Sample records for valley network formation

  1. Formation Timescales of the Martian Valley Networks

    NASA Astrophysics Data System (ADS)

    Hoke, M. T.; Hynek, B. M.

    2010-12-01

    The presence of valley networks across much of the ancient surface of Mars [e.g. 1] together with the locations and morphologies of the Martian deltas [e.g. 2] and ancient paleolakes [e.g. 3, 4], provides strong evidence that the Martian surface environment was once capable of sustaining long-lived flowing water. Many of the larger Martian valley networks exhibit characteristics consistent with their formation primarily from surface runoff of precipitated water [5-7]. Their formation likely followed similar processes as those that formed terrestrial river valleys, including the gradual erosion and transport of sediment downstream by bed load, suspended load, and wash load processes. When quantifying flow rates on Mars, some researchers have modified the Manning equation for depth- and width-averaged flow velocity in an attempt to better-fit Martian conditions [e.g. 3, 8-10]. These attempts, however, often result in flow velocities on Mars that are overestimated by up to a factor of two [10]. An alternative to the Manning equation that is often overlooked in the planetary science community is the Darcy-Weisbach (D-W) equation [11], which, unlike the Manning equation, maintains a dependence on the acceleration due to gravity. Although the D-W equation relies on a dimensionless friction function that has been fitted to terrestrial data, it is not a constant like the Manning coefficient. Rather, the D-W friction factor is a function of bed slope, flow depth, and median grain size [e.g. 8, 10, 12-14], and therefore it is better suited to model flow velocity on Mars. In this work, we investigate the formation timescales of the Martian valley networks through the use of four different sediment transport models [14], the D-W equation for average flow velocity, and a variety of parameters to encompass a range of possible formation conditions. This is done specific to each of eight large valley networks, all of which have crater densities that place their formation in the

  2. The Valley Networks on Mars

    NASA Astrophysics Data System (ADS)

    Gulick, V. C.

    2002-12-01

    Despite three decades of exploration, the valley networks on Mars still seem to raise more questions than they answer. Valley systems have formed in the southern highlands, along some regions of the dichotomy boundary and the south rim of Valles Marineris, around the rim of some impact craters, and on the flanks of some volcanoes. They are found on some of the oldest and youngest terrains as well as on intermediate aged surfaces. There is surprisingly little consensus as to the formation and the paleoclimatic implications of the valley networks. Did the valleys require a persistent solar-driven atmospheric hydrological cycle involving precipitation, surface runoff, infiltration and groundwater outflow as they typically do on Earth? Or are they the result of magmatic or impact-driven thermal cycling of ground water involving persistent outflow and subsequent runoff? Are they the result of some other process(es)? Ground-water sapping, surface-water runoff, debris flows, wind erosion, and formation mechanisms involving other fluids have been proposed. Until such basic questions as these are definitively answered, their significance for understanding paleoclimatic change on Mars remains cloudy. I will review what is known about valley networks using data from both past and current missions. I will discuss what we have learned about their morphology, environments in which they formed, their spatial and temporal associations, possible formation mechanisms, relation to outflow channel and gully formation, as well as the possible implications for past climate change on Mars. Finally I will discuss how future, meter to submeter scale imaging and other remote sensing observations may shed new light on the debate over the origin of these enigmatic features.

  3. Early Mars: The inextricable link between internal and external influences on valley network formation

    NASA Technical Reports Server (NTRS)

    Postawko, S. E.; Fanale, F. P.

    1993-01-01

    The conditions under which the valley networks on the ancient cratered terrain on Mars formed are still highly debated within the scientific community. While liquid water was almost certainly involved, the exact mechanism of formation is uncertain. The networks most resemble terrestrial sapping channels, although some systems exhibit a runoff-dominated morphology. The major question in the formation of these networks is what, if anything, do they imply about early Martian climate? There are typically two major theories advanced to explain the presence of these networks. The first is that higher internal regolith temperatures, associated with a much higher heat flow 3.8 b.y. ago, would cause ground water to be closer to the surface than at present. Just how close to the surface ground water would have to exist in order to form these valley networks has recently been questioned. The second major theory is that early Mars had a much thicker atmosphere than at present, and an enhanced atmospheric greenhouse may have increased surface temperatures to near the freezing point of water. While recent calculations indicate that CO2 alone could not have produced the needed warming, the presence of other greenhouse gases may have contributed to surface warming.

  4. Formation of Valley Networks in a Cold and Icy Early Mars Climate: Predictions for Erosion Rates and Channel Morphology

    NASA Astrophysics Data System (ADS)

    Cassanelli, J.

    2017-12-01

    Mars is host to a diverse array of valley networks, systems of linear-to-sinuous depressions which are widely distributed across the surface and which exhibit branching patterns similar to the dendritic drainage patterns of terrestrial fluvial systems. Characteristics of the valley networks are indicative of an origin by fluvial activity, providing among the most compelling evidence for the past presence of flowing liquid water on the surface of Mars. Stratigraphic and crater age dating techniques suggest that the formation of the valley networks occurred predominantly during the early geologic history of Mars ( 3.7 Ga). However, whether the valley networks formed predominantly by rainfall in a relatively warm and wet early Mars climate, or by snowmelt and episodic rainfall in an ambient cold and icy climate, remains disputed. Understanding the formative environment of the valley networks will help distinguish between these warm and cold end-member early Mars climate models. Here we test a conceptual model for channel incision and evolution under cold and icy conditions with a substrate characterized by the presence of an ice-free dry active layer and subjacent ice-cemented regolith, similar to that found in the Antarctic McMurdo Dry Valleys. We implement numerical thermal models, quantitative erosion and transport estimates, and morphometric analyses in order to outline predictions for (1) the precise nature and structure of the substrate, (2) fluvial erosion/incision rates, and (3) channel morphology. Model predictions are compared against morphologic and morphometric observational data to evaluate consistency with the assumed cold climate scenario. In the cold climate scenario, the substrate is predicted to be characterized by a kilometers-thick globally-continuous cryosphere below a 50-100 meter thick desiccated ice-free zone. Initial results suggest that, with the predicted substrate structure, fluvial channel erosion and morphology in a cold early Mars

  5. The Martian valley networks: Origin by niveo-fluvial processes

    NASA Technical Reports Server (NTRS)

    Rice, J. W., Jr.

    1993-01-01

    The valley networks may hold the key to unlocking the paleoclimatic history of Mars. These enigmatic landforms may be regarded as the Martian equivalent of the Rosetta Stone. Therefore, a more thorough understanding of their origin and evolution is required. However, there is still no consensus among investigators regarding the formation (runoff vs. sapping) of these features. Recent climatic modeling precludes warm (0 degrees C) globally averaged surface temperatures prior to 2 b.y. when solar luminosity was 25-30 percent less than present levels. This paper advocates snowmelt as the dominant process responsible for the formation of the dendritic valley networks. Evidence for Martian snowfall and subsequent melt has been discussed in previous studies.

  6. Extraction of Martian valley networks from digital topography

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Collier, M. L.

    2004-01-01

    We have developed a novel method for delineating valley networks on Mars. The valleys are inferred from digital topography by an autonomous computer algorithm as drainage networks, instead of being manually mapped from images. Individual drainage basins are precisely defined and reconstructed to restore flow continuity disrupted by craters. Drainage networks are extracted from their underlying basins using the contributing area threshold method. We demonstrate that such drainage networks coincide with mapped valley networks verifying that valley networks are indeed drainage systems. Our procedure is capable of delineating and analyzing valley networks with unparalleled speed and consistency. We have applied this method to 28 Noachian locations on Mars exhibiting prominent valley networks. All extracted networks have a planar morphology similar to that of terrestrial river networks. They are characterized by a drainage density of approx.0.1/km, low in comparison to the drainage density of terrestrial river networks. Slopes of "streams" in Martian valley networks decrease downstream at a slower rate than slopes of streams in terrestrial river networks. This analysis, based on a sizable data set of valley networks, reveals that although valley networks have some features pointing to their origin by precipitation-fed runoff erosion, their quantitative characteristics suggest that precipitation intensity and/or longevity of past pluvial climate were inadequate to develop mature drainage basins on Mars.

  7. Origin of the Valley Networks On Mars: A Hydrological Perspective

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.

    2000-01-01

    The geomorphology of the Martian valley networks is examined from a hydrological perspective for their compatibility with an origin by rainfall, globally higher heat flow, and localized hydrothermal systems. Comparison of morphology and spatial distribution of valleys on geologic surfaces with terrestrial fluvial valleys suggests that most Martian valleys are probably not indicative of a rainfall origin, nor are they indicative of formation by an early global uniformly higher heat flow. In general, valleys are not uniformly distributed within geologic surface units as are terrestrial fluvial valleys. Valleys tend to form either as isolated systems or in clusters on a geologic surface unit leaving large expanses of the unit virtually untouched by erosion. With the exception of fluvial valleys on some volcanoes, most Martian valleys exhibit a sapping morphology and do not appear to have formed along with those that exhibit a runoff morphology. In contrast, terrestrial sapping valleys form from and along with runoff valleys. The isolated or clustered distribution of valleys suggests localized water sources were important in drainage development. Persistent ground-water outflow driven by localized, but vigorous hydrothermal circulation associated with magmatism, volcanism, impacts, or tectonism is, however, consistent with valley morphology and distribution. Snowfall from sublimating ice-covered lakes or seas may have provided an atmospheric water source for the formation of some valleys in regions where the surface is easily eroded and where localized geothermal/hydrothermal activity is sufficient to melt accumulated snowpacks.

  8. Lithologic controls on valley width and strath terrace formation

    NASA Astrophysics Data System (ADS)

    Schanz, Sarah A.; Montgomery, David R.

    2016-04-01

    Valley width and the degree of bedrock river terrace development vary with lithology in the Willapa and Nehalem river basins, Pacific Northwest, USA. Here, we present field-based evidence for the mechanisms by which lithology controls floodplain width and bedrock terrace formation in erosion-resistant and easily friable lithologies. We mapped valley surfaces in both basins, dated straths using radiocarbon, compared valley width versus drainage area for basalt and sedimentary bedrock valleys, and constructed slope-area plots. In the friable sedimentary bedrock, valleys are 2 to 3 times wider, host flights of strath terraces, and have concavity values near 1; whereas the erosion-resistant basalt bedrock forms narrow valleys with poorly developed, localized, or no bedrock terraces and a channel steepness index half that of the friable bedrock and an average channel concavity of about 0.5. The oldest dated strath terrace on the Willapa River, T2, was active for nearly 10,000 years, from 11,265 to 2862 calibrated years before present (cal YBP), whereas the youngest terrace, T1, is Anthropocene in age and recently abandoned. Incision rates derived from terrace ages average 0.32 mm y- 1 for T2 and 11.47 mm y- 1 for T1. Our results indicate bedrock weathering properties influence valley width through the creation of a dense fracture network in the friable bedrock that results in high rates of lateral erosion of exposed bedrock banks. Conversely, the erosion-resistant bedrock has concavity values more typical of detachment-limited streams, exhibits a sparse fracture network, and displays evidence for infrequent episodic block erosion and plucking. Lithology thereby plays a direct role on the rates of lateral erosion, influencing valley width and the potential for strath terrace planation and preservation.

  9. Drainage network development in the Keanakāko‘i tephra, Kīlauea Volcano, Hawai‘i: Implications for fluvial erosion and valley network formation on early Mars

    NASA Astrophysics Data System (ADS)

    Craddock, Robert A.; Howard, Alan D.; Irwin, Rossman P., III; Tooth, Stephen; Williams, Rebecca M. E.; Chu, Pao-Shin

    2012-08-01

    locally as ‘kona storms’, that are capable of generating precipitation at rates >1 m/24 h. Given some recent modeling of the early Martian climate, our observations imply that rainfall on early Mars could also be associated with large intense events and that Martian valley network formation may be related to similar cyclonic storms.

  10. Scaling relationships and concavity of small valley networks on Mars

    NASA Astrophysics Data System (ADS)

    Penido, Julita C.; Fassett, Caleb I.; Som, Sanjoy M.

    2013-01-01

    Valley networks are widely interpreted as the preserved erosional record of water flowing across the martian surface. The manner in which valley morphometric properties scale with drainage area has been widely examined on Earth. Earlier studies assessing these properties on Mars have suggested that martian valleys are morphometrically distinct from those on Earth. However, these earlier measurements were generally made on large valley systems because of the limited topographic data available. In this study, we determine the scaling properties of valley networks at smaller scales than have been previously assessed, using digital elevation models from the High Resolution Stereo Camera (HRSC). We find a Hack's law exponent of 0.74, larger than on Earth, and our measurements also reveal that individual small valleys have concave up, concave down, and quasi-linear longitudinal profiles, consistent with earlier studies of dissected terrain on Mars. However, for many valleys, widths are observed to increase downstream similarly to how they scale in terrestrial channels. The similarities and differences between valley networks on Mars and Earth are consistent with the idea that valleys on Mars are comparatively immature, and precipitation was a likely mechanism for delivering water to these networks.

  11. Noachian Climate of Mars: Insights from Noachian Stratigraphy and Valley Networks System Formation Times

    NASA Astrophysics Data System (ADS)

    Head, J. W., III

    2017-12-01

    Noachian climate models have been proposed in order to account for 1) observed fluvial and lacustrine activity, 2) weathering processes producing phyllosilicates, and 3) an unusual impact record including three major impact basins and unusual degradation processes. We adopt a stratigraphic approach in order place these observations in a temporal context. Formation of the major impact basins Hellas, Isidis and Argyre in earlier Noachian profoundly influenced the uplands geology and appears to have occurred concurrently with major phyllosilicate and related surface occurrences/deposits; the immediate aftermath of these basins appears to have created a temporary hot and wet surface environment with significant effect on surface morphology and alteration processes. Formation of Late Noachian-Early Hesperian valley network systems (VNS) signaled the presence of warm/wet conditions generating several hypotheses for climates permissive of these conditions. We examined estimates for the time required to carve channels/deltas and total duration implied by plausible intermittencies. Synthesis of required timescales show that the total time to carve the VN does not exceed 106 years, < 0.25% of the total Noachian. What climate models can account for the VNS? 1) Warm and wet/semiarid/arid climate: Sustained background MAT >273 K, hydrological system vertically integrated, and rainfall occurs to recharge the aquifer. 2) Cold and Icy climate warmed by greenhouse gases or episodic stochastic events: Climate is sustained cold/icy, but greenhouse gases of unspecified nature/amount/duration elevate MAT by several tens of Kelvins, bringing the annual temperature range into the realm where peak seasonal temperatures (PST) exceed 273 K. In this climate environment, analogous to the Antarctic Dry Valleys, seasonal summer temperatures above 273 K are sufficient to melt snow/ice and form fluvial and lacustrine features, but MAT is well below 273 K (253 K); punctuated warming alternatives

  12. Volume of Valley Networks on Mars and Its Hydrologic Implications

    NASA Astrophysics Data System (ADS)

    Luo, W.; Cang, X.; Howard, A. D.; Heo, J.

    2015-12-01

    Valley networks on Mars are river-like features that offer the best evidence for water activities in its geologic past. Previous studies have extracted valley network lines automatically from digital elevation model (DEM) data and manually from remotely sensed images. The volume of material removed by valley networks is an important parameter that could help us infer the amount of water needed to carve the valleys. A progressive black top hat (PBTH) transformation algorithm has been adapted from image processing to extract valley volume and successfully applied to simulated landform and Ma'adim Valles, Mars. However, the volume of valley network excavation on Mars has not been estimated on a global scale. In this study, the PBTH method was applied to the whole Mars to estimate this important parameter. The process was automated with Python in ArcGIS. Polygons delineating the valley associated depressions were generated by using a multi-flow direction growth method, which started with selected high point seeds on a depth grid (essentially an inverted valley) created by PBTH transformation and grew outward following multi-flow direction on the depth grid. Two published versions of valley network lines were integrated to automatically select depression polygons that represent the valleys. Some crater depressions that are connected with valleys and thus selected in the previous step were removed by using information from a crater database. Because of large distortion associated with global dataset in projected maps, the volume of each cell within a valley was calculated using the depth of the cell multiplied by the spherical area of the cell. The volumes of all the valley cells were then summed to produce the estimate of global valley excavation volume. Our initial result of this estimate was ~2.4×1014 m3. Assuming a sediment density of 2900 kg/m3, a porosity of 0.35, and a sediment load of 1.5 kg/m3, the global volume of water needed to carve the valleys was

  13. Provenance, Offset Equivalent and Palinspastic Reconstruction of the Miocene Cajon Valley Formation, Southern California

    NASA Astrophysics Data System (ADS)

    Stang, Dallon Michael

    Petrographic, conglomerate and detrital-zircon analyses of formations in southern California can determine consanguineous petrofacies and lithofacies that help constrain paleotectonic and paleogeographic reconstructions of the southwestern United States. Arkosic sandstone of the lower Middle Miocene Cajon Valley formation is exposed on the southwest edge of the Mojave block and juxtaposed against Mesozoic and Paleozoic rocks by the San Andreas fault (SAf). Early work in Cajon Valley referred to the formation as Punchbowl, due to its similar appearance to the Punchbowl Formation at Devil's Punchbowl (northwest along the SAf). However, paleontological work placed Cajon Valley strata in the Hemingfordian-Barstovian (18-14 Ma), as opposed to the Clarendonian-Hemphillian (13-9 Ma) Punchbowl Formation. Since the Cajon Valley formation was deposited prior to being truncated by the San Andreas fault, the 2400m-thick, laterally extensive subaerial deposits likely were deposited across what is now the fault trace. Restoring 310 km of dextral slip on the SAf system should indicate the location of offset equivalent sandstone. Restoration of slip on the SAf system places Cajon Valley adjacent to the Caliente and La Panza Ranges, east of San Luis Obispo. Although analysis of detrital zircon from Cenozoic sandstone throughout southern California has been crucial in establishing paleodrainage areas, detrital zircon from the Cajon Valley and equivalent formations had not been analyzed prior to this study. Paleocurrents measured throughout the Cajon Valley formation indicate a source to the NE, in the Mojave Desert. Sandstone samples analyzed in thin section using the Gazzi-Dickinson method of point-counting are homogeneously arkosic, with slight compositional variability, making differentiation of the Cajon Valley formation and potential offset equivalents problematic. However, Branch Canyon Sandstone and Santa Margarita Formation samples are compositionally the best match for the

  14. Controls on Martian Hydrothermal Systems: Application to Valley Network and Magnetic Anomaly Formation

    NASA Technical Reports Server (NTRS)

    Harrison, Keith P.; Grimm, Robert E.

    2002-01-01

    Models of hydrothermal groundwater circulation can quantify limits to the role of hydrothermal activity in Martian crustal processes. We present here the results of numerical simulations of convection in a porous medium due to the presence of a hot intruded magma chamber. The parameter space includes magma chamber depth, volume, aspect ratio, and host rock permeability and porosity. A primary goal of the models is the computation of surface discharge. Discharge increases approximately linearly with chamber volume, decreases weakly with depth (at low geothermal gradients), and is maximized for equant-shaped chambers. Discharge increases linearly with permeability until limited by the energy available from the intrusion. Changes in the average porosity are balanced by changes in flow velocity and therefore have little effect. Water/rock ratios of approximately 0.1, obtained by other workers from models based on the mineralogy of the Shergotty meteorite, imply minimum permeabilities of 10(exp -16) sq m2 during hydrothermal alteration. If substantial vapor volumes are required for soil alteration, the permeability must exceed 10(exp -15) sq m. The principal application of our model is to test the viability of hydrothermal circulation as the primary process responsible for the broad spatial correlation of Martian valley networks with magnetic anomalies. For host rock permeabilities as low as 10(exp -17) sq m and intrusion volumes as low as 50 cu km, the total discharge due to intrusions building that part of the southern highlands crust associated with magnetic anomalies spans a comparable range as the inferred discharge from the overlying valley networks.

  15. Source regions and water release mechanisms of Martian Valley Networks

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Reiss, D.; Sander, T.; Gwinner, K.; Roatsch, T.; Matz, K.-D.; Hauber, E.; Mertens, V.; Hoffmann, H.; Neukum, G.; HRSC Co-Investigator Team

    Martian valley networks have been cited as the best evidence that Mars maintained flow of liquid water across the surface. Although internal structures associated with a fluvial origin within valleys like inner channels, terraces, slip-off and undercut slopes are extremely rare on Mars (Carr and Malin, 2000) such features can be identified in high-resolution imagery (e.g. Malin and Edgett, 2001; Jaumann et al., 2005). However, besides internal features the source regions are an important indicator for the flow processes in Martian valleys because they define the drainage area and thus constrain the amount of available water for eroding the valley network. Furthermore, the morphology of the source regions and their topographic characteristics provide information about the origin of the water. On Mars valley networks are thought to be formed by retreating erosion where the water is supplied from the sub-surface. However, the mechanisms that are responsible for the release of ground water are poorly understood. The three dimensional highly resolved data of the High Resolution Stereo Camera (HRSC) on the Mars Express Mission (Neukum et al., 2004) allow the detailed examination of valley network source regions. A valley network in the western Lybia Montes region valley between 1.4°N to 3.5°N and 81.6°E to 82.5°E originates at a highland mountain region and drains down to Isidis Planitia over a distance of 400 km. Most of its distance the valley exhibits an interior channel that allows to constraint discharge and erosion budgets (Jaumann, et al., 2005). The valley was formed in the Noachian/Hesperian between 3.7 and 3.3 billion years. However, discharge and erosion budgets restrict the erosion time to a few million years in total, indicating single events rather than continuous flow over long periods. The source region of the valley is covered by a series of lava flows. Even the upstream part of the valley is covered by lava flows that cover the interior channel

  16. A Noachian/Hesperian Hiatus and Erosive Reactivation of Martian Valley Networks

    NASA Technical Reports Server (NTRS)

    Irwin, R. P., III.; Maxwell, T. A.; Howard, A. D.; Craddock, R. A.; Moore, J. M.

    2005-01-01

    Despite new evidence for persistent flow and sedimentation on early Mars, it remains unclear whether valley networks were active over long geologic timescales (10(exp 5)-10(exp 8) yr), or if flows were persistent only during multiple discrete episodes of moderate (approx. 10(exp 4) yr) to short (<10 yr) duration. Understanding the long-term stability/variability of valley network hydrology would provide an important control on paleoclimate and groundwater models. Here we describe geologic evidence for a hiatus in highland valley network activity while the fretted terrain formed, followed by a discrete reactivation of persistent (but possibly variable) erosive flows. Additional information is included in the original extended abstract.

