA) program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Middle Sacramento Valley study was designed to provide a spatially unbiased assessment of raw ground-water quality within MSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 108 wells in Butte, Colusa, Glenn, Sutter, Tehama, Yolo, and Yuba Counties. Seventy-one wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells), 15 wells were selected to evaluate changes in water chemistry along ground-water flow paths (flow-path wells), and 22 were shallow monitoring wells selected to assess the effects of rice agriculture, a major land use in the study unit, on ground-water chemistry (RICE wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. Quality-control samples (blanks

  8. Land use and water use in the Antelope Valley, California

    USGS Publications Warehouse

    Templin, William E.; Phillips, Steven P.; Cherry, Daniel E.; DeBortoli, Myrna L.; Haltom, T.C.; McPherson, Kelly R.; Mrozek, C.A.

    1995-01-01

    Urban land use and water use in the Antelope Valley, California, have increased significantly since development of the valley began in the late 1800's.. Ground water has been a major source of water in this area because of limited local surface-water resources. Ground-water pumpage is reported to have increased from about 29,000 acre-feet in 1919 to about 400,000 acre-feet in the 1950's. Completion of the California Aqueduct to this area in the early 1970's conveyed water from the Sacramento-San Joaquin Delta, about 400 miles to the north. Declines in groundwater levels and increased costs of electrical power in the 1970's resulted in a reduction in the quantity of ground water that was pumped annually for irrigation uses. Total annual reported ground-water pumpage decreased to a low of about 53,200 acre-feet in 1983 and increased to about 91,700 acre-feet in 1991 as a result of rapid urban development and the 1987-92 drought. This increased urban development, in combination with several years of drought, renewed concern about a possible return to extensive depletion of ground-water storage and increased land subsidence.Increased water demands are expected to continue as a result of increased urban development. Water-demand forecasts in 1980 for the Antelope Valley indicated that total annual water demand by 2020 was expected to be about 250,000 acre-feet, with agricultural demand being about 65 percent of this total. In 1990, total water demand was projected to be about 175,000 acre-feet by 2010; however, agricultural water demand was expected to account for only 37 percent of the total demand. New and existing land- and water-use data were collected and compiled during 1992-93 to identify present and historical land and water uses. In 1993, preliminary forecasts for total water demand by 2010 ranged from about 127,500 to 329,000 acre-feet. These wide-ranging estimates indicate that forecasts can change with time as factors that affect water demand change and

  9. Hydrogeology and ground-water flow of the drift and Platteville aquifer system, St Louis Park, Minnesota

    USGS Publications Warehouse

    Lindgren, R.J.

    1995-01-01

    Model simulations indicate that vertical ground-water flow from the drift aquifers and from the Platteville aquifer to underlying bedrock aquifers is greatest through bedrock valleys. The convergence of flow paths near bedrock valleys and the greater volume of water moving through the valleys would likely result in both increased concentrations and greater vertical movement of contaminants in areas underlain by bedrock valleys as compared to areas not underlain by bedrock valleys. Model results also indicate that field measurements of hydraulic head might not help locate discontinuities in confining units and additional test drilling to locate discontinuities might be necessary.

  10. Air-Surface-Ground Water Cycling in an Agricultural Desert Valley of Southern Colorado

    NASA Astrophysics Data System (ADS)

    Lanzoni, M.

    2017-12-01

    In dryland areas around the world, vegetation plays an important role in stabilizing soil and encouraging recharge. In the Colorado high desert of the San Luis Valley, windstorms strip away topsoil and deposit dust on the surrounding mountain snowpack. Dust-on-snow lowers albedo and hastens melting, which in turn lowers infiltration and aquifer recharge. Since the 1990s, the San Luis Valley has experienced a sharp decline in aquifer levels due to over-development of its water resources. Where agricultural abstraction is significant, the unconfined aquifer has experienced a 9 m (30 ft) drop. Over the course of three years, this dryland hydrology study analyzed rain, snow, surface and ground water across a 20,000 km2 high desert area to establish a baseline of water inputs. δ18O and δ2H were analyzed to develop a LMWL specific to this region of the southern Rockies and isotopic differences were examined in relation to chemistry to understand environmental influences on meteoric waters. This work identifies a repeating pattern of acid rainfall with trace element contaminants, including actinides.To better understand how the area's dominant vegetation responds to a lowered water table, 76 stem water samples were collected from the facultative phreatophyte shrubs E. nauseosa and S. vermiculatus over the summer, fall, spring, and summer of 2015 and 2016 from study plots chosen for increasing depths to groundwater. This research shows distinct patterns of water capture strategy and seasonal shifts among the E. nauseosa and S. vermiculatus shrubs. These differences are most apparent where groundwater is most accessible. However, where the water table has dropped 6 m (20 feet) over the last decade, both E. nauseosa and S. vermiculatus survive only on near-surface snowmelt and rain.

  11. Preliminary Water-Table Map and Water-Quality Data for Part of the Matanuska-Susitna Valley, Alaska, 2005

    USGS Publications Warehouse

    Moran, Edward H.; Solin, Gary L.

    2006-01-01

    The Matanuska-Susitna Valley is in the northeastern part of the Cook Inlet Basin, Alaska, an area experiencing rapid population growth and development proximal to many lakes. Here water commonly flows between lakes and ground water, indicating interrelation between water quantity and quality. Thus concerns exist that poorer quality ground water may degrade local lake ecosystems. This concern has led to water-quality sampling in cooperation with the Alaska Department of Environmental Conservation and the Matanuska-Susitna Borough. A map showing the estimated altitude of the water table illustrates potential ground-water flow directions and areas where ground- and surface-water exchanges and interactions might occur. Water quality measured in selected wells and lakes indicates some differences between ground water and surface water. 'The temporal and spatial scarcity of ground-water-level and water-quality data limits the analysis of flow direction and water quality. Regionally, the water-table map indicates that ground water in the eastern and southern parts of the study area flows southerly. In the northcentral area, ground water flows predominately westerly then southerly. Although ground and surface water in most areas of the Matanuska-Susitna Valley are interconnected, they are chemically different. Analyses of the few water-quality samples collected in the area indicate that dissolved nitrite plus nitrate and orthophosphorus concentrations are higher in ground water than in surface water.'

  12. Ground-water resources and water-supply alternatives in the Wawona area of Yosemite National Park, California

    USGS Publications Warehouse

    Borchers, J.W.

    1996-01-01

    Planning efforts to implement the 1980 General Management Plan, which recommends relocating park administrative facilities and employee housing from Yosemite Valley in Yosemite National Park, California, have focused on the availability of water at potential relocation sites within the park. Ground-water resources and water-supply alternatives in the Wawona area, one of several potential relocation sites, were evaluated between June 1991 and October 1993. Ground water flowing from Biledo Spring near the headwaters of Rainier Creek, about 5 miles southeast of Wawona, is probably the most reliable source of good quality ground water for Wawona. A dilute calcium bicarbonate ground water flows from the spring at about 250 gallons per minute. No Giardia was detected in a water sample collected from Biledo Spring in July 1992. The concentration of dissolved 222radon at Biledo Spring was 420 picoCuries per liter, exceeding the primary drinking-water standard of 300 picoCuries per liter proposed by the U.S. Environmental Protection Agency. This concentration, however, was considerably lower than the concentrations of dissolved 222radon measured in ground water at Wawona. The median value for 15 wells sampled at Wawona was 4,500 picoCuries per liter. Water- quality samples from 45 wells indicate that ground water in the South Fork Merced River valley at Wawona is segregated vertically. Shallow wells produce a dilute calcium sodium bicarbonate water that results from chemical dissolution of minerals as water flows through fractured granitic rock from hillside recharge areas toward the valley floor. Tritium concentrations indicate that ground water in the shallow wells originated as precipitation after the 1960's when testing of atmospheric nuclear devices stopped. Ground water from the deep flowing wells in the valley floor is older sodium calcium chloride water. This older water probably originated either as precipitation during a climatically cooler period or as

  13. Hydrogeologic framework refinement, ground-water flow and storage, water-chemistry analyses, and water-budget components of the Yuma area, southwestern Arizona and southeastern California

    USGS Publications Warehouse

    Dickinson, Jesse; Land, Michael; Faunt, Claudia C.; Leake, S.A.; Reichard, Eric G.; Fleming, John B.; Pool, D.R.

    2006-01-01

    The ground-water and surface-water system in the Yuma area in southwestern Arizona and southeastern California is managed intensely to meet water-delivery requirements of customers in the United States, to manage high ground-water levels in the valleys, and to maintain treaty-mandated water-quality and quantity requirements of Mexico. The following components in this report, which were identified to be useful in the development of a ground-water management model, are: (1) refinement of the hydrogeologic framework; (2) updated water-level maps, general ground-water flow patterns, and an estimate of the amount of ground water stored in the mound under Yuma Mesa; (3) review and documentation of the ground-water budget calculated by the Bureau of Reclamation, U.S. Department of the Interior (Reclamation); and (4) water-chemistry characterization to identify the spatial distribution of water quality, information on sources and ages of ground water, and information about the productive-interval depths of the aquifer. A refined three-dimensional digital hydrogeologic framework model includes the following hydrogeologic units from bottom to top: (1) the effective hydrologic basement of the basin aquifer, which includes the Pliocene Bouse Formation, Tertiary volcanic and sedimentary rocks, and pre-Tertiary metamorphic and plutonic rocks; (2) undifferentiated lower units to represent the Pliocene transition zone and wedge zone; (3) coarse-gravel unit; (4) lower, middle, and upper basin fill to represent the upper, fine-grained zone between the top of the coarse-gravel unit and the land surface; and (5) clay A and clay B. Data for the refined model includes digital elevation models, borehole lithology data, geophysical data, and structural data to represent the geometry of the hydrogeologic units. The top surface of the coarse-gravel unit, defined by using borehole and geophysical data, varies similarly to terraces resulting from the down cutting of the Colorado River. Clay A

  14. Evaluation of Ground Water Near Sidney, Western Nebraska, 2004-05

    USGS Publications Warehouse

    Steele, G.V.; Sibray, S.S.; Quandt, K.A.

    2007-01-01

    During times of drought, ground water in the Lodgepole Creek area around Sidney, western Nebraska, may be insufficient to yield adequate supplies to private and municipal wells. Alternate sources of water exist in the Cheyenne Tablelands north of the city, but these sources are limited in extent. In 2003, the U.S. Geological Survey and the South Platte Natural Resources District began a cooperative study to evaluate the ground water near Sidney. The 122-square-mile study area lies in the south-central part of Cheyenne County, with Lodgepole Creek and Sidney Draw occupying the southern and western parts of the study area and the Cheyenne Tablelands occupying most of the northern part of the study area. Twenty-nine monitoring wells were installed and then sampled in 2004 and 2005 for physical characteristics, nutrients, major ions, and stable isotopes. Some of the 29 sites also were sampled for ground-water age dating. Ground water is limited in extent in the tableland areas. Spring 2005 depths to ground water in the tableland areas ranged from 95 to 188 feet. Ground-water flow in the tableland areas primarily is northeasterly. South of a ground-water divide, ground-water flows southeasterly toward Lodgepole Creek Valley. Water samples from monitoring wells in the Ogallala Group were predominantly a calcium bicarbonate type, and those from monitoring wells in the Brule Formation were a sodium bicarbonate type. Water samples from monitoring wells open to the Brule sand were primarily a calcium bicarbonate type at shallow depths and a sodium bicarbonate type at deeper depths. Ground water in Lodgepole Creek Valley had a strong sodium signature, which likely results from most of the wells being open to the Brule. Concentrations of sodium and nitrate in ground-water samples from the Ogallala were significantly different than in water samples from the Brule and Brule sand. In addition, significant differences were seen in concentrations of calcium between water samples

  15. Quantifying Ground-Water and Surface-Water Discharge from Evapotranspiration Processes in 12 Hydrographic Areas of the Colorado Regional Ground-Water Flow System, Nevada, Utah, and Arizona

    USGS Publications Warehouse

    DeMeo, Guy A.; Smith, J. LaRue; Damar, Nancy A.; Darnell, Jon

    2008-01-01

    moderate shrubland site (April 2006 to October 2006). Annual ETgs rates were 3.4 ft for dense woodland vegetation, 3.2 ft for moderate woodland vegetation, 2.2 ft for dense shrubland vegetation, and 1.0 ft for moderate shrubland vegetation. Published annual rates of ETgs were used for the other ET units found in the study area. These rates were 3.4 ft for dense meadowland vegetation, 5.2 ft for agricultural fields, and 4.9 ft for open water. For the non-phreatophytic ET unit, ETgs was assumed to be zero. Estimated ground- and surface-water discharge from ET was calculated by multiplying the ETgs by the ET-unit acreage and equaled 24,480 acre-ft for dense woodland vegetation, 19,520 acre-ft for moderate woodland vegetation, 12,760 acre-ft for dense shrubland vegetation, 22,600 acre-ft for moderate shrubland vegetation, 680 acre-ft for dense meadowland vegetation, 16,120 acre-ft for agricultural fields, 1,440 acre-ft for open water, and 0 acre-ft for the non-phreatophytic ET unit. Estimated ground-water and surface-water discharge from ET from each hydrographic area was calculated by summing the total annual ETgs rate for ET units found within each hydrographic area and equaled 1,952 acre-ft for the Black Mountains Area, 6,080 acre-ft for California Wash, 4,090 acre-ft for the Muddy River Springs Area, 11,510 acre-ft for Lower Moapa Valley, 51,960 acre-ft for the Virgin River Valley, 16,168 acre-ft for Lower Meadow Valley Wash, 5,840 acre-ft for Clover Valley, and 0 acre-ft for Coyote Spring Valley, Kane Springs Valley, Tule Desert, Hidden Valley (North), and Garnet Valley. The annual discharge from ETgs for the study area totals about 98,000 acre-ft.

  16. Compilation of geologic, hydrologic, and ground-water flow modeling information for the Spokane Valley-Rathdrum Prairie aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    USGS Publications Warehouse

    Kahle, Sue C.; Caldwell, Rodney R.; Bartolino, James R.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources and Washington Department of Ecology compiled and described geologic, hydrologic, and ground-water flow modeling information about the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in northern Idaho and northeastern Washington. Descriptions of the hydrogeologic framework, water-budget components, ground- and surface-water interactions, computer flow models, and further data needs are provided. The SVRP aquifer, which covers about 370 square miles including the Rathdrum Prairie, Idaho and the Spokane valley and Hillyard Trough, Washington, was designated a Sole Source Aquifer by the U.S. Environmental Protection Agency in 1978. Continued growth, water management issues, and potential effects on water availability and water quality in the aquifer and in the Spokane and Little Spokane Rivers have illustrated the need to better understand and manage the region's water resources. The SVRP aquifer is composed of sand, gravel, cobbles, and boulders primarily deposited by a series of catastrophic glacial outburst floods from ancient Glacial Lake Missoula. The material deposited in this high-energy environment is coarser-grained than is typical for most basin-fill deposits, resulting in an unusually productive aquifer with well yields as high as 40,000 gallons per minute. In most places, the aquifer is bounded laterally by bedrock composed of granite, metasedimentary rocks, or basalt. The lower boundary of the aquifer is largely unknown except along the margins or in shallower parts of the aquifer where wells have penetrated its entire thickness and reached bedrock or silt and clay deposits. Based on surface geophysics, the thickness of the aquifer is about 500 ft near the Washington-Idaho state line, but more than 600 feet within the Rathdrum Prairie and more than 700 feet in the Hillyard trough based on drilling records. Depth to water in the aquifer is greatest in the northern

  17. Age and quality of ground water and sources of nitrogen in the aquifers in Pumpkin Creek Valley, western Nebraska, 2000

    USGS Publications Warehouse

    Steele, G.V.; Cannia, J.C.; Sibray, S.S.; McGuire, V.L.

    2005-01-01

    Ground water is the source of drinking water for the residents of Pumpkin Creek Valley, western Nebraska. In this largely agricultural area, shallow aquifers potentially are susceptible to nitrate contamination. During the last 10 years, ground-water levels in the North Platte Natural Resources District have declined and contamination has become a major problem for the district. In 2000, the U.S. Geological Survey and the North Platte Natural Resources District began a cooperative study to determine the age and quality of the ground water and the sources of nitrogen in the aquifers in Pumpkin Creek Valley. Water samples were collected from 8 surface-water sites, 2 springs, and 88 ground-water sites during May, July, and August 2000. These samples were analyzed for physical properties, nutrients or nitrate, and hydrogen and oxygen isotopes. In addition, a subset of samples was analyzed for any combination of chlorofluorocarbons, tritium, tritium/helium, sulfur-hexafluoride, carbon-14, and nitrogen-15. The apparent age of ground water in the alluvial aquifer typically varied from about 1980 to modern, whereas ground water in the fractured Brule Formation had a median value in the 1970s. The Brule Formation typically contained ground water that ranged from the 1940s to the 1990s, but low-yield wells had apparent ages of 5,000 to 10,000 years before present. Data for oxygen-18 and deuterium indicated that lake-water samples showed the greatest effects from evaporation. Ground-water data showed no substantial evaporative effects and some ground water became isotopically heavier as the water moved downgradient. In addition, the physical and chemical ground-water data indicate that Pumpkin Creek is a gaining stream because little, if any, of its water is lost to the ground-water system. The water-quality type changed from a sodium calcium bicarbonate type near Pumpkin Creek's headwaters to a calcium sodium bicarbonate type near its mouth. Nitrate concentrations were

  18. Electrical-analog analysis of ground-water depletion in central Arizona

    USGS Publications Warehouse

    Anderson, T.W.

    1968-01-01

    The Salt River Valley and the lower Santa Cruz River basin are the two largest agricultural areas in Arizona. The extensive use of ground water for irrigation has resulted in the need for a thorough appraisal of the present and future ground-water resources. The ground-water reservoir provides 80 percent (3.2 million acre-feet) of the total annual water supply. The amount of water pumped greatly exceeds the rate at which the ground-water supply is being replenished and has resulted in water-level declines of as much as 20 feet per year in some places. The depletion problem is of economic importance because ground water will become more expensive as pumping lifts increase and well yields decrease. The use of electrical-analog modeling techniques has made it possible to predict future ground-water levels under conditions of continued withdrawal in excess of the rate of replenishment. The electrical system is a representation of the hydrologic system: resistors and capacitors represent transmissibility and storage coefficients. The analogy between the two systems is accepted when the data obtained from the model closely match the field data in this instance, measured water-level change since 1923. The prediction of future water-table conditions is accomplished by a simple extension of the pumping trends to determine the resultant effect on the regional water levels. The results of this study indicate the probable depths to water in central Arizona in 1974 and 1984 if the aquifer characteristics are accurately modeled and if withdrawal of ground water continues at the same rate and under the tame areal distribution as existed between 1958 and 1964. The greatest depths to water in 1984 will be more than 700 feet near Stanfield and more than 650 feet in Deer Valley and northeast of Gilbert. South of Eloy and northwest of Litchfield Park, a static water level of more than 550 feet is predicted. The total water-level decline in the 20-year period 1964-84 at the deepest

  19. Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model

    NASA Astrophysics Data System (ADS)

    Larson, K. J.; Başaǧaoǧlu, H.; Mariño, M. A.

    2001-02-01

    Land subsidence caused by the excessive use of ground water resources has traditionally caused serious and costly damage to the Los Banos-Kettleman City area of California's San Joaquin Valley. Although the arrival of surface water from the Central Valley Project has reduced subsidence in recent decades, the growing instability of surface water supplies has refocused attention on the future of land subsidence in the region. This paper uses integrated numerical ground water and land subsidence models to simulate land subsidence caused by ground water overdraft. The simulation model is calibrated using observed data from 1972 to 1998, and the responsiveness of the model to variations in subsidence parameters are analyzed through a sensitivity analysis. A probable future drought scenario is used to evaluate the effect on land subsidence of three management alternatives over the next thirty years. The model reveals that maintaining present practices virtually eliminates unrecoverable land subsidence, but may not be a sustainable alternative because of a growing urban population to the south and concern over the ecological implications of water exportation from the north. The two other proposed management alternatives reduce the dependency on surface water by increasing ground water withdrawal. Land subsidence is confined to tolerable levels in the more moderate of these proposals, while the more aggressive produces significant long-term subsidence. Finally, an optimization model is formulated to determine maximum ground water withdrawal from nine pumping sub-basins without causing irrecoverable subsidence during the forecast period. The optimization model reveals that withdrawal can be increased in certain areas on the eastern side of the study area without causing significant inelastic subsidence.

  20. Annual summary of ground-water conditions in Arizona, spring 1977 to spring 1978

    USGS Publications Warehouse

    ,

    1978-01-01

    The withdrawal of ground water was about 5.5 million acre-feet in Arizona in 1977. About 4.7 million acre-feet of ground water was used for the irrigation of crops in 1977. The Salt River Valley and the lower Santa Cruz basin are the largest agricultural areas in the State. For 1973-77, ground-water withdrawal in the two areas was about 8.1 and 5.1 million acre-feet, respectively, and, in general, water levels are declining. Other areas in which ground-water withdrawals have caused water-level declines are the Willcox, San Simon, upper Santa Cruz, Avra Valley, Gila Bend, Harquahala Plains, and McMullen Valley areas. Two small-scale maps of Arizona show (1) pumpage of ground water by areas and (2) the status of the ground-water inventory in the State. The main map, scale 1:500 ,000, shows potential well production, depth to water in selected wells in spring 1978, and change in water level in selected wells from 1973 to 1978. The brief text that accompanies the maps summarizes the current ground-water conditions in the State. (Woodard-USGS)

  1. Modeling vadose zone processes during land application of food-processing waste water in California's Central Valley.

    PubMed

    Miller, Gretchen R; Rubin, Yoram; Mayer, K Ulrich; Benito, Pascual H

    2008-01-01

    Land application of food-processing waste water occurs throughout California's Central Valley and may be degrading local ground water quality, primarily by increasing salinity and nitrogen levels. Natural attenuation is considered a treatment strategy for the waste, which often contains elevated levels of easily degradable organic carbon. Several key biogeochemical processes in the vadose zone alter the characteristics of the waste water before it reaches the ground water table, including microbial degradation, crop nutrient uptake, mineral precipitation, and ion exchange. This study used a process-based, multi-component reactive flow and transport model (MIN3P) to numerically simulate waste water migration in the vadose zone and to estimate its attenuation capacity. To address the high variability in site conditions and waste-stream characteristics, four food-processing industries were coupled with three site scenarios to simulate a range of land application outcomes. The simulations estimated that typically between 30 and 150% of the salt loading to the land surface reaches the ground water, resulting in dissolved solids concentrations up to sixteen times larger than the 500 mg L(-1) water quality objective. Site conditions, namely the ratio of hydraulic conductivity to the application rate, strongly influenced the amount of nitrate reaching the ground water, which ranged from zero to nine times the total loading applied. Rock-water interaction and nitrification explain salt and nitrate concentrations that exceed the levels present in the waste water. While source control remains the only method to prevent ground water degradation from saline wastes, proper site selection and waste application methods can reduce the risk of ground water degradation from nitrogen compounds.

  2. Simulating reservoir leakage in ground-water models

    USGS Publications Warehouse

    Fenske, J.P.; Leake, S.A.; Prudic, David E.

    1997-01-01

    Leakage to ground water resulting from the expansion and contraction of reservoirs cannot be easily simulated by most ground-water flow models. An algorithm, entitled the Reservoir Package, was developed for the United States Geological Survey (USGS) three-dimensional finite-difference modular ground-water flow model MODFLOW. The Reservoir Package automates the process of specifying head-dependent boundary cells, eliminating the need to divide a simulation into many stress periods while improving accuracy in simulating changes in ground-water levels resulting from transient reservoir stage. Leakage between the reservoir and the underlying aquifer is simulated for each model cell corrresponding to the inundated area by multiplying the head difference between the reservoir and the aquifer with the hydraulic conductance of the reservoir-bed sediments.

  3. Ground-water resources of the Lambayeque Valley, Department of Lambayeque, northern Peru

    USGS Publications Warehouse

    Schoff, Stuart L.; Sayan, M. Juan Luis

    1969-01-01

    Ground water in the Lambayeque Valley has been developed mainly for irrigation of sugarcane and rice. The locality is on the coastal plain of northern Peru, about 650 km (kilometers) northwest of Lima, the national capital. The area considered in this study is about 1,670 sq km (square kilometers) and is mainly on the alluvial fan of Rio Chancay and entirely in the Department of Lambayeque. Chiclayo, the departmental capital and largest city, has a population, of about 46,000. The climate is hot and virtually rainless. Agriculture is dependent on irrigation. The available water, whether in stream s or underground, is introduced from the Andean highlands by Rio Chancay. Rocks in the area range in age from Cretaceous, or possibly Jurassic, to Quaternary and in lithology from dense and hard igneous, sedimentary, and metamorphic rocks to unconsolidated sediments. The bedrock contains and yields water only in small quantities, if at all. The principal water-bearing strata are in the alluvium comprising the fan of Rio Chancay. Where ground water in the alluvium has been most intensively developed, the productive zone is within 20 m (meters) of the land surface and is composed approximately as follows: (1) relatively impermeable soil, clay, and clayey sand, 5 to 10 m thick, (2) permeable sand and gravel, 6 to 10 m thick, at places including one or more layers of clay, so that several water-bearing beds are distinguishable, and (3) relatively impermeable mixtures of clay, sand, and gravel extending below the bottom of wells. Unit 3 in the deepest test continued to 102 m. Unit 2 is the principal source of water tapped by irrigation wells. In the northern part of the area wells locally yield water rather freely from strata as deep as 73 m, but elsewhere in the area the strata deeper than 20 m are not very productive. Wells at and near Chiclayo yield only small amounts, and the deepest well disclosed, in 100 m of material, only 5.5 m of material that can be considered as

  4. Relation of Chlorofluorocarbon Ground-Water Age Dates to Water Quality in Aquifers of West Virginia

    USGS Publications Warehouse

    ,; Kurt, J.; Kozar, Mark D.

    2007-01-01

    The average apparent age of ground water in fractured-bedrock aquifers in West Virginia was determined using chlorofluorocarbon (CFC) dating methods. Since the introduction of CFC gases as refrigerants in the late 1930s, atmospheric concentrations have increased until production ceased in the mid-1990s. CFC dating methods are based on production records that date to the early 1940s, and the preservation of atmospheric CFC concentrations in ground water at the time of recharge. As part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) and Ambient Ground-Water Monitoring Network (AGN) programs in West Virginia from 1997 to 2005, 80 samples from the Appalachian Plateaus Physiographic Province, 27 samples from the Valley and Ridge Physiographic Province, and 5 samples from the Ohio River alluvial aquifers were collected to estimate ground-water ages in aquifers of West Virginia. Apparent CFC ages of water samples from West Virginia aquifers ranged from 5.8 to 56 years. In the Appalachian Plateaus, topographically driven ground-water flow is evident from apparent ages of water samples from hilltop, hillside, and valley settings (median apparent ages of 12, 14, and 25 years, respectively). Topographic setting was the only factor that was found to be related to apparent ground-water age in the Plateaus at the scale of this study. Similar relations were not found in Valley and Ridge aquifers, indicating that other factors such as bedding or geologic structure may serve larger roles in controlling ground-water flow in that physiographic province. Degradation of CFCs was common in samples collected from methanogenic/anoxic aquifers in the Appalachian Plateaus and suboxic to anoxic aquifers in the Valley and Ridge. CFC contamination was most common in Ohio River alluvial aquifers and carbonate units of the Valley and Ridge, indicating that these highly transmissive surficial aquifers are the most vulnerable to water-quality degradation and may

  5. Questa baseline and pre-mining ground-water quality investigation. 14. Interpretation of ground-water geochemistry in catchments other than the Straight Creek catchment, Red River Valley, Taos County, New Mexico, 2002-2003

    USGS Publications Warehouse

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Hunt, Andrew G.; Naus, Cheryl A.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site but proximal analog. The Straight Creek catchment, chosen for this purpose, consists of the same Tertiary-age quartz-sericite-pyrite altered andesite and rhyolitic volcanics as the mine site. Straight Creek is about 5 kilometers east of the eastern boundary of the mine site. Both Straight Creek and the mine site are at approximately the same altitude, face south, and have the same climatic conditions. Thirteen wells in the proximal analog drainage catchment were sampled for ground-water chemistry. Eleven wells were installed for this study and two existing wells at the Advanced Waste-Water Treatment (AWWT) facility were included in this study. Eight wells were sampled outside the Straight Creek catchment: one each in the Hansen, Hottentot, and La Bobita debris fans, four in a well cluster in upper Capulin Canyon (three in alluvial deposits and one in bedrock), and an existing well at the U.S. Forest Service Questa Ranger Station in Red River alluvial deposits. Two surface waters from the Hansen Creek catchment and two from the Hottentot drainage catchment also were sampled for comparison to ground-water compositions. In this report, these samples are evaluated to determine if the geochemical interpretations from the Straight Creek ground-water geochemistry could be extended to other ground waters in the Red River Valley , including the mine site. Total-recoverable major cations and trace metals and dissolved major cations, selected trace metals, anions, alkalinity; and iron-redox species were determined for all surface- and ground-water samples. Rare-earth elements and low-level As, Bi, Mo, Rb, Re, Sb, Se, Te, Th, U, Tl, V, W, Y, and Zr were

  6. Facies analysis of Late Proterozoic through Lower Cambrian rocks of the Death Valley regional ground-water system and surrounding areas, Nevada and California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweetkind, D.S.; White, D.K.

    Late Proterozoic through Lower Cambrian rocks in the southern Great Basin form a westward-thickening wedge of predominantly clastic deposits that record deposition on the early western shelf edge of western North America (Stewart and Poole, 1974; Poole and others, 1992). Regional analyses of geologic controls on ground-water flow in the southern Great Basin typically combined lithostratigraphic units into more general hydrogeologic units that have considerable lateral extent and distinct hydrologic properties. The Late Proterozoic through Lower Cambrian rocks have been treated as a single hydrogeologic unit, named the lower clastic aquitard (Winograd and Thordarson, 1975) or the quartzite confining unitmore » (Laczniak and others, 1996), that serves as the hydrologic basement to the flow system. Although accurate in a general sense, this classification ignores well-established facies relations within these rocks that might increase bedrock permeability and locally influence ground-water flow . This report presents a facies analysis of Late Proterozoic through Lower Cambrian rocks (hereafter called the study interval) in the Death Valley regional ground-water flow system - that portion of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain (fig. 1). The region discussed in this report, hereafter called the study area, covers approximately 100,000 km2 (lat 35 degrees-38 degrees 15'N., long 115 degrees-118 degrees W.). The purpose of this analysis is to provide a general documentation of facies transitions within the Late Proterozoic through Lower Cambrian rocks in order to provide an estimate of material properties (via rock type, grain size, and bedding characteristics) for specific hydrogeologic units to be included in a regional ground-water flow model.« less

  7. Water Resources Data for California, 1966, 1967, 1968; Part 3: Ground Water Records

    USGS Publications Warehouse

    1970-01-01

    The water-level records are arranged alphabetically by county, and for each county by valley or ground-water basin. Thus, each group of data pertains to a distinct ground-water area, as indicated by subheadings in the report. Under each subhead, the records are arranged numerically by well number.

  8. Fena Valley Reservoir watershed and water-balance model updates and expansion of watershed modeling to southern Guam

    USGS Publications Warehouse

    Rosa, Sarah N.; Hay, Lauren E.

    2017-12-01

    In 2014, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense’s Strategic Environmental Research and Development Program, initiated a project to evaluate the potential impacts of projected climate-change on Department of Defense installations that rely on Guam’s water resources. A major task of that project was to develop a watershed model of southern Guam and a water-balance model for the Fena Valley Reservoir. The southern Guam watershed model provides a physically based tool to estimate surface-water availability in southern Guam. The U.S. Geological Survey’s Precipitation Runoff Modeling System, PRMS-IV, was used to construct the watershed model. The PRMS-IV code simulates different parts of the hydrologic cycle based on a set of user-defined modules. The southern Guam watershed model was constructed by updating a watershed model for the Fena Valley watersheds, and expanding the modeled area to include all of southern Guam. The Fena Valley watershed model was combined with a previously developed, but recently updated and recalibrated Fena Valley Reservoir water-balance model.Two important surface-water resources for the U.S. Navy and the citizens of Guam were modeled in this study; the extended model now includes the Ugum River watershed and improves upon the previous model of the Fena Valley watersheds. Surface water from the Ugum River watershed is diverted and treated for drinking water, and the Fena Valley watersheds feed the largest surface-water reservoir on Guam. The southern Guam watershed model performed “very good,” according to the criteria of Moriasi and others (2007), in the Ugum River watershed above Talofofo Falls with monthly Nash-Sutcliffe efficiency statistic values of 0.97 for the calibration period and 0.93 for the verification period (a value of 1.0 represents perfect model fit). In the Fena Valley watershed, monthly simulated streamflow volumes from the watershed model compared reasonably well with the

  9. Hydrology and simulation of ground-water flow, Lake Point, Tooele County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.

    2006-01-01

    Water for new residential development in Lake Point, Utah may be supplied by public-supply wells completed in consolidated rock on the east side of Lake Point. Ground-water flow models were developed to help understand the effect the proposed withdrawal will have on water levels, flowing-well discharge, spring discharge, and ground-water quality in the study area. This report documents the conceptual and numerical ground-water flow models for the Lake Point area.The ground-water system in the Lake Point area receives recharge from local precipitation and irrigation, and from ground-water inflow from southwest of the area. Ground water discharges mostly to springs. Discharge also occurs to evapotranspiration, wells, and Great Salt Lake. Even though ground water discharges to Great Salt Lake, dense salt water from the lake intrudes under the less-dense ground water and forms a salt-water wedge under the valley. This salt water is responsible for some of the high dissolved-solids concentrations measured in ground water in Lake Point.A steady-state MODFLOW-2000 ground-water model of Tooele Valley adequately simulates water levels, ground-water discharge, and ground-water flow direction observed in Lake Point in 1969 and 2002. Simulating an additional 1,650 acre-feet per year withdrawal from wells causes a maximum projected drawdown of about 550 feet in consolidated rock near the simulated wells and drawdown exceeding 80 feet in an area encompassing most of the Oquirrh Mountains east of Lake Point. Drawdown in most of Lake Point ranges from 2 to 10 ft, but increases to more than 40 feet in the areas proposed for residential development. Discharge to Factory Springs, flowing wells, evapotranspiration, and Great Salt Lake is decreased by about 1,100 acre-feet per year (23 percent).The U.S. Geological Survey SUTRA variable-density ground-water-flow model generates a reasonable approximation of 2002 dissolved-solids concentration when simulating 2002 withdrawals. At most

  10. Geology and ground-water resources of Dane County, Wisconsin

    USGS Publications Warehouse

    Cline, Denzel R.

    1965-01-01

    The purpose of the ground-water investigation of Dane County, Wis., was to determine the occurrence, movement, quantity, quality, and availability of ground water in the unconsolidated deposits and the underlying bedrock. The relationships between ground water and surface water were studied in general in Dane County and in detail in the Madison metropolitan area. An analysis was made of the hydrologic system of the Yahara River valley and of the effects of ground-water pumpage on that system.

  11. Determination of land subsidence related to ground-water-level declines using Global Positioning System and leveling surveys in Antelope Valley, Los Angeles and Kern counties, California, 1992

    USGS Publications Warehouse

    Ikehara, M.E.; Phillips, S.P.

    1994-01-01

    A large-scale, land-subsidence monitoring network for Antelope Valley, California, was established, and positions and elevations for 85 stations were measured using Global Positioning System geodetic surveying in spring 1992. The 95-percent confidence (2@) level of accuracy for the elevations calculated for a multiple-constraint adjustment generally ranged from +0.010 meter (0.032 foot) to +0.024 meter (0.078 foot). The magnitudes and rates of land subsidence as of 1992 were calculated for several periods for 218 bench marks throughout Antelope Valley. The maximum measured magnitude of land subsidence that occurred between 1926 and 1992 was 6.0 feet (1.83 meters) at BM 474 near Avenue I and Sierra Highway. Measured or estimated subsidence of 2-7 feet (.61-2.l3 meters) had occurred in a 210- square-mile (542-square-kilometer) area of Antelope Valley, generally bounded by Avenue K, Avenue A, 90th Street West, and 120th Street East, during the same period. Land subsidence in Antelope Valley is caused by aquifer-system compaction, which is related to ground-water-level declines and the presence of fine-grained, compressible sediments. Comparison of potentiomethric-surface, water-level decline, and subsidence-rate maps for several periods indicated a general correlation between water-level declines and the distribution and rate of subsidence in the Lancaster ground-water subbasin. A conservative estimate of the amount of the reduction in storage capacity of the aquifer system in the Lancaster subbasin is about 50,000 acre-feet in the area that has been affected by more than one foot (.30 meters) of subsidence as of 1992. Information on the history of ground-water levels and the distribution and thickness of fine-grained compressible sediments can be used to mitigate continued land subsidence. Future monitoring of ground-water levels and land-surface elevations in subsidence-sensitive regions of Antelope Valley may be an effective means to manage land subsidence.

  12. Geohydrology and water-chemistry of the Alexander Valley, Sonoma County, California

    USGS Publications Warehouse

    Metzger, Loren F.; Farrar, Christopher D.; Koczot, Kathryn M.; Reichard, Eric G.

    2006-01-01

    This study of the geohydrology and water chemistry of the Alexander Valley, California, was done to provide an improved scientific basis for addressing emerging water-management issues, including potential increases in water demand and changes in flows in the Russian River. The study tasks included (1) evaluation of existing geohydrological, geophysical, and geochemical data; (2) collection and analysis of new geohydrologic data, including subsurface lithologic data, ground-water levels, and streamflow records; and (3) collection and analysis of new water-chemistry data. The estimated total water use for the Alexander Valley for 1999 was approximately 15,800 acre-feet. About 13,500 acre-feet of this amount was for agricultural use, primarily vineyards, and about 2,300 acre-feet was for municipal/industrial use. Ground water is the main source of water supply for this area. The main sources of ground water in the Alexander Valley are the Quaternary alluvial deposits, the Glen Ellen Formation, and the Sonoma Volcanics. The alluvial units, where sufficiently thick and saturated, comprise the best aquifer in the study area. Average recharge to the Alexander Valley is estimated from a simple, basinwide water budget. On the basis of an estimated annual average of 298,000 acre-feet of precipitation, 160,000 acre-feet of runoff, and 113,000 to 133,000 acre-feet of evapotranspiration, about 5,000 to 25,000 acre-feet per year is available for ground-water recharge. Because this estimate is based on differences between large numbers, there is significant uncertainty in this recharge estimate. Long-term changes in ground-water levels are evident in parts of the study area, but because of the sparse network and lack of data on well construction and lithology, it is uncertain if any significant changes have occurred in the northern part of the study area since 1980. In the southern half of the study area, ground-water levels generally were lower at the end of the 2002 irrigation

  13. Hydrologic models and analysis of water availability in Cuyama Valley, California

    USGS Publications Warehouse

    Hanson, R.T.; Flint, Lorraine E.; Faunt, Claudia C.; Gibbs, Dennis R.; Schmid, Wolfgang

    2014-01-01

    Changes in population, agricultural development practices (including shifts to more water-intensive crops), and climate variability are placing increasingly larger demands on available water resources, particularly groundwater, in the Cuyama Valley, one of the most productive agricultural regions in Santa Barbara County. The goal of this study was to produce a model capable of being accurate at scales relevant to water management decisions that could be considered in the evaluation of the sustainable water supply. The Cuyama Valley Hydrologic Model (CUVHM) was designed to simulate the most important natural and human components of the hydrologic system, including components dependent on variations in climate, thereby providing a reliable assessment of groundwater conditions and processes that can inform water users and help to improve planning for future conditions. Model development included a revision of the conceptual model of the flow system, construction of a precipitation-runoff model using the Basin Characterization Model (BCM), and construction of an integrated hydrologic flow model with MODFLOW-One-Water Hydrologic Flow Model (MF-OWHM). The hydrologic models were calibrated to historical conditions of water and land use and, then, used to assess the use and movement of water throughout the Valley. These tools provide a means to understand the evolution of water use in the Valley, its availability, and the limits of sustainability. The conceptual model identified inflows and outflows that include the movement and use of water in both natural and anthropogenic systems. The groundwater flow system is characterized by a layered geologic sedimentary sequence that—in combination with the effects of groundwater pumping, natural recharge, and the application of irrigation water at the land surface—displays vertical hydraulic-head gradients. Overall, most of the agricultural demand for water in the Cuyama Valley in the initial part of the growing season is

  14. Regional variations in water quality and relationships to soil and bedrock weathering in the southern Sacramento Valley, California, USA

    USGS Publications Warehouse

    Wanty, R.B.; Goldhaber, M.B.; Morrison, J.M.; Lee, L.

    2009-01-01

    Regional patterns in ground- and surface-water chemistry of the southern Sacramento Valley in California were evaluated using publicly available geochemical data from the US Geological Survey's National Water Information System (NWIS). Within the boundaries of the study area, more than 2300 ground-water analyses and more than 20,000 surface-water analyses were available. Ground-waters from the west side of the Sacramento Valley contain greater concentrations of Na, Ca, Mg, B, Cl and SO4, while the east-side ground-waters contain greater concentrations of silica and K. These differences result from variations in surface-water chemistry as well as from chemical reactions between water and aquifer materials. Sediments that fill the Sacramento Valley were derived from highlands to the west (the Coast Ranges) and east (the Sierra Nevada Mountains), the former having an oceanic provenance and the latter continental. These geologic differences are at least in part responsible for the observed patterns in ground-water chemistry. Thermal springs that are common along the west side of the Sacramento Valley appear to have an effect on surface-water chemistry, which in turn may affect the ground-water chemistry.

  15. Ground-water quality in the West Salt River Valley, Arizona, 1996-98: relations to hydrogeology, water use, and land use

    USGS Publications Warehouse

    Edmonds, Robert J.; Gellenbeck, Dorinda J.

    2002-01-01

    The U.S. Geological Survey collected and analyzed ground-water samples in the West Salt River Valley from 64 existing wells selected by a stratified-random procedure. Samples from an areally distributed group of 35 of these wells were used to characterize overall ground-water quality in the basin-fill aquifer. Analytes included the principal inorganic constituents, trace constituents, pesticides, and volatile organic compounds. Additional analytes were tritium, radon, and stable isotopes of hydrogen and oxygen. Analyses of replicate samples and blank samples provided evidence that the analyses of the ground-water samples were adequate for interpretation. The median concentration of dissolved solids in samples from the 35 wells was 560 milligrams per liter, which exceeded the U.S. Environmental Protection Agency Secondary Maximum Contaminant Level for drinking water. Eleven of the 35 samples had a nitrate concentration (as nitrogen) that exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for drinking water of 10 milligrams per liter. Pesticides were detected in eight samples; concentrations were below the Maximum Contaminant Levels. Deethylatrazine was most commonly detected. The pesticides were detected in samples from wells in agricultural or urban areas that have been irrigated. Concentrations of all trace constituents, except arsenic, were less than the Maximum Contaminant Levels. The concentration of arsenic exceeded the Maximum Contaminant Level of 50 micrograms per liter in two samples. Nine monitoring wells were constructed in an area near Buckeye to assess the effects of agricultural land use on shallow ground water. The median concentration of dissolved solids was 3,340 milligrams per liter in samples collected from these wells in August 1997. The nitrate concentration (as nitrogen) exceeded the Maximum Contaminant Level (10 milligrams per liter) in samples from eight of the nine monitoring wells in August 1997 and again in

  16. Annual summary of ground-water conditions in Arizona, spring 1975 to spring 1976

    USGS Publications Warehouse

    Babcock, H.M.

    1977-01-01

    Two small-scale maps of Arizona show (1) pumpage of ground water by areas and (2) the status of the ground-water inventory in the State. A larger map of the State at a scale of 1:500,000 shows potential well production, depth to water in selected wells in spring 1976, and change in water level in selected wells from 1971 to 1976. The brief text that accompanies the maps summarizes the current ground-water conditions in the State. The withdrawal of ground water in Arizona was about 5.6 million acre-feet in 1975, of which about 4.7 million acre-feet was used for the irrigation of crops. The Salt River Valley and the lower Santa Cruz basin are the largest agricultural areas in the State. For 1971-75, ground-water withdrawal in the two areas was about 8.3 and 4.7 million acre-feet, respectively, and, in general, water levels are declining. Other areas in which ground-water withdrawals have caused large water-level declines are the Willcox, San Simon, upper Santa Cruz, Avra Valley, Gila Bend, Harquahala Plains, and McMullen Valley areas. (Woodard-USGS)

  17. Annual summary of ground-water conditions in Arizona, spring 1976 to spring 1977

    USGS Publications Warehouse

    Babcock, H.M.

    1977-01-01

    Two small-scale maps of Arizona show (1) pumpage of ground water by areas and (2) the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth of water in selected wells in spring 1977, and change in water level in selected wells from 1972 to 1977. The brief text that accompanies the maps summarizes the current ground-water conditions in the State. The withdrawal of ground water was about 5.5 million acre-feet in Arizona in 1976 of which about 4.7 million acre-feet was used for the irrigation. The Salt River Valley and the lower Santa Cruz basin are the largest agricultural areas in the State. For 1972-76, ground-water withdrawal in the two areas was about 8.2 to 4.9 million acre-feet, respectively, and, in general, water levels are declining. Other areas in which ground-water withdrawals have caused large water-level declines are the Willcox, San Simon, upper Santa Cruz, Avra Valley, Gila Bend, Harquahala Plains, and McMullen Valley areas. (Woodard-USGS)

  18. A geographic data model for representing ground water systems.

    PubMed

    Strassberg, Gil; Maidment, David R; Jones, Norm L

    2007-01-01

    The Arc Hydro ground water data model is a geographic data model for representing spatial and temporal ground water information within a geographic information system (GIS). The data model is a standardized representation of ground water systems within a spatial database that provides a public domain template for GIS users to store, document, and analyze commonly used spatial and temporal ground water data sets. This paper describes the data model framework, a simplified version of the complete ground water data model that includes two-dimensional and three-dimensional (3D) object classes for representing aquifers, wells, and borehole data, and the 3D geospatial context in which these data exist. The framework data model also includes tabular objects for representing temporal information such as water levels and water quality samples that are related with spatial features.

  19. Ground-water quality and geochemistry in Carson and Eagle Valleys, western Nevada and eastern California

    USGS Publications Warehouse

    Welch, Alan H.

    1994-01-01

    constituent with a primary drinking water standard. This represents a 50-percent increase in the frequency of exceedance. Almost all water sampled from the principal aquifers exceeds the 300 picocuries per liter proposed standard for radon. Ground-water sampling sites with the highest radon activities in water are most commonly located in the upland aquifers in the Sierra Nevada and in the principal aquifers beneath the west sides of Carson and Eagle Valleys.

  20. Ground-Water Quality Data in the Monterey Bay and Salinas Valley Basins, California, 2005 - Results from the California GAMA Program

    USGS Publications Warehouse

    Kulongoski, Justin T.; Belitz, Kenneth

    2007-01-01

    Ground-water quality in the approximately 1,000-square-mile Monterey Bay and Salinas Valley study unit was investigated from July through October 2005 as part of the California Ground-Water Ambient Monitoring and Assessment (GAMA) program. The study was designed to provide a spatially unbiased assessment of raw ground-water quality, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 94 public-supply wells and 3 monitoring wells in Monterey, Santa Cruz, and San Luis Obispo Counties. Ninety-one of the public-supply wells sampled were selected to provide a spatially distributed, randomized monitoring network for statistical representation of the study area. Six wells were sampled to evaluate changes in water chemistry: three wells along a ground-water flow path were sampled to evaluate lateral changes, and three wells at discrete depths from land surface were sampled to evaluate changes in water chemistry with depth from land surface. The ground-water samples were analyzed for volatile organic compounds (VOCs), pesticides, pesticide degradates, nutrients, major and minor ions, trace elements, radioactivity, microbial indicators, and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory). Naturally occurring isotopes (tritium, carbon-14, helium-4, and the isotopic composition of oxygen and hydrogen) also were measured to help identify the source and age of the sampled ground water. In total, 270 constituents and water-quality indicators were investigated for this study. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain water quality. In addition, regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. In this study, only six constituents, alpha radioactivity, N

  1. Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    1999-01-01

    The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high

  2. The Central Valley Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Faunt, C.; Belitz, K.; Hanson, R. T.

    2009-12-01

    Historically, California’s Central Valley has been one of the most productive agricultural regions in the world. The Central Valley also is rapidly becoming an important area for California’s expanding urban population. In response to this competition for water, a number of water-related issues have gained prominence: conjunctive use, artificial recharge, hydrologic implications of land-use change, subsidence, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS made a detailed assessment of the Central Valley aquifer system that includes the present status of water resources and how these resources have changed over time. The principal product of this assessment is a tool, referred to as the Central Valley Hydrologic Model (CVHM), that simulates surface-water flows, groundwater flows, and land subsidence in response to stresses from human uses and from climate variability throughout the entire Central Valley. The CVHM utilizes MODFLOW combined with a new tool called “Farm Process” to simulate groundwater and surface-water flow, irrigated agriculture, land subsidence, and other key processes in the Central Valley on a monthly basis. This model was discretized horizontally into 20,000 1-mi2 cells and vertically into 10 layers ranging in thickness from 50 feet at the land surface to 750 feet at depth. A texture model constructed by using data from more than 8,500 drillers’ logs was used to estimate hydraulic properties. Unmetered pumpage and surface-water deliveries for 21 water-balance regions were simulated with the Farm Process. Model results indicate that human activities, predominately surface-water deliveries and groundwater pumping for irrigated agriculture, have dramatically influenced the hydrology of the Central Valley. These human activities have increased flow though the aquifer system by about a factor of six compared to pre-development conditions. The simulated hydrology reflects spatial

  3. Conceptual model and numerical simulation of the ground-water-flow system in the unconsolidated deposits of the Colville River Watershed, Stevens County, Washington

    USGS Publications Warehouse

    Ely, D. Matthew; Kahle, Sue C.

    2004-01-01

    . Although the steady-state model cannot be used to predict how long it would take for effects to occur, it does simulate the ultimate response to such changes relative to September 2001 (relatively dry) conditions. Steady-state simulations indicated that increased pumping would result in decreased discharge to streams and lakes and decreased ground-water outflow. The location of the simulated increased ground-water pumping determined the primary source of the water withdrawn. Simulated pumping wells in the northern end of the main Colville River valley diverted a large percentage of the pumpage from ground-water outflow. Simulated pumping wells in the southern end of the main Colville River valley diverted a large percentage of the pumpage from flow to rivers and streams. The calibrated steady-state model also was used to simulate predevelopment conditions, during which no ground-water pumping, secondary recharge, or irrigation application occurred. Cumulative streamflow in the Colville River Watershed increased by 1.1 cubic feet per second, or about 36 percent of net ground-water pumping in 2001. The model is intended to simulate the regional ground-water-flow system of the Colville River Watershed and can be used as a tool for water-resource managers to assess the ultimate regional effects of changes in stresses. The regional scale of the model, coupled with relatively sparse data, must be considered when applying the model in areas of poorly understood hydrology, or examining hydrologic conditions at a larger scale than what is appropriate.

  4. Hydrogeologic Framework and Ground-Water Budget of the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    USGS Publications Warehouse

    Kahle, Sue C.; Bartolino, James R.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources and Washington State Department of Ecology, investigated the hydrogeologic framework and ground-water budget of the Spokane Valley-Rathdrum Prairie (SVRP) aquifer located in northern Idaho and northeastern Washington. Descriptions of the hydrogeologic framework, water-budget components, and further data needs are provided. The SVRP aquifer, which covers about 370 square miles including the Rathdrum Prairie, Idaho, and the Spokane Valley and Hillyard Trough, Washington, is the sole source of drinking water for more than 500,000 residents. Continued growth, water-management issues, and potential effects on water availability and water quality in the aquifer and in the Spokane and Little Spokane Rivers have illustrated the need to better understand and manage the region's water resources. The SVRP aquifer consists mostly of gravels, cobbles, and boulders - deposited during a series of outburst floods resulting from repeated collapse of the ice dam that impounded ancient Glacial Lake Missoula. In most places, the SVRP aquifer is bounded by bedrock of pre-Tertiary granite or metasedimentary rocks, or Miocene basalt and associated sedimentary deposits. Discontinuous fine-grained layers are scattered throughout the SVRP aquifer at considerably different altitudes and with considerably different thicknesses. In the Hillyard Trough and the Little Spokane River Arm of the aquifer, a massive fine-grained layer with a top altitude ranging from about 1,500 to 1,700 feet and thickness ranging from about 100 to 200 feet separates the aquifer into upper and lower units. Most of the Spokane Valley part of the aquifer is devoid of fine-grained layers except near the margins of the valley and near the mouths of lakes. In the Rathdrum Prairie, multiple fine-grained layers are scattered throughout the aquifer with top altitudes ranging from about 1,700 to 2,400 feet with thicknesses ranging from 1

  5. Predicting ground-water movement in large mine spoil areas in the Appalachian Plateau

    USGS Publications Warehouse

    Wunsch, D.R.; Dinger, J.S.; Graham, C.D.R.

    1999-01-01

    Spoil created by surface mining can accumulate large quantities of ground-water, which can create geotechnical or regulatory problems, as well as flood active mine pits. A current study at a large (4.1 km2), thick, (up to 90 m) spoil body in eastern Kentucky reveals important factors that control the storage and movement of water. Ground-water recharge occurs along the periphery of the spoil body where surface-water drainage is blocked, as well as from infiltration along the spoil-bedrock contact, recharge from adjacent bedrock, and to a minor extent, through macropores at the spoil's surface. Based on an average saturated thickness of 6.4 m for all spoil wells, and assuming an estimated porosity of 20%, approximately 5.2 x 106 m3 of water is stored within the existing 4.1 km2 of reclaimed spoil. A conceptual model of ground-water flow, based on data from monitoring wells, dye-tracing data, discharge from springs and ponds, hydraulic gradients, chemical data, field reconnaissance, and aerial photographs indicate that three distinct but interconnected saturated zones have been established: one in the spoil's interior, and others in the valley fills that surround the main spoil body at lower elevations. Ground-water movement is sluggish in the spoil's interior, but moves quickly through the valley fills. The conceptual model shows that a prediction of ground-water occurrence, movement, and quality can be made for active or abandoned spoil areas if all or some of the following data are available: structural contour of the base of the lowest coal seam being mined, pre-mining topography, documentation of mining methods employed throughout the mine, overburden characteristics, and aerial photographs of mine progression.Spoil created by surface mining can accumulate large quantities of ground-water, which can create geotechnical or regulatory problems, as well as flood active mine pits. A current study at a large (4.1 km2), thick, (up to 90 m) spoil body in eastern

  6. Water resources of the Humboldt River Valley near Winnemucca, Nevada

    USGS Publications Warehouse

    Cohen, Philip M.

    1965-01-01

    This report, resulting from studies made by the U.S. Geological Survey as part of the interagency Humboldt River Research Project, describes the qualitative and quantitative relations among the components of the hydrologic system in the Winnemucca Reach of the Humboldt River valley. The area studied includes the segment of the Humboldt River valley between the Comus and Rose Creek gaging stations. It is almost entirely in Humboldt County in north-central Nevada, and is about 200 miles downstream from the headwaters of the Humboldt River. Agriculture is the major economic activity in the area. Inasmuch as the valley lowlands receive an average of about 8 inches of precipitation per year and because the rate of evaporation from free-water surfaces is about six times the average annual precipitation, all crops in the area (largely forage crops) are irrigated. About 85 percent of the cultivated land is irrigated with Humboldt River water; the remainder is irrigated from about 20 irrigation wells. The consolidated rocks of the uplifted fault-block mountains are largely barriers to the movement of ground water and form ground-water and surface-water divides. Unconsolidated deposits of late Tertiary and Quaternary age underlie the valley lowlands to a maximum depth of about 5,000 feet. These deposits are in hydraulic continuity with the Humboldt River and store and transmit most of the economically recoverable ground water. Included in the valley fill is a highly permeable sand and gravel deposit having a maximum thickness of about 90-100 feet; it underlies the flood plain and bordering terraces throughout most of the project area. This deposit is almost completely saturated and contains about 500,000 acre-feet of ground water in storage. The Humboldt River is the source of 90-95 percent of the surface-water inflow to the area. In water years 1949-62 the average annual streamflow at the Comus gaging station at the upstream margin of the area was 172,100 acre-feet; outflow

  7. Simulation of ground-water flow, contributing recharge areas, and ground-water travel time in the Missouri River alluvial aquifer near Ft. Leavenworth, Kansas

    USGS Publications Warehouse

    Kelly, Brian P.

    2004-01-01

    The Missouri River alluvial aquifer near Ft. Leavenworth, Kansas, supplies all or part of the drinking water for Ft. Leavenworth; Leavenworth, Kansas; Weston, Missouri; and cooling water for the Kansas City Power and Light, Iatan Power Plant. Ground water at three sites within the alluvial aquifer near the Ft. Leavenworth well field is contaminated with trace metals and organic compounds and concerns have been raised about the potential contamination of drinking-water supplies. In 2001, the U.S. Geological Survey, U.S. Army Corps of Engineers, and the U.S. Army began a study of ground-water flow in the Missouri River alluvial aquifer near Ft. Leavenworth. Hydrogeologic data from 173 locations in the study area was used to construct a ground-water flow model (MODFLOW-2000) and particle-tracking program (MODPATH) to determine the direction and travel time of ground-water flow and contributing recharge areas for water-supply well fields within the alluvial aquifer. The modeled area is 28.6 kilometers by 32.6 kilometers and contains the entire study area. The model uses a uniform grid size of 100 meters by 100 meters and contains 372,944 cells in 4 layers, 286 columns, and 326 rows. The model represents the alluvial aquifer using four layers of variable thickness with no intervening confining layers. The model was calibrated to both quasi-steady-state and transient hydraulic head data collected during the study and ground-water flow was simulated for five well-pumping/river-stage scenarios. The model accuracy was calculated using the root mean square error between actual measurements of hydraulic head and model generated hydraulic head at the end of each model run. The accepted error for the model calibrations were below the maximum measurement errors. The error for the quasi-steady-state calibration was 0.82 meter; for the transient calibration it was 0.33 meter. The shape, size, and ground-water travel time within the contributing recharge area for each well or well

  8. Evaluation of methods for delineating areas that contribute water to wells completed in valley-fill aquifers in Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Madden, Thomas M.

    1994-01-01

    Valley-fill aquifers in Pennsylvania are the source of drinking water for many wells in the glaciated parts of the State and along major river valleys. These aquifers area subject to contamination because of their shallow water-table depth and highly transmissive sediments. The possibility for contamination of water-supply wells in valley-fill aquifers can be minimized by excluding activities that could contaminate areas that contribute water to supply wells. An area that contributes water to a well is identified in this report as either an area of diversion, time-of-travel area, or contributing area. The area of diversion is a projection to land surface of the valley-fill aquifer volume through which water is diverted to a well and the time-of travel area is that fraction of the area of diversion through which water moves to the well in a specified time. The contributing area, the largest of three areas, includes the area of diversion but also incorporates bedrock uplands and other area that contribute water. Methods for delineating areas of diversion and contributing areas in valley-fill aquifers, described and compared in order of increasing complexity, include fixed radius, uniform flow, analytical, semianalytical, and numerical modeling. Delineated areas are considered approximations because the hydraulic properties and boundary conditions of the real ground-water system are simplified even in the most complex numerical methods. Successful application of any of these methods depends on the investigator's understanding of the hydrologic system in and near the well field, and the limitations of the method. The hydrologic system includes not only the valley-fill aquifer but also the regional surface-water and ground-water flow systems within which the valley is situated. As shown by numerical flow simulations of a well field in the valley-fill aquifer along Marsh Creek Valley near Asaph, Pa., water from upland bedrock sources can provide nearly all the water

  9. Water Budgets and Potential Effects of Land- and Water-Use Changes for Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Maurer, Douglas K.; Berger, David L.

    2006-01-01

    To address concerns over continued growth in Carson Valley, the U.S. Geological Survey, in cooperation with Douglas County, Nevada, began a study in February 2003 to update estimates of water-budget components in Carson Valley. Estimates of water-budget components were updated using annual evapotranspiration (ET) rates, rates of streamflow loss to infiltration and gain from ground-water seepage, and rates of recharge from precipitation determined from data collected in 2003 and 2004 for the study and reported in the literature. Overall water budgets were developed for the area of basin-fill deposits in Carson Valley for water years 1941-70 and 1990-2005. Water years 1941-70 represent conditions prior to increased population growth and ground-water pumping, and the importation of effluent. A ground-water budget was developed for the same area for water years 1990-2005. Estimates of total inflow in the overall water budget ranged from 432,000 to 450,000 acre-feet per year (acre-ft/yr) for water years 1941-70 and from 430,000 to 448,000 for water years 1990-2005. Estimates of total inflow for both periods were fairly similar because variations in streamflow and precipitation were offset by increases in imported effluent. Components of inflow included precipitation on basin-fill deposits of 38,000 acre-ft/yr for both periods, streamflow of the Carson River and tributaries to the valley floor of 372,000 acre-ft/yr for water years 1941-70 and 360,000 acre-ft/yr for water years 1990-2005, ground-water inflow ranging from 22,000 to 40,000 acre-ft/yr for both periods, and imported effluent of 9,800 acre-ft/yr for water years 1990-2005 with none imported for water years 1941-70. Estimates of ground-water inflow from the California portion of Carson Valley averaged about 6,000 acre-ft/yr and ranged from 4,000 to 8,000 acre-ft/yr. These estimates compared well with a previous estimate of ground-water inflow across the State line. Estimates of total outflow in the overall water

  10. Ground water in the Verdigris River basin, Kansas and Oklahoma

    USGS Publications Warehouse

    Fader, Stuart Wesley; Morton, Robert B.

    1975-01-01

    Ground water in the Verdigris River basin occurs in consolidated rocks and unconsolidated deposits ranging in age from Mississippian to Quaternary. Water for municipal, industrial, and irrigation supplies generally can be obtained in limited quantities from the alluvial deposits in the stream valleys. Except for water in the alluvial deposits in the stream valleys and in the outcrop areas of the bedrock aquifers, the groundwater is generally of poor chemical quality. Owing to the generally poor chemical quality of water and low yields to wells, an increase in the use of ground water from the consolidated rocks is improbable. The unconsolidated rocks in the Verdigris River basin receive about 166,000 acre-feet of recharge annually, and about 1 million acre-fee of water is in temporary storage in the deposits. In 1968 about 4,200 acre-feet of ground was withdrawn for all uses. About 800 acre-feet of ground and 5,000 acre-feet of surface water were pumped for irrigation of 5,300 acres of cropland. The total annual withdrawal of ground water for irrigation may be 2,000 acre-feet by the year 2000.

  11. Geology and water resources of the Spanish Valley area, Grand and San Juan Counties, Utah

    USGS Publications Warehouse

    Sumsion, C.T.

    1971-01-01

    This water-resources investigation was initiated in order to provide an estimate of the average annual water yield of the Mill Creek-Pack Creek drainage basin, the parts of that total yield available as surface water and ground water, the amount of ground water that might be recovered for beneficial use, and the effect of this use on the usable ground-water storage within the valley fill in Spanish and Moab Valleys. Detailed information has been sought which is basic to the establishment of sound policies for the development and management of water resources. The investigation was carried out as part of water-resources investigations in Utah with the Utah Division of Water Rights, Department of Natural Resources. Fieldwork was done during the period July 1967-November 1969.

  12. Conceptual Model and Numerical Simulation of the Ground-Water-Flow System in the Unconsolidated Sediments of Thurston County, Washington

    USGS Publications Warehouse

    Drost, B.W.; Ely, D.M.; Lum, W. E.

    1999-01-01

    The demand for water in Thurston County has increased steadily in recent years because of a rapid growth in population. Surface-water resources in the county have been fully appropriated for many years and Thurston County now relies entirely on ground water for new supplies of water. Thurston County is underlain by up to 2,000 feet of unconsolidated glacial and non-glacial Quaternary sediments which overlie consolidated rocks of Tertiary age. Six geohydrologic units have been identified within the unconsolidated sediments. Between 1988 and 1990, median water levels rose 0.6 to 1.9 feet in all geohydrologic units except bedrock, in which they declined 1.4 feet. Greater wet-season precipitation in 1990 (43 inches) than in 1988 (26 inches) was the probable cause of the higher 1990 water levels. Ground-water flow in the unconsolidated sediments underlying Thurston County was simulated with a computerized numerical model (MODFLOW). The model was constructed to simulate 1988 ground-water conditions as steady state. Simulated inflow to the model area from precipitation and secondary recharge was 620,000 acre-feet per year (93 percent), leakage from streams and lakes was 38,000 acre-ft/yr (6 percent), and ground water entering the model along the Chehalis River valley was 5,800 acre-ft/yr (1 percent). Simulated outflow from the model was primarily leakage to streams, springs, lakes, and seepage faces (500,000 acre-ft/yr or 75 percent of the total outflow). Submarine seepage to Puget Sound was simulated to be 88,000 acre-ft/yr (13 percent). Simulated ground-water discharge along the Chehalis River valley was simulated to be 12,000 acreft/yr (2 percent). Simulated withdrawals by wells for all purposes was 62,000 acre-ft/yr (9 percent). The numerical model was used to simulate the possible effects of increasing ground-water withdrawals by 23,000 acre-ft/yr above the 1988 rate of withdrawal. The model indicated that the increased withdrawals would come from reduced discharge

  13. Feasibility of ground-water features of the alternate plan for the Mountain Home project, Idaho

    USGS Publications Warehouse

    Nace, Raymond L.; West, S.W.; Mowder, R.W.

    1957-01-01

    An early plan of the U. S. Bureau of Reclamation proposed to irrigate 183,000 acres on the arid Snake River Plain south of Boise, Idaho (Mountain Home project) with Boise River water. That water would have been replaced to the Boise Valley with water imported from the Payette River. An alternate plan, proposed in 1953, would divert water from the Boise River to the plain; part of the water would be replaced by pumping ground water in the Boise valley and by importing water from the Snake River. Pumping of ground water in the Boise Valley also would help to drain waterlogged land. The present report evaluates the feasibility of the alternate plan in relation to geology and the occurrence and quality of ground water. The mean annual temperature at Boise is 50.8 ? F and there is an average of 172 days between killing frosts. The annual evaporation rate from open-water surfaces in the area is about 33 inches. Runoff in the Boise River is chiefly from precipitation on mountain slopes at altitudes above 3,000 feet, east of Boise Diversion Dam. The surface-water supply of the Boise Valley is more Than ample for the valley, owing to large upstream storage and regulatory dams and reservoirs. The valley also contains a large volume of ground water in storage, and the perennial rate of recharge is large. The computed consumptive depletion of surface water in the valley is nearly 600,000 acre-feet a year. Apparent depletion, computed from adjusted runoff at Notus, is 1,070,000 acre-feet. The difference of 470,000 acre-feet represents ground-water underflow and ungaged surface outflow from the area east of Notus. After the beginning of irrigation, around the turn of the century, the water table in the Boise Valley rose steadily; the amount of rise at some places was as much as 140 feet. Shallow perched zones of saturation were created locally. More than 100,000 acres of Boise Valley land now is waterlogged or threatened with waterlogging, despite the presence of more than 325

  14. Evaluation of increases in dissolved solids in ground water, Stovepipe Wells Hotel, Death Valley National Monument, California

    USGS Publications Warehouse

    Buono, Anthony; Packard, E.M.

    1982-01-01

    Increases in dissolved solids have been monitored in two observation wells near Stovepipe Wells Hotel, Death Valley National Monument, California. One of the hotel 's supply wells delivers water to a reverse-osmosis treatment plant that produces the area 's potable water supply. Should water with increased dissolved solids reach the supply well, the costs of production of potable water will increase. The reverse-osmosis plant supply well is located about 0.4 mile south of one of the wells where increases have been monitored, and 0.8 mile southwest of the well where the most significant increases have been monitored. The direction of local ground-water movement is eastward, which reduces the probability of the supply well being affected. Honey mesquite, a phreatophyte located about 1.5 miles downgradient from the well where the most significant increases have been monitored, might be adversely affected should water with increased dissolved solids extend that far. Available data and data collected during this investigation do not indicate the source of the dissolved-solids increases. Continued ground-water-quality monitoring of existing wells and the installation of additional wells for water-quality monitoring would be necessary before the area affected by the increases, and the source and direction of movement of the water with increased dissolved solids, can be determined. (USGS)

  15. Simulation of the ground-water flow system and proposed withdrawals in the northern part of Vekol Valley, Arizona

    USGS Publications Warehouse

    Hollett, K.J.; Marie, J.R.

    1987-01-01

    Pursuant to the Ak-Chin Indian Community Water Rights Settlement Act (Public Law 95-328-enacted on July 28, 1978) a study was undertaken to assess the effect of proposed groundwater withdrawal from Federal lands near the reservation. The first area to be evaluated was the northern part of the Vekol Valley. The evaluation was made using a numerical model based on detailed geohydrologic concepts developed during the study. The numerical model, which was calibrated to steady-state and transient groundwater conditions in the northern part of Vekol Valley, adequately duplicated the conceptual model and was used to estimate the effect of withdrawing approximately 174,000 acre-ft from the system during a 25-yr period. At the end of the 25-yr period, the water level was drawn down an average of about 95 ft, and about 150,5000 acre-ft of water was removed from storage. The 150,500 acre-ft of water represents 43% of the estimated recoverable groundwater in storage. (Author 's abstract)

  16. Numerical simulation of ground-water flow in the central part of the western San Joaquin Valley, California

    USGS Publications Warehouse

    Belitz, Kenneth; Phillips, Steven P.; Gronberg, Jo Ann M.

    1993-01-01

    The occurrence of selenium in agricultural drain water in the central part of the western San Joaquin Valley, California, has focused concern on strategies for managing shallow, saline ground water. To assess alternatives to agricultural drains, a three-dimensional, finite-difference numerical model of the regional groundwater flow system was developed. This report documents the mathematical approach used to model the flow system, the data base on which the model is based, and the methods used to calibrate the model. The 550-square-mile study area includes parts of the Panoche Creek alluvial fan and parts of the Little Panoche Creek and Cantua Creek alluvial fans. The model simulates transient flow in the semiconfined and confined zones above and below the Corcoran Clay Member of the Tulare Formation of Pleistocene age. The model incorporates areally distributed ground-water recharge, areally and vertically distributed pumping, regional-collector drains in the Wesdands Water District (operative from 1980 to 1985), on-farm drains in parts of the Panoche, Broadview, and Firebaugh Water Districts, and bare-soil evaporation (which occurs if the water table is within 7 feet of land surface). The model also incorporates texture-based estimates of hydraulic conductivity, where texture is defined as the fraction of coarse-grained deposits present in a given subsurface interval. The numerical model was developed using hydrologic data from 1972 to 1988. Most of the parameters incorporated into the model were evaluated independently of the model, including system geometry, the distribution of texture, the altitudes of the water table and potentiometric surface of the confined zone in 1972 (initial condition), the hydraulic conductivity of coarse-grained deposits derived from the Coast Ranges, the hydraulic conductivity of coarse-grained deposits derived from the Sierra Nevada, specific storage, recharge, pumping, and parameters needed to incorporate drains and bare

  17. Opportunity Rover Views Ground Texture 'Perseverance Valley'

    NASA Image and Video Library

    2018-02-15

    This late-afternoon view from the front Hazard Avoidance Camera on NASA's Mars Exploration Rover Opportunity shows a pattern of rock stripes on the ground, a surprise to scientists on the rover team. Approaching the 5,000th Martian day or sol, of what was planned as a 90-sol mission, Opportunity is still providing new discoveries. This image was taken inside "Perseverance Valley," on the inboard slope of the western rim of Endeavour Crater, on Sol 4958 (Jan. 4, 2018). Both this view and one taken the same sol by the rover's Navigation Camera look downhill toward the northeast from about one-third of the way down the valley, which extends about the length of two football fields from the crest of the rim toward the crater floor. The lighting, with the Sun at a low angle, emphasizes the ground texture, shaped into stripes defined by rock fragments. The stripes are aligned with the downhill direction. The rock to the upper right of the rover's robotic arm is about 2 inches (5 centimeters) wide and about 3 feet (1 meter) from the centerline of the rover's two front wheels. This striped pattern resembles features seen on Earth, including on Hawaii's Mauna Kea, that are formed by cycles of freezing and thawing of ground moistened by melting ice or snow. There, fine-grained fraction of the soil expands as it freezes, and this lifts the rock fragments up and to the sides. If such a process formed this pattern in Perseverance Valley, those conditions might have been present locally during a period within the past few million years when Mars' spin axis was at a greater tilt than it is now, and some of the water ice now at the poles was redistributed to lower latitudes. Other hypotheses for how these features formed are also under consideration, including high-velocity slope winds. https://photojournal.jpl.nasa.gov/catalog/PIA22218

  18. Characterization of surface-water resources in the Great Basin National Park area and their susceptibility to ground-water withdrawals in adjacent valleys, White Pine County, Nevada

    USGS Publications Warehouse

    Elliott, Peggy E.; Beck, David A.; Prudic, David E.

    2006-01-01

    Eight drainage basins and one spring within the Great Basin National Park area were monitored continually from October 2002 to September 2004 to quantify stream discharge and assess the natural variability in flow. Mean annual discharge for the stream drainages ranged from 0 cubic feet per second at Decathon Canyon to 9.08 cubic feet per second at Baker Creek. Seasonal variability in streamflow generally was uniform throughout the network. Minimum and maximum mean monthly discharges occurred in February and June, respectively, at all but one of the perennial streamflow sites. Synoptic-discharge, specific-conductance, and water- and air-temperature measurements were collected during the spring, summer, and autumn of 2003 along selected reaches of Strawberry, Shingle, Lehman, Baker, and Snake Creeks, and Big Wash to determine areas where surface-water resources would be susceptible to ground-water withdrawals in adjacent valleys. Comparison of streamflow and water-property data to the geology along each stream indicated areas where surface-water resources likely or potentially would be susceptible to ground-water withdrawals. These areas consist of reaches where streams (1) are in contact with permeable rocks or sediments, or (2) receive water from either spring discharge or ground-water inflow.

  19. Ground-Water Quality Data in the Owens and Indian Wells Valleys Study Unit, 2006: Results from the California GAMA Program

    USGS Publications Warehouse

    Densmore, Jill N.; Fram, Miranda S.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 1,630 square-mile Owens and Indian Wells Valleys study unit (OWENS) was investigated in September-December 2006 as part of the Priority Basin Project of Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board (SWRCB). The Owens and Indian Wells Valleys study was designed to provide a spatially unbiased assessment of raw ground-water quality within OWENS study unit, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 74 wells in Inyo, Kern, Mono, and San Bernardino Counties. Fifty-three of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 21 wells were selected to evaluate changes in water chemistry in areas of interest (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater- indicator compounds], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3- trichloropropane (1,2,3-TCP)], naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water], and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. This study evaluated the quality of raw ground water in the aquifer in the OWENS study unit and did not attempt to evaluate the quality of treated water

  20. Evaluation of nonpotable ground water in the desert area of southeastern California for powerplant cooling

    USGS Publications Warehouse

    Steinemann, Anne C.

    1989-01-01

    Powerplant siting is dependent upon many factors; in southern California the prevailing physical constraint is water availability. Increasing land-use and other environmental concerns preclude further sites along the coast. A review of available hydrologic data was made of 142 ground-water basins in the southeast California desert area to ascertain if any could be feasible sources of nonpotable powerplant cooling water. Feasibility implies the capacity to sustain a typical 1,000-megawatt electrical-power generating plant for 30 years with an ample supply of ground water for cooling. Of the 142 basins reviewed, 5 met or exceeded established hydrologic criteria for supplying the water demands of a typical powerplant. These basins are: (1) middle Amargosa valley, (2) Soda Lake valley, (3) Caves Canyon valley, (4) Chuckwalla Valley, and (5) Calzona-Vidal Valley. Geohydrologic evaluations of these five basins assessed the occurrence and suitability of ground water and effects of long-term pumping. An additional six basins met or exceeded hydrologic criteria, with qualifications, for providing powerplant cooling water. The remaining 131 basins either did not meet the criteria, or available data were insufficient to determine if the basins would meet the criteria.

  1. Source regions and water release mechanisms of Martian Valley Networks

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Reiss, D.; Sander, T.; Gwinner, K.; Roatsch, T.; Matz, K.-D.; Hauber, E.; Mertens, V.; Hoffmann, H.; Neukum, G.; HRSC Co-Investigator Team

    Martian valley networks have been cited as the best evidence that Mars maintained flow of liquid water across the surface. Although internal structures associated with a fluvial origin within valleys like inner channels, terraces, slip-off and undercut slopes are extremely rare on Mars (Carr and Malin, 2000) such features can be identified in high-resolution imagery (e.g. Malin and Edgett, 2001; Jaumann et al., 2005). However, besides internal features the source regions are an important indicator for the flow processes in Martian valleys because they define the drainage area and thus constrain the amount of available water for eroding the valley network. Furthermore, the morphology of the source regions and their topographic characteristics provide information about the origin of the water. On Mars valley networks are thought to be formed by retreating erosion where the water is supplied from the sub-surface. However, the mechanisms that are responsible for the release of ground water are poorly understood. The three dimensional highly resolved data of the High Resolution Stereo Camera (HRSC) on the Mars Express Mission (Neukum et al., 2004) allow the detailed examination of valley network source regions. A valley network in the western Lybia Montes region valley between 1.4°N to 3.5°N and 81.6°E to 82.5°E originates at a highland mountain region and drains down to Isidis Planitia over a distance of 400 km. Most of its distance the valley exhibits an interior channel that allows to constraint discharge and erosion budgets (Jaumann, et al., 2005). The valley was formed in the Noachian/Hesperian between 3.7 and 3.3 billion years. However, discharge and erosion budgets restrict the erosion time to a few million years in total, indicating single events rather than continuous flow over long periods. The source region of the valley is covered by a series of lava flows. Even the upstream part of the valley is covered by lava flows that cover the interior channel

  2. Ground-water resources of the South Platte River Basin in western Adams and southwestern Weld Counties, Colorado

    USGS Publications Warehouse

    Smith, Rex O.; Schneider, P.A.; Petri, Lester R.

    1964-01-01

    The area described in this report consists of about 970 square miles in western Adams and southwestern Weld Counties in northeastern Colorado. It includes that part of the South Platte River valley between Denver and Kuner, Colo., all of Beebe Draw, and the lower part of the valley of Box Elder Creek. The stream-valley lowlands are separated by rolling uplands. The climate is semiarid, the normal annual precipitation being about 13 inches; thus, irrigation is essential for stable agricultural development. The area contains about 220,000 acres of irrigated land in the stream valleys. Most of the remaining 400,000 acres of land is used for dry farming or grazing because it lacks irrigation water. Most of the lowlands were brought under irrigation with surface water during the early 1900's, and now nearly all the surface water in the area is appropriated for irrigation within and downstream from the area. Because the natural flow of the streams is sometimes less than the demand for water, ground water is used to supplement the surface-water supply. Wells, drilled chiefly since 1930, supply the supplemental water and in some places are the sole supply for irrigation use. Rocks exposed in the area are of sedimentary origin and range in age from Lato Cretaceous to Recent. Those that are consolidated, called 'bedrock' in this report, consist of the Fox Hills sandstone and the Laramie and Arapahoe formations, all of Late Cretaceous age, and the Denver formation and Dawson arkose of Late Cretaceous and Tertiary age. The surface of the bedrock was shaped by ancestral streams, the valleys of which are reflected by the present surface topography. Dune sand, slope wash, and thin upland deposits of Quaternary age mantle the bedrock in the divide areas, and stream deposits ranging in thickness from 0 to about 125 feet partly fill the ancestral valleys. The valley-fill deposits consist of beds and lenses of clay, silt, sand, gravel, cobbles, and boulders. Abundant supplies of

  3. Ground water in Utah's densely populated Wasatch Front area - The challenge and the choices

    USGS Publications Warehouse

    Price, Don

    1985-01-01

    Utah's Wasatch Front area comprises about 4,000 square miles in the north-central part of the State. I n 1980, the area had a population of more than 1.1 million, or about 77 percent of Utah's total population. It contains several large cities, including Salt Lake City, Ogden, and Provo, and is commonly called Utah's urban corridor.Most of the water supply for the Wasatch Front area comes from streams that originate in the Wasatch Range and nearby Uinta Mountains; however, ground water has played an important role in the economic growth of the area. The principal source of ground water is the unconsolidated fill (sedimentary deposits) in the valleys of the Wasatch Front area northern Juab, Utah, Goshen, and Salt Lake Valleys; the East Shore area (a valley area east of the Great Salt Lake), and the Bear River Bay area. Maximum saturated thickness of the fill in the principal ground-water reservoirs in these valleys exceeds 6,000 feet, and the estimated volume of water that can be withdrawn from just the upper 100 feet of the saturated fill is about 8 million acre-feet. In most places the water is fresh, containing less than 1,000 milligrams per liter of dissolved solids; in much of the Bear River Bay area and most of Goshen Valley (and locally in the other valleys), the water is slightly to moderately saline, with 1,000 to 10,000 milligrams per liter of dissolved solids.The principal ground-water reservoirs receive recharge at an annual rate that is estimated to exceed 1 million acre-feet chiefly as seepage from consolidated rocks in the adjacent mountains from canals, ditches, and irrigated land, directly from precipitation, and from streams. Discharge during 1980 (which was chiefly from springs, seepage to streams, evapotranspiration, and withdrawal by wells) was estimated to be about 1.1 million acre-feet. Withdrawal from wells, which began within a few years after the arrival of the Mormon pioneers in the Salt Lake Valley in 1847, and had increased to about 320

  4. Isostatic gravity map of the Death Valley ground-water model area, Nevada and California

    USGS Publications Warehouse

    Ponce, D.A.; Blakely, R.J.; Morin, R.L.; Mankinen, E.A.

    2001-01-01

    An isostatic gravity map of the Death Valley groundwater model area was prepared from over 40,0000 gravity stations as part of an interagency effort by the U.S. Geological Survey and the U.S. Department of Energy to help characterize the geology and hydrology of southwest Nevada and parts of California.

  5. Ground-water models as a management tool in Florida

    USGS Publications Warehouse

    Hutchinson, C.B.

    1984-01-01

    Highly sophisticated computer models provide powerful tools for analyzing historic data and for simulating future water levels, water movement, and water chemistry under stressed conditions throughout the ground-water system in Florida. Models that simulate the movement of heat and subsidence of land in response to aquifer pumping also have potential for application to hydrologic problems in the State. Florida, with 20 ground-water modeling studies reported since 1972, has applied computer modeling techniques to a variety of water-resources problems. Models in Florida generally have been used to provide insight to problems of water supply, contamination, and impact on the environment. The model applications range from site-specific studies, such as estimating contamination by wastewater injection at St. Petersburg, to a regional model of the entire State that may be used to assess broad-scale environmental impact of water-resources development. Recently, groundwater models have been used as management tools by the State regulatory authority to permit or deny development of water resources. As modeling precision, knowledge, and confidence increase, the use of ground-water models will shift more and more toward regulation of development and enforcement of environmental laws. (USGS)

  6. Water Resources of the Ground-Water System in the Unconsolidated Deposits of the Colville River Watershed, Stevens County, Washington

    USGS Publications Warehouse

    Kahle, Sue C.; Longpre, Claire I.; Smith, Raymond R.; Sumioka, Steve S.; Watkins, Anni M.; Kresch, David L.

    2003-01-01

    A study of the water resources of the ground-water system in the unconsolidated deposits of the Colville River Watershed provided the Colville River Watershed Planning Team with an assessment of the hydrogeologic framework, preliminary determinations of how the shallow and deeper parts of the ground-water system interact with each other and the surface-water system, descriptions of water-quantity characteristics including water-use estimates and an estimated water budget for the watershed, and an assessment of further data needs. The 1,007-square-mile watershed, located in Stevens County in northeastern Washington, is closed to further surface-water appropriations throughout most of the basin during most seasons. The information provided by this study will assist local watershed planners in assessing the status of water resources within the Colville River Watershed (Water Resources Inventory Area 59). The hydrogeologic framework consists of glacial and alluvial deposits that overlie bedrock and are more than 700 feet thick in places. Twenty-six hydrogeologic sections were constructed, using a map of the surficial geology and drillers' logs for more than 350 wells. Seven hydrogeologic units were delineated: the Upper outwash aquifer, the Till confining unit, the Older outwash aquifer, the Colville Valley confining unit, the Lower aquifer, the Lower confining unit, and Bedrock. Synoptic stream discharge measurements made in September 2001 identified gaining and losing reaches over the unconsolidated valley deposits. During the September measurement period, the Colville River gained flow from the shallow ground-water system near its headwaters to the town of Valley and lost flow to the shallow ground-water system from Valley to Chewelah. Downstream from Chewelah, the river generally lost flow, but the amounts lost were small and within measurement error. Ground-water levels indicate that the Lower aquifer and the shallow ground-water system may act as fairly

  7. An evaluation of Skylab (EREP) remote sensing techniques applied to investigation of crustal structure. [Death Valley and Greenwater Valley (CA)

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. A study of Greenwater Valley indicates that the valley is bounded on the north and east by faults, on the south by a basement high, and on the west by the dip slope of the black mountains, movement of ground water from the valley is thus Movement of ground water from the valley is thus restricted, indicating the valley is a potential water reservoir.

  8. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    USGS Publications Warehouse

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  9. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    USGS Publications Warehouse

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  10. Ground-water availability in part of the Borough of Carroll Valley, Adams County, Pennsylvania, and the establishment of a drought-monitor well

    USGS Publications Warehouse

    Low, Dennis J.; Conger, Randall W.

    2002-01-01

    Continued population growth in the Borough of Carroll Valley (Borough) coupled with the drought of 2001 have increased the demand for ground water in the Borough. This demand has led Borough officials to undertake an effort to evaluate the capability of the crystalline-bedrock aquifers to meet future, projected growth and to establish a drought-monitor well within and for the use of the Borough. As part of this effort, this report summarizes ground-water data available from selected sections within the Borough and provides geohydrologic information needed to evaluate ground-water availability and recharge sources within part of the Borough. The availability of ground water in the Borough is limited by the physical characteristics of the underlying bedrock, and its upland topographic setting. The crystalline rocks (metabasalt, metarhyolite, greenstone schist) that underlie most of the study area are among the lowest yielding aquifers in the Commonwealth. More than 25 percent of the wells drilled in the metabasalt, the largest bedrock aquifer in the study area, have driller reported yields less than 1.25 gallons per minute. Driller reports indicate also that water-producing zones are shallow and few in number. In general, 50 percent of the water-producing zones reported by drillers are penetrated at depths of 200 feet or less and 90 percent at depths of 370 feet or less. Borehole geophysical data indicate that most of the water-producing zones are at lithologic contacts, but such contacts are penetrated infrequently and commonly do not intersect areas of ground-water recharge. Single-well aquifer tests and slug tests indicate that the bedrock aquifers also do not readily transmit large amounts of water. The median hydraulic conductivity and transmissivity of the bedrock aquifers are 0.01 foot per dayand 2.75 feet squared per day, respectively. The crystalline and siliciclastic (Weverton and Loudoun Formations) bedrock aquifers are moderately to highly resistant to

  11. Simulation of Multiscale Ground-Water Flow in Part of the Northeastern San Joaquin Valley, California

    USGS Publications Warehouse

    Phillips, Steven P.; Green, Christopher T.; Burow, Karen R.; Shelton, Jennifer L.; Rewis, Diane L.

    2007-01-01

    The transport and fate of agricultural chemicals in a variety of environmental settings is being evaluated as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment Program. One of the locations being evaluated is a 2,700-km2 (square kilometer) regional study area in the northeastern San Joaquin Valley surrounding the city of Modesto, an area dominated by irrigated agriculture in a semi-arid climate. Ground water is a key source of water for irrigation and public supply, and exploitation of this resource has altered the natural flow system. The aquifer system is predominantly alluvial, and an unconfined to semiconfined aquifer overlies a confined aquifer in the southwestern part of the study area; these aquifers are separated by the lacustrine Corcoran Clay. A regional-scale 16-layer steady-state model of ground-water flow in the aquifer system in the regional study area was developed to provide boundary conditions for an embedded 110-layer steady-state local-scale model of part of the aquifer system overlying the Corcoran Clay along the Merced River. The purpose of the local-scale model was to develop a better understanding of the aquifer system and to provide a basis for simulation of reactive transport of agricultural chemicals. The heterogeneity of aquifer materials was explicitly incorporated into the regional and local models using information from geologic and drillers? logs of boreholes. Aquifer materials were differentiated in the regional model by the percentage of coarse-grained sediments in a cell, and in the local model by four hydrofacies (sand, silty sand, silt, and clay). The calibrated horizontal hydraulic conductivity values of the coarse-grained materials in the zone above the Corcoran Clay in the regional model and of the sand hydrofacies used in the local model were about equal (30?80 m/d [meter per day]), and the vertical hydraulic conductivity values in the same zone of the regional model (median of 0.012 m/d), which is

  12. Geostatistical applications in ground-water modeling in south-central Kansas

    USGS Publications Warehouse

    Ma, T.-S.; Sophocleous, M.; Yu, Y.-S.

    1999-01-01

    This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described by spherical semivariogram models, additional data are required for better cokriging estimation of the interface data. The geostatistically analyzed data were employed in a numerical model of the Siefkes site in the project area. Results indicate that the computed chloride concentrations and ground-water drawdowns reproduced the observed data satisfactorily.This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described

  13. Fundamentals of Ground-Water Modeling

    EPA Pesticide Factsheets

    This paper presents an overview of the essential components of ground-water flow and contaminant transport modeling in saturated porous media. While fractured rocks and fractured porous rocks may behave like porous media with respect to many flow and...

  14. COMPILATION OF GROUND WATER MODELS

    EPA Science Inventory

    The full report presents an overview of currently available computer-based simulation models for ground-water flow, solute and heat transport, and hydrogeochemistry in both porous media and fractured rock. Separate sections address multiphase flow and related chemical species tra...

  15. Transboundary impacts on regional ground water modeling in Texas

    USGS Publications Warehouse

    Rainwater, K.; Stovall, J.; Frailey, S.; Urban, L.

    2005-01-01

    Recent legislation required regional grassroots water resources planning across the entire state of Texas. The Texas Water Development Board (TWDB), the state's primary water resource planning agency, divided the state into 16 planning regions. Each planning group developed plans to manage both ground water and surface water sources and to meet future demands of various combinations of domestic, agricultural, municipal, and industrial water consumers. This presentation describes the challenges in developing a ground water model for the Llano Estacado Regional Water Planning Group (LERWPG), whose region includes 21 counties in the Southern High Plains of Texas. While surface water is supplied to several cities in this region, the vast majority of the regional water use comes from the High Plains aquifer system, often locally referred to as the Ogallala Aquifer. Over 95% of the ground water demand is for irrigated agriculture. The LERWPG had to predict the impact of future TWDB-projected water demands, as provided by the TWDB, on the aquifer for the period 2000 to 2050. If detrimental impacts were noted, alternative management strategies must be proposed. While much effort was spent on evaluating the current status of the ground water reserves, an appropriate numerical model of the aquifer system was necessary to demonstrate future impacts of the predicted withdrawals as well as the effects of the alternative strategies. The modeling effort was completed in the summer of 2000. This presentation concentrates on the political, scientific, and nontechnical issues in this planning process that complicated the modeling effort. Uncertainties in data, most significantly in distribution and intensity of recharge and withdrawals, significantly impacted the calibration and predictive modeling efforts. Four predictive scenarios, including baseline projections, recurrence of the drought of record, precipitation enhancement, and reduced irrigation demand, were simulated to

  16. Analysis of Streamflow Trends, Ground-Water and Surface-Water Interactions, and Water Quality in the Upper Carson River Basin, Nevada and California

    USGS Publications Warehouse

    Maurer, Douglas K.; Paul, Angela P.; Berger, David L.; Mayers, C. Justin

    2008-01-01

    Changes in land and water use and increasing development of water resources in the Carson River basin may affect flow of the river and, in turn, affect downstream water users dependent on sustained river flows to Lahontan Reservoir. To address these concerns, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, Churchill County, and the Truckee-Carson Irrigation District, began a study in April 2006 to compile data on changes in land and water use, ground-water levels and pumping, streamflow, and water quality, and to make preliminary analyses of ground-water and surface-water interactions in the Carson River basin upstream of Lahontan Reservoir. The part of the basin upstream of Lahontan Reservoir is called the upper Carson River basin in this report. In 2005, irrigated agricultural land covered about 39,000 acres in Carson Valley, 3,100 acres in Dayton Valley, and 1,200 acres in Churchill Valley. Changes in land use in Carson Valley from the 1970s to 2005 included the development of about 2,700 acres of native phreatophytes, the development of 2,200 acres of irrigated land, 900 acres of land irrigated in the 1970s that appeared fallow in 2005, and the irrigation of about 2,100 acres of new agricultural land. In Dayton and Churchill Valleys, about 1,000 acres of phreatophytes and 900 acres of irrigated land were developed, about 140 acres of phreatophytes were replaced by irrigation, and about 600 acres of land irrigated in the 1970s were not irrigated in 2006. Ground-water pumping in the upper Carson River basin increases during dry years to supplement surface-water irrigation. Total annual pumping exceeded 20,000 acre-ft in the dry year of 1976, exceeded 30,000 acre-ft in the dry years from 1987 to 1992, and increased rapidly during the dry years from 1999 to 2004, and exceeded 50,000 acre-ft in 2004. As many as 67 public supply wells and 46 irrigation wells have been drilled within 0.5 mile of the Carson River. Pumping from these

  17. Geology and ground-water resources of Washington County, Colorado

    USGS Publications Warehouse

    McGovern, Harold E.

    1964-01-01

    Washington County, in northeastern Colorado, has an area of 2,520 square miles. The eastern two-thirds of the county, part of the High Plains physiographic section, is relatively flat and has been moderately altered by the deposition of loess and dune sand, and by stream erosion. The western one-third is a part of the South Platte River basin and has been deeply dissected by tributary streams. The soils and climate of the county are generally suited for agriculture, which is the principal industry. The rocks that crop out in the county influence the availability of ground water. The Pierre Shale, of Late Cretaceous age, underlies the entire area and ranges in thickness from 2,000 to 4,500 feet. This dense shale is a barrier to the downward movement of water and yields little or no water to wells. The Chadron Formation, of Oligocene age, overlies the Pierre Shale in the northern and central parts of the area. The thickness of the formation ranges from a few feet to about 300 feet. Small to moderate quantities of water are available from the scattered sand lenses and from the highly fractured zones of the siltstone. The Ogallala Formation, of Pliocene age, overlies the Chadron Formation and in Washington County forms the High Plains section of the Great Plains province. The thickness of the Ogallala Formation ranges from 0 to about 400 feet, and the yield from wells ranges from a few gallons per hour to about 1,500 gpm. Peorian loess, of Pleistocene age, and dune sand, of Pleistocene to Recent age, mantle a large pan of the county and range in thickness from a few inches to about 120 feet Although the loess and dune sand yield little water to wells, they absorb much of the precipitation and conduct the water to underlying formations. Alluvium, of Pleistocene and Recent age, occupies most of the major stream valleys in thicknesses of a few feet to about 250 feet. The yield of wells tapping the alluvium ranges from a few gallons per minute to about 3,000 gpm, according

  18. Ground-water conditions in Avra Valley, Pima and Pinal Counties, Arizona -1985

    USGS Publications Warehouse

    Cuff, Melinda K.; Anderson, S.R.

    1987-01-01

    Avra Valley is a north-trending alluvial basin about 15 mi west of Tucson in Pima and Pinal Counties in south-central Arizona. The valley includes about 520 sq mi of which about 100 sq mi is in the San Xavier Indian Reservation. The basin is bounded on the east by the Tortolita, Tucson, and Sierrita Mountains and on the west by the Picacho, Silverbell, and Roskruge Mountains. The climate of the valley is semiarid, the average annual precipitation ranges from 8 to 12 in., and the average annual lake evaporation ranges from 58 to 62 in. Two major ephemeral streams--Santa Cruz River and Brawley Wash--drain the area. Santa Cruz River and Brawley Wash and their tributaries provide a source of recharge to an extensive alluvial aquifer that underlies the valley floor. Since 1940, the amount of groundwater pumped from the aquifer has been greater than the amount of natural recharge from infiltration and underflow. Overdraft of the aquifer resulted in substantial water level declines throughout the valley. Until 1969, use of groundwater in Avra Valley was for irrigation. Since 1969, the city of Tucson has pumped and transported groundwater for municipal use in the adjacent Tucson basin from lands that were purchased and retired from agriculture. The purpose of this report is to describe groundwater conditions in Avra Valley as of 1985. A brief discussion of the geohydrologic setting and history of groundwater development are given to define aquifer characteristics, changes in groundwater levels, and groundwater pumpage since 1940. (Lantz-PTT)

  19. Inverse models: A necessary next step in ground-water modeling

    USGS Publications Warehouse

    Poeter, E.P.; Hill, M.C.

    1997-01-01

    Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares repression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares regression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.

  20. Hydrogeologic Settings and Ground-Water Flow Simulations for Regional Studies of the Transport of Anthropogenic and Natural Contaminants to Public-Supply Wells - Studies Begun in 2001

    USGS Publications Warehouse

    Paschke, Suzanne S.

    2007-01-01

    This study of the Transport of Anthropogenic and Natural Contaminants to public-supply wells (TANC study) is being conducted as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program and was designed to increase understanding of the most important factors to consider in ground-water vulnerability assessments. The seven TANC studies that began in 2001 used retrospective data and ground-water flow models to evaluate hydrogeologic variables that affect aquifer susceptibility and vulnerability at a regional scale. Ground-water flow characteristics, regional water budgets, pumping-well information, and water-quality data were compiled from existing data and used to develop conceptual models of ground-water conditions for each study area. Steady-state regional ground-water flow models were used to represent the conceptual models, and advective particle-tracking simulations were used to compute areas contributing recharge and traveltimes from recharge to selected public-supply wells. Retrospective data and modeling results were tabulated into a relational database for future analysis. Seven study areas were selected to evaluate a range of hydrogeologic settings and management practices across the Nation: the Salt Lake Valley, Utah; the Eagle Valley and Spanish Springs Valley, Nevada; the San Joaquin Valley, California; the Northern Tampa Bay region, Florida; the Pomperaug River Basin, Connecticut; the Great Miami River Basin, Ohio; and the Eastern High Plains, Nebraska. This Professional Paper Chapter presents the hydrogeologic settings and documents the ground-water flow models for each of the NAWQA TANC regional study areas that began work in 2001. Methods used to compile retrospective data, determine contributing areas of public-supply wells, and characterize oxidation-reduction (redox) conditions also are presented. This Professional Paper Chapter provides the foundation for future susceptibility and vulnerability analyses in the TANC

  1. Temporal trends in nitrate and selected pesticides in Mid-Atlantic ground water.

    PubMed

    Debrewer, Linda M; Ator, Scott W; Denver, Judith M

    2008-01-01

    Evaluating long-term temporal trends in regional ground-water quality is complicated by variable hydrogeologic conditions and typically slow flow, and such trends have rarely been directly measured. Ground-water samples were collected over near-decadal and annual intervals from unconfined aquifers in agricultural areas of the Mid-Atlantic region, including fractured carbonate rocks in the Great Valley, Potomac River Basin, and unconsolidated sediments on the Delmarva Peninsula. Concentrations of nitrate and selected pesticides and degradates were compared among sampling events and to apparent recharge dates. Observed temporal trends are related to changes in land use and chemical applications, and to hydrogeology and climate. Insignificant differences in nitrate concentrations in the Great Valley between 1993 and 2002 are consistent with relatively steady fertilizer application during respective recharge periods and are likely related to drought conditions in the later sampling period. Detecting trends in Great Valley ground water is complicated by long open boreholes characteristic of wells sampled in this setting which facilitate significant ground-water mixing. Decreasing atrazine and prometon concentrations, however, reflect reported changes in usage. On the Delmarva Peninsula between 1988 and 2001, median nitrate concentrations increased 2 mg per liter in aerobic ground water, reflecting increasing fertilizer applications. Correlations between selected pesticide compounds and apparent recharge date are similarly related to changing land use and chemical application. Observed trends in the two settings demonstrate the importance of considering hydrogeology and recharge date along with changing land and chemical uses when interpreting trends in regional ground-water quality.

  2. Geohydrology of the Unconsolidated Valley-Fill Aquifer in the Meads Creek Valley, Schuyler and Steuben Counties, New York

    USGS Publications Warehouse

    Miller, Todd S.; Bugliosi, Edward F.; Reddy, James E.

    2008-01-01

    The Meads Creek valley encompasses 70 square miles of predominantly forested uplands in the upper Susquehanna River drainage basin. The valley, which was listed as a Priority Waterbody by the New York State Department of Environmental Conservation in 2004, is prone to periodic flooding, mostly in its downstream end, where development is occurring most rapidly. Hydraulic characteristics of the unconsolidated valley-fill aquifer were evaluated, and seepage rates in losing and gaining tributaries were calculated or estimated, in an effort to delineate the aquifer geometry and identify the factors that contribute to flooding. Results indicated that (1) Meads Creek gained about 61 cubic feet of flow per second (about 6.0 cubic feet per second per mile of stream channel) from ground-water discharge and inflow from tributaries in its 10.2-mile reach between the northernmost and southernmost measurement sites; (2) major tributaries in the northern part of the valley are not significant sources of recharge to the aquifer; and (3) major tributaries in the central and southern part of the valley provide recharge to the aquifer. The ground-water portion of streamflow in Meads Creek (excluding tributary inflow) was 11.3 cubic feet per second (ft3/s) in the central part of the valley and 17.2 ft3/s in the southern part - a total of 28.5 ft3/s. Ground-water levels were measured in 29 wells finished in unconfined deposits for construction of a potentiometric-surface map to depict directions of ground-water flow within the valley. In general, ground water flows from the edges of the valley toward Meads Creek and ultimately discharges to it. The horizontal hydraulic gradient for the entire 12-mile-long aquifer averages about 30 feet per mile, whereas the gradient in the southern fourth of the valley averages about half that - about 17 feet per mile. A water budget for the aquifer indicated that 28 percent of recharge was derived from precipitation that falls on the aquifer, 32

  3. Proposed work plan for the study of hydrologic effects of ground-water development in the Wet Mountain Valley, Colorado

    USGS Publications Warehouse

    Robson, S.G.

    1985-01-01

    Large-scale development of groundwater resources in the Wet Mountain Valley, Colorado, could adversely affect other water rights in the valley or in the Arkansas River Basin. Such infringement on senior water rights could severely limit development of additional water supplies in the valley. A work plan is presented for a study that is intended to define the hydrologic system in the valley better, and to determine the extent that the quantity and chemical quality of both surface and groundwater in the valley might be affected by proposed development. (USGS)

  4. Ground-Water Quality Data in the Southern Sacramento Valley, California, 2005 - Results from the California GAMA Program

    USGS Publications Warehouse

    Milby Dawson, Barbara J.; Bennett, George L.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 2,100 square-mile Southern Sacramento Valley study unit (SSACV) was investigated from March to June 2005 as part of the Statewide Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. This study was designed to provide a spatially unbiased assessment of raw ground-water quality within SSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 83 wells in Placer, Sacramento, Solano, Sutter, and Yolo Counties. Sixty-seven of the wells were selected using a randomized grid-based method to provide statistical representation of the study area. Sixteen of the wells were sampled to evaluate changes in water chemistry along ground-water flow paths. Four additional samples were collected at one of the wells to evaluate water-quality changes with depth. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator constituents), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, matrix spikes

  5. Water-resources appraisal of the Wet Mountain Valley, in parts of Custer and Fremont counties, Colorado

    USGS Publications Warehouse

    Londquist, C.J.; Livingston, R.K.

    1978-01-01

    The Wet Mountain Valley is an intermontane trough filled to a depth of at least 6,700 feet with unconsolidated deposits. Ground water occurs under both artesian and water-table conditions within the basin-fill aquifer and ground-water moverment is toward Grape and Texas Creeks. The depth to the water table is less than 10 feet in an area of about 40 square miles along the central part of the valley and is less than 100 feet in most of the remainder of the valley. Ground water stored in the upper 200 feet of saturated basin-fill sediments is estimated to total 1.5 million acre-feet. Yields greater than 50 gallons per minute generally can be expected from wells in the central part of the basin-fill aquifer, and yields less than 50 gallons per minute are generally reported from wells around the edge of the basin-fill aquifer. Yields of wells in the mountainous areas are generally less than 20 gallons per minute. Most streamflow occurs as a result of snowmelt runoff during June and July. The long-term annual runoff at seven stations ranges from an estimated 0.02 cubic foot per second per square mile to an estimated 1.17 cubic feet per second per square mile, generaly increasing with station altitude. Generalized annyal water budgets for two areas in the Wet Mountain Valley indicate that surface-water outflow is only 7 to 11 percent of the total water supply from precipitation and other sources. The remaining water is lost to the atmosphere by evapotranspiration. The quality of both the surface and ground water is generally within the recommended limits for drinking water set by the U.S. Public Health Service. (Woodard-USGS)

  6. Ground-water hydrology of Dugway Proving Ground and adjoining area, Tooele and Juab counties, Utah

    USGS Publications Warehouse

    Steiger, Judy I.; Freethey, Geoffrey W.

    2001-01-01

    Dugway Proving Ground (DPG) is a U.S. Department of Defense chemical, biological, and explosives testing facility in northwestern Utah.  The facility includes about 620 mi2 in Tooele County.  The town of Dugway, referred to as English Village, is the administrative headquarters for the military facility, the primary residential area, and community center.  The English Village area is located at the southern end of Skull Valley and is separated from the Fries area by a surface-water divide.  Most of the facility is located just to the west of Skull Valley in Government Creek Valley, Dugway Valley, and the Great Salt Lake Desert (fig. 1).

  7. Use of Superposition Models to Simulate Possible Depletion of Colorado River Water by Ground-Water Withdrawal

    USGS Publications Warehouse

    Leake, Stanley A.; Greer, William; Watt, Dennis; Weghorst, Paul

    2008-01-01

    According to the 'Law of the River', wells that draw water from the Colorado River by underground pumping need an entitlement for the diversion of water from the Colorado River. Consumptive use can occur through direct diversions of surface water, as well as through withdrawal of water from the river by underground pumping. To develop methods for evaluating the need for entitlements for Colorado River water, an assessment of possible depletion of water in the Colorado River by pumping wells is needed. Possible methods include simple analytical models and complex numerical ground-water flow models. For this study, an intermediate approach was taken that uses numerical superposition models with complex horizontal geometry, simple vertical geometry, and constant aquifer properties. The six areas modeled include larger extents of the previously defined river aquifer from the Lake Mead area to the Yuma area. For the modeled areas, a low estimate of transmissivity and an average estimate of transmissivity were derived from statistical analyses of transmissivity data. Aquifer storage coefficient, or specific yield, was selected on the basis of results of a previous study in the Yuma area. The USGS program MODFLOW-2000 (Harbaugh and others, 2000) was used with uniform 0.25-mile grid spacing along rows and columns. Calculations of depletion of river water by wells were made for a time of 100 years since the onset of pumping. A computer program was set up to run the models repeatedly, each time with a well in a different location. Maps were constructed for at least two transmissivity values for each of the modeled areas. The modeling results, based on the selected transmissivities, indicate that low values of depletion in 100 years occur mainly in parts of side valleys that are more than a few tens of miles from the Colorado River.

  8. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    USGS Publications Warehouse

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    A ground-water flow model was used in conjunction with particle tracking to evaluate ground-water vulnerability in Clark County, Washington. Using the particle-tracking program, particles were placed in every cell of the flow model (about 60,000 particles) and tracked backwards in time and space upgradient along flow paths to their recharge points. A new computer program was developed that interfaces the results from a particle-tracking program with a geographic information system (GIS). The GIS was used to display and analyze the particle-tracking results. Ground-water vulnerability was evaluated by selecting parts of the ground-water flow system and combining the results with ancillary information stored in the GIS to determine recharge areas, characteristics of recharge areas, downgradient impact of land use at recharge areas, and age of ground water. Maps of the recharge areas for each hydrogeologic unit illustrate the presence of local, intermediate, or regional ground-water flow systems and emphasize the three-dimensional nature of the ground-water flow system in Clark County. Maps of the recharge points for each hydrogeologic unit were overlaid with maps depicting aquifer sensitivity as determined by DRASTIC (a measure of the pollution potential of ground water, based on the intrinsic characteristics of the near-surface unsaturated and saturated zones) and recharge from on-site waste-disposal systems. A large number of recharge areas were identified, particularly in southern Clark County, that have a high aquifer sensitivity, coincide with areas of recharge from on-site waste-disposal systems, or both. Using the GIS, the characteristics of the recharge areas were related to the downgradient parts of the ground-water system that will eventually receive flow that has recharged through these areas. The aquifer sensitivity, as indicated by DRASTIC, of the recharge areas for downgradient parts of the flow system was mapped for each hydrogeologic unit. A number of

  9. Ground-Water Quality Data in the Santa Clara River Valley Study Unit, 2007: Results from the California GAMA Program

    USGS Publications Warehouse

    Montrella, Joseph; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 460-square-mile Santa Clara River Valley study unit (SCRV) was investigated from April to June 2007 as part of the statewide Priority Basin project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw ground water used for public water supplies within SCRV, and to facilitate a statistically consistent basis for comparing water quality throughout California. Fifty-seven ground-water samples were collected from 53 wells in Ventura and Los Angeles Counties. Forty-two wells were selected using a randomized grid-based method to provide statistical representation of the study area (grid wells). Eleven wells (understanding wells) were selected to further evaluate water chemistry in particular parts of the study area, and four depth-dependent ground-water samples were collected from one of the eleven understanding wells to help understand the relation between water chemistry and depth. The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, potential wastewater-indicator compounds, and pharmaceutical compounds), a constituent of special interest (perchlorate), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial constituents. Naturally occurring isotopes (tritium, carbon-13, carbon-14 [abundance], stable isotopes of hydrogen and oxygen in water, stable isotopes of nitrogen and oxygen in nitrate, chlorine-37, and bromine-81), and dissolved noble gases also were measured to help identify the source

  10. Temporal trends in nitrate and selected pesticides in mid-atlantic ground water

    USGS Publications Warehouse

    Debrewer, L.M.; Ator, S.W.; Denver, J.M.

    2008-01-01

    Evaluating long-term temporal trends in regional ground-water quality is complicated by variable hydrogeologic conditions and typically slow flow, and such trends have rarely been directly measured. Ground-water samples were collected over near-decadal and annual intervals from unconfined aquifers in agricultural areas of the Mid-Atlantic region, including fractured carbonate rocks in the Great Valley, Potomac River Basin, and unconsolidated sediments on the Delmarva Peninsula. Concentrations of nitrate and selected pesticides and degradates were compared among sampling events and to apparent recharge dates. Observed temporal trends are related to changes in land use and chemical applications, and to hydrogeology and climate. Insignificant differences in nitrate concentrations in the Great Valley between 1993 and 2002 are consistent with relatively steady fertilizer application during respective recharge periods and are likely related to drought conditions in the later sampling period. Detecting trends in Great Valley ground water is complicated by long open boreholes characteristic of wells sampled in this setting which facilitate significant ground-water mixing. Decreasing atrazine and prometon concentrations, however, reflect reported changes in usage. On the Delmarva Peninsula between 1988 and 2001, median nitrate concentrations increased 2 mg per liter in aerobic ground water, reflecting increasing fertilizer applications. Correlations between selected pesticide compounds and apparent recharge date are similarly related to changing land use and chemical application. Observed trends in the two settings demonstrate the importance of considering hydrogeology and recharge date along with, changing land and chemical uses when interpreting trends in regional ground-water quality. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  11. Use of water by bottom-land vegetation in lower Safford Valley, Arizona

    USGS Publications Warehouse

    Gatewood, Joseph S.; Robinson, T.W.; Colby, B.R.; Hem, J.D.; Halpenny, L.C.

    1950-01-01

    Lower Safford Valley, Graham County, Ariz., is an alluvial lowland plain 1 to 3 measurements, and the rate of ground-water inflow to the bottom-land area was determined on the basis of the hydraulic gradient, of the water table at. the time of each set of seepage measurements, the transmissibility of the aquifer, and the length of the reach. Although the methods differed greatly, the figure for use of ground water computed by each method was within 20 percent of the mean determined by averaging the results of all six methods. As a part of the investigation, the quality of the waters of lower Safford Valley was studied in detail. The quality-of-water studies included more than 5,000 analyses of surface and ground waters. These analyses showed that surface waters of the area contain 250 to about 6,000 parts per million of dissolved solids and that ground waters contain 200 to more than 10,000 parts per million. The waters of low dissolved-solids concentration contain mostly sodium or calcium and bicarbonate. Highly mineralized waters contain mostly sodium and chloride. Based on the results obtained by the six methods, the total use of water by vegetation during the 12-month period ending September 30, 1944, was 28,000 acre-feet in a total of 9,303 acres in the 46-mile reach of Gila River from Thatcher to Calva. As precipitation and runoff were subnormal in most of the period of the investigation, it is possible that the total use of water in other years may exceed 28,000 acre-feet. Of the total water used, 23,000 acre-feet was derived frown the ground-water reservoir, and the remainder was derived from precipitation on the area. Of the 23,000 acre-feet, more than 75 percent was used by saltcedar.