  17. Groundwater sapping valleys: Experimental studies, geological controls and implications to the interpretation of valley networks on Mars

    NASA Technical Reports Server (NTRS)

    Kochel, R. Craig

    1988-01-01

    An integrated approach using experimental laboratory models, field studies of terrestrial analogs, and remote studies of terrestrial field sites were applied to the goals of understanding the nature and morphology of valley networks formed by groundwater sapping. In spite of problems with scaling, the experimental studies provide valuable insights into concepts relating to the initiation, development, and evolution of valleys by groundwater sapping. These investigations are also aimed at developing geomorphic criteria for distinguishing valleys formed by surface runoff from those formed by groundwater sapping processes. Channels that were field classified as sapping vs. runoff were successfully distinguished using statistical analysis of their respective morphologies; therefore, it may be possible to use similar techniques to interpret channel genesis on Mars. The terrestrial and flume studies provide the ground truth dataset which can be used (and will be during the present year) to help interpret the genesis of valley networks on Mars.

  18. Valley Networks in the Ancient Martian Highlands

    NASA Image and Video Library

    2016-05-18

    This image from NASA Mars Reconnaissance Orbiter spacecraft the valley networks on Mars are terrains eroded by flowing water billions of years ago. Where bedrock is well exposed, a variety of colors due to altered minerals and polygonal patterns.

  19. Beaver assisted river valley formation

    USGS Publications Warehouse

    Westbrook, Cherie J.; Cooper, D.J.; Baker, B.W.

    2011-01-01

    We examined how beaver dams affect key ecosystem processes, including pattern and process of sediment deposition, the composition and spatial pattern of vegetation, and nutrient loading and processing. We provide new evidence for the formation of heterogeneous beaver meadows on riverine system floodplains and terraces where dynamic flows are capable of breaching in-channel beaver dams. Our data show a 1.7-m high beaver dam triggered overbank flooding that drowned vegetation in areas deeply flooded, deposited nutrient-rich sediment in a spatially heterogeneous pattern on the floodplain and terrace, and scoured soils in other areas. The site quickly de-watered following the dam breach by high stream flows, protecting the deposited sediment from future re-mobilization by overbank floods. Bare sediment either exposed by scouring or deposited by the beaver flood was quickly colonized by a spatially heterogeneous plant community, forming a beaver meadow. Many willow and some aspen seedlings established in the more heavily disturbed areas, suggesting the site may succeed to a willow carr plant community suitable for future beaver re-occupation. We expand existing theory beyond the beaver pond to include terraces within valleys. This more fully explains how beavers can help drive the formation of alluvial valleys and their complex vegetation patterns as was first postulated by Ruedemann and Schoonmaker in 1938. ?? 2010 John Wiley & Sons, Ltd.

  20. Subglacial tunnel valleys dissecting the Alpine landscape - an example from Bern, Switzerland

    NASA Astrophysics Data System (ADS)

    Dürst Stucki, Mirjam; Reber, Regina; Schlunegger, Fritz

    2010-05-01

    The morphology of the Alpine and adjacent landscapes is directly related to glacial erosion and associated sediment transport. Here we report the effects of glacio-hydrologic erosion on bedrock topography in the Swiss Mittelland. Specifically, we identify the presence of subsurface valleys beneath the city of Bern in Switzerland and discuss their genesis. Detailed stratigraphic investigations of more than 4000 borehole data within a 430 km2-large area reveal the presence of a network of >200 m-deep and 1000 m-wide valleys. They are flat floored with steep sided walls and are filled by Quaternary fluvio-glacial deposits. The main valley beneath Bern is straight and oriented towards the NNW, with valley flanks more than 20° steep. The valley bottom has an irregular undulating profile along the thalweg, with differences between sills and hollows higher than 50-100 m over a reach of 4 kilometers length. Approximately 200 m high bedrock uplands flank the valley network. The uplands are dissected by up to 80 m-deep and 500 m-broad hanging valleys that currently drain away from the axis of the main valley. We interpret the valleys beneath the city of Bern to be a tunnel valley network which originated from subglacial erosion by melt water. The upland valleys are hanging with respect to the trunk system, indicating that these incipient upland systems as well as the main gorge beneath Bern formed by glacial melt water under hydrostatic pressure. This explains the ascending flow of glacial water from the base towards the higher elevation hanging valleys where high water discharge resulted in the formation of broad valley geometries. Similarly, we relate efficient erosion, excavation of bedrock and the formation of the tunnel valley network with >20° steep shoulders to confined flow under pressure, caused by the overlying ice.

  1. Basal melting of snow on early Mars: A possible origin of some valley networks

    USGS Publications Warehouse

    Carr, M.H.; Head, J. W.

    2003-01-01

    Valley networks appear to be cut by liquid water, yet simulations suggest that early Mars could not have been warmed enough by a CO2-H2O greenhouse to permit rainfall. The vulnerability of an early atmosphere to impact erosion, the likely rapid scavenging of CO2 from the atmosphere by weathering, and the lack of detection of weathering products all support a cold early Mars. We explore the hypothesis that valley networks could have formed as a result of basal melting of thick snow and ice deposits. Depending on the heat flow, an early snowpack a few hundred meters to a few kilometers thick could undergo basal melting, providing water to cut valley networks. Copyright 2003 by the American Geophysical Union.

  2. Early Permian conodont fauna and stratigraphy of the Garden Valley Formation, Eureka County, Nevada

    USGS Publications Warehouse

    Wardlaw, Bruce R.; Gallegos, Dora M.; Chernykh, Valery V.; Snyder, Walter S.

    2015-01-01

    The lower Part of the Garden Valley Formation yields two distinct conodont faunas. One of late Asselian age dominated by Mesogondolella and Streptognathodus and one of Artinskian age dominated by Sweetognathus with Mesogondolella. The Asselian fauna contains the same species as those found in the type area of the Asselian in the southern Urals including Mesogondolella dentiseparata, described for the first time outside of the Urals. Apparatuses for Sweetognathus whitei, Diplognathodus stevensi, and Idioprioniodus sp. are described. The Garden Valley Formation represents a marine pro-delta basin and platform, and marine and shore fan delta complex deposition. The fan-delta complex was most likely deposited from late Artinskian to lateWordian. The Garden Valley Formation records tremendous swings in depositional setting from shallow-water to basin to shore.

  3. Early Permian conodont fauna and stratigraphy of the Garden Valley Formation, Eureka County, Nevada

    USGS Publications Warehouse

    Wardlaw, Bruce R.; Gallegos, Dora M.; Chernykh, Valery V.; Snyder, Walter S.

    2015-01-01

    The lower part of the Garden Valley Formation yields two distinct conodont faunas. One of late Asselian age dominated by Mesogondolella and Streptognathodus and one of Artinskian age dominated by Sweetognathus with Mesogondolella. The Asselian fauna contains the same species as those found in the type area of the Asselian in the southern Urals including Mesogondolella dentiseparata, described for the first time outside of the Urals. Apparatuses for Sweetognathus whitei, Diplognathodus stevensi, and Idioprioniodus sp. are described. The Garden Valley Formation represents a marine pro-delta basin and platform, and marine and shore fan delta complex deposition. The fan-delta complex was most likely deposited from late Artinskian to late Wordian. The Garden Valley Formation records tremendous swings in depositional setting from shallow-water to basin to shore.

  4. Hydrological responses to channelization and the formation of valley plugs and shoals

    USGS Publications Warehouse

    Pierce, Aaron R.; King, Sammy L.

    2017-01-01

    Rehabilitation of floodplain systems focuses on restoring interactions between the fluvial system and floodplain, however, there is a paucity of information on the effects of valley plugs and shoals on floodplain hydrological processes. We investigated hydrologic regimes in floodplains at three valley plug sites, two shoal sites, and three unchannelized sites. Valley plug sites had altered surface and sub-surface hydrology relative to unchannelized sites, while only sub-surface hydrology was affected at shoal sites. Some of the changes were unexpected, such as reduced flood duration and flood depth in floodplains associated with valley plugs. Our results emphasize the variability associated with hydrologic processes around valley plugs and our rudimentary understanding of the effects associated with these geomorphic features. Water table levels were lower at valley plug sites compared to unchannelized sites, however, valley plug sites had a greater proportion of days when water table inundation was above mean root collar depth than both shoal and unchannelized sites as a result of lower root collar depths and higher deposition rates. This study has provided evidence that valley plugs can affect both surface and sub-surface hydrology in different ways than previously thought and illustrates the variability in hydrological responses to valley plug formation.

  5. Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars

    NASA Astrophysics Data System (ADS)

    Marra, Wouter A.; Braat, Lisanne; Baar, Anne W.; Kleinhans, Maarten G.

    2014-04-01

    Remains of fluvial valleys on Mars reveal the former presence of water on the surface. However, the source of water and the hydrological setting is not always clear, especially in types of valleys that are rare on Earth and where we have limited knowledge of the processes involved. We investigated three hydrological scenarios for valley formation on Mars: hydrostatic groundwater seepage, release of pressurized groundwater and crater-lake overflow. Using physical modeling in laboratory experiments and numerical hydrological modeling we quantitatively studied the morphological development and processes involved in channel formation that result from these different sources of water in unconsolidated sediment. Our results show that valleys emerging from seeping groundwater by headward erosion form relatively slowly as fluvial transport takes place in a channel much smaller than the valley. Pressurized groundwater release forms a characteristic source area at the channel head by fluidization processes. This head consist of a pit in case of superlithostatic pressure and may feature small radial channels and collapse features. Valleys emerging from a crater-lake overflow event develop quickly in a run-away process of rim erosion and discharge increase. The valley head at the crater outflow point has a converging fan shape, and the rapid incision of the rim leaves terraces and collapse features. Morphological elements observed in the experiments can help in identifying the formative processes on Mars, when considerations of experimental scaling and lithological characteristics of the martian surface are taken into account. These morphological features might reveal the associated hydrological settings and formative timescales of a valley. An estimate of formative timescale from sediment transport is best based on the final channel dimensions for groundwater seepage valleys and on the valley dimensions for pressurized groundwater release and crater-lake overflow valleys. Our

  6. Valley and channel networks extraction based on local topographic curvature and k-means clustering of contours

    NASA Astrophysics Data System (ADS)

    Hooshyar, Milad; Wang, Dingbao; Kim, Seoyoung; Medeiros, Stephen C.; Hagen, Scott C.

    2016-10-01

    A method for automatic extraction of valley and channel networks from high-resolution digital elevation models (DEMs) is presented. This method utilizes both positive (i.e., convergent topography) and negative (i.e., divergent topography) curvature to delineate the valley network. The valley and ridge skeletons are extracted using the pixels' curvature and the local terrain conditions. The valley network is generated by checking the terrain for the existence of at least one ridge between two intersecting valleys. The transition from unchannelized to channelized sections (i.e., channel head) in each first-order valley tributary is identified independently by categorizing the corresponding contours using an unsupervised approach based on k-means clustering. The method does not require a spatially constant channel initiation threshold (e.g., curvature or contributing area). Moreover, instead of a point attribute (e.g., curvature), the proposed clustering method utilizes the shape of contours, which reflects the entire cross-sectional profile including possible banks. The method was applied to three catchments: Indian Creek and Mid Bailey Run in Ohio and Feather River in California. The accuracy of channel head extraction from the proposed method is comparable to state-of-the-art channel extraction methods.

  7. Early Mars Climate Revisited With a Global Probability Map of Martian Valley Network Origin and Distribution

    NASA Astrophysics Data System (ADS)

    Grau Galofre, A.; Jellinek, M.; Osinski, G. R.

    2016-12-01

    Valley networks are among the most arresting features on the surface of Mars. Their provocative morphologic resemblance to river valleys on Earth has lead many scientists to argue for Martian river valleys in a "warm and wet" climate scenario, with conditions similar to the terrestrial mid-to-low latitudes. However, this warm scenario is difficult to reconcile with climate models for an Early Mars receiving radiation from a fainter young Sun. Moreover, recent models suggest a colder scenario, with conditions more similar to present day Greenland or Antarctica. Here we use three independent characterization schemes to show quantitative evidence for fluvial, glacial, groundwater sapping and subglacial meltwater channels to build the first global probability map of Martian valley networks. We distinguish a SW-NE corridor of fluvial drainage networks spanning latitudes from 30ºS to 30ºN. We identify additional widespread patterns related to glaciation, subglacial drainage and channels incised by groundwater springs. This global characterization of Martian valleys has profound implications for the average climate of early Mars as well as its variability in space and time.

  8. 3D morphometry of valley networks on Mars from HRSC/MEX DEMs: Implications for climatic evolution through time

    NASA Astrophysics Data System (ADS)

    Ansan, V.; Mangold, N.

    2013-09-01

    valley networks have been identified mainly in the Noachian heavily cratered uplands. Eight dense branching valley networks were studied in Noachian terrains of Huygens, Newcomb and Kepler craters, south Tyrrhena Terra, and Thaumasia, in Hesperian terrains of Echus Plateau and west Eberswalde craters, and in Amazonian terrains of Alba Patera, using images and digital elevation models from the Mars Express High Resolution Stereo Camera to determine 2D and 3D morphometric parameters. Extracted geomorphic parameters show similar geometry to terrestrial valleys: drainage densities, organization from bifurcation ratios and lengths ratios, Hack exponent consistent with terrestrial values of ~0.6, and progressive deepening of valleys with increasing Strahler order. In addition, statistics on valley depths indicate a deeper incision of Noachian valleys compared to younger post-Noachian valleys (<25 m for Amazonian ones compared to >100 m for Noachian ones), showing a strong difference in fluvial erosion. These characteristics show that dense Martian valley networks formed by overland flows in relation to a global atmospheric water cycle in Noachian epoch and confirm that the later stages of activity may be related to shorter duration of activity, distinct climatic conditions, and/or regional processes, or conditions.

  9. Fluvial valleys in the heavily cratered terrains of Mars: Evidence for paleoclimatic change?

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Baker, V. R.

    1993-01-01

    Whether the formation of the Martian valley networks provides unequivocal evidence for drastically different climatic conditions remains debatable. Recent theoretical climate modeling precludes the existence of a temperate climate early in Mars' geological history. An alternative hypothesis suggests that Mars had a globally higher heat flow early in its geological history, bringing water tables to within 350 m of the surface. While a globally higher heat flow would initiate ground water circulation at depth, the valley networks probably required water tables to be even closer to the surface. Additionally, it was previously reported that the clustered distribution of the valley networks within terrain types, particularly in the heavily cratered highlands, suggests regional hydrological processes were important. The case for localized hydrothermal systems is summarized and estimates of both erosion volumes and of the implied water volumes for several Martian valley systems are presented.

  10. Geohydrology of the Antelope Valley Area, California and design for a ground-water-quality monitoring network

    USGS Publications Warehouse

    Duell, L.F.

    1987-01-01

    A basinwide ideal network and an actual network were designed to identify ambient groundwater quality, trends in groundwater quality, and degree of threat from potential pollution sources in Antelope Valley, California. In general, throughout the valley groundwater quality has remained unchanged, and no specific trends are apparent. The main source of groundwater for the valley is generally suitable for domestic, irrigation, and most industrial uses. Water quality data for selected constituents of some network wells and surface-water sites are presented. The ideal network of 77 sites was selected on the basis of site-specific criteria, geohydrology, and current land use (agricultural, residential, and industrial). These sites were used as a guide in the design of the actual network consisting of 44 existing wells. Wells are currently being monitored and were selected whenever possible because of budgetary constraints. Of the remaining ideal sites, 20 have existing wells not part of a current water quality network, and 13 are locations where no wells exist. The methodology used for the selection of sites, constituents monitored, and frequency of analysis will enable network users to make appropriate future changes to the monitoring network. (USGS)

  11. Young Valley Networks on Mars: Persistent Flow of Water in Lyot Crater, a Distinctive Amazonian Impact Basin Microenvironment

    NASA Astrophysics Data System (ADS)

    Dickson, J.; Fassett, C.; Head, J.

    2008-09-01

    gradient (Fig. 3). Regional slopes in the down-valley direction range from 0.36° to 6.12°, but most networks trend around the median for all valleys of 1.93°. Valleys start at a wide range of elevations, from ~-2883 m to ~-5684 m (mean = -3803.4 m). Valley walls appear uniformly fresh and no impact craters or ejecta blankets are observed on any of the valley floors (Fig. 1). Valleys emanate from the upslope margins of the stippled mantling unit along the crater rim and central peak ring and several terminate with depositional fans (Fig. 2). The valleys are superposed by the smoother mantling deposits observed on the flanks of isolated mesas, implying that valley formation occurred after the emplacement of the stippled mantling unit but before the deposition of the more-localized smooth mantling unit. Chronology Since we interpret the valleys as incising the stippled mantling unit, an accurate age for the stippled mantling unit provides a maximum age for valley formation. CTX imagery is the only data set that adequately resolves the stippled mantling unit in sufficient detail and spatial extent to perform accurate crater counts. Therefore we constrained our mapping of the unit to the three overlapping CTX frames in the eastern half of Lyot. We calculated the age for the stippled mantling unit using both the Neukum [15] and Hartmann [16] systems. In each system our counts yield a Middle Amazonian age, with a best-fit for our crater curve of ~1.5 Gyr in the Neukum [15] system and 0.78 Gyr in the Hartmann [16] system. This crater size-frequency determination is well-matched by production model isochrons and this young age is consistent with other stratigraphic constraints. Thus, we are confident that the valleys found in Lyot are Mid-Amazonian or younger. In either absolute age system, there appears to be a geologically significant (0.8 - 1.9 Gy) period of time between the formation of Lyot and the emplacement of the stippled mantling unit. Formation Numerical modelling has

  12. New Insights Into Valley Formation and Preservation: Geophysical Imaging of the Offshore Trinity River Paleovalley

    NASA Astrophysics Data System (ADS)

    Speed, C. M.; Swartz, J. M.; Gulick, S. P. S.; Goff, J.

    2017-12-01

    The Trinity River paleovalley is an offshore stratigraphic structure located on the inner continental shelf of the Gulf of Mexico offshore Galveston, Texas. Its formation is linked to the paleo-Trinity system as it existed across the continental shelf during the last glacial period. Newly acquired high-resolution geophysical data have imaged more complexity to the valley morphology and shelf stratigraphy than was previously captured. Significantly, the paleo-Trinity River valley appears to change in the degree of confinement and relief relative to the surrounding strata. Proximal to the modern shoreline, the interpreted time-transgressive erosive surface formed by the paleo-river system is broad and rugose with no single valley, but just 5 km farther offshore the system appears to become confined to a 10 km wide valley structure before again becoming unconfined once again 30 km offshore. Fluvial stratigraphy in this region has a similar degree of complexity in morphology and preservation. A dense geophysical survey of several hundred km is planned for Fall 2017, which will provide unprecedented imaging of the paleovalley morphology and associated stratigraphy. Our analysis leverages robust chirp processing techniques that allow for imaging of strata on the decimeter scale. We will integrate our geophysical results with a wide array of both newly collected and previously published sediment cores. This approach will allow us to address several key questions regarding incised valley formation and preservation on glacial-interglacial timescales including: to what extent do paleo-rivers remain confined within a single broad valley structure, what is the fluvial systems response to transgression, and what stratigraphy is created and preserved at the transition from fluvial to estuarine environments? Our work illustrates that traditional models of incised valley formation and subsequent infilling potentially fail to capture the full breadth of dynamics of past river

  13. Martian channels and valleys - Their characteristics, distribution, and age

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Clow, G. D.

    1981-01-01

    The distribution and ages of Martian channels and valleys, which are generally believed to have been cut by running water, are examined with particular emphasis on the small branching networks referred to as runoff channels or valley networks. Valleys at latitudes from 65 deg S to 65 deg N were surveyed on Viking images at resolutions between 125 and 300 m. Almost all of the valleys are found in the old cratered terrain, in areas characterized by high elevations, low albedos and low violet/red ratios. The networks are deduced to have formed early in the history of the planet, with a formation rate declining rapidly shortly after the decline of the cratering rate 3.9 billion years ago. Two types of outflow channels are distinguished: unconfined, in which broad swaths of terrain are scoured, and confined, in which flow is restricted to discrete channels. Both types start at local sources, and have formed episodically throughout Martian history. Fretted channels, found mainly in two latitude belts characterized by relatively rapid erosion along escarpments, are explained by the lateral enlargement of other channels by mass wasting.

  14. A Quantitative Characterization and Classification of Martian Valley Networks: New Constraints on Mars' Early Climate and Its Variability in Space and Time

    NASA Astrophysics Data System (ADS)

    Grau Galofre, A.; Jellinek, M.

    2014-12-01

    Valley networks and outflow channels are among the most arresting features of Mars' surface. Remarkable similarities between the structure and complexity of individual Martian channels with certain fluvial systems on Earth supports a popular picture of a warm wet early Mars. A key assumption in this picture is that "typical" Martian examples adequately capture the average character of the majority of all valley networks. However, a full catalog of the distribution of geomorphologic variability of valley networks over Mars' surface geometry has never been established. Accordingly, we present the first planet-wide map in which we use statistical methods and theoretical arguments to classify Martian channels in terms of the mechanics governing their formation. Using new metrics for the size, shape and complexity of channel networks, which we ground truth against a large suite of terrestrial examples, we distinguish drainage patterns related to glacial, subglacial, fluvial and lava flows. Preliminary results separate lava flows from other flow features and show that these features can be divided into three different groups of increasing complexity. The characteristics of these groups suggest that they represent fluvial, subglacial and glacial features. We show also that the relative proportions of the different groups varies systematically, with higher density of river-like features located in low longitudes and increasing glacial-like features as we move east or west. Our results suggest that the early Martian climate and hydrologic cycle was richer and more diverse than originally thought.

  15. Formation and evolution of a drainage network during the Pleistocene through a process of homoclinal shifting initiated by headward erosion.

    NASA Astrophysics Data System (ADS)

    Castelltort, F. Xavier; Carles Balasch, J.; Cirés, Jordi; Colombo, Ferran

    2017-04-01

    A homoclinal shifting process in NE of the Ebro basin, NE Iberian Peninsula, reorganized an old flow network into a new one. This process was initiated by the reactivation of a major normal fault (Amer Fault). An anaclinal stream, flowing to the hanging wall block, incised in the fault-line scarp, accessing by headward erosion the less resistant Paleogene units. The result was the formation of a sequence of strike valleys. The first valleys are situated in a more elevated topographical position than the valleys formed later. The last and the most important valley is La Plana de Vic, which is being emptied by differential erosion in front of the resistant base layer. The study of the lateral migration of a drainage basin since its initial stages has allowed the recognition of the layout of a drainage network and its model of evolution. The new drainage network includes three different subsystems. The main subsystem consists of stream courses flowing along the strike valley. While the other two subsystems flow into the main or can flow directly to the basin sink. These are the anaclinal subsystem, which drains the scarp face of the asymmetric valley, and the cataclinal subsystem, which drains the cuesta. The process of homoclinal shifting makes the strike streams migrate laterally and dip in the less resistant unit. This migration implies the reorganization of the other two tributary subsystems. The sequence of reorganizations may be preserved on the resistant bedrock of the cuesta. This allows the reconstruction of the route of the headward erosion of the initial anaclinal stream course through remnants of ancient strike streams flowing into former basin sinks, and its cataclinal tributaries draining the cuesta. In the case study of La Plana de Vic the migration route of the basin sink can be reconstructed from its initial position, Early Pleistocene, until present day. Besides, reorganization of the cataclinal network can also be recognized. During the lateral

  16. Morphological properties of tunnel valleys of the southern sector of the Laurentide Ice Sheet and implications for their formation

    NASA Astrophysics Data System (ADS)

    Livingstone, Stephen J.; Clark, Chris D.

    2016-07-01

    Tunnel valleys have been widely reported on the bed of former ice sheets and are considered an important expression of subglacial meltwater drainage. Although known to have been cut by erosive meltwater flow, the water source and development of channels has been widely debated; ranging between outburst flood events through to gradually occurring channel propagation. We have mapped and analysed the spatial pattern and morphometry of tunnel valleys and associated glacial landforms along the southern sector of the former Laurentide Ice Sheet from high-resolution digital elevation models. Around 2000 tunnel valleys have been mapped, revealing an organised pattern of sub-parallel, semi-regularly spaced valleys that form in distinctive clusters. The tunnel valleys are typically < 20 km long, and 0.5-3 km wide, although their width varies considerably down-valley. They preferentially terminate at moraines, which suggests that formation is time dependent; while we also observe some tunnel valleys that have grown headwards out of hill-hole pairs. Analysis of cross-cutting relationships between tunnel valleys, moraines and outwash fans permits reconstruction of channel development in relation to the retreating ice margin. This palaeo-drainage reconstruction demonstrates incremental growth of most valleys, with some used repeatedly or for long periods, during deglaciation, while others were abandoned shortly after their formation. Our data and interpretation support gradual (rather than a single-event) formation of most tunnel valleys with secondary contributions from flood drainage of subglacial and or supraglacially stored water down individual tunnel valleys. The distribution and morphology of tunnel valleys is shown to be sensitive to regional factors such as basal thermal regime, ice and bed topography, timing and climate.

  17. Late Noachian Climate Of Mars: Constraints From Valley Network System Formation Times And The Intermittencies (Episodic/Periodic And Punctuated).

    NASA Astrophysics Data System (ADS)

    Head, James

    2017-04-01

    Formation of Late Noachian-Early Hesperian (LN-EH) valley network systems (VNS) signaled the presence of warm/wet conditions generating several hypotheses for climates permissive of these conditions. To constrain options for the ambient Noachian climate, we examine estimates for time required to carve channels/deltas and total duration implied by plausible intermittencies. Formation Times for VN, OBL, Deltas, Fans: A synthesis of required timescales show that even with the longest estimated continuous duration of VN formation/intermittencies, total time to carve the VN does not exceed 106 years, <˜0.25% of the total Noachian. Intermittency/episodicity assumptions are climate-model dependent (e.g., most workers use Earth-like fluvial activity and intermittency). Noachian-Early Hesperian Climate Models: 1) Warm and wet/semiarid/arid climate: Sustained background MAT >273 K, hydrological system vertically integrated, and rainfall occurs to recharge the aquifer. Two subtypes: a) "Rainfall/Fluvial Erosion-Dominated Warm and Wet Model": "Rainfall and surface runoff" persist throughout Noachian to explain crater degradation, and a LN-EH short rapidly ending terminal epoch. b) "Recharge Evaporation/Evaporite Dominated Warm and Wet Model": Sustained period of equatorial/mid-latitude precipitation and a vertically integrated hydrological system driven by evaporative upwelling and fluctuating shallow water table playa environments account for sulfate evaporate environments at Meridiani Planum. Sustained temperatures >273 K are required for extended periods (107-108 years). 2) Cold and icy climate: Sustained background temperatures extremely low (MAT ˜225 K), cryosphere is globally continuous, hydrological system is horizontally stratified, separating groundwater system from surface; no combination of spin-axis/orbital perturbations can raise MAT to 273 K. Adiabatic cooling effects transfer water to high altitudes, leading to "Late Noachian Icy Highlands Model". VNS cannot

  18. Fluvioglacial Formation Scenario for Valleys and Ridges at the Deuteronilus Contact of the Isidis Basin, Mars

    NASA Astrophysics Data System (ADS)

    Erkeling, G.; Reiss, D.; Hiesinger, H.; Ivanov, M. A.; Bernhardt, H.

    2012-09-01

    Numerous small valleys are incised into the plains of the southern Isidis basin rim between 82˚/90˚E and 3˚/6˚N and trend tens of kilometers to the north following the topographic gradient toward the center of the basin. The valleys originate exclusively north of the mountainous terrain of the Libya Montes (Fig. 1A, red unit) [e.g.,1-4] and are indicative of Late Hesperian fluvial activity [1,4,6], which was spatially and temporarily distinct from intense and repeated Noachian fluvial activity in the Libya Montes [1-4,6]. Most of the valleys terminate on the smooth Isidis exterior plains (hereafter IEP; Fig. 1A, green unit). A few of them continue across the boundary between the IEP and the knobby Isidis interior plains (hereafter IIP; Fig. 1A, blue unit) and occur then as sinuous ridges in the IIP. This boundary has been discussed as a part of the Deuteronilus contact [e.g.,7,8] and is characterised by an onlap of the IIP onto the IEP, i.e., the IIP are superposed on the IEP. Therefore, the ridges occur stratigraphically higher than the valleys. Because the valleys transition to ridges into less-eroded terrain, their formation is difficult to explain by relief inversion scenarios proposed for sinuous ridges common on Mars [e.g.,9-11] and Earth [e.g.,12,13]. Based on our investigations we propose an alternative fluvioglacial formation scenario for the morphologic-geologic setting at the Deuteronilus contact. We suggest that the ridges could be glacial meltwater or subglacial streams (eskers) similar to possible eskers identified elsewhere on Mars and Earth [e.g.,14-17] and that their formation is associated with a stationary ice sheet of a proposed Late Hesperian Isidis sea that readily froze and sublimed and resulted in the formation of the IIP [4,6]. The proposed formation scenario has also implications for the formation of the Isidis thumbprint terrain (hereafter TPT) [e.g.,5,6] that is located in the IIP.

  19. Galaxy Zoo: evidence for diverse star formation histories through the green valley

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Marshall, P. J.; Bamford, S.; Fortson, L.; Kaviraj, S.; Masters, K. L.; Melvin, T.; Nichol, R. C.; Skibba, R. A.; Willett, K. W.

    2015-06-01

    Does galaxy evolution proceed through the green valley via multiple pathways or as a single population? Motivated by recent results highlighting radically different evolutionary pathways between early- and late-type galaxies, we present results from a simple Bayesian approach to this problem wherein we model the star formation history (SFH) of a galaxy with two parameters, [t, τ] and compare the predicted and observed optical and near-ultraviolet colours. We use a novel method to investigate the morphological differences between the most probable SFHs for both disc-like and smooth-like populations of galaxies, by using a sample of 126 316 galaxies (0.01 < z < 0.25) with probabilistic estimates of morphology from Galaxy Zoo. We find a clear difference between the quenching time-scales preferred by smooth- and disc-like galaxies, with three possible routes through the green valley dominated by smooth- (rapid time-scales, attributed to major mergers), intermediate- (intermediate time-scales, attributed to minor mergers and galaxy interactions) and disc-like (slow time-scales, attributed to secular evolution) galaxies. We hypothesize that morphological changes occur in systems which have undergone quenching with an exponential time-scale τ < 1.5 Gyr, in order for the evolution of galaxies in the green valley to match the ratio of smooth to disc galaxies observed in the red sequence. These rapid time-scales are instrumental in the formation of the red sequence at earlier times; however, we find that galaxies currently passing through the green valley typically do so at intermediate time-scales.†

  20. Quaternary fossil fish from the Kibish Formation, Omo Valley, Ethiopia.

    PubMed

    Trapani, Josh

    2008-09-01

    The late Quaternary Kibish Formation of the Omo Valley, southwestern Ethiopia, preserves environments reflecting a history of fluctuations in the level of nearby Lake Turkana over the past 200,000 years. The Kibish Formation has yielded a diverse mammalian fauna (as well as birds and crocodiles), stone tools, and the oldest anatomically modern Homo sapiens. Fish, the most common vertebrate fossils in this unit, are reported in this study. Catfish (especially clariids and Synodontis) and Nile perch (Lates niloticus) predominate, but the gymnarchid Gymnarchus, a cyprinid (Barbus), tigerfish (Hydrocynus), pufferfish (Tetraodon), and other catfish are also present. In total, nine teleost genera are found in the Kibish Formation, representing a subset of the 37 genera that constitute the modern Omo-Turkana ichthyofauna. Several taxa present in the modern fauna, including Polypterus and members of the family Cichlidae, are not found in the Kibish deposits. Most specimens are preserved as disarticulated or broken skeletal elements, but some preservation of articulated elements (e.g., sets of vertebrae, crania with lower jaws or cleithra) also occurs. Many of the catfish and Nile perch specimens are larger than the largest reported from the modern river or lake. Faunas of Kibish Members I and III closely resemble one another; the fauna from Member IV contains only the three most common taxa (Clarias, Synodontis, Lates), though this may result from insufficient sampling. Barbed bone points have been collected from the upper part of the formation, indicating a long association between the human inhabitants and the fish fauna of the Omo Valley.

  1. Ground-water quality and geochemistry of Las Vegas Valley, Clark County, Nevada, 1981-83; implementation of a monitoring network

    USGS Publications Warehouse

    Dettinger, M.D.

    1987-01-01

    As a result of rapid urban growth in Las Vegas Valley, rates of water use and wastewater disposal have grown rapidly during the last 25 years. Concern has developed over the potential water quality effects of this growth. The deep percolation of wastewater and irrigation return flow (much of which originates as imported water from Lake Mead), along with severe overdraft conditions in the principal aquifers of the valley, could combine to pose a long-term threat to groundwater quality. The quantitative investigations of groundwater quality and geochemical conditions in the valley necessary to address these concerns would include the establishment of data collection networks on a valley-wide scale that differ substantially from existing networks. The valley-wide networks would have a uniform areal distribution of sampling sites, would sample from all major depth zones, and would entail repeated sampling from each site. With these criteria in mind, 40 wells were chosen for inclusion in a demonstration monitoring network. Groundwater in the northern half of the valley generally contains 200 to 400 mg/L of dissolved solids, and is dominated by calcium, magnesium , and bicarbonate ions, reflecting a chemical equilibrium between the groundwater and the dominantly carbonate rocks in the aquifers of this area. The intermediate to deep groundwater in the southern half of the valley is of poorer quality (containing 700 to 1,500 mg/L of dissolved solids) and is dominated by calcium, magnesium, sulfate, and bicarbonate ions, reflecting the occurrence of other rock types including evaporite minerals among the still-dominant carbonate rocks in the aquifers of this part of the valley. The poorest quality groundwater in the valley is generally in the lowland parts of the valley in the first few feet beneath the water table, where dissolved solids concentrations range from 2,000 to > 7,000 mg/L , and probably reflects the effects of evaporite dissolution, secondary recharge, and

  2. A conceptual ground-water-quality monitoring network for San Fernando Valley, California

    USGS Publications Warehouse

    Setmire, J.G.

    1985-01-01

    A conceptual groundwater-quality monitoring network was developed for San Fernando Valley to provide the California State Water Resources Control Board with an integrated, basinwide control system to monitor the quality of groundwater. The geology, occurrence and movement of groundwater, land use, background water quality, and potential sources of pollution were described and then considered in designing the conceptual monitoring network. The network was designed to monitor major known and potential point and nonpoint sources of groundwater contamination over time. The network is composed of 291 sites where wells are needed to define the groundwater quality. The ideal network includes four specific-purpose networks to monitor (1) ambient water quality, (2) nonpoint sources of pollution, (3) point sources of pollution, and (4) line sources of pollution. (USGS)

  3. Strong Motion Network of Medellín and Aburrá Valley: technical advances, seismicity records and micro-earthquake monitoring

    NASA Astrophysics Data System (ADS)

    Posada, G.; Trujillo, J. C., Sr.; Hoyos, C.; Monsalve, G.

    2017-12-01

    The tectonics setting of Colombia is determined by the interaction of Nazca, Caribbean and South American plates, together with the Panama-Choco block collision, which makes a seismically active region. Regional seismic monitoring is carried out by the National Seismological Network of Colombia and the Accelerometer National Network of Colombia. Both networks calculate locations, magnitudes, depths and accelerations, and other seismic parameters. The Medellín - Aburra Valley is located in the Northern segment of the Central Cordillera of Colombia, and according to the Colombian technical seismic norm (NSR-10), is a region of intermediate hazard, because of the proximity to seismic sources of the Valley. Seismic monitoring in the Aburra Valley began in 1996 with an accelerometer network which consisted of 38 instruments. Currently, the network consists of 26 stations and is run by the Early Warning System of Medellin and Aburra Valley (SIATA). The technical advances have allowed the real-time communication since a year ago, currently with 10 stations; post-earthquake data is processed through operationally near-real-time, obtaining quick results in terms of location, acceleration, spectrum response and Fourier analysis; this information is displayed at the SIATA web site. The strong motion database is composed by 280 earthquakes; this information is the basis for the estimation of seismic hazards and risk for the region. A basic statistical analysis of the main information was carried out, including the total recorded events per station, natural frequency, maximum accelerations, depths and magnitudes, which allowed us to identify the main seismic sources, and some seismic site parameters. With the idea of a more complete seismic monitoring and in order to identify seismic sources beneath the Valley, we are in the process of installing 10 low-cost shake seismometers for micro-earthquake monitoring. There is no historical record of earthquakes with a magnitude

  4. Venusian channels and valleys - Distribution and volcanological implications

    NASA Technical Reports Server (NTRS)

    Komatsu, Goro; Baker, Victor R.; Gulick, Virginia C.; Parker, Timothy J.

    1993-01-01

    An updated map is presented which shows the distribution of more than 200 channels and valleys on Venus. A large number of channels are concentrated in equatorial regions characterized by highlands, rift and fracture zones, an associated volcanic features. Many channels associated with flow deposits are similar to typical terrestrial lava drainage channels. They are associated with a wide range of volcanic edifices. More than half of the sinuous rilles are associated with coronae, coronalike features, or arachnoids. Corona volcanism driven by mantle plume events may explain this association. Many valley network are observed in highlands and in association with coronae, coronalike features, or arachnoids. This indicates that highlands and coronae provided fractures and flow-viscosity lavas, both of which seem to be required for network formation by lava sapping processes. Canali-type channels have a unique distribution limited to some plains regions.

  5. A Hierarchical Network Approach for Modeling Rift Valley Fever Epidemics with Applications in North America

    PubMed Central

    Xue, Ling; Cohnstaedt, Lee W.; Scott, H. Morgan; Scoglio, Caterina

    2013-01-01

    Rift Valley fever is a vector-borne zoonotic disease which causes high morbidity and mortality in livestock. In the event Rift Valley fever virus is introduced to the United States or other non-endemic areas, understanding the potential patterns of spread and the areas at risk based on disease vectors and hosts will be vital for developing mitigation strategies. Presented here is a general network-based mathematical model of Rift Valley fever. Given a lack of empirical data on disease vector species and their vector competence, this discrete time epidemic model uses stochastic parameters following several PERT distributions to model the dynamic interactions between hosts and likely North American mosquito vectors in dispersed geographic areas. Spatial effects and climate factors are also addressed in the model. The model is applied to a large directed asymmetric network of 3,621 nodes based on actual farms to examine a hypothetical introduction to some counties of Texas, an important ranching area in the United States of America. The nodes of the networks represent livestock farms, livestock markets, and feedlots, and the links represent cattle movements and mosquito diffusion between different nodes. Cattle and mosquito (Aedes and Culex) populations are treated with different contact networks to assess virus propagation. Rift Valley fever virus spread is assessed under various initial infection conditions (infected mosquito eggs, adults or cattle). A surprising trend is fewer initial infectious organisms result in a longer delay before a larger and more prolonged outbreak. The delay is likely caused by a lack of herd immunity while the infection expands geographically before becoming an epidemic involving many dispersed farms and animals almost simultaneously. Cattle movement between farms is a large driver of virus expansion, thus quarantines can be efficient mitigation strategy to prevent further geographic spread. PMID:23667453

  6. A hierarchical network approach for modeling Rift Valley fever epidemics with applications in North America.

    PubMed

    Xue, Ling; Cohnstaedt, Lee W; Scott, H Morgan; Scoglio, Caterina

    2013-01-01

    Rift Valley fever is a vector-borne zoonotic disease which causes high morbidity and mortality in livestock. In the event Rift Valley fever virus is introduced to the United States or other non-endemic areas, understanding the potential patterns of spread and the areas at risk based on disease vectors and hosts will be vital for developing mitigation strategies. Presented here is a general network-based mathematical model of Rift Valley fever. Given a lack of empirical data on disease vector species and their vector competence, this discrete time epidemic model uses stochastic parameters following several PERT distributions to model the dynamic interactions between hosts and likely North American mosquito vectors in dispersed geographic areas. Spatial effects and climate factors are also addressed in the model. The model is applied to a large directed asymmetric network of 3,621 nodes based on actual farms to examine a hypothetical introduction to some counties of Texas, an important ranching area in the United States of America. The nodes of the networks represent livestock farms, livestock markets, and feedlots, and the links represent cattle movements and mosquito diffusion between different nodes. Cattle and mosquito (Aedes and Culex) populations are treated with different contact networks to assess virus propagation. Rift Valley fever virus spread is assessed under various initial infection conditions (infected mosquito eggs, adults or cattle). A surprising trend is fewer initial infectious organisms result in a longer delay before a larger and more prolonged outbreak. The delay is likely caused by a lack of herd immunity while the infection expands geographically before becoming an epidemic involving many dispersed farms and animals almost simultaneously. Cattle movement between farms is a large driver of virus expansion, thus quarantines can be efficient mitigation strategy to prevent further geographic spread.

  7. Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data

    NASA Astrophysics Data System (ADS)

    Oldenborger, G. A.; Logan, C. E.; Hinton, M. J.; Pugin, A. J.-M.; Sapia, V.; Sharpe, D. R.; Russell, H. A. J.

    2016-05-01

    In glaciated terrain, buried valleys often host aquifers that are significant groundwater resources. However, given the range of scales, spatial complexity and depth of burial, buried valleys often remain undetected or insufficiently mapped. Accurate and thorough mapping of bedrock topography is a crucial step in detecting and delineating buried valleys and understanding formative valley processes. We develop a bedrock mapping procedure supported by the combination of seismic reflection data and helicopter time-domain electromagnetic data with water well records for the Spiritwood buried valley aquifer system in Manitoba, Canada. The limited spatial density of water well bedrock observations precludes complete depiction of the buried valley bedrock topography and renders the water well records alone inadequate for accurate hydrogeological model building. Instead, we leverage the complementary strengths of seismic reflection and airborne electromagnetic data for accurate local detection of the sediment-bedrock interface and for spatially extensive coverage, respectively. Seismic reflection data are used to define buried valley morphology in cross-section beneath survey lines distributed over a regional area. A 3D model of electrical conductivity is derived from inversion of the airborne electromagnetic data and used to extrapolate buried valley morphology over the entire survey area. A spatially variable assignment of the electrical conductivity at the bedrock surface is applied to different features of the buried valley morphology identified in the seismic cross-sections. Electrical conductivity is then used to guide construction of buried valley shapes between seismic sections. The 3D locus of points defining each morphological valley feature is constructed using a path optimization routine that utilizes deviation from the assigned electrical conductivities as the cost function. Our resulting map represents a bedrock surface of unprecedented detail with more

  8. An Ancient Valley Network

    NASA Image and Video Library

    2017-05-09

    Most of the oldest terrains on Mars have eroded into branching valleys, as seen here in by NASA's Mars Reconnaisance Orbiter, much like many land regions of Earth are eroded by rain and snowmelt runoff. This is the primary evidence for major climate change on Mars billions of years ago. How the climate of Mars could have supported a warmer and wetter environment has been the subject of scientific debates for 40 years. A full-resolution enhanced color closeup reveals details in the bedrock and dunes on the valley floor (upper left). The bedrock of ancient Mars has been hardened and cemented by groundwater. https://photojournal.jpl.nasa.gov/catalog/PIA21630

  9. Late Noachian fluvial erosion on Mars: Cumulative water volumes required to carve the valley networks and grain size of bed-sediment

    NASA Astrophysics Data System (ADS)

    Rosenberg, Eliott N.; Head, James W., III

    2015-11-01

    Our goal is to quantify the cumulative water volume that was required to carve the Late Noachian valley networks on Mars. We employ an improved methodology in which fluid/sediment flux ratios are based on empirical data, not assumed. We use a large quantity of data from terrestrial rivers to assess the variability of actual fluid/sediment flux sediment ratios. We find the flow depth by using an empirical relationship to estimate the fluid flux from the estimated channel width, and then using estimated grain sizes (theoretical sediment grain size predictions and comparison with observations by the Curiosity rover) to find the flow depth to which the resulting fluid flux corresponds. Assuming that the valley networks contained alluvial bed rivers, we find, from their current slopes and widths, that the onset of suspended transport occurs near the sand-gravel boundary. Thus, any bed sediment must have been fine gravel or coarser, whereas fine sediment would be carried downstream. Subsequent to the cessation of fluvial activity, aeolian processes have partially redistributed fine-grain particles in the valleys, often forming dunes. It seems likely that the dominant bed sediment size was near the threshold for suspension, and assuming that this was the case could make our final results underestimates, which is the same tendency that our other assumptions have. Making this assumption, we find a global equivalent layer (GEL) of 3-100 m of water to be the most probable cumulative volume that passed through the valley networks. This value is similar to the ∼34 m water GEL currently on the surface and in the near-surface in the form of ice. Note that the amount of water required to carve the valley networks could represent the same water recycled through a surface valley network hydrological system many times in separate or continuous precipitation/runoff/collection/evaporation/precipitation cycles.