  12. Geology and ground-water resources of Goshen County, Wyoming; Chemical quality of the ground water

    USGS Publications Warehouse

    Rapp, J.R.; Visher, F.N.; Littleton, R.T.; Durum, W.H.

    1957-01-01

    siltstone, ranges in thickness from a knife edge to about 450 feet and yields water to domestic and stock wells from fractures and from lenses of sandstone. The Arikaree formation ranges in thickness from a knife edge to about 1,000 feet, and yields water to several domestic and stock wells in the northwestern part of the area. The Pliocene channel deposits, which probably do not exceed 25 feet in thickness, are not a source of water for wells in Goshen County. The upland deposits, which are mainly of Pleistocene age, generally are dry and do not serve as aquifers; however, test drilling revealed several deep, buried channels occupied by deposits which probably would yield moderate quantities of water to wells if a sufficient saturated thickness were penetrate The deposits of the third terrace, which are of Pleistocene age, range in thickness from a knife edge to about 210 feet and yield water to a large number of irrigation wells in the area. The flood-plain deposits, which are of Pleistocene and Recent age, range in thickness from a knife edge to about 200 feet. Those in the valley of the North Platte River yield abundant water to many large supply wells. The flood-plain deposits along the valley of Rawhide Creek consist mainly of fine-grained materials and yield large supplies of water to well only in the lower stretches of the creek valley near its confluence with the valley of the North Platte River. The deposits along the valleys of Horse and Bear Creeks generally are relatively thin and fine grained. In the vicinity of Ls grange, however, the deposits, which are about 45 feet thick, yield moderate, supplies of water to several irrigation wells. Other Recent deposits in the area--dune sand, loesslike deposits, and slope wash--generally are fine grained and relatively thin and, hence, are not important sources of ground water. The unconsolidated sand and gravel of the flood-plain and terrace deposits are the principal aquifers in the area. In some places

  13. A water-quality monitoring network for Vallecitos Valley, Alameda County, California

    USGS Publications Warehouse

    Farrar, C.D.

    1980-01-01

    A water-quality monitoring network is proposed to detect the presence of and trace the movement of radioisotopes in the hydrologic system in the vicinity of the Vallecitos Nuclear Center. The source of the radioisotopes is treated industrial wastewater from the Vallecitos Nuclear Center that is discharged into an unnamed tributary of Vallecitos Creek. The effluent infiltrates the alluvium along the stream course, percolates downward to the water table, and mixes with the native ground water in the subsurface. The average daily discharge of effluent to the hydrologic system in 1978 was about 100,000 gallons. In Vallecitos Valley, the Livermore Gravel and the overlying alluvium constitute the ground-water reservoir. There is no subsurface inflow from adjacent ground-water basins. Ground-water flow in the Vallecitos subbasin is toward the southwest.The proposed network consists of four surface-water sampling sites and six wells to sample the ground-water system. Samples collected monthly at each site and analyzed for tritium and for alpha, beta, and gamma radiation would provide adequate data for monitoring.

  14. Ground-water resources of Snohomish County, Washington

    USGS Publications Warehouse

    Newcomb, Reuben Clair

    1952-01-01

    Snohomish County comprises an east-west strip, six townships wide, extending 60 miles from the eastern shore of Puget Sound to the drainage divide of the Cascade Mountains. Topographically, the eastern two-thirds of the county varies frown hills and low mountain spurs at the west to the continuous high, maturely carved mountains of the Cascade Range at the east. The western third of the county lies in the Puget Sound lowland section: it is made up largely of unconsolidated deposits, as contrasted with the hard rocks of the mountain section. High-level deposits of glacial debris in some places form a transitional ramp from the lowlands to the mountain topography; in other places the transition is abrupt. The principal rivers--the Snohomish, Skykomish, Stillaguamish, and Sauk--drain westward and northwestward to Puget Sound. The Puget Sound lowland, with its extensions up the river valleys, is economically the important part. of the county. Within that part., ground-water development is of particular importance. The climate is equable and dominantly oceanic, with an average of about 32 h. of rainfall annually, but with a pronounced dry season from June to September. A mean annual temperature of 52 F, a growing season of more than 200 days, and a variety of good soils form a setting in which supplemental irrigation can at least double the average crop production. Within the coastal lowland, plateau segments 200 to 600 ft or more in altitude are separated by flat-bottomed, alluviated river gorges. The river flats in some eases represent the surface of as much as 500 to 600 ft of glacial and alluvial deposits backfilled into canyonlike arms of the aneestral drainage system. The plateau segments are formed of the till-smoothed remnants of bedrock or the tabular segments of Pleistocene deposits. The Pleistocene deposits consist, above sea level, of about 200 ft of Admiralty clay and as much as 1,000 ft of deposits of the Vashon glaciation. The latter include as much as

  15. Regional water table (2000) and ground-water-level changes in the Mojave River and the Morongo ground-water basins, southwestern Mojave Desert, California

    USGS Publications Warehouse

    Smith, Gregory A.

    2003-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems, and consequently, water availability. During 2000, the U. S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and, when compared with previous data, changes in ground-water levels. A water-level contour map was drawn using data from about 500 wells, providing coverage for most of the basins. Twenty-nine hydrographs show long-term (up to 70 years) water-level conditions throughout the basins, and 13 short-term (1996 to 2000) hydrographs show the effects of recharge and discharge along the Mojave River. In addition, a water-level-change map was compiled to compare 1998 and 2000 water-levels throughout the basins. In the Mojave River ground-water basins, water-level data showed little change from 1998 to 2000, with the exception of areas along the Mojave River. Water levels along the Mojave River were typically in decline or unchanged, with exceptions near the Hodge and the Lenwood outlet, where water levels rose in response to artificial recharge. The Morongo ground-water basin had virtually no change in water levels from 1998 to 2000, with the exception of Yucca Valley, where artificial recharge and ground-water withdrawal continues.

  16. Modeling of ground-water flow in subsurface Austin Chalk and Taylor marl in Ellis County, Texas, near the superconducting super collider site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, R.E.

    1993-02-01

    Numerical models are useful tools for developing an understanding of ground-water flow in sparsely characterized low-permeability aquifers. Finite-difference, cross-sectional models of Cretaceous chalk and marl formations near the Superconducting Super Collider (SSC) were constructed using MODFLOW to evaluate ground-water circulation paths and travel times. Weathered and fractured zones with enhanced permeability were included to assess the effect these features had on flow paths and times. Pump tests, slug tests, packer tests, core tests, and estimates were used to define hydraulic properties for model input. The model was calibrated with water-level data from monitor wells and from wire-line piezometers near amore » test shaft excavated by the SSC project. A ratio of vertical-to-horizontal permeability of 0.0085 was estimated through model calibration. A chalk-to-marl permeability ratio of 18 was needed to reproduce artesian head in a well completed in chalk beneath marl. Hydraulic head distributions and ground-water flow paths reflected local, intermediate, and regional flow systems with recharge beneath upland surface-water divides and discharge in valleys. Most of the flow (99%) occurred in the weathered zone, with average residence times of 5 to 10 years. Residence time in unweathered chalk bedrock was substantially longer, at an average of 1.7 Ma. As expected, the model demonstrated that deep and rapid ground-water circulation might occur in fracture zones. Particle paths calculated using MODPATH showed that ground-water travel times from recharge areas to the SSC subsurface facilities might be 20 to 60 years where flow is through fracture zones.« less

  17. Ground-water resources of Kansas

    USGS Publications Warehouse

    Moore, R.C.; Lohman, S.W.; Frye, J.C.; Waite, H.A.; McLaughlin, Thad G.; Latta, Bruce

    1940-01-01

    Importance of ground-water resources.—The importance of Kansas' ground-water resources may be emphasized from various viewpoints and in different ways. More than three-fourths of the public water supplies of Kansas are obtained from wells. In 1939, only 60 out of 375 municipal water supplies in Kansas, which is 16 percent, utilized surface waters. If the water wells of the cities and those located on all privately owned land in the state were suddenly destroyed, making it necessary to go to streams, springs, lakes (which are almost all artificial), and ponds for water supply domestic, stock, and industrial use, there would be almost incalculable difficulty and expense. If one could not go to springs, or dig new wells, or use any surface water derived from underground flow, much of Kansas would become uninhabitable.  These suggested conditions seem absurd, but they emphasize our dependence on ground-water resources. Fromm a quantitative standpoint, ground-water supplies existent in Kansas far outweigh surface waters that are present in the state at any one time. No exact figures for such comparison can be given, but, taking 384 square miles as the total surface water area of the state and estimating an average water depth of five feet, the computed volume of surface waters is found to be 1/100th of that of the conservatively estimated ground-water storage in Kansas. The latter takes account only of potable fresh water and is based on an assumed mean thickness of ten feet of reservoir having an effective porosity of twenty percent. It is to be remembered, however, that most of the surface water is run-off, which soon leaves the state, stream valleys being replenished from rainfall and flow from ground-water reservoirs. Most of the ground-water supplies, on the other hand, have existed for many years with almost no appreciable movement--in fact, it is reasonably certain that some well water drawn from beneath the surface of Kansas in 1940 represents rainfall in

  18. Ground water for irrigation in the Snake River Basin in Idaho

    USGS Publications Warehouse

    Mundorff, Maurice John; Crosthwaite, E.G.; Kilburn, Chabot

    1964-01-01

    discharge of some springs has more than doubled. Large-scale development of ground water began after World War II, and it is estimated that in 1959 about 1,500,000 acre-feet of ground water was pumped for irrigation of the 600,000 acres irrigated wholly with ground water in addition to a substantial amount of ground water pumped to supplement surface-water supplies. Ground water is also the principal source of supply for municipal, industrial, and domestic use. The water regimen in the Snake River basin is greatly influenced by the geology. The rocks forming the mountains are largely consolidated rocks of low permeability; however, a fairly deep and porous subsoil has formed on them by decay and disintegration of the parent rock. Broad intermontane valleys and basins are partly filled with alluvial sand and gravel. The subsoil and alluvial materials are utilized very little as a source of water supply but are important as seasonal ground-water reservoirs because they store water during periods of high rainfall and snowmelt. Discharge from these reservoirs maintains stream flow during periods of surface runoff. Because these aquifers are fairly thin, they drain rapidly and are considerably depleted at the end of each dry cycle. The plain and plateau areas and tributary valleys, on the other hand, are underlain chiefly by rocks of high permeability and porosity. These rocks, mostly basaltic lava flows and alluvial materials, constitute a reservoir which fluctuates only slightly from season to season. Large amounts' of water are withdrawn from them for irrigation and other uses, and discharge from the Snake Plain aquifer is an important part of the total flow of the Snake River downstream from Hagerman Valley. The ultimate source of ground water in the basin is precipitation on the basin. In the mountainous areas, aquifers mostly are recharged directly by precipitation. On the other hand, in the plains, lowlands, and valleys which contain the principal aquifers

  19. User interface for ground-water modeling: Arcview extension

    USGS Publications Warehouse

    Tsou, Ming‐shu; Whittemore, Donald O.

    2001-01-01

    Numerical simulation for ground-water modeling often involves handling large input and output data sets. A geographic information system (GIS) provides an integrated platform to manage, analyze, and display disparate data and can greatly facilitate modeling efforts in data compilation, model calibration, and display of model parameters and results. Furthermore, GIS can be used to generate information for decision making through spatial overlay and processing of model results. Arc View is the most widely used Windows-based GIS software that provides a robust user-friendly interface to facilitate data handling and display. An extension is an add-on program to Arc View that provides additional specialized functions. An Arc View interface for the ground-water flow and transport models MODFLOW and MT3D was built as an extension for facilitating modeling. The extension includes preprocessing of spatially distributed (point, line, and polygon) data for model input and postprocessing of model output. An object database is used for linking user dialogs and model input files. The Arc View interface utilizes the capabilities of the 3D Analyst extension. Models can be automatically calibrated through the Arc View interface by external linking to such programs as PEST. The efficient pre- and postprocessing capabilities and calibration link were demonstrated for ground-water modeling in southwest Kansas.

  20. Simulations of Ground-Water Flow and Particle Pathline Analysis in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    USGS Publications Warehouse

    Burow, Karen R.; Jurgens, Bryant C.; Kauffman, Leon J.; Phillips, Steven P.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Shallow ground water in the eastern San Joaquin Valley is affected by high nitrate and uranium concentrations and frequent detections of pesticides and volatile organic compounds (VOC), as a result of ground-water development and intensive agricultural and urban land use. A single public-supply well was selected for intensive study to evaluate the dominant processes affecting the vulnerability of public-supply wells in the Modesto area. A network of 23 monitoring wells was installed, and water and sediment samples were collected within the approximate zone of contribution of the public-supply well, to support a detailed analysis of physical and chemical conditions and processes affecting the water chemistry in the well. A three-dimensional, steady-state local ground-water-flow and transport model was developed to evaluate the age of ground water reaching the well and to evaluate the vulnerability of the well to nonpoint source input of nitrate and uranium. Particle tracking was used to compute pathlines and advective travel times in the ground-water flow model. The simulated ages of particles reaching the public-supply well ranged from 9 to 30,000 years, with a median of 54 years. The age of the ground water contributed to the public-supply well increased with depth below the water table. Measured nitrate concentrations, derived primarily from agricultural fertilizer, were highest (17 milligrams per liter) in shallow ground water and decreased with depth to background concentrations of less than 2 milligrams per liter in the deepest wells. Because the movement of water is predominantly downward as a result of ground-water development, and because geochemical conditions are generally oxic, high nitrate concentrations in shallow ground water are expected to continue moving downward without significant attenuation. Simulated long-term nitrate concentrations indicate that concentrations have peaked and will decrease in the public-supply well during the next 100 years

  1. A controlled experiment in ground water flow model calibration

    USGS Publications Warehouse

    Hill, M.C.; Cooley, R.L.; Pollock, D.W.

    1998-01-01

    Nonlinear regression was introduced to ground water modeling in the 1970s, but has been used very little to calibrate numerical models of complicated ground water systems. Apparently, nonlinear regression is thought by many to be incapable of addressing such complex problems. With what we believe to be the most complicated synthetic test case used for such a study, this work investigates using nonlinear regression in ground water model calibration. Results of the study fall into two categories. First, the study demonstrates how systematic use of a well designed nonlinear regression method can indicate the importance of different types of data and can lead to successive improvement of models and their parameterizations. Our method differs from previous methods presented in the ground water literature in that (1) weighting is more closely related to expected data errors than is usually the case; (2) defined diagnostic statistics allow for more effective evaluation of the available data, the model, and their interaction; and (3) prior information is used more cautiously. Second, our results challenge some commonly held beliefs about model calibration. For the test case considered, we show that (1) field measured values of hydraulic conductivity are not as directly applicable to models as their use in some geostatistical methods imply; (2) a unique model does not necessarily need to be identified to obtain accurate predictions; and (3) in the absence of obvious model bias, model error was normally distributed. The complexity of the test case involved implies that the methods used and conclusions drawn are likely to be powerful in practice.Nonlinear regression was introduced to ground water modeling in the 1970s, but has been used very little to calibrate numerical models of complicated ground water systems. Apparently, nonlinear regression is thought by many to be incapable of addressing such complex problems. With what we believe to be the most complicated synthetic

  2. Preliminary hydrogeologic assessment of a ground-water contamination area in Wolcott, Connecticut

    USGS Publications Warehouse

    Stone, J.R.; Casey, G.D.; Mondazzi, R.A.; Frick, T.W.

    1997-01-01

    Contamination of ground water by volatile organic compounds and inorganic constituents has been identified at a number of industrial sites in the Town of Wolcott, Connecticut. Contamination is also present at a municipal landfill in the City of Waterbury that is upgradient from the industrial sites in the local ground-water-flow system. The study area, which lies in the Western Highlands of Connecticut, is in the Mad River Valley, a tributary to the Naugatuck River. Geohydrologic units (aquifer materials) include unconsolidated glacial sediments (surficial materials) and fractured crystalline (metamorphic) bedrock. Surficial materials include glacial till, coarse-grained andfine-grained glacial stratified deposits, and postglacial floodplain alluvium and swamp deposits. The ground-water-flow system in the surficial aquifer is complex because the hydraulic properties of the surficial materials are highly variable. In the bedrock aquifer, ground water moves exclusively through fractures. Hydrologic characteristics of the crystalline bedrock-degree of confinement, hydraulic conductivity, storativity, and porosity-are poorly defined in the study area. Further study is needed to adequately assess ground-water flow and contaminant migration under current or past hydrologic conditions. All known water-supply wells in the study area obtain water from the bedrock aquifer. Twenty households in a hillside residential area on Tosun Road currently obtain drinking water from private wells tapping the bedrock aquifer. The extent of contamination in the bedrock aquifer and the potential for future contamination from known sources of contamination in the surficial aquifer is of concern to regulatory agencies. Previous investigations have identified ground-water contamination by volatile organic compounds at the Nutmeg Valley Road site area. Contamination has been associated with on-site disposal of heavy metals, chlorinated and non-chlorinated volatile organic compounds, and

  3. Hydrogeology and ground-water/surface water interactions in the Des Moines River valley, southwestern Minnesota, 1997-2001

    USGS Publications Warehouse

    Cowdery, Timothy K.

    2005-01-01

    Long-term withdrawals of water for public supplies may cause a net decrease in ground-water discharge to surface water. Water that does not evaporate, or that is not exported, is discharged to the Des Moines River but with changed water quality. Because ground-water and surface-water qualities in the study area are similar, the ground-water discharge probably has little effect on river water quality.

  4. Ground-water models: Validate or invalidate

    USGS Publications Warehouse

    Bredehoeft, J.D.; Konikow, Leonard F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  5. Application of nonlinear-regression methods to a ground-water flow model of the Albuquerque Basin, New Mexico

    USGS Publications Warehouse

    Tiedeman, C.R.; Kernodle, J.M.; McAda, D.P.

    1998-01-01

    This report documents the application of nonlinear-regression methods to a numerical model of ground-water flow in the Albuquerque Basin, New Mexico. In the Albuquerque Basin, ground water is the primary source for most water uses. Ground-water withdrawal has steadily increased since the 1940's, resulting in large declines in water levels in the Albuquerque area. A ground-water flow model was developed in 1994 and revised and updated in 1995 for the purpose of managing basin ground- water resources. In the work presented here, nonlinear-regression methods were applied to a modified version of the previous flow model. Goals of this work were to use regression methods to calibrate the model with each of six different configurations of the basin subsurface and to assess and compare optimal parameter estimates, model fit, and model error among the resulting calibrations. The Albuquerque Basin is one in a series of north trending structural basins within the Rio Grande Rift, a region of Cenozoic crustal extension. Mountains, uplifts, and fault zones bound the basin, and rock units within the basin include pre-Santa Fe Group deposits, Tertiary Santa Fe Group basin fill, and post-Santa Fe Group volcanics and sediments. The Santa Fe Group is greater than 14,000 feet (ft) thick in the central part of the basin. During deposition of the Santa Fe Group, crustal extension resulted in development of north trending normal faults with vertical displacements of as much as 30,000 ft. Ground-water flow in the Albuquerque Basin occurs primarily in the Santa Fe Group and post-Santa Fe Group deposits. Water flows between the ground-water system and surface-water bodies in the inner valley of the basin, where the Rio Grande, a network of interconnected canals and drains, and Cochiti Reservoir are located. Recharge to the ground-water flow system occurs as infiltration of precipitation along mountain fronts and infiltration of stream water along tributaries to the Rio Grande; subsurface

  6. Ground-Water Quality Data in the Southeast San Joaquin Valley, 2005-2006 - Results from the California GAMA Program

    USGS Publications Warehouse

    Burton, Carmen A.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,800 square-mile Southeast San Joaquin Valley study unit (SESJ) was investigated from October 2005 through February 2006 as part of the Priority Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The SESJ study was designed to provide a spatially unbiased assessment of raw ground-water quality within SESJ, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 99 wells in Fresno, Tulare, and Kings Counties, 83 of which were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 16 of which were sampled to evaluate changes in water chemistry along ground-water flow paths or across alluvial fans (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine, and 1,2,3-trichloropropane), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected at approximately 10 percent of the wells, and the results

  7. Simulation of ground-water flow in the St. Peter aquifer in an area contaminated by coal-tar derivatives, St. Louis Park, Minnesota. Water Resources Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, D.L.; Stark, J.R.

    1990-01-01

    A model constructed to simulate ground-water flow in part of the Prairie du Chien-Jordan and St. Peter aquifers, St. Louis Park, Minnesota, was used to test hypotheses about the movement of ground water contaminated with coal-tar derivatives and to simulate alternatives for reducing the downgradient movement of contamination in the St. Peter aquifer. The model, constructed for a previous study, was applied to simulate the effects of current ground-water withdrawals on the potentiometric surface of the St. Peter aquifer. Model simulations predict that the multiaquifer wells have the potential to limit downgradient migration of contaminants in the St. Peter aquifermore » caused by cones of depression created around the multiaquifer wells. Differences in vertical leakage to the St. Peter aquifer may exist in areas of bedrock valleys. Model simulations indicate that these differences are not likely to affect significantly the general patterns of ground-water flow.« less

  8. Hypothetical Modeling of Redox Conditions Within a Complex Ground-Water Flow Field in a Glacial Setting

    USGS Publications Warehouse

    Feinstein, Daniel T.; Thomas, Mary Ann

    2009-01-01

    This report describes a modeling approach for studying how redox conditions evolve under the influence of a complex ground-water flow field. The distribution of redox conditions within a flow system is of interest because of the intrinsic susceptibility of an aquifer to redox-sensitive, naturally occurring contaminants - such as arsenic - as well as anthropogenic contaminants - such as chlorinated solvents. The MODFLOW-MT3D-RT3D suite of code was applied to a glacial valley-fill aquifer to demonstrate a method for testing the interaction of flow patterns, sources of reactive organic carbon, and availability of electron acceptors in controlling redox conditions. Modeling results show how three hypothetical distributions of organic carbon influence the development of redox conditions in a water-supply aquifer. The distribution of strongly reduced water depends on the balance between the rate of redox reactions and the capability of different parts of the flow system to transmit oxygenated water. The method can take account of changes in the flow system induced by pumping that result in a new distribution of reduced water.

  9. Ground Water Modeling Research

    EPA Pesticide Factsheets

    EPA is supporting region, state, and tribal partners at Superfund sites and brownfields to develop new methods to better characterize, monitor, and treat ground water contamination; in order to protect drinking water, surface water, and indoor air.

  10. Chlorine-36 tracing of salinity sources in the Dry Valleys of Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Carlson, Catherine A.; Phillips, Fred M.; Elmore, David; Bentley, Harold W.

    1990-02-01

    Chlorine-36 was used to trace the origins of salts in six saline lakes in the Dry Valleys of Southern Victoria Land, Antarctica. Characteristic 36Cl signatures were estimated for the various potential chloride sources, which include atmospheric deposition, rock weathering, seawater, and deep ground water. 36Cl /Cl ratios were measured in natural waters and salts from the Dry Valleys. Dilute lake waters (Cl - < 100 mg/l) were found to have 36Cl /Cl ratios in the range 100 × 10 -15 to 1,700 × 10 -15, whereas saline waters (Cl - > 1000 mg/l) had ratios in the range 9 × 10 -15 to 40 × 10 -15. Simple mixing models were employed to quantify the relative contributions of the various chloride sources to Lake Vanda and Don Juan Pond. These results show that Lake Vanda has received its chloride from both deep ground water and the Onyx River. Don Juan Pond has received nearly all its chloride from deep ground water, probably ultimately from rock-water interaction. Deep ground water is the principal source of chloride to the lakes of Wright Valley. However, preliminary data suggest that marine-derived salts or relict sea water may be a significant source of chloride to the lakes of Taylor Valley, implying a possible recent marine invasion that did not affect Wright Valley.

  11. Hydrogeology and water quality of the Nutmeg Valley area, Wolcott and Waterbury, Connecticut

    USGS Publications Warehouse

    Mullaney, J.R.; Mondazzi, R.A.; Stone, J.R.

    1999-01-01

    Hydrogeologic investigations in an industrial area in Wolcott and Waterbury, Connecticut, have provided information on the geology, ground-water flow, and water quality of the area. Ground-water contamination by volatile organic compounds was discovered in the 1980?s in the Nutmeg Valley area, where approximately 43 industries and 25 residences use ground water for industrial and domestic supply. Unconsolidated surficial deposits, including glacial stratified deposits and till, are more than 85 feet thick and are interconnected with the underlying bedrock. The horizontal hydraulic conductivity of the stratified deposits ranges from 0.8 to 21 feet per day. Water in the surficial aquifer generally flows toward discharge points along Old Tannery Brook and the Mad River. Water in the bedrock aquifer flows through low-angle unroofing joints, high-angle fractures, and foliation-parallel fractures. Most high-angle water-bearing fractures strike north with an easterly dip. Most of the water pumped from bedrock wells in the study area comes from shallow fractures that are probably in hydraulic connection with the surficial aquifer. Short-circuit flow between fracture zones in wells is a likely pathway for contaminant transport. During periods of low streamflow, only a small amount of ground water discharges directly to Old Tannery Brook or to the Mad River. The amount of discharge is on the same order of magnitude as the estimated ground-water withdrawals. In northern parts of the valley bottom within the study area, downward vertical hydraulic gradients were present between wells in the surficial and bedrock aquifers. In southern parts of the valley, however, vertical gradients were upward from the bedrock to the surficial aquifer. Vertical gradients can change seasonally in response to different amounts of ground-water recharge and to stresses caused by ground-water withdrawals, which can in turn facilitate the spread of contamination. Vapor-diffusion samplers were

  12. Annual summary of ground-water conditions in Arizona, spring 1978 to spring 1979

    USGS Publications Warehouse

    ,

    1980-01-01

    In 1978 the withdrawal of ground water was about 4.2 million acre-feet in Arizona, and slightly more than 3.4 million acre-feet of ground water was used for the irrigation of crops. The amount of ground water withdrawn in 1978 decreased more than 1.2 million acre-feet from the amount withdrawn in 1977 and is the smallest amount withdrawn since the mid-1950 's except in 1966. Nearly all the decrease was in the amount of ground water used for irrigation in the Basin and Range lowlands province. Possible causes for the decrease include above-average precipitation, greater availability of surface water, and some comparatively new conservation practices. The Salt River Valley and the lower Santa Cruz area are the largest agricultural areas in the State; the amount of ground water withdrawn for agricultural use in the Salt River Valley and the lower Santa Cruz area decreased nearly 613,000 and 291,000 acre-feet, respectively, between 1977 and 1978. The report contains two small-scale maps of Arizona that show (1) pumpage of ground water by areas and (2) the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth to water in selected wells in spring 1979, and change in water level in selected wells from 1974 to 1979. The brief text that accompanies the maps summarizes the current ground-water conditions in the State. (USGS)

  13. Water availability and land subsidence in the Central Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Faunt, Claudia C.; Sneed, Michelle; Traum, Jon; Brandt, Justin T.

    2016-05-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007-2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  14. Effects of irrigation pumping on the ground-water system in Newton and Jasper Counties, Indiana

    USGS Publications Warehouse

    Bergeron, Marcel P.

    1981-01-01

    Flow in the ground-water system in Newton and Jasper Counties, Indiana, was simulated in a quasi-three-dimensional model in a study of irrigation use of ground water in the two counties. The ground-water system consists of three aquifers: (1) a surficial coarse sand aquifer known as the Kankakee aquifer, (2) a limestone and dolomite bedrock aquifer, and (3) a sand and gravel bedrock valley aquifer. Irrigation pumping, derived primarily from the bedrock, was estimated to be 34.8 million gallons per day during peak irrigation in 1977. Acreage irrigated with ground water is estimated to be 6,200 acres. A series of model experiments was used to estimate the effects of irrigation pumping on ground-water levels and streamflow. Model analysis indicates that a major factor controlling drawdown due to pumping in the bedrock aquifer are the variations in thickness and in vertical hydraulic conductivity in a semiconfining unit overlying the bedrock. Streamflow was not significantly reduced by hypothetical withdrawals of 12.6 million gallons per day from the bedrock aquifer and 10.3 million gallons per day in the Kankakee aquifer. Simulation of water-level recovery after irrigation pumping indicated that a 5-year period of alternating between increasing pumping and recovery will not cause serious problems of residual drawdown or ground-water mining. 

  15. Chemical quality of ground water in Salt Lake Valley, Utah, 1969-85

    USGS Publications Warehouse

    Waddell, K.M.; Seiler, R.L.; Solomon, D.K.

    1986-01-01

    During 1979-84, 35 wells completed in the principal aquifer in the Salt Lake Valley, Utah, that had been sampled during 1962-67 were resampled to determine if water quality changes had occurred. The dissolved solids concentration of the water from 13 of the wells has increased by more than 10% since 1962-67. Much of the ground water between the mouth of Bingham Canyon and the Jordan River about 10 mi to the east has been contaminated by seepage from reservoirs and evaporation ponds associated with mining activities. Many domestic and irrigation wells yield water with concentrations of dissolved solids that exceed 2,000 mg/L. A reservoir in the mouth of Bingham Canyon contains acidic waters with a pH of 3 to 4 and concentrations of dissolved solids ranging from 43,000 to 68,000 mg/L. Seepage from evaporation ponds, which are about 4.5 mi east of the reservoir, also is acidic and contains similar concentrations of dissolved solids. East of the reservoir, where a steep hydraulic gradient exists along the mountain front, the velocities of contaminant movement were estimated to range from about 680-1,000 ft/yr. Groundwater underlying part of the community of South Salt Lake near the Jordan River has been contaminated by leachate from uranium-mill tailings. The major effect of the leachate from the tailings of the Vitro Chemical Co. on the shallow unconfined aquifer downgradient from the tailings was the contribution of measurable quantities of dissolved solids, chloride, sulfate, iron, and uranium. The concentration of dissolved solids in uncontaminated water was 1,650 mg/L, whereas downgradient from the tailings area, the concentrations ranged from 2,320-21,000 mg/L. The maximum volume of contaminated water was estimated to be 7,800 acre-ft. The major effect of the leachate from the Vitro tailings on the confined aquifer was the contribution of measurable quantities of dissolved solids, chloride, sulfate, and iron. The concentration of dissolved solids upgradient from

  16. The geochemical evolution of riparian ground water in a forested piedmont catchment

    USGS Publications Warehouse

    Burns, Douglas A.; Plummer, Niel; McDonnell, Jeffrey J.; Busenberg, Eurybiades; Casile, Gerolamo C.; Kendall, Carol; Hooper, Richard P.; Freer, James E.; Peters, Norman E.; Beven, Keith; Schlosser, Peter

    2003-01-01

    The principal weathering reactions and their rates in riparian ground water were determined at the Panola Mountain Research Watershed (PMRW) near Atlanta, Georgia. Concentrations of major solutes were measured in ground water samples from 19 shallow wells completed in the riparian (saprolite) aquifer and in one borehole completed in granite, and the apparent age of each sample was calculated from chloroflourocarbons and tritium/helium-3 data. Concentrations of SiO2, Na+, and Ca2+ generally increased downvalley and were highest in the borehole near the watershed outlet. Strong positive correlations were found between the concentrations of these solutes and the apparent age of ground water that was modern (zero to one year) in the headwaters, six to seven years midway down the valley, and 26 to 27 years in the borehole, located ∼500 m downstream from the headwaters. Mass-balance modeling of chemical evolution showed that the downstream changes in ground water chemistry could be largely explained by weathering of plagioclase to kaolinite, with possible contributions from weathering of K-feldspar, biotite, hornblende, and calcite. The in situ rates of weathering reactions were estimated by combining the ground water age dates with geochemical mass-balance modeling results. The weathering rate was highest for plagioclase (∼6.4 μmol/L/year), but could not be easily compared with most other published results for feldspar weathering at PMRW and elsewhere because the mineral-surface area to which ground water was exposed during geochemical evolution could not be estimated. However, a preliminary estimate of the mineral-surface area that would have contacted the ground water to provide the observed solute concentrations suggests that the plagioclase weathering rate calculated in this study is similar to the rate calculated in a previous study at PMRW, and three to four orders of magnitude slower than those published in previous laboratory studies of feldspar weathering

  17. Predicted water-level and water-quality effects of artificial recharge in the Upper Coachella Valley, California, using a finite-element digital model

    USGS Publications Warehouse

    Swain, Lindsay A.

    1978-01-01

    From 1936 to 1974, water levels declined more than 100 feet in the Palm Springs area and 60 feet in the Palm Desert area of the upper Coachella Valley, Calif. Water from the Colorado River Aqueduct is presently being recharged to the basin. The dissolved-solids concentration of native ground water in the recharge area is about 210 mg/liter and that of recharge water ranges from 600 to 750 mg/liter. A finite-element model indicates that without recharge the 1974 water levels in the Palm Springs area will decline 200 feet by the year 2000 because of pumpage. If the aquifer is recharged at a rate from about 7 ,500 acre-feet per year in 1973 increasing to 61,200 acre-feet per year in 1990 and thereafter, the water level in the Palm Springs area will decline about 20 feet below the 1974 level by 1991 and recover to the 1974 level by 2000. The solute-transport finite-element model of the recharge area indicates that the artificial recharge plume (bounded by the 300-mg/liter line) will move about 1.1 miles downgradient of the recharge ponds by 1981 and about 4.5 miles from the ponds by 2000. 

  18. Response to memorandum by Rowley and Dixon regarding U.S. Geological Survey report titled "Characterization of Surface-Water Resources in the Great Basin National Park Area and Their Susceptibility to Ground-Water Withdrawals in Adjacent Valleys, White Pine County, Nevada"

    USGS Publications Warehouse

    Prudic, David E.

    2006-01-01

    Applications pending for permanent permits to pump large quantities of ground water in Spring and Snake Valleys adjacent to Great Basin National Park (the Park) prompted the National Park Service to request a study by the U.S. Geological Survey to evaluate the susceptibility of the Park's surface-water resources to pumping. The result of this study was published as U.S. Geological Survey Scientific Investigations Report 2006-5099 'Characterization of Surface-Water Resources in the Great Basin National Park Area and Their Susceptibility to Ground-Water Withdrawals in Adjacent Valleys, White Pine County, Nevada,' by P.E. Elliott, D.A. Beck, and D.E. Prudic. That report identified areas within the Park where surface-water resources are susceptible to ground-water pumping; results from the study showed that three streams and several springs near the eastern edge of the Park were susceptible. However, most of the Park's surface-water resources likely would not be affected by pumping because of either low-permeability rocks or because ground water is sufficiently deep as to not be directly in contact with the streambeds. A memorandum sent by Peter D. Rowley and Gary L. Dixon, Consulting Geologists, to the Southern Nevada Water Authority (SNWA) on June 29, 2006 was critical of the report. The memorandum by Rowley and Dixon was made available to the National Park Service, the U.S. Geological Survey, and the public during the Nevada State Engineer's 'Evidentiary Exchange' process for the recent hearing on applications for ground-water permits by SNWA in Spring Valley adjacent to Great Basin National Park. The U.S. Geological Survey was asked by the National Park Service to assess the validity of the concerns and comments contained in the Rowley and Dixon memorandum. An Administrative Letter Report responding to Rowley and Dixon's concerns and comments was released to the National Park Service on October 30, 2006. The National Park Service subsequently requested that the

  19. Monitoring the hydrologic system for potential effects of geothermal and ground-water development in the Long Valley caldera, Mono County, California, U.S.A

    USGS Publications Warehouse

    Farrar, Christopher; Lyster, Daniel

    1990-01-01

    In the early 1980's, renewed interest in the geothermal potential of the Long Valley caldera, California, highlighted the need to balance the benefits of energy development with the established recreational activities of the area. The Long Valley Hydrologic Advisory Committee, formed in 1987, instituted a monitoring program to collect data during the early stages of resource utilization to evaluate potential effects on the hydrologic system. Early data show declines in streamflow, spring flow, and ground-water levels caused by 6 years of below-average precipitation. Springs in the Hot Creek State Fish Hatchery area discharge water that is a mixture of nonthermal and hydrothermal components. Possible sources of nonthermal water have been identified by comparing deuterium concentrations in streams and springs. The equivalent amount of undiluted thermal water discharged from the springs was calculated on the basis of boron and chloride concentrations. Quantifying the thermal and nonthermal fractions of the total flow may allow researchers to assess changes in flow volume or temperature of the springs caused by groundwater or geothermal development.

  20. Monitoring the hydrologic system for potential effects of geothermal and ground-water development in the Long Valley caldera, Mono County, California, U.S.A.

    USGS Publications Warehouse

    Farrar, C.D.; Lyster, D. L.

    1990-01-01

    In the early 1980's, renewed interest in the geothermal potential of the Long Valley caldera, California, highlighted the need to balance the benefits of energy development with the established recreational activities of the area. The Long Valley Hydrologic Advisory Committee, formed in 1987, instituted a monitoring program to collect data during the early stages of resource utilization to evaluate potential effects on the hydrologic system. Early data show declines in streamflow, spring flow, and ground-water levels caused by 6 years of below-average precipitation. Springs in the Hot Creek State Fish Hatchery area discharge water that is a mixture of nonthermal and hydrothermal components. Possible sources of nonthermal water have been identified by comparing deuterium concentrations in streams and springs. The equivalent amount of undiluted thermal water discharged from the springs was calculated on the basis of boron and chloride concentrations. Quantifying the thermal and nonthermal fractions of the total flow may allow researchers to assess changes in flow volume or temperature of the springs caused by groundwater or geothermal development.

  1. Ground-water provinces of southern Rhodesia

    USGS Publications Warehouse

    Dennis, Philip Eldon; Hindson, L.L.

    1964-01-01

    Ground-water development, utilization, and occurrence in nine ground-water provinces of Southern Rhodesia are summarized in this report. Water obtained from drilled wells for domestic and stock use has played an important part in the social and economic development of Southern Rhodesia from the beginnings of European settlement to the present. Most of the wells obtain water from fractures and weathered zones in crystalline rocks, before recently, there has been an interest in the possibility of obtaining water for irrigation from wells. Studies of the authors indicate that quantities of water sufficient for irrigation can be obtained from alluvial sediments in the S'abi Valley, from Kalahari sands in the western part of the country, are perhaps from aquifers in other areas. The ground-water provinces fall into two groups--those in the crystalline rocks and those in the noncrystalline rocks. Historically, the wells in crystalline rocks, especially the Gold belts province and the Intrusive granites province, have played a major role in supplying water for the needs of man. These provinces, together with two other less important crystalline rock provinces, form the broad arch which constitutes the central core of the country. The noncrystalline rocks overlie and flank the crystalline rocks to the southeast, northwest, and north. The noncrystalline rock provinces, especially the Alluvium-Kalahari province, contain the most productive or potentially productive ground-water reservoirs in Southern Rhodesia and offer promise of supplying water for irrigation and for other purposes.

  2. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    USGS Publications Warehouse

    Harvey, J.W.; Newlin, J.T.; Krupa, S.L.

    2006-01-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d-1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  3. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    NASA Astrophysics Data System (ADS)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  4. Questa Baseline and Premining Ground-Water Quality Investigation 18. Characterization of Brittle Structures in the Questa Caldera and Their Potential Influence on Bedrock Ground-Water Flow, Red River Valley, New Mexico

    USGS Publications Warehouse

    Caine, Jonathan S.

    2006-01-01

    This report presents a field-based characterization of fractured and faulted crystalline bedrock in the southern portion of the Questa caldera and its margin. The focus is (1) the identification and description of brittle geological structures and (2) speculation on the potential effects and controls that these structures might have on the potential fluxes of paleo to present-day ground water in relation to natural or mining-related metal and acid loads to surface and ground water. The entire study area is pervasively jointed with a few distinctive patterns such as orthogonal, oblique orthogonal, and conjugate joint sets. Joint intensity, the number of joints measured per unit line length, is high to extreme. Three types of fault zones are present that include partially silicified, low- and high-angle faults with well-developed damage zones and clay-rich cores and high-angle, unsilicified open faults. Conceptually, the joint networks can be thought of as providing the background porosity and permeability structure of the bedrock aquifer system. This background is cut by discrete entities such as the faults with clay-rich cores and open faults that may act as important hydrologic heterogeneities. The southern caldera margin runs parallel to the course of the Red River Valley, whose incision has left an extreme topographic gradient at high angles to the river. Many of the faults and fault intersections run parallel to this assumed hydraulic gradient; thus, these structures have great potential to provide paleo and present-day, discrete and anisotropic pathways for solute transport within the otherwise relatively low porosity and permeability bedrock background aquifer system. Although brittle fracture networks and faults are pervasive and complex, simple Darcy calculations are used to estimate the hydraulic conductivity and potential ground-water discharges of the bedrock aquifer, caldera margin, and other faults in order to gain insight into the potential

  5. Ground-water movement and nitrate in ground water, East Erda area, Tooele County, Utah, 1997-2000

    USGS Publications Warehouse

    Susong, D.D.

    2005-01-01

    Nitrate was discovered in ground water in the east Erda area of Tooele County, Utah, in 1994. The U.S. Geological Survey, in cooperation with Tooele County, investigated the ground-water flow system and water quality in the eastern part of Tooele Valley to determine (1) the vertical and horizontal distribution of nitrate, (2) the direction of movement of the nitrate contamination, and (3) the source of the nitrate. The potentiometric surface of the upper part of the basin-fill aquifer indicates that the general direction of ground-water flow is to the northwest, the flow system is complex, and there is a ground-water mound probably associated with springs. The spatial distribution of nitrate reflects the flow system with the nitrate contamination split into a north and south part by the ground-water mound. The distribution of dissolved solids and sulfate in ground water varies spatially. Vertical profiles of nitrate in water from selected wells indicate that nitrate contamination generally is in the upper part of the saturated zone and in some wells has moved downward. Septic systems, mining and smelting, agriculture, and natural sources were considered to be possible sources of nitrate contamination in the east Erda area. Septic systems are not the source of nitrate because water from wells drilled upgradient of all septic systems in the area had elevated nitrate concentrations. Mining and smelting activity are a possible source of nitrate contamination but few data are available to link nitrate contamination with mining sites. Natural and agricultural sources of nitrate are present east of the Erda area but few data are available about these sources. The source(s) of nitrate in the east Erda area could not be clearly delineated in spite of considerable effort and expenditure of resources.

  6. A compartmental-spatial system dynamics approach to ground water modeling.

    PubMed

    Roach, Jesse; Tidwell, Vince

    2009-01-01

    High-resolution, spatially distributed ground water flow models can prove unsuitable for the rapid, interactive analysis that is increasingly demanded to support a participatory decision environment. To address this shortcoming, we extend the idea of multiple cell (Bear 1979) and compartmental (Campana and Simpson 1984) ground water models developed within the context of spatial system dynamics (Ahmad and Simonovic 2004) for rapid scenario analysis. We term this approach compartmental-spatial system dynamics (CSSD). The goal is to balance spatial aggregation necessary to achieve a real-time integrative and interactive decision environment while maintaining sufficient model complexity to yield a meaningful representation of the regional ground water system. As a test case, a 51-compartment CSSD model was built and calibrated from a 100,0001 cell MODFLOW (McDonald and Harbaugh 1988) model of the Albuquerque Basin in central New Mexico (McAda and Barroll 2002). Seventy-seven percent of historical drawdowns predicted by the MODFLOW model were within 1 m of the corresponding CSSD estimates, and in 80% of the historical model run years the CSSD model estimates of river leakage, reservoir leakage, ground water flow to agricultural drains, and riparian evapotranspiration were within 30% of the corresponding estimates from McAda and Barroll (2002), with improved model agreement during the scenario period. Comparisons of model results demonstrate both advantages and limitations of the CCSD model approach.

  7. Regression models of monthly water-level change in and near the Closed Basin Division of the San Luis Valley, south-central Colorado

    USGS Publications Warehouse

    Watts, Kenneth R.

    1995-01-01

    The Bureau of Reclamation is developing a water-resource project, the Closed Basin Division, in the San Luis Valley of south-central Colorado that is designed to salvage unconfined ground water that currently is discharged as evapotranspiration. The water table in and near the 130,000-acre Closed Basin Division area will be lowered by an annual withdrawal of as much as 100,000 acre-feet of ground water from the unconfined aquifer. The legislation authorizing the project limits resulting drawdown of the water table in preexisting irrigation and domestic wells outside the Closed Basin Division to a maximum of 2 feet. Water levels in the closed basin in the northern part of the San Luis Valley historically have fluctuated more than 2 feet in response to water-use practices and variation of climatically controlled recharge and discharge. Declines of water levels in nearby wells that are caused by withdrawals in the Closed Basin Division can be quantified if water-level fluctuations that result from other water-use practices and climatic variations can be estimated. This study was done to evaluate water-level change at selected observation wells in and near the Closed Basin Division. Regression models of monthly water-level change were developed to predict monthly water-level change in 46 selected observation wells. Predictions of monthly water-level change are based on one or more of the following: elapsed time, cosine and sine functions with an annual period, streamflow depletion of the Rio Grande, electrical use for agricultural purposes, runoff into the closed basin, precipitation, and mean air temperature. Regression models for five of the wells include only an intercept term and either an elapsed-time term or terms determined by the cosine and sine functions. Regression models for the other 41 wells include 1 to 4 of the 5 other variables, which can vary from month to month and from year to year. Serial correlation of the residuals was detected in 24 of the

  8. Optimization of ground-water withdrawal in the lower Fox River communities, Wisconsin

    USGS Publications Warehouse

    Walker, J.F.; Saad, D.A.; Krohelski, J.T.

    1998-01-01

    Pumping from closely spaced wells in the Central Brown County area and the Fox Cities area near the north shore of Lake Winnebago has resulted in the formation of deep cones of depression in the vicinity of the two pumping centers. Water-level measurements indicate there has been a steady decline in water levels in the vicinity of these two pumping centers for the past 50 years. This report describes the use of ground-water optimization modeling to efficiently allocate the ground-water resources in the Lower Fox River Valley. A 3-dimensional ground-water flow model was used along with optimization techniques to determine the optimal withdrawal rates for a variety of management alternatives. The simulations were conducted separately for the Central Brown County area and the Fox Cities area. For all simulations, the objective of the optimization was to maximize total ground-water withdrawals. The results indicate that ground water can supply nearly all of the projected 2030 demand for Central Brown County municipalities if all of the wells are managed (including the city of Green Bay), 8 new wells are installed, and the water-levels are allowed to decline to 100 ft below the bottom of the confining unit. Ground water can supply nearly all of the projected 2030 demand for the Fox Cities if the municipalities in Central Brown County convert to surface water; if Central Brown County municipalities follow the optimized strategy described above, there will be a considerable shortfall of available ground water for the Fox Cities communities. Relaxing the water-level constraint in a few wells, however, would likely result in increased availability of water. In all cases examined, optimization alternatives result in a rebound of the steady-state water levels due to projected 2030 withdrawal rates to levels at or near the bottom of the confining unit, resulting in increased well capacity. Because the simulations are steady-state, if all of the conditions of the model remain

  9. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  10. The practical use of simplicity in developing ground water models

    USGS Publications Warehouse

    Hill, M.C.

    2006-01-01

    The advantages of starting with simple models and building complexity slowly can be significant in the development of ground water models. In many circumstances, simpler models are characterized by fewer defined parameters and shorter execution times. In this work, the number of parameters is used as the primary measure of simplicity and complexity; the advantages of shorter execution times also are considered. The ideas are presented in the context of constructing ground water models but are applicable to many fields. Simplicity first is put in perspective as part of the entire modeling process using 14 guidelines for effective model calibration. It is noted that neither very simple nor very complex models generally produce the most accurate predictions and that determining the appropriate level of complexity is an ill-defined process. It is suggested that a thorough evaluation of observation errors is essential to model development. Finally, specific ways are discussed to design useful ground water models that have fewer parameters and shorter execution times.

  11. Water availability and land subsidence in the Central Valley, California, USA

    USGS Publications Warehouse

    Faunt, Claudia; Sneed, Michelle; Traum, Jonathan A.; Brandt, Justin

    2016-01-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  12. Numerical simulation of vertical ground-water flux of the Rio Grande from ground-water temperature profiles, central New Mexico

    USGS Publications Warehouse

    Bartolino, James R.; Niswonger, Richard G.

    1999-01-01

    An important gap in the understanding of the hydrology of the Middle Rio Grande Basin, central New Mexico, is the rate at which water from the Rio Grande recharges the Santa Fe Group aquifer system. Several methodologies-including use of the Glover-Balmer equation, flood pulses, and channel permeameters- have been applied to this problem in the Middle Rio Grande Basin. In the work presented here, ground-water temperature profiles and ground-water levels beneath the Rio Grande were measured and numerically simulated at four sites. The direction and rate of vertical ground-water flux between the river and underlying aquifer was simulated and the effective vertical hydraulic conductivity of the sediments underlying the river was estimated through model calibration. Seven sets of nested piezometers were installed during July and August 1996 at four sites along the Rio Grande in the Albuquerque area, though only four of the piezometer nests were simulated. In downstream order, these four sites are (1) the Bernalillo site, upstream from the New Mexico State Highway 44 bridge in Bernalillo (piezometer nest BRN02); (2) the Corrales site, upstream from the Rio Rancho sewage treatment plant in Rio Rancho (COR01); (3) the Paseo del Norte site, upstream from the Paseo del Norte bridge in Albuquerque (PDN01); and (4) the Rio Bravo site, upstream from the Rio Bravo bridge in Albuquerque (RBR01). All piezometers were completed in the inner-valley alluvium of the Santa Fe Group aquifer system. Ground-water levels and temperatures were measured in the four piezometer nests a total of seven times in the 24-month period from September 1996 through August 1998. The flux between the surface- and ground-water systems at each of the field sites was quantified by one-dimensional numerical simulation of the water and heat exchange in the subsurface using the heat and water transport model VS2DH. Model calibration was aided by the use of PEST, a model-independent computer program that uses

  13. Geologic, water-chemistry, and hydrologic data from multiple-well monitoring sites and selected water-supply wells in the Santa Clara Valley, California, 1999-2003

    USGS Publications Warehouse

    Newhouse, M.W.; Hanson, R.T.; Wentworth, C.M.; Everett, Rhett; Williams, C.F.; Tinsley, J.C.; Noce, T.E.; Carkin, B.A.

    2004-01-01

    To better identify the three-dimensional geohydrologic framework of the Santa Clara Valley, lithologic, geologic, geophysical, geomechanical, hydraulic, and water-chemistry data were collected from eight ground-water multiple-well monitoring sites constructed in Santa Clara County, California, as part of a series of cooperative studies between the U.S. Geological Survey and the Santa Clara Valley Water District. The data are being used to update and improve the three-dimensional geohydrologic framework of the basin and to address issues related to water supply, water chemistry, sequence stratigraphy, geology, and geological hazards. This report represents a compilation of data collected from 1999 to 2003, including location and design of the monitoring sites, cone penetrometer borings, geologic logs, lithologic logs, geophysical logs, core analysis, water-chemistry analysis, ground-water-level measurements, and hydraulic and geomechanical properties from wells and core samples. Exploratory cone penetrometer borings taken in the upper 17 to 130 feet at six of the monitoring sites identified the base of Holocene as no deeper than 75 feet in the central confined area and no deeper than 35 feet in the southern unconfined areas of the valley. Generalized lithologic characterization from the monitoring sites indicates about four to six different aquifer units separated by relatively fine-grained units occur within the alluvial deposits shallower than 860 feet deep. Analysis of geophysical logs indicates that coarse-grained units varied in thickness between 10 and 25 feet in the southeastern unconfined area of the valley and between 50 and 200 feet in the south-central and southwestern areas of the valley. Deviations from temperature-gradient logs indicate that the majority of horizontal ground-water flow occurs above a depth of 775 feet in the south central and above 510 feet in the southeastern areas of the valley. Bulk physical properties from more than 1,150 feet of

  14. Ground-Water Availability from the Hawi Aquifer in the Kohala Area, Hawaii

    USGS Publications Warehouse

    Underwood, Mark R.; Meyer, William; Souza, William R.

    1995-01-01

    A ground-water study consisting of test-well drilling, aquifer tests, and numerical simulation was done to investigate ground-water availability in the basal part of the Hawi aquifer between the western drainage divide of Pololu Valley and Upolu Point in Kohala, Hawaii. The test-well drilling provided information on geology, water levels, water quality, vertical extent of the freshwater, and the thickness of the freshwater-saltwater transition zone in that aquifer. A total of 12 test wells were drilled at eight locations. Aquifer tests were done at five locations to estimate the hydraulic conductivity of the aquifer. Using information on the distribution of recharge, vertical extent of freshwater, hydraulic conductivity, and geometry of the basal aquifer, a numerical model was used to simulate the movement of water into, through, and out of the basal aquifer, and the effect of additional pumping on the water levels in the aquifer. Results of the modeling indicate that ground-water withdrawal of 20 million gallons per day above the existing withdrawal of 0.6 million gallons per day from the basal aquifer is hydrologically feasible, but that spacing, depth, and pumping rates of individual wells are important. If pumping is concentrated, the likelihood of saltwater intrusion is increased. The additional withdrawal of 20 million gallons per day would result in a reduction of ground-water discharge to the ocean by an amount equal to pumpage. Although model-calculated declines in water-level outside the area of pumping are small, pumping could cause some reduction of streamflow near the mouth of Pololu Stream.

  15. Chlorine-36 tracing of salinity sources in the dry valleys of Victoria land, Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, C.A.; Phillips, F.M.; Elmore, D.

    1990-02-01

    Chlorine-36 was used to trace the origins of salts in six saline lakes in the Dry Valleys of Southern Victoria Land, Antarctica. Characteristic {sup 36}Cl signatures were estimated for the various potential chloride sources, which include atmospheric deposition, rock weathering, seawater, and deep ground water. {sup 36}Cl/Cl ratios were measured in natural waters and salts from the Dry Valleys. Dilute lake waters (Cl{sup {minus}} < 100 mg/l) were found to have {sup 36}Cl/Cl ratios in the range 100 {times} 10{sup {minus}15} to 1,700 {times} 10{sup {minus}15}, whereas saline waters (Cl{sup {minus}} > 1000 mg/l) had ratios in the range 9more » {times} 10{sup {minus}15} to 40 {times} 10{sup {minus}15}. Simple mixing models were employed to quantify the relative contributions of the various chloride sources to Lake Vanda and Don Juan Pond. These results show that Lake Vanda has received its chloride from both deep ground water and the Onyx River. Don Juan Pond has received nearly all its chloride from deep ground water, probably ultimately from rock-water interaction. Deep ground water is the principal sources of chloride to the lakes of Wright Valley. However, preliminary data suggest that marine-derived salts or relict sea water may be a significant sources of chloride to the lakes of Taylor Valley, implying a possible recent marine invasion that did not affect Wright Valley.« less

  16. Simulation of net infiltration and potential recharge using a distributed-parameter watershed model of the Death Valley region, Nevada and California

    USGS Publications Warehouse

    Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.

    2003-01-01

    This report presents the development and application of the distributed-parameter watershed model, INFILv3, for estimating the temporal and spatial distribution of net infiltration and potential recharge in the Death Valley region, Nevada and California. The estimates of net infiltration quantify the downward drainage of water across the lower boundary of the root zone and are used to indicate potential recharge under variable climate conditions and drainage basin characteristics. Spatial variability in recharge in the Death Valley region likely is high owing to large differences in precipitation, potential evapotranspiration, bedrock permeability, soil thickness, vegetation characteristics, and contributions to recharge along active stream channels. The quantity and spatial distribution of recharge representing the effects of variable climatic conditions and drainage basin characteristics on recharge are needed to reduce uncertainty in modeling ground-water flow. The U.S. Geological Survey, in cooperation with the Department of Energy, developed a regional saturated-zone ground-water flow model of the Death Valley regional ground-water flow system to help evaluate the current hydrogeologic system and the potential effects of natural or human-induced changes. Although previous estimates of recharge have been made for most areas of the Death Valley region, including the area defined by the boundary of the Death Valley regional ground-water flow system, the uncertainty of these estimates is high, and the spatial and temporal variability of the recharge in these basins has not been quantified. To estimate the magnitude and distribution of potential recharge in response to variable climate and spatially varying drainage basin characteristics, the INFILv3 model uses a daily water-balance model of the root zone with a primarily deterministic representation of the processes controlling net infiltration and potential recharge. The daily water balance includes precipitation

  17. Numerical simulation of ground-water flow through glacial deposits and crystalline bedrock in the Mirror Lake area, Grafton County, New Hampshire

    USGS Publications Warehouse

    Tiedeman, Claire; Goode, Daniel J.; Hsieh, Paul A.

    1997-01-01

    This report documents the development of a computer model to simulate steady-state (long-term average) flow of ground water in the vicinity of Mirror Lake, which lies at the eastern end of the Hubbard Brook valley in central New Hampshire. The 10-km2 study area includes Mirror Lake, the three streams that flow into Mirror Lake, Leeman's Brook, Paradise Brook, and parts of Hubbard Brook and the Pemigewasset River. The topography of the area is characterized by steep hillsides and relatively flat valleys. Major hydrogeologic units include glacial deposits, composed of till containing pockets of sand and gravel, and fractured crystalline bedrock, composed of schist intruded by granite, pegmatite, and lamprophyre. Ground water occurs in both the glacial deposits and bedrock. Precipitation and snowmelt infiltrate to the water table on the hillsides, flow downslope through the saturated glacial deposits and fractured bedrock, and discharge to streams and to Mirror Lake. The model domain includes the glacial deposits, the uppermost 150m of bedrock, Mirror Lake, the layer of organic sediments on the lake bottom, and streams and rivers within the study area. A streamflow routing package was included in the model to simulate baseflow in streams and interaction between streams and ground water. Recharge from precipitation is assumed to be areally uniform, and riparian evapotranspiration along stream banks is assumed negligible. The spatial distribution of hydraulic conductivity is represented by dividing the model domain into several zones, each having uniform hydraulic properties. Local variations in recharge and hydraulic conductivities are ignored; therefore, the simulation results characterize the general ground-water system, not local details of ground-water movement. The model was calibrated using a nonlinear regression method to match hydraulic heads measured in piezometers and wells, and baseflow in three inlet streams to Mirror Lake. Model calibration indicates that

  18. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  19. A preliminary evaluation of regional ground-water flow in south-central Washington

    USGS Publications Warehouse

    La Sala, A. M.; Doty, G.C.; Pearson, F.J.

    1973-01-01

    The characteristics of regional ground-water flow were investigated in a 4,500-square-mile region of south-central Washington, centered on the U.S. Atomic Energy Commission Hanford Reservation. The investigation is part of the Commission's feasibility study on storing high-level radioactive waste in chambers mined in basaltic rocks at a. depth of about 3,000 feet or more below the surface. Ground-water flow., on a regional scale, occurs principally in the basalt and-in interbedded sediments of the Columbia River Group, and is controlled by topography, the structure of the basalt, and the large streams--the Columbia, Snake, and Yakima Rivers. The ground water beneath the main part of the Hanford Reservation, south and west of the Columbia River, inures southeastward from recharge areas in the uplands, including Cold Creek and Dry Creek valleys, and ultimately discharges to the Columbia River south of the reservation: East and southeast of the Columbia River, ground water flows generally southwestward and discharges to the River. The Yakima River valley contains a distinct flow system in which movement is toward the Yakima River from the topographic divides. A large southward-flowing ground-water system beneath the southern flank of the Horse Heaven Hills discharges to the Columbia River in the westward-trending reach downstream from Wallula Gap.

  20. Chemical reactions simulated by ground-water-quality models

    USGS Publications Warehouse

    Grove, David B.; Stollenwerk, Kenneth G.

    1987-01-01

    Recent literature concerning the modeling of chemical reactions during transport in ground water is examined with emphasis on sorption reactions. The theory of transport and reactions in porous media has been well documented. Numerous equations have been developed from this theory, to provide both continuous and sequential or multistep models, with the water phase considered for both mobile and immobile phases. Chemical reactions can be either equilibrium or non-equilibrium, and can be quantified in linear or non-linear mathematical forms. Non-equilibrium reactions can be separated into kinetic and diffusional rate-limiting mechanisms. Solutions to the equations are available by either analytical expressions or numerical techniques. Saturated and unsaturated batch, column, and field studies are discussed with one-dimensional, laboratory-column experiments predominating. A summary table is presented that references the various kinds of models studied and their applications in predicting chemical concentrations in ground waters.

  1. Ground-water quality and geochemistry of Las Vegas Valley, Clark County, Nevada, 1981-83; implementation of a monitoring network

    USGS Publications Warehouse

    Dettinger, M.D.

    1987-01-01

    As a result of rapid urban growth in Las Vegas Valley, rates of water use and wastewater disposal have grown rapidly during the last 25 years. Concern has developed over the potential water quality effects of this growth. The deep percolation of wastewater and irrigation return flow (much of which originates as imported water from Lake Mead), along with severe overdraft conditions in the principal aquifers of the valley, could combine to pose a long-term threat to groundwater quality. The quantitative investigations of groundwater quality and geochemical conditions in the valley necessary to address these concerns would include the establishment of data collection networks on a valley-wide scale that differ substantially from existing networks. The valley-wide networks would have a uniform areal distribution of sampling sites, would sample from all major depth zones, and would entail repeated sampling from each site. With these criteria in mind, 40 wells were chosen for inclusion in a demonstration monitoring network. Groundwater in the northern half of the valley generally contains 200 to 400 mg/L of dissolved solids, and is dominated by calcium, magnesium , and bicarbonate ions, reflecting a chemical equilibrium between the groundwater and the dominantly carbonate rocks in the aquifers of this area. The intermediate to deep groundwater in the southern half of the valley is of poorer quality (containing 700 to 1,500 mg/L of dissolved solids) and is dominated by calcium, magnesium, sulfate, and bicarbonate ions, reflecting the occurrence of other rock types including evaporite minerals among the still-dominant carbonate rocks in the aquifers of this part of the valley. The poorest quality groundwater in the valley is generally in the lowland parts of the valley in the first few feet beneath the water table, where dissolved solids concentrations range from 2,000 to > 7,000 mg/L , and probably reflects the effects of evaporite dissolution, secondary recharge, and

  2. Rainfall-Runoff and Water-Balance Models for Management of the Fena Valley Reservoir, Guam

    USGS Publications Warehouse

    Yeung, Chiu W.

    2005-01-01

    The U.S. Geological Survey's Precipitation-Runoff Modeling System (PRMS) and a generalized water-balance model were calibrated and verified for use in estimating future availability of water in the Fena Valley Reservoir in response to various combinations of water withdrawal rates and rainfall conditions. Application of PRMS provides a physically based method for estimating runoff from the Fena Valley Watershed during the annual dry season, which extends from January through May. Runoff estimates from the PRMS are used as input to the water-balance model to estimate change in water levels and storage in the reservoir. A previously published model was calibrated for the Maulap and Imong River watersheds using rainfall data collected outside of the watershed. That model was applied to the Almagosa River watershed by transferring calibrated parameters and coefficients because information on daily diversions at the Almagosa Springs upstream of the gaging station was not available at the time. Runoff from the ungaged land area was not modeled. For this study, the availability of Almagosa Springs diversion data allowed the calibration of PRMS for the Almagosa River watershed. Rainfall data collected at the Almagosa rain gage since 1992 also provided better estimates of rainfall distribution in the watershed. In addition, the discontinuation of pan-evaporation data collection in 1998 required a change in the evapotranspiration estimation method used in the PRMS model. These reasons prompted the update of the PRMS for the Fena Valley Watershed. Simulated runoff volume from the PRMS compared reasonably with measured values for gaging stations on Maulap, Almagosa, and Imong Rivers, tributaries to the Fena Valley Reservoir. On the basis of monthly runoff simulation for the dry seasons included in the entire simulation period (1992-2001), the total volume of runoff can be predicted within -3.66 percent at Maulap River, within 5.37 percent at Almagosa River, and within 10

  3. MODOPTIM: A general optimization program for ground-water flow model calibration and ground-water management with MODFLOW

    USGS Publications Warehouse

    Halford, Keith J.

    2006-01-01

    MODOPTIM is a non-linear ground-water model calibration and management tool that simulates flow with MODFLOW-96 as a subroutine. A weighted sum-of-squares objective function defines optimal solutions for calibration and management problems. Water levels, discharges, water quality, subsidence, and pumping-lift costs are the five direct observation types that can be compared in MODOPTIM. Differences between direct observations of the same type can be compared to fit temporal changes and spatial gradients. Water levels in pumping wells, wellbore storage in the observation wells, and rotational translation of observation wells also can be compared. Negative and positive residuals can be weighted unequally so inequality constraints such as maximum chloride concentrations or minimum water levels can be incorporated in the objective function. Optimization parameters are defined with zones and parameter-weight matrices. Parameter change is estimated iteratively with a quasi-Newton algorithm and is constrained to a user-defined maximum parameter change per iteration. Parameters that are less sensitive than a user-defined threshold are not estimated. MODOPTIM facilitates testing more conceptual models by expediting calibration of each conceptual model. Examples of applying MODOPTIM to aquifer-test analysis, ground-water management, and parameter estimation problems are presented.

  4. GWM-a ground-water management process for the U.S. Geological Survey modular ground-water model (MODFLOW-2000)

    USGS Publications Warehouse

    Ahlfeld, David P.; Barlow, Paul M.; Mulligan, Anne E.

    2005-01-01

    GWM is a Ground?Water Management Process for the U.S. Geological Survey modular three?dimensional ground?water model, MODFLOW?2000. GWM uses a response?matrix approach to solve several types of linear, nonlinear, and mixed?binary linear ground?water management formulations. Each management formulation consists of a set of decision variables, an objective function, and a set of constraints. Three types of decision variables are supported by GWM: flow?rate decision variables, which are withdrawal or injection rates at well sites; external decision variables, which are sources or sinks of water that are external to the flow model and do not directly affect the state variables of the simulated ground?water system (heads, streamflows, and so forth); and binary variables, which have values of 0 or 1 and are used to define the status of flow?rate or external decision variables. Flow?rate decision variables can represent wells that extend over one or more model cells and be active during one or more model stress periods; external variables also can be active during one or more stress periods. A single objective function is supported by GWM, which can be specified to either minimize or maximize the weighted sum of the three types of decision variables. Four types of constraints can be specified in a GWM formulation: upper and lower bounds on the flow?rate and external decision variables; linear summations of the three types of decision variables; hydraulic?head based constraints, including drawdowns, head differences, and head gradients; and streamflow and streamflow?depletion constraints. The Response Matrix Solution (RMS) Package of GWM uses the Ground?Water Flow Process of MODFLOW to calculate the change in head at each constraint location that results from a perturbation of a flow?rate variable; these changes are used to calculate the response coefficients. For linear management formulations, the resulting matrix of response coefficients is then combined with other

  5. Ground-water hydrology of the central Raton Basin, Colorado and New Mexico

    USGS Publications Warehouse

    Geldon, Arthur L.

    1989-01-01

    The watersheds of the Purgatoire and Apishapa Rivers contain most of the public coal lands in the Raton Basin. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Land Management, investigated the hydrogeology of this area from 1978 to 1982, inventorying 231 wells, 38 springs, and 6 mines, and collecting ground-water samples from 71 sites. The Raton Basin is an asymmetrical trough, containing 10,000 to 25,000 feet of sedimentary rocks that range in age from Pennsylvanian to Eocene. These rocks are intruded by Miocene igneous rocks, covered with Pleistocene and Holocene alluvium on pediments and in stream valleys, and underlain by Precambrian crystalline rocks. Bituminous coal occurs in the Vermejo and Raton Formations of Cretaceous and Paleocene age. Virtually all of the sedimentary rocks transmit water. Stream alluvium is the most productive aquifer. Bedrock aquifers have smaller yields but greater distribution. The principal bedrock aquifers are the Cuchara-Poison Canyon and the Raton-Vermejo-Trinidad. Other formations are nearly impermeable or too deep to be utilized economically. The Cuchara-Poison Canyon aquifer provides small, nonsustainable yields to wells. Sandstone and coal layers in the Raton-Vermejo-Trinidad aquifer provide small, sustainable yields, but many of these beds are lenticular and can be missed easily by wells. Water in alluvium typically is less mineralized than in bedrock but more susceptible to contamination. Sodium and calcium bicarbonate waters predominate in the area, but sodium chloride water commonly occurs in the Cuchara-Poison Canyon aquifer and may occur in the Pierre Shale. Plumes of sulfate-enriched water extend from coal mines into bedrock and alluvial aquifers. Dissolved-solids concentrations range from less than 500 milligrams per liter in calcium bicarbonate water to more than 1,500 milligrams per liter in sulfate and chloride waters. Much of the ground water is hard. Nitrogen is enriched in shallow ground water

  6. Occurrence and distribution of pesticides and volatile organic compounds in ground water and surface water in Central Arizona Basins, 1996-98, and their relation to land use

    USGS Publications Warehouse

    Gellenbeck, Dorinda J.; Anning, David W.

    2002-01-01

    Samples of ground water and surface water from the Sierra Vista subbasin, the Upper Santa Cruz Basin, and the West Salt River Valley were collected and analyzed to determine the occurrence and distribution of pesticides and volatile organic compounds in central Arizona. The study was done during 1996-98 within the Central Arizona Basins study unit of the National Water-Quality Assessment program. This study included 121 wells and 4 surface-water sites in the 3 basins and the analyses of samples from 4 sites along the Santa Cruz River that were part of a separate study. Samples were collected from 121 wells and 3 surface-water sites for pesticide analyses, and samples were collected from 109 wells and 3 surface-water sites for volatile organic compound analyses. Certain pesticides detected in ground water and surface water can be related specifically to agricultural or urban uses; others can be related to multiple land uses. Effects from historical agriculture are made evident by detections of DDE in ground-water and surface-water samples collected in the West Salt River Valley and detections of atrazine and deethylatrazine in the ground water in the Upper Santa Cruz Basin. Effects from present agriculture are evident in the seasonal variability in concentrations of pre-emergent pesticides in surface-water samples from the West Salt River Valley. Several detections of DDE and dieldrin in surface water were higher than established water-quality limits. Effects of urban land use are made evident by detections of volatile organic compounds in ground water and surface water from the West Salt River Valley. Detections of volatile organic compounds in surface water from the Santa Cruz River near Nogales, Arizona, also are indications of the effects of urban land use. One detection of tetrachloroethene in ground water was higher than established water-quality limits. Water reuse is an important conservation technique in the Southwest; however, the reuse of water provides a

  7. Numerical Simulation of Ground-Water Salinization in the Arkansas River Corridor, Southwest Kansas

    NASA Astrophysics Data System (ADS)

    Whittemore, D. O.; Perkins, S.; Tsou, M.; McElwee, C. D.; Zhan, X.; Young, D. P.

    2001-12-01

    The salinity of ground water in the High Plains aquifer underlying the upper Arkansas River corridor in southwest Kansas has greatly increased during the last few decades. The source of the salinization is infiltration of Arkansas River water along the river channel and in areas irrigated with diverted river water. The saline river water is derived from southeastern Colorado where consumptive losses of water in irrigation systems substantially concentrate dissolved solids in the residual water. Before development of surface- and ground-water resources, the Arkansas River gained flow along nearly all of its length in southwest Kansas. Since the 1970's, ground-water levels have declined in the High Plains aquifer from consumptive use of ground water. The water-level declines have now changed the river to a generally losing rather than gaining system. We simulated ground-water flow in the aquifers underlying 126 miles of the river corridor using MODFLOW integrated with the GIS software ArcView (Tsou and Whittemore, 2001). There are two layers in the model, one for the Quaternary alluvial aquifer and the other for the underlying High Plains aquifer. We prepared a simulation for circa 1940 that represented conditions prior to substantial ground-water development, and simulations for 40 years into the future that were based on holding constant either average water use or average ground-water levels for the 1990's. Streamflows along the river computed from the model results illustrated the flow gains from ground-water discharge for circa 1940 and losses during the 1990's. We modeled the movement of salinity as particle tracks generated by MODPATH based on the MODFLOW solutions. The results indicate that during the next 40 years, saline water will move a substantial distance in the High Plains aquifer on the south side of the central portion of the river valley. The differences between the circa 1940 and 1990's simulations fit the observed data that show large increases in

  8. California GAMA program: ground-water quality data in the San Diego drainages hydrogeologic province, California, 2004

    USGS Publications Warehouse

    Wright, Michael T.; Belitz, Kenneth; Burton, Carmen A.

    2005-01-01

    Because of concerns over ground-water quality, the California State Water Resources Control Board (SWRCB), in collaboration with the U.S. Geological Survey and Lawrence Livermore National Laboratory, has implemented the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. A primary objective of the program is to provide a current assessment of ground-water quality in areas where public supply wells are an important source of drinking water. The San Diego GAMA study unit was the first region of the state where an assessment of ground-water quality was implemented under the GAMA program. The San Diego GAMA study unit covers the entire San Diego Drainages hydrogeologic province, and is broken down into four distinct hydrogeologic study areas: the Temecula Valley study area, the Warner Valley study area, the Alluvial Basins study area, and the Hard Rock study area. A total of 58 ground-water samples were collected from public supply wells in the San Diego GAMA study unit: 19 wells were sampled in the Temecula Valley study area, 9 in the Warner Valley study area, 17 in the Alluvial Basins study area, and 13 in the Hard Rock study area. Over 350 chemical and microbial constituents and water-quality indicators were analyzed for in this study. However, only select wells were measured for all constituents and water-quality indicators. Results of analyses were calculated as detection frequencies by constituent classification and by individual constituents for the entire San Diego GAMA study unit and for the individual study areas. Additionally, concentrations of constituents that are routinely monitored were compared to maximum contaminant levels (MCL) and secondary maximum contaminant levels (SMCL). Concentrations of constituents classified as 'unregulated chemicals for which monitoring is required' (UCMR) were compared to the 'detection level for the purposes of reporting' (DLR). Eighteen of the 88 volatile organic compounds (VOCs) and gasoline oxygenates

  9. Effects of ground-water withdrawals on the Rock River and associated valley aquifer, eastern Rock County, Minnesota

    USGS Publications Warehouse

    Lindgren, Richard J.; Landon, M.K.

    2000-01-01

    Model results indicate that the additional water withdrawn by wells due to anticipated increased ground-water withdrawals was derived from a decrease in net leakage of ground water from the aquifer to the streams. The simulations indicated that the increased ground-water withdrawals and normal precipitation resulted in an increase in induced infiltration from the Rock River of 0.1 cubic feet per second for the Luverne Municipal well field and 0.3 cubic feet per second for the Rock County Rural Water well field. Maximum drawdowns ranged from 0.5 to 1.4 feet near the three well fields. For drought conditions, the simulated streamflow losses constituted approximately 30 percent and nearly 65 percent of the flows in the Rock River for the Luverne Municipal and Rock County Rural Water well fields, respectively. Maximum drawdowns ranged from 3.8 to 7.0 feet near the three well fields. Transient simulations with anticipated increased ground-water withdrawals and drought conditions indicated declines in hydraulic heads ranging from 0.2 to 0.4 feet per year in the vicinity of the three well fields, except for near the Rock River. 

  10. A conceptual ground-water-quality monitoring network for San Fernando Valley, California

    USGS Publications Warehouse

    Setmire, J.G.

    1985-01-01

    A conceptual groundwater-quality monitoring network was developed for San Fernando Valley to provide the California State Water Resources Control Board with an integrated, basinwide control system to monitor the quality of groundwater. The geology, occurrence and movement of groundwater, land use, background water quality, and potential sources of pollution were described and then considered in designing the conceptual monitoring network. The network was designed to monitor major known and potential point and nonpoint sources of groundwater contamination over time. The network is composed of 291 sites where wells are needed to define the groundwater quality. The ideal network includes four specific-purpose networks to monitor (1) ambient water quality, (2) nonpoint sources of pollution, (3) point sources of pollution, and (4) line sources of pollution. (USGS)

  11. Geology and ground-water resources of the lower Lodgepole Creek drainage basin, Nebraska, with a section on chemical quality of the water

    USGS Publications Warehouse

    Bjorklund, Louis Jay; Jochens, Eugene R.

    1957-01-01

    The area described is almost wholly in Nebraska and is the drainage basin of Lodgepole Creek from the Wyoming State line to the Colorado State line, a distance along the stream valley of about 95 miles. It covers about 1,950 square miles. The purposes of the study were to ascertain the characteristics, thickness, and extent of the water-bearing formations and to obtain and interpret data on the origin, quality, quantity, movement, availability, and use of ground water in the area. The rocks exposed in the drainage basin are the Brule formation of Oligocene (Tertiary) age, the Ogallala formation of Pliocene (Tertiary) age, and alluvium of Pleistocene and Recent (Quaternary) age. The Brule formation is mainly a siltstone, which yields an average of 950 gallons per minute (gpm) to irrigation wells tapping its fractured zones or reworked material; the maximum reported discharge is 2,200 gpm. The Ogallala formation underlies most of the area. It consists of lenticular beds of clayey, silty, sandy, and gravelly materials and supplies water to all wells on the upland, including a few large-discharge wells, and to many irrigation and public-supply wells in the valley of Lodgepole Creek. The yield of irrigation wells tapping the Ogallala formation ranges from 90 to 1,600 gpm and averages about 860 gpm. The alluvium is present in the valleys of Lodgepole Creek and its tributaries and consists mainly of heterogeneous . mixtures of silt, sand, and gravel, and lenticular bodies of these materials. Between the Colorado State line and Chappell, Nebr., irrigation wells derive most of their water from the alluvium. However, between Chappell and Sidney most of the irrigation wells tap both the alluvium and permeable zones in the underlying Brule formation, and in much of the valley west of Sidney, where the water table is beneath the bottom of the alluvium, irrigation wells derive water from the underlying Brule or Ogallala formations. Irrigation wells obtaining water chiefly from

  12. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process

    USGS Publications Warehouse

    Harbaugh, Arlen W.; Banta, Edward R.; Hill, Mary C.; McDonald, Michael G.

    2000-01-01

    MODFLOW is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium by using a finite-difference method. Although MODFLOW was designed to be easily enhanced, the design was oriented toward additions to the ground-water flow equation. Frequently there is a need to solve additional equations; for example, transport equations and equations for estimating parameter values that produce the closest match between model-calculated heads and flows and measured values. This report documents a new version of MODFLOW, called MODFLOW-2000, which is designed to accommodate the solution of equations in addition to the ground-water flow equation. This report is a user's manual. It contains an overview of the old and added design concepts, documents one new package, and contains input instructions for using the model to solve the ground-water flow equation.

  13. Geohydrology of the Antelope Valley Area, California and design for a ground-water-quality monitoring network

    USGS Publications Warehouse

    Duell, L.F.

    1987-01-01

    A basinwide ideal network and an actual network were designed to identify ambient groundwater quality, trends in groundwater quality, and degree of threat from potential pollution sources in Antelope Valley, California. In general, throughout the valley groundwater quality has remained unchanged, and no specific trends are apparent. The main source of groundwater for the valley is generally suitable for domestic, irrigation, and most industrial uses. Water quality data for selected constituents of some network wells and surface-water sites are presented. The ideal network of 77 sites was selected on the basis of site-specific criteria, geohydrology, and current land use (agricultural, residential, and industrial). These sites were used as a guide in the design of the actual network consisting of 44 existing wells. Wells are currently being monitored and were selected whenever possible because of budgetary constraints. Of the remaining ideal sites, 20 have existing wells not part of a current water quality network, and 13 are locations where no wells exist. The methodology used for the selection of sites, constituents monitored, and frequency of analysis will enable network users to make appropriate future changes to the monitoring network. (USGS)

  14. Water-Resource Trends and Comparisons Between Partial-Development and October 2006 Hydrologic Conditions, Wood River Valley, South-Central Idaho

    USGS Publications Warehouse

    Skinner, Kenneth D.; Bartolino, James R.; Tranmer, Andrew W.

    2007-01-01

    This report analyzes trends in ground-water and surface-water data, documents 2006 hydrologic conditions, and compares 2006 and historic ground-water data of the Wood River Valley of south-central Idaho. The Wood River Valley extends from Galena Summit southward to the Timmerman Hills. It is comprised of a single unconfined aquifer and an underlying confined aquifer present south of Baseline Road in the southern part of the study area. Streams are well-connected to the shallow unconfined aquifer. Because the entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth since the 1970s has raised concerns about the continued availability of ground and surface water to support existing uses and streamflow. To help address these concerns, this report evaluates ground- and surface-water conditions in the area before and during the population growth that started in the 1970s. Mean annual water levels in three wells (two completed in the unconfined aquifer and one in the confined aquifer) with more than 50 years of semi-annual measurements showed statistically significant declining trends. Mean annual and monthly streamflow trends were analyzed for three gaging stations in the Wood River Valley. The Big Wood River at Hailey gaging station (13139500) showed a statistically significant trend of a 25-percent increase in mean monthly base flow for March over the 90-year period of record, possibly because of earlier snowpack runoff. Both the 7-day and 30-day low-flow analyses for the Big Wood River near Bellevue gaging station (13141000) show a mean decrease of approximately 15 cubic feet per second since the 1940s, and mean monthly discharge showed statistically significant decreasing trends for December, January, and February. The Silver Creek at Sportsman Access near Picabo gaging station (13150430) also showed statistically significant decreasing trends in annual and mean monthly

  15. Hydrogeology and ground-water-flow simulation of the Cave Springs area, Hixson, Tennessee

    USGS Publications Warehouse

    Haugh, Connor J.

    2002-01-01

    The ground-water resource in the Cave Springs area is used by the Hixson Utility District as a water supply and is one of the more heavily stressed in the Valley and Ridge Physiographic Province. In 1999, ground-water withdrawals by the Hixson Utility District averaged about 6.4 million gallons per day (Mgal/d) from two pumping centers. The Hixson Utility District has historically withdrawn about 5.8 Mgal/d from wells at Cave Springs. In 1995 to meet increasing demand, an additional well field was developed at Walkers Corner, located about 3 miles northeast of Cave Springs. From 1995 through 2000, pumping from the first production well at Walkers Corner averaged about 1.8 Mgal/d. A second production well at Walkers Corner was approved for use in 2000. Hixson Utility District alternates the use of the two production wells at Walkers Corner except when drought conditions occur when they are used simultaneously. The second production well increased the capacity of the well field by an additional 2 Mgal/d. The aquifer framework in the study area consists of dense Paleozoic carbonate rocks with secondary permeability that are mantled by thick residual clay-rich regolith in most of the area and by coarse-grained alluvium in the valley of North Chickamauga Creek. Cave Springs, one of the largest springs in Tennessee, derives its flow from conduits in a carbonate rock (karst) aquifer. Production wells at Cave Springs draw water from these conduits. Production wells at Walkers Corner primarily draw water from gravel zones in the regolith near the top of rock. Transmissivities estimated from hydraulic tests conducted across the Cave Springs area span a range from 240 to 900,000 feet squared per day (ft2/d) with a median value of 5,200 ft2/d. Recharge to the aquifer occurs from direct infiltration of precipitation and from losing streams. Most recharge occurs during the winter and spring months. Computer modeling was used to provide a better understanding of the ground-water

  16. Santa Clara Valley water district multi-aquifer monitoring-well site, Coyote Creek Outdoor Classroom, San Jose, California

    USGS Publications Warehouse

    Hanson, R.T.; Newhouse, M.W.; Wentworth, C.M.; Williams, C.F.; Noce, T.E.; Bennett, M.J.

    2002-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Santa Clara Valley Water District (SCVWD), has completed the first of several multiple-aquifer monitoring-well sites in the Santa Clara Valley. This site monitors ground-water levels and chemistry in the one of the major historic subsidence regions south of San Jose, California, at the Coyote Creek Outdoor Classroom (CCOC) (fig. 1) and provides additional basic information about the geology, hydrology, geochemistry, and subsidence potential of the upper- and lower-aquifer systems that is a major source of public water supply in the Santa Clara Valley. The site also serves as a science education exhibit at the outdoor classroom operated by SCVWD.

  17. Two-dimensional, steady-state model of ground-water flow, Nevada Test Site and vicinity, Nevada-California

    USGS Publications Warehouse

    Waddell, R.K.

    1982-01-01

    A two-dimensional, steady-state model of ground-water flow beneath the Nevada Test Site and vicinity has been developed using inverse techniques. The area is underlain by clastic and carbonate rocks of Precambrian and Paleozoic age and by volcanic rocks and alluvium of Tertiary and Quaternary age that have been juxtaposed by normal and strike-slip faulting. Aquifers are composed of carbonate and volcanic rocks and alluvium. Characteristics of the flow system are determined by distribution of low-conductivity rocks (barriers); by recharge originating in the Spring Mountains, Pahranagat, Timpahute, and Sheep Ranges, and in Pahute Mesa; and by underflow beneath Pahute Mesa from Gold Flat and Kawich Valley. Discharge areas (Ash Meadows, Oasis Valley, Alkali Flat, and Furnace Creek Ranch) are upgradient from barriers. Sensitivities of simulated hydraulic heads and fluxes to variations in model parameters were calculated to guide field studies and to help estimate errors in predictions from transport modeling. Hydraulic heads and fluxes are very sensitive to variations in the greater magnitude recharge/discharge terms. Transmissivity at a location may not be the most important transmissivity for determining flux there. Transmissivities and geometries of large barriers that impede flow from Pahute Mesa have major effects on fluxes elsewhere; as their transmissivities are decreased, flux beneath western Jackass Flats and Yucca Mountains is increased as water is diverted around the barriers. Fortymile Canyon is underlain by highly transmissive rocks that cause potentiometric contours to vee upgradient; increasing their transmissivity increases flow through them, and decreases it beneath Yucca Mountain. (USGS)

  18. Geology and ground water of the Luke area, Maricopa County, Arizona

    USGS Publications Warehouse

    Stulik, Ronald S.; Twenter, F.R.

    1964-01-01

    Luke Air Force Base, in the Salt River Valley in central Arizona. is within an intermontane basin--the Phoenix basin--in the Basin and Range lowlands province. The Luke area, the subject of this study, extends beyond the limits of the base. Ground-water resources of the Luke area were studied to determine the possibility of developing a water supply of optimum quantity and quality to supplement the base supply. Several wells drilled for this purpose, prior to the study, either produced an inadequate supply of water or produced ware-that had a high dissolved-solids content. The Phoenix basin is filled with unconsolidated to semiconsolidated Tertiary and Quaternary sedimentary rocks that are referred to as valley fill. Although its total thickness is unknown, 2,784 feet of valley fill--primarily consisting of clay, silt, sand, and gravel--has been penetrated. Percentage-distribution maps of fine-grained materials indicate a gross-facies pattern and a selective depositional area of the valley-fill materials. The maps also indicate that the areal distribution of fine-grained materials increases with depth. In general, the better producing wells, regardless of depth, are in areas where tee valley fill is composed of less than 60 percent fine-grained materials. The water table in the area is declining because large quantities of water are withdrawn and recharge is negligible. The decline near Luke Air Force Base during the period 1941-61 was about 150 feet. Ground water was moving generally southwest in the spring of 1961. Locally, changes in the direction of movement indicate diversion toward two major depressions. The dissolved-solids content of the ground water ranged from about 190 to 6,300 ppm. The highest concentration of dissolved solids is in water from the southern part of the area and seems to come from relatively shallow depths; wells in the northern part generally yield water of good quality. After a reconnaissance of the area, the U.S. Geological Survey

  19. Surface-water/ground-water interaction of the Spokane River and the Spokane Valley/Rathdrum Prairie aquifer, Idaho and Washington

    USGS Publications Warehouse

    Caldwell, Rodney R.; Bowers, Craig L.

    2003-01-01

    Although trace-element concentrations sometimes exceeded aquatic-life criteria in the water of the Spokane River and were elevated above national median values in the bed sediment, trace-element concentrations of all river and ground-water samples were at levels less than U.S. Environmental Protection Agency drinking-water standards. The Spokane River appears to be a source of cadmium, copper, zinc, and possibly lead in the near-river ground water. Dissolved cadmium, copper, and lead concentrations generally were less than 1 microgram per liter (µg/L) in the river water and ground water. During water year 2001, dissolved zinc concentrations were similar in water from near-river wells (17-71 µg/L) and the river water (22-66 µg/L), but were less than detection levels in wells farther from the river. Arsenic, found to be elevated in ground water in parts of the aquifer, does not appear to have a river source. Although the river does influence the ground-water chemistry in proximity to the river, it does not appear to adversely affect the ground-water quality to a level of human-health concern.

  20. A plan to study the aquifer system of the Central Valley of California

    USGS Publications Warehouse

    Bertoldi, Gilbert L.

    1979-01-01

    Unconsolidated Quaternary alluvial deposits comprise a large complex aquifer system in the Central Valley of California. Millions of acre-feet of water is pumped from the system annually to support a large and expanding agribusiness industry. Since the 1950's, water levels have been steadily declining in many areas of the valley and concern has been expressed about the ability of the entire ground-water system to support agribusiness at current levels, not to mention its ability to function at projected expansion levels. At current levels of ground-water use, an estimated 1.5 to 2 million acre-feet is withdrawn from storage each year; that is, 1.5 to 2 million acre-feet of water is pumped annually in excess of annual replenishment. The U.S. Geological Survey has initiated a 4-year study to develop geologic, hydrologic, and hydraulic information and to establish a valleywide ground-water data base that will be used to build computer models of the ground-water flow system. Subsequently, these models may be used to evaluate the system response to various ground-water management alternatives. This report describes current problems, objectives of the study, and outlines the general work to be accomplished in the study area. A bibliography of about 600 references is included. (Kosco-USGS)

  1. Water resources of Parowan Valley, Iron County, Utah

    USGS Publications Warehouse

    Marston, Thomas M.

    2017-08-29

    Parowan Valley, in Iron County, Utah, covers about 160 square miles west of the Red Cliffs and includes the towns of Parowan, Paragonah, and Summit. The valley is a structural depression formed by northwest-trending faults and is, essentially, a closed surface-water basin although a small part of the valley at the southwestern end drains into the adjacent Cedar Valley. Groundwater occurs in and has been developed mainly from the unconsolidated basin-fill aquifer. Long-term downward trends in groundwater levels have been documented by the U.S. Geological Survey (USGS) since the mid-1950s. The water resources of Parowan Valley were assessed during 2012 to 2014 with an emphasis on refining the understanding of the groundwater and surface-water systems and updating the groundwater budget.Surface-water discharge of five perennial mountain streams that enter Parowan Valley was measured from 2013 to 2014. The total annual surface-water discharge of the five streams during 2013 to 2014 was about 18,000 acre-feet (acre-ft) compared to the average annual streamflow of about 22,000 acre-ft from USGS streamgages operated on the three largest of these streams from the 1940s to the 1980s. The largest stream, Parowan Creek, contributes more than 50 percent of the annual surface-water discharge to the valley, with smaller amounts contributed by Red, Summit, Little, and Cottonwood Creeks.Average annual recharge to the Parowan Valley groundwater system was estimated to be about 25,000 acre-ft from 1994 to 2013. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall on the Markagunt Plateau east of the valley. Smaller amounts of recharge occur as infiltration of streamflow and unconsumed irrigation water near the east side of the valley on alluvial fans associated with mountain streams at the foot of the Red Cliffs. Subsurface flow from the mountain block to the east of the valley is a significant source of groundwater recharge to the basin-fill aquifer

  2. Hydrogeologic setting and ground water flow beneath a section of Indian River Bay, Delaware

    USGS Publications Warehouse

    Krantz, David E.; Manheim, Frank T.; Bratton, John F.; Phelan, Daniel J.

    2004-01-01

    The small bays along the Atlantic coast of the Delmarva Peninsula (Delaware, Maryland, and Virginia) are a valuable natural resource, and an asset for commerce and recreation. These coastal bays also are vulnerable to eutrophication from the input of excess nutrients derived from agriculture and other human activities in the watersheds. Ground water discharge may be an appreciable source of fresh water and a transport pathway for nutrients entering the bays. This paper presents results from an investigation of the physical properties of the surficial aquifer and the processes associated with ground water flow beneath Indian River Bay, Delaware. A key aspect of the project was the deployment of a new technology, streaming horizontal resistivity, to map the subsurface distribution of fresh and saline ground water beneath the bay. The resistivity profiles showed complex patterns of ground water flow, modes of mixing, and submarine ground water discharge. Cores, gamma and electromagnetic-induction logs, and in situ ground water samples collected during a coring operation in Indian River Bay verified the interpretation of the resistivity profiles. The shore-parallel resistivity lines show subsurface zones of fresh ground water alternating with zones dominated by the flow of salt water from the estuary down into the aquifer. Advective flow produces plumes of fresh ground water 400 to 600 m wide and 20 m thick that may extend more than 1 km beneath the estuary. Zones of dispersive mixing between fresh and saline ground water develop on the upper, lower, and lateral boundaries of the the plume. the plumes generally underlie small incised valleys that can be traced landward to stream draining the upland. The incised valleys are filled with 1 to 2 m of silt and peat that act as a semiconfining layer to restrict the downward flow of salt water from the estuary. Active circulation of both the fresh and saline ground water masses beneath the bay is inferred from the geophysical

  3. A post audit of a model-designed ground water extraction system.

    PubMed

    Andersen, Peter F; Lu, Silong

    2003-01-01

    Model post audits test the predictive capabilities of ground water models and shed light on their practical limitations. In the work presented here, ground water model predictions were used to design an extraction/treatment/injection system at a military ammunition facility and then were re-evaluated using site-specific water-level data collected approximately one year after system startup. The water-level data indicated that performance specifications for the design, i.e., containment, had been achieved over the required area, but that predicted water-level changes were greater than observed, particularly in the deeper zones of the aquifer. Probable model error was investigated by determining the changes that were required to obtain an improved match to observed water-level changes. This analysis suggests that the originally estimated hydraulic properties were in error by a factor of two to five. These errors may have resulted from attributing less importance to data from deeper zones of the aquifer and from applying pumping test results to a volume of material that was larger than the volume affected by the pumping test. To determine the importance of these errors to the predictions of interest, the models were used to simulate the capture zones resulting from the originally estimated and updated parameter values. The study suggests that, despite the model error, the ground water model contributed positively to the design of the remediation system.

  4. Geomorphic response to tectonically-induced ground deformation in the Wabash Valley

    USGS Publications Warehouse

    Fraser, G.S.; Thompson, T.A.; Olyphant, G.A.; Furer, L.; Bennett, S.W.

    1997-01-01

    Numerous low- to moderate-intensity earthquakes have been recorded in a zone of diffuse modern seismicity in southwest Indiana, southeast Illinois, and northernmost Kentucky. Structural elements within the zone include the Wabash Valley Fault System, the LaSalle Anticlinal Belt in western Illinois, and the Rough Creek-Shawneetown Fault System in northern Kentucky. The presence of seismically-induced liquefaction features in the near-surface alluvial sediments in the region indicates that strong ground motion has occurred in the recent geological past, but because the glacial and alluvial sediments in the Wabash Valley appear to be otherwise undisturbed, post-Paleozoic ground deformation resulting from movement on these structural elements has not yet been documented. Morphometric analysis of the land surface, detailed mapping of geomorphic elements in the valley, reconnaissance drilling of the Holocene and Pleistocene alluvium, and structural analysis of the bedrock underlying the valley were used to determine whether the geomorphology of the valley and the patterns of alluviation of the Wabash River were affected by surface deformation associated with the seismic zone during the late Pleistocene and Holocene. Among the observed features in the valley that can be attributed to deformation are: (1) tilting of the modern land surface to the west, (2) preferred channel migration toward the west side of the valley, with concomitant impact on patterns of soil development and sedimentation rate, (3) a convex longitudinal profile of the Wabash River where it crosses the LaSalle Anticlinal Belt, and (4) increased incision of the river into its floodplain downstream from the anticlinal belt.

  5. Hydrogeology, Ground-Water-Age Dating, Water Quality, and Vulnerability of Ground Water to Contamination in a Part of the Whitewater Valley Aquifer System near Richmond, Indiana, 2002-2003

    USGS Publications Warehouse

    Buszka, Paul M.; Watson, Lee R.; Greeman, Theodore K.

    2007-01-01

    Results of detailed water-quality analyses, ground-waterage dating, and dissolved-gas analyses indicated the vulnerability of ground water to specific types of contamination, the sequence of contaminant introduction to the aquifer relative to greenfield development, and processes that may mitigate the contamination. Concentrations of chloride and sodium and chloride/bromide weight ratios in sampled water from five wells indicated the vulnerability of the upper aquifer to roaddeicer contamination. Ground-water-age estimates from these wells indicated the onset of upgradient road-deicer use within the previous 25 years. Nitrate in the upper aquifer predates the post-1972 development, based on a ground-water-age date (30 years) and the nitrate concentration (5.12 milligrams per liter as nitrogen) in water from a deep well. Vulnerability of the aquifer to nitrate contamination is limited partially by denitrification. Detection of one to four atrazine transformation products in water samples from the upper aquifer indicated biological and hydrochemical processes that may limit the vulnerability of the ground water to atrazine contamination. Microbial processes also may limit the aquifer vulnerability to small inputs of halogenated aliphatic compounds, as indicated by microbial transformations of trichlorofluoromethane and trichlorotrifluoroethane relative to dichlorodifluoromethane. The vulnerability of ground water to contamination in other parts of the aquifer system also may be mitigated by hydrodynamic dispersion and biologically mediated transformations of nitrate, pesticides, and some organic compounds. Identification of the sequence of contamination and processes affecting the vulnerability of ground water to contamination would have been unlikely with conventional assessment methods.

  6. Hydrogeology and simulation of ground-water flow in the thick regolith-fractured crystalline rock aquifer system of Indian Creek basin, North Carolina

    USGS Publications Warehouse

    Daniel, Charles C.; Smith, Douglas G.; Eimers, Jo Leslie

    1997-01-01

    The Indian Creek Basin in the southwestern Piedmont of North Carolina is one of five type areas studied as part of the Appalachian Valleys-Piedmont Regional Aquifer-System analysis. Detailed studies of selected type areas were used to quantify ground-water flow characteristics in various conceptual hydrogeologic terranes. The conceptual hydrogeologic terranes are considered representative of ground-water conditions beneath large areas of the three physiographic provinces--Valley and Ridge, Blue Ridge, and Piedmont--that compose the Appalachian Valleys-Piedmont Regional Aquifer-System Analysis area. The Appalachian Valleys-Piedmont Regional Aquifer-System Analysis study area extends over approximately 142,000 square miles in 11 states and the District of Columbia in the Appalachian highlands of the Eastern United States. The Indian Creek type area is typical of ground-water conditions in a single hydrogeologic terrane that underlies perhaps as much as 40 percent of the Piedmont physiographic province. The hydrogeologic terrane of the Indian Creek model area is one of massive and foliated crystalline rocks mantled by thick regolith. The area lies almost entirely within the Inner Piedmont geologic belt. Five hydrogeologic units occupy major portions of the model area, but statistical tests on well yields, specific capacities, and other hydrologic characteristics show that the five hydrogeologic units can be treated as one unit for purposes of modeling ground-water flow. The 146-square-mile Indian Creek model area includes the Indian Creek Basin, which has a surface drainage area of about 69 square miles. The Indian Creek Basin lies in parts of Catawba, Lincoln, and Gaston Counties, North Carolina. The larger model area is based on boundary conditions established for digital simulation of ground-water flow within the smaller Indian Creek Basin. The ground-water flow model of the Indian Creek Basin is based on the U.S. Geological Survey?s modular finite

  7. Geology and ground water in the Platte-Republican Rivers watershed and the Little Blue River basin above Angus, Nebraska, with a section on chemical quality of the ground water

    USGS Publications Warehouse

    Johnson, C.R.; Brennan, Robert

    1960-01-01

    saturation because the ground water, as it percolates southeastward beneath the area, moves out of the Tertiary and into the Quaternary deposits without apparent hindrance. The water that enters the area as underflow from the west is augmented within the area by water that infiltrates from the land surface. The principal sources of irrigating water are precipitation, seepage from canals and reservoirs, and applied irrigation water. Except for the water withdrawn through wells or discharged by natural processes where valleys have been cut into the zone of saturation, ground water leaves the area as underflow into the Platte River valley on the north, the Blue River drainage basin on the east, or the Republican River valley on the south. Part of the water used for irrigation and watering livestock and all the water used in rural and urban homes, in public buildings, and for industrial purposes is obtained from wells, To date (1952) there is no indication that the supply of ground water is being depleted faster than it is being replenished; instead, studies indicate that greater quantities can be withdrawn without causing an excessive decline of the water table. An increase of ground-water withdrawals to a sustainable maximum, however, will be possible only if the points of withdrawal are scattered fairly uniformly. It is estimated that annual withdrawals per township should not exceed 2,100 acre-feet where infiltrating precipitation is the only source of recharge, or 3,000 acre-feet where other sources of recharge are significant. Although perennial withdrawals of this amount could be sustained indefinitely, they would cause some lowering of the water table and eventually a decrease in the amount of water discharged from the area by natural means. The ground water is of the calcium bicarbonate type. In much of the area it is hard or very hard, and in places it contains excessive amounts of iron. In all other respects the water is chemically suitable for domesti

  8. Drought, Land-Use Change, and Water Availability in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Faunt, C. C.; Sneed, M.; Traum, J.

    2015-12-01

    The Central Valley is a broad alluvial-filled structural trough that covers about 52,000 square kilometers and is one of the most productive agricultural regions in the world. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture developed a reliance on groundwater for irrigation. During recent drought periods (2007-09 and 2012-present), groundwater pumping has increased due to a combination of factors including drought and land-use changes. In response, groundwater levels have declined to levels approaching or below historical low levels. In the San Joaquin Valley, the southern two thirds of the Central Valley, the extensive groundwater pumpage has caused aquifer system compaction, resulting in land subsidence and permanent loss of groundwater storage capacity. The magnitude and rate of subsidence varies based on geologic materials, consolidation history, and historical water levels. Spatially-variable subsidence has changed the land-surface slope, causing operational, maintenance, and construction-design problems for surface-water infrastructure. It is important for water agencies to plan for the effects of continued water-level declines, storage losses, and/or land subsidence. To combat these effects, excess surface water, when available, is artificially recharged. As surface-water availability, land use, and artificial recharge continue to vary, long-term groundwater-level and land-subsidence monitoring and modelling are critical to understanding the dynamics of the aquifer system. Modeling tools, such as the Central Valley Hydrologic Model, can be used in the analysis and evaluation of management strategies to mitigate adverse impacts due to subsidence, while also optimizing water availability. These analyses will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  9. Ground-water resources of the El Paso area, Texas

    USGS Publications Warehouse

    Sayre, Albert Nelson; Livingston, Penn Poore

    1945-01-01

    El Paso, Tex., and Ciudad Juarez, Chihuahua, Mexico, and the industries in -that area draw their water supplies from wells, most of which are from 600 to 800 feet deep. In 1906, the estimated average pumpage there was about 1,000,000 gallons a day, and by 1935 it had increased to 15,400,000 gallons a day. The water-bearing beds, consisting of sand and gravel interbedded wire clay, tie in the deep structural trough known as the Hueco bolson, between the Organ and Franklin Mountains on the west, the Hueco, Finlay, and Malone Mountains on the east, the Tularosa Basin on the north, and the mountain ranges of Mexico on the south. From the gorge above El Paso to that beginning near Fort Quitman, about 90 miles southeast .of El Paso, the Rio Grande has eroded a flat-bottomed, steepwalled valley, 6 to 8 miles wide and 225 to 350 feet deep. No other large drainage channels have been developed on the bolson. The valley is known as the El Paso Valley, and the uneroded upland part of the bolson is called the Mesa. In the lowest parts of the El Paso Valley, the water-table is nearly at the surface. The quality of the underground water in the valley varies greatly both vertically and laterally. To a depth of about 400 to 500 feet it is in general too highly mineralized for municipal use, but between about. 500 and 900 feet good water may be obtained from several beds. In the beds between 500 and 900 feet the water level in wells is in places as. much as 20 feet lower than that in the shallow beds. Beneath the Mesa the water level .varies from about 200 feet beneath the surface, where the ground elevation is least, to about 400 feet. where it is highest. The water beneath the Mesa in general is of satisfactory quality and contains less than 500 parts per million of dissolved solids. Two cones of depression in the water table have been formed by the pumping near El Paso--one m the vicinity of the Mesa well field, the other around the Montana well field in the valley. The water

  10. Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-1994, with projections to 2020

    USGS Publications Warehouse

    Kernodle, J.M.; McAda, D.P.; Thorn, C.R.

    1995-01-01

    This report describes a three-dimensional finite-difference ground-water-flow model of the Santa Fe Group aquifer system in the Albuquerque Basin, which comprises the Santa Fe Group (late Oligocene to middle Pleistocene age) and overlying valley and basin-fill deposits (Pleistocene to Holocene age). The model is designed to be flexible and adaptive to new geologic and hydrologic information as it becomes available by using a geographic information system as a data-base manager to interface with the model. The aquifer system was defined and quantified in the model consistent with the current (July 1994) understanding of the structural and geohydrologic framework of the basin. Rather than putting the model through a rigorous calibration process, dis- crepancies between simulated and measured responses in hydraulic head were taken to indicate that the understanding of a local part of the aquifer system was incomplete or incorrect. The model simulates ground-water flow over an area of about 2,400 square miles to a depth of 1,730 to about 2,020 feet below the water table with 244 rows, 178 columns, and 11 layers. Of the 477,752 cells in the model, 310,376 are active. The top four model layers approximate the 80-foot thickness of alluvium in the incised and refilled valley of the Rio Grande to provide detail of the effect of ground-water withdrawals on the surface- water system. Away from the valley these four layers represent the interval within the Santa Fe Group aquifer system between the com- puted predevelopment water table and a level 80 feet below the grade of the Rio Grande. The simulations include initial condi- tions (steady-state), the 1901-1994 historical period, and four possible ground-water withdrawal scenarios from 1994 to 2020. The model indicates that for the year ending in March 1994, net surface-water loss in the basin resulting from the City of Albuquerque's ground-water withdrawal totaled about 53,000 acre- feet. The balance of the about 123

  11. A System Dynamics Modeling of Water Supply and Demand in Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Parajuli, R.; Kalra, A.; Mastino, L.; Velotta, M.; Ahmad, S.

    2017-12-01

    The rise in population and change in climate have posed the uncertainties in the balance between supply and demand of water. The current study deals with the water management issues in Las Vegas Valley (LVV) using Stella, a system dynamics modeling software, to model the feedback based relationship between supply and demand parameters. Population parameters were obtained from Center for Business and Economic Research while historical water demand and conservation practices were modeled as per the information provided by local authorities. The water surface elevation of Lake Mead, which is the prime source of water supply to the region, was modeled as the supply side whereas the water demand in LVV was modeled as the demand side. The study was done from the period of 1989 to 2049 with 1989 to 2012 as the historical one and the period from 2013 to 2049 as the future period. This study utilizes Coupled Model Intercomparison Project data sets (2013-2049) (CMIP3&5) to model different future climatic scenarios. The model simulates the past dynamics of supply and demand, and then forecasts the future water budget for the forecasted future population and future climatic conditions. The results can be utilized by the water authorities in understanding the future water status and hence plan suitable conservation policies to allocate future water budget and achieve sustainable water management.

  12. Case Studies of Water Vapor and Surface Liquid Water from AVIRIS Data Measured Over Denver, CO and Death Valley, CA

    NASA Technical Reports Server (NTRS)

    Gao, B.-C.; Kierein-Young, K. S.; Goetz, A. F. H.; Westwater, E. R.; Stankov, B. B.; Birkenheuer, D.

    1991-01-01

    High spatial resolution column atmospheric water vapor amounts and equivalent liquid water thicknesses of surface targets are retrieved from spectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The retrievals are made using a nonlinear least squares curve fitting technique. Two case studies from AVIRIS data acquired over Denver-Platteville area, Colorado and over Death Valley, California are presented. The column water vapor values derived from AVIRIS data over the Denver-Platteville area are compared with those obtained from radiosondes, ground level upward-looking microwave radiometers, and geostationary satellite measurements. The column water vapor image shows spatial variation patterns related to the passage of a weather front system. The column water vapor amounts derived from AVIRIS data over Death Valley decrease with increasing surface elevation. The derived liquid water image clearly shows surface drainage patterns.

  13. Simulation of ground-water flow to assess geohydrologic factors and their effect on source-water areas for bedrock wells in Connecticut

    USGS Publications Warehouse

    Starn, J. Jeffrey; Stone, Janet Radway

    2005-01-01

    Generic ground-water-flow simulation models show that geohydrologic factors?fracture types, fracture geometry, and surficial materials?affect the size, shape, and location of source-water areas for bedrock wells. In this study, conducted by the U.S. Geological Survey in cooperation with the Connecticut Department of Public Health, ground-water flow was simulated to bedrock wells in three settings?on hilltops and hillsides with no surficial aquifer, in a narrow valley with a surficial aquifer, and in a broad valley with a surficial aquifer?to show how different combinations of geohydrologic factors in different topographic settings affect the dimensions and locations of source-water areas in Connecticut. Three principal types of fractures are present in bedrock in Connecticut?(1) Layer-parallel fractures, which developed as partings along bedding in sedimentary rock and compositional layering or foliation in metamorphic rock (dips of these fractures can be gentle or steep); (2) unroofing joints, which developed as strain-release fractures parallel to the land surface as overlying rock was removed by erosion through geologic time; and (3) cross fractures and joints, which developed as a result of tectonically generated stresses that produced typically near-vertical or steeply dipping fractures. Fracture geometry is defined primarily by the presence or absence of layering in the rock unit, and, if layered, by the angle of dip in the layering. Where layered rocks dip steeply, layer-parallel fracturing generally is dominant; unroofing joints also are typically well developed. Where layered rocks dip gently, layer-parallel fracturing also is dominant, and connections among these fractures are provided only by the cross fractures. In gently dipping rocks, unroofing joints generally do not form as a separate fracture set; instead, strain release from unroofing has occurred along gently dipping layer-parallel fractures, enhancing their aperture. In nonlayered and variably

  14. Modeling ground thermal regime of an ancient buried ice body in Beacon Valley, Antarctica using a 1-D heat equation with latent heat effect

    NASA Astrophysics Data System (ADS)

    Liu, L.; Sletten, R. S.; Hallet, B.; Waddington, E. D.; Wood, S. E.

    2013-12-01

    An ancient massive ice body buried under several decimeters of debris in Beacon Valley, Antarctica is believed to be over one million years old, making it older than any known glacier or ice cap. It is fundamentally important as a reservoir of water, proxy for climatic information, and an expression of the periglacial landscape. It is also one of Earth's closest analog for widespread, near-surface ice found in Martian soils and ice-cored landforms. We are interested in understanding controls on how long this ice may persist since our physical model of sublimation suggests it should not be stable. In these models, the soil temperatures and the gradient are important because it determines the direction and magnitude of the vapor flux, and thus sublimation rates. To better understand the heat transfer processes and constrain the rates of processes governing ground ice stability, a model of the thermal behavior of the permafrost is applied to Beacon Valley, Antarctica. It calculates soil temperatures based on a 1-D thermal diffusion equation using a fully implicit finite volume method (FVM). This model is constrained by soil physical properties and boundary conditions of in-situ ground surface temperature measurements (with an average of -23.6oC, a maximum of 20.5oC and a minimum of -54.3oC) and ice-core temperature record at ~30 m. Model results are compared to in-situ temperature measurements at depths of 0.10 m, 0.20 m, 0.30 m, and 0.45 m to assess the model's ability to reproduce the temperature profile for given thermal properties of the debris cover and ice. The model's sensitivity to the thermal diffusivity of the permafrost and the overlaying debris is also examined. Furthermore, we incorporate the role of ice condensation/sublimation which is calculated using our vapor diffusion model in the 1-D thermal diffusion model to assess potential latent heat effects that in turn affect ground ice sublimation rates. In general, the model simulates the ground thermal

  15. Strong ground motion in the Kathmandu Valley during the 2015 Gorkha, Nepal, earthquake

    NASA Astrophysics Data System (ADS)

    Takai, Nobuo; Shigefuji, Michiko; Rajaure, Sudhir; Bijukchhen, Subeg; Ichiyanagi, Masayoshi; Dhital, Megh Raj; Sasatani, Tsutomu

    2016-01-01

    On 25 April 2015, a large earthquake of Mw 7.8 occurred along the Main Himalayan Thrust fault in central Nepal. It was caused by a collision of the Indian Plate beneath the Eurasian Plate. The epicenter was near the Gorkha region, 80 km northwest of Kathmandu, and the rupture propagated toward east from the epicentral region passing through the sediment-filled Kathmandu Valley. This event resulted in over 8000 fatalities, mostly in Kathmandu and the adjacent districts. We succeeded in observing strong ground motions at our four observation sites (one rock site and three sedimentary sites) in the Kathmandu Valley during this devastating earthquake. While the observed peak ground acceleration values were smaller than the predicted ones that were derived from the use of a ground motion prediction equation, the observed peak ground velocity values were slightly larger than the predicted ones. The ground velocities observed at the rock site (KTP) showed a simple velocity pulse, resulting in monotonic-step displacements associated with the permanent tectonic offset. The vertical ground velocities observed at the sedimentary sites had the same pulse motions that were observed at the rock site. In contrast, the horizontal ground velocities as well as accelerations observed at three sedimentary sites showed long duration with conspicuous long-period oscillations, due to the valley response. The horizontal valley response was characterized by large amplification (about 10) and prolonged oscillations. However, the predominant period and envelope shape of their oscillations differed from site to site, indicating a complicated basin structure. Finally, on the basis of the velocity response spectra, we show that the horizontal long-period oscillations on the sedimentary sites had enough destructive power to damage high-rise buildings with natural periods of 3 to 5 s.