  10. Dust input in the formation of rock varnish from the Dry Valleys (Antarctica)

    NASA Astrophysics Data System (ADS)

    Zerboni, A.; Guglielmin, M.

    2017-12-01

    Rock varnish is a glossy, yellowish to dark brown coating that covers geomorphically stable, aerially exposed rock surfaces and landforms in warm and cold arid lands. In warm deserts, rock varnish consists of clay minerals, Mn-Fe oxides/hydroxides, and Si+alkalis dust; it occasionally containis sulphates, phosphates, and organic remains. In Antarctica, rock varnish developed on a variety of bedrocks and has been described being mostly formed of Si, Al, Fe, and sulphates, suggesting a double process in its formation, including biomineralization alternated to dust accretion. We investigated rock coatings developed on sandstones outcropping in the Dry Valleys of Antarctica and most of the samples highlithed an extremely complex varnish structure, alternating tihn layer of different chemical compostion. Optical microscope evidenced the occurrence of highly birefringent minerals, occasionally thinly laminated and consisitng of Si and Al-rich minerals (clays). These are interlayered by few micron-thick dark lenses and continous layers. The latter are well evident under the scanning electron microscope and chemical analysis confirmed that they consist of different kinds of sulphates; jarosite is the most represented species, but gypsum crystals were also found. Fe-rich hypocoatings and intergranula crusts were also detected, sometimes preserving the shape of the hyphae they have replaced. Moreover, small weathering pits on sandstone surface display the occurrence of an amorphous, dark Mn/Fe-rich rock varnish. The formation of rock varnish in the Dry Valleys is a complex process, which required the accretion of airborne dust of variable composition and subsequent recrystallization of some constituent, possibly promoted by microorganisms. In particualr, the formation of sulphates seems to preserve the memory of S-rich dust produced by volcanic eruptions. On the contrary, the formation of Mn-rich varnish should be in relation with the occurrence of higher environmental

  11. Lithofacies of Spencer Formation, western Tualatin Valley, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Atta, R.O.

    The Spencer Formation crops out in a narrow band that trends north-northwest on the western edge of the Willamette and Tualatin Valleys, Oregon. It apparently conformably overlies mud rocks of either the Yamhill or the Nestucca Formation and is conformably overlain by the Pittsburgh Bluff Formation. The Spencer Formation consists of two members (informal): a lower highly micaceous sandstone (800-1000 ft) and an upper member that is micaceous siltstone and mudstone (1000-1300 ft). The lower member includes an upper part that is light-gray to creamy-gray, silty to muddy, pebbly lithic arkose to feldspathic litharenite, with minor arkose. Sorting is poormore » and beds may be laminated to ripple cross-laminated or massive and bioturbated with abundant mollusk shells, carbonized wood, and burrows. The lower part of the lower member is medium-gray to greenish-gray, silty, pumiceous lithic arkose to feldspathic litharenite. The texture tends to be more uniform and better sorted than that of the upper part of the member. Bedding is commonly massive due to bioturbation. The upper member is medium to dark-gray mudstone with thin pebble-conglomerate lenses. It intertongues with the lower member. Bioturbation, burrows, and carbonized wood are common. The trend in depositional environments appears to be from outer to mid-neritic (lower part, lower member) to shallow neritic, nearshore, and lagoonal (upper part, lower member, and upper member). The provenance of the Spencer Formation includes both proximal volcanics and distant plutonic and high-grade metamorphics.« less

  12. Martian channels and valleys: Their characteristics, distribution, and age

    USGS Publications Warehouse

    Carr, M.H.; Clow, G.D.

    1981-01-01

    All Martian channels and valleys visible at a resolution of 125 to 300 meters between 65??N and 65??S were mapped at a scale of 1:5,000,000 and the maps then digitized. Correlations of valley presence with other surface features show that almost all valleys are in the old cratered terrain. preferentially in areas of low albedo, low violet/red ratios, and high elevation. The networks are open, the individual drainage basins are small relative to Earth, and large distances separate the basins, features which all suggest an immature drainage system. The simplest explanation of the correlations and the restriction of valley networks to old terrain is that the channels themselves are old, and that the climatic conditions necessary for their formation did not prevail for long after the decline in the cratering rate around 3.9 billion years ago. Two types of outflow channel are distinguished: unconfined, in which broad swaths of terrain are scoured, and confined, in which flow is restricted to discrete channels. The outflow channels have a wide range of ages and may form under present climatic conditions. Fretted channels are largely restrited to two latitude belts centered on 40??N and 45??S, where relatively rapid erosion along escarpments results from mass wasting. They probably form by enlargement of preexisting channels by escarpment retreat. ?? 1981.

  13. Dynamic tubulation of mitochondria drives mitochondrial network formation.

    PubMed

    Wang, Chong; Du, Wanqing; Su, Qian Peter; Zhu, Mingli; Feng, Peiyuan; Li, Ying; Zhou, Yichen; Mi, Na; Zhu, Yueyao; Jiang, Dong; Zhang, Senyan; Zhang, Zerui; Sun, Yujie; Yu, Li

    2015-10-01

    Mitochondria form networks. Formation of mitochondrial networks is important for maintaining mitochondrial DNA integrity and interchanging mitochondrial material, whereas disruption of the mitochondrial network affects mitochondrial functions. According to the current view, mitochondrial networks are formed by fusion of individual mitochondria. Here, we report a new mechanism for formation of mitochondrial networks through KIF5B-mediated dynamic tubulation of mitochondria. We found that KIF5B pulls thin, highly dynamic tubules out of mitochondria. Fusion of these dynamic tubules, which is mediated by mitofusins, gives rise to the mitochondrial network. We further demonstrated that dynamic tubulation and fusion is sufficient for mitochondrial network formation, by reconstituting mitochondrial networks in vitro using purified fusion-competent mitochondria, recombinant KIF5B, and polymerized microtubules. Interestingly, KIF5B only controls network formation in the peripheral zone of the cell, indicating that the mitochondrial network is divided into subzones, which may be constructed by different mechanisms. Our data not only uncover an essential mechanism for mitochondrial network formation, but also reveal that different parts of the mitochondrial network are formed by different mechanisms.

  14. Accelerated thermokarst formation in the McMurdo Dry Valleys, Antarctica.

    PubMed

    Levy, Joseph S; Fountain, Andrew G; Dickson, James L; Head, James W; Okal, Marianne; Marchant, David R; Watters, Jaclyn

    2013-01-01

    Thermokarst is a land surface lowered and disrupted by melting ground ice. Thermokarst is a major driver of landscape change in the Arctic, but has been considered to be a minor process in Antarctica. Here, we use ground-based and airborne LiDAR coupled with timelapse imaging and meteorological data to show that 1) thermokarst formation has accelerated in Garwood Valley, Antarctica; 2) the rate of thermokarst erosion is presently ~ 10 times the average Holocene rate; and 3) the increased rate of thermokarst formation is driven most strongly by increasing insolation and sediment/albedo feedbacks. This suggests that sediment enhancement of insolation-driven melting may act similarly to expected increases in Antarctic air temperature (presently occurring along the Antarctic Peninsula), and may serve as a leading indicator of imminent landscape change in Antarctica that will generate thermokarst landforms similar to those in Arctic periglacial terrains.

  15. Accelerated thermokarst formation in the McMurdo Dry Valleys, Antarctica

    PubMed Central

    Levy, Joseph S.; Fountain, Andrew G.; Dickson, James L.; Head, James W.; Okal, Marianne; Marchant, David R.; Watters, Jaclyn

    2013-01-01

    Thermokarst is a land surface lowered and disrupted by melting ground ice. Thermokarst is a major driver of landscape change in the Arctic, but has been considered to be a minor process in Antarctica. Here, we use ground-based and airborne LiDAR coupled with timelapse imaging and meteorological data to show that 1) thermokarst formation has accelerated in Garwood Valley, Antarctica; 2) the rate of thermokarst erosion is presently ~ 10 times the average Holocene rate; and 3) the increased rate of thermokarst formation is driven most strongly by increasing insolation and sediment/albedo feedbacks. This suggests that sediment enhancement of insolation-driven melting may act similarly to expected increases in Antarctic air temperature (presently occurring along the Antarctic Peninsula), and may serve as a leading indicator of imminent landscape change in Antarctica that will generate thermokarst landforms similar to those in Arctic periglacial terrains. PMID:23881292

  16. Stable isotopic evidence for fluid flow and fluid/rock interaction during thrust faulting in Pumpkin Valley shale and Rome Formation, east Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, B.K.; Haase, C.S.

    1989-08-01

    The Pumpkin Valley Shale and the underlying Rome Formation form the lower portions of the Copper Creek and White Oak Mountain thrust sheets in east Tennessee. The Pumpkin Valley Shale consists of shale and mudstone with subordinate amounts of interbedded siltstone. The Rome Formation is composed predominantly of sandstone with interbedded shale and siltstone toward the base of the formation. The percentage of illite increases from 20% to over 80% of the bulk clay mineralogy toward the base of the section. Porosity is occluded by quartz, phyllosilicate, and calcite cements. Both formations contain calcite-filled and, less commonly, quartz-filled Alleghenian fracturesmore » and joints.« less

  17. Smart Valley Infrastructure.

    ERIC Educational Resources Information Center

    Maule, R. William

    1994-01-01

    Discusses prototype information infrastructure projects in northern California's Silicon Valley. The strategies of the public and private telecommunications carriers vying for backbone services and industries developing end-user infrastructure technologies via office networks, set-top box networks, Internet multimedia, and "smart homes"…

  18. Star formation quenching in green valley galaxies at 0.5 ≲ z ≲ 1.0 and constraints with galaxy morphologies

    NASA Astrophysics Data System (ADS)

    Nogueira-Cavalcante, J. P.; Gonçalves, T. S.; Menéndez-Delmestre, K.; Sheth, K.

    2018-01-01

    We calculate the star formation quenching time-scales in green valley galaxies at intermediate redshifts (z ∼ 0.5-1) using stacked zCOSMOS spectra of different galaxy morphological types: spheroidal, disc-like, irregular and merger, dividing disc-like galaxies further into unbarred, weakly barred and strongly barred, assuming a simple exponentially decaying star formation history model and based on the H δ absorption feature and the 4000 Å break. We find that different morphological types present different star formation quenching time-scales, reinforcing the idea that the galaxy morphology is strongly correlated with the physical processes responsible for quenching star formation. Our quantification of the star formation quenching time-scale indicates that discs have typical time-scales 60 per cent to five times longer than that of galaxies presenting spheroidal, irregular or merger morphologies. Barred galaxies, in particular, present the slowest transition time-scales through the green valley. This suggests that although secular evolution may ultimately lead to gas exhaustion in the host galaxy via bar-induced gas inflows that trigger star formation activity, secular agents are not major contributors in the rapid quenching of galaxies at these redshifts. Galaxy interaction, associated with the elliptical, irregular and merger morphologies, contributes, to a more significant degree, to the fast transition through the green valley at these redshifts. In light of previous works suggesting that both secular and merger processes are responsible for the star formation quenching at low redshifts, our results provide an explanation to the recent findings that star formation quenching happened at a faster pace at z ∼ 0.8.

  19. Structure and formation of ant transportation networks

    PubMed Central

    Latty, Tanya; Ramsch, Kai; Ito, Kentaro; Nakagaki, Toshiyuki; Sumpter, David J. T.; Middendorf, Martin; Beekman, Madeleine

    2011-01-01

    Many biological systems use extensive networks for the transport of resources and information. Ants are no exception. How do biological systems achieve efficient transportation networks in the absence of centralized control and without global knowledge of the environment? Here, we address this question by studying the formation and properties of inter-nest transportation networks in the Argentine ant (Linepithema humile). We find that the formation of inter-nest networks depends on the number of ants involved in the construction process. When the number of ants is sufficient and networks do form, they tend to have short total length but a low level of robustness. These networks are topologically similar to either minimum spanning trees or Steiner networks. The process of network formation involves an initial construction of multiple links followed by a pruning process that reduces the number of trails. Our study thus illuminates the conditions under and the process by which minimal biological transport networks can be constructed. PMID:21288958

  20. Evidence for precipitation on Mars from dendritic valleys in the Valles Marineris area.

    PubMed

    Mangold, Nicolas; Quantin, Cathy; Ansan, Véronique; Delacourt, Christophe; Allemand, Pascal

    2004-07-02

    Dendritic valleys on the plateau and canyons of the Valles Marineris region were identified from Thermal Emission Imaging System (THEMIS) images taken by Mars Odyssey. The geomorphic characteristics of these valleys, especially their high degree of branching, favor formation by atmospheric precipitation. The presence of inner channels and the maturity of the branched networks indicate sustained fluid flows over geologically long periods of time. These fluvial landforms occur within the Late Hesperian units (about 2.9 to 3.4 billion years old), when Mars was thought to have been cold. Our results suggest a period of warmer conditions conducive to hydrological activity.

  1. Revisiting Valley Development on Martian Volcanoes Using MGS and Odyssey Data

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.

    2005-01-01

    The valley networks found on the slopes of Martian volcanoes represent an interesting subset of the Martian valley networks. Not only do the volcanoes constrain the possible geologic settings, they also provide a window into Martian valley development through time, as the volcanoes formed throughout the geologic history of Mars. Here I take another look at this intriguing subset of networks by revisiting conclusions reached in my earlier studies using the Viking imagery and the valleys on Hawaii as an analog. I then examine more recent datasets.

  2. Protocol for Communication Networking for Formation Flying

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Okino, Clayton; Gao, Jay; Clare, Loren

    2009-01-01

    An application-layer protocol and a network architecture have been proposed for data communications among multiple autonomous spacecraft that are required to fly in a precise formation in order to perform scientific observations. The protocol could also be applied to other autonomous vehicles operating in formation, including robotic aircraft, robotic land vehicles, and robotic underwater vehicles. A group of spacecraft or other vehicles to which the protocol applies could be characterized as a precision-formation- flying (PFF) network, and each vehicle could be characterized as a node in the PFF network. In order to support precise formation flying, it would be necessary to establish a corresponding communication network, through which the vehicles could exchange position and orientation data and formation-control commands. The communication network must enable communication during early phases of a mission, when little positional knowledge is available. Particularly during early mission phases, the distances among vehicles may be so large that communication could be achieved only by relaying across multiple links. The large distances and need for omnidirectional coverage would limit communication links to operation at low bandwidth during these mission phases. Once the vehicles were in formation and distances were shorter, the communication network would be required to provide high-bandwidth, low-jitter service to support tight formation-control loops. The proposed protocol and architecture, intended to satisfy the aforementioned and other requirements, are based on a standard layered-reference-model concept. The proposed application protocol would be used in conjunction with conventional network, data-link, and physical-layer protocols. The proposed protocol includes the ubiquitous Institute of Electrical and Electronics Engineers (IEEE) 802.11 medium access control (MAC) protocol to be used in the datalink layer. In addition to its widespread and proven use in

  3. Zeolite Formation and Weathering Processes in Dry Valleys of Antartica: Martian Analogs

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Wentworth, S. J.; McKay, D. S.; Socki, R. A.

    2004-01-01

    Terrestrial weathering processes in cold-desert climates such as the Dry Valleys of Antarctica may provide an excellent analog to chemical weathering and diagenesis of soils on Mars. Detailed studies of soil development and the chemical and mineralogical alterations occurring within soil columns in Wright Valley, Antarctica show incredible complexity in the upper meter of soil. Previous workers noted the ice-free Dry Valleys are the best terrestrial approximations to contemporary Mars. Images returned from the Pathfinder and Spirit landers show similarities to surfaces observed within the Dry Valleys. Similarities to Mars that exist in these valleys are: mean temperatures always below freezing (-20 C), no rainfall, sparse snowfall-rapidly removed by sublimation, desiccating winds, diurnal freeze-thaw cycles (even during daylight hours), low humidity, oxidative environment, relatively high solar radiation and low magnetic fields . The Dry Valley soils contain irregular distributions and low abundances of soil microorganisms that are somewhat unusual on Earth. Physical processes-such as sand abrasion-are dominant mechanisms of rock weathering in Antarctica. However, chemical weathering is also an important process even in such extreme climates. For example, ionic migration occurs even in frozen soils along liquid films on individual soil particles. It has also been shown that water with liquid-like properties is present in soils at temperatures on the order of approx.-80 C and it has been observed that the percentage of oxidized iron increases with increasing soil age and enrichments in oxidized iron occurs toward the surface. The presence of evaporates is evident and appear similar to "evaporite sites" within the Pathfinder and Spirit sites. Evaporites indicate ionic migration and chemical activity even in the permanently frozen zone. The presence of evaporates indicates that chemical weathering of rocks and possibly soils has been active. Authogenic zeolites have

  4. Formation of Particulate Matter during Wintertime Inversions in the Salt Lake Valley.

    NASA Astrophysics Data System (ADS)

    Hrdina, A. I. H.; Baasandorj, M.; Lin, J. C.; Murphy, J. G.; McKeen, S. A.

    2017-12-01

    In the wintertime, the air quality in Salt Lake City is frequently impacted by inversions that cause high levels of particulate matter. An inversion describes a highly stable air mass, where a cold air pool (CAP) is trapped by warmer air aloft. In the right conditions, these CAPs can persist for several days allowing the accumulation of various pollutants, such as NOx and NH3, leading to secondary particle formation. Concentrations of reactive trace gases (HCl, HNO3, HONO, NH3, SO2) and particle phase constituents (Cl-, NO2-, NO3-, SO42-, Na+, NH4+, K+, Mg2+, Ca2+) from particles less than 2.5 microns in diameter (PM2.5) were continuously measured using an online ambient ion monitor ion chromatograph (AIM-IC) within the Salt Lake Valley, Utah, from Jan 17 - Feb 21 2017, as part of the Utah Fine Particulate Study (UWFPS 2017). A consistent diurnal pattern of ammonia mixing ratios was observed, with mixing ratios ranging from 0.1 - 7 ppb. Two persistent cold air pool events occurred during the measurement period during which the suppression of vertical mixing led to the buildup of PM2.5 in the valley. The total PM2.5 level in the valley was as high as 60 μg m-3 and was dominated by ammonium nitrate. The air pollution transport within the valley during the entire campaign period was examined using Stochastic Time-Inverted Lagrangian Transport (STILT) model. Calculated flux footprints, based on back-trajectories with 15 minute time steps at a grid resolution of 0.1 degree, highlight the potential source regions for PM2.5 precursors during the observed PCAP events. Observations were also compared to output from the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) simulations of the UWFPS campaign.

  5. Primary state formation in the Viru Valley, north coast of Peru.

    PubMed

    Millaire, Jean-François

    2010-04-06

    The origins of urban life and functioning states are two of the most fascinating research problems in anthropological archeology and a topic that has intrigued generations of scholars working on the Peruvian north coast. In this region, Andeanists have documented the rise of Moche as a dominant culture during the first millennium A.D., and the emergence of urban life and stately institutions at this society's principal center. Although there is a broad consensus that Moche represents an archaic state, it is still unclear whether it is an example of primary state formation or a case of a second-generation state. To document this question, archaeological excavations were recently carried out at the Gallinazo Group site in the Virú Valley. Results from a radiocarbon dating program indicate that a functioning state probably emerged in this valley during the second century B.C., possibly preceding Moche by a few centuries. These results necessarily raise question regarding the nature of state development on the north coast of Peru and, in particular, whether there was a single center of state development in this region or multiple sites where similar conditions and processes led to the parallel emergence of functioning states.

  6. Scaling the Morphology of Sapping and Pressurized Groundwater Experiments to Martian Valleys

    NASA Astrophysics Data System (ADS)

    Marra, W. A.; Kleinhans, M. G.

    2013-12-01

    Various valleys exist on Mars, which shows the former existence of fluvial activity and thus liquid water at the surface. Although these valleys show similarities with some valleys on Earth, many morphological features are unique for Mars or are very rare on Earth. Therefore, we lack knowledge about the formative processes of these enigmatic valleys. In this study, we explored possible groundwater scenarios for the formation of these valleys using flume experiments, as there are no pure Earth analogues for these systems. We aim to infer their formative processes from morphological properties. A series of flume experiments were carried out in a 4x6x1 m experimental setup, where we observed the valley formation as result from seeping groundwater by both local and distal groundwater sources and by pressurized groundwater release. Time-lapse imagery and DEMs of the experiments show the morphological development, associated processes, and landscape evolution. Indicators of the processes where we particularly looked at were changes in valley slope, cross-sectional shape, the relations between valley dimensions, and regional landscape properties as drainage density and valley size distributions. Hydrological modelling assists in scaling the observed experimental features to real-world systems. Additionally, we looked at valleys on Earth in the Atacama Desert, at Box canyon in Idaho, valleys around Kohala on Hawaii and Apalachicola bluffs in Florida to test the applicability of our methods to real-world systems. In the seeping groundwater valleys, valleys develop due to a combination of mass-wasting failures, mudflows and fluvial flow. The latter two processes are expressed in the final morphology by a break in slope. The mass wasting processes result in U-shaped valleys, which are more pronounced in distal groundwater cases. However, in real-world cases of similar shaped valleys, the cross-sectional shape seems strongly influenced by the strength of the material as well

  7. Networks for Autonomous Formation Flying Satellite Systems

    NASA Technical Reports Server (NTRS)

    Knoblock, Eric J.; Konangi, Vijay K.; Wallett, Thomas M.; Bhasin, Kul B.

    2001-01-01

    The performance of three communications networks to support autonomous multi-spacecraft formation flying systems is presented. All systems are comprised of a ten-satellite formation arranged in a star topology, with one of the satellites designated as the central or "mother ship." All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/lP over ATM protocol architecture within the formation the second system uses the IEEE 802.11 protocol architecture within the formation and the last system uses both of the previous architectures with a constellation of geosynchronous satellites serving as an intermediate point-of-contact between the formation and the terrestrial network. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IF queuing delay, and IP processing delay at the mother ship as well as application-level round-trip time for both systems, In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.