  16. VALDRIFT 1.0: A valley atmospheric dispersion model with deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allwine, K.J.; Bian, X.; Whiteman, C.D.

    1995-05-01

    VALDRIFT version 1.0 is an atmospheric transport and diffusion model for use in well-defined mountain valleys. It is designed to determine the extent of ddft from aedal pesticide spraying activities, but can also be applied to estimate the transport and diffusion of various air pollutants in valleys. The model is phenomenological -- that is, the dominant meteorological processes goveming the behavior of the valley atmosphere are formulated explicitly in the model, albeit in a highly parameterized fashion. The key meteorological processes treated are: (1) nonsteady and nonhomogeneous along-valley winds and turbulent diffusivities, (2) convective boundary layer growth, (3) inversion descent,more » (4) noctumal temperature inversion breakup, and (5) subsidence. The model is applicable under relatively cloud-free, undisturbed synoptic conditions and is configured to operate through one diumal cycle for a single valley. The inputs required are the valley topographical characteristics, pesticide release rate as a function of time and space, along-valley wind speed as a function of time and space, temperature inversion characteristics at sunrise, and sensible heat flux as a function of time following sunrise. Default values are provided for certain inputs in the absence of detailed observations. The outputs are three-dimensional air concentration and ground-level deposition fields as a function of time.« less

  17. Map showing depth to pre-Cenozoic basement in the Death Valley ground-water model area, Nevada and California

    USGS Publications Warehouse

    Blakely, R.J.; Ponce, D.A.

    2001-01-01

    A depth to basement map of the Death Valley groundwater model area was prepared using over 40,0000 gravity stations as part of an interagency effort by the U.S. Geological Survey and the U.S. Department of Energy to help characterize the geology and hydrology of southwest Nevada and parts of California.

  18. Geology, ground-water hydrology, geochemistry, and ground-water simulation of the Beaumont and Banning Storage Units, San Gorgonio Pass area, Riverside County, California

    USGS Publications Warehouse

    Rewis, Diane L.; Christensen, Allen H.; Matti, Jonathan; Hevesi, Joseph A.; Nishikawa, Tracy; Martin, Peter

    2006-01-01

    Ground water has been the only source of potable water supply for residential, industrial, and agricultural users in the Beaumont and Banning storage units of the San Gorgonio Pass area, Riverside County, California. Ground-water levels in the Beaumont area have declined as much as 100 feet between the early 1920s and early 2000s, and numerous natural springs have stopped flowing. In 1961, the San Gorgonio Pass Water Agency (SGPWA) entered into a contract with the California State Department of Water Resources to receive 17,300 acre-feet per year of water to be delivered by the California State Water Project (SWP) to supplement natural recharge. Currently (2005), a pipeline is delivering SWP water into the area, and the SGPWA is artificially recharging the ground-water system using recharge ponds located along Little San Gorgonio Creek in Cherry Valley with the SWP water. In addition to artificial recharge, SGPWA is considering the direct delivery of SWP water for the irrigation of local golf courses and for agricultural supply in lieu of ground-water pumpage. To better understand the potential hydrologic effects of different water-management alternatives on ground-water levels and movement in the Beaumont and Banning storage units, existing geohydrologic and geochemical data were compiled, new data from a basin-wide ground-water level and water-quality monitoring network were collected, monitoring wells were installed near the Little San Gorgonio Creek recharge ponds, geohydrologic and geochemical analyses were completed, and a ground-water flow simulation model was developed. The San Gorgonio Pass area was divided into several storage units on the basis of mapped or inferred faults. This study addresses primarily the Beaumont and Banning storage units. The geologic units in the study area were generalized into crystalline basement rocks and sedimentary deposits. The younger sedimentary deposits and the surficial deposits are the main water-bearing deposits in the

  19. Preliminary estimates of spatially distributed net infiltration and recharge for the Death Valley region, Nevada-California

    USGS Publications Warehouse

    Hevesi, J.A.; Flint, A.L.; Flint, L.E.

    2002-01-01

    A three-dimensional ground-water flow model has been developed to evaluate the Death Valley regional flow system, which includes ground water beneath the Nevada Test Site. Estimates of spatially distributed net infiltration and recharge are needed to define upper boundary conditions. This study presents a preliminary application of a conceptual and numerical model of net infiltration. The model was developed in studies at Yucca Mountain, Nevada, which is located in the approximate center of the Death Valley ground-water flow system. The conceptual model describes the effects of precipitation, runoff, evapotranspiration, and redistribution of water in the shallow unsaturated zone on predicted rates of net infiltration; precipitation and soil depth are the two most significant variables. The conceptual model was tested using a preliminary numerical model based on energy- and water-balance calculations. Daily precipitation for 1980 through 1995, averaging 202 millimeters per year over the 39,556 square kilometers area of the ground-water flow model, was input to the numerical model to simulate net infiltration ranging from zero for a soil thickness greater than 6 meters to over 350 millimeters per year for thin soils at high elevations in the Spring Mountains overlying permeable bedrock. Estimated average net infiltration over the entire ground-water flow model domain is 7.8 millimeters per year.To evaluate the application of the net-infiltration model developed on a local scale at Yucca Mountain, to net-infiltration estimates representing the magnitude and distribution of recharge on a regional scale, the net-infiltration results were compared with recharge estimates obtained using empirical methods. Comparison of model results with previous estimates of basinwide recharge suggests that the net-infiltration estimates obtained using this model may overestimate recharge because of uncertainty in modeled precipitation, bedrock permeability, and soil properties for

  20. Selected well and ground-water chemistry data for the Boise River Valley, southwestern Idaho, 1990-95

    USGS Publications Warehouse

    Parliman, D.J.; Boyle, Linda; Nicholls, Sabrina

    1996-01-01

    Water samples were collected from 903 wells in the Boise River Valley, Idaho, from January 1990 through December 1995. Selected well information and analyses of 1,357 water samples are presented. Analyses include physical properties ad concentrations of nutrients, bacteria, major ions, selected trace elements, radon-222, volatile organic compounds, and pesticides.

  1. Ground-water hydrology and water quality of the southern high plains aquifer, Melrose Air Force Range, Cannon Air Force Base, Curry and Roosevelt Counties, New Mexico, 2002-03

    USGS Publications Warehouse

    Langman, Jeff B.; Gebhardt, Fredrick E.; Falk, Sarah E.

    2004-01-01

    In cooperation with the U.S. Air Force, the U.S. Geological Survey characterized the ground-water hydrology and water quality at Melrose Air Force Range in east-central New Mexico. The purpose of the study was to provide baseline data to Cannon Air Force Base resource managers to make informed decisions concerning actions that may affect the ground-water system. Five periods of water-level measurements and four periods of water-quality sample collection were completed at Melrose Air Force Range during 2002 and 2003. The water-level measurements and water-quality samples were collected from a 29-well monitoring network that included wells in the Impact Area and leased lands of Melrose Air Force Range managed by Cannon Air Force Base personnel. The purpose of this report is to provide a broad overview of ground-water flow and ground-water quality in the Southern High Plains aquifer in the Ogallala Formation at Melrose Air Force Range. Results of the ground-water characterization of the Southern High Plains aquifer indicated a local flow system in the unconfined aquifer flowing northeastward from a topographic high, the Mesa (located in the southwestern part of the Range), toward a regional flow system in the unconfined aquifer that flows southeastward through the Portales Valley. Ground water was less than 55 years old across the Range; ground water was younger (less than 25 years) near the Mesa and ephemeral channels and older (25 years to 55 years) in the Portales Valley. Results of water-quality analysis indicated three areas of different water types: near the Mesa and ephemeral channels, in the Impact Area of the Range, and in the Portales Valley. Within the Southern High Plains aquifer, a sodium/chloride-dominated ground water was found in the center of the Impact Area of the Range with water-quality characteristics similar to ground water from the underlying Chinle Formation. This sodium/chloride-dominated ground water of the unconfined aquifer in the Impact

  2. Maps Showing Ground-Water Conditions in the Bill Williams Area, Mohave, Yavapai, and Yuma Counties, Arizona--1980

    USGS Publications Warehouse

    Sanger, H.W.; Littin, G.R.

    1982-01-01

    INTRODUCTION The Bill Williams area includes about 3,200 mi 2 in Mohave, Yavapai, and Yuma Counties in west-central Arizona. The west half of the area is in the Basin and Range lowlands water province, and the east half is in the Central high-lands water province (see index map). The Basin and Range lowlands province generally is characterized by high mountains separated by broad valleys filled with deposits that commonly store large amounts of ground water. The Central highlands province consists mostly of rugged mountain masses made up of igneous, metamorphic, and well-consolidated sedimentary rocks that contain little space for the storage of ground water except where highly fractured or faulted. A few small valleys between the mountains contain varying thicknesses of water.-bearing deposits. The area is drained by the Bill Williams River and its major tributaries-the Big Sandy River and the Santa Maria River. Many reaches of the Big Sandy and Santa Maria Rivers and their major tributaries are perennial; the flow is sustained by ground-water discharge (Brown and others, 1978, sheet 2). In the Bill Williams area most of the water used is from ground water, although a small amount of surface water also may be diverted. About 18,000 acre-ft of ground water was withdrawn in 1979 (U.S. Geological Survey, 1981). About 17,000 acre-ft was used for the irrigation of 5,200 acres, and the rest was used for domestic, stock, and public supplies. Most of the irrigated land is in Skull Valley and along lower Kirkland Creek and the Bill Williams River. Only selected wells are shown on the maps in areas of high well density. The hydrologic data on which these maps are based are available, for the most part, in computer-printout form and may be consulted at the Arizona Department of Water Resources, 99 East Virginia, Phoenix, and at U.S. Geological Survey offices in: Federal Building, 301 West Congress Street, Tucson, and Valley Center, Suite 1880, Phoenix. Material from which

  3. Geology and ground-water resources of Uvalde County, Texas

    USGS Publications Warehouse

    Welder, F.A.; Reeves, R.D.

    1964-01-01

    Ground-water withdrawals from the Edwards and associated limestones in Uvalde County probably could be maintained indefinitely at a rate of about 200,000 acre-feet per year, provided that withdrawals north and west of the county were not increased. However, continued withdrawals at this rate-would cause wells in structurally high areas to go dry, and underflow into Medina County would cease. Furthermore, saline water might invade the fresh-water part of the aquifer from the south, and perennial spring flow in the Leona River valley would cease.

  4. Hydraulic characteristics of, and ground-water flow in, coal-bearing rocks of southwestern Virginia

    USGS Publications Warehouse

    Harlow, George E.; LeCain, Gary D.

    1993-01-01

    This report presents the results of a study by the U.S Geological Survey, in cooperation with the Virginia Department of Mines, Minerals, and Energy, Division of Mined Land Reclamation, and the Powell River Project, to describe the hydraulic characteristics of major water-bearing zones in the coal-bearing rocks of southwestern Virginia and to develop a conceptual model of the ground-water-flow system. Aquifer testing in1987 and 1988 of 9-ft intervals in coal-exploration coreholes indicates that transmissivity decreases with increasing depth. Most rock types are permeable to a depth of approximately 100 ft; however, only coal seams are consistently permeable (transmissivity greater than 0.001 ft/d) at depths greater than 200 ft . Constant-head injection testing of rock intervals adjacent to coal seams usually indicated lower values of transmissivity than those values obtained when coal seams were isolated within the test interval; thus, large values of horizontal hydraulic conductivity at depth are associated with coal seams. Potentiometric-head measurements indicate that high topographic areas (ridges) function as recharge areas; water infiltrates through the surface, percolates into regolith, and flows downward and laterally through fractures in the shallow bedrock. Hydraulic conductivity decreases with increasing depth, and ground water flows primarily in the lateral direction along fractures or bedding planes or through coal seams. If vertical hydraulic conductivity is negligible, ground water continues to flow laterally, discharging as springs or seeps on hill slopes. Where vertical hydraulic conductivity is appreciable, groundwater follows a stair step path through the regolith, fractures, bedding planes, and coal seams, discharging to streams and (or) recharging coal seams at depth. Permeable coal seams probably underlie valleys in the region; however, aquifer-test data indicate that the horizontal hydraulic conductivity of coal is a function of depth and

  5. MODFLOW-2005 : the U.S. Geological Survey modular ground-water model--the ground-water flow process

    USGS Publications Warehouse

    Harbaugh, Arlen W.

    2005-01-01

    This report presents MODFLOW-2005, which is a new version of the finite-difference ground-water model commonly called MODFLOW. Ground-water flow is simulated using a block-centered finite-difference approach. Layers can be simulated as confined or unconfined. Flow associated with external stresses, such as wells, areal recharge, evapotranspiration, drains, and rivers, also can be simulated. The report includes detailed explanations of physical and mathematical concepts on which the model is based, an explanation of how those concepts are incorporated in the modular structure of the computer program, instructions for using the model, and details of the computer code. The modular structure consists of a MAIN Program and a series of highly independent subroutines. The subroutines are grouped into 'packages.' Each package deals with a specific feature of the hydrologic system that is to be simulated, such as flow from rivers or flow into drains, or with a specific method of solving the set of simultaneous equations resulting from the finite-difference method. Several solution methods are incorporated, including the Preconditioned Conjugate-Gradient method. The division of the program into packages permits the user to examine specific hydrologic features of the model independently. This also facilitates development of additional capabilities because new packages can be added to the program without modifying the existing packages. The input and output systems of the computer program also are designed to permit maximum flexibility. The program is designed to allow other capabilities, such as transport and optimization, to be incorporated, but this report is limited to describing the ground-water flow capability. The program is written in Fortran 90 and will run without modification on most computers that have a Fortran 90 compiler.

  6. Providing Data and Modeling to Help Manage Water Supplies

    USGS Publications Warehouse

    Nickles, James

    2008-01-01

    The Sonoma County Water Agency (SCWA) and other local water purveyors have partnered with the U.S. Geological Survey (USGS) to assess hydrologic conditions and to quan-tify the county-wide interconnections between surface water and ground water. Through this partnership, USGS scientists have completed assessments of the geohydrology and geochemistry of the Sonoma and Alexander Valley ground-water basins. Now, the USGS is constructing a detailed ground-water flow model of the Santa Rosa Plain. It will be used to help identify strategies for surface-water/ground-water management and help to ensure long-term viability of the water supply. The USGS is also working with the SCWA to help meet future demand in the face of possible new restrictions on its main source of water, the Russian River. SCWA draws water from the alluvial aquifer underlying and adjacent to the Russian River and may want to extend riverbank filtration facilities to new areas. USGS scientists are conducting research to charac-terize riverbank filtration processes and changes in water quality during reduced river flows.

  7. Annual summary of ground-water conditions in Arizona, spring 1979 to spring 1980

    USGS Publications Warehouse

    ,

    1981-01-01

    Withdrawal of ground water, about 4.0 million acre-feet in Arizona in 1979, is about 200,000 acre-feet less than the amount withdrawn in 1978. The withdrawals in 1978 and 1979 are the smallest since the mid-1950 's except in 1966. Nearly all the decrease was in the amount of ground water used for irrigation in the Basin and Range lowlands province. The large amount of water in storage in the surface-water reservoirs, release of water from the reservoirs, floods, and conservation practices contributed to the decrease in ground-water use and caused water-level rises in the Salt River Valley, Gila Bend basin, and Gila River drainage from Painted Rock Dam to Texas Hill. Two small-scale maps show ground-water pumpage by areas and the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth to water in selected wells in spring 1980, and change in water level in selected wells from 1975 to 1980. A brief text summarizes the current ground-water conditions in the State. (USGS)

  8. Hydrogeology of the western part of the Salt River Valley area, Maricopa County, Arizona

    USGS Publications Warehouse

    Brown, James G.; Pool, D.R.

    1989-01-01

    The Salt River Valley is a major population and agricultural center of more than 3,000 mi2 in central Arizona (fig. 1). The western part of the Salt River Valley area (area of this report) covers about 1,500 mi2. The Phoenix metropolitan area with a population of more than 1.6 million in 1985 (Valley National Bank, 1987) is located within the valley. The watersheds of the Salt, Verde, and Agua Fria Rivers provide the valley with a reliable but limited surface-water supply that must be augmented with ground water even in years of plentiful rainfall. Large-scale ground-water withdrawals began in the Salt River Valley in the early part of the 20th century; between 1915 and 1983, the total estimated ground-water pumpage was 81 million acre-ft (U.S. Geological Survey, 1984). Because of the low average annual rainfall and high potential evapotranspiration, the principal sources of ground-water recharge are urban runoff, excess irrigation, canal seepage and surface-water flows during years of higher-than-normal rainfall. Withdrawals greatly exceed recharge and, in some area, ground-water levels have declines as much as 350 ft (Laney and other, 1978; Ross, 1978). In the study area, ground-water declines of more than 300 ft have occurred in Deer Valley and from Luke Air Force Base north to Beardsley. As a result, a large depression of the water table has developed west of Luke Air Force Base (fig. 2). Ground-water use has decreased in recent years because precipitation and surface-water supplies have been greater than normal. Increased precipitation also caused large quantities of runoff to be released into the normally dry Salt and Gila River channels. From February 1978 to June 1980, streamflow losses of at least 90,000 acre-ft occurred between Jointhead Dam near the east boundary of the study area and Gillespie Dam several miles southwest of the west edge of the study area (Mann and Rhone, 1983). Consequently, ground-water declines in a large part of the basin have

  9. Effects of Irrigation, Drought, and Ground-Water Withdrawals on Ground-Water Levels in the Southern Lihue Basin, Kauai, Hawaii

    USGS Publications Warehouse

    Izuka, Scot K.

    2006-01-01

    A numerical ground-water-flow model was used to investigate the effects of irrigation on ground-water levels in the southern Lihue Basin, Kauai, Hawaii, and the relation between declining ground-water levels observed in the basin in the 1990s and early 2000s and concurrent drought, irrigation reduction, and changes in ground-water withdrawal. Results of steady-state model simulations indicate that changing from pre-development to 1981 irrigation and ground-water-withdrawal conditions could, given enough time for steady state to be achieved, raise ground-water levels in some areas of the southern Lihue Basin by as much as 200 feet, and that changing from 1981 to 1998 irrigation and ground-water-withdrawal conditions could lower ground-water levels in some areas by as much as 100 feet. Transient simulations combining drought, irrigation reduction, and changes in ground-water withdrawal show trends that correspond with those observed in measured water levels. Results of this study indicate that irrigation reduction was the primary cause of the observed decline in ground-water-levels. In contrast, ground-water withdrawal had a long-duration but small-magnitude effect, and drought had a widespread, high-magnitude but short-duration effect. Inasmuch as irrigation in the future is unlikely to return to the same levels as during the period of peak sugarcane agriculture, the decline in ground-water levels resulting from the reduction and ultimate end of sugarcane irrigation can be considered permanent. Assuming that irrigation does not return to the southern Lihue Basin and that, on average, normal rainfall persists and ground-water withdrawal remains at 1998 rates, model projections indicate that average ground-water levels in the Kilohana-Puhi area will continue to recover from the drought of 1998-2002 and eventually rise to within about 4 feet of the pre-drought conditions. Long-term climate trends, increases in ground-water withdrawal, or other factors not simulated in

  10. Ground water in the Redding Basin, Shasta and Tehama counties, California

    USGS Publications Warehouse

    Pierce, M.J.

    1983-01-01

    An appraisal of ground-water conditions in the Redding Basin was made by the U.S. Geological Survey and the California Department of Water Resources during 1979 and 1980. The basin covers about 510 square miles in the northern part of the Central Valley of California. Ground water in the basin is obtained principally from wells tapping continental deposits of Tertiary and/or Quaternary age. These deposits are arranged in a synclinal structure that trends and plunges southward. Recharge to the basin is from subsurface inflow; infiltration of precipitation and excess irrigation water; and percolation of certain reaches of streams and creeks. Ground-water movement is generally from the periphery of the basin towards the Sacramento River. Hydrographs for the period 1956 to 1970 show only a slight water-level decline and virtually no change between 1970 and 1979. The total estimated pumpage for 1976 was 82,000 acre-feet. Estimated usable storage capacity for the basin is about 5.5 million acre-feet. Chemical quality of ground water is rated good to excellent. Water type is a magnesium-calcium bicarbonate in character. The underlying Chico Formation contains saline marine water which is of poor quality. (USGS)

  11. Summary of the hydrogeology of the Valley and Ridge, Blue Ridge, and Piedmont Physiographic Provinces in the eastern United States

    USGS Publications Warehouse

    Swain, Lindsay A.; Mesko, Thomas O.; Hollyday, Este F.

    2004-01-01

    The Appalachian Valley and Piedmont Regional Aquifer-System Analysis study (1988-1993) analyzed rock types in the 142,000-square-mile study area, identified hydrogeologic terranes, determined transmissivity distributions, determined the contribution of ground water to streamflow, modeled ground-water flow, described water quality, and identified areas suitable for the potential development of municipal and industrial ground-water supplies. Ground-water use in the Valley and Ridge, the Blue Ridge, and the Piedmont Physiographic Provinces exceeds 1.7 billion gallons per day.Thirty-three rock types in the study area were analyzed, and the rock types with similar water-yielding characteristics were combined and mapped as 10 hydrogeologic terranes. Based on well records, the interquartile ranges of estimated transmissivities are between 180 to 17,000 feet squared per day (ft2/d) for five hydrologic terranes in the Valley and Ridge; between 9 to 350 ft2/d for two terranes in the Blue Ridge; and between 9 to 1,400 ft2/d for three terranes in the Piedmont Physiographic Province. Based on streamflow records, the interquartile ranges of estimated transmissivities for all three physiographic provinces are between 290 and 2,900 ft2/d. The mean ground-water contribution to streams from 157 drainage basins ranges from 32 to 94 percent of mean streamflow with a median of 67 percent. In three small areas in two of the physiographic provinces, more than 54 percent of ground-water flow was modeled as shallow and local. Although ground-water chemical composition in the three physiographic provinces is distinctly different, the water generally is not highly mineralized, with a median dissolved-solids concentration of 164 milligrams per liter, and is mostly calcium, magnesium, and bicarbonate. Based on aquifer properties and current pumpage, areas favorable for the development of municipal and industrial ground-water supplies are underlain by alluvium of glacial origin near the

  12. Application of digital profile modeling techniques to ground-water solute transport at Barstow, California

    USGS Publications Warehouse

    Robson, Stanley G.

    1978-01-01

    This study investigated the use of a two-dimensional profile-oriented water-quality model for the simulation of head and water-quality changes through the saturated thickness of an aquifer. The profile model is able to simulate confined or unconfined aquifers with nonhomogeneous anisotropic hydraulic conductivity, nonhomogeneous specific storage and porosity, and nonuniform saturated thickness. An aquifer may be simulated under either steady or nonsteady flow conditions provided that the ground-water flow path along which the longitudinal axis of the model is oriented does not move in the aquifer during the simulation time period. The profile model parameters are more difficult to quantify than are the corresponding parameters for an areal-oriented water-fluality model. However, the sensitivity of the profile model to the parameters may be such that the normal error of parameter estimation will not preclude obtaining acceptable model results. Although the profile model has the advantage of being able to simulate vertical flow and water-quality changes in a single- or multiple-aquifer system, the types of problems to which it can be applied is limited by the requirements that (1) the ground-water flow path remain oriented along the longitudinal axis of the model and (2) any subsequent hydrologic factors to be evaluated using the model must be located along the land-surface trace of the model. Simulation of hypothetical ground-water management practices indicates that the profile model is applicable to problem-oriented studies and can provide quantitative results applicable to a variety of management practices. In particular, simulations of the movement and dissolved-solids concentration of a zone of degraded ground-water quality near Barstow, Calif., indicate that halting subsurface disposal of treated sewage effluent in conjunction with pumping a line of fully penetrating wells would be an effective means of controlling the movement of degraded ground water.

  13. Hydrology of Northern Utah Valley, Utah County, Utah, 1975-2005

    USGS Publications Warehouse

    Cederberg, Jay R.; Gardner, Philip M.; Thiros, Susan A.

    2009-01-01

    stable isotopes of hydrogen and oxygen. Water samples from all 36 wells were analyzed for dissolved-gas concentration including noble gases and tritium/helium-3. Within the basin fill, dissolved-solids concentration generally increases with distance along flowpaths from recharge areas, and shallower flowpaths tend to have higher concentrations than deeper flowpaths. Nitrate concentrations generally are at or below natural background levels. Dissolved-gas recharge temperature data support the conceptual model of the basin-fill aquifers and highlight complexities of recharge patterns in different parts of the valley. Dissolved-gas data indicate that the highest elevation recharge sources for the basin-fill aquifer are subsurface inflow derived from recharge in the adjacent mountain block between the mouths of American Fork and Provo Canyons. Apparent ground-water ages in the basin-fill aquifer, as calculated using tritium/helium-3 data, range from 2 to more than 50 years. The youngest waters in the valley occur near the mountain fronts with apparent ages generally increasing near the valley lowlands and discharge area around Utah Lake. Flowpaths are controlled by aquifer properties and the location of the predominant recharge sources, including subsurface inflow and recharge along the mountain front. Subsurface inflow is distributed over a larger area across the interface of the subsurface mountain block and basin-fill deposits. Subsurface inflow occurs at a depth deeper than that at which mountain-front recharge occurs. Recharge along the mountain front is often localized and focused over areas where streams and creeks enter the valley, and recharge is enhanced by the associated irrigation canals.

  14. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    USGS Publications Warehouse

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, Niel; Bohlke, John Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    water under wet conditions than under dry conditions. The apparent age of water from wells, springs, and other ground-water discharge points in the four targeted watersheds was modern to 60 years, which was similar to the apparent ages from the spring study. In the Pocomoke River Watershed in the Coastal Plain Uplands HGMR, the apparent age of ground-water samples ranged from 0 to 60 years; the ages in the vicinity of the streams ranged from 0 to 23 years.The apparent ages of ground water in the Polecat Creek Watershed in the Piedmont crystalline HGMR ranged from 2 to 30 years. The apparent ages of water from wells in the Muddy Creek Watershed in the Valley and Ridge carbonate HGMR ranged from 10 to 20 years (except for a single sample that was 45 years). The ages in the East Mahantango Creek Watershed in the Valley and Ridge siliciclastic HGMR ranged from 0 to 50 years. The distribution in apparent age of water from wells in the targeted watersheds, however, generally is older than that for water from the springs. The median age of water from wells in the Muddy Creek Watershed, for example, was 15 years, compared to 11 years for the water from the springs in that watershed, and less than 10 years for water from all springs in the spring study. The similarity in the ranges in apparent age of water from the wells and from the springs shows that the samples from the targeted watersheds and springs have bracketed the range of apparent ages that would be expected in the shallow ground-water-flow systems throughout the Chesapeake Bay Watershed.The apparent age of water from individual wells does not necessarily represent the entire distribution of ages of the discharging ground water, and it is this distribution of ages that affects the response of nutrient concentrations in stream base flow. Nutrient-reduction scenarios were modeled for two watersheds for which the distribution of apparent ground-water ages was available, the East Mahantango Creek Watershed in the Valley

  15. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction

    USGS Publications Warehouse

    Swain, Eric D.; Wexler, Eliezer J.

    1996-01-01

    Ground-water and surface-water flow models traditionally have been developed separately, with interaction between subsurface flow and streamflow either not simulated at all or accounted for by simple formulations. In areas with dynamic and hydraulically well-connected ground-water and surface-water systems, stream-aquifer interaction should be simulated using deterministic responses of both systems coupled at the stream-aquifer interface. Accordingly, a new coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH; the interfacing code is referred to as MODBRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference ground-water model, and BRANCH is a one-dimensional numerical model commonly used to simulate unsteady flow in open- channel networks. MODFLOW was originally written with the River package, which calculates leakage between the aquifer and stream, assuming that the stream's stage remains constant during one model stress period. A simple streamflow routing model has been added to MODFLOW, but is limited to steady flow in rectangular, prismatic channels. To overcome these limitations, the BRANCH model, which simulates unsteady, nonuniform flow by solving the St. Venant equations, was restructured and incorporated into MODFLOW. Terms that describe leakage between stream and aquifer as a function of streambed conductance and differences in aquifer and stream stage were added to the continuity equation in BRANCH. Thus, leakage between the aquifer and stream can be calculated separately in each model, or leakages calculated in BRANCH can be used in MODFLOW. Total mass in the coupled models is accounted for and conserved. The BRANCH model calculates new stream stages for each time interval in a transient simulation based on upstream boundary conditions, stream properties, and initial estimates of aquifer heads. Next, aquifer heads are calculated in MODFLOW based on stream

  16. Geohydrology, Geochemistry, and Ground-Water Simulation-Optimization of the Central and West Coast Basins, Los Angeles County, California

    USGS Publications Warehouse

    Reichard, Eric G.; Land, Michael; Crawford, Steven M.; Johnson, Tyler D.; Everett, Rhett; Kulshan, Trayle V.; Ponti, Daniel J.; Halford, Keith L.; Johnson, Theodore A.; Paybins, Katherine S.; Nishikawa, Tracy

    2003-01-01

    Historical ground-water development of the Central and West Coast Basins in Los Angeles County, California through the first half of the 20th century caused large water-level declines and induced seawater intrusion. Because of this, the basins were adjudicated and numerous ground-water management activities were implemented, including increased water spreading, construction of injection barriers, increased delivery of imported water, and increased use of reclaimed water. In order to improve the scientific basis for these water management activities, an extensive data collection program was undertaken, geohydrological and geochemical analyses were conducted, and ground-water flow simulation and optimization models were developed. In this project, extensive hydraulic, geologic, and chemical data were collected from new multiple-well monitoring sites. On the basis of these data and data compiled and collected from existing wells, the regional geohydrologic framework was characterized. For the purposes of modeling, the three-dimensional aquifer system was divided into four aquifer systems?the Recent, Lakewood, Upper San Pedro, and Lower San Pedro aquifer systems. Most pumpage in the two basins is from the Upper San Pedro aquifer system. Assessment of the three-dimensional geochemical data provides insight into the sources of recharge and the movement and age of ground water in the study area. Major-ion data indicate the chemical character of water containing less than 500 mg/L dissolved solids generally grades from calcium-bicarbonate/sulfate to sodium bicarbonate. Sodium-chloride water, high in dissolved solids, is present in wells near the coast. Stable isotopes of oxygen and hydrogen provide information on sources of recharge to the basin, including imported water and water originating in the San Fernando Valley, San Gabriel Valley, and the coastal plain and surrounding hills. Tritium and carbon-14 data provide information on relative ground-water ages. Water with

  17. Gravity survey and depth to bedrock in Carson Valley, Nevada-California

    USGS Publications Warehouse

    Maurer, D.K.

    1985-01-01

    Gravity data were obtained from 460 stations in Carson Valley, Nevada and California. The data have been interpreted to obtain a map of approximate depth to bedrock for use in a ground-water model of the valley. This map delineates the shape of the alluvium-filled basin and shows that the maximum depth to bedrock exceeds 5,000 feet, on the west side of the valley. A north-south trending offset in the bedrock surface shows that the Carson-Valley/Pine-Nut-Mountain block has not been tilted to the west as a simple unit, but is comprised of several smaller blocks. (USGS)

  18. Hydrology of the Little Androscoggin River Valley aquifer, Oxford County, Maine

    USGS Publications Warehouse

    Morrissey, D.J.

    1983-01-01

    The Little Androscoggin River valley aquifer, a 15-square-mile sand and gravel valley-fill aquifer in southwestern Maine, is the source of water for the towns of Norway, Oxford, and South Paris. Estimated inflows to the aquifer during the 1981 water year were 16.4 cubic feet per second from precipitation directly on the aquifer, 11.2 cubic feet per second from till covered uplands adjacent to the aquifer, and 1.4 cubic feet per second from surface-water leakage. Outflows from the aquifer were 26.7 cubic feet per second to surface water and 2.3 cubic feet per second to wells. A finite-difference ground-water flow model was used to simulate conditions observed in the aquifer during 1981. Model conditions observed in the aquifer during 1981. Model simulations indicate that a 50 percent reduction of average 1981 recharge to the aquifer would cause water level declines of up to 20 feet in some areas. Model simulations of increased pumping at a high yield well in the northern part of the aquifer indicate that resulting changes in the water table will not be sufficient to intercept groundwater contaminated by a sludge disposal site. Water in the aquifer is low in dissolved solids (average for 38 samples was 67 mg/L), slightly acidic and soft. Ground-water contamination has occurred near a sludge-disposal site and in the vicinity of a sanitary landfill. Dissolved solids in ground water near the sludge disposal site were as much as ten times greater than average background values for the aquifer. (USGS)

  19. Assessing Drought Impacts on Water Storage using GRACE Satellites and Regional Groundwater Modeling in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Zhang, Z.; Save, H.; Faunt, C. C.; Dettinger, M. D.

    2015-12-01

    Increasing concerns about drought impacts on water resources in California underscores the need to better understand effects of drought on water storage and coping strategies. Here we use a new GRACE mascons solution with high spatial resolution (1 degree) developed at the Univ. of Texas Center for Space Research (CSR) and output from the most recent regional groundwater model developed by the U.S. Geological Survey to evaluate changes in water storage in response to recent droughts. We also extend the analysis of drought impacts on water storage back to the 1980s using modeling and monitoring data. The drought has been intensifying since 2012 with almost 50% of the state and 100% of the Central Valley under exceptional drought in 2015. Total water storage from GRACE data declined sharply during the current drought, similar to the rate of depletion during the previous drought in 2007 - 2009. However, only 45% average recovery between the two droughts results in a much greater cumulative impact of both droughts. The CSR GRACE Mascons data offer unprecedented spatial resolution with no leakage to the oceans and no requirement for signal restoration. Snow and reservoir storage declines contribute to the total water storage depletion estimated by GRACE with the residuals attributed to groundwater storage. Rates of groundwater storage depletion are consistent with the results of regional groundwater modeling in the Central Valley. Traditional approaches to coping with these climate extremes has focused on surface water reservoir storage; however, increasing conjunctive use of surface water and groundwater and storing excess water from wet periods in depleted aquifers is increasing in the Central Valley.

  20. A Study of the Connection Among Basin-Fill Aquifers, Carbonate-Rock Aquifers, and Surface-Water Resources in Southern Snake Valley, Nevada

    USGS Publications Warehouse

    ,

    2008-01-01

    The Secretary of the Interior through the Southern Nevada Public Lands Management Act approved funding for research to improve understanding of hydrologic systems that sustain numerous water-dependent ecosystems on Federal lands in Snake Valley, Nevada. Some of the streams and spring-discharge areas in and adjacent to Great Basin National Park have been identified as susceptible to ground-water withdrawals (Elliott and others, 2006) and research has shown a high potential for ground-water flow from southern Spring Valley into southern Snake Valley through carbonate rocks that outcrop along a low topographic divide known as the Limestone Hills (Welch and others, 2007). Comprehensive geologic, hydrologic, and chemical information will be collected and analyzed to assess the hydraulic connection between basin-fill aquifers and surface-water resources, water-dependent ecological features, and the regional carbonate-rock aquifer, the known source of many high-discharge springs. Understanding these connections is important because proposed projects to pump and export ground water from Spring and Snake Valleys in Nevada may result in unintended capture of water currently supplying springs, streams, wetlands, limestone caves, and other biologically sensitive areas (fig. 1). The methods that will be used in this study may be transferable to other areas in the Great Basin. The National Park Service, Bureau of Land Management, U.S. Fish and Wildlife Service, and U.S. Forest Service submitted the proposal for funding this research to facilitate science-based land management. Scientists from the U.S. Geological Survey (USGS) Water Resources and Geologic Disciplines, and the University of Nevada, Reno, will accomplish four research elements through comprehensive data collection and analysis that are concentrated in two distinct areas on the eastern and southern flanks of the Snake Range (fig. 2). The projected time line for this research is from July 2008 through September 2011.

  1. Geology and ground-water hydrology of the Heart River irrigation project and the Dickinson area, North Dakota, with a section on the mineral quality of waters of the Heart River project

    USGS Publications Warehouse

    Tychsen, Paul C.; Swenson, Herbert A.

    1950-01-01

    The Heart River irrigation project, in southwestern North Dakota, lies in the Missouri Plateau section of the Great Plains physiographic province, which extends from the Missouri escarpment to and beyond the western border of the State. The area ranges in altitude from 1,620 to 2,275 feet and locally has strong relief. The floor of the Heart River Valley is underlain by alluvial deposits of Quaternary age. In the westernmost part of the areas the Fort Union formation of Paleocene (Tertiary) age forms the valley sides, but in a downstream direction the Cannonball and Ludlow formations, here undifferentiated, also of Paleocene age, crop out in the valley sides and underlie progressively broader areas of the upland surface. The Hell Creek formation of Upper Cretaceous age appears above stream level only in the stretch of the valley between the center of T. 136 N., R. 85 W., and the northeastern part of T.. 137 N., R. 84 W. Glacial Drift, which once covered the whole area, now has been almost entirely removed by erosion except for .scattered boulders on the uplands. The Cannonball and Ludlow unit and the Fort Union formation yield, moderate supplies of ground water, and the river alluvium yields more abundant supplies. At the present rate of withdrawal and with normal precipitation there is little danger of seriously depleting the supply. In 1946 the average depth to water in observation wells in the Heart River Valley was 19 feet, whereas the depth to water in observation wells in the upland averaged 30 feet. The Dickinson area is small and is about 45 miles upstream from the Heart River irrigation project. Ground-water levels in the Dickinson municipal well field have declined considerably within recent years, but the impounding of Heart River water is expected to insure a more adequate water supply for the town. Samples of ground water from four wells in the lower Heart River Valley were analyzed to determine the present mineral character of the waters in this

  2. Ground-water resources of the Middle Loup division of the lower Platte River basin, Nebraska, with a section on Chemical quality of the ground water

    USGS Publications Warehouse

    Brown, Delbert Wayne; Rainwater, Frank Hays

    1955-01-01

    of the water table indicate changes in the amount of ground water stored in the water-bearing formations. The principal factors controlling the rise of the water table are the amount of precipitation within the area, the quantity of water coming into the area as underflow from the west and northwest, seepage from the Middle Loup River at times when the water surface in the river is higher than the adjoining water table, and the infiltration of irrigation water not utilized by vegetation or lost by runoff or evaporation. The principal factors controlling the decline of the water table are the discharge as effluent seepage into the Middle Loup River and its tributaries, the amount of water pumped from wells, evapotranspiration losses, and the amount of water leaving the area as underflow. Periodic water-level measurements were made in a total of 241 observation wells during the period 1948-50. Hydrographs of three observation wells having a longer period of record (1934-50) indicate that the water table rose slightly from 1934 until 1950 and that it remained nearly constant during the 1950 water year. The configuration of the water table in the Middle Loup division shows that, except north and northwest of Sargent, the Middle Loup River is an effluent, or gaining, stream throughout its entire length in this area. Thus any rise or fall in the ground-water level will increase or decrease the discharge of the river. The river recharges the ground- water reservoir only during periods when it is at flood stage. The depth to the water table from the land surface is governed largely by irregularities in topography. The depth to water is less than 10 feet near the river and increases to as much as 60 feet near the valley margins and the bordering intermediate slopes. In the Far- well unit the depth to water is more than 100 feet and in some parts more than 150 feet. Ground water pumped from wells is the source of supply for the principal municipalities in th

  3. Shallow soil moisture - ground thaw interactions and controls - Part 2: Influences of water and energy fluxes

    NASA Astrophysics Data System (ADS)

    Guan, X. J.; Spence, C.; Westbrook, C. J.

    2010-01-01

    The companion paper (Guan et al., 2010) demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the key control in variable soil moisture and frost table interactions among the sites was the presence of surface water. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to conductive ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.

  4. Shallow soil moisture - ground thaw interactions and controls - Part 2: Influences of water and energy fluxes

    NASA Astrophysics Data System (ADS)

    Guan, X. J.; Spence, C.; Westbrook, C. J.

    2010-07-01

    The companion paper (Guan et al., 2010) demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the presence of surface water was the key control in variable soil moisture and frost table interactions among sites. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological and energy processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.

  5. ENVIRONMENTAL RESEARCH BRIEF : ANALYTIC ELEMENT MODELING OF GROUND-WATER FLOW AND HIGH PERFORMANCE COMPUTING

    EPA Science Inventory

    Several advances in the analytic element method have been made to enhance its performance and facilitate three-dimensional ground-water flow modeling in a regional aquifer setting. First, a new public domain modular code (ModAEM) has been developed for modeling ground-water flow ...

  6. Fluvial valleys in the heavily cratered terrains of Mars: Evidence for paleoclimatic change?

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Baker, V. R.

    1993-01-01

    Whether the formation of the Martian valley networks provides unequivocal evidence for drastically different climatic conditions remains debatable. Recent theoretical climate modeling precludes the existence of a temperate climate early in Mars' geological history. An alternative hypothesis suggests that Mars had a globally higher heat flow early in its geological history, bringing water tables to within 350 m of the surface. While a globally higher heat flow would initiate ground water circulation at depth, the valley networks probably required water tables to be even closer to the surface. Additionally, it was previously reported that the clustered distribution of the valley networks within terrain types, particularly in the heavily cratered highlands, suggests regional hydrological processes were important. The case for localized hydrothermal systems is summarized and estimates of both erosion volumes and of the implied water volumes for several Martian valley systems are presented.

  7. The value of long-term monitoring in the development of ground-water-flow models

    USGS Publications Warehouse

    Feinstein, Daniel T.; Hart, David J.; Krohelski, James T.

    2004-01-01

    As environmental issues have come to the forefront of public concern, so has the awareness of the importance of ground water in the overall water cycle and as a source of the Nation’s drinking water. Heightened interest has spawned a host of scientific enterprises (Taylor and Alley, 2001). Some activities are directed toward collection of water-level data and related information to monitor the physical and chemical state of the resource. Other activities are directed at interpretive studies undertaken, for example, to optimize the location of new water-supply wells or to protect rivers and lakes fed by ground water. An important type of interpretive study is the computer ground-water-flow model that inte- grates field data in a mathematical framework. Long-term, systematic collection of hydro- logic data is crucial to the construction and testing of ground-water models so that they can reproduce the evolution of flow systems and forecast future conditions. 

  8. The hydrothermal system of Long Valley Caldera, California

    USGS Publications Warehouse

    Sorey, M.L.; Lewis, Robert Edward; Olmsted, F.H.

    1978-01-01

    for the welded tuff (including fracture porosity) from 0.05 to 0.10. Because of its continuity and depth and the likelihood of significant fracture permeability in the more competent rocks such as the welded tuff, our model of the hydrothermal system assumes that the Bishop Tuff provides the principal hot-water reservoir. However, because very little direct information exists from drill holes below 300 m, this assumption must be considered tentative. Long Valley caldera is drained by the Owens River and several tributaries which flow into Lake Crowley in the southeast end of the caldera. Streamflow and springflow measurements for water years 1964-74 indicate a total inflow to Lake Crowley of about 10,900 L/s. In contrast, the total discharge of hot water from the hydrothermal reservoir is about 300 L/s. For modeling purposes, the ground-water system is considered as comprising a shallow subsystem in the fill above the densely welded Bishop Tuff containing relatively cold ground water, and a deep subsystem or hydrothermal reservoir in the welded tuff containing relatively hot ground water. Hydrologic, isotopic, and thermal data indicate that recharge to the hydrothermal reservoir occurs in the upper Owens River drainage basin along the western periphery of the caldera. Temperature profiles in a 2.11- km-deep test well drilled by private industry in the southeastern part of the caldera suggest that an additional flux of relatively cool ground water recharges the deep subsystem around the northeast rim. Flow in the shallow ground-water subsystem is neglected in the model except in recharge areas and along Hot Creek gorge, where approximately 80 percent of the hot-water discharge from the hydrothermal reservoir moves upward along faults toward springs in the gorge. Heat-flow data from the Long Valley region indicate that the resurgent dome overlies a residual magma chamber more circular in plan than the original magma chamber that supplied the Bishop Tuff

  9. Selected hydrologic data for Cedar Valley, Iron County, southwestern Utah, 1930-2001

    USGS Publications Warehouse

    Howells, James H.; Mason, James L.; Slaugh, Bradley A.

    2001-01-01

    This report presents hydrologic data collected by the U. S. Geological Survey from 1930 to 2001 with emphasis on data collected from 1997 to 2001 as part of a study of ground-water resources in Cedar Valley, Iron County, southwestern Utah (fig. 1). Data collected prior to this study are also presented to show long-term trends. Data were collected during this study in cooperation with the Central Iron County Water Conservancy District; Utah Department of Natural Resources, Division of Water Resources; Utah Department of Environmental Quality, Division of Water Quality; Cedar City; and Enoch City; as part of a study to better understand the ground-water resources of Cedar Valley and to assess possible effects of increased ground-water withdrawal on water quality. Quality of ground water in Cedar Valley is variable and water suppliers need to know if additional water resources can be developed without drawing water of lower quality into public-supply wells.Cedar Valley is in central Iron County at the transitional boundary between the Basin and Range and Colorado Plateau physiographic provinces described by Hunt (1974) and covers about 570 mi2. Additional data from wells west of Cedar Valley and to the south in the vicinity of Kanarraville in the Virgin River drainage (Colorado River Basin) adjacent to the study area are included. Cedar Valley is bounded on the east by the Markagunt Plateau and Red Hills, on the southwest by the Harmony Mountains, on the west by a complex of low hills, and on the north by the Black Mountains. Altitudes in the study area range from about 5,300 ft in Mud Spring Canyon to about 10,400 ft at Blowhard Mountain to the east.

  10. Assessing potential effects of changes in water use with a numerical groundwater-flow model of Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Yager, Richard M.; Maurer, Douglas K.; Mayers, C.J.

    2012-01-01

    margins. A groundwater-flow model of Quaternary and Tertiary sediments in Carson Valley was developed using MODFLOW and calibrated to simulate historical conditions from water years 1971 through 2005. The 35-year transient simulation represented quarterly changes in precipitation, streamflow, pumping and irrigation. Inflows to the groundwater system simulated in the model include mountain-front recharge from watersheds in the Carson Range and Pine Nut Mountains, valley recharge from precipitation and land application of wastewater, agricultural recharge from irrigation, and septic-tank discharge. Outflows from the groundwater system simulated in the model include evapotranspiration from the water table and groundwater withdrawals for municipal, domestic, irrigation and other water supplies. The exchange of water between groundwater, the Carson River, and the irrigation system was represented with a version of the Streamflow Routing (SFR) package that was modified to apply diversions from the irrigation network to irrigated areas as recharge. The groundwater-flow model was calibrated through nonlinear regression with UCODE to measured water levels and streamflow to estimate values of hydraulic conductivity, recharge and streambed hydraulic-conductivity that were represented by 18 optimized parameters. The aquifer system was simulated as confined to facilitate numerical convergence, and the hydraulic conductivity of the top active model layers that intersect the water table was multiplied by a factor to account for partial saturation. Storage values representative of specific yield were specified in parts of model layers where unconfined conditions are assumed to occur. The median transmissivity (T) values (11,000 and 800 ft2/d for the fluvial and alluvial-fan sediments, respectively) are both within the third quartile of T values estimated from specific-capacity data, but T values for Tertiary sediments are larger than the third quartile estimated from specific

  11. Ground-water pumpage in the Willamette lowland regional aquifer system, Oregon and Washington, 1990

    USGS Publications Warehouse

    Collins, Charles A.; Broad, Tyson M.

    1996-01-01

    Ground-water pumpage for 1990 was estimated for an area of about 5,700 square miles in northwestern Oregon and southwestern Washington as part of the Puget-Willamette Lowland Regional Aquifer System Analysis study. The estimated total ground-water pumpage in 1990 was about 340,000 acre-feet. Ground water in the study area is pumped mainly from Quaternary sediment; lesser amounts are withdrawn from Tertiary volcanic materials. Large parts of the area are used for agriculture, and about two and one-half times as much ground water was pumped for irrigation as for either public- supply or industrial needs. Estimates of ground- water pumpage for irrigation in the central part of the Willamette Valley were generated by using image-processing techniques and Landsat Thematic Mapper data. Field data and published reports were used to estimate pumpage for irrigation in other parts of the study area. Information on public- supply and industrial pumpage was collected from Federal, State, and private organizations and individuals.

  12. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  13. Preliminary report on the ground-water resources of the Klamath River basin, Oregon

    USGS Publications Warehouse

    Newcomb, Reuben Clair; Hart, D.H.

    1958-01-01

    includes two main grabens, the Klamath and the Langell, which were downthrown approximately 50 and 1,000 feet, respectively. The average annual precipitation varies with the altitude, the higher parts of the Cascade Range getting more than 60 inches, and the semiarid valley plains receive as little as 13 inches in some places. Most precipitation occurs in the winter. The principal tributaries, Williamson and Sprague Rivers, rise near the higher parts of the eastern rim of the basin, flow through narrow valley plains to the western part, and discharge into Upper Klamath Lake. Wood River and associated creeks also empty into Upper Klamath Lake after draining southward along along the eastern foot of the Cascade Range. The Klamath River receives the outflow from Upper Klamath Lake, via Link River and Lake Ewauna, and flows southwestward through Keno Gap and hance through a youthful canyon, to its lower valley in California. The ground water occurs largely in an unconfined, or water-table, condition, though areas of local confinement are present. The regional water table is graded to a base level about equal to that of the major drainage on the valley plains. The slop of the water table, where water is confined, or the piezometric surface is downstream at about the same grade as that of the surface drainage in each of the larger valleys, and ground-water divides occur between the upper parts of adjacent major valleys. The principal water-bearing units are the lower lava rocks and upper lava rocks of the volcanic rocks of high Cascades, the pumice of Quaternary age, and the alluvium. In places layers of coarse fragmental material in the Yonna formation (Newcomb, 1958) also transmit water. The water-bearing units, especially the breccia layers of the lava rocks and the pumice, yield large amounts of water to wells and provide natural discharge outlets for the ground water. The spring outflows to the Williamson and Wood Rivers-Crooked Creek drainage, mea

  14. A modification of the finite-difference model for simulation of two dimensional ground-water flow to include surface-ground water relationships

    USGS Publications Warehouse

    Ozbilgin, M.M.; Dickerman, D.C.

    1984-01-01

    The two-dimensional finite-difference model for simulation of groundwater flow was modified to enable simulation of surface-water/groundwater interactions during periods of low streamflow. Changes were made to the program code in order to calculate surface-water heads for, and flow either to or from, contiguous surface-water bodies; and to allow for more convenient data input. Methods of data input and output were modified and entries (RSORT and HDRIVER) were added to the COEF and CHECKI subroutines to calculate surface-water heads. A new subroutine CALC was added to the program which initiates surface-water calculations. If CALC is not specified as a simulation option, the program runs the original version. The subroutines which solve the ground-water flow equations were not changed. Recharge, evapotranspiration, surface-water inflow, number of wells, pumping rate, and pumping duration can be varied for any time period. The Manning formula was used to relate stream depth and discharge in surface-water streams. Interactions between surface water and ground water are represented by the leakage term in the ground-water flow and surface-water mass balance equations. Documentation includes a flow chart, data deck instructions, input data, output summary, and program listing. Numerical results from the modified program are in good agreement with published analytical results. (USGS)

  15. Application of GIS and Visualization Technology in the Regional-Scale Ground-Water Modeling of the Twentynine Palms and San Jose Areas, California

    NASA Astrophysics Data System (ADS)

    Li, Z.

    2003-12-01

    Application of GIS and visualization technology significantly contributes to the efficiency and success of developing ground-water models in the Twentynine Palms and San Jose areas, California. Visualizations from GIS and other tools can help to formulate the conceptual model by quickly revealing the basinwide geohydrologic characteristics and changes of a ground-water flow system, and by identifying the most influential components of system dynamics. In addition, 3-D visualizations and animations can help validate the conceptual formulation and the numerical calibration of the model by checking for model-input data errors, revealing cause and effect relationships, and identifying hidden design flaws in model layering and other critical flow components. Two case studies will be presented: The first is a desert basin (near the town of Twentynine Palms) characterized by a fault-controlled ground-water flow system. The second is a coastal basin (Santa Clara Valley including the city of San Jose) characterized by complex, temporally variable flow components ­¦ including artificial recharge through a large system of ponds and stream channels, dynamically changing inter-layer flow from hundreds of multi-aquifer wells, pumping-driven subsidence and recovery, and climatically variable natural recharge. For the Twentynine Palms area, more than 10,000 historical ground-water level and water-quality measurements were retrieved from the USGS databases. The combined use of GIS and visualization tools allowed these data to be swiftly organized and interpreted, and depicted by water-level and water-quality maps with a variety of themes for different uses. Overlaying and cross-correlating these maps with other hydrological, geological, geophysical, and geochemical data not only helped to quickly identify the major geohydrologic characteristics controlling the natural variation of hydraulic head in space, such as faults, basin-bottom altitude, and aquifer stratigraphies, but also

  16. Measuring ground movement in geothermal areas of Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Lofgren, B. E.

    1974-01-01

    Significant ground movement may accompany the extraction of large quantities of fluids from the subsurface. In Imperial Valley, California, one of the potential hazards of geothermal development is the threat of both subsidence and horizontal movement of the land surface. Regional and local survey nets are being monitored to detect and measure possible ground movement caused by future geothermal developments. Precise measurement of surface and subsurface changes will be required to differentiate man-induced changes from natural processes in this tectonically active region.

  17. Occurrence of nitrate and pesticides in ground water beneath three agricultural land-use settings in the eastern San Joaquin Valley, California, 1993-1995

    USGS Publications Warehouse

    Burow, Karen R.; Shelton, Jennifer L.; Dubrovsky, Neil M.

    1998-01-01

    The processes that affect nitrate and pesticide occurrence may be better understood by relating ground-water quality to natural and human factors in the context of distinct, regionally extensive, land- use settings. This study assesses nitrate and pesticide occurrence in ground water beneath three agricultural land-use settings in the eastern San Joaquin Valley, California. Water samples were collected from 60 domestic wells in vineyard, almond, and a crop grouping of corn, alfalfa, and vegetable land-use settings. Each well was sampled once during 1993?1995. This study is one element of the U.S. Geological Survey?s National Water-Quality Assessment Program, which is designed to assess the status of, and trends in, the quality of the nation?s ground- and surface-water resources and to link the status and trends with an understanding of the natural and human factors that affect the quality of water. The concentrations and occurrence of nitrate and pesticides in ground-water samples from domestic wells in the eastern alluvial fan physiographic region were related to differences in chemical applica- tions and to the physical and biogeochemical processes that charac- terize each of the three land-use settings. Ground water beneath the vineyard and almond land-use settings on the coarse-grained, upper and middle parts of the alluvial fans is more vulnerable to nonpoint- source agricultural contamination than is the ground water beneath the corn, alfalfa, and vegetable land-use setting on the lower part of the fans, near the basin physiographic region. Nitrate concentrations ranged from less than 0.05 to 55 milligrams per liter, as nitrogen. Nitrate concentrations were significantly higher in the almond land-use setting than in the vineyard land-use setting, whereas concentrations in the corn, alfalfa, and vegetable land-use setting were intermediate. Nitrate concentrations exceeded the maximum contaminant level in eight samples from the almond land- use setting (40

  18. Hydrogeology and water quality of the Shell Valley Aquifer, Rolette County, North Dakota

    USGS Publications Warehouse

    Strobel, M.L.

    1997-01-01

    The Shell Valley aquifer is the sole source of water for the city of Belcourt and the primary source of water for most of the Turtle Mountain Indian Reservation. The Turtle Mountain Band of Chippewa Indians is concerned about the quantity and quality of water in the Shell Valley aquifer, which underlies about 56 square miles in central Rolette County and has an average saturated thickness of about 35 feet. Water levels across most of the Shell Valley aquifer fluctuate with variations in precipitation but generally are stable. Withdrawals from the north well field decreased slightly during 1976-95, but withdrawals from the south well field increased during 1983-95. Water levels in the south well field declined as withdrawals increased. The average decline during the last 8 years was about 1.75 feet per year. The water level has reached the well screen in at least one of the production wells. Most of the water in the aquifer is a bicarbonate type and has dissolved-solids concentrations ranging from 479 to 1,510 milligrams per liter. None of the samples analyzed had detectable concentrations of pesticides, but hydrocarbons were detected in both ground- and surfacewater samples. Polycyclic aromatic hydrocarbons (PAH) were the most frequently detected hydrocarbons. Benzene, toluene, ethylbenzene, and xylene (BTEX), polychlorinated biphenyls (PCB), and pentachlorophenol (PCP) also were detected.Generally, the Shell Valley aquifer is an adequate source of water for current needs, but evaluation of withdrawals in relation to a knowledge of aquifer hydrology would be important in quantifying sustainable water supplies. Water quality in the aquifer generally is good; the Turtle Mountain Band of Chippewa Indians filters the water to reduce concentrations of dissolved constituents. Hydrocarbons, although present in the aquifer, have not been quantified and may not pose a general health risk. Further analysis of the quantity and distribution of the hydrocarbons would be useful

  19. Evaluating Water Supply and Water Quality Management Options for Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Ahmad, S.