  8. Geology of the Greenwater Range, and the dawn of Death Valley, California—Field guide for the Death Valley Natural History Conference, 2013

    USGS Publications Warehouse

    Calzia, J.P.; Rämö, O.T.; Jachens, Robert; Smith, Eugene; Knott, Jeffrey

    2016-05-02

    Much has been written about the age and formation of Death Valley, but that is one—if not the last—chapter in the fascinating geologic history of this area. Igneous and sedimentary rocks in the Greenwater Range, one mountain range east of Death Valley, tell an earlier story that overlaps with the formation of Death Valley proper. This early story has been told by scientists who have studied these rocks for many years and continue to do so. This field guide was prepared for the first Death Valley Natural History Conference and provides an overview of the geology of the Greenwater Range and the early history (10–0 Ma) of Death Valley.

  9. Hesperian-aged Valleys on Martian Volcanoes: Snowmelt, Drainage, and Erosion on Ceraunius Tholus

    NASA Astrophysics Data System (ADS)

    Fassett, C. I.; Head, J. W.

    2006-12-01

    Most valley networks on Mars appear to have been formed during the Noachian. However, there are a few locations where valleys incise younger surfaces, including the Hesperian-aged volcanoes Ceraunius Tholus and Hecates Tholus (Gulick and Baker, 1990). Both of these volcanoes are characterized by numerous small radial valleys on their flanks (widths <~500 m). Ceraunius Tholus also has a set of large canyons on its north flank that appear qualitatively different from the smaller features (width ~2 km). The largest of these canyons originates near the lowest part of the caldera, continues 40 km down the north flank, and debauches into Rahe Crater (an oblique impact crater) where it formed a depositional fan. We have been exploring the origin of these relatively young valley features to help constrain valley formation mechanism on Mars. Recent study of climate change on Mars suggests that many low-latitude regions (especially large volcanic edifices) were periodically the sites of snow accumulation, likely triggered by variations in spin-axis/orbital parameters. As with earlier work on Hecates Tholus (Fassett and Head, 2006), numerical modeling suggests that conductive cooling from intrusions of plausible geometry within Ceraunius Tholus would provide sufficient surface heat flux to melt snowpack of a few hundred meters in thickness on these volcanoes. We interpret this process to have formed the radial valleys. Due to the geometry of the summit, meltwater would also have accumulated in the summit caldera, forming a caldera lake of significant volume. It appears that catastrophic drainage of this summit caldera lake may have formed the large canyons, in a manner most akin to terrestrial jökulhaups. The hypothesis that these canyons formed fluvially is supported by comes from the similarity in the volume of material removed from the valley and found in its depositional fan (both ~20 km3), consistent with its formation by a mechanism that was predominantly erosional

  10. Hesperian-Amazonian Transition Mid-Latitude Valleys: Markers of a Late Martian Climate Optima?

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey; Howard, A. D.; Parsons, Reid A.; Hobley, D. E.

    2012-01-01

    Recently the inventory of fluvial features that have been dated to the late Hesperian to early Amazonian epoch has increased dramatically, including a reassessment of the ages of the large alluvial fans and deltas (e.g., Eberswalde) to this time period. Mid-latitude Valleys (MLVs) are distinct from the older, more integrated Noachian-Hesperian Valley Networks which are deeply dissected, are generally of much larger spatial extent, and are more degraded. Although some MLVs involve rejuvenation of older Valley Networks, many MLVs are carved into smooth or rolling slopes and intercrater terrain. The MLVs range from a few meters to < 300 m in width, with nearly parallel valley walls and planforms that are locally sinuous. Although the MLVs in Newton and Gorgonum basins extend from the basin rims up to 75 km into the basin interior, most MLVs are shorter and often discontinuous. The occurrence of widespread MLVs suggest the possibility of their formation during one or perhaps more regional to global climatic episodes, possibly due to melting of seasonal to long-term accumulations of snow and ice. Temperatures warm enough to cause extensive melting may have occurred during optimal orbital and obliquity configurations, perhaps in conjunction with intensive volcanism releasing moisture and greenhouse gasses, or as a result of a brief episode of warming from a large impact. The concentration of MLVs to the northern and western basin slopes of Newton and Gorgonum basins suggests a possible aspect control to ice accumulation or melting. MLV activity occurred about at the same time as formation of the major outflow channels. A possible scenario is that delivery of water to the northern lowlands provided, through evaporation and sublimation, water that temporarily accumulated in the mid-southern latitudes as widespread ice deposits whose partial melting formed the MLVs and small, dominantly ice-covered lakes.

  11. Magmatic Intrusions and a Hydrothermal Origin for Fluvial Valleys on Mars

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C

    1998-01-01

    Numerical models of Martian hydrothermal systems demonstrate that systems associated with magmatic intrusions greater than several hundred cubic kilometers can provide sufficient groundwater outflow to form the observed fluvial valleys, if subsurface permeability exceeds about 1.0 darcy. Groundwater outflow increases with increasing intrusion volume and subsurface permeability and is relatively insensitive to intrusion depth and subsurface porosity within the range considered here. Hydrothermally-derived fluids can melt through 1 to 2 km thick ice-rich permafrost layers in several thousand years. Hydrothermal systems thus provide a viable alternative to rainfall for providing surface water for valley formation. This mechanism can form fluvial valleys not only during the postulated early warm, wet climatic epoch, but also during more recent epochs when atmospheric conditions did not favor atmospheric cycling of water. The clustered distribution of the valley networks on a given geologic surface or terrain unit of Mars may also be more compatible with localized, hydrothermally-driven groundwater outflow than regional rainfall. Hydrothermal centers on Mars may have provided appropriate environments for the initiation of life or final oases for the long-term persistence of life.

  12. Controls on valley spacing in landscapes subject to rapid base-level fall

    USGS Publications Warehouse

    McGuire, Luke; Pelletier, John D.

    2015-01-01

    What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage-network morphology in transient landscapes are relatively unknown. In this paper we exploit natural experiments in drainage network development in incised Plio-Quaternary alluvial fan surfaces in order to understand and quantify drainage network development in highly transient landscapes, i.e. initially unincised low-relief surfaces that experience a pulse of rapid base-level drop followed by relative base-level stasis. Parallel drainage networks formed on incised alluvial-fan surfaces tend to have a drainage spacing that is approximately proportional to the magnitude of the base-level drop. Numerical experiments suggest that this observed relationship between the magnitude of base-level drop and mean drainage spacing is the result of feedbacks among the depth of valley incision, mass wasting and nonlinear increases in the rate of colluvial sediment transport with slope gradient on steep valley side slopes that lead to increasingly wide valleys in cases of larger base-level drop. We identify a threshold magnitude of base-level drop above which side slopes lengthen sufficiently to promote increases in contributing area and fluvial incision rates that lead to branching and encourage drainage networks to transition from systems of first-order valleys to systems of higher-order, branching valleys. The headward growth of these branching tributaries prevents the development of adjacent, ephemeral drainages and promotes a higher mean valley spacing relative to cases in which tributaries do not form. Model results offer additional insights into the response of initially unincised landscapes to rapid base-level drop and provide a preliminary basis for understanding how varying amounts of base-level change influence valley network morphology.

  13. Scaling relations for large Martian valleys

    NASA Astrophysics Data System (ADS)

    Som, Sanjoy M.; Montgomery, David R.; Greenberg, Harvey M.

    2009-02-01

    The dendritic morphology of Martian valley networks, particularly in the Noachian highlands, has long been argued to imply a warmer, wetter early Martian climate, but the character and extent of this period remains controversial. We analyzed scaling relations for the 10 large valley systems incised in terrain of various ages, resolvable using the Mars Orbiter Laser Altimeter (MOLA) and the Thermal Emission Imaging System (THEMIS). Four of the valleys originate in point sources with negligible contributions from tributaries, three are very poorly dissected with a few large tributaries separated by long uninterrupted trunks, and three exhibit the dendritic, branching morphology typical of terrestrial channel networks. We generated width-area and slope-area relationships for each because these relations are identified as either theoretically predicted or robust terrestrial empiricisms for graded precipitation-fed, perennial channels. We also generated distance-area relationships (Hack's law) because they similarly represent robust characteristics of terrestrial channels (whether perennial or ephemeral). We find that the studied Martian valleys, even the dendritic ones, do not satisfy those empiricisms. On Mars, the width-area scaling exponent b of -0.7-4.7 contrasts with values of 0.3-0.6 typical of terrestrial channels; the slope-area scaling exponent $\\theta$ ranges from -25.6-5.5, whereas values of 0.3-0.5 are typical on Earth; the length-area, or Hack's exponent n ranges from 0.47 to 19.2, while values of 0.5-0.6 are found on Earth. None of the valleys analyzed satisfy all three relations typical of terrestrial perennial channels. As such, our analysis supports the hypotheses that ephemeral and/or immature channel morphologies provide the closest terrestrial analogs to the dendritic networks on Mars, and point source discharges provide terrestrial analogs best suited to describe the other large Martian valleys.

  14. Variation in the chemistry of macerals in coals of the Mist Mountain Formation, Elk Valley coalfield, British Columbia, Canada

    USGS Publications Warehouse

    Mastalerz, Maria; Bustin, R.M.

    1997-01-01

    Variations in elemental and molecular chemistry of macerals, with vitrinite, semifusinite and sporinite in particular, are discussed for the coal seams of the Mist Mountain Formation in the Elk Valley coalfield, in western Canada. In the south Elk Valley coalfield, carbon content of vitrinite oscillates around 85%, and oxygen content increases gradually up section, from seam A to C. In the north Elk Valley coalfield, carbon content in vitrinite shows marked variations (from 70% to 85%) between the samples and is lower than in the south Elk Valley coalfield, which is consistent with a higher maturation level of south Elk Valley coalfield samples. Sulphur content is below 1% in both coalfields. Semifusinite, in general, has higher carbon and lower oxygen content than vitrinite, whereas cutinite has higher carbon content than vitrinite and slightly higher or comparable to that of semifusinite. Functional group distributions show large variations between the seams and these variations are attributed mainly to differences in a primary depositional environment and only occasionally to later weathering and oxidation processes. The results presented in this paper provide also information on the length and branching of aliphatic chains, which, for liptinite macerals is valuable from the oil generation viewpoint, whereas for semifusinite, it may help to understand reactive versus non-reactive behaviour during coking.

  15. Formation and evolution of valley-bottom and channel features, Lower Deschutes River, Oregon

    USGS Publications Warehouse

    Curran, Janet H.; O'Conner, Jim E.; O'Conner, Jim E.; Grant, Gordon E.

    2003-01-01

    Primary geologic and geomorphic processes that formed valley-bottom and channel features downstream from the Pelton-Round Butte dam complex are inferred from a canyon-long analysis of feature morphology, composition, location, and spatial distribution. Major controls on valley-bottom morphology are regional tectonics, large landslides, and outsized floods (floods with return periods greater than 1000 yrs), which include the late Holocene Outhouse Flood and several Quaternary landslide dam failures. Floods with a return period on the order of 100 yrs, including historical floods in 1996, 1964, and 1861, contribute to fan building and flood plain formation only within the resistant framework established by the major controls. Key processes in the formation of channel features, in particular the 153 islands and 23 large rapids, include long-term bedrock erosion, outsized floods, and century-scale floods. Historical analysis of channel conditions since 1911 indicates that the largest islands, which are cored by outsized-flood deposits, locally control channel location, although their margins are substantially modified during annual- to century-scale floods. Islands cored by bedrock have changed little. Islands formed by annual- to century-scale floods are more susceptible to dynamic interactions between tributary sediment inputs, mainstem flow hydraulics, and perhaps riparian vegetation. Temporal patterns of island change in response to the sequence of 20th century flooding indicate that many islands accreted sediment during annual- to decadal-scale floods, but eroded during larger century-scale floods. There is, however, no clear trend of long-term changes in patterns of island growth, movement, or erosion either spatially or temporally within the lower Deschutes River.

  16. Primary State Formation in the Virú Valley, North Coast of Peru

    PubMed Central

    Millaire, Jean-François

    2010-01-01

    The origins of urban life and functioning states are two of the most fascinating research problems in anthropological archeology and a topic that has intrigued generations of scholars working on the Peruvian north coast. In this region, Andeanists have documented the rise of Moche as a dominant culture during the first millennium A.D., and the emergence of urban life and stately institutions at this society’s principal center. Although there is a broad consensus that Moche represents an archaic state, it is still unclear whether it is an example of primary state formation or a case of a second-generation state. To document this question, archaeological excavations were recently carried out at the Gallinazo Group site in the Virú Valley. Results from a radiocarbon dating program indicate that a functioning state probably emerged in this valley during the second century B.C., possibly preceding Moche by a few centuries. These results necessarily raise question regarding the nature of state development on the north coast of Peru and, in particular, whether there was a single center of state development in this region or multiple sites where similar conditions and processes led to the parallel emergence of functioning states. PMID:20308574

  17. A network-based meta-population approach to model Rift Valley fever epidemics.

    PubMed

    Xue, Ling; Scott, H Morgan; Cohnstaedt, Lee W; Scoglio, Caterina

    2012-08-07

    Rift Valley fever virus (RVFV) has been expanding its geographical distribution with important implications for both human and animal health. The emergence of Rift Valley fever (RVF) in the Middle East, and its continuing presence in many areas of Africa, has negatively impacted both medical and veterinary infrastructures and human morbidity, mortality, and economic endpoints. Furthermore, worldwide attention should be directed towards the broader infection dynamics of RVFV, because suitable host, vector and environmental conditions for additional epidemics likely exist on other continents; including Asia, Europe and the Americas. We propose a new compartmentalized model of RVF and the related ordinary differential equations to assess disease spread in both time and space; with the latter driven as a function of contact networks. Humans and livestock hosts and two species of vector mosquitoes are included in the model. The model is based on weighted contact networks, where nodes of the networks represent geographical regions and the weights represent the level of contact between regional pairings for each set of species. The inclusion of human, animal, and vector movements among regions is new to RVF modeling. The movement of the infected individuals is not only treated as a possibility, but also an actuality that can be incorporated into the model. We have tested, calibrated, and evaluated the model using data from the recent 2010 RVF outbreak in South Africa as a case study; mapping the epidemic spread within and among three South African provinces. An extensive set of simulation results shows the potential of the proposed approach for accurately modeling the RVF spreading process in additional regions of the world. The benefits of the proposed model are twofold: not only can the model differentiate the maximum number of infected individuals among different provinces, but also it can reproduce the different starting times of the outbreak in multiple locations

  18. Fundamental Principles of Network Formation among Preschool Children1

    PubMed Central

    Schaefer, David R.; Light, John M.; Fabes, Richard A.; Hanish, Laura D.; Martin, Carol Lynn

    2009-01-01

    The goal of this research was to investigate the origins of social networks by examining the formation of children’s peer relationships in 11 preschool classes throughout the school year. We investigated whether several fundamental processes of relationship formation were evident at this age, including reciprocity, popularity, and triadic closure effects. We expected these mechanisms to change in importance over time as the network crystallizes, allowing more complex structures to evolve from simpler ones in a process we refer to as structural cascading. We analyzed intensive longitudinal observational data of children’s interactions using the SIENA actor-based model. We found evidence that reciprocity, popularity, and triadic closure all shaped the formation of preschool children’s networks. The influence of reciprocity remained consistent, whereas popularity and triadic closure became increasingly important over the course of the school year. Interactions between age and endogenous network effects were nonsignificant, suggesting that these network formation processes were not moderated by age in this sample of young children. We discuss the implications of our longitudinal network approach and findings for the study of early network developmental processes. PMID:20161606

  19. A water-quality monitoring network for Vallecitos Valley, Alameda County, California

    USGS Publications Warehouse

    Farrar, C.D.

    1980-01-01

    A water-quality monitoring network is proposed to detect the presence of and trace the movement of radioisotopes in the hydrologic system in the vicinity of the Vallecitos Nuclear Center. The source of the radioisotopes is treated industrial wastewater from the Vallecitos Nuclear Center that is discharged into an unnamed tributary of Vallecitos Creek. The effluent infiltrates the alluvium along the stream course, percolates downward to the water table, and mixes with the native ground water in the subsurface. The average daily discharge of effluent to the hydrologic system in 1978 was about 100,000 gallons. In Vallecitos Valley, the Livermore Gravel and the overlying alluvium constitute the ground-water reservoir. There is no subsurface inflow from adjacent ground-water basins. Ground-water flow in the Vallecitos subbasin is toward the southwest.The proposed network consists of four surface-water sampling sites and six wells to sample the ground-water system. Samples collected monthly at each site and analyzed for tritium and for alpha, beta, and gamma radiation would provide adequate data for monitoring.

  20. Valley plugs, land use, and phytogeomorphic response: Chapter 14

    USGS Publications Warehouse

    Pierce, Aaron R.; King, Sammy L.; Shroder, John F.

    2013-01-01

    Anthropogenic alteration of fluvial systems can disrupt functional processes that provide valuable ecosystem services. Channelization alters fluvial parameters and the connectivity of river channels to their floodplains which is critical for productivity, nutrient cycling, flood control, and biodiversity. The effects of channelization can be exacerbated by local geology and land-use activities, resulting in dramatic geomorphic readjustments including the formation of valley plugs. Considerable variation in the response of abiotic processes, including surface hydrology, subsurface hydrology, and sedimentation dynamics, to channelization and the formation of valley plugs. Altered abiotic processes associated with these geomorphic features and readjustments influence biotic processes including species composition, abundance, and successional processes. Considerable interest exists for restoring altered fluvial systems and their floodplains because of their social and ecological importance. Understanding abiotic and biotic responses of channelization and valley-plug formation within the context of the watershed is essential to successful restoration. This chapter focuses on the primary causes of valley-plug formation, resulting fluvial-geomorphic responses, vegetation responses, and restoration and research needs for these systems.

  1. Network Configuration Analysis for Formation Flying Satellites

    NASA Technical Reports Server (NTRS)

    Knoblock, Eric J.; Wallett, Thomas M.; Konangi, Vijay K.; Bhasin, Kul B.

    2001-01-01

    The performance of two networks to support autonomous multi-spacecraft formation flying systems is presented. Both systems are comprised of a ten-satellite formation, with one of the satellites designated as the central or 'mother ship.' All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/EP over ATM protocol architecture within the formation, and the second system uses the IEEE 802.11 protocol architecture within the formation. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IP queuing delay, IP queue size and IP processing delay at the mother ship as well as end-to-end delay for both systems. In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.

  2. Depositional environments of the uranium-bearing Cutler Formations, Lisbon Valley, Utah

    USGS Publications Warehouse

    Campbell, John A.; Steele-Mallory, Brenda A.

    1979-01-01

    The Cutler Formation in Lisbon Valley, San Juan County, Utah, is composed predominantly of fluvial arkosic sandstones, siltstones, shales, and mudstones that were deposited by meandering streams that flowed across a flood plain and tidal flat close to sea level. Two types of channel deposits are recognized from their sedimentary structures: meandering and distributary. The flood plain was occasionally transgressed by a shallow sea from the west, resulting in the deposition of several thin limestones and marine sandstones. The marine sandstones were deposited as longshore bars. Wind transported sand along the shoreline of the shallow sea, forming a coastal dune field. Marine sandstones and eolian sandstones are more common in the upper Cutler in the southern part of the area, whereas in the central and northern part of the area the formation is predominantly fluvial. Crossbed orientation indicates that Cutler streams flowed S. 67? W. on the the average, whereas marine currents moved sediment S. 36? E. and N. 24? W., and wind transported sand S. 800 E. The uranium in the Cutler is found in the central and northern part of the area, in the upper part of the formation, in small fluvial sandstone bodies that were deposited predominantly in a distributary environment. No uranium is known in the marine or eolian sandstones. Petrographically, the uranium-bearing sandstones are identical to other Cutler fluvial sandstones except that they contain less calcite and more clay and are slightly coarser grained. Ore formation has modified the host sandstones very little.

  3. Mineralogical Characterization of the Miocene Olcese Formation, Southern San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Lopez, K. A.; Baron, D.; Guo, J.; Woolford, J. M.

    2016-12-01

    The early to middle Miocene Olcese Formation in the southern San Joaquin Valley of California consists of shallow marine shelf sands in its lower and upper parts, and non-marine, frequently pumiceous sands in its middle part, and varies in thickness up to 1800 ft. There is little known as to the origin, nature, quantity, and distribution of clay minerals throughout the formation. This study examined 95 sidewall core samples from three wells, as well as 388 cutting samples from four wells and 12 samples from 3 outcrops. Well samples were from depths between 1,800 and 4,000 ft. Qualitative and quantitative mineralogy including clay minerals of the sidewall samples and selected cutting samples was determined by powder X-ray diffraction (XRD). XRD analyses were supplemented by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) and petrographic microscopy of selected samples. The main minerals of bulk samples include composite clay, quartz, potassium feldspar/plagioclase, calcite, and clinoptilolite. Content of composite clay varies between 17% and 51%. The clay-size fraction is predominantly composed of smectite, illite, kaolinite and chlorite with smectite being the most abundant. Smectite and clinoptilolite may be the alteration products of deeper burial of volcanic materials. The formation permeability could be significantly lowered by these authigenic minerals.

  4. Holocene evolution of the Tonle Sap Lake: valley network infill and rates of sedimentation in Cambodia's Great Lake

    NASA Astrophysics Data System (ADS)

    Best, J.; Darby, S. E.; Langdon, P. G.; Hackney, C. R.; Leyland, J.; Parsons, D. R.; Aalto, R. E.; Marti, M.

    2017-12-01

    Tonle Sap Lake, the largest freshwater lake in SE Asia (c. 120km long and 35 km wide), is a vital ecosystem that provides 40-60% of the protein for the population of Cambodia. The lake is fed by flow from the Mekong River that causes the lake rise in level by c. 8m during monsoonal and cyclone-related floods, with drainage of the lake following the monsoon. Hydropower dam construction on the Mekong River has raised concerns as to the fragility of the Tonle Sap habitat due to any changing water levels and sedimentation rates within the lake. This paper details results of sub-bottom profiling surveys of Tonle Sap Lake in October 2014 that detailed the stratigraphy of the lake and assessed rates of infill. An Innomar Parametric Echo Sounder (PES) was used to obtain c. 250 km of sub-bottom profiles, with penetration up to 15m below the lake bed at a vertical resolution of c. 0.20m. These PES profiles were linked to cores from the north of the lake and previous literature. The PES profiles reveal a network of valleys, likely LGM, with relief up to c. 15-20m, that have been infilled by a suite of Holocene sediments. The valley surface is picked out as a strong reflector throughout the lake, and displays a series of valleys that are up to c. 15m deep and commonly 50-200m wide, although some of the largest valleys are 1.2km in width. Modelling of channel network incision during LGM conditions generates landscapes consistent with our field observations. The Tonle Sap valley network is infilled by sediments that show firstly fluvial and/or subaerial slope sedimentation, and then by extensive, parallel-bedded, lacustrine sedimentation. Lastly, the top c. 1m of sedimentation is marked by a distinct basal erosional surface that can be traced over much of the Tonle Sap Lake, and that is overlain by a series of parallel PES reflections. This upper sediment layer is interpreted to represent sedimentation in the Tonle Sap lake due to sediment suspension settling but after a period

  5. Geological Carbon Sequestration in the Ohio River Valley: An Evaluation of Possible Target Formations

    NASA Astrophysics Data System (ADS)

    Dalton, T. A.; Daniels, J. J.

    2009-12-01

    The development of geological carbon sequestration within the Ohio River Valley is of major interest to the national electricity and coal industries because the Valley is home to a heavy concentration of coal-burning electricity generation plants and the infrastructure is impossible to eliminate in the short-term. It has been determined by Ohio's politicians and citizenry that the continued use of coal in this region until alternative energy supplies are available will be necessary over the next few years. Geologic sequestration is the only possible means of keeping the CO2 out of the atmosphere in the region. The cost of the sequestration effort greatly decreases CO2 emissions by sequestering CO2 directly on site of these plants, or by minimizing the distance between fossil-fueled generation and sequestration (i.e., by eliminating the cost of transportation of supercritical CO2 from plant to sequestration site). Thus, the practicality of CO2 geologic sequestration within the Ohio River Valley is central to the development of such a commercial effort. Though extensive work has been done by the Regional Partnerships of the DOE/NETL in the characterization of general areas for carbon sequestration throughout the nation, few projects have narrowed their focus into a single geologic region in order to evaluate the sites of greatest commercial potential. As an undergraduate of the Earth Sciences at Ohio State, I have engaged in thorough research to obtain a detailed understanding of the geology of the Ohio River Valley and its potential for commercial-scale carbon sequestration. Through this research, I have been able to offer an estimate of the areas of greatest interest for CO2 geologic sequestration. This research has involved petrological, mineralogical, geochemical, and geophysical analyses of four major reservoir formations within Ohio—the Rose Run, the Copper Ridge, the Clinton, and the Oriskany—along with an evaluation of the possible effects of injection

  6. Grizzly Valley fault system, Sierra Valley, CA

    USGS Publications Warehouse

    Gold, Ryan; Stephenson, William; Odum, Jack; Briggs, Rich; Crone, Anthony; Angster, Steve

    2012-01-01

    The Grizzly Valley fault system (GVFS) strikes northwestward across Sierra Valley, California and is part of a network of active, dextral strike-slip faults in the northern Walker Lane (Figure 1). To investigate Quaternary motion across the GVFS, we analyzed high-resolution (0.25 m) airborne LiDAR data (Figure 2) in combination with six, high-resolution, P-wave, seismic-reflection profiles [Gold and others, 2012]. The 0.5- to 2.0-km-long seismic-reflection profiles were sited orthogonal to suspected tectonic lineaments identified from previous mapping and our analysis of airborne LiDAR data. To image the upper 400–700 m of subsurface stratigraphy of Sierra Valley (Figure 3), we used a 230-kg accelerated weight drop source. Geophone spacing ranged from 2 to 5 m and shots were co-located with the geophones. The profiles reveal a highly reflective, deformed basal marker that we interpret to be the top of Tertiary volcanic rocks, overlain by a 120- to 300-m-thick suite of subhorizontal reflectors we interpret as Plio-Pleistocene lacustrine deposits. Three profiles image the principle active trace of the GVFS, which is a steeply dipping fault zone that offsets the volcanic rocks and the basin fill (Figures 4 & 5).

  7. SDSS-IV MaNGA-resolved Star Formation and Molecular Gas Properties of Green Valley Galaxies: A First Look with ALMA and MaNGA

    NASA Astrophysics Data System (ADS)

    Lin, Lihwai; Belfiore, Francesco; Pan, Hsi-An; Bothwell, M. S.; Hsieh, Pei-Ying; Huang, Shan; Xiao, Ting; Sánchez, Sebastián F.; Hsieh, Bau-Ching; Masters, Karen; Ramya, S.; Lin, Jing-Hua; Hsu, Chin-Hao; Li, Cheng; Maiolino, Roberto; Bundy, Kevin; Bizyaev, Dmitry; Drory, Niv; Ibarra-Medel, Héctor; Lacerna, Ivan; Haines, Tim; Smethurst, Rebecca; Stark, David V.; Thomas, Daniel

    2017-12-01

    We study the role of cold gas in quenching star formation in the green valley by analyzing ALMA 12CO (1-0) observations of three galaxies with resolved optical spectroscopy from the MaNGA survey. We present resolution-matched maps of the star formation rate and molecular gas mass. These data are used to calculate the star formation efficiency (SFE) and gas fraction ({f}{gas}) for these galaxies separately in the central “bulge” regions and outer disks. We find that, for the two galaxies whose global specific star formation rate (sSFR) deviates most from the star formation main sequence, the gas fraction in the bulges is significantly lower than that in their disks, supporting an “inside-out” model of galaxy quenching. For the two galaxies where SFE can be reliably determined in the central regions, the bulges and disks share similar SFEs. This suggests that a decline in {f}{gas} is the main driver of lowered sSFR in bulges compared to disks in green valley galaxies. Within the disks, there exist common correlations between the sSFR and SFE and between sSFR and {f}{gas} on kiloparsec scales—the local SFE or {f}{gas} in the disks declines with local sSFR. Our results support a picture in which the sSFR in bulges is primarily controlled by {f}{gas}, whereas both SFE and {f}{gas} play a role in lowering the sSFR in disks. A larger sample is required to confirm if the trend established in this work is representative of the green valley as a whole.

  8. Catastrophic flooding origin of shelf valley systems in the English Channel.

    PubMed

    Gupta, Sanjeev; Collier, Jenny S; Palmer-Felgate, Andy; Potter, Graeme

    2007-07-19

    Megaflood events involving sudden discharges of exceptionally large volumes of water are rare, but can significantly affect landscape evolution, continental-scale drainage patterns and climate change. It has been proposed that a significant flood event eroded a network of large ancient valleys on the floor of the English Channel-the narrow seaway between England and France. This hypothesis has remained untested through lack of direct evidence, and alternative non-catastrophist ideas have been entertained for valley formation. Here we analyse a new regional bathymetric map of part of the English Channel derived from high-resolution sonar data, which shows the morphology of the valley in unprecedented detail. We observe a large bedrock-floored valley that contains a distinct assemblage of landforms, including streamlined islands and longitudinal erosional grooves, which are indicative of large-scale subaerial erosion by high-magnitude water discharges. Our observations support the megaflood model, in which breaching of a rock dam at the Dover Strait instigated catastrophic drainage of a large pro-glacial lake in the southern North Sea basin. We suggest that megaflooding provides an explanation for the permanent isolation of Britain from mainland Europe during interglacial high-sea-level stands, and consequently for patterns of early human colonisation of Britain together with the large-scale reorganization of palaeodrainage in northwest Europe.

  9. Lunar and Planetary Science XXXV: Mars: Hydrology, Drainage, and Valley Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Analysis of Orientation Dependence of Martian Gullies; 2) A Preliminary Relationship between the Depth of Martian Gullies and the Abundance of Hydrogen on Near-Surface Mars; 3) Water Indicators in Sirenum Terra and around the Argyre Impact Basin, Mars; 4) The Distribution of Gullies and Tounge-shaped Ridges and Their Role in the Degradation of Martian Craters; 5) A Critical Evaluation of Crater Lake Systems in Memnonia Quadrangle, Mars; 6) Impact-generated Hydrothermal Activity at Gusev Crater: Implications for the Spirit Mission; 7) Characterization of the Distributary Fan in Holden NE Crater using Stereo Analysis; 8) Computational Analysis of Drainage Basins on Mars: Appraising the Drainage Density; 9) Hypsometric Analyses of Martian Basins: A Comparison to Terrestrial, Lunar, and Venusian Hypsometry; 10) Morphologic Development of Harmakhis Vallis, Mars; 11) Mangala Valles, Mars: Investigations of the source of Flood Water and Early Stages of Flooding; 12) The Formation of Aromatum Chaos and the Water Discharge Rate at Ravi Vallis; 13) Inferring Hydraulics from Geomorphology for Athabasca Valles, Mars; 14) The Origin and Evolution of Dao Vallis: Formation and Modification of Martian Channels by Structural Collapse and Glaciation; 15) Snowmelt and the Formation of Valley Networks on Martian Volcanoes; 16) Extent of Floating Ice in an Ancient Echus Chasma/Kasei Valley System, Mars.

  10. Orbital and Rover-based Exploration of Perseverance Valley, Endeavour Crater, Mars

    NASA Astrophysics Data System (ADS)

    Morgan, A. M.; Arvidson, R. E.; Duran Vinent, O.; Craddock, R. A.; Holo, S.; Gadal, C.; Blois, G.; Palucis, M. C.; Goudge, T. A.; Morgan, A. M.; Day, M.; Sullivan, R. J., Jr.; Umurhan, O. M.; Pähtz, T.; Birch, S.; Morgan, A. M.; Goudge, T. A.; Palucis, M. C.; Arvidson, R. E.; Duran Vinent, O.; Craddock, R. A.; Holo, S.; Blois, G.; Gadal, C.; Morgan, A. M.; Sullivan, R. J., Jr.; Day, M.; Arvidson, R. E.

    2017-12-01

    Perseverance Valley, based on orbital observations from the Mars Reconnaisance Orbiter HiRISE image data, is a 180 m long, 20 m wide anastomosing shallow channel system superimposed on the Cape Byron rim segment of the 22 km diameter Noachian-age Endeavour Crater on Mars. Several impact craters are superimposed on the valley system, indicating antiquity, although the valley's high degree of preservation indicates that it formed after significant regional-scale fluvial erosion and diffusive smoothing of Endeavour and its rim segments. The valley cuts into the inner, eastern rim on a 10˚ to 15˚ slope, and starts at a local low area on the rim crest. A set of shallow channels, some lined with perimeter rocks, extends from the west to meet the entrance to the valley. The western rim tilts to the west 0.8˚ and thus the channels tilt away from the valley entrance. The Mars Rover Opportunity has explored the western shallow channels leading up to the entrance to the valley. As of this writing Opportunity is located on the southern side of the valley entrance, with the Athena Science Team waiting until after solar conjunction to command the rover to descend into the valley to search for geomorphic and sedimentologic evidence related to valley formation. Wind erosion along radial fractures extending into and down Cape Byron is a possibility. Debris flows are also under consideration, perhaps enabled by melting ice at the rim crest. Dry avalanches are unlikely due to the low slopes. A fluvial origin is a strong contender based on models that show it is possible to have had a western catchment present when the Burns formation hydrated sulfates were being emplaced, followed by self-compaction of these sediments that tilted the western plains away from the rim crest. The key to testing among the various hypotheses for formation of the valley and shallow channels leading into the entrance will be the detailed stereo and multispectral imaging observations Opportunity will make

  11. Formation Control over Delayed Communication Network

    NASA Astrophysics Data System (ADS)

    Secchi, Cristian; Fantuzzi, Cesare

    In this Chapter we address the problem of formation control of a group of robots that exchange information over a communication network characterized by a non negligible delay. We consider the Virtual Body Artificial Potential approach for stabilizing a group of robots at a desired formation. We show that it is possible to model the controlled group of robots as a port-Hamiltonian system and we exploit the scattering framework to achieve a passive behavior of the controlled system and to stabilize the robots in the desired formation independently of any communication delay.

  12. Network formation: neighborhood structures, establishment costs, and distributed learning.

    PubMed

    Chasparis, Georgios C; Shamma, Jeff S

    2013-12-01

    We consider the problem of network formation in a distributed fashion. Network formation is modeled as a strategic-form game, where agents represent nodes that form and sever unidirectional links with other nodes and derive utilities from these links. Furthermore, agents can form links only with a limited set of neighbors. Agents trade off the benefit from links, which is determined by a distance-dependent reward function, and the cost of maintaining links. When each agent acts independently, trying to maximize its own utility function, we can characterize “stable” networks through the notion of Nash equilibrium. In fact, the introduced reward and cost functions lead to Nash equilibria (networks), which exhibit several desirable properties such as connectivity, bounded-hop diameter, and efficiency (i.e., minimum number of links). Since Nash networks may not necessarily be efficient, we also explore the possibility of “shaping” the set of Nash networks through the introduction of state-based utility functions. Such utility functions may represent dynamic phenomena such as establishment costs (either positive or negative). Finally, we show how Nash networks can be the outcome of a distributed learning process. In particular, we extend previous learning processes to so-called “state-based” weakly acyclic games, and we show that the proposed network formation games belong to this class of games.

  13. The Dynamics of Coalition Formation on Complex Networks

    NASA Astrophysics Data System (ADS)

    Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.

    2015-08-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects.

  14. A Quantitative Analysis of the Fretted Terrain Valleys, Arabia Terra, Mars

    NASA Astrophysics Data System (ADS)

    Mason, Kelsey Anne

    Fretted terrain describes regions on Mars with low-lying, flat valleys separated by steep cliffs that often form polygonal-shaped mesas. The fretted terrain valleys have a morphology distinct from other valleys found on Mars, and their unknown origin may hold insights into critical questions about Mars' tectonic, magmatic, and hydrologic history. Current hypothesis for the formation of the fretted terrain include fracturing as well as hydrological flow processes such as fluvial or glacial erosion. The region for this study is located in eastern Arabia Terra and is the type-location for fretted terrain. By qualitatively and quantitatively documenting the planform, or map-view, valley geometries and orientations throughout the fretted terrain, this study better constrains the origin of the valleys. Valleys were mapped using automated routines in ArcGIS including the D8 flow direction algorithm. Valleys were then grouped geographically into basins and also by Strahler order. The valleys were then segmented every 50 km and the azimuth of each segment was calculated. The resulting valley azimuths were analyzed using rose diagrams to quantitatively describe the planform geometries of the valleys. Qualitatively, the majority of basins were found to have rectangular valley geometries. The downslope direction was calculated for each basin, and it was compared to the corresponding valley azimuths. The basins with rectangular valley geometries had valleys with an azimuth mode nearly parallel to the downslope direction and another azimuth mode perpendicular to the downslope direction. The valley azimuth mode parallel to the downslope direction is attributed to hydrological flow processes while the mode perpendicular to the downslope direction is attributed to fracturing related to the formation or existence of the Mars global dichotomy boundary.

  15. Precipitation forecast using artificial neural networks. An application to the Guadalupe Valley, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Herrera-Oliva, C. S.

    2013-05-01

    In this work we design and implement a method for the determination of precipitation forecast through the application of an elementary neuronal network (perceptron) to the statistical analysis of the precipitation reported in catalogues. The method is limited mainly by the catalogue length (and, in a smaller degree, by its accuracy). The method performance is measured using grading functions that evaluate a tradeoff between positive and negative aspects of performance. The method is applied to the Guadalupe Valley, Baja California, Mexico. Using consecutive intervals of dt=0.1 year, employing the data of several climatological stations situated in and surrounding this important wine industries zone. We evaluated the performance of different models of ANN, whose variables of entrance are the heights of precipitation. The results obtained were satisfactory, except for exceptional values of rain. Key words: precipitation forecast, artificial neural networks, statistical analysis

  16. Characteristics of pattern formation and evolution in approximations of Physarum transport networks.

    PubMed

    Jones, Jeff

    2010-01-01

    Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple particle-like agents. Using simple local behaviors based on chemotaxis, the mobile agent population spontaneously forms complex and dynamic transport networks. By adjusting simple model parameters, maps of characteristic patterning are obtained. Certain areas of the parameter mapping yield particularly complex long term behaviors, including the circular contraction of network lacunae and bifurcation of network paths to maintain network connectivity. We demonstrate the formation of irregular spots and labyrinthine and reticulated patterns by chemoattraction. Other Turing-like patterning schemes were obtained by using chemorepulsion behaviors, including the self-organization of regular periodic arrays of spots, and striped patterns. We show that complex pattern types can be produced without resorting to the hierarchical coupling of reaction-diffusion mechanisms. We also present network behaviors arising from simple pre-patterning cues, giving simple examples of how the emergent pattern formation processes evolve into networks with functional and quasi-physical properties including tensionlike effects, network minimization behavior, and repair to network damage. The results are interpreted in relation to classical theories of biological pattern formation in natural systems, and we suggest mechanisms by which emergent pattern formation processes may be used as a method for spatially represented unconventional computation.

  17. Correlations between Community Structure and Link Formation in Complex Networks

    PubMed Central

    Liu, Zhen; He, Jia-Lin; Kapoor, Komal; Srivastava, Jaideep

    2013-01-01

    Background Links in complex networks commonly represent specific ties between pairs of nodes, such as protein-protein interactions in biological networks or friendships in social networks. However, understanding the mechanism of link formation in complex networks is a long standing challenge for network analysis and data mining. Methodology/Principal Findings Links in complex networks have a tendency to cluster locally and form so-called communities. This widely existed phenomenon reflects some underlying mechanism of link formation. To study the correlations between community structure and link formation, we present a general computational framework including a theory for network partitioning and link probability estimation. Our approach enables us to accurately identify missing links in partially observed networks in an efficient way. The links having high connection likelihoods in the communities reveal that links are formed preferentially to create cliques and accordingly promote the clustering level of the communities. The experimental results verify that such a mechanism can be well captured by our approach. Conclusions/Significance Our findings provide a new insight into understanding how links are created in the communities. The computational framework opens a wide range of possibilities to develop new approaches and applications, such as community detection and missing link prediction. PMID:24039818

  18. Fresh Shallow Valleys (FSVs) in Northern Arabia Terra, Mars

    NASA Astrophysics Data System (ADS)

    Wilson, S. A.; Howard, A. D.; Moore, J. M.

    2014-12-01

    Fresh Shallow Valleys (FSVs) on Mars are part of a growing inventory of post-Noachian landforms that may be related to late, widespread aqueous activity that occurred during a period once thought to be less favorable for precipitation and runoff. Constraining the source, magnitude, timing and duration of FSVs will provide insight into the mechanism and extent of fluvial activity on Mars and the geologic and climatic environments in which they formed. Unlike the older Noachian-Hesperian valleys that are characterized by integrated, dissected and degraded networks that cover large spatial extents, FSVs are typically narrow, short or discontinuous valleys with low drainage densities. They are generally incised no more than a few decameters, slightly degraded at multi-meter scales, and cluster in the mid-latitudes (35-50° in both hemispheres). A high concentration of FSVs occurs in Northern Arabia Terra (~33°N, 8°E), a Noachian-aged landscape characterized by broad, irregular depressions. Many of the FSVs in this region are 150+ km long and some appear to cross depressions that were likely filled with ice or water at the time of formation. Examples of broad, flat floored FSVs with incised channels could either indicate a complex history of a single flow event or multiple flow events. The occurrence of "pollywogs," fairly fresh, small (typically 2-10 km in diameter) craters with a single channel extending from the rim outward, implies overflow of the crater, the presence of a deep lake and the involvement of artesian groundwater flow. Roughly 25% of the FSVs in our northern Arabia Terra study region occur on relatively fresh crater ejecta, which may be related to formation age, topography, surface materials and (or) substrate. Ejecta with dense concentrations of FSVs average 25.5 km in diameter, have more degraded crater interiors, and well developed petal-like ejecta. Ejecta with sparse or no FSVs have radial ejecta with less distinct petals and are associated with

  19. Opinion formation on multiplex scale-free networks

    NASA Astrophysics Data System (ADS)

    Nguyen, Vu Xuan; Xiao, Gaoxi; Xu, Xin-Jian; Li, Guoqi; Wang, Zhen

    2018-01-01

    Most individuals, if not all, live in various social networks. The formation of opinion systems is an outcome of social interactions and information propagation occurring in such networks. We study the opinion formation with a new rule of pairwise interactions in the novel version of the well-known Deffuant model on multiplex networks composed of two layers, each of which is a scale-free network. It is found that in a duplex network composed of two identical layers, the presence of the multiplexity helps either diminish or enhance opinion diversity depending on the relative magnitudes of tolerance ranges characterizing the degree of openness/tolerance on both layers: there is a steady separation between different regions of tolerance range values on two network layers where multiplexity plays two different roles, respectively. Additionally, the two critical tolerance ranges follow a one-sum rule; that is, each of the layers reaches a complete consensus only if the sum of the tolerance ranges on the two layers is greater than a constant approximately equaling 1, the double of the critical bound on a corresponding isolated network. A further investigation of the coupling between constituent layers quantified by a link overlap parameter reveals that as the layers are loosely coupled, the two opinion systems co-evolve independently, but when the inter-layer coupling is sufficiently strong, a monotonic behavior is observed: an increase in the tolerance range of a layer causes a decline in the opinion diversity on the other layer regardless of the magnitudes of tolerance ranges associated with the layers in question.

  20. Modelling a real-world buried valley system with vertical non-stationarity using multiple-point statistics

    NASA Astrophysics Data System (ADS)

    He, Xiulan; Sonnenborg, Torben O.; Jørgensen, Flemming; Jensen, Karsten H.

    2017-03-01

    Stationarity has traditionally been a requirement of geostatistical simulations. A common way to deal with non-stationarity is to divide the system into stationary sub-regions and subsequently merge the realizations for each region. Recently, the so-called partition approach that has the flexibility to model non-stationary systems directly was developed for multiple-point statistics simulation (MPS). The objective of this study is to apply the MPS partition method with conventional borehole logs and high-resolution airborne electromagnetic (AEM) data, for simulation of a real-world non-stationary geological system characterized by a network of connected buried valleys that incise deeply into layered Miocene sediments (case study in Denmark). The results show that, based on fragmented information of the formation boundaries, the MPS partition method is able to simulate a non-stationary system including valley structures embedded in a layered Miocene sequence in a single run. Besides, statistical information retrieved from the AEM data improved the simulation of the geology significantly, especially for the deep-seated buried valley sediments where borehole information is sparse.

  1. A natural experiment of social network formation and dynamics.

    PubMed

    Phan, Tuan Q; Airoldi, Edoardo M

    2015-05-26

    Social networks affect many aspects of life, including the spread of diseases, the diffusion of information, the workers' productivity, and consumers' behavior. Little is known, however, about how these networks form and change. Estimating causal effects and mechanisms that drive social network formation and dynamics is challenging because of the complexity of engineering social relations in a controlled environment, endogeneity between network structure and individual characteristics, and the lack of time-resolved data about individuals' behavior. We leverage data from a sample of 1.5 million college students on Facebook, who wrote more than 630 million messages and 590 million posts over 4 years, to design a long-term natural experiment of friendship formation and social dynamics in the aftermath of a natural disaster. The analysis shows that affected individuals are more likely to strengthen interactions, while maintaining the same number of friends as unaffected individuals. Our findings suggest that the formation of social relationships may serve as a coping mechanism to deal with high-stress situations and build resilience in communities.