    2007-05-01

    The ever increasing population in Las Vegas is generating huge demand for water supply on one hand and need for infrastructure to collect and treat the wastewater on the other hand. Current plans to address water demand include importing water from Muddy and Virgin Rivers and northern counties, desalination of seawater with trade- payoff in California, water banking in Arizona and California, and more intense water conservation efforts in the Las Vegas Valley (LVV). Water and wastewater in the LVV are intrinsically related because treated wastewater effluent is returned back to Lake Mead, the drinking water source for the Valley, to get a return credit thereby augmenting Nevada's water allocation from the Colorado River. The return of treated wastewater however, is a major contributor of nutrients and other yet unregulated pollutants to Lake Mead. Parameters that influence the quantity of water include growth of permanent and transient population (i.e., tourists), indoor and outdoor water use, wastewater generation, wastewater reuse, water conservation, and return flow credits. The water quality of Lake Mead and the Colorado River is affected by the level of treatment of wastewater, urban runoff, groundwater seepage, and a few industrial inputs. We developed an integrated simulation model, using system dynamics modeling approach, to account for both water quantity and quality in the LVV. The model captures the interrelationships among many variables that influence both, water quantity and water quality. The model provides a valuable tool for understanding past, present and future pathways of water and its constituents in the LVV. The model is calibrated and validated using the available data on water quantity (flows at water and wastewater treatment facilities and return water credit flow rates) and water quality parameters (TDS and phosphorus concentrations). We used the model to explore important questions: a)What would be the effect of the water transported from

  20. Simulation of ground-water flow in an unconfined sand and gravel aquifer at Marathon, Cortland County, New York

    USGS Publications Warehouse

    Miller, Todd S.

    2000-01-01

    The Village of Marathon, in Cortland County, N.Y., has three municipal wells that tap a relatively thin (25 to 40 feet thick) and narrow (less than 0.25 mile wide) unconfined sand and gravel aquifer in the Tioughnioga River valley. Only one of the wells is in use because water from one well has been contaminated by petroleum chemicals from a leaking storage tank, and water from the other well contains high concentrations of manganese. The operating well pumps about 0.1 million gallons per day and supplies about 1,000 people.A three-dimensional, finite-difference ground-water-flow model was used to (1) compute hydraulic heads in the aquifer under steady-state conditions, (2) develop a water budget, and (3) delineate the areas contributing recharge to two simulated wells that represent two of the municipal wells: one 57 feet east of the Tioughnioga River, the other 4,000 feet to the south and 75 feet from a man-made pond. The water budget for simulated long-term average, steady-state conditions with two simulated pumping wells indicates that the principal sources of recharge to the unconfined aquifer are unchanneled runoff and ground-water inflow from the uplands (41 percent of total recharge), precipitation that falls directly on the aquifer (34 percent), and stream leakage (23 percent). Only 2 percent of the recharge to the aquifer is from ground-water underflow into the northern end of the modeled area. Most of the simulated groundwater discharge from the modeled area (78 percent of total discharge) is to the Tioughnioga River; the rest discharges to the two simulated wells (19 percent) and as underflow at the southern end of the modeled area (3 percent).Results of a particle-tracking analysis indicate that the aquifer contributing area of the northern (simulated) well is 0.10 mile wide and 0.15 mile long and encompasses 0.015 square miles; the contributing area of the southern (simulated) well is 0.20 mile wide and 0.11 mile long and encompasses 0.022 square

  1. Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio

    USGS Publications Warehouse

    Sheets, Rodney A.; Bossenbroek, Karen E.

    2005-01-01

    The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect

  2. Ground-water pumpage and artificial recharge estimates for calendar year 2000 and average annual natural recharge and interbasin flow by hydrographic area, Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.; Evetts, David M.

    2004-01-01

    Nevada's reliance on ground-water resources has increased because of increased development and surface-water resources being fully appropriated. The need to accurately quantify Nevada's water resources and water use is more critical than ever to meet future demands. Estimated ground-water pumpage, artificial and natural recharge, and interbasin flow can be used to help evaluate stresses on aquifer systems. In this report, estimates of ground-water pumpage and artificial recharge during calendar year 2000 were made using data from a variety of sources, such as reported estimates and estimates made using Landsat satellite imagery. Average annual natural recharge and interbasin flow were compiled from published reports. An estimated 1,427,100 acre-feet of ground water was pumped in Nevada during calendar year 2000. This total was calculated by summing six categories of ground-water pumpage, based on water use. Total artificial recharge during 2000 was about 145,970 acre-feet. At least one estimate of natural recharge was available for 209 of the 232 hydrographic areas (HAs). Natural recharge for the 209 HAs ranges from 1,793,420 to 2,583,150 acre-feet. Estimates of interbasin flow were available for 151 HAs. The categories and their percentage of the total ground-water pumpage are irrigation and stock watering (47 percent), mining (26 percent), water systems (14 percent), geothermal production (8 percent), self-supplied domestic (4 percent), and miscellaneous (less than 1 percent). Pumpage in the top 10 HAs accounted for about 49 percent of the total ground-water pumpage. The most ground-water pumpage in an HA was due to mining in Pumpernickel Valley (HA 65), Boulder Flat (HA 61), and Lower Reese River Valley (HA 59). Pumpage by water systems in Las Vegas Valley (HA 212) and Truckee Meadows (HA 87) were the fourth and fifth highest pumpage in 2000, respectively. Irrigation and stock watering pumpage accounted for most ground-water withdrawals in the HAs with the sixth

  3. Pesticides in Surface and Ground Water of the San Joaquin-Tulare Basins, California: Analysis of Available Data, 1966 Through 1992

    USGS Publications Warehouse

    Domagalski, Joseph L.

    1997-01-01

    Available pesticide data (1966-92) for surface and ground water were analyzed for the San Joaquin-Tulare Basins, California, one of 60 large hydrologic systems being studied as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Most of the pesticide data were for the San Joaquin Valley, one of the most intensively farmed and irrigated areas of the United States. Data were obtained from the Storage and Retrieval data base of the U.S. Environmental Protection Agency, the water-quality data base of the U.S. Geological Survey, and from data files of State agencies. Pesticides detected in surface water include organochlorine pesticides, organophosphate pesticides, carbamate pesticides, and triazine herbicides. Pesticides detected in ground water include triazine and other organonitrogen herbicides and soil fumi gants. Surface-water data indicate seasonal patterns for the detection of organophosphate and carbamate pesticides, which are attributed to their use on almond orchards and alfafa fields. Organochlorine pesticides were detected primarily in river-bed sediments. Concentrations detected in bed sediments of the San Joaquin River near Vernalis are among the highest of any major river system in the United States. Patterns and timing of pesticide use indicate that pesticides might be present in surface-water systems during most months of a year. The most commonly detected pesticide in ground water is the soil fumigant, dibromochloropropane. Dibromochloropropane, used primarily on vineyards and orchards, was detected in ground water near the city of Fresno. Triazine and other organonitrogen herbicides were detected near vineyards and orchards in the same general locations as the detections of dibromochloropropane. Pesticides were detected in ground water of the east side of the valley floor, where the soils are sandy or coarsegrained, and water-soluble pesticides with long environmental half-lives were used. In contrast, fewer

  4. Occurrence and quality of surface water and ground water within the Yavapai-Prescott Indian Reservation, central Arizona, 1994-98

    USGS Publications Warehouse

    Littin, Gregory R.; Truini, Margot; Pierce, Herbert A.; Baum, Brad M.

    2000-01-01

    The Yavapai-Prescott Indian Reservation encompasses about 1,395 acres in central Arizona adjacent to the city of Prescott. From October 1994 to September 1997, the annual average rainfall was 14.9 inches and the total annual streamflow leaving the reservation along Granite Creek was about 430 acre-feet more than the amount of streamflow entering the reservation. The channel-fill and valley-fill sediments within the flood plain of Granite Creek make up the principal aquifer. The only ground-water development is from spring discharge that is being contained for livestock and wildlife use. About 29 acre-feet of ground water leaves the reservation each year after discharging into Granite Creek. Water levels in wells throughout the reservation reflect seasonal variations in rainfall and snowmelt. Surface water and ground water on the reservation are calcium bicarbonate types. Specific-conductance field measurements ranged from 187 to 724 microsiemens per centimeter for surface water and 381 to 990 microsiemens per centimeter for ground water. Fecal streptococcal bacteria and fecal coliform bacteria in the surface water make the water unsuitable for domestic use. Some volatile and semivolatile organic compounds were detected in samples of surface water, ground water, and streambed sediment. The potential for contamination exists from point and nonpoint sources on and off the reservation.

  5. Land-subsidence and ground-water storage monitoring in the Tucson Active Management Area, Arizona

    USGS Publications Warehouse

    Pool, Don R.; Winster, Daniel; Cole, K.C.

    2000-01-01

    The Tucson Active Management Area (TAMA) comprises two basins--Tucson Basin and Avra Valley. The TAMA has been directed by Arizona ground-water law to attain an annual balance between groundwater withdrawals and recharge by the year 2025. This balance is defined by the statute as "safe yield." Current ground-water withdrawals exceed recharge, resulting in conditions of ground-water overdraft, which causes removal of water from ground-water storage and subsidence of the land surface. Depletion of storage and associated land subsidence will not be halted until all discharge from the system, both natural and human induced, is balanced by recharge. The amount of the ground-water overdraft has been difficult to estimate until recently because it could not be directly measured. Overdraft has been estimated using indirect water-budget methods that rely on uncertain estimates of recharge. As a result, the status of the ground-water budget could not be known with great certainty. Gravity methods offer a means to directly measure ground-water overdraft through measurement of changes in the gravitational field of the Earth that are caused by changes in the amount of water stored in the subsurface. Changes in vertical position also affect the measured gravity value and thus subsidence also must be monitored. The combination of periodic observations of gravity and vertical positions provide direct measures of changes in stored ground water and land subsidence.

  6. Near Fault Strong Ground Motion Records in the Kathmandu Valley during the 2015 Gorkha Nepal Earthquake

    NASA Astrophysics Data System (ADS)

    Takai, N.; Shigefuji, M.; Rajaure, S.; Bijukchhen, S.; Ichiyanagi, M.; Dhital, M. R.; Sasatani, T.

    2015-12-01

    Kathmandu is the capital of Nepal and is located in the Kathmandu Valley, which is formed by soft lake sediments of Plio-Pleistocene origin. Large earthquakes in the past have caused significant damage as the seismic waves were amplified in the soft sediments. To understand the site effect of the valley structure, we installed continuous recording accelerometers in four different parts of the valley. Four stations were installed along a west-to-east profile of the valley at KTP (Kirtipur; hill top), TVU (Kirtipur; hill side), PTN (Patan) and THM (Thimi). On 25 April 2015, a large interplate earthquake Mw 7.8 occurred in the Himalayan Range of Nepal. The focal area estimated was about 200 km long and 150 km wide, with a large slip area under the Kathmandu Valley where our strong motion observation stations were installed. The strong ground motions were observed during this large damaging earthquake. The maximum horizontal peak ground acceleration at the rock site was 271 cm s-2, and the maximum horizontal peak ground velocity at the sediment sites reached 112 cm s-1. We compared these values with the empirical attenuation formula for strong ground motions. We found the peak accelerations were smaller and the peak velocities were approximately the same as the predicted values. The rock site KTP motions are less affected by site amplification and were analysed further. The horizontal components were rotated to the fault normal (N205E) and fault parallel (N115E) directions using the USGS fault model. The velocity waveforms at KTP showed about 5 s triangular pulses on the N205E and the up-down components; however the N115E component was not a triangular pulse but one cycle sinusoidal wave. The velocity waveforms at KTP were integrated to derive the displacement waveforms. The derived displacements at KTP are characterized by a monotonic step on the N205E normal and up-down components. The displacement waveforms of KTP show permanent displacements of 130 cm in the fault

  7. Evaluating data worth for ground-water management under uncertainty

    USGS Publications Warehouse

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  8. Implementation and use of direct-flow connections in a coupled ground-water and surface-water model

    USGS Publications Warehouse

    Swain, Eric D.

    1994-01-01

    The U.S. Geological Survey's MODFLOW finite-difference ground-water flow model has been coupled with three surface-water packages - the MODBRANCH, River, and Stream packages - to simulate surface water and its interaction with ground water. Prior to the development of the coupling packages, the only interaction between these modeling packages was that leakage values could be passed between MODFLOW and the three surface-water packages. To facilitate wider and more flexible uses of the models, a computer program was developed and added to MODFLOW to allow direct flows or stages to be passed between any of the packages and MODFLOW. The flows or stages calculated in one package can be set as boundary discharges or stages to be used in another package. Several modeling packages can be used in the same simulation depending upon the level of sophistication needed in the various reaches being modeled. This computer program is especially useful when any of the River, Stream, or MODBRANCH packages are used to model a river flowing directly into or out of wetlands in direct connection with the aquifer and represented in the model as an aquifer block. A field case study is shown to illustrate an application.

  9. Digital simulation of ground-water flow in the Warwick Aquifer, Fort Totten Indian Reservation, North Dakota

    USGS Publications Warehouse

    Reed, Thomas B.

    1997-01-01

    The demand for water from the Warwick aquifer, which underlies the Fort Totten Indian Reservation in northeastern North Dakota, has been increasing during recent years. Therefore, the Spirit Lake Sioux Nation is interested in resolving questions about the quantity and quality of water in the aquifer and in developing a water-management plan for future water use. A study was conducted to evaluate the surface-water and ground-water resources of the Fort Totten Indian Reservation and, in particular, the ground-water resources in the area of the Warwick aquifer. A major component of the study, addressed by this report, was to define the ground-water flow system of the aquifer. The Warwick aquifer consists of outwash deposits of the Warwick outwash plain that are as much as 30 feet thick and buried-valley deposits beneath the outwash plain that are as much as 200 feet thick. The aquifer is bounded on the north and west by end-moraine deposits and Devils Lake, on the south by the Sheyenne River Valley, and on the east by outwash deposits and ravines. The aquifer is underlain by Pierre Shale or by glacial till, clay, or silt. Ground-water gradients generally are small and rarely are more than 3 or 4 feet per mile. From 1982 to 1993, withdrawals from the Devils Lake well field averaged 1.5 cubic feet per second, and withdrawals from irrigation wells averaged 1.29 cubic feet per second. The combined discharge from springs may be about 3 cubic feet per second. During the early 1990s, the Warwick aquifer probably was in a steady-state condition with regard to storage change in the aquifer. A finite-difference, three-dimensional, ground-water flow model provided a reasonable simulation of ground-water flow in the Warwick aquifer. The aquifer was divided vertically into two layers and horizontally into a grid of 83 by 109 cells, each measuring 656 feet (200 meters) per side. The steady-state simulation was conducted using 1992 pumpage rates and October 1992 water levels. The

  10. Hydrologic effects of stress-relief fracturing in an Appalachian Valley

    USGS Publications Warehouse

    Wyrick, Granville G.; Borchers, James W.

    1981-01-01

    A hydrologic study at Twin Falls State Park, Wyoming County, West Virginia, was made to determine how fracture systems affect the occurrence and movement of ground water in a typical valley of the Appalachian Plateaus Physiographic Province. Twin Falls was selected because it is generally unaffected by factors that would complicate an analysis of the data. The study area was the Black Fork Valley at Twin Falls. The valley is about 3 miles long and 400 to 600 feet wide and is cut into massive sandstone units interbedded with thin coal and shale beds. The study was made to determine how aquifer characteristics were related to fracture systems in this valley, so that the relation could be applied to studies of other valleys. Two sites were selected for test drilling, pumping tests, and geophysical studies. One site is in the upper part of the valley, and the second is near the lower central part. At both sites, ground water occurs mainly in horizontal bedding-plane fractures under the valley floor and in nearly vertical and horizontal slump fractures along the valley wall. The aquifer is under confined conditions under the valley floor and unconfined conditions along the valley wall. The fractures pinch out under the valley walls, which form impermeable barriers. Tests of wells near the valley center indicated a change in storage coefficient as the cone of depression caused by pumping reached the confined-unconfined boundaries; the tests also indicated barrier-image effects when the cone reached the impermeable boundaries. Drawdown from pumping near the center of the valley affected water levels at both sites, indicating a hydraulic connection from the upper to the lower end of the valley. Stream gain-and-loss studies show that ground water discharges to the stream from horizontal fractures beneath Black Fork Falls, near the mouth of Black Fork. The fracture systems that constitute most of the transmissive part of the aquifer at Twin Falls are like those described as

  11. Water availability and subsidence in California's Central Valley

    USGS Publications Warehouse

    Faunt, Claudia C.; Sneed, Michelle

    2015-01-01

    California’s Central Valley covers about 52,000 square kilometers (km2) and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the broad alluvial filled structural trough, with an estimated value exceeding $20 billion per year (Faunt 2009) (Figure 1). Central Valley agriculture depends on state and federal water systems that divert surface water, predominantly originating from Sierra Nevada snowmelt, to agricultural fields. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture, as it grew, developed a reliance on groundwater for irrigation.

  12. MODFLOW Ground-Water Model - User Guide to the Subsidence and Aquifer-System Compaction Package (SUB-WT) for Water-Table Aquifers

    USGS Publications Warehouse

    Leake, S.A.; Galloway, D.L.

    2007-01-01

    A new computer program was developed to simulate vertical compaction in models of regional ground-water flow. The program simulates ground-water storage changes and compaction in discontinuous interbeds or in extensive confining units, accounting for stress-dependent changes in storage properties. The new program is a package for MODFLOW, the U.S. Geological Survey modular finite-difference ground-water flow model. Several features of the program make it useful for application in shallow, unconfined flow systems. Geostatic stress can be treated as a function of water-table elevation, and compaction is a function of computed changes in effective stress at the bottom of a model layer. Thickness of compressible sediments in an unconfined model layer can vary in proportion to saturated thickness.

  13. Ground-water resources of the Ainsworth unit, Cherry and Brown Counties, Nebraska

    USGS Publications Warehouse

    Cronin, James G.; Newport, Thomas G.; Krieger, R.A.

    1956-01-01

    The Ainsworth unit, so named by the U. S. Bureau of Reclamation, is in north-central Nebraska and is in the drainage basin of the Niobrara River. It is an area of about 1,000 square miles in the east-central part of Cherry County and northern part of Brown County. The east-west length of the area is about 60 miles and the width ranges from 9 to 21 miles. About 80 percent of the area consists of grass-covered sandhills; the remainder is the Ainsworth tableland, which is flat to gently rolling farmland between Plum and Long Pine Creeks in the eastern part of the area. The average annual precipitation is about 23 inches. Although most of the C).ops are raised by dry-farming methods, some farmland is irrigated with water pumped from wells. The U. S. Bureau of Reclamation has proposed to irrigate much of the Ainsworth tableland with surface water to be stored in a reservoir on the Snake River at the west border of the Ainsworth unit. The rocks exposed in the Ainsworth unit range in age from Tertiary (Pliocene) to Quaternary (Recent). The Ogallala formation of Pliocene age is exposed along the lower part of the Snake River valley and underlies the entire Ainsworth unit. It is composed of silt, sand, and gravel, and contains layers of sandstone and conglomerate, much of which is cross bedded and cemented with lime; coarser sediments generally are more prominent in the lower part. Overlying the Ogallala formation are deposits of Pleistocene age consisting in part of layers of saturated sand and gravel which are the most important sources of ground water in the Ainsworth unit. Throughout most of the area the ground water is under watertable conditions, but locally it is confined by lenses of clay or silty clay. Some wells tap only the sand and gravel of Pleistocene age, some tap both the deposits of Pleistocene age and the underlying Ogallala formation, and some tap only the Ogallala formation; no wells are known to extend into rocks older than the Ogallala. Dune sand

  14. Applying a water quality index model to assess the water quality of the major rivers in the Kathmandu Valley, Nepal.

    PubMed

    Regmi, Ram Krishna; Mishra, Binaya Kumar; Masago, Yoshifumi; Luo, Pingping; Toyozumi-Kojima, Asako; Jalilov, Shokhrukh-Mirzo

    2017-08-01

    Human activities during recent decades have led to increased degradation of the river water environment in South Asia. This degradation has led to concerns for the populations of the major cities of Nepal, including those of the Kathmandu Valley. The deterioration of the rivers in the valley is directly linked to the prevalence of poor sanitary conditions, as well as the presence of industries that discharge their effluents into the river. This study aims to investigate the water quality aspect for the aquatic ecosystems and recreation of the major rivers in the Kathmandu Valley using the Canadian Council of Ministers of the Environment water quality index (CCME WQI). Ten physicochemical parameters were used to determine the CCME WQI at 20 different sampling locations. Analysis of the data indicated that the water quality in rural areas ranges from excellent to good, whereas in denser settlements and core urban areas, the water quality is poor. The study results are expected to provide policy-makers with valuable information related to the use of river water by local people in the study area.

  15. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada

    USGS Publications Warehouse

    Welch, A.H.; Lico, M.S.

    1998-01-01

    Unusually high As and U concentrations (> 100 ??g/L) are widespread in shallow ground water beneath the southern Carson Desert. The high concentrations, which locally exceed 1000 ??g/L, are of concern from a human health standpoint because the shallow ground water is used for domestic supply. Possible affects on wildlife are also of concern because the ground water flows into shallow lakes and marshes within wildlife refuges. Arsenic and U concentrations in ground water of the southern Carson Desert appear to be affected by evaporative concentration, redox reactions, and adsorption. The relation of these elements with Cl suggest that most of the high concentrations can be attributed to evaporative concentration of Carson River water, the primary source of recharge. Some ground water contains higher As and U concentrations that cannot be explained by evaporative concentration alone. Oxidation-reduction reactions, involving metal oxides and sedimentary-organic matter, appear to contribute As, U, inorganic C, Fe and Mn to the ground water. Arsenic in Fe-oxide was confirmed by chemical extraction and is consistent with laboratory adsorption studies. Uranium in both sedimentary-organic C and Fe-oxide coatings has been confirmed by fission tracks and petrographic examination. Arsenic concentrations in the ground water and chemical extracts of aquifer sediments are broadly consistent with adsorption as a control on some dissolved As concentrations. An apparent loss of As from some ground water as evaporative concentration proceeds is consistent with adsorption as a control on As. However, evidence for adsorption should be viewed with caution, because the adsorption model used values for the adsorbent that have not been shown to be valid for the aquifer sediments throughout the southern Carson Desert. Hydrologic and geochemical conditions in the Carson Desert are similar to other areas with high As and U concentrations in ground water, including the Salton Sea basin and

  16. Data on dissolved pesticides and volatile organic compounds in surface and ground waters in the San Joaquin-Tulare basins, California, water years 1992-1995

    USGS Publications Warehouse

    Kinsey, Willie B.; Johnson, Mark V.; Gronberg, JoAnn M.

    2005-01-01

    This report contains pesticide, volatile organic compound, major ion, nutrient, tritium, stable isotope, organic carbon, and trace-metal data collected from 149 ground-water wells, and pesticide data collected from 39 surface-water stream sites in the San Joaquin Valley of California. Included with the ground-water data are field measurements of pH, specific conductance, alkalinity, temperature, and dissolved oxygen. This report describes data collection procedures, analytical methods, quality assurance, and quality controls used by the National Water-Quality Assessment Program to ensure data reliability. Data contained in this report were collected during a four year period by the San Joaquin?Tulare Basins Study Unit of the United States Geological Survey's National Water-Quality Assessment Program. Surface-water-quality data collection began in April 1992, with sampling done three times a week at three sites as part of a pilot study conducted to provide background information for the surface-water-study design. Monthly samples were collected at 10 sites for major ions and nutrients from January 1993 to March 1995. Additional samples were collected at four of these sites, from January to December 1993, to study spatial and temporal variability in dissolved pesticide concentrations. Samples for several synoptic studies were collected from 1993 to 1995. Ground-water-quality data collection was restricted to the eastern alluvial fans subarea of the San Joaquin Valley. Data collection began in 1993 with the sampling of 21 wells in vineyard land-use settings. In 1994, 29 wells were sampled in almond land-use settings and 9 in vineyard land-use settings; an additional 11 wells were sampled along a flow path in the eastern Fresno County vineyard land-use area. Among the 79 wells sampled in 1995, 30 wells were in the corn, alfalfa, and vegetable land-use setting, and 1 well was in the vineyard land-use setting; an additional 20 were flow-path wells. Also sampled in 1995

  17. Ground-Water Hydrology of the Upper Klamath Basin, Oregon and California

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.; La Marche, Jonathan L.; Fisher, Bruce J.; Polette, Danial J.

    2007-01-01

    and bounded on the east and west by older Tertiary volcanic and sedimentary rocks that have generally low permeability. Eight regional-scale hydrogeologic units are defined in the upper Klamath Basin on the basis of surficial geology and subsurface data. Ground water flows from recharge areas in the Cascade Range and upland areas in the basin interior and eastern margins toward stream valleys and interior subbasins. Ground water discharge to streams throughout the basin, and most streams have some component of ground water (baseflow). Some streams, however, are predominantly ground-water fed and have relatively constant flows throughout the year. Large amounts of ground water discharges in the Wood River subbasin, the lower Williamson River area, and along the margin of the Cascade Range. Much of the inflow to Upper Klamath Lake can be attributed to ground-water discharge to streams and major spring complexes within a dozen or so miles from the lake. This large component of ground water buffers the lake somewhat from climate cycles. There are also ground-water discharge areas in the eastern parts of the basin, for example in the upper Williamson and Sprague River subbasins and in the Lost River subbasin at Bonanza Springs. Irrigated agriculture is an integral part of the economy of the upper Klamath Basin. Although estimates vary somewhat, roughly 500,000 acres are irrigated in the upper Klamath Basin, about 190,000 acres of which are part of the Bureau of Reclamation Klamath Project. Most of this land is irrigated with surface water. Ground water has been used for many decades to irrigate areas where surface water is not available, for example outside of irrigation districts and stream valleys. Ground water has also been used as a supplemental source of water in areas where surface water supplies are limited and during droughts. Ground water use for irrigation has increased in recent years due to drought and shifts in surface-water allocation from irrigati

  18. Water resources of Beaver Valley, Utah

    USGS Publications Warehouse

    Lee, Willis Thomas

    1908-01-01

    Location and extent of area examined. Beaver Valley is located in Beaver County, in southwestern Utah, about 175 miles south of Salt Lake. It lies between the Tushar Mountains on the east and the Beaver Mountains on the west. The principal town of the valley is Beaver, which is most conveniently reached from Milford, a station on the San Pedro, Los Angeles and Salt Lake Railroad. The valley, together with its neighboring highlands, occupies the eastern third of Beaver County, an area of about 1,200 square miles. A large part of this area, however, is rocky upland and unproductive desert, the tillable land comprising a comparatively small area in the immediate vicinity of the streams.Purpose and scope of work. The purpose of this paper is to present information concerning the waters of Beaver Valley and to point out ways and means of increasing their usefulness. The presence of a large amount of water in Beaver Valley results from local topograhic conditions, the water being supplied by precipitation in the highland to the east. Its conservation and distribution result from geologic conditions, the water being held in loose gravel and sand, which are more or less confined between ridges of consolidated rocks. The rock basins were formed partly by erosion and partly by faulting and surface deformation. In order to accomplish the purpose in view it is therefore necessary to describe the geographic and geologic conditions in Beaver Valley and neighboring regions.The investigation included the determination of the flow of streams and springs, of the manner of occurrence and quantity of the underground waters as shown by the geologic and geographic conditions of the region and by the distribution of springs and wells, and of the chemical character of the waters with reference to their adaptability to domestic use and to irrigation. The chemical data were obtained (a) by field assays, which are approximately correct and probably of sufficient accuracy to be of value in

  19. Geohydrology and conceptual model of a ground-water-flow system near a Superfund site in Cheshire, Connecticut

    USGS Publications Warehouse

    Stone, J.R.; Barlow, P.M.; Starn, J.J.

    1996-01-01

    Degradation of ground-water quality has been identified in an area of the north-central part of the town of Cheshire, Connecticut. An investigation by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, was done during 1994-95 to characterize the unconsolidated glacial deposits and the sedimentary bedrock, integrate the local geohydrologic conditions with the regional geohydrologic system, and develop a conceptual understanding of ground-water flow in the study area. A regional ground-water-flow model developed for the region near the study area indicates that perennial streams, including Judd Brook and the Tenmile River, form hydrologic divides that separate the larger region into hydraulically independent flow systems. In the local study area, synoptic water-level measurements made in June 1995 indicate that ground water near the water table flows west and southwestward from the low hill on the eastern side of the area toward the pond and wetlands along Judd Brook. Water-level data indicate that there is good hydraulic connection between the unconsolidated materials and underlying fractured bedrock. Unconsolidated materials in the study area consist principally of glacial stratified deposits that are fine sand, silt, and clay of glaci- olacustrine origin; locally these overlie thin glacial till. The glacial sediments range in thickness from a few feet to about 25 ft in the eastern part of the study area and are as much as 100 ft thick in the western and southern part of the study area beneath the Judd Brook and Tenmile River valleys. Fluvial redbeds of the New Haven Arkose underlie the glacial deposits in the region; in the study area, the redbeds consist of (1) channel sandstone units, which are coarse sandstone to fine conglomerate, generally in 6- to 15-ft- thick sequences; and (2) overbank mudstone units, which are siltstone and silty sandstone with some fine sandstone, generally in 6- to 50-ft-thick sequences. Thin

  20. Probabilistic Modeling for Risk Assessment of California Ground Water Contamination by Pesticides

    NASA Astrophysics Data System (ADS)

    Clayton, M.; Troiano, J.; Spurlock, F.

    2007-12-01

    The California Department of Pesticide Regulation (DPR) is responsible for the registration of pesticides in California. DPR's Environmental Monitoring Branch evaluates the potential for pesticide active ingredients to move to ground water under legal agricultural use conditions. Previous evaluations were primarily based on threshold values for specific persistence and mobility properties of pesticides as prescribed in the California Pesticide Contamination Prevention Act of 1985. Two limitations identified with that process were the univariate nature where interactions of the properties were not accounted for, and the inability to accommodate multiple values of a physical-chemical property. We addressed these limitations by developing a probabilistic modeling method based on prediction of potential well water concentrations. A mechanistic pesticide transport model, LEACHM, is used to simulate sorption, degradation and transport of a candidate pesticide through the root zone. A second empirical model component then simulates pesticide degradation and transport through the vadose zone to a receiving ground water aquifer. Finally, degradation during transport in the aquifer to the well screen is included in calculating final potential well concentrations. Using Monte Carlo techniques, numerous LEACHM simulations are conducted using random samples of the organic carbon normalized soil adsorption coefficients (Koc) and soil dissipation half-life values derived from terrestrial field dissipation (TFD) studies. Koc and TFD values are obtained from gamma distributions fitted to pooled data from agricultural-use pesticides detected in California ground water: atrazine, simazine, diuron, bromacil, hexazinone, and norflurazon. The distribution of predicted well water concentrations for these pesticides is in good agreement with concentrations measured in domestic wells in coarse, leaching vulnerable soils of Fresno and Tulure Counties. The leaching potential of a new

  1. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1994

    USGS Publications Warehouse

    Westenburg, C.L.; La Camera, R. J.

    1996-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1994. Data collected prior to 1994 are graphically presented and data collected by other agencies (or as part of other programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-94.

  2. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  3. Simulated effects of irrigation on salinity in the Arkansas River Valley in Colorado

    USGS Publications Warehouse

    Goff, K.; Lewis, M.E.; Person, M.A.; Konikow, Leonard F.

    1998-01-01

    Agricultural irrigation has a substantial impact on water quantity and quality in the lower Arkansas River valley of southeastern Colorado. A two-dimensional flow and solute transport model was used to evaluate the potential effects of changes in irrigation on the quantity and quality of water in the alluvial aquifer and in the Arkansas River along an 17.7 km reach of the fiver. The model was calibrated to aquifer water level and dissolved solids concentration data collected throughout the 24 year study period (197195). Two categories of irrigation management were simulated with the calibrated model: (1) a decrease in ground water withdrawals for irrigation; and (2) cessation of all irrigation from ground water and surface water sources. In the modeled category of decreased irrigation from ground water pumping, there was a resulting 6.9% decrease in the average monthly ground water salinity, a 0.6% decrease in average monthly river salinity, and an 11.1% increase in ground water return flows to the river. In the modeled category of the cessation of all irrigation, average monthly ground water salinity decreased by 25%; average monthly river salinity decreased by 4.4%; and ground water return flows to the river decreased by an average of 64%. In all scenarios, simulated ground water salinity decreased relative to historical conditions for about 12 years before reaching a new dynamic equilibrium condition. Aquifer water levels were not sensitive to any of the modeled scenarios. These potential changes in salinity could result in improved water quality for irrigation purposes downstream from the affected area.

  4. Land subsidence in the San Joaquin Valley, California, as of 1980

    USGS Publications Warehouse

    Ireland, R.L.; Poland, J.F.; Riley, F.S.

    1982-01-01

    Land subsidence due to ground-water overdraft in the San Joaquin Valley began in the mid-1920 's and continued at alarming rates until surface was imported through major canals and aqueducts in the 1950 's and late 1960's. In areas where surface water replaced withdrawal of ground-water, water levels in the confined system rose sharply and subsidence slowed. In the late 1960 's and early 1970 's water levels in wells recovered to levels of the 1940 's and 1950 's throughout most of the western and southern parts of the Valley, in response to the importation of surface water through the California aqueduct. During the 1976-77 drought data collected at water-level and extensometer sites showed the effect of heavy demand on the ground-water resevoir. With the ' water of compaction ' gone, artesian head declined 10 to 20 times as fast as during the first cycle of long-term drawdown that ended in the late 1960's. In the 1978-79 water levels recovered to or above the 1976 pre-drought levels. The report suggests continued monitoring of land subsidence in the San Joaquin Valley. (USGS)

  5. Probability distributions of hydraulic conductivity for the hydrogeologic units of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Sweetkind, Donald S.; Elliott, Peggy E.

    2002-01-01

    The use of geologic information such as lithology and rock properties is important to constrain conceptual and numerical hydrogeologic models. This geologic information is difficult to apply explicitly to numerical modeling and analyses because it tends to be qualitative rather than quantitative. This study uses a compilation of hydraulic-conductivity measurements to derive estimates of the probability distributions for several hydrogeologic units within the Death Valley regional ground-water flow system, a geologically and hydrologically complex region underlain by basin-fill sediments, volcanic, intrusive, sedimentary, and metamorphic rocks. Probability distributions of hydraulic conductivity for general rock types have been studied previously; however, this study provides more detailed definition of hydrogeologic units based on lithostratigraphy, lithology, alteration, and fracturing and compares the probability distributions to the aquifer test data. Results suggest that these probability distributions can be used for studies involving, for example, numerical flow modeling, recharge, evapotranspiration, and rainfall runoff. These probability distributions can be used for such studies involving the hydrogeologic units in the region, as well as for similar rock types elsewhere. Within the study area, fracturing appears to have the greatest influence on the hydraulic conductivity of carbonate bedrock hydrogeologic units. Similar to earlier studies, we find that alteration and welding in the Tertiary volcanic rocks greatly influence hydraulic conductivity. As alteration increases, hydraulic conductivity tends to decrease. Increasing degrees of welding appears to increase hydraulic conductivity because welding increases the brittleness of the volcanic rocks, thus increasing the amount of fracturing.

  6. Estimation of the recharge area contributing water to a pumped well in a glacial-drift, river-valley aquifer

    USGS Publications Warehouse

    Morrissey, Daniel J.

    1989-01-01

    The highly permeable, unconfined, glacial-drift aquifers that occupy most New England river valleys constitute the principal source of drinking water for many of the communities that obtain part or all of their public water supply from ground water. Recent events have shown that these aquifers are highly susceptible to contamination that results from a number of sources, such as seepage from wastewater lagoons, leaking petroleum-product storage tanks, and road salting. To protect the quality of water pumped from supply wells in these aquifers, it is necessary to ensure that potentially harmful contaminants do not enter the ground in the area that contributes water to the well. A high degree of protection can be achieved through the application of appropriate land-use controls within the contributing area. However, the contributing areas for most supply wells are not known. This report describes the factors that affect the size and shape of contributing areas to public supply wells and evaluates several methods that may be used to delineate contributing areas of wells in glacial-drift, river-valley aquifers. Analytical, two-dimensional numerical, and three-dimensional numerical models were used to delineate contributing areas. These methods of analysis were compared by applying them to a hypothetical aquifer having the dimensions and geometry of a typical glacial-drift, river-valley aquifer. In the model analyses, factors that control the size and shape of a contributing area were varied over ranges of values common to glacial-drift aquifers in New England. The controlling factors include the rate of well discharge, rate of recharge to the aquifer from precipitation and from adjacent till and bedrock uplands, distance of a pumping well from a stream or other potential source of induced recharge, degree of hydraulic connection of the aquifer with a stream, horizontal hydraulic conductivity of the aquifer, ratio of horizontal to vertical hydraulic conductivity, and

  7. Application of the conjugate-gradient method to ground-water models

    USGS Publications Warehouse

    Manteuffel, T.A.; Grove, D.B.; Konikow, Leonard F.

    1984-01-01

    The conjugate-gradient method can solve efficiently and accurately finite-difference approximations to the ground-water flow equation. An aquifer-simulation model using the conjugate-gradient method was applied to a problem of ground-water flow in an alluvial aquifer at the Rocky Mountain Arsenal, Denver, Colorado. For this application, the accuracy and efficiency of the conjugate-gradient method compared favorably with other available methods for steady-state flow. However, its efficiency relative to other available methods depends on the nature of the specific problem. The main advantage of the conjugate-gradient method is that it does not require the use of iteration parameters, thereby eliminating this partly subjective procedure. (USGS)

  8. Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): the effect of groundwater abstraction on surface-water resources

    NASA Astrophysics Data System (ADS)

    Stefania, Gennaro A.; Rotiroti, Marco; Fumagalli, Letizia; Simonetto, Fulvio; Capodaglio, Pietro; Zanotti, Chiara; Bonomi, Tullia

    2018-02-01

    A groundwater flow model of the Alpine valley aquifer in the Aosta Plain (NW Italy) showed that well pumping can induce river streamflow depletions as a function of well location. Analysis of the water budget showed that ˜80% of the water pumped during 2 years by a selected well in the downstream area comes from the baseflow of the main river discharge. Alluvial aquifers hosted in Alpine valleys fall within a particular hydrogeological context where groundwater/surface-water relationships change from upstream to downstream as well as seasonally. A transient groundwater model using MODFLOW2005 and the Streamflow-Routing (SFR2) Package is here presented, aimed at investigating water exchanges between the main regional river (Dora Baltea River, a left-hand tributary of the Po River), its tributaries and the underlying shallow aquifer, which is affected by seasonal oscillations. The three-dimensional distribution of the hydraulic conductivity of the aquifer was obtained by means of a specific coding system within the database TANGRAM. Both head and flux targets were used to perform the model calibration using PEST. Results showed that the fluctuations of the water table play an important role in groundwater/surface-water interconnections. In upstream areas, groundwater is recharged by water leaking through the riverbed and the well abstraction component of the water budget changes as a function of the hydraulic conditions of the aquifer. In downstream areas, groundwater is drained by the river and most of the water pumped by wells comes from the base flow component of the river discharge.

  9. Ground-water conditions at Beale Air Force Base and vicinity, California

    USGS Publications Warehouse

    Page, R.W.

    1980-01-01

    Ground-water conditions were studied in a 168-square-mile area between the Sierra Nevada and the Feather River in Yuba County, Calif. The area is in the eastern part of the Sacramento Valley and includes most of Beale Air Force Base. Source, occurrence, movement, and chemical quality of the ground water were evaluated. Ground water occurs in sedimentary and volcanic rocks of Tertiary and Quaternary age. The base of the freshwater is in the undifferentiated sedimentary rocks of Oligocene and Eocene age, that contain water of high dissolved-solids concentration. The ground water occurs under unconfined and partly confined conditions. At Beale Air Force Base it is at times partly confined. Recharge is principally from the rivers. Pumpage in the study area was estimated to be 129,000 acre-feet in 1975. In the 1960's, water levels in most parts of the study area declined less rapidly than in earlier years or became fairly stable. In the 1970's, water levels at Beale Air Force Base declined only slightly. Spacing of wells on the base and rates of pumping are such that excessive pumping interference is avoided. Water quality at the base and throughout the study area is generally good. Dissolved-solids concentrations are 700 to 900 milligrams per liter in the undifferentiated sedimentary rocks beneath the base well field. (USGS)

  10. Hydrogeologic framework of Antelope Valley and Bedell Flat, Washoe County, west-central Nevada

    USGS Publications Warehouse

    Berger, D.L.; Ponce, D.A.; Ross, W.C.

    2001-01-01

    Description of the hydrogeologic framework of Antelope Valley and Bedell Flat in west-central Nevada adds to the general knowledge of regional ground-water flow north of the Reno-Sparks metropolitan area. The hydrogeologic framework is defined by the rocks and deposits that transmit ground water or impede its movement and by the combined thickness of Cenozoic deposits. When data are lacking about the subsurface geology of an area, geophysical methods can be used to provide additional information. In this study, gravimetric and seismic-refraction methods were used to infer the form of structural features and to estimate the thickness of Cenozoic deposits in each of the two valleys. In Antelope Valley, the thickness of these deposits probably does not exceed about 300 feet, suggesting that ground-water storage in the basin-fill aquifer is limited. Beneath Bedell Flat is an elongated, northeast-trending structural depression in the pre-Cenozoic basement; the maximum thickness of Cenozoic deposits is about 2,500 feet beneath the south-central part of the valley. Shallow ground water in the northwest corner of Bedell Flat may be a result of decreasing depth to the pre-Cenozoic basement.

  11. Evaluation of model-based seasonal streamflow and water allocation forecasts for the Elqui Valley, Chile

    NASA Astrophysics Data System (ADS)

    Delorit, Justin; Cristian Gonzalez Ortuya, Edmundo; Block, Paul

    2017-09-01

    In many semi-arid regions, multisectoral demands often stress available water supplies. Such is the case in the Elqui River valley of northern Chile, which draws on a limited-capacity reservoir to allocate 25 000 water rights. Delayed infrastructure investment forces water managers to address demand-based allocation strategies, particularly in dry years, which are realized through reductions in the volume associated with each water right. Skillful season-ahead streamflow forecasts have the potential to inform managers with an indication of future conditions to guide reservoir allocations. This work evaluates season-ahead statistical prediction models of October-January (growing season) streamflow at multiple lead times associated with manager and user decision points, and links predictions with a reservoir allocation tool. Skillful results (streamflow forecasts outperform climatology) are produced for short lead times (1 September: ranked probability skill score (RPSS) of 0.31, categorical hit skill score of 61 %). At longer lead times, climatological skill exceeds forecast skill due to fewer observations of precipitation. However, coupling the 1 September statistical forecast model with a sea surface temperature phase and strength statistical model allows for equally skillful categorical streamflow forecasts to be produced for a 1 May lead, triggered for 60 % of years (1950-2015), suggesting forecasts need not be strictly deterministic to be useful for water rights holders. An early (1 May) categorical indication of expected conditions is reinforced with a deterministic forecast (1 September) as more observations of local variables become available. The reservoir allocation model is skillful at the 1 September lead (categorical hit skill score of 53 %); skill improves to 79 % when categorical allocation prediction certainty exceeds 80 %. This result implies that allocation efficiency may improve when forecasts are integrated into reservoir decision frameworks. The

  12. Pumping strategies for management of a shallow water table: The value of the simulation-optimization approach

    USGS Publications Warehouse

    Barlow, P.M.; Wagner, B.J.; Belitz, K.

    1996-01-01

    The simulation-optimization approach is used to identify ground-water pumping strategies for control of the shallow water table in the western San Joaquin Valley, California, where shallow ground water threatens continued agricultural productivity. The approach combines the use of ground-water flow simulation with optimization techniques to build on and refine pumping strategies identified in previous research that used flow simulation alone. Use of the combined simulation-optimization model resulted in a 20 percent reduction in the area subject to a shallow water table over that identified by use of the simulation model alone. The simulation-optimization model identifies increasingly more effective pumping strategies for control of the water table as the complexity of the problem increases; that is, as the number of subareas in which pumping is to be managed increases, the simulation-optimization model is better able to discriminate areally among subareas to determine optimal pumping locations. The simulation-optimization approach provides an improved understanding of controls on the ground-water flow system and management alternatives that can be implemented in the valley. In particular, results of the simulation-optimization model indicate that optimal pumping strategies are constrained by the existing distribution of wells between the semiconfined and confined zones of the aquifer, by the distribution of sediment types (and associated hydraulic conductivities) in the western valley, and by the historical distribution of pumping throughout the western valley.

  13. Geology and ground-water resources of upper Grande Ronde River Basin, Union County, Oregon

    USGS Publications Warehouse

    Hampton, E.R.; Brown, S.G.

    1964-01-01

    The upper Grande Ronde River basin is a 1,400-square-mile area in northeastern Oregon, between the Blue Mountains to the west and the Wallowa Mountains to the east. The area is drained by the Grande Ronde River, which flows northeast through this region and is tributary to the Snake River. The climate is generally moderate; temperature extremes recorded at La Grande are 22?F. below zero and 108?F. above. The average annual precipitation ranges from 13 to 20 inches in the Grande Ronde Valley to . more than 35 inches in the mountain highlands surrounding the valley. The topography of. the area is strongly controlled by the geologic structures, principally those related to block faulting. The terrain ranges from the nearly flat floors of the Grande Ronde and Indian Valleys, whose elevations are 2,600 to about 2,750 feet, to the mountainous uplands, whose average elevations are about 5,000 feet and which have local prominences exceeding 6,500 feet. The rocks in the upper Grande Ronde River basin, from oldest to youngest, are metamorphic rocks of pre-Tertiary age; igneous masses of diorite and granodiorite that intruded the metamorphic rocks; tuff-breccia, welded and silicified tuff, and andesite and dacite flows, of Tertiary age; the Columbia River basalt of Miocene and possibly early Pliocene age; fanglomerate and lacustrine deposits of Pliocene and Pleistocene age; and younger deposits . of alluvium, colluvium, and welded tuff. In the graben known as the Grande Ronde Valley, which is the principal populated district in the area, the valley fill deposits are as thick as 2,000 feet. The valley is bordered by the scarps of faults, the largest of which have displacements of more than 4.000 feet. Most of the wells in the area obtain small to moderate supplies of water from unconfined aquifers in the val1ey fill and alluvial fan deposits. Moderate to large quantities of water are obtained from aquifers carrying artesian water in the fan alluvium and the Columbia River

  14. Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the Savannah River Site, Georgia and South Carolina

    USGS Publications Warehouse

    Clarke, John S.; West, Christopher T.

    1998-01-01

    Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the U.S. Department of Energy Savannah River Site, Georgia and South Carolina, were evaluated as part of a cooperative study between the U.S. Geological Survey, U.S. Department of Energy, and Georgia Department of Natural Resources. As part of this evaluation: (1) ground-water-level fluctuations and trends in three aquifer systems in sediment of Cretaceous and Tertiary age were described and related to patterns of ground-water use and precipitations; (2) a conceptual model ofthe stream-aquifer flow system was developed; (3) the predevelopment ground-water flow system, configuration of potentiometric surfaces, trans-river flow, and recharge-discharge relations were described; and (4) stream-aquifer relations and the influence of river incision on ground-water flow and stream-aquifer relations were described. The 5,147-square mile study area is located in the northern part of the Coastal Plain physiographic province of Georgia and South Carolina. Coastal Plain sediments comprise three aquifer systems consisting of seven aquifers that are separated hydraulically by confining units. The aquifer systems are, in descending order: (1) the Floridan aquifer system?consisting of the Upper Three Runs and Gordon aquifers in sediments of Eocene age; (2) the Dublin aquifer system?consisting of the Millers Pond, upper Dublin, and lower Dublin aquifers in sediments of Paleocene-Late Cretaceous age; and (3) the Midville aquifer system?consisting of the upper Midville and lower Midville aquifers in sediments of Late Cretaceous age. The Upper Three Runs aquifer is the shallowest aquifer and is unconfined to semi-confined throughout most of the study area. Ground-water levels in the Upper Three Runs aquifer respond to a local flow system and are affected mostly by topography and climate. Ground-water flow in the deeper, Gordon aquifer and Dublin and Midville aquifer systems is

  15. Integrated Modeling of Water Policy Futures in the Imperial-Mexicali Valleys

    NASA Astrophysics Data System (ADS)

    Kjelland, M. K.; Forster, C. B.; Grant, W. E.; Collins, K.

    2004-12-01

    Divided by an international border, the Imperial-Mexicali Valleys (IMVs) are linked by shared history, natural resources, culture and economy. This region is experiencing changes driven by policy makers both within and outside the IMVs. The largest external decision, the Colorado River Quantification Settlement Agreement (QSA) of 2003, opens the door to a laboratory for studying the consequences of a massive transfer of agricultural water to municipal users. Two irrigation districts, two urban water agencies and the State of California have agreed to a 75 year of more than 30 million acre-feet of Colorado River water from agricultural to urban use. Although Imperial Valley farmers will be compensated for water conservation and land fallowing, the economic, environmental and social consequences are unclear. Farmers who fallow will likely cause a greater impact on local businesses and government than those choosing on-field water conservation. Reduced agricultural water use causes reduced flow of irrigation runoff, at higher salinity than before, to the Salton Sea that, in turn, impacts the population dynamics of Ichthyan and Avian species at the Salton Sea. Municipal wastewater discharged into the New River by Mexicali, Mexico is also an important source of inflow to the Salton Sea that will be reduce by plans to reclaim the wastewater for various uses, including cooling water for two new power plants in the Mexicali. A restoration program is funded to produce a Sea with much reduced surface area. But this approach may, in turn, lead to increases in windblown dust from the dry lakebed that will contribute to an air basin already designated as a federal nonattainment area for particulate emissions. Additional water will be conserved by lining the All American and Coachella canals. But, eliminating seepage from the All American canal reduces groundwater recharge to aquifers used by Mexican farmers. A complex interplay of water-related issues must be accounted for if

  16. California's Central Valley Groundwater Study: A Powerful New Tool to Assess Water Resources in California's Central Valley

    USGS Publications Warehouse

    Faunt, Claudia C.; Hanson, Randall T.; Belitz, Kenneth; Rogers, Laurel

    2009-01-01

    Competition for water resources is growing throughout California, particularly in the Central Valley. Since 1980, the Central Valley's population has nearly doubled to 3.8 million people. It is expected to increase to 6 million by 2020. Statewide population growth, anticipated reductions in Colorado River water deliveries, drought, and the ecological crisis in the Sacramento-San Joaquin Delta have created an intense demand for water. Tools and information can be used to help manage the Central Valley aquifer system, an important State and national resource.

  17. Ground-water resources in Mendocino County, California

    USGS Publications Warehouse

    Farrar, C.D.

    1986-01-01

    Mendocino County includes about 3,500 sq mi of coastal northern California. Groundwater is the main source for municipal and individual domestic water systems and contributes significantly to irrigation. Consolidated rocks of the Franciscan Complex are exposed over most of the county. The consolidated rocks are commonly dry and generally supply < 5 gal/min of water to wells. Unconsolidated fill in the inland valleys consists of gravel, sand, silt, and clay. Low permeability in the fill caused by fine grain size and poor sorting limits well yields to less than 50 gal/min in most areas; where the fill is better sorted, yields of 1,000 gal/min can be obtained. Storage capacity estimates for the three largest basins are Ukiah Valley, 90,000 acre-ft; Little lake Valley, 35,000 acre-ft; and Laytonville Valley, 14,000 acre-ft. Abundant rainfall (35 to 56 in/yr) generally recharges these basins to capacity. Seasonal water level fluctuations since the 1950 's have been nearly constant, except during the 1976-77 drought. Chemical quality of water in basement rocks and valley fill is generally acceptable for most uses. Some areas along fault zones yield water with high boron concentrations ( <2 mg/L). Sodium chloride water with dissolved solids concentrations exceeding 1,000 mg/L is found in deeper parts of Little Lake Valley. (Author 's abstract)

  18. Sources and migration pathways of natural gas in near-surface ground water beneath the Animas River valley, Colorado and New Mexico

    USGS Publications Warehouse

    Chafin, Daniel T.

    1994-01-01

    In July 1990, the U.S. Geological Survey began a study of the occurrence of natural gas in near-surface ground water in the Animas River valley in the San Juan Basin between Durango, Colorado, and Aztec, New Mexico. The general purpose of the study was to identify the sources and migration pathways of natural gas in nearsurface ground water in the study area. The purpose of this report is to present interpretive conclusions for the study, primarily based on data collected by the U.S. Geological Survey from August 1990 to May 1991.Seventy of the 205 (34 percent) groundwater samples collected during August-November 1990 had methane concentrations that exceeded the reporting limit of 0.005 milligram per liter. The maximum concentration was 39 milligrams per liter, and the mean concentration was 1.3 milligrams per liter. Samples from wells completed in bedrock have greater mean concentrations of methane than samples from wells completed in alluvium. Correlations indicate weak or nonexistent associations between dissolved-methane concentrations and concentrations of dissolved solids, major ions, bromide, silica, iron, manganese, and carbon dioxide. Dissolved methane was associated with hydrogen sulfide.Soil-gas-methane concentrations were measurable at few of 192 ground-water sites, even at sites at which ground water contained large concentrations of dissolved methane, which indicates that soil-gas surveys are not useful to delineate areas of gas-affected ground water. The reporting limit of 0.005 milligram per liter of gas was equaled or exceeded by 40 percent of soil-gas measurements adjacent to 352 gas-well casings. Concentrations of at least 100 milligrams per liter of gas were measured at 25 (7 percent) of the sites.Potential sources of gases in water, soil, gas-well surface casings, and cathodic-protection wells were determined on the basis of their isotopic and molecular compositions and available information about gas-well construction or leaks. Biogenic and

  19. Geology and ground-water resources of Rock County, Wisconsin

    USGS Publications Warehouse

    LeRoux, E.F.

    1964-01-01

    . This sandstone also yields some water to uncased wells that tap the deeper rocks of the Upper Cambrian series. East of the Rock River the Platteville, Decorah, and Galena formations undifferentiated, or Platteville-Galena unit, is the principal source of water for domestic and stock wells. Unconsolidated deposits of glacial origin cover most of Rock County and supply water to many small wells. In the outwash deposits along the Rock River, wells of extremely high capacity have been developed for industrial and municipal use. The most significant feature of the bedrock surface in Rock County is the ancestral Rock River valley, which has been filled with glacial outwash to a depth of at least 396 feet below the present land surface. East of the buried valley the bedrock has a fiat, relatively undissected surface. West of the valley the bedrock surface is rugged and greatly dissected. Ground water in Rock County occurs under both water-table and artesian conditions; however, because of the interconnection and close relation of all ground water in the county, the entire system is considered to be a single groundwater body whose surface may be represented by one piezometric map. Recharge occurs locally, throughout the county. Nearly all recharge is derived directly from precipitation that percolates downward to become a part of the groundwater body. Natural movement of water in the consolidated water-bearing units is generally toward the buried Rock and Sugar River valleys. Movement of water in the sandstones of Cambrian age was calculated to be about 44 million gallons a day toward the Rock River. Discharge from wells in Rock County in 1957 was about 23 million gallons a day. Nearly 90 percent of this water was drawn from the area along the Rock River. Drilled wells, most of which were drilled by the cable-tool method, range in diameter from 3 to 26 inches, and in depth from 46 to 1,225 feet. Driven wells in alluvium and glacial drift are usually 1? to 2? in

  20. Evaluation of Selected Model Constraints and Variables on Simulated Sustainable Yield from the Mississippi River Valley Alluvial Aquifer System in Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.

    2008-01-01

    An existing conjunctive use optimization model of the Mississippi River Valley alluvial aquifer was used to evaluate the effect of selected constraints and model variables on ground-water sustainable yield. Modifications to the optimization model were made to evaluate the effects of varying (1) the upper limit of ground-water withdrawal rates, (2) the streamflow constraint associated with the White River, and (3) the specified stage of the White River. Upper limits of ground-water withdrawal rates were reduced to 75, 50, and 25 percent of the 1997 ground-water withdrawal rates. As the upper limit is reduced, the spatial distribution of sustainable pumping increases, although the total sustainable pumping from the entire model area decreases. In addition, the number of binding constraint points decreases. In a separate analysis, the streamflow constraint associated with the White River was optimized, resulting in an estimate of the maximum sustainable streamflow at DeValls Bluff, Arkansas, the site of potential surface-water withdrawals from the White River for the Grand Prairie Area Demonstration Project. The maximum sustainable streamflow, however, is less than the amount of streamflow allocated in the spring during the paddlefish spawning period. Finally, decreasing the specified stage of the White River was done to evaluate a hypothetical river stage that might result if the White River were to breach the Melinda Head Cut Structure, one of several manmade diversions that prevents the White River from permanently joining the Arkansas River. A reduction in the stage of the White River causes reductions in the sustainable yield of ground water.