  2. A natural experiment of social network formation and dynamics

    PubMed Central

    Phan, Tuan Q.; Airoldi, Edoardo M.

    2015-01-01

    Social networks affect many aspects of life, including the spread of diseases, the diffusion of information, the workers' productivity, and consumers' behavior. Little is known, however, about how these networks form and change. Estimating causal effects and mechanisms that drive social network formation and dynamics is challenging because of the complexity of engineering social relations in a controlled environment, endogeneity between network structure and individual characteristics, and the lack of time-resolved data about individuals' behavior. We leverage data from a sample of 1.5 million college students on Facebook, who wrote more than 630 million messages and 590 million posts over 4 years, to design a long-term natural experiment of friendship formation and social dynamics in the aftermath of a natural disaster. The analysis shows that affected individuals are more likely to strengthen interactions, while maintaining the same number of friends as unaffected individuals. Our findings suggest that the formation of social relationships may serve as a coping mechanism to deal with high-stress situations and build resilience in communities. PMID:25964337

  3. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free solution

    NASA Astrophysics Data System (ADS)

    Shen, H.; Anastasio, C.

    2011-06-01

    Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM. While hydroxyl radical (•OH) is the most reactive of the ROS species, there are few quantitative studies of •OH generation from PM. Here we report on •OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified •OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50 μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more •OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances •OH formation from all the samples. Fine PM (PM2.5) generally makes more •OH than the corresponding coarse PM (PMcf, i.e., 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more •OH normalized by PM mass. •OH production by SJV PM is reduced on average by (97 ± 6) % when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of •OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for •OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived •OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary •OH, although high PM events could produce much higher levels of •OH, which might lead to cytotoxicity.

  4. Dynamics of Research Team Formation in Complex Networks

    NASA Astrophysics Data System (ADS)

    Sun, Caihong; Wan, Yuzi; Chen, Yu

    Most organizations encourage the formation of teams to accomplish complicated tasks, and vice verse, effective teams could bring lots benefits and profits for organizations. Network structure plays an important role in forming teams. In this paper, we specifically study the dynamics of team formation in large research communities in which knowledge of individuals plays an important role on team performance and individual utility. An agent-based model is proposed, in which heterogeneous agents from research communities are described and empirically tested. Each agent has a knowledge endowment and a preference for both income and leisure. Agents provide a variable input (‘effort’) and their knowledge endowments to production. They could learn from others in their team and those who are not in their team but have private connections in community to adjust their own knowledge endowment. They are allowed to join other teams or work alone when it is welfare maximizing to do so. Various simulation experiments are conducted to examine the impacts of network topology, knowledge diffusion among community network, and team output sharing mechanisms on the dynamics of team formation.

  5. Valley-Fill Sandstones in the Kootenai Formation on the Crow Indian Reservation, South-Central Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, David A

    Subsurface data continues to be collected, organized, and a digital database is being prepared for the project. An ACCESS database and PC-Arcview is being used to manage and interpret the data. Well data and base map data have been successfully imported into Arcview and customized to meet the needs of this project. Log tops and other data from about ¾ of the exploration wells in the area have been incorporated into the data base. All of the four 30" X 60" geologic quadrangles have been scanned to produce a digital surface geologic data base for the Crow Reservation and allmore » are nearing completion. Formal technical review prior to publication has been completed for all the quadrangles; Billings, Bridger; Hardin, and Lodge Grass. Final GIS edits are being made before being forwarded to the Bureau's Publications Department. Field investigations were completed during the third quarter, 1997. With the help of a student field assistant from the Crow Tribe, the entire project area was inventoried for the presence of valley-fill deposits in the Kootenai Formation. Field inventory has resulted in the identification of nine exposures of thick valley-fill deposits. These appear to represent at least four major westward-trending valley systems. All the channel localities have been measured and described in detail and paleocurrent data has been collected from all but one locality. In addition, two stratigraphic sections were measured in areas where channels are absent. One channel has bee traced over a distance of about 60 miles and exhibits definite paleostructural control. An abstract describing this channel has been submitted and accepted for presentation at the Williston Basin Symposium in October, 1998.« less

  6. A Qualitative Study of the Formation and Composition of Social Networks Among Homeless Youth

    PubMed Central

    Tyler, Kimberly A.; Melander, Lisa A.

    2011-01-01

    Although social networks are essential for explaining protective and risk factors among homeless youth, little is known about the formation and composition of these groups. In this study, we utilized 19 in-depth interviews with homeless youth to investigate their social network formation, role relationships, housing status, and network member functions. Our findings reveal that the formation of these networks occurred in different ways including meeting network members through others or in specific social situations. The majority of social network members were currently housed and provided various functions including instrumental and social support and protection. Responses from participants provide valuable insight into the formation of social networks and potentially explain their subsequent involvement in risky behaviors. PMID:22121330

  7. Chinese lexical networks: The structure, function and formation

    NASA Astrophysics Data System (ADS)

    Li, Jianyu; Zhou, Jie; Luo, Xiaoyue; Yang, Zhanxin

    2012-11-01

    In this paper Chinese phrases are modeled using complex networks theory. We analyze statistical properties of the networks and find that phrase networks display some important features: not only small world and the power-law distribution, but also hierarchical structure and disassortative mixing. These statistical traits display the global organization of Chinese phrases. The origin and formation of such traits are analyzed from a macroscopic Chinese culture and philosophy perspective. It is interesting to find that Chinese culture and philosophy may shape the formation and structure of Chinese phrases. To uncover the structural design principles of networks, network motif patterns are studied. It is shown that they serve as basic building blocks to form the whole phrase networks, especially triad 38 (feed forward loop) plays a more important role in forming most of the phrases and other motifs. The distinct structure may not only keep the networks stable and robust, but also be helpful for information processing. The results of the paper can give some insight into Chinese language learning and language acquisition. It strengthens the idea that learning the phrases helps to understand Chinese culture. On the other side, understanding Chinese culture and philosophy does help to learn Chinese phrases. The hub nodes in the networks show the close relationship with Chinese culture and philosophy. Learning or teaching the hub characters, hub-linking phrases and phrases which are meaning related based on motif feature should be very useful and important for Chinese learning and acquisition.

  8. Maja Valley and the Chryse outflow complex sites

    NASA Technical Reports Server (NTRS)

    Rice, Jim W.

    1994-01-01

    This candidate landing site is located at 19 deg N, 53.5 deg W near the mouth of a major outflow channel. Maja Valles, and two 'valley network' channel systems, Maumee and Vedra Valles. The following objectives are to be analyzed in this region: (1) origin and paleohydrology of outflow and valley network channels; (2) fan delta complex composition (the deposit located in this area is one of the few identified at the mouth s of any channels on the planet); and (3) analysis of any paleolake sediments (carbonates, evaporites). The primary objectives of the Chryse Outflow Complex region (Ares, Tiu, Mawrth, Simud, and Shalbatana Valles) would be outflow channel dynamics (paleohydrology) of five different channel systems.

  9. Response of power systems to the San Fernando Valley earthquake of 9 February 1971. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiff, A.J.; Yao, J.T.P.

    1972-01-01

    The impact of the San Fernando Valley earthquake on electric power systems is discussed. Particular attention focused on the following three areas; (1) the effects of an earthquake on the power network in the Western States, (2) the failure of subsystems and components of the power system, and (3) the loss of power to hospitals. The report includes sections on the description and functions of major components of a power network, existing procedures to protect the network, safety devices within the system which influence the network, a summary of the effects of the San Fernando Valley earthquake on the Westernmore » States Power Network, and present efforts to reduce the network vulnerability to faults. Also included in the report are a review of design procedures and practices prior to the San Fernando Valley earthquake and descriptions of types of damage to electrical equipment, dynamic analysis of equipment failures, equipment surviving the San Fernando Valley earthquake and new seismic design specifications. In addition, some observations and insights gained during the study, which are not directly related to power systems are discussed.« less

  10. Master stability functions reveal diffusion-driven pattern formation in networks

    NASA Astrophysics Data System (ADS)

    Brechtel, Andreas; Gramlich, Philipp; Ritterskamp, Daniel; Drossel, Barbara; Gross, Thilo

    2018-03-01

    We study diffusion-driven pattern formation in networks of networks, a class of multilayer systems, where different layers have the same topology, but different internal dynamics. Agents are assumed to disperse within a layer by undergoing random walks, while they can be created or destroyed by reactions between or within a layer. We show that the stability of homogeneous steady states can be analyzed with a master stability function approach that reveals a deep analogy between pattern formation in networks and pattern formation in continuous space. For illustration, we consider a generalized model of ecological meta-food webs. This fairly complex model describes the dispersal of many different species across a region consisting of a network of individual habitats while subject to realistic, nonlinear predator-prey interactions. In this example, the method reveals the intricate dependence of the dynamics on the spatial structure. The ability of the proposed approach to deal with this fairly complex system highlights it as a promising tool for ecology and other applications.

  11. Formation of porous networks on polymeric surfaces by femtosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Assaf, Youssef; Kietzig, Anne-Marie

    2017-02-01

    In this study, porous network structures were successfully created on various polymer surfaces by femtosecond laser micromachining. Six different polymers (poly(tetrafluoroethylene) (PTFE), poly(methyl methacrylate) (PMMA), high density poly(ethylene) (HDPE), poly(lactic acid) (PLA), poly(carbonate) (PC), and poly(ethylene terephthalate) (PET)) were machined at different fluences and pulse numbers, and the resulting structures were identified and compared by lacunarity analysis. At low fluence and pulse numbers, porous networks were confirmed to form on all materials except PLA. Furthermore, all networks except for PMMA were shown to bundle up at high fluence and pulse numbers. In the case of PC, a complete breakdown of the structure at such conditions was observed. Operation slightly above threshold fluence and at low pulse numbers is therefore recommended for porous network formation. Finally, the thickness over which these structures formed was measured and compared to two intrinsic material dependent parameters: the single pulse threshold fluence and the incubation coefficient. Results indicate that a lower threshold fluence at operating conditions favors material removal over structure formation and is hence detrimental to porous network formation. Favorable machining conditions and material-dependent parameters for the formation of porous networks on polymer surfaces have thus been identified.

  12. A strain-cue hypothesis for biological network formation

    PubMed Central

    Cox, Brian N.

    2011-01-01

    The direction of migration of a cell invading a host population is assumed to be controlled by the magnitude of the strains in the host medium (cells plus extracellular matrix) that arise as the host medium deforms to accommodate the invader. The single assumption that invaders are cued by strains external to themselves is sufficient to generate network structures. The strain induced by a line of invaders is greatest at the extremity of the line and thus the strain field breaks symmetry, stabilizing branch formation. The strain cue also triggers sprouting from existing branches, with no further model assumption. Network characteristics depend primarily on the ratio of the rate of advance of the invaders to the rate of relaxation of the host cells after their initial deformation. Intra-cell mechanisms that govern these two rates control network morphology. The strain field that cues an individual invader is a collective response of the combined cell populations, involving the nearest 100 cells, to order of magnitude, to any invader. The mechanism does not rely on the pre-existence of the entire host medium prior to invasion; the host cells need only maintain a layer several cells thick around each invader. Consistent with recent experiments, networks result only from a strain cue that is based on strain magnitudes. Spatial strain gradients do not break symmetry and therefore cannot stabilize branch formation. The theory recreates most of the geometrical features of the nervous network in the mouse gut when the most influential adjustable parameter takes a value consistent with one inferred from human and mouse amelogenesis. Because of similarity in the guiding local strain fields, strain cues could also be a participating factor in the formation of vascular networks. PMID:20671068

  13. Social power and opinion formation in complex networks

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi

    2013-02-01

    In this paper we investigate the effects of social power on the evolution of opinions in model networks as well as in a number of real social networks. A continuous opinion formation model is considered and the analysis is performed through numerical simulation. Social power is given to a proportion of agents selected either randomly or based on their degrees. As artificial network structures, we consider scale-free networks constructed through preferential attachment and Watts-Strogatz networks. Numerical simulations show that scale-free networks with degree-based social power on the hub nodes have an optimal case where the largest number of the nodes reaches a consensus. However, given power to a random selection of nodes could not improve consensus properties. Introducing social power in Watts-Strogatz networks could not significantly change the consensus profile.

  14. Biologically Informed Individual-Based Network Model for Rift Valley Fever in the US and Evaluation of Mitigation Strategies

    PubMed Central

    Scoglio, Caterina M.

    2016-01-01

    Rift Valley fever (RVF) is a zoonotic disease endemic in sub-Saharan Africa with periodic outbreaks in human and animal populations. Mosquitoes are the primary disease vectors; however, Rift Valley fever virus (RVFV) can also spread by direct contact with infected tissues. The transmission cycle is complex, involving humans, livestock, and multiple species of mosquitoes. The epidemiology of RVFV in endemic areas is strongly affected by climatic conditions and environmental variables. In this research, we adapt and use a network-based modeling framework to simulate the transmission of RVFV among hypothetical cattle operations in Kansas, US. Our model considers geo-located livestock populations at the individual level while incorporating the role of mosquito populations and the environment at a coarse resolution. Extensive simulations show the flexibility of our modeling framework when applied to specific scenarios to quantitatively evaluate the efficacy of mosquito control and livestock movement regulations in reducing the extent and intensity of RVF outbreaks in the United States. PMID:27662585

  15. Biologically Informed Individual-Based Network Model for Rift Valley Fever in the US and Evaluation of Mitigation Strategies.

    PubMed

    Scoglio, Caterina M; Bosca, Claudio; Riad, Mahbubul H; Sahneh, Faryad D; Britch, Seth C; Cohnstaedt, Lee W; Linthicum, Kenneth J

    Rift Valley fever (RVF) is a zoonotic disease endemic in sub-Saharan Africa with periodic outbreaks in human and animal populations. Mosquitoes are the primary disease vectors; however, Rift Valley fever virus (RVFV) can also spread by direct contact with infected tissues. The transmission cycle is complex, involving humans, livestock, and multiple species of mosquitoes. The epidemiology of RVFV in endemic areas is strongly affected by climatic conditions and environmental variables. In this research, we adapt and use a network-based modeling framework to simulate the transmission of RVFV among hypothetical cattle operations in Kansas, US. Our model considers geo-located livestock populations at the individual level while incorporating the role of mosquito populations and the environment at a coarse resolution. Extensive simulations show the flexibility of our modeling framework when applied to specific scenarios to quantitatively evaluate the efficacy of mosquito control and livestock movement regulations in reducing the extent and intensity of RVF outbreaks in the United States.

  16. Hydrogeology of the carbonate rocks of the Lebanon Valley, Pennsylvania

    USGS Publications Warehouse

    Meisler, Harold

    1963-01-01

    The Lebanon Valley, which is part of the Great Valley in southeastern Pennsylvania, is underlain by carbonate rocks in the southern part and by shale in the northern part. The carbonate rocks consist of alternating beds of limestone and dolomite of Cambrian and Ordovician age. Although the beds generally dip to the south, progressively younger beds crop out to the north, because the rocks are overturned. The stratigraphic units, from oldest to youngest, are: the Buffalo Springs Formation, Snitz Creek, Schaefferstown, Millbach, and Richland Formations of the Conococheague Group; the Stonehenge, Rickenbach, Epler, and Ontelaunee Formations of the Beekmantown Group; and the Annville, Myerstown, and Hershey Limestones.

  17. Stochastic opinion formation in scale-free networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Bartolozzi; D. B. Leinweber; A. W. Thomas

    2005-10-01

    The dynamics of opinion formation in large groups of people is a complex nonlinear phenomenon whose investigation is just beginning. Both collective behavior and personal views play an important role in this mechanism. In the present work we mimic the dynamics of opinion formation of a group of agents, represented by two states 1, as a stochastic response of each agent to the opinion of his/her neighbors in the social network and to feedback from the average opinion of the whole. In the light of recent studies, a scale-free Barabsi-Albert network has been selected to simulate the topology of themore » interactions. A turbulent-like dynamics, characterized by an intermittent behavior, is observed for a certain range of the model parameters. The problem of uncertainty in decision taking is also addressed both from a topological point of view, using random and targeted removal of agents from the network, and by implementing a three-state model, where the third state, zero, is related to the information available to each agent. Finally, the results of the model are tested against the best known network of social interactions: the stock market. A time series of daily closures of the Dow-Jones index has been used as an indicator of the possible applicability of our model in the financial context. Good qualitative agreement is found.« less

  18. Quaternary landscape evolution of tectonically active intermontane basins: the case of the Middle Aterno River Valley (Abruzzo, Central Italy)

    NASA Astrophysics Data System (ADS)

    Falcucci, Emanuela; Gori, Stefano; Della Seta, Marta; Fubelli, Giandomenico; Fredi, Paola

    2014-05-01

    The Middle Aterno River Valley is characterised by different Quaternary tectonic depressions localised along the present course of the Aterno River (Central Apennine) .This valley includes the L'Aquila and Paganica-Castelnuovo-San Demetrio tectonic basins, to the North, the Middle Aterno Valley and the Subequana tectonic basin, to the South. The aim of this contribution is to improve the knowledge about the Quaternary geomorphological and tectonic evolution of this portion of the Apennine chain. A synchronous lacustrine depositional phase is recognized in all these basins and attributed to the Early Pleistocene by Falcucci et al. (2012). At that time, this sector of the chain showed four distinct closed basins, hydrologically separated from each other and from the Sulmona depression. This depression, actually a tectonic basin too, was localized South of the Middle Aterno River Valley and it was drained by an endorheic hydrographic network. The formation of these basins was due to the activity of different fault systems, namely the Upper Aterno River Valley-Paganica system and San Pio delle Camere fault, to the North, and the Middle Aterno River Valley-Subequana Valley fault system to the South. These tectonic structures were responsible for the origin of local depocentres inside the depressions which hosted the lacustrine basins. Ongoing surveys in the uppermost sectors of the Middle Aterno River Valley revealed the presence of sub-horizontal erosional surfaces that are carved onto the carbonate bedrock and suspended several hundreds of metres over the present thalweg. Gently dipping slope breccias referred to the Early Pleistocene rest on these surfaces, thus suggesting the presence of an ancient low-gradient landscape adjusting to the local base level.. Subsequently, this ancient low relief landscape underwent a strong erosional phase during the Middle Pleistocene. This erosional phase is testified by the occurrence of valley entrenchment and of coeval fluvial

  19. Geologic characterization report for the Paradox Basin Study Region, Utah Study Areas. Volume 6: Salt Valley

    NASA Astrophysics Data System (ADS)

    1984-12-01

    Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker trail formation.

  20. A network-based meta-population approach to model Rift Valley fever epidemics

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) has been expanding its geographical distribution with important implications for both human and animal health. The emergence of Rift Valley fever (RVF) in the Middle East, and its continuing presence in many areas of Africa, has negatively impacted both medical and vet...

  1. Polygonal ridge networks on Mars: Diversity of morphologies and the special case of the Eastern Medusae Fossae Formation

    NASA Astrophysics Data System (ADS)

    Kerber, Laura; Dickson, James L.; Head, James W.; Grosfils, Eric B.

    2017-01-01

    Polygonal ridge networks, also known as boxwork or reticulate ridges, are found in numerous locations and geological contexts across Mars. Distinguishing the morphologies and geological context of the ridge networks sheds light on their potential as astrobiological and mineral resource sites of interest. The most widespread type of ridge morphology is characteristic of the Nili Fossae and Nilosyrtis region and consists of thin, criss-crossing ridges with a variety of heights, widths, and intersection angles. They are found in ancient Noachian terrains at a variety of altitudes (between -2500 and 2200 m) and geographic locations and are likely to be chemically altered fracture planes or mineral veins. They occur in the same general areas as valley networks and ancient lake basins, but they are not more numerous where these water-related features are concentrated, and can appear in places where th morphologies are absent. Similarly, some of the ridge networks are located near hydrated mineral detections, but there is not a one-to-one correlation. Smaller, light-toned ridges of variable widths have been found in Gale Crater and other rover sites and are interpreted to be smaller versions of the Nili-like ridges, mostly formed by the mineralization of fractures. This type of ridge is likely to be found in many other places on Mars as more high-resolution data become available. Sinus Meridiani contains many flat-topped ridges arranged into quasi-circular patterns. The ridges are eroding from a clay-rich unit, and could be formed by a similar process as the Nili-type ridges, but at a much larger scale and controlled by fractures made through a different process. Hellas Basin is host to a fourth type of ridge morphology consisting of large, thick, light-toned ridges forming regular polygons at several superimposed scales. While still enigmatic, these are most likely to be the result of sediment-filled fractures. The Eastern Medusae Fossae Formation contains large swaths

  2. Climatic and morphological controls on post-glacial lake and river valley evolution in the Weichselian belt - an example from the Wda valley, Northern Poland

    NASA Astrophysics Data System (ADS)

    Kramkowski, M. A.; Błaszkiewicz, M.; Piotrowski, J. A.; Brauer, A.; Gierszewski, P.; Kordowski, J.; Lamparski, P.; Lorenz, S.; Noryśkiewicz, A. M.; Ott, F.; Slowinski, M. M.; Tyszkowski, S.

    2014-12-01

    The River Wda valley is a classical example of a polygenetic valley, consisting of former lake basins joined by erosive gap sections. In its middle section, which was the subject of our research, a fragment of an abandoned Lateglacial river valley is preserved, which is unique for the Weichselian moraine belt in the Central European Lowlands. The analysis of the relationship between the lacustrine and fluvial sediments and landforms enabled the authors to report many evolutionary connections between the initial period of the river system formation and the emergence of lakes during the Weichselian Lateglacial. The surface drainage essentially determined the progress of melting of dead ice blocks buried in the glacial depressions, which finally led to lake formation there. Most of the lake basins in the study area were formed during the Bølling-Allerød period. However, one section of the subglacial channel was not exposed to the thermokarst conditions and was therefore preserved with dead ice blocks throughout the entire Lateglacial. The dead ice decay at the beginning of the Holocene, as well as the emergence of another lake, created a lower base level of erosion in the close vicinity of the abandoned valley and induced a change of the river's course. Both fluvial and lacustrine deposits and landforms distributed in the central section of the River Wda valley indicate two processes, which proceeded simultaneously: (1) emergence of fluvially joined lake basins within a glacial channel, (2) degradation of the river bed in the gap sections interfering between the lakes. The processes described for the central section of the River Wda channel indicate a very dynamic river valley development during the Weichselian Lateglacial and the early Holocene. The valley formation was tightly interwoven with the morphogenesis of the primary basins within the valley, mainly with the melting of the buried blocks of dead ice and the development of lakes. This study is a contribution

  3. Opinion formation driven by PageRank node influence on directed networks

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho; Shepelyansky, Dima L.