  1. Guidelines for Coding and Entering Ground-Water Data into the Ground-Water Site Inventory Data Base, Version 4.6, U.S. Geological Survey, Washington Water Science Center

    DTIC Science & Technology

    2006-01-01

    collected, code both. Code Type of Analysis Code Type of Analysis A Physical properties I Common ions/trace elements B Common ions J Sanitary analysis and...1) A ground-water site is coded as if it is a single point, not a geographic area or property . (2) Latitude and longitude should be determined at a...terrace from an adjacent upland on one side, and a lowland coast or valley on the other. Due to the effects of erosion, the terrace surface may not be as

  2. Preliminary results of hydrogeologic investigations Humboldt River Valley, Winnemucca, Nevada

    USGS Publications Warehouse

    Cohen, Philip M.

    1964-01-01

    Most of the ground water of economic importance and nearly all the ground water closely associated with the flow o# the Humboldt River in the. 40-mile reach near Winnemucca, Nev., are in unconsolidated sedimentary deposits. These deposits range in age from Pliocene to Recent and range in character from coarse poorly sorted fanglomerate to lacustrine strata of clay, silt, sand, and gravel. The most permeable deposit consists of sand and gravel of Lake Lahontan age--the so-called medial gravel unit--which is underlain and overlain by fairly impermeable silt and clay also of Lake Lahontan age. The ultimate source of nearly all the water in the study area is precpitation within the drainage basin of the Humboldt River. Much of this water reaches the study, area as flow or underflow of the Humboldt River and as underflow from other valleys tributary to the study area. Little if any flow from the tributary streams in the study area usually reaches the Humboldt River. Most of the tributary streamflow within the study area evaporates or is transpired by vegetation, but a part percolates downward through unconsolidated deposits of the alluvial fans flanking the mountains and move downgradient as ground-water underflow toward the Humboldt River. Areas that contribute significant amounts of ground-water underflow to. the valley of the Humboldt River within the study area are (1) the valley of the Humboldt River upstream from the study area, (2) the Pole Creek-Rock Creek area, (3) Paradise Valley, and (4) Grass Valley and the northwestern slope of the Sonoma Range. The total average underflow from these areas in the period 1949-61 was about 14,000-19,000 acre-feet per year. Much of this underflow discharged into the Humboldt River within the study area and constituted a large part of the base flow of the river. Streamflow in the Humboldt River increases substantially in the early spring, principally because of runoff to the river in the reaches upstream from the study area

  3. Simulations of Ground-Water Flow and Residence Time near Woodbury, Connecticut

    USGS Publications Warehouse

    Starn, J. Jeffrey; Brown, Craig J.

    2007-01-01

    Water withdrawn for public use from glacial stratified deposits in Woodbury, Connecticut, is a mixture of water from different source areas, each having a characteristic water-quality signature. The physical processes leading to this mixture were explored using a numerical model to simulate steady-state ground-water source areas and residence times for a public water-supply well (PSW-1) in Woodbury. Upland areas contribute water to the well that is primarily from undeveloped and agricultural land. Valley bottoms contribute water to the well that is primarily from developed land. From 1985 to 2002, 6 percent of the contributing recharge area to the well changed from agricultural and undeveloped to developed land. The pattern of recharge areas and land use causes stratification of ground water by residence time and by characteristic water quality, which is related to land use. As land use changes with time, the water-quality signature of developed land moves deeper into the aquifer. Predicted nitrate concentrations decreased from 1985 to 1995 because of the conversion from agricultural land to developed land, but then began to increase after 1995 because of the conversion of undeveloped land to developed land. Total dissolved solids concentrations, on the other hand, increased from 1985 to 2002 because agriculture is associated with lower total dissolved solids concentrations than is developed land. About 40 percent of the water withdrawn from PSW-1 originated as upland recharge before flowing through glacial deposits in the valley. About 44 percent of the water originated as recharge in either fluvial deposits (mean residence time 7 years) or deltaic deposits (mean residence time 4 years). About 16 percent of the water originated as recharge through storm drains with ground-water discharge (often known as 'dry wells'). The residence time for water that originated as recharge in dry wells is 2 to 4 years, and the mean residence time is 3 years. Dry wells are a fast

  4. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 1. Depth to Bedrock Determinations Using Shallow Seismic Data Acquired in the Straight Creek Drainage Near Red River, New Mexico

    USGS Publications Warehouse

    Powers, Michael H.; Burton, Bethany L.

    2004-01-01

    In late May and early June of 2002, the U.S. Geological Survey (USGS) acquired four P-wave seismic profiles across the Straight Creek drainage near Red River, New Mexico. The data were acquired to support a larger effort to investigate baseline and pre-mining ground-water quality in the Red River basin (Nordstrom and others, 2002). For ground-water flow modeling, knowledge of the thickness of the valley fill material above the bedrock is required. When curved-ray refraction tomography was used with the seismic first arrival times, the resulting images of interval velocity versus depth clearly show a sharp velocity contrast where the bedrock interface is expected. The images show that the interpreted buried bedrock surface is neither smooth nor sharp, but it is clearly defined across the valley along the seismic line profiles. The bedrock models defined by the seismic refraction images are consistent with the well data.

  5. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, Through December 1992

    USGS Publications Warehouse

    La Camera, Richard J.; Westenburg, Craig L.

    1994-01-01

    Tne U.S. Geological Survey. in support of the U.S. Department of Energy, Yucca Mountain Site- Characterization Project, collects, compiles, and summarizes water-resource data in the Yucca Mountain region. The data are collected to document the historical and current condition of ground-water resources, to detect and document changes in those resources through time, and to allow assessments of ground-water resources during investigations to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground- water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Fiat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies or as part of other programs are included to further indicate variations through time. A statistical summary of ground-water levels and median annual ground-water withdrawals in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of a11 water-level altitudes for selected baseline periods and for calendar year 1992. Data on ground-water quality are compared to established, proposed, or tentative primary and secondary drinking-water standards, and measures which exceeded those standards are listed for 18 sites. Detected organic compounds for which established, proposed, or tentative drinking-water standards exist also are listed.

  6. MODELING MULTIPHASE ORGANIC CHEMICAL TRANSPORT IN SOILS AND GROUND WATER

    EPA Science Inventory

    Subsurface contamination due to immiscible organic liquids is a widespread problem which poses a serious threat to ground-water resources. n order to understand the movement of such materials in the subsurface, a mathematical model was developed for multiphase flow and multicompo...

  7. SITE CHARACTERIZATION TO SUPPORT MODEL DEVELOPMENT FOR CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The development of conceptual and predictive models is an important tool to guide site characterization in support of monitoring contaminants in ground water. The accuracy of predictive models is limited by the adequacy of the input data and the assumptions made to constrain mod...

  8. Chemical analyses of ground-water samples from the Rio Grande Valley in the vicinity of Albuquerque, New Mexico, October 1993 through January 1994

    USGS Publications Warehouse

    Wilkins, D.W.; Schlottmann, J.L.; Ferree, D.M.

    1996-01-01

    A study was conducted to investigate general ground-water- quality conditions and contaminant locations in the Rio Grande Valley in the vicinity of Albuquerque, New Mexico. Water samples from 36 observation wells in 12 well nests were analyzed. The well nests are located along three roads near the Rio Grande--two well nests near Paseo del Norte, five well nests near Monta?o Road, and five well nests near Rio Bravo Boulevard. The water samples were collected from October 19, 1993, through January 18, 1994. Water-quality types by major-ion composition were calcium bicarbonate (found in most samples), sodium sulfate, calcium sulfate, and calcium sulfate chloride. Nutrients were detected in all but one sample. Ammonia was detected in 34 samples, nitrite in 4 samples, and nitrate in 17 samples. Orthophosphate was detected in 31 samples. Organic carbon was detected in all samples collected. The trace elements arsenic and barium were detected in all samples and zinc in 31 samples. Fourteen samples contained detectable copper. Cadmium was detected in one sample, chromium in two samples, lead in four samples, and selenium in two samples. Mercury and silver were not detected.

  9. Evaluation of the effects of precipitation on ground-water levels from wells in selected alluvial aquifers in Utah and Arizona, 1936-2005

    USGS Publications Warehouse

    Gardner, Philip M.; Heilweil, Victor M.

    2009-01-01

    Increased withdrawals from alluvial aquifers of the southwestern United States during the last half-century have intensified the effects of drought on ground-water levels in valleys where withdrawal for irrigation is greatest. Furthermore, during wet periods, reduced withdrawals coupled with increased natural recharge cause rising ground-water levels. In order to manage water resources more effectively, analysis of ground-water levels under the influence of natural and anthropogenic stresses is useful. This report evaluates the effects of precipitation patterns on ground-water levels in areas of Utah and Arizona that have experienced different amounts of ground-water withdrawal. This includes a comparison of water-level records from basins that are hydrogeologically and climatologically similar but have contrasting levels of ground-water development. Hydrologic data, including records of ground-water levels, basin-wide annual ground-water withdrawals, and precipitation were examined from two basins in Utah (Milford and central Sevier) and three in Arizona (Aravaipa Canyon, Willcox, and Douglas). Most water-level records examined in this study from basins experiencing substantial ground-water development (Milford, Douglas, and Willcox) showed strong trends of declining water levels. Other water-level records, generally from the less-developed basins (central Sevier and Aravaipa Canyon) exhibited trends of increasing water levels. These trends are likely the result of accumulating infiltration of unconsumed irrigation water. Water-level records that had significant trends were detrended by subtraction of a low-order polynomial in an attempt to eliminate the variation in the water-level records that resulted from ground-water withdrawal or the application of water for irrigation. After detrending, water-level residuals were correlated with 2- to 10-year moving averages of annual precipitation from representative stations for the individual basins. The water

  10. Effects of realistic topography on the ground motion of the Colombian Andes - A case study at the Aburrá Valley, Antioquia

    NASA Astrophysics Data System (ADS)

    Restrepo, Doriam; Bielak, Jacobo; Serrano, Ricardo; Gómez, Juan; Jaramillo, Juan

    2016-03-01

    This paper presents a set of deterministic 3-D ground motion simulations for the greater metropolitan area of Medellín in the Aburrá Valley, an earthquake-prone region of the Colombian Andes that exhibits moderate-to-strong topographic irregularities. We created the velocity model of the Aburrá Valley region (version 1) using the geological structures as a basis for determining the shear wave velocity. The irregular surficial topography is considered by means of a fictitious domain strategy. The simulations cover a 50 × 50 × 25 km3 volume, and four Mw = 5 rupture scenarios along a segment of the Romeral fault, a significant source of seismic activity in Colombia. In order to examine the sensitivity of ground motion to the irregular topography and the 3-D effects of the valley, each earthquake scenario was simulated with three different models: (i) realistic 3-D velocity structure plus realistic topography, (ii) realistic 3-D velocity structure without topography, and (iii) homogeneous half-space with realistic topography. Our results show how surface topography affects the ground response. In particular, our findings highlight the importance of the combined interaction between source-effects, source-directivity, focusing, soft-soil conditions, and 3-D topography. We provide quantitative evidence of this interaction and show that topographic amplification factors can be as high as 500 per cent at some locations. In other areas within the valley, the topographic effects result in relative reductions, but these lie in the 0-150 per cent range.

  11. Availability of ground water in parts of the Acoma and Laguna Indian Reservations, New Mexico

    USGS Publications Warehouse

    Dinwiddie, George A.; Motts, Ward Sundt

    1964-01-01

    The need for additional water has increased in recent years on the Acoma and Laguna Indian Reservations in west-central New Mexico because the population and per capita use of water have increased; the tribes also desire water for light industry, for more modern schools, and to increase their irrigation program. Many wells have been drilled in the area, but most have been disappointing because of small yields and poor chemical quality of the water. The topography in the Acoma and Laguna Indian Reservations is controlled primarily by the regional and local dip of alternating beds of sandstone and shale and by the igneous complex of Mount Taylor. The entrenched alluvial valley along the Rio San Jose, which traverses the area, ranges in width from about 0.4 mile to about 2 miles. The climate is characterized by scant rainfall, which occurs mainly in summer, low relative humidity, and large daily fluctuations of temperature. Most of the surface water enters the area through the Rio San Jose. The average annual streamflow past the gaging station Rio San Jose near Grants, N. Mex. is about 4,000 acre-feet. Tributaries to the Rio San Jose within the area probably contribute about 1,000 acre-feet per year. At the present time, most of the surface water is used for irrigation. Ground water is obtained from consolidated sedimentary rocks that range in age from Triassic to Cretaceous, and from unconsolidated alluvium of Quaternary age. The principal aquifers are the Dakota Sandstone, the Tres Hermanos Sandstone Member of the Mancos Shale, and the alluvium. The Dakota Sandstone yields 5 to 50 gpm (gallons per minute) of water to domestic and stock wells. The Tres Hermanos sandstone Member generally yields 5 to 20 gpm of water to domestic and stock wells. Locally, beds of sandstone in the Chinle and Morrison Formations, the Entrada Sandstone, and the Bluff Sandstone also yield small supplies of water to domestic and stock wells. The alluvium yields from 2 gpm to as much as 150

  12. Geohydrologic framework of the Roswell ground-water basin, Chaves and Eddy Counties, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welder, G.E.

    This report describes the geohydrology of the Roswell ground-water basin and shows the long-term hydrostatic-head changes in the aquifers. The Roswell ground-water basin consists of a carbonate artesian aquifer overlain by a leaky confining bed, which, in turn is overlain by an alluvial water-table aquifer. The water-table aquifer is hydraulically connected to the Pecos River. Ground-water pumpage from about 1500 wells in the basin was about 378,000 acre-feet in 1978. Irrigation use on about 122,000 acres accounted for 95% of that pumpage. Permeable zones in the artesian aquifer are generally controlled by lithologic changes in the Permian San Andres Limestonemore » and Grayburg Formation and by fractures in the carbonate rock. The thickness of the artesian aquifer in the more heavily pumped part of the basin ranges from 260 to 460 feet. The confining bed is composed of slightly to moderately permeable rocks of the Permian Grayburg, Queen, and Seven Rivers Formations. The shallow aquifer is composed of permeable beds of sand and gravel in the valley-fill alluvium, which is Pliocene, Pleistocene, and Holocene in age. In 1975, the maximum saturated thickness of the valley fill was about 250 feet in depressions northeast of Roswell, south of Dexter, and at Artesia. Hydrostatic heads in the artesian aquifer declined 230 feet in the south part of the basin from 1905 to 1975. The maximum decline in the head of the shallow aquifer from 1938 to 1975 was 120 feet. The chloride concentration of ground-water samples collected in 1978 ranged from 15 to 7000 milligrams per liter for the artesian aquifer and from 20 to 3700 milligrams per liter for the shallow aquifer. The chloride content has gradually increased through the years in the eastern parts of both aquifers. 31 refs., 28 figs., 1 tab.« less

  13. Geology and ground-water resources of the Fort Berthold Indian Reservation, North Dakota, with a section on the chemical quality of the ground water

    USGS Publications Warehouse

    Dingman, Robert James; Gordon, Ellis D.; Swenson, H.A.

    1954-01-01

    The Fort Berthold Indian Reservation occupies about 1,000 square miles in west- central North Dakota. The Missouri and Little Missouri Rivers flow through the area and form part of its boundaries. Garrison Dam, which is under construction on the Missouri River 30 miles downstream from the east boundary of the reservation, will impound water in Garrison Reservoir and flood the valleys of both rivers throughout the area. The reservoir will divide the reservation into five parts, herein referred to as the eastern, northeastern, northern, western, and southern segments. Rock formations ranging in age from Paleocene to Recent are exposed. The Fort Union formation of Paleocene age underlies the entire reservation, and it crops out along the Missouri and Little Missouri Rivers. Relatively thin glacial till and outwash deposits of late Pleistocene age mantle much of the upland in all of the segments. The glacial de. posits commonly are less than 10 feet thick; in many places they consist only of scattered boulders on the bedrock surface. The major valleys have terrace deposits of Pleistocene and Recent age and alluvium of Recent age. The principal mineral resources of the reservation are lignite, sand, and gravel. The lignite beds range in thickness from a few inches to about 30 feet. At least four separate beds, which range in thickness from 4 feet to more than 7 feet, are mined locally. Although many mines will be flooded after Garrison Dam is completed, many suitable mine sites will remain above the proposed reservoir level. Sand and gravel deposits are found in glacial outwash and in stream-terrace deposits. On upland areas of the reservation ground water is available principally from the lignite and the associated fine- to medium-grained sandstone beds of the Fort Union formation. Few wells on the reservation are known to produce water from glacial material, although the recessional moraines are possible sources of shallow-water supplies. Small quantities of ground

  14. Water-quality data from ground- and surface-water sites near concentrated animal feeding operations (CAFOs) and non-CAFOs in the Shenandoah Valley and eastern shore of Virginia, January-February, 2004

    USGS Publications Warehouse

    Rice, Karen C.; Monti, Michele M.; Ettinger, Matthew R.

    2005-01-01

    Concentrated animal feeding operations (CAFOs) result from the consolidation of small farms with animals into larger operations, leading to a higher density of animals per unit of land on CAFOs than on small farms. The density of animals and subsequent concentration of animal wastes potentially can cause contamination of nearby ground and surface waters. This report summarizes water-quality data collected from agricultural sites in the Shenandoah Valley and Eastern Shore of Virginia. Five sites, three non-CAFO and two dairy-operation CAFO sites, were sampled in the Shenandoah Valley. Four sites, one non-CAFO and three poultry-operation CAFO sites were sampled on the Eastern Shore. All samples were collected during January and February 2004. Water samples were analyzed for the following parameters and constituents: temperature, specific conductance, pH, and dissolved oxygen; concentrations of the indicator organisms Escherichia coli (E. coli) and enterococci; bacterial isolates of E. coli, enterococci, Salmonella spp., and Campylobacter spp.; sensitivity to antibiotics of E. coli, enterococci, and Salmonella spp.; arsenic, cadmium, chromium3+, copper, nickel, and mercury; hardness, biological oxygen demand, nitrate, nitrite, ammonia, ortho-phosphate, total Kjeldahl nitrogen, chemical oxygen demand, total organic carbon, and dissolved organic carbon; and 45 dissolved organic compounds, which included a suite of antibiotic compounds.Data are presented in tables 5-21 and results of analyses of replicate samples are presented in tables 22-28. A summary of the data in tables 5-8 and 18-21 is included in the report.

  15. Simulation of ground-water flow in the Coastal Plain aquifer system of North Carolina

    USGS Publications Warehouse

    Giese, G.I.; Eimers, J.L.; Coble, R.W.

    1997-01-01

    areas. Hydrologic analysis of the flow system using the calibrated model indicated that, because of ground-water withdrawals, areas of ground-water recharge have expanded and encroached upon some major stream valleys and into coastal area. Simulations of pumping conditions indicate that by 1980 large parts of the former coastal discharge areas had become areas of potential or actual recharge. Declines of ground-water level, which are the result of water taken from storage, are extensive in some areas and minimal in others. Hydraulic head declines of more than 135 feet have occurred in the northern Coastal Plain since 1940 primarily due to withdrawals in the Franklin area in Virginia. Declines of ground-water levels greater than 110 feet have occurred in aquifers in the central Coastal Plain due to combined effects of pumpage for public and industrial water supplies. Water-level declines exceeding 100 feet have occurred in the Beaufort County area because of withdrawals for a mining operation and water supplies for a chemical plant. Head declines have been less than 10 feet in the shallow surficial and Yorktown aquifers and in the updip parts of the major confined aquifers distant from areas of major withdrawals. In 1980, contribution from aquifer storage was 14 cubic feet per second, which is about 4.8 percent of pumpage and about 0.05 percent of ground-water recharge. A water-budget analysis using the model simulations indicates that much of the water removed from the ground-water system by pumping ultimately is made up by a reduction in water leaving the aquifer system, which discharges to streams as base flow. The reduction in stream base flow was 294 cubic feet per second in 1980 and represents about 1.1 percent of the ground-water recharge. The net reduction to streamflow is not large, however, because most pumped ground water is eventually discharged to streams. In places, such as at rock quarries in Onslow and Craven Counties, water is lost from st

  16. Geology and ground-water conditions in the Wilmington-Reading area, Massachusetts

    USGS Publications Warehouse

    Baker, John Augustus; Healy, H.G.; Hackett, O.M.

    1964-01-01

    The Wilmington-Reading area, as defined for this report, contains the headwaters of the Ipswich River in northeastern Massachusetts. Since World War II the growth of communities in this area and the change in character of some of them from rural to suburban have created new water problems and intensified old ones. The purpose of this report on ground-water conditions is to provide information that will aid in understanding and resolving some of these problems. The regional climate, which is humid and temperate, assures the area an ample natural supply of water. At the current stage of water-resources development a large surplus of water drains from the area by way of the Ipswich River during late autumn, winter, and spring each year and is unavailable for use during summer and early autumn, when during some years there is a general water deficiency. Ground water occurs both in bedrock and in the overlying deposits of glacial drift. The bedrock is a source of small but generally reliable supplies of water throughout the area. Glacial till also is a source of small supplies of water, but wells in till often fail to meet modern demands. Stratified glacial drift, including ice-contact deposits and outwash, yields small to large supplies of water. Stratified glacial drift forms the principal ground-water reservoir. It partly fills a system of preglacial valleys corresponding roughly to the valleys of the present Ipswich River system and is more than 100 feet thick at places. The ice-contact deposits generally are more permeable than the outwash deposits. Ground water occurs basically under water-table conditions. Recharge in the Wilmington-Reading area is derived principally from precipitation on outcrop areas of ice-contact deposits and outwash during late autumn, winter. and spring. It is estimated that the net annual recharge averages about 10 inches and generally ranges from 5 inches during unusually dry years to 15 inches during unusually wet years. Ground water

  17. Geology and ground-water hydrology of the Angostura irrigation project, South Dakota, with a section on the mineral quality of the waters

    USGS Publications Warehouse

    Littleton, Robert T.; Swenson, Herbert A.

    1949-01-01

    The lands to be irrigated from water stored in the Angostura Reservoir are situated on the lover of two terraces along the southeast side of the Cheyenne River in northeastern Fall River County and on the terrace known as Harrison Plat in southeastern Custer County, S. Dak. The terrace deposits are composed of relatively permeable sands and gravels that rest on a shale bedrock platform. The terrace surfaces are mantled in part by slope wash derived from higher shale slopes and by wind-blown sand. Ground water occurs under water-table conditions in the river alluvium and in terraces above the river. Although the zone of saturation in the terrace deposits is 6enerally thin, it is essentially continuous in the area southeast of the river, and the water issues as springs in the terrace faces along the inner valley of the river and along the valleys of tributary streams cuttin6 back into the terraces. A zone of saturation is present only in part of the Harrison Plat area, and it extends to the terrace face only along Cottonwood Creek. Wells in the unconsolidated mantle rock supply water for domestic and stock purposes, but yields are small. Abundant supplies of artesian water are available at depths ranging up to 3,000 feet but are not now utilized except at the extreme western end of the area where the bedrock aquifer is close below the surface. The effect of applying irrigation water on the terrace lands will depend on the character of the underlying material and on the measures taken to forestall waterlogging and other undesirable effects. Terrace areas that are mantled by slope wash will be especially susceptible to waterlogging, as will valley-bottom areas mantled by colluvium that are adjacent to irrigated terracea. Periodic measurements of water levels in observation wells will give warning of potential waterlogging in time to permit taking preventive measures. Analyses of samples of both ground water and surface water indicate a high mineral content. In general

  18. Ground-Water Quality of the Northern High Plains Aquifer, 1997, 2002-04

    USGS Publications Warehouse

    Stanton, Jennifer S.; Qi, Sharon L.

    2007-01-01

    An assessment of ground-water quality in the northern High Plains aquifer was completed during 1997 and 2002-04. Ground-water samples were collected at 192 low-capacity, primarily domestic wells in four major hydrogeologic units of the northern High Plains aquifer-Ogallala Formation, Eastern Nebraska, Sand Hills, and Platte River Valley. Each well was sampled once, and water samples were analyzed for physical properties and concentrations of nitrogen and phosphorus compounds, pesticides and pesticide degradates, dissolved solids, major ions, trace elements, dissolved organic carbon (DOC), radon, and volatile organic compounds (VOCs). Tritium and microbiology were analyzed at selected sites. The results of this assessment were used to determine the current water-quality conditions in this subregion of the High Plains aquifer and to relate ground-water quality to natural and human factors affecting water quality. Water-quality analyses indicated that water samples rarely exceeded established U.S. Environmental Protection Agency public drinking-water standards for those constituents sampled; 13 of the constituents measured or analyzed exceeded their respective standards in at least one sample. The constituents that most often failed to meet drinking-water standards were dissolved solids (13 percent of samples exceeded the U.S. Environmental Protection Agency Secondary Drinking-Water Regulation) and arsenic (8 percent of samples exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level). Nitrate, uranium, iron, and manganese concentrations were larger than drinking-water standards in 6 percent of the samples. Ground-water chemistry varied among hydrogeologic units. Wells sampled in the Platte River Valley and Eastern Nebraska units exceeded water-quality standards more often than the Ogallala Formation and Sand Hills units. Thirty-one percent of the samples collected in the Platte River Valley unit had nitrate concentrations greater than the standard

  19. Digital-transport model study of Diisopropylmethylphosphonate (DIMP) ground-water contamination at the Rocky Mountain Arsenal, Colorado

    USGS Publications Warehouse

    Warner, James W.

    1979-01-01

    Diisopropylmethylphosphonate (DIMP) is an organic compound produced as a by-product of the manufacture and detoxification of GB nerve gas. Ground-water contamination by DIMP from the disposal of wastes into unlined surface ponds at the Rocky Mountain Arsenal occurred from 1952 to 1956. A digital-transport model was used to determine the effects on ground-water movement and on DIMP concentrations in the ground water of a bentonite barrier in the aquifer near the northern boundary of the arsenal. The transport model is based on an iterative-alternating-direction-implicit mathematical solution of the ground-water-flow equation coupled with a method-of-characteristics solution of the solute-transport equation. The model assumes conservative (nonreactive) transient transport of DIMP and steady-state ground-water flow. In the model simulations, a bentonite barrier was assumed that was impermeable and penetrated the entire saturated thickness of the aquifer. Ground water intercepted by the barrier was assumed to be pumped by wells located south (upgradient) of the barrier, to be treated to remove DIMP, and to be recharged by pits or wells to the aquifer north (downgradient) of the barrier. The amount of DIMP transported across the northern boundary of the arsenal was substantially reduced by a ground-water-barrier system of this type. For a 1,500-foot-long bentonite barrier located along the northern boundary of the arsenal near D Street, about 50 percent of the DIMP that would otherwise cross the boundary would be intercepted by the barrier. This barrier configuration and location were proposed by the U.S. Army. Of the ground water with DIMP concentrations greater than 500 micrograms per liter, the safe DIMP-concentration level determined by the U.S. Army, about 72 percent would be intercepted by the barrier system. The amount of DIMP underflow intercepted may be increased to 65 percent by doubling the pumpage, or to 73 percent by doubling the length of the barrier

  20. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.

    2002-01-01

    An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at

  1. Conjunctive-use optimization model of the Mississippi River Valley alluvial aquifer of Southeastern Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.; Clark, Brian R.; Stanton, Gregory P.

    2003-01-01

    The Mississippi River Valley alluvial aquifer is a water-bearing assemblage of gravels and sands that underlies about 32,000 square miles of Missouri, Kentucky, Tennessee, Mississippi, Louisiana, and Arkansas. Because of the heavy demands placed on the aquifer, several large cones of depression have formed in the potentiometric surface, resulting in lower well yields and degraded water quality in some areas. A ground-water flow model of the alluvial aquifer was previously developed for an area covering 3,826 square miles, extending south from the Arkansas River into the southeastern corner of Arkansas, parts of northeastern Louisiana, and western Mississippi. The flow-model results indicated that continued ground-water withdrawals at rates commensurate with those of 1997 could not be sustained indefinitely without causing water levels to decline below half the original saturated thickness of the aquifer. Conjunctive-use optimization modeling was applied to the flow model of the alluvial aquifer to develop withdrawal rates that could be sustained relative to the constraints of critical ground-water area designation. These withdrawal rates form the basis for estimates of sustainable yield from the alluvial aquifer and from rivers specified within the alluvial aquifer model. A management problem was formulated as one of maximizing the sustainable yield from all ground-water and surface-water withdrawal cells within limits imposed by plausible withdrawal rates, and within specified constraints involving hydraulic head and streamflow. Steady-state conditions were selected because the maximized withdrawals are intended to represent sustainable yield of the system (a rate that can be maintained indefinitely).One point along the Arkansas River and one point along Bayou Bartholomew were specified for obtaining surface-water sustainable-yield estimates within the optimization model. Streamflow constraints were specified at two river cells based on average 7-day low flows

  2. The Valley Networks on Mars

    NASA Astrophysics Data System (ADS)

    Gulick, V. C.

    2002-12-01

    Despite three decades of exploration, the valley networks on Mars still seem to raise more questions than they answer. Valley systems have formed in the southern highlands, along some regions of the dichotomy boundary and the south rim of Valles Marineris, around the rim of some impact craters, and on the flanks of some volcanoes. They are found on some of the oldest and youngest terrains as well as on intermediate aged surfaces. There is surprisingly little consensus as to the formation and the paleoclimatic implications of the valley networks. Did the valleys require a persistent solar-driven atmospheric hydrological cycle involving precipitation, surface runoff, infiltration and groundwater outflow as they typically do on Earth? Or are they the result of magmatic or impact-driven thermal cycling of ground water involving persistent outflow and subsequent runoff? Are they the result of some other process(es)? Ground-water sapping, surface-water runoff, debris flows, wind erosion, and formation mechanisms involving other fluids have been proposed. Until such basic questions as these are definitively answered, their significance for understanding paleoclimatic change on Mars remains cloudy. I will review what is known about valley networks using data from both past and current missions. I will discuss what we have learned about their morphology, environments in which they formed, their spatial and temporal associations, possible formation mechanisms, relation to outflow channel and gully formation, as well as the possible implications for past climate change on Mars. Finally I will discuss how future, meter to submeter scale imaging and other remote sensing observations may shed new light on the debate over the origin of these enigmatic features.

  3. Characteristics of streamflow and ground-water conditions in the Boise River Valley, Idaho

    USGS Publications Warehouse

    Thomas, C.A.; Dion, N.P.

    1974-01-01

    The quantity, quality, and distribution in time of streamflow in Boise River below Lucky Peak Lake are drastically affected by storage reservoirs, diversions for irrigation, and by domestic, industrial, and agricultural wastes. Reservoirs usually fill during the nonirrigation season, and streamflow for several miles below Lucky Peak Lake is very low, sometimes less than 10 cubic feet per second (0.28 cubic meters per second). On November 18-19, 1971, when the gates at Lucky Peak Dam were closed, inflow to the Boise River in the study reach totaled 1010 ft3 /s. Practically all inflow was discharged ground water. During the growing season, several thousands of ft3 /s are released from Lucky Peak Lake, but diversions reduce the flows to near zero below some large diversion points in the study reach. Characteristics of streamflow are described by duration curves, duration hydrographs, and low-flow and high-flow frequency curves.Water released from Lucky Peak Lake is of excellent quality. Dissolved solids are usually less than 80 milligrams per liter. Discharged ground water increases the dissolved solids in the river downstream to 400 milligrams per liter or more when dilution from Lucky Peak Lake is slight. Other measures of water quality likewise show the deterioration in a downstream direction in the study reach.

  4. Predicted pH at the domestic and public supply drinking water depths, Central Valley, California

    USGS Publications Warehouse

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, Jo Ann M.

    2017-03-08

    This scientific investigations map is a product of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project modeling and mapping team. The prediction grids depicted in this map are of continuous pH and are intended to provide an understanding of groundwater-quality conditions at the domestic and public supply drinking water zones in the groundwater of the Central Valley of California. The chemical quality of groundwater and the fate of many contaminants is often influenced by pH in all aquifers. These grids are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to pH. In this work, the median well depth categorized as domestic supply was 30 meters below land surface, and the median well depth categorized as public supply is 100 meters below land surface. Prediction grids were created using prediction modeling methods, specifically boosted regression trees (BRT) with a Gaussian error distribution within a statistical learning framework within the computing framework of R (http://www.r-project.org/). The statistical learning framework seeks to maximize the predictive performance of machine learning methods through model tuning by cross validation. The response variable was measured pH from 1,337 wells and was compiled from two sources: USGS National Water Information System (NWIS) database (all data are publicly available from the USGS: http://waterdata.usgs.gov/ca/nwis/nwis) and the California State Water Resources Control Board Division of Drinking Water (SWRCB-DDW) database (water quality data are publicly available from the SWRCB: http://www.waterboards.ca.gov/gama/geotracker_gama.shtml). Only wells with measured pH and well depth data were selected, and for wells with multiple records, only the most recent sample in the period 1993–2014 was used. A total of 1,003 wells (training dataset) were used to train the BRT

  5. Methodology and application of combined watershed and ground-water models in Kansas

    USGS Publications Warehouse

    Sophocleous, M.; Perkins, S.P.

    2000-01-01

    Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and versatility of this relatively simple and conceptually clear approach, making public acceptance of the integrated watershed modeling

  6. Latin hypercube approach to estimate uncertainty in ground water vulnerability

    USGS Publications Warehouse

    Gurdak, J.J.; McCray, J.E.; Thyne, G.; Qi, S.L.

    2007-01-01

    A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability. ?? 2007 National Ground Water Association.

  7. Analog-model studies of ground-water hydrology in the Houston District, Texas

    USGS Publications Warehouse

    Jorgensen, Donald G.

    1974-01-01

    The major water-bearing units in the Houston district are the Chicot and the Evangeline aquifers. The Chicot aquifer overlies the Evangeline aquifer, which is underlain by the Burkeville confining layer. Both aquifers consist of unconsolidated and discontinuous layers of sand and clay that dip toward the Gulf of Mexico. Heavy pumping of fresh water has caused large declines in the altitudes of the potentiometric surfaces in both aquifers and has created large cones of depression around Houston. The declines have caused compaction of clay layers, which has resulted in land surface subsidence and the movement of saline ground water toward the centers of the cones of depression. An electric analog model was used to study the hydrologic system and to simulate the declines in the altitudes of the potentiometric surfaces for several alternative plans of ground-water development. The results indicate that the largest part. of the pumped water comes from storage in the water-table part of the Chicot aquifer. Vertical leakage from the aquifers and water derived from the compaction of clay layers in the aquifers are also large sources of the water being pumped. The response of the system, as observed on the model, indicates that development of additional ground-water supplies from the water-table part of the Chicot aquifer north of Houston would result in a minimum decline of the altitudes of the potentiometric surfaces. Total withdrawals of about 1,000 million gallons (5.8 million cubic meters) per day may be possible without seriously, increasing subsidence or salt-water encroachment. Analyses of the recovery of water levels indicate that both land-surface subsidence and salt-water encroachment could be reduced by artificially recharging the artesian part of the aquifer.

  8. Ground-water supplies of the Ypsilanti area, Michigan

    USGS Publications Warehouse

    McGuinness, Charles L.; Poindexter, O.F.; Otton, E.G.

    1949-01-01

    As of the date of this report (August 1945), the major water users in the Ypsilanti area are: (1) the city of Ypsilanti, (2) the Willow Run bomber plant, built by the Federal Government and operated by the Ford Motor Co., and (3) the war housing project of the Federal Public Housing Authority, designated in this report the Willow Run Townsite. The city, bomber plant, and townsite have required large quantities of water for domestic and industrial uses, and the necessary water supplies have been developed from wells. The Federal Works Agency had the responsibility of deciding whether the existing water facilities were adequate to meet the expected demands and determining the character of any additional public water-supply facilities that might be constructed with Federal assistance. In order to appraise the ground-water resources of the area the Federal Works Agency requested the Geological Survey to investigate the adequacy of the existing supplies and the availability of additional water. The present report is the result of the investigation, which was made in cooperation with the Michigan Geological Survey Division.The water supplies of the three major users are obtained from wells penetrating glacial and associated sands and gravels. Supplies for the city of Ypsilanti and the Willow Run bomber plant are obtained from wells in the valley of the Huron River; the supply for the Willow Run Townsite is obtained from wells penetrating glacial gravels underlying the upland northeast of the valley. The bedrock formations of the area either yield little water to wells or yield water that is too highly mineralized for most uses.The water supply for the bomber plant is obtained from three closely spaced, highly productive wells at the northern edge of the Huron River, a little more than 3 miles southeast of Ypsilanti. The water receives complete treatment in a modern treatment plant. River water also can be treated and has been used occasionally in the winter and spring

  9. Modeling and validation of a 3D velocity structure for the Santa Clara Valley, California, for seismic-wave simulations

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.

    2006-01-01

    A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of 1 Hz using a parallelized finite-difference code that utilizes two regions with a factor of 3 difference in grid spacing to reduce memory requirements. Cenozoic basins trap and strongly amplify ground motions. This effect is particularly strong in the Evergreen Basin on the northeastern side of the Santa Clara Valley, where the steeply dipping Silver Creek fault forms the southwestern boundary of the basin. In comparison, the Cupertino Basin on the southwestern side of the valley has a more moderate response, which is attributed to a greater age and velocity of the Cenozoic fill. Surface waves play a major role in the ground motion of sedimentary basins, and they are seen to strongly develop along the western margins of the Santa Clara Valley for our simulation of the Loma Prieta earthquake.

  10. Water resources of Borrego Valley and vicinity, San Diego County, California; Phase 2, Development of a ground-water flow model

    USGS Publications Warehouse

    Mitten, H.T.; Lines, G.C.; Berenbrock, Charles; Durbin, T.J.

    1988-01-01

    Because of the imbalance between recharge and pumpage, groundwater levels declined as much as 100 ft in some areas of Borrego Valley, California during drinking 1945-80. As an aid to analyzing the effects of pumping on the groundwater system, a three-dimensional finite-element groundwater flow model was developed. The model was calibrated for both steady-state (1945) and transient-state (1946-79) conditions. For the steady-state calibration, hydraulic conductivities of the three aquifers were varied within reasonable limits to obtain an acceptable match between measured and computed hydraulic heads. Recharge from streamflow infiltration (4,800 acre-ft/yr) was balanced by computed evapotranspiration (3,900 acre-ft/yr) and computed subsurface outflow from the model area (930 acre-ft/yr). For the transient state calibration, the volumes and distribution of net groundwater pumpage were estimated from land-use data and estimates of consumptive use for irrigated crops. The pumpage was assigned to the appropriate nodes in the model for each of seventeen 2-year time steps representing the period 1946-79. The specific yields of the three aquifers were varied within reasonable limits to obtain an acceptable match between measured and computed hydraulic heads. Groundwater pumpage input to the model was compensated by declines in both the computed evapotranspiration and the amount of groundwater in storage. (USGS)

  11. Stream simulation in an analog model of the ground-water system on Long Island, New York

    USGS Publications Warehouse

    Harbaugh, Arlen W.; Getzen, Rufus T.

    1977-01-01

    The stream circuits of an electric analog model of the ground-water system of Long Island were modified to more accurately represent the relationahip between streamflow and ground-water levels. Assumptions for use of the revised circuits are (1) that streams are strictly gaining, and (2) that ground-water seepage into the streams is proportional to the difference between streambed elevation and the average water-table elevation near the stream. No seepage into streams occurs when ground-water levels drop below the streambed elevation. Regional simulation of the 1962-68 drought on Long Island was significantly improved by use of the revised stream circuits.

  12. Simulating the effects of ground-water withdrawals on streamflow in a precipitation-runoff model

    USGS Publications Warehouse

    Zarriello, Philip J.; Barlow, P.M.; Duda, P.B.

    2004-01-01

    Precipitation-runoff models are used to assess the effects of water use and management alternatives on streamflow. Often, ground-water withdrawals are a major water-use component that affect streamflow, but the ability of surface-water models to simulate ground-water withdrawals is limited. As part of a Hydrologic Simulation Program-FORTRAN (HSPF) precipitation-runoff model developed to analyze the effect of ground-water and surface-water withdrawals on streamflow in the Ipswich River in northeastern Massachusetts, an analytical technique (STRMDEPL) was developed for calculating the effects of pumped wells on streamflow. STRMDEPL is a FORTRAN program based on two analytical solutions that solve equations for ground-water flow to a well completed in a semi-infinite, homogeneous, and isotropic aquifer in direct hydraulic connection to a fully penetrating stream. One analytical method calculates unimpeded flow at the stream-aquifer boundary and the other method calculates the resistance to flow caused by semipervious streambed and streambank material. The principle of superposition is used with these analytical equations to calculate time-varying streamflow depletions due to daily pumping. The HSPF model can readily incorporate streamflow depletions caused by a well or surface-water withdrawal, or by multiple wells or surface-water withdrawals, or both, as a combined time-varying outflow demand from affected channel reaches. These demands are stored as a time series in the Watershed Data Management (WDM) file. This time-series data is read into the model as an external source used to specify flow from the first outflow gate in the reach where these withdrawals are located. Although the STRMDEPL program can be run independently of the HSPF model, an extension was developed to run this program within GenScn, a scenario generator and graphical user interface developed for use with the HSPF model. This extension requires that actual pumping rates for each well be stored

  13. Potential effects of climate change on ground water in Lansing, Michigan

    USGS Publications Warehouse

    Croley, T.E.; Luukkonen, C.L.

    2003-01-01

    Computer simulations involving general circulation models, a hydrologic modeling system, and a ground water flow model indicate potential impacts of selected climate change projections on ground water levels in the Lansing, Michigan, area. General circulation models developed by the Canadian Climate Centre and the Hadley Centre generated meteorology estimates for 1961 through 1990 (as a reference condition) and for the 20 years centered on 2030 (as a changed climate condition). Using these meteorology estimates, the Great Lakes Environmental Research Laboratory's hydrologic modeling system produced corresponding period streamflow simulations. Ground water recharge was estimated from the streamflow simulations and from variables derived from the general circulation models. The U.S. Geological Survey developed a numerical ground water flow model of the Saginaw and glacial aquifers in the Tri-County region surrounding Lansing, Michigan. Model simulations, using the ground water recharge estimates, indicate changes in ground water levels. Within the Lansing area, simulated ground water levels in the Saginaw aquifer declined under the Canadian predictions and increased under the Hadley.

  14. 78 FR 21414 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are available for review... establish and administer an office on Central Valley Project water conservation best management practices...

  15. Ground-Water Resources in Kaloko-Honokohau National Historical Park, Island of Hawaii, and Numerical Simulation of the Effects of Ground-Water Withdrawals

    USGS Publications Warehouse

    Oki, Delwyn S.; Tribble, Gordon W.; Souza, William R.; Bolke, Edward L.

    1999-01-01

    Within the Kaloko-Honokohau National Historical Park, which was established in 1978, the ground-water flow system is composed of brackish water overlying saltwater. Ground-water levels measured in the Park range from about 1 to 2 feet above mean sea level, and fluctuate daily by about 0.5 to 1.5 feet in response to ocean tides. The brackish water is formed by mixing of seaward flowing fresh ground water with underlying saltwater from the ocean. The major source of fresh ground water is from subsurface flow originating from inland areas to the east of the Park. Ground-water recharge from the direct infiltration of precipitation within the Park area, which has land-surface altitudes less than 100 feet, is small because of low rainfall and high rates of evaporation. Brackish water flowing through the Park ultimately discharges to the fishponds in the Park or to the ocean. The ground water, fishponds, and anchialine ponds in the Park are hydrologically connected; thus, the water levels in the ponds mark the local position of the water table. Within the Park, ground water near the water table is brackish; measured chloride concentrations of water samples from three exploratory wells in the Park range from 2,610 to 5,910 milligrams per liter. Chromium and copper were detected in water samples from the three wells in the Park and one well upgradient of the Park at concentrations of 1 to 5 micrograms per liter. One semi-volatile organic compound, phenol, was detected in water samples from the three wells in the Park at concentrations between 4 and 10 micrograms per liter. A regional, two-dimensional (areal), freshwater-saltwater, sharp-interface ground-water flow model was used to simulate the effects of regional withdrawals on ground-water flow within the Park. For average 1978 withdrawal rates, the estimated rate of fresh ground-water discharge to the ocean within the Park is about 6.48 million gallons per day, or about 3 million gallons per day per mile of coastline

  16. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2005

    USGS Publications Warehouse

    Locke, Glenn L.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, Office of Civilian Radioactive Waste Management, collected, compiled, and summarized hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data were collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data collected from January through December 2005 are provided for ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert. Ground-water level, discharge, and withdrawal data collected by other agencies, or as part of other programs, are provided. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for 1992-2005 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements; maximum, minimum, and median water-level altitudes; and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At seven boreholes in Jackass Flats, median water levels for 2005 were slightly higher (0.4-2.7 feet) than the median water levels for 1992-93.

  17. Reconnaissance of the water resources of the Lonesome Valley area, Yavapai County, Arizona

    USGS Publications Warehouse

    Metzger, Donald G.

    1957-01-01

    In accordance with a request from its cooperating agency, the Arizona State Land Department, the U.S. Geological Survey has made a brief reconnaissance of the water resources of the Lonesome Valley area, Yavapai County, Ariz., to determine the probable hydrologic effects of a proposed dam on Lynx Creek. The construction of this dam has been proposed by the Arizona Game and Fish Department, for recreational and fish-cultural purposes. Data on the geology of the area were furnished by Mrs. Medora M. Krieger, geologist, Geologic Division, U.S. Geological Survey, and the map was prepared by Floyd R. Twenter, geologist, Ground Water Branch.

  18. Evaluation of the Source and Transport of High Nitrate Concentrations in Ground Water, Warren Subbasin, California

    USGS Publications Warehouse

    Nishikawa, Tracy; Densmore, Jill N.; Martin, Peter; Matti, Jonathan

    2003-01-01

    Ground water historically has been the sole source of water supply for the Town of Yucca Valley in the Warren subbasin of the Morongo ground-water basin, California. An imbalance between ground-water recharge and pumpage caused ground-water levels in the subbasin to decline by as much as 300 feet from the late 1940s through 1994. In response, the local water district, Hi-Desert Water District, instituted an artificial recharge program in February 1995 using imported surface water to replenish the ground water. The artificial recharge program resulted in water-level recoveries of as much as 250 feet in the vicinity of the recharge ponds between February 1995 and December 2001; however, nitrate concentrations in some wells also increased from a background concentration of 10 milligrams per liter to more than the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 44 milligrams per liter (10 milligrams per liter as nitrogen). The objectives of this study were to: (1) evaluate the sources of the high-nitrate concentrations that occurred after the start of the artificial-recharge program, (2) develop a ground-water flow and solute-transport model to better understand the source and transport of nitrates in the aquifer system, and (3) utilize the calibrated models to evaluate the possible effect of a proposed conjunctive-use project. These objectives were accomplished by collecting water-level and water-quality data for the subbasin and assessing changes that have occurred since artificial recharge began. Collected data were used to calibrate the ground-water flow and solute-transport models. Data collected for this study indicate that the areal extent of the water-bearing deposits is much smaller (about 5.5 square miles versus 19 square miles) than that of the subbasin. These water-bearing deposits are referred to in this report as the Warren ground-water basin. Faults separate the ground-water basin into five hydrogeologic units: the west

  19. Radionuclides in ground water of the Carson River Basin, western Nevada and eastern California, U.S.A.

    USGS Publications Warehouse

    Thomas, J.M.; Welch, A.H.; Lico, M.S.; Hughes, J.L.; Whitney, R.

    1993-01-01

    Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas 222Rn concentration decreases. Both 226Ra and 228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and 228Ra concentrations are <5 pCi/l. Four ground water samples were analyzed for 210Po and one sample contained a high concentration of 21 pCi/l. Seven samples were analyzed for 210Pb; six contained <3 pCi/l and one contained 12 pCi/l. Thorium-230 was detected at concentrations of 0.15 and 0.20 pCi/l in two of four samples. Alpha-emitting radionuclides in the ground water originated from the dissolution of U-rich granitic rocks in the Sierra Nevada by CO2, oxygenated water. Dissolution of primary minerals, mainly titanite (sphene) in the granitic rocks, releases U to the water. Dissolved U is probably removed from the water by adsorption on Fe- and Mn-oxide coatings on fracture surfaces and fine-grained sediment, by adsorption on organic matter, and by coprecipitation with Fe and Mn oxides. These coated sediments are transported throughout the basin by fluvial

  20. Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico and Texas; ground-water quality in the Rio Grande flood plain, Cochiti Lake, New Mexico, to El Paso, Texas, 1995

    USGS Publications Warehouse

    Bexfield, L.M.; Anderholm, S.K.

    1997-01-01

    From March to May of 1995, water samples were collected from 30 wells located in the flood plain of the Rio Grande between Cochiti Lake, New Mexico, and El Paso, Texas. These samples were analyzed for a broad host of constituents, including field parameters, major constituents, nutrients, dissolved organic carbon, trace elements, radiochemicals, pesticides, and volatile organic compounds. The main purpose of this study was to observe the quality of ground water in this part of the Rio Grande Valley study unit of the U.S. Geological Survey National Water-Quality Assessment program. The sampling effort was limited to the basin- fill aquifer beneath the above-defined reach of the Rio Grande flood plain because of the relative homogeneity of the hydrogeology, the large amount of ground-water use for public supply, and the potential for land-use activities to affect the quality of ground water. Most of the wells sampled for the study are used for domestic purposes, including drinking water. Depths to the tops of the sampling intervals in the 30 wells ranged from 10 to 345 feet below land surface, and the median was 161.5 feet; the sampling intervals in most of the wells spanned about 10 feet or less. Quality-control data were collected at three of the wells. A significant amount of variation was found in the chemical composition of ground water sampled throughout the study area, but the water generally was found to be of suitable chemical quality for use as drinking water, according to current enforceable standards established by the U.S. Environmental Protection Agency (EPA). Nutrients generally were measured at concentrations near or below their method reporting limits. The most dominant nutrient species was nitrite plus nitrate, at a maximum concentration of 1.9 milligrams per liter (as N). Only eight of the trace elements analyzed for had median concentrations greater than their respective minimum reporting levels. Water from one well exceeded the lifetime health

  1. Use of Microgravity to Assess the Effects of El Nino on Ground-Water Storage in Southern Arizona

    USGS Publications Warehouse

    Parker, John T.C.; Pool, Donald R.

    1998-01-01

    The availability of ground water is of extreme importance in areas, such as southern Arizona, where it is the main supply for agricultural, industrial, or domestic purposes. Where ground-water use exceeds recharge, monitoring is critical for managing water supplies. Typically, monitoring has been done by measuring water levels in wells; however, this technique only partially describes ground-water conditions in a basin. A new application of geophysical technology is enabling U.S. Geological Survey (USGS) scientists to measure changes in the amount of water in an aquifer using a network of microgravity stations. This technique enables a direct measurement of ground-water depletion and recharge. In Tucson, Arizona, residents have relied solely upon ground water for most of their needs since the 19th century. Water levels in some wells in the Tucson area have declined more than 200 ft in the past 50 years. Similar drops in water levels have occurred elsewhere in Arizona. In response to the overdrafting of ground water, the State of Arizona passed legislation designed to attain 'safe yield,' which is defined as a balance between ground-water withdrawals and annual recharge of aquifers. To monitor progress in complying with the legislation, ground-water withdrawals are measured and estimated, and annual recharge is estimated. The Tucson Basin and Avra Valley are two ground-water basins that form the Tucson Active Management Area (TAMA), which by State statute must attain 'safe yield' by the year 2025.

  2. OASIS: A GEOGRAPHICAL DECISION SUPPORT SYSTEM FOR GROUND-WATER CONTAMINANT MODELING

    EPA Science Inventory

    Three new software technologies were applied to develop an efficient and easy to use decision support system for ground-water contaminant modeling. Graphical interfaces create a more intuitive and effective form of communication with the computer compared to text-based interfaces...

  3. Assessment of Effectiveness of Geologic Isolation Systems. Variable thickness transient ground-water flow model. Volume 2. Users' manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisenauer, A.E.

    1979-12-01

    A system of computer codes to aid in the preparation and evaluation of ground-water model input, as well as in the computer codes and auxillary programs developed and adapted for use in modeling major ground-water aquifers is described. The ground-water model is interactive, rather than a batch-type model. Interactive models have been demonstrated to be superior to batch in the ground-water field. For example, looking through reams of numerical lists can be avoided with the much superior graphical output forms or summary type numerical output. The system of computer codes permits the flexibility to develop rapidly the model-required data filesmore » from engineering data and geologic maps, as well as efficiently manipulating the voluminous data generated. Central to these codes is the Ground-water Model, which given the boundary value problem, produces either the steady-state or transient time plane solutions. A sizeable part of the codes available provide rapid evaluation of the results. Besides contouring the new water potentials, the model allows graphical review of streamlines of flow, travel times, and detailed comparisons of surfaces or points at designated wells. Use of the graphics scopes provide immediate, but temporary displays which can be used for evaluation of input and output and which can be reproduced easily on hard copy devices, such as a line printer, Calcomp plotter and image photographs.« less

  4. Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Hughes, W.B.

    1995-01-01

    J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.

  5. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    USGS Publications Warehouse

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  6. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    PubMed

    Matchett, Elliott L; Fleskes, Joseph P

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  7. Geochemistry and the understanding of ground-water systems

    USGS Publications Warehouse

    Glynn, Pierre D.; Plummer, Niel

    2005-01-01

    Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems.

  8. Dry Valley streams in Antarctica: Ecosystems waiting for water

    USGS Publications Warehouse

    McKnight, Diane M.; Niyogi, D.K.; Alger, A.S.; Bomblies, A.; Conovitz, P.A.; Tate, C.M.

    1999-01-01

    An axiom of ecology is: 'Where there is water, there is life.' In dry valley ecosystems of Antarctica, this axiom can be extended to: 'Where there has been and will be water, there is life.' Stream communities in the dry valleys can withstand desiccation on an annual basis and also for longer periods - as much as decades or even centuries. These intact ecosystems, consisting primarily of cyanobacteria and eukaryotic algae, spring back to life with the return of water. Soil organisms in the dry valleys also have remarkable survival capabilities (Virginia and Wall 1999), emerging from dormancy with the arrival of water. Streams in the dry valleys carry meltwater from a glacier or ice-field source to the lakes on the valley floors and generally flow for 4-10 weeks during the summer, depending on climatic conditions. Many of these streams contain abundant algal mats that are perennial in the sense that they are in a freeze-dried state during the winter and begin growing again within minutes of becoming wetted by the first flow of the season. The algal species present in the streams are mainly filamentous cyanobacteria (approximately 20 species of the genera Phormidium, Oscillatoria, and Nostoc), two green algal species of the genus Prasiola, and numerous diatom taxa that are characteristic of soil habitats and polar regions. Algal abundances are greatest in those streams in which periglacial processes, acting over periods of perhaps a century, have produced a stable stone pavement in the streambed. This habitat results in a less turbulent flow regime and limits sediment scour from the streambed. Because dry valley glaciers advance and retreat over periods of centuries and millennia and stream networks in the dry valleys evolve through sediment deposition and transport, some of the currently inactive stream channels may receive flow again in the future. Insights- into the process of algal persistence and reactivation will come from long-term experiments that study the

  9. Ground-water resources of the Sevier River basin between Yuba Dam and Leamington Canyon, Utah

    USGS Publications Warehouse

    Bjorklund, Louis Jay; Robinson, Gerald B.

    1968-01-01

    The area investigated is a segment of the Sevier River basin, Utah, comprising about 900 square miles and including a 19-mile reach of the Sevier River between Yuba Dam and Leamington Canyon. The larger valleys in the area are southern Juab, Round, and Scipio Valleys. The smaller valleys are Mills, Little, Dog, and Tinctic Wash Valleys.The geology of parts of Scipio, Little, and Mills Valleys and parts of the surrounding highlands was mapped and studied to explain the occurrence of numerous sinkholes in the thre valleys and to show their relation to the large springs in Mills Valley. The sinkholes, which are formed in the alluvium, are alined along faults, which penetrate both the alluvium and the underlying bedrock, and they have been formed by collapse of solution cavities in the underlying bedrock. The bedrock is mostly sandy limestone beds of the upper part of the North Horn Formation and of the Flagstaff Limestone. The numerous faults traversing Scipio Valley in a north-northeasterly direction trend directly toward Molter and Blue Springs in Mills Valley. One fault, which can be traced directly between the springs, probably is the principal channelway for the ground water moving from Scipio and Little Valleys to the springs.

  10. Preliminary Geologic Map of the Southern Funeral Mountains and Adjacent Ground-Water Discharge Sites, Inyo County, California, and Nye County, Nevada

    USGS Publications Warehouse

    Fridrich, Christopher J.; Thompson, Ren A.; Slate, Janet L.; Berry, M.E.; Machette, Michael N.

    2008-01-01

    This map covers the southern part of the Funeral Mountains, and adjacent parts of four structural basins - Furnace Creek, Amargosa Valley, Opera House, and central Death Valley. It extends over three full 7.5-minute quadrangles, and parts of eleven others - a total area of about 950 square kilometers. The boundaries of this map were drawn to include all of the known proximal hydrogeologic features that may affect the flow of ground water that discharges from the springs of the Furnace Creek wash area, in the west-central part of the map. These springs provide the major potable water supply for Death Valley National Park.

  11. Regional water table (2004) and water-level changes in the Mojave River and Morongo ground-water basins, Southwestern Mojave Desert, California

    USGS Publications Warehouse

    Stamos, Christina L.; Huff, Julia A.; Predmore, Steven K.; Clark, Dennis A.

    2004-01-01

    river east of Barstow. In the Morongo ground-water basin, nearly one half (55) of the wells had water-level declines of 0.5 ft or more, and about one tenth (13) of the wells had declines greater than 5 ft. The Warren subbasin, where artificial-recharge operations in Yucca Valley (pl. 1) have caused water levels to rise, had water-level increases of as much as about 97 ft since 2002.

  12. Hydrology and geochemistry of carbonate springs in Mantua Valley, northern Utah

    USGS Publications Warehouse

    Rice, Karen C.; Spangler, Lawrence E.; Spangler, Lawrence E.; Allen, Constance J.

    1999-01-01

    Water chemistry, tritium data, precipitation-discharge relations, geology, topography, and dye tracing were used to determine recharge areas, ground-water residence times, factors influencing ground-water flow, and aquifer characteristic for five springs that discharge from Paleozoic limestones and dolostones along the margin of Manuta Valley, northern Utah.Temperature of Mantua Valley spring water ranged between 6.0 and 15.0 degrees Celsius. Spring-water temperature indicates that depth of circulation of ground water could be as shallow as 80 feet (25 meters) to as much as 1,150 feet (350 meters). Dissolved-solids concentration in the water from springs ranged from 176 to 268 milligrams per liter. Average total hardness of spring water ranged from 157 to 211 milligrams per liter. Water from all of the springs is a calcium-magnesium-bicarbonate type that generally is undersaturated with respect to calcite and dolomite. The molar calcium/magnesium ratio in spring water ranged from 1.21 to 1.88, and indicates that ground water flows through impure dolostone or a mixed limestone and dolostone terrace.Discharge from carbonate springs in Mantua Valley ranges from about to 10 to 4,300 gallons per minute (0.6 to 271 liters per second). Seasonal variations in chemical parameters and discharge indicate that the aquifers supplying water to most of these springs are predominantly diffuse-flow systems that have been locally enhanced by bedrock dissolution. Estimated recharge area for th springs ranges from 2.7 to 7 square miles (7 to 18 square kilometers).On the basis of tritium age dating, the mean residence time of ground water discharges from Olsens-West Hallins and Maple Springs was determined to be from 3 to 9, and from 4 to 15 years, respectively. Dye tracing from point sources 2.65 miles (4.26 kilometers) southeast of Maple Spring, however, indicates a substantially faster component of flow during snowmelt runoff, with a travel time of about 5 days, or an average ground-water

  13. Water resources data Virginia water year 2005 Volume 2. Ground-water level and ground-water quality records

    USGS Publications Warehouse

    Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2006-01-01

    Water-resources data for the 2005 water year for Virginia consist of records of water levels and water quality of ground-water wells. This report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 349 observation wells and water quality at 29 wells. Locations of these wells are shown on figures 3 through 8. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  14. Ground water flow modeling with sensitivity analyses to guide field data collection in a mountain watershed

    USGS Publications Warehouse

    Johnson, Raymond H.

    2007-01-01

    In mountain watersheds, the increased demand for clean water resources has led to an increased need for an understanding of ground water flow in alpine settings. In Prospect Gulch, located in southwestern Colorado, understanding the ground water flow system is an important first step in addressing metal loads from acid-mine drainage and acid-rock drainage in an area with historical mining. Ground water flow modeling with sensitivity analyses are presented as a general tool to guide future field data collection, which is applicable to any ground water study, including mountain watersheds. For a series of conceptual models, the observation and sensitivity capabilities of MODFLOW-2000 are used to determine composite scaled sensitivities, dimensionless scaled sensitivities, and 1% scaled sensitivity maps of hydraulic head. These sensitivities determine the most important input parameter(s) along with the location of observation data that are most useful for future model calibration. The results are generally independent of the conceptual model and indicate recharge in a high-elevation recharge zone as the most important parameter, followed by the hydraulic conductivities in all layers and recharge in the next lower-elevation zone. The most important observation data in determining these parameters are hydraulic heads at high elevations, with a depth of less than 100 m being adequate. Evaluation of a possible geologic structure with a different hydraulic conductivity than the surrounding bedrock indicates that ground water discharge to individual stream reaches has the potential to identify some of these structures. Results of these sensitivity analyses can be used to prioritize data collection in an effort to reduce time and money spend by collecting the most relevant model calibration data.

  15. Human interactions with ground-water

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    Ground-Water could be considered as an immense reservoir, from which only a certain amount of water can be withdrawn without affecting the quantity and quality of water. This amount is determined by the characteristics of the environment in which ground-water occurs and by the interactions of ground-water with precipitation, surface water, and people. It should be recognized that quantity and quality of ground-water are intimately related and should be considered accordingly. Quantity refers to usable water and water is usable for any specific purpose only so long as its quality has not deteriorated beyond acceptable limits. Thus an overall quantitative and qualitative management of ground water is inevitable, and its should also involve the uses of ground-water reservoirs for purposes other than water supply. The main objective of ground-water management is to ensure that ground-water resources will be available in appropriate time and in appropriate quantity and quality to meet the most important demands of our society. Traditional, and obvious uses of ground-water are the extraction of water for water supplies (domestic, municipal, agricultural, and industrial) and the natural discharge feeding lakes and maintaining base flow of streams. Not so obvious are the uses of ground-water reservoirs, the very framework within which ground-water occurs and moves, and in which other fluids or materials can be stored. In the last two decades, ground-water reservoirs have been intensively considered for many other purposes than water supplies. Diversified and very often conflicting uses need to be evaluated and dealt with in the most efficient way in order to determine the importance of each possible use, and to assign priorities of these uses. With rising competition for the use of ground-water reservoirs, we will also need to increase the potential for effective planning of ground-water development and protection. Man's development and use of ground-water necessarily

  16. Wilderness, water, and quality of life in the Bitterroot Valley

    Treesearch

    Kari Gunderson; Clint Cook

    2007-01-01

    The Bitterroot Valley is located in western Montana, U.S.A. Most of the Bitterroot Range above the Bitterroot Valley is protected as wilderness, and is a source of much of the water that flows down and through the valley floor. With an annual precipitation of only 12.3 inches, the Bitterroot Valley is classified as a high desert environment. Today the quality of life...

  17. Assignment of boundary conditions in embedded ground water flow models

    USGS Publications Warehouse

    Leake, S.A.

    1998-01-01

    Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger-scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger.scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.

  18. Drought impacts to water footprints and virtual water transfers of the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Marston, Landon; Konar, Megan

    2017-07-01

    The Central Valley of California is one of the most productive agricultural locations in the world, which is made possible by a complex and vast irrigation system. Beginning in 2012, California endured one of the worst droughts in its history. Local impacts of the drought have been evaluated, but it is not yet well understood how the drought reverberated through the global food system. Here we quantify drought impacts to the water footprint (WF) of agricultural production and virtual water transfers (VWT) from the Central Valley of California. To do this, we utilize high-resolution spatial and temporal data sets and a crop model from predrought conditions (2011) through 3 years of exceptional drought (2012-2014). Despite a 12% reduction in harvested area, the WF of agricultural production in the Central Valley increased by 3%. This was due to greater crop water requirements from higher temperatures and a shift to more water-intensive orchard and vine crops. The groundwater WF increased from 7.00 km3 in 2011 to 13.63 km3 in 2014, predominantly in the Tulare Basin. Transfers of food commodities declined by 1% during the drought, yet total VWT increased by 3% (0.51 km3). From 2011 to 2014, groundwater VWT increased by 3.42 km3, offsetting the 0.94 km3 reduction in green VWT and the 1.96 km3 decrease in surface VWT. During the drought, local and global consumers nearly doubled their reliance on the Central Valley Aquifer. These results indicate that drought may strengthen the telecoupling between groundwater withdrawals and distant consumers of agricultural commodities.

  19. Water Transfers, Air Quality, Ecosystems and Population Growth at the US-Mexico Border: An Integrated Model of the Mexicali and Imperial Valleys

    NASA Astrophysics Data System (ADS)

    Forster, C. B.; Gonzalez, T.; Peach, J.; Kjelland, M.; Collins, K.; Grant, W. E.

    2006-12-01

    Borderland communities in the Imperial-Mexicali Valleys (IMVs) of California (U.S.A.) and Mexicali (Mexico) are experiencing socioeconomic and environmental changes driven by policy makers and environmental conditions both within and outside the IMVs. The Colorado River Quantification Settlement Agreement (QSA) of 2003 will transfer 30 million acre-feet of Colorado River water from Imperial Valley (IV) agricultural users to Southern California urban users over a 75-year period. Because the water level of the Salton Sea is supported by agricultural runoff, reduced water flows to the sea raise concerns that: 1) air quality will be degraded as dust is generated by the drying Sea-bed, and 2) declining fish populations due to increasing salinity will no longer support birds migrating along a key avian flyway. Rapid population growth in the Mexican border-city of Mexicali, combined with new power plants and plans for water reuse, raises concerns that: 1) the quantity and quality of water supplied to the Salton Sea will decline, and 2) increased vehicle use and electrical power generation will lead to declining air quality in the binational air basin. Each concern may be affected by climate change. As environmental factors change, so too may the agricultural economy of the Imperial Valley that, in turn, depends on the availability of both water and manual labor. The economy of Mexicali is dominated by the maquiladora (manufacturing) industry that depends upon the availability of power, labor and water. A system dynamics model, with annual time step, simulates this complex binational system. The model was developed by an academic team with input from local experts/decision-makers from both Mexico and the US. We are preparing to engage community stakeholders and decision-makers in exploring the model. Insights gained from model results yield better understanding of the consequences of alternative future scenarios that include: QSA water transfers and land fallowing plans

  20. Aquifer-test evaluation and potential effects of increased ground-water pumpage at the Stovepipe Wells Hotel area, Death Valley National Monument, California

    USGS Publications Warehouse

    Woolfenden, L.R.; Martin, Peter; Baharie, Brian

    1988-01-01

    Ground-water use in the Stovepipe Wells Hotel area in Death Valley National Monument is expected to increase significantly if the nonpotable, as well as potable, water supply is treated by reverse osmosis. During the peak tourist season, October through March, ground-water pumpage could increase by 37,500 gallons per day, or 76%. The effects of this additional pumpage on water levels in the area, particularly near a strand of phreatophytes about 10,000 feet east of the well field, are of concern. In order to evaluate the effects of increased pumpage on water levels in the Stovepipe Wells Hotel area well field, two aquifer tests were performed at the well field to determine the transmissivity and storage coefficients of the aquifer. Analysis of the aquifer test determined that a transmissivity of 1,360 feet squared per day was representative of the aquifer. The estimated value of transmissivity and the storage-coefficient values that are representative of confined (1.2 x .0004) and unconfined (0.25) conditions were used in the Theis equation to calculate the additional drawdown that might occur after 1, 10, and 50 years of increased pumpage. The drawdown calculated by using the lower storage-coefficient value represents the maximum additional drawdown that might be expected from the assumed increase in pumpage; the drawdown calculated by using the higher storage-coefficient value represents the minimum additional drawdown. Calculated additional drawdowns after 50 years of pumping range from 7.8 feet near the pumped well to 2.4 feet at the phreatophyte stand assuming confined conditions, and from 5.7 feet near the pumped well to 0.3 foot at the phreatophyte stand assuming unconfined conditions. Actual drawdowns probably will be somewhere between these values. Drawdowns measured in observation wells during 1973-85, in response to an average pumpage of 34,200 gallons per day at the Stovepipe Wells Hotel well field, are similar to the drawdowns calculated by the Theis

  1. Conjunctive-use optimization model of the Mississippi River Valley alluvial aquifer of northeastern Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.; Clark, Brian R.; Reed, Thomas B.

    2003-01-01

    The Mississippi River Valley alluvial aquifer is a water-bearing assemblage of gravels and sands that underlies about 32,000 square miles of Missouri, Kentucky, Tennessee, Mississippi, Louisiana, and Arkansas. Because of the heavy demands placed on the aquifer, several large cones of depression over 100 feet deep have formed in the potentiometric surface, resulting in lower well yields and degraded water quality in some areas. A ground-water flow model of the alluvial aquifer was previously developed for an area covering 14,104 square miles, extending northeast from the Arkansas River into the northeast corner of Arkansas and parts of southeastern Missouri. The flow model showed that continued ground-water withdrawals at rates commensurate with those of 1997 could not be sustained indefinitely without causing water levels to decline below half the original saturated thickness of the aquifer. To develop estimates of withdrawal rates that could be sustained in compliance with the constraints of critical ground-water area designation, conjunctive-use optimization modeling was applied to the flow model of the alluvial aquifer in northeastern Arkansas. Ground-water withdrawal rates form the basis for estimates of sustainable yield from the alluvial aquifer and from rivers specified within the alluvial aquifer model. A management problem was formulated as one of maximizing the sustainable yield from all ground-water and surface-water withdrawal cells within limits imposed by plausible withdrawal rates, and within specified constraints involving hydraulic head and streamflow. Steady-state flow conditions were selected because the maximized withdrawals are intended to represent sustainable yield of the system (a rate that can be maintained indefinitely). Within the optimization model, 11 rivers are specified. Surface-water diversion rates that occurred in 2000 were subtracted from specified overland flow at the appropriate river cells. Included in these diversions were the

  2. Evaluating the effects of urbanization and land-use planning using ground-water and surface-water models

    USGS Publications Warehouse

    Hunt, R.J.; Steuer, J.J.

    2001-01-01

    Why are the effects of urbanization a concern? As the city of Middleton, Wisconsin, and its surroundings continue to develop, the Pheasant Branch watershed (fig.l) is expected to undergo urbanization. For the downstream city of Middleton, urbanization in the watershed can mean increased flood peaks, water volume and pollutant loads. More subtly, it may also reduce water that sustains the ground-water system (called "recharge") and adversely affect downstream ecosystems that depend on ground water such as the Pheasant Branch Springs (hereafter referred to as the Springs). The relation of stormwater runoff and reduced ground-water recharge is complex because the surface-water system is coupled to the underlying ground-water system. In many cases there is movement of water from one system to the other that varies seasonally or daily depending on changing conditions. Therefore, it is difficult to reliably determine the effects of urbanization on stream baseflow and spring flows without rigorous investigation. Moreover, mitigating adverse effects after development has occurred can be expensive and administratively difficult. Overlying these concerns are issues such as stewardship of the resource, the rights of the public, and land owners' rights both of those developing their land and those whose land is affected by this development. With the often- contradictory goals, a scientific basis for assessing effects of urbanization and effectiveness of mitigation measures helps ensure fair and constructive decision-making. The U.S. Geological Survey, in cooperation with the City of Middleton and Wisconsin Department of Natural Resources, completed a study that helps address these issues through modeling of the hydrologic system. This Fact Sheet discusses the results of this work.

  3. Subsurface structure of the East Bay Plain ground-water basin: San Francisco Bay to the Hayward fault, Alameda County, California

    USGS Publications Warehouse

    Catchings, R.D.; Borchers, J.W.; Goldman, M.R.; Gandhok, G.; Ponce, D.A.; Steedman, C.E.

    2006-01-01

    The area of California between the San Francisco Bay, San Pablo Bay, Santa Clara Valley, and the Diablo Ranges (East Bay Hills), commonly referred to as the 'East Bay', contains the East Bay Plain and Niles Cone ground-water basins. The area has a population of 1.46 million (2003 US Census), largely distributed among several cities, including Alameda, Berkeley, Fremont, Hayward, Newark, Oakland, San Leandro, San Lorenzo, and Union City. Major known tectonic structures in the East Bay area include the Hayward Fault and the Diablo Range to the east and a relatively deep sedimentary basin known as the San Leandro Basin beneath the eastern part of the bay. Known active faults, such as the Hayward, Calaveras, and San Andreas pose significant earthquake hazards to the region, and these and related faults also affect ground-water flow in the San Francisco Bay area. Because most of the valley comprising the San Francisco Bay area is covered by Holocene alluvium or water at the surface, our knowledge of the existence and locations of such faults, their potential hazards, and their effects on ground-water flow within the alluvial basins is incomplete. To better understand the subsurface stratigraphy and structures and their effects on ground-water and earthquake hazards, the U.S. Geological Survey (USGS), in cooperation with the East Bay Municipal Utility District (EBMUD), acquired a series of high-resolution seismic reflection and refraction profiles across the East Bay Plain near San Leandro in June 2002. In this report, we present results of the seismic imaging investigations, with emphasis on ground water.

  4. Determination of specific yield and water-table changes using temporal microgravity surveys collected during the second injection, storage, and recovery test at Lancaster, Antelope Valley, California, November 1996 through April 1997

    USGS Publications Warehouse

    Howle, James F.; Phillips, Steven P.; Denlinger, Roger P.; Metzger, Loren F.

    2003-01-01

    To evaluate the feasibility of artificially recharging the ground-water system in the Lancaster area of the Antelope Valley, California, the U.S. Geological Survey, in cooperation with the Los Angeles County Department of Public Works and the Antelope Valley-East Kern Water Agency, conducted a series of injection, storage, and recovery tests between September 1995 and September 1998. A key component of this study was to measure the response of the water table to injection, which was difficult because the water table averaged 300 feet below land surface. Rather than install many expensive piezometers, microgravity surveys were conducted to determine specific yield and to measure the development of a ground-water mound during the injection of about 1,050 acre-feet of fresh water into an alluvial-aquifer system. The surveys were done prior to, during, and near the end of a 5-month injection period (November 12, 1996, to April 17, 1997). Results of the surveys indicate increases in gravity of as much as 66 microgals between a bedrock reference station and 20 gravity stations within a 1-square-mile area surrounding the injection site. The changes were assumed to have been caused by changes in the ground-water elevation. Gravity and ground-water levels were measured simultaneously at an existing well (7N/12W-34B1). The coupled measurements were used to calculate a specific yield of 0.13 for the alluvial aquifer near the well. To determine the gravitational effect of the injection mound on the gravity measurements made near well 7N/12W-34B1, a two-dimensional gravity model was used. Results of the model simulation show that the effect on gravity associated with the mass of the injection mound was minor and thus had a negligible effect on the calculation of specific yield. The specific yield of 0.13, therefore, was used to infer water-level changes at other gravity stations within the study area. The gravity-derived water-level changes were compared with simulated water

  5. Hydrogeologic implications of increased septic-tank-soil-absorption system density, Ogden Valley, Weber County, Utah

    USGS Publications Warehouse

    Lowe, Mike; Miner, Michael L.; ,

    1990-01-01

    Ground water in Ogden Valley occurs in perched, confined, and unconfined aquifers in the valley fill to depths of 600 feet and more. The confined aquifer, which underlies only the western portion of the valley, is overlain by cleyey silt lacustrine sediments probably deposited during the Bonneville Basin's Little Valley lake cycle sometime between 90,000 and 150,000 years ago. The top of this cleyey silt confining layer is generally 25 to 60 feet below the ground surface. Unconfined conditions occur above and beyond the outer margin of the confining layer. The sediments overlying the confining layer are primarily Lake Bonneville deposits. Water samples from springs, streams, and wells around Pineview Reservoir, and from the reservoir itself, were collected and analyzed. These samples indicate that water quality in Ogden Valley is presently good. Average nitrate concentrations in the shallow unconfined aquifer increase toward the center of Ogden Valley. This trend was not observed in the confined aquifer. There is no evidence, however, of significant water-quality deterioration, even in the vicinity of Huntsville, a town that has been densely developed using septic-tank-soil-absorption systems for much of the time since it was founded in 1860.

  6. 75 FR 70020 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... office on Central Valley Project water conservation best management practices that shall ``* * * develop... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior ACTION: Notice of Availability. SUMMARY: The...

  7. 77 FR 64544 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... Central Valley Project water conservation best management practices that shall ``develop criteria for... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  8. 76 FR 12756 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... office on Central Valley Project water conservation best management practices that shall ``* * * develop... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  9. Surface-Water and Ground-Water Resources of Kendall County, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Mills, Patrick C.; Hogan, Jennifer L.; Arnold, Terri L.

    2005-01-01

    Water-supply needs in Kendall County, in northern Illinois, are met exclusively from ground water derived from glacial drift aquifers and bedrock aquifers open to Silurian, Ordovician, and Cambrian System units. As a result of population growth in Kendall County and the surrounding area, water use has increased from about 1.2 million gallons per day in 1957 to more than 5 million gallons per day in 2000. The purpose of this report is to characterize the surface-water and ground-water resources of Kendall County. The report presents a compilation of available information on geology, surface-water and ground-water hydrology, water quality, and water use. The Fox River is the primary surface-water body in Kendall County and is used for both wastewater disposal and as a drinking-water supply upstream of the county. Water from the Fox River requires pretreatment for use as drinking water, but the river is a potentially viable additional source of water for the county. Glacial drift aquifers capable of yielding sufficient water for municipal supply are expected to be present in northern Kendall County, along the Fox River, and in the Newark Valley and its tributaries. Glacial drift aquifers capable of yielding sufficient water for residential supply are present in most of the county, with the exception of the southeastern portion. Volatile organic compounds and select trace metals and pesticides have been detected at low concentrations in glacial drift aquifers near waste-disposal sites. Agricultural-related constituents have been detected infrequently in glacial drift aquifers near agricultural areas. However, on the basis of the available data, widespread, consistent problems with water quality are not apparent in these aquifers. These aquifers are a viable source for additional water supply, but would require further characterization prior to full development. The shallow bedrock aquifer is composed of the sandstone units of the Ancell Group, the Prairie du Chien

  10. Evaluation of Ground-Water Resources From Available Data, 1992, East Molokai Volcano, Hawaii

    USGS Publications Warehouse

    Anthony, Stephen S.

    1995-01-01

    Available ground-water data for East Molokai Volcano consist of well-construction information and records of ground-water pumpage, water levels, and chloride concentrations. Ground-water pumpage records are available for ten wells. Seventeen long-term (10 years or more) records of water-level and/or chloride concentration are available for eleven wells; however, only seven of these records are for observation wells. None of the available data show significant long-term changes in water level or chloride concentration; however, short-term changes due to variations in the quantity of water pumped, and rainfall are evident. Evaluation of the historical distribution and rates of ground-water pumpage, and variations in water levels and chloride concentrations is constrained by the scanty distribution of spatial and temporal data. Data show a range in water levels from greater than 850 feet above mean sea level in wells located in the windward valley of Waikolu to about 10 feet in wells located east of Kualapuu to 1 to 5 feet in the wells located along the south shore of East Molokai Volcano. An accurate contour map of water levels and chloride concentrations at the surface of the basal-water body cannot be constructed for any time period. Because water-level and chloride data are not collected at regular time intervals, many long-term records are incomplete. Information on the variation in chloride concentration with depth through the freshwater part of the basal-water body and into the zone of transition between freshwater and saltwater does not exist.

  11. 76 FR 54251 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... and administer an office on Central Valley Project water conservation best management practices that... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  12. 75 FR 38538 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... to establish and administer an office on Central Valley Project water conservation best management... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  13. Interpretive geologic cross sections for the Death Valley regional flow system and surrounding areas, Nevada and California

    USGS Publications Warehouse

    Sweetkind, D.S.; Dickerson, R.P.; Blakely, R.J.; Denning, Paul

    2001-01-01

    This report presents a network of 28 geologic cross sections that portray subsurface geologic relations within the Death Valley regional ground-water system, a ground-water basin that encompasses a 3? x 3? area (approximately 70,000 km2) in southern Nevada and eastern California. The cross sections transect that part of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain. The specific geometric relationships portrayed on the cross sections are discussed in the context of four general sub-regions that have stratigraphic similarities and general consistency of structural style: (1) the Nevada Test Site vicinity; (2) the Spring Mountains, Pahrump Valley and Amargosa Desert region; (3) the Death Valley region; and (4) the area east of the Nevada Test Site. The subsurface geologic interpretations portrayed on the cross sections are based on an integration of existing geologic maps, measured stratigraphic sections, published cross sections, well data, and geophysical data and interpretations. The estimated top of pre-Cenozoic rocks in the cross sections is based on inversion of gravity data, but the deeper parts of the sections are based on geologic conceptual models and are more speculative. The region transected by the cross sections includes part of the southern Basin and Range Province, the northwest-trending Walker Lane belt, the Death Valley region, and the northern Mojave Desert. The region is structurally complex, where a locally thick Tertiary volcanic and sedimentary section unconformably overlies previously deformed Proterozoic through Paleozoic rocks. All of these rocks have been deformed by complex Neogene ex-tensional normal and strike-slip faults. These cross sections form a three-dimensional network that portrays the interpreted stratigraphic and structural relations in the region; the sections form part of the geologic framework that will be

  14. Simulation of Ground-Water Flow in the Middle Rio Grande Basin Between Cochiti and San Acacia, New Mexico

    USGS Publications Warehouse

    McAda, Douglas P.; Barroll, Peggy

    2002-01-01

    This report describes a three-dimensional, finite difference, ground-water-flow model of the Santa Fe Group aquifer system within the Middle Rio Grande Basin between Cochiti and San Acacia, New Mexico. The aquifer system is composed of the Santa Fe Group of middle Tertiary to Quaternary age and post-Santa Fe Group valley and basin-fill deposits of Quaternary age. Population increases in the basin since the 1940's have caused dramatic increases in ground-water withdrawals from the aquifer system, resulting in large ground-water-level declines. Because the Rio Grande is hydraulically connected to the aquifer system, these ground-water withdrawals have also decreased flow in the Rio Grande. Concern about water resources in the basin led to the development of a research plan for the basin focused on the hydrologic interaction of ground water and surface water (McAda, D.P., 1996, Plan of study to quantify the hydrologic relation between the Rio Grande and the Santa Fe Group aquifer system near Albuquerque, central New Mexico: U.S. Geological Survey Water-Resources Investigations Report 96-4006, 58 p.). A multiyear research effort followed, funded and conducted by the U.S. Geological Survey and other agencies (Bartolino, J.R., and Cole, J.C., 2002, Ground-water resources of the Middle Rio Grande Basin, New Mexico: U.S. Geological Survey Circular 1222, 132 p.). The modeling work described in this report incorporates the results of much of this work and is the culmination of this multiyear study. The purpose of the model is (1) to integrate the components of the ground-water-flow system, including the hydrologic interaction between the surface-water systems in the basin, to better understand the geohydrology of the basin and (2) to provide a tool to help water managers plan for and administer the use of basin water resources. The aquifer system is represented by nine model layers extending from the water table to the pre-Santa Fe Group basement rocks, as much as 9,000 feet

  15. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California’s Central Valley

    PubMed Central

    Fleskes, Joseph P.

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  16. Projected impacts of climate, urbanization, water management, and wetland restoration on waterbird habitat in California’s Central Valley

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  17. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2004

    USGS Publications Warehouse

    La Camera, Richard J.; Locke, Glenn L.; Habte, Aron M.; Darnell, Jon G.

    2006-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Office of Repository Development, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, both ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January through December 2004. Also tabulated are ground-water levels, discharges, and withdrawals collected by other agencies (or collected as part of other programs) and data revised from those previously published at monitoring sites. Historical data on water levels, discharges, and withdrawals are presented graphically to indicate variations through time. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for the period 1992-2004 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At six boreholes in Jackass Flats, median water levels for 2004 were slightly higher (0.3-2.7 feet) than their median water levels for 1992-93. At one borehole in Jackass Flats, median water level for 2004 equaled the median water level for 1992-93.

  18. Numerical Benchmark of 3D Ground Motion Simulation in the Alpine valley of Grenoble, France.

    NASA Astrophysics Data System (ADS)

    Tsuno, S.; Chaljub, E.; Cornou, C.; Bard, P.

    2006-12-01

    Thank to the use of sophisticated numerical methods and to the access to increasing computational resources, our predictions of strong ground motion become more and more realistic and need to be carefully compared. We report our effort of benchmarking numerical methods of ground motion simulation in the case of the valley of Grenoble in the French Alps. The Grenoble valley is typical of a moderate seismicity area where strong site effects occur. The benchmark consisted in computing the seismic response of the `Y'-shaped Grenoble valley to (i) two local earthquakes (Ml<=3) for which recordings were avalaible; and (ii) two local hypothetical events (Mw=6) occuring on the so-called Belledonne Border Fault (BBF) [1]. A free-style prediction was also proposed, in which participants were allowed to vary the source and/or the model parameters and were asked to provide the resulting uncertainty in their estimation of ground motion. We received a total of 18 contributions from 14 different groups; 7 of these use 3D methods, among which 3 could handle surface topography, the other half comprises predictions based upon 1D (2 contributions), 2D (4 contributions) and empirical Green's function (EGF) (3 contributions) methods. Maximal frequency analysed ranged between 2.5 Hz for 3D calculations and 40 Hz for EGF predictions. We present a detailed comparison of the different predictions using raw indicators (e.g. peak values of ground velocity and acceleration, Fourier spectra, site over reference spectral ratios, ...) as well as sophisticated misfit criteria based upon previous works [2,3]. We further discuss the variability in estimating the importance of particular effects such as non-linear rheology, or surface topography. References: [1] Thouvenot F. et al., The Belledonne Border Fault: identification of an active seismic strike-slip fault in the western Alps, Geophys. J. Int., 155 (1), p. 174-192, 2003. [2] Anderson J., Quantitative measure of the goodness-of-fit of

  19. Runoff simulation in the Ferghana Valley (Central Asia) using conceptual hydrological HBV-light model

    NASA Astrophysics Data System (ADS)

    Radchenko, Iuliia; Breuer, Lutz; Forkutsa, Irina; Frede, Hans-Georg

    2013-04-01

    Glaciers and permafrost on the ranges of the Tien Shan mountain system are primary sources of water in the Ferghana Valley. The water artery of the valley is the Syr Darya River that is formed by confluence of the Naryn and Kara Darya rivers, which originate from the mountain glaciers of the Ak-Shyrak and the Ferghana ranges accordingly. The Ferghana Valley is densely populated and main activity of population is agriculture that heavily depends on irrigation especially in such arid region. The runoff reduction is projected in future due to global temperature rise and glacier shrinkage as a consequence. Therefore, it is essential to study climate change impact on water resources in the area both for ecological and economic aspects. The evaluation of comparative contribution of small upper catchments (n=24) with precipitation predominance in discharge and the large Naryn and Karadarya River basins, which are fed by glacial melt water, to the Fergana Valley water balance under current and future climatic conditions is general aim of the study. Appropriate understanding of the hydrological cycle under current climatic conditions is significant for prognosis of water resource availability in the future. Thus, conceptual hydrological HBV-light model was used for analysing of the water balance of the small upper catchments that surround the Ferghana Valley. Three trial catchments (the Kugart River basin, 1010 km²; the Kurshab River basin, 2010 km2; the Akbura River basin, 2260 km²) with relatively good temporal quality data were chosen to setup the model. Due to limitation of daily temperature data the MODAWEC weather generator, which converts monthly temperature data into daily based on correlation with rainfall, was tested and applied for the HBV-light model.

  20. Statistical and simulation analysis of hydraulic-conductivity data for Bear Creek and Melton Valleys, Oak Ridge Reservation, Tennessee

    USGS Publications Warehouse

    Connell, J.F.; Bailey, Z.C.

    1989-01-01

    A total of 338 single-well aquifer tests from Bear Creek and Melton Valley, Tennessee were statistically grouped to estimate hydraulic conductivities for the geologic formations in the valleys. A cross-sectional simulation model linked to a regression model was used to further refine the statistical estimates for each of the formations and to improve understanding of ground-water flow in Bear Creek Valley. Median hydraulic-conductivity values were used as initial values in the model. Model-calculated estimates of hydraulic conductivity were generally lower than the statistical estimates. Simulations indicate that (1) the Pumpkin Valley Shale controls groundwater flow between Pine Ridge and Bear Creek; (2) all the recharge on Chestnut Ridge discharges to the Maynardville Limestone; (3) the formations having smaller hydraulic gradients may have a greater tendency for flow along strike; (4) local hydraulic conditions in the Maynardville Limestone cause inaccurate model-calculated estimates of hydraulic conductivity; and (5) the conductivity of deep bedrock neither affects the results of the model nor does it add information on the flow system. Improved model performance would require: (1) more water level data for the Copper Ridge Dolomite; (2) improved estimates of hydraulic conductivity in the Copper Ridge Dolomite and Maynardville Limestone; and (3) more water level data and aquifer tests in deep bedrock. (USGS)

  1. Ground water in Juab, Millard, and Iron Counties, Utah

    USGS Publications Warehouse

    Meinzer, Oscar Edward

    1911-01-01

    Location and extent of area - Juab, Millard, and Iron counties lie in western Utah, and, with the exception of a small part of Iron County, are entirely within the Great Basin. (See fig. 1.) They comprise about 13,650 square miles, of which approximately 3,500 belong to Juab, 6,775 to Millard, and 3,375 to Iron County. Beaver County, which lies between Millard and Iron counties, is not discussed in this paper because its water resources have been described by W. T. Lee, of the United States Geological Survey, in Water-Supply Paper 217.Purpose of investigation - The investigation was begun in the summer of 1908, under cooperative agreement between the Director of the United States Geological Survey and Caleb Tanner, State engineer of Utah, the object of the work being to obtain and disseminate information which should lead to a greater utilization of the ground-water supplies. The agricultural development of an arid section, such as this, is primarily dependent on the amount of water available. Large tracts of fertile soil remain idle year after year for lack of water for irrigation, while much water that falls as rain and snow sinks into the ground, saturates the porous materials underlying the valleys and deserts, and eventually reappears at the surface in low alkali flats, where it is dissipated by evaporation without producing useful vegetation. If the water thus lost can be applied to fertile soil it will substantially increase the agricultural yield of the region. An urgent demand for information in regard to ground-water prospects has been created in recent years by the adoption of dry farming methods in localities where water is not readily obtained. The water required for culinary purposes and for supplying the horses and traction engines used in tilling the soil on some of the dry farms is at present hauled long distances. In most of the arid parts of this region watering places of any sort are so scarce that certain sections are accessible for grazing

  2. Estimating Natural Recharge in a Desert Environment Facing Increasing Ground-Water Demands

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Izbicki, J. A.; Hevesi, J. A.; Martin, P.

    2004-12-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin, and ground-water withdrawals averaging about 960 acre-ft/yr have resulted in as much as 35 ft of drawdown. As growth continues in the desert, ground-water resources may need to be supplemented using imported water. To help meet future demands, JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. To manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. To this end, field and numerical techniques were applied to determine the distribution and quantity of natural recharge. Field techniques included the installation of instrumented boreholes in selected washes and at a nearby control site. Numerical techniques included the use of a distributed-parameter watershed model and a ground-water flow model. The results from the field techniques indicated that as much as 70 acre-ft/yr of water infiltrated downward through the two principal washes during the study period (2001-3). The results from the watershed model indicated that the average annual recharge in the ground-water subbasins is about 160 acre-ft/yr. The results from the calibrated ground-water flow model indicated that the average annual recharge for the same area is about 125 acre-ft/yr. Although the field and numerical techniques were applied to different scales (local vs. large), all indicate that natural recharge in the Joshua Tree area is very limited; therefore, careful management of the limited ground-water resources is needed. Moreover, the calibrated model can now be used to estimate the effects of different water-management strategies on the ground-water

  3. Data for ground-water test hole near Zamora, Central Valley Aquifer Project, California

    USGS Publications Warehouse

    French, J.J.; Page, R.W.; Bertoldi, G.L.

    1982-01-01

    Preliminary data are presented for the first of seven test holes drilled as a part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 SE 1/4 sec. 34, T. 12 N. , R. 1 E., Yolo County, California, about 3 miles northeast of the town of Zamora. Drilled to a depth of 2,500 feet below land surface, the hole is cased to a depth of 190 feet and equipped with three piezometer tubes to depths of 947, 1,401, and 2,125 feet. A 5-foot well screen is at the bottom of each piezometer. Eighteen cores and 68 sidewall cores were recovered. Laboratory tests were made for mineralogy, hydraulic conductivity, porosity , consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, diatom identification, thermal conductivity, and chemical analysis of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis and measured for water level in the three tapped zones. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)

  4. Preliminary report on the geology and ground-water supply of the Newark, New Jersey, area

    USGS Publications Warehouse

    Herpers, Henry; Barksdale, Henry C.

    1951-01-01

    In the Newark area, ground water is used chiefly for industrial cooling, air-conditioning, general processing, and for sanitary purposes. A small amount is used in the manufacture of beverages. Total ground-water pumpage in Newark is estimated at not less than 20,000,000 gallons daily. The Newark area is underlain by formations of Recent, Pleistocene and Triassic age, and the geology and hydrologic properties of these formations are discussed. Attention is called to the important influence of a buried valley in the rock floor beneath the Newark area on the yield of wells located within it. Data on the fluctuation of the water levels and the variation in pumpage are presented, and their significance discussed. The results of a pumping test made during the investigation were inconclusive. The beneficial results of artificially recharging the aquifers in one part of the area are described. The intrusion of salt water into certain parts of the ground-water body is described and graphically portrayed by a map showing the chloride concentration of the ground water in various parts of the City. Insofar as available data permit, the chemical quality of the ground water is discussed and records are given of the ground-water temperatures in various parts of the City. There has been marked lowering of the water table in the eastern part of the area, accompanied by salt water intrusion, indicating that the safe yield of the formations in this part of Newark has probably been exceeded. It is recommended that the study of the ground-water resources of this area be continued, and that artificial recharging of the aquifers be increased over as wide an area as possible.

  5. SUPERFUND GROUND WATER ISSUE: GROUND WATER SAMPLING FOR METALS ANALYSES

    EPA Science Inventory

    Filtration of ground-water samples for metals analysis is an issue identified by the Forum as a concern of Superfund decision-makers. Inconsistency in EPA Syperfund cleanup pracices occurs where one EPA Region implements a remedial action based on unfiltered ground-water samples,...

  6. Hydrogeology and simulation of ground-water flow at the South Well Field, Columbus, Ohio

    USGS Publications Warehouse

    Cunningham, W.L.; Bair, E.S.; Yost, W.P.

    1996-01-01

    The City of Columbus, Ohio, operates four radial collector wells in southern Franklin County. The 'South Well Field' is completed in permeable outwash and ice-contact deposits, upon which flow the Scioto River and Big Walnut Creek. The wells are designed to yield approximately 42 million gallons per day; part of that yield results from induced infiltration of surface water from the Scioto River and Big Walnut Creek. The well field supplied up to 30 percent of the water supply of southern Columbus and its suburbs in 1991. This report describes the hydrogeology of southern Franklin County and a tran sient three-dimensional, numerical ground-water- flow model of the South Well Field. The primary source of ground water in the study area is the glacial drift aquifer. The glacial drift is composed of sand, gravel, and clay depos ited during the Illinoian and Wisconsinan glaciations. In general, thick deposits of till containing lenses of sand and gravel dominate the drift in the area west of the Scioto River. The thickest and most productive parts of the glacial drift aquifer are in the buried valleys in the central and eastern parts of the study area underlying the Scioto River and Big Walnut Creek. Horizontal hydraulic conductivity of the glacial drift aquifer differs spa tially and ranges from 30 to 375 feet per day. The specific yield ranges from 0.12 to 0.30. The secondary source of ground water within the study area is the underlying carbonate bedrock aquifer, which consists of Silurian and Devonian limestones, dolomites, and shales. The horizontal hydraulic conductivity of the carbonate bedrock aquifer ranges from 10 to 15 feet per day. The storage coefficient is about 0.0002. The ground-water-flow system in the South Well Field area is recharged by precipitation, regional ground-water flow, and induced stream infiltration. Yearly recharge rates varied spatially and ranged from 4.0 to 12.0 inches. The three-dimensional, ground-water-flow model was constructed by

  7. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1995). The DOE`s goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agencymore » (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will assess potential environmental impacts and provide stakeholder a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information available for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology.« less

  8. Assessment of surface water quality of inland valleys for cropping in SW Nigeria

    NASA Astrophysics Data System (ADS)

    Aboyeji, O. S.; Ogunkoya, O. O.

    2017-05-01

    Inland valley agro-ecosystems which are a category of wetlands have potential for sustainable crop production relative to uplands. A major challenge to their utilisation in the study area is their heterogeneity in hydrology, morphology, soil types and agro-economy. The study assessed the surface water quality of three typologies of the agro-ecosystems—amphitheatre-like valley-heads (Am), valley-side (VS), and low depression (LD)—for cropping. Surface water of six sites were sampled during the wet and dry seasons. The physicochemical properties and metal concentrations of the samples were analysed. Descriptive statistics and water quality indices were used to assess the suitability of the waters of the agro-ecosystems for cropping. Results showed that the valleys have neutral to slightly alkaline waters. Values of physicochemical parameters are generally within the acceptable range for cropping. The concentration of major cations varied across the inland valley types, but exhibited similar characteristics within each valley. The dominance of the major cations is in the order of Na > Ca > K > Mg. ANOVA results indicated that there is no significant difference in the concentration of heavy metals across the valleys ( F = 2.044, p = 0.138, α = 0.05). Generally, most of the physicochemical parameters and trace metals have low concentrations and are non-toxic to plants. Values of water quality indices (sodium adsorption ratio, soluble sodium percentage, total dissolved solids and permeability index) indicated that the concentrations of minerals in waters across the valley typologies are generally within permissible limits for cropping.

  9. Water resources of the Batavia Kill basin at Windham, Greene County, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    1999-01-01

    The water resources of a 27.6-square-mile section of the Batavia Kill Basin near the village of Windham, N.Y., which has undergone substantial development, were evaluated. The evaluation entailed (1) estimation of the magnitude and distribution of several hydrologic components, including recharge, (2) measurement of discharge and chemical quality of the Batavia Kill and selected tributaries, (3) analysis of ground-water flow and chemistry, and (4) a conceptualization of the ground-water flow system.The region consists of deeply dissected, relatively flat-lying, clastic sedimentary sequences variably overlain by as much as 120 feet of glacial deposits. The types of bedrock fractures and their distribution in the Batavia Kill valley are consistent with valley stress-relief characteristics. Till predominates in the uplands, and stratified drift typically dominates within the valley of the Batavia Kill and the lower section of its largest tributary valley (Mitchell Hollow).Fractured bedrock is the most commonly used water source within the study area. The areas of highest yielding bedrock generally are with valleys, where the shallow fractures are saturated. Stratified-drift aquifers are also limited to the largest valleys; the greatest saturated thicknesses are in the Batavia Kill valley at Windham. A conceptual model of ground-water flow within the study areas suggests that the zones of most active flow are shallow fractured bedrock in upland areas and the shallow stratified drift in the largest valleys.The hydrogeologic system has been altered by development; major effects include (1) chemical alteration of natural ground-water and surface-water quality by point- and nonpoint-source contaminants, (2) hydraulic interconnection of other-wise isolated bedrock fractures by wellbores, and (3) drawdowns in wells within the Batavia Kill valley by pumping from the bedrock aquifer. Water resource development of the most promising unconsolidated aquifer beneath Windham may be

  10. Geology and ground-water resources of the Bristol-Plainville-Southington area, Connecticut

    USGS Publications Warehouse

    La Sala, A. M.

    1964-01-01

    The Bristol-Plainville-Southington area straddles the boundary between the New England Upland and the Connecticut Valley Lowland sections of the New England physiographic province. The western parts of Bristol are Southington lie in the New England Upland section, an area of rugged topography underlain by metamorphic rocks of Palezoic age. The eastern part of the area, to the east of a prominent scarp marking the limit of the metamorphic rocks, is in the Connecticut Valley Lowland and is underlain by sedimentary rocks and interbedded basaltic lava flows of Triassic age. The lowland is characterized for the most part by broad valleys and low intervening linear hills, but in the eastern parts of Plainville and Southington, basaltic rocks form a rugged highland. The bedrock is largely mantled by glacial deposits of Wisconsin age. On hills the glacial deposits are mainly ground moraine, and in valleys mainly stratified. The metamorphic rocks comprise the Hartland Formation, Bristol Granite Gneiss of Gregory (1906), and Prospect Gneiss. These formations contain water in fractures, principally joints occurring in regular sets. The rocks generally yield supplies of 5 to 15 gpm (gallons per minute) to drilled wells averaging about 140 feet in depth. The rocks of Triassic age in the area are the New Haven Arkose, Talcott Basalt, Shuttle Meadow Formation, Holyoke Basalt, and East Berlin Formation. The formations contain water principally in joints and other fractures and, to a lesser extent, in bedding-plane openings and pore spaces. Drilled wells penetrating these rocks generally range from 100 to 200 feet in depth and yield an average of nearly 20 gpm. The maximum yield obtained from a well in these rocks is 180 gpm. The ground moraine of Pleistocene age is composed principally of till. The deposit averages about 24 feet in thickness, and wells penetrating it average about 16 feet in depth. The ground moraine yields small supplier of water suitable for household use when

  11. Ground-water models for water resources planning

    USGS Publications Warehouse

    Moore, John E.

    1980-01-01

    In the past decade hydrologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the groundwater system. These models have been used to provide information and predictions for water managers. Too frequently, groundwater was neglected in water-resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface water supplies. Now, however, with newly developed digital groundwater models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last 10 years from simple one-layer flow models to three-dimensional simulations of groundwater flow which may include solute transport, heat transport, effects of land subsidence, and encroachment of salt water. This paper illustrates, through case histories, how predictive groundwater models have provided the information needed for the sound planning and management of water resources in the United States. (USGS)

  12. Long Duration of Ground Motion in the Paradigmatic Valley of Mexico

    PubMed Central

    Cruz-Atienza, V. M.; Tago, J.; Sanabria-Gómez, J. D.; Chaljub, E.; Etienne, V.; Virieux, J.; Quintanar, L.

    2016-01-01

    Built-up on top of ancient lake deposits, Mexico City experiences some of the largest seismic site effects worldwide. Besides the extreme amplification of seismic waves, duration of intense ground motion from large subduction earthquakes exceeds three minutes in the lake-bed zone of the basin, where hundreds of buildings collapsed or were seriously damaged during the magnitude 8.0 Michoacán earthquake in 1985. Different mechanisms contribute to the long lasting motions, such as the regional dispersion and multiple-scattering of the incoming wavefield from the coast, more than 300 km away the city. By means of high performance computational modeling we show that, despite the highly dissipative basin deposits, seismic energy can propagate long distances in the deep structure of the valley, promoting also a large elongation of motion. Our simulations reveal that the seismic response of the basin is dominated by surface-waves overtones, and that this mechanism increases the duration of ground motion by more than 170% and 290% of the incoming wavefield duration at 0.5 and 0.3 Hz, respectively, which are two frequencies with the largest observed amplification. This conclusion contradicts what has been previously stated from observational and modeling investigations, where the basin itself has been discarded as a preponderant factor promoting long and devastating shaking in Mexico City. PMID:27934934

  13. Long Duration of Ground Motion in the Paradigmatic Valley of Mexico

    NASA Astrophysics Data System (ADS)

    Cruz-Atienza, V. M.; Tago, J.; Sanabria-Gómez, J. D.; Chaljub, E.; Etienne, V.; Virieux, J.; Quintanar, L.

    2016-12-01

    Built-up on top of ancient lake deposits, Mexico City experiences some of the largest seismic site effects worldwide. Besides the extreme amplification of seismic waves, duration of intense ground motion from large subduction earthquakes exceeds three minutes in the lake-bed zone of the basin, where hundreds of buildings collapsed or were seriously damaged during the magnitude 8.0 Michoacán earthquake in 1985. Different mechanisms contribute to the long lasting motions, such as the regional dispersion and multiple-scattering of the incoming wavefield from the coast, more than 300 km away the city. By means of high performance computational modeling we show that, despite the highly dissipative basin deposits, seismic energy can propagate long distances in the deep structure of the valley, promoting also a large elongation of motion. Our simulations reveal that the seismic response of the basin is dominated by surface-waves overtones, and that this mechanism increases the duration of ground motion by more than 170% and 290% of the incoming wavefield duration at 0.5 and 0.3 Hz, respectively, which are two frequencies with the largest observed amplification. This conclusion contradicts what has been previously stated from observational and modeling investigations, where the basin itself has been discarded as a preponderant factor promoting long and devastating shaking in Mexico City.

  14. Long Duration of Ground Motion in the Paradigmatic Valley of Mexico.

    PubMed

    Cruz-Atienza, V M; Tago, J; Sanabria-Gómez, J D; Chaljub, E; Etienne, V; Virieux, J; Quintanar, L

    2016-12-09

    Built-up on top of ancient lake deposits, Mexico City experiences some of the largest seismic site effects worldwide. Besides the extreme amplification of seismic waves, duration of intense ground motion from large subduction earthquakes exceeds three minutes in the lake-bed zone of the basin, where hundreds of buildings collapsed or were seriously damaged during the magnitude 8.0 Michoacán earthquake in 1985. Different mechanisms contribute to the long lasting motions, such as the regional dispersion and multiple-scattering of the incoming wavefield from the coast, more than 300 km away the city. By means of high performance computational modeling we show that, despite the highly dissipative basin deposits, seismic energy can propagate long distances in the deep structure of the valley, promoting also a large elongation of motion. Our simulations reveal that the seismic response of the basin is dominated by surface-waves overtones, and that this mechanism increases the duration of ground motion by more than 170% and 290% of the incoming wavefield duration at 0.5 and 0.3 Hz, respectively, which are two frequencies with the largest observed amplification. This conclusion contradicts what has been previously stated from observational and modeling investigations, where the basin itself has been discarded as a preponderant factor promoting long and devastating shaking in Mexico City.

  15. Hydrogeology and Ground-Water Flow in the Opequon Creek Watershed area, Virginia and West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; Weary, David J.

    2009-01-01

    Due to increasing population and economic development in the northern Shenandoah Valley of Virginia and West Virginia, water availability has become a primary concern for water-resource managers in the region. To address these issues, the U.S. Geological Survey (USGS), in cooperation with the West Virginia Department of Health and Human Services and the West Virginia Department of Environmental Protection, developed a numerical steady-state simulation of ground-water flow for the 1,013-square-kilometer Opequon Creek watershed area. The model was based on data aggregated for several recently completed and ongoing USGS hydrogeologic investigations conducted in Jefferson, Berkeley, and Morgan Counties in West Virginia and Clarke, Frederick, and Warren Counties in Virginia. A previous detailed hydrogeologic assessment of the watershed area of Hopewell Run (tributary to the Opequon Creek), which includes the USGS Leetown Science Center in Jefferson County, West Virginia, provided key understanding of ground-water flow processes in the aquifer. The ground-water flow model developed for the Opequon Creek watershed area is a steady-state, three-layer representation of ground-water flow in the region. The primary objective of the simulation was to develop water budgets for average and drought hydrologic conditions. The simulation results can provide water managers with preliminary estimates on which water-resource decisions may be based. Results of the ground-water flow simulation of the Opequon Creek watershed area indicate that hydrogeologic concepts developed for the Hopewell Run watershed area can be extrapolated to the larger watershed model. Sensitivity analyses conducted as part of the current modeling effort and geographic information system analyses of spring location and yield reveal that thrust and cross-strike faults and low-permeability bedding, which provide structural and lithologic controls, respectively, on ground-water flow, must be incorporated into the

  16. Ground-water resources in the lower Milliken--Sarco--Tulucay Creeks area, southeastern Napa County, California, 2000-2002

    USGS Publications Warehouse

    Farrar, Christopher D.; Metzger, Loren F.

    2003-01-01

    Ground water obtained from individual private wells is the sole source of water for about 4,800 residents living in the lower Milliken-Sarco-Tulucay Creeks area of southeastern Napa County. Increases in population and in irrigated vineyards during the past few decades have increased water demand. Estimated ground-water pumpage in 2000 was 5,350 acre-feet per year, an increase of about 80 percent since 1975. Water for agricultural irrigation is the dominant use, accounting for about 45 percent of the total. This increase in ground-water extraction has resulted in the general decline of ground-water levels. The purpose of this report is to present selected hydrologic data collected from 1975 to 2002 and to quantify changes in the ground-water system during the past 25 years. The study area lies in one of several prominent northwest-trending structural valleys in the North Coast Ranges. The area is underlain by alluvial deposits and volcanic rocks that exceed 1,000 feet in thickness in some places. Alluvial deposits and tuff beds in the volcanic sequence are the principal source of water to wells. The ground-water system is recharged by precipitation that infiltrates, in minor amounts, directly on the valley floor but mostly by infiltration in the Howell Mountains. Ground water moves laterally from the Howell Mountains into the study area. Although the area receives abundant winter precipitation in most years, nearly half of the precipitation is lost as surface runoff to the Napa River. Evapotranspiration also is high, accounting for nearly one-half of the total precipitation received. Because of the uncertainties in the estimates of precipitation, runoff, and evapotranspiration, a precise estimate of potential ground-water recharge cannot be made. Large changes in ground-water levels occurred between 1975 and 2001. In much of the western part of the area, water levels increased; but in the central and eastern parts, water levels declined by 25 to 125 feet. Ground-water

  17. A Technical Guide to Ground-Water Model Selection at Sites Contaminated with Radioactive Substances

    EPA Pesticide Factsheets

    This report addresses the selection of ground-water flow and contaminant transport models and is intended to be used by hydrogeologists and geoscientists responsible for selecting transport models for use at sites containing radioactive materials.

  18. Use of finite-difference arrays of observation wells to estimate evapotranspiration from ground water in the Arkansas River Valley, Colorado

    USGS Publications Warehouse

    Weeks, Edwin P.; Sorey, M.L.

    1973-01-01

    A method to determine evapotranspiration from ground water was tested at four sites in the flood plain of the Arkansas River in Colorado. Approximate ground-water budgets were obtained by analyzing water-level data from observation wells installed in five-point arrays. The analyses were based on finite difference approximations of the differential equation describing ground-water flow. Data from the sites were divided into two groups by season. It was assumed that water levels during the dormant season were unaffected by evapotranspiration of ground water or by recharge, collectively termed 'accretion.' Regression analyses of these data were made to provide an equation for separating the effects of changes in aquifer storage and of aquifer heterogeneity from those due to accretion during the growing season. The data collected during the growing season were thus analyzed to determine accretion.

  19. Simulation of regional ground-water flow in the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.

    2004-01-01

    This report describes a numerical model that simulates regional ground-water flow in the upper Deschutes Basin of central Oregon. Ground water and surface water are intimately connected in the upper Deschutes Basin and most of the flow of the Deschutes River is supplied by ground water. Because of this connection, ground-water pumping and reduction of artificial recharge by lining leaking irrigation canals can reduce the amount of ground water discharging to streams and, consequently, streamflow. The model described in this report is intended to help water-management agencies and the public evaluate how the regional ground-water system and streamflow will respond to ground-water pumping, canal lining, drought, and other stresses. Ground-water flow is simulated in the model by the finite-difference method using MODFLOW and MODFLOWP. The finite-difference grid consists of 8 layers, 127 rows, and 87 columns. All major streams and most principal tributaries in the upper Deschutes Basin are included. Ground-water recharge from precipitation was estimated using a daily water-balance approach. Artificial recharge from leaking irrigation canals and on-farm losses was estimated from diversion and delivery records, seepage studies, and crop data. Ground-water pumpage for irrigation and public water supplies, and evapotranspiration are also included in the model. The model was calibrated to mean annual (1993-95) steady-state conditions using parameter-estimation techniques employing nonlinear regression. Fourteen hydraulic-conductivity parameters and two vertical conductance parameters were determined using nonlinear regression. Final parameter values are all within expected ranges. The general shape and slope of the simulated water-table surface and overall hydraulic-head distribution match the geometry determined from field measurements. The fitted standard deviation for hydraulic head is about 76 feet. The general magnitude and distribution of ground-water discharge to

  20. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1999

    USGS Publications Warehouse

    Locke, G.L.

    2001-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 34 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1999. Data collected prior to 1999 are graphically presented and data collected by other agencies (or as part of other Geological Survey programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-99. At two water-supply wells median water levels for calendar year 1999 were unchanged from their respective baseline periods. At a nearby observation well, the 1999 median water level was slightly lower (0.1 foot) than its baseline period. At the remaining four wells in Jackass Flats, median water levels for 1999 were slightly higher (0.2 foot to 1.6 feet) than for their respective baseline periods.