    2015-10-01

    We study a two states opinion formation model driven by PageRank node influence and report an extensive numerical study on how PageRank affects collective opinion formations in large-scale empirical directed networks. In our model the opinion of a node can be updated by the sum of its neighbor nodes' opinions weighted by the node influence of the neighbor nodes at each step. We consider PageRank probability and its sublinear power as node influence measures and investigate evolution of opinion under various conditions. First, we observe that all networks reach steady state opinion after a certain relaxation time. This time scale is decreasing with the heterogeneity of node influence in the networks. Second, we find that our model shows consensus and non-consensus behavior in steady state depending on types of networks: Web graph, citation network of physics articles, and LiveJournal social network show non-consensus behavior while Wikipedia article network shows consensus behavior. Third, we find that a more heterogeneous influence distribution leads to a more uniform opinion state in the cases of Web graph, Wikipedia, and Livejournal. However, the opposite behavior is observed in the citation network. Finally we identify that a small number of influential nodes can impose their own opinion on significant fraction of other nodes in all considered networks. Our study shows that the effects of heterogeneity of node influence on opinion formation can be significant and suggests further investigations on the interplay between node influence and collective opinion in networks.

  4. Reassessing the Ancient Martian Ocean Hypothesis using Global Distribution of Valley Networks

    NASA Astrophysics Data System (ADS)

    Chan, Ngai-Ham; Perron, J. Taylor; Mitrovica, Jerry X.

    2016-04-01

    We re-examine the connection between true polar wander and the Martian ocean hypothesis. Previous studies have investigated the plausibility of an ancient ocean on Mars by examining the ancient putative sea-level markers on the planet's surface. One such study has argued that topographic benches, or contacts, are ancient shorelines, and that these contacts display long-wavelength topographic variations consistent with post-depositional true polar wander (Perron et al., Nature, 2007). In contrast, a second study has argued that the topography of ancient deltaic deposits associated with an ocean on early Mars are not consistent with the true polar wander scenario (Achille & Hynek, Nature Geosci., 2010). We revisit this issue by examining another marker of ancient shorelines --- the fluvial valley networks observed on the surface of Mars. Our results provide further evidence that a true polar wander event drove significant post-depositional deflection of surface features related to an ancient Martian ocean.

  5. Reassessing the Ancient Martian Ocean Hypothesis using Global Distribution of Valley Networks

    NASA Astrophysics Data System (ADS)

    Chan, N. H.; Perron, J. T.; Mitrovica, J. X.

    2015-12-01

    We re-examine the connection between true polar wander and the Martian ocean hypothesis. Previous studies have investigated the plausibility of an ancient ocean on Mars by examining the topography of ancient putative sea-level markers on the planet's surface. A previous study has argued that topographic benches, or contacts, are ancient shorelines, and that these contacts display long-wavelength topographic variations consistent with post-depositional true polar wander (Perron et al., Nature, 2007). In contrast, a second study has argued that the topography of ancient deltaic deposits associated with an ocean on early Mars are not consistent with the true polar wander scenario (Achille & Hynek, Nature Geosci., 2010). We revisit this issue by examining another marker of ancient shorelines --- the fluvial valley networks observed on the surface of Mars. Our results provide further evidence that a true polar wander event drove significant post-depositional deflection of surface features related to an ancient Martian ocean.

  6. Formation and failure of volcanic debris dams in the Chakachatna River valley associated with eruptions of the Spurr volcanic complex, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    2001-01-01

    The formation of lahars and a debris avalanche during Holocene eruptions of the Spurr volcanic complex in south-central Alaska have led to the development of volcanic debris dams in the Chakachatna River valley. Debris dams composed of lahar and debris-avalanche deposits formed at least five times in the last 8000-10,000 years and most recently during eruptions of Crater Peak vent in 1953 and 1992. Water impounded by a large debris avalanche of early Holocene (?) age may have destabilized an upstream glacier-dammed lake causing a catastrophic flood on the Chakachatna River. A large alluvial fan just downstream of the debris-avalanche deposit is strewn with boulders and blocks and is probably the deposit generated by this flood. Application of a physically based dam-break model yields estimates of peak discharge (Qp) attained during failure of the debris-avalanche dam in the range 104 < Qp < 106 m3 s-1 for plausible breach erosion rates of 10-100 m h-1. Smaller, short-lived, lahar dams that formed during historical eruptions in 1953, and 1992, impounded smaller lakes in the upper Chakachatna River valley and peak flows attained during failure of these volcanic debris dams were in the range 103 < Qp < 104 m3 s-1 for plausible breach erosion rates. Volcanic debris dams have formed at other volcanoes in the Cook Inlet region, Aleutian arc, and Wrangell Mountains but apparently did not fail rapidly or result in large or catastrophic outflows. Steep valley topography and frequent eruptions at volcanoes in this region make for significant hazards associated with the formation and failure of volcanic debris dams. Published by Elsevier Science B.V.

  7. Data network, collection, and analysis in the Diamond Valley flow system, central Nevada

    USGS Publications Warehouse

    Knochenmus, Lari A.; Berger, David L.; Moreo, Michael T.; Smith, J. LaRue

    2011-01-01

    Future groundwater development and its effect on future municipal, irrigation, and alternative energy uses in the Diamond Valley flow system are of concern for officials in Eureka County, Nevada. To provide a better understanding of the groundwater resources, the U.S. Geological Survey, in cooperation with Eureka County, commenced a multi-phase study of the Diamond Valley flow system in 2005. Groundwater development primarily in southern Diamond Valley has resulted in water-level declines since the 1960s ranging from less than 5 to 100 feet. Groundwater resources in the Diamond Valley flow system outside of southern Diamond Valley have been relatively undeveloped. Data collected during phase 2 of the study (2006-09) included micrometeorological data at 4 evapotranspiration stations, 3 located in natural vegetation and 1 located in an agricultural field; groundwater levels in 95 wells; water-quality constituents in aquifers and springs at 21 locations; lithologic information from 7 recently drilled wells; and geophysical logs from 3 well sites. This report describes what was accomplished during phase 2 of the study, provides the data collected, and presents the approaches to strengthen relations between evapotranspiration rates measured at micrometeorological stations and spatially distributed groundwater discharge. This report also presents the approach to improve delineation of areas of groundwater discharge and describes the current methodology used to improve the accuracy of spatially distributed groundwater discharge rates in the Diamond Valley flow system.

  8. Geology of the Thaumasia region, Mars: Plateau development, valley origins, and magmatic evolution

    USGS Publications Warehouse

    Dohm, J.M.; Tanaka, K.L.

    1999-01-01

    rock occurs there. The overall volcanotectonic history at Thaumasia fits into a model for Tharsis as a whole in which long-lived Syria Planum-centered activity is ringed by a few significant, shorter-lived centers of activity like the Thaumasia plateau. Valley formation, like tectonism in the region, peaked during the Noachian and declined substantially during the Hesperian and Amazonian. Temporal and spatial associations of single erosional valleys and valley networks with volcanoes, rift systems, and large impact craters suggest that the majority of valleys formed by hydrothermal, deformational, and seismic-induced processes. The origin of scattered, mainly Noachian valleys is more conjectural; possible explanations include local precipitation, seismic disturbance of aquifers, or unrecognized intrusions. ?? 1999 Elsevier Science Ltd. All rights reserved.

  9. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid

    PubMed Central

    Shen, H.; Anastasio, C.

    2011-01-01

    Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM in cardiopulmonary tissues. While hydroxyl radical (•OH) is the most reactive of the ROS species, there are few quantitative studies of •OH generation from PM. Here we report on •OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified •OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more •OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances •OH formation from all the samples. Fine PM (PM2.5) generally makes more •OH than the corresponding coarse PM (PMcf, i.e. with diameters of 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more •OH normalized by PM mass. •OH production by SJV PM is reduced on average by (97±6)% when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of •OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for •OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived •OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary •OH, although high PM events could produce much higher levels of •OH, which might lead to cytotoxicity. PMID:22121357

  10. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid

    NASA Astrophysics Data System (ADS)

    Shen, H.; Anastasio, C.

    2011-09-01

    Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM in cardiopulmonary tissues. While hydroxyl radical (•OH) is the most reactive of the ROS species, there are few quantitative studies of •OH generation from PM. Here we report on •OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified •OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50 μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more •OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances •OH formation from all the samples. Fine PM (PM2.5) generally makes more •OH than the corresponding coarse PM (PMcf, i.e. with diameters of 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more •OH normalized by PM mass. •OH production by SJV PM is reduced on average by (97 ± 6) % when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of •OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for •OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived •OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary •OH, although high PM events could produce much higher levels of •OH, which might lead to cytotoxicity.

  11. Titan's fluvial valleys: Morphology, distribution, and spectral properties

    USGS Publications Warehouse

    Langhans, M.H.; Jaumann, R.; Stephan, K.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Baines, K.H.; Nicholson, P.D.; Lorenz, R.D.; Soderblom, L.A.; Soderblom, J.M.; Sotin, Christophe; Barnes, J.W.; Nelson, R.

    2012-01-01

    Titan's fluvial channels have been investigated based on data obtained by the Synthetic Aperture Radar (SAR) instrument and the Visible and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. In this paper, a database of fluvial features is created based on radar-SAR data aiming to unveil the distribution and the morphologic and spectral characteristics of valleys on Titan on a global scale. It will also study the spatial relations between fluvial valleys and Titan's geologic units and spectral surface units which have become accessible thanks to Cassini-VIMS data. Several distinct morphologic types of fluvial valleys can be discerned by SAR-images. Dendritic valley networks appear to have much in common with terrestrial dendritic systems owing to a hierarchical and tree-shaped arrangement of the tributaries which is indicative of an origin from precipitation. Dry valleys constitute another class of valleys resembling terrestrial wadis, an indication of episodic and strong flow events. Other valley types, such as putative canyons, cannot be correlated with rainfall based on their morphology alone, since it cannot be ruled out that they may have originated from volcanic/tectonic action or groundwater sapping. Highly developed and complex fluvial networks with channel lengths of up to 1200 km and widths of up to 10 km are concentrated only at a few locations whereas single valleys are scattered over all latitudes. Fluvial valleys are frequently found in mountainous areas. Some terrains, such as equatorial dune fields and undifferentiated plains at mid-latitudes, are almost entirely free of valleys. Spectrally, fluvial terrains are often characterized by a high reflectance in each of Titan's atmospheric windows, as most of them are located on Titan's bright 'continents'. Nevertheless, valleys are spatially associated with a surface unit appearing blue due to its higher reflection at 1.3??m in a VIMS false color RGB composite with R: 1.59/1.27??m, G: 2

  12. Valley segments, stream reaches, and channel units [Chapter 2

    Treesearch

    Peter A. Bisson; David R. Montgomery; John M. Buffington

    2006-01-01

    Valley segments, stream reaches, and channel units are three hierarchically nested subdivisions of the drainage network (Frissell et al. 1986), falling in size between landscapes and watersheds (see Chapter 1) and individual point measurements made along the stream network (Table 2.1; also see Chapters 3 and 4). These three subdivisions compose the habitat for large,...

  13. Knickpoints and Hanging Valleys of Licus Vallis, Mars

    NASA Astrophysics Data System (ADS)

    Goudge, T. A.; Fassett, C.

    2016-12-01

    of valley network systems such as Licus Vallis provides a unique opportunity to develop predictions for the evolution of regional hydrology and the martian hydrologic cycle.

  14. Hydrogeology of a drift-filled bedrock valley near Lino Lakes, Anoka County, Minnesota

    USGS Publications Warehouse

    Winter, T.C.; Pfannkuch, H.O.

    1976-01-01

    The bedrock surface of east-central Minnesota is dissected by an intricate network of valleys. Outside the bedrock valley at site B, 3 mi (4. 8 km) from site A, 100 ft (30 m) of drift overlies the bedrock surface. Observation wells were installed at the two sites to determine the vertical ground-water movement between the various aquifer units and the lateral movement between the two sites. An aquifer test of the lowest valley-fill aquifer at site A showed that the observation well completed in the same aquifer as the pumping well responded immediately; whereas a lag of about 100 min occurred between the lower valley fill and uppermost body of sand and gravel. This indicates that the hydraulic connection between these two layers is poor at the immediate site. Test results show that the lower sand-and-gravel aquifer has a transmissivity between 14,000 and 27,000 ft2/d (1,300 and 2,500 m2/d). Although the hydraulic gradient is vertically downward in the valley, much of the drift fill is poorly permeable. This suggests that the quantity of downward-percolating water reaching the lowest valley-fill aquifer is relatively small at the test site. Because valley cut through a number of bedrock aquifers in the region, they could potentially be an important avenue of contamination from land-surface waste. In addition, the vast network of bedrock valleys in the Twin Cities area might cause contaminants to disseminate rather rapidly throughout a large area.

  15. GALAXY EVOLUTION IN THE MID-INFRARED GREEN VALLEY: A CASE OF THE A2199 SUPERCLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gwang-Ho; Lee, Myung Gyoon; Sohn, Jubee

    2015-02-20

    We study the mid-infrared (MIR) properties of the galaxies in the A2199 supercluster at z = 0.03 to understand the star formation activity of galaxy groups and clusters in the supercluster environment. Using the Wide-field Infrared Survey Explorer data, we find no dependence of mass-normalized integrated star formation rates of galaxy groups/clusters on their virial masses. We classify the supercluster galaxies into three classes in the MIR color-luminosity diagram: MIR blue cloud (massive, quiescent, and mostly early-type), MIR star-forming sequence (mostly late-type), and MIR green valley galaxies. These MIR green valley galaxies are distinguishable from the optical green valley galaxiesmore » in the sense that they belong to the optical red sequence. We find that the fraction of each MIR class does not depend on the virial mass of each group/cluster. We compare the cumulative distributions of surface galaxy number density and cluster/group-centric distance for the three MIR classes. MIR green valley galaxies show the distribution between MIR blue cloud and MIR star-forming (SF) sequence galaxies. However, if we fix galaxy morphology, early- and late-type MIR green valley galaxies show different distributions. Our results suggest a possible evolutionary scenario of these galaxies: (1) late-type MIR SF sequence galaxies → (2) late-type MIR green valley galaxies → (3) early-type MIR green valley galaxies → (4) early-type MIR blue cloud galaxies. In this sequence, the star formation of galaxies is quenched before the galaxies enter the MIR green valley, and then morphological transformation occurs in the MIR green valley.« less

  16. McMurdo LTER: streamflow measurements in Taylor Valley

    USGS Publications Warehouse

    McKnight, D.; House, H.; Von Guerard, P.

    1994-01-01

    Has established a stream gaging network for the three major lake basins in Taylor Valley. These data are critical for determining nutrient budgets for the lake ecosystems and for understanding physical factors controlling microbial mats in the streams.

  17. Plant taphonomy in incised valleys: Implications for interpreting paleoclimate from fossil plants

    USGS Publications Warehouse

    Demko, T.M.; Dubiel, R.F.; Parrish, Judith T.

    1998-01-01

    Paleoclimatic interpretations of the Upper Triassic Chinle Formation (Colorado Plateau) based on plants conflict with those based on the sedimentary rocks. The plants are suggestive of a humid, equable climate, whereas the rocks are more consistent with deposition under highly seasonal precipitation and ground-water conditions. Fossil plant assemblages are limited to the lower members of the Chinle Formation, which were deposited within incised valleys that were cut into underlying Lower to Middle Triassic and older rocks. In contrast, the upper members of the formation, which were deposited across the fluvial plain after the incised valleys were filled, have few preserved fossil plants. The taphonomic characteristics of the plant fossil assemblages, within the stratigraphic and hydrologic context of the incised valley-fill sequence, explain the vertical and lateral distribution of these assemblages. The depositional, hydrological, and near-surface geochemical conditions were more conducive to preservation of the plants. Fossil plant assemblages in fully terrestrial incised-valley fills should be taphonomically biased toward riparian wetland environments. If those assemblages are used to interpret paleoclimate, the paleoclimatic interpretations will also be biased. The bias may be particularly strong in climates such as those during deposition of the Chinle Formation, when the riparian wetlands may reflect local hydrologic conditions rather than regional climate, and should be taken into account when using these types of plant assemblages in paleoclimatic interpretations.

  18. Subsurface Salts in Antarctic Dry Valley Soils

    NASA Technical Reports Server (NTRS)

    Englert, P.; Bishop, J. L.; Gibson, E. K.; Koeberl, C.

    2013-01-01

    The distribution of water-soluble ions, major and minor elements, and other parameters were examined to determine the extent and effects of chemical weathering on cold desert soils. Patterns at the study sites support theories of multiple salt forming processes, including marine aerosols and chemical weathering of mafic minerals. Periodic solar-mediated ionization of atmospheric nitrogen might also produce high nitrate concentrations found in older sediments. Chemical weathering, however, was the major contributor of salts in Antarctic Dry Valleys. The Antarctic Dry Valleys represent a unique analog for Mars, as they are extremely cold and dry desert environments. Similarities in the climate, surface geology, and chemical properties of the Dry Valleys to that of Mars imply the possible presence of these soil formation mechanisms on Mars, other planets and icy satellites.

  19. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 3: Valley Types and Distribution

    NASA Technical Reports Server (NTRS)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Three major valley tapes were identified in the SW Margaritefer Sinus and Argyre regions. Two are restricted to specific geologic units while the third is independent of the geology. The first type (the small valley networks) are found within the channeled and subdued plains unit in the eastern half of the map, in the grooved and channeled plains unit north of Nirgal Vallis, and in scattered instances in the cratered plateau unit north of Argyre. The even smaller valleys just inside Argyre's rim and on the inner slopes of many large craters are not directly related to the processes which formed the small valleys but are a result, instead, of post-impact modification of the crater walls. The second type of valley network is represented by Nirgal Vallis and the similar, shorter continuation of it to the west. This type is found only in the smooth plains material west of Uzboi Vallis in the map area. The third type of valley network is that of the Uzbol-Holden-Ladon valles system. This system is related to catastrophic outflow from Argyre Basin and is topographically rather than geologically controlled.

  20. Uraniferous opal, Virgin Valley, Nevada: conditions of formation and implications for uranium exploration

    USGS Publications Warehouse

    Zielinski, R.A.

    1982-01-01

    Uraniferous, fluorescent opal, which occurs in tuffaceous sedimentary rocks at Virgin Valley, Nevada, records the temperature and composition of uranium-rich solutions as well as the time of uranium-silica coprecipitation. Results are integrated with previous geologic and geochronologic data for the area to produce a model for uranium mobility that may be used to explore for uranium deposits in similar geologic settings. Uraniferous opal occurs as replacements of diatomite, or silicic air-fall ash layers in tuffaceous lakebeds of the Virgin Valley Formation (Miocene) of Merriam (1907). Fission-track radiography shows uranium to be homogeneously dispersed throughout the opal structure, suggesting coprecipitation of dissolved uranium and silica gel. Fluid inclusions preserved within opal replacements of diatomite have homogenization temperatures in the epithermal range and are of low salinity. Four samples of opal from one locality all have U-Pb apparent ages which suggest uraniferous opal precipitation in late Pliocene time. These ages correspond to a period of local, normal faulting, and highangle faults may have served as vertical conduits for transport of deep, thermalized ground water to shallower levels. Lateral migration of rising solutions occurred at intersections of faults with permeable strata. Silica and some uranium were dissolved from silica-rich host strata of 5-20 ppm original uranium content and reprecipitated as the solutions cooled. The model predicts that in similar geologic settings, ore-grade concentrations of uranium will occur in permeable strata that intersect high-angle faults and that contain uranium source rocks as well as efficient reductant traps for uranium. In the absence of sufficient quantities of reductant materials, uranium will be flushed from the system or will accumulate in low-grade disseminated hosts such as uraniferous opal. ?? 1982.

  1. Online Formative Assessments with Social Network Awareness

    ERIC Educational Resources Information Center

    Lin, Jian-Wei; Lai, Yuan-Cheng

    2013-01-01

    Social network awareness (SNA) has been used extensively as one of the strategies to increase knowledge sharing and collaboration opportunities. However, most SNA studies either focus on being aware of peer's knowledge context or on social context. This work proposes online formative assessments with SNA, trying to address the problems of online…

  2. A catastrophic meltwater flood event and the formation of the Hudson Shelf Valley

    USGS Publications Warehouse

    Thieler, E. Robert; Butman, Bradford; Schwab, William C.; Allison, Mead A.; Driscoll, Neal W.; Donnelly, John P.; Uchupi, Elazar

    2007-01-01

    The Hudson Shelf Valley (HSV) is the largest physiographic feature on the U.S. mid-Atlantic continental shelf. The 150-km long valley is the submerged extension of the ancestral Hudson River Valley that connects to the Hudson Canyon. Unlike other incised valleys on the mid-Atlantic shelf, it has not been infilled with sediment during the Holocene. Analyses of multibeam bathymetry, acoustic backscatter intensity, and high-resolution seismic reflection profiles reveal morphologic and stratigraphic evidence for a catastrophic meltwater flood event that formed the modern HSV. The valley and its distal deposits record a discrete flood event that carved 15-m high banks, formed a 120-km2 field of 3- to 6-m high bedforms, and deposited a subaqueous delta on the outer shelf. The HSV is inferred to have been carved initially by precipitation and meltwater runoff during the advance of the Laurentide Ice Sheet, and later by the drainage of early proglacial lakes through stable spillways. A flood resulting from the failure of the terminal moraine dam at the Narrows between Staten Island and Long Island, New York, allowed glacial lakes in the Hudson and Ontario basins to drain across the continental shelf. Water level changes in the Hudson River basin associated with the catastrophic drainage of glacial lakes Iroquois, Vermont, and Albany around 11,450 14C year BP (∼ 13,350 cal BP) may have precipitated dam failure at the Narrows. This 3200 km3 discharge of freshwater entered the North Atlantic proximal to the Gulf Stream and may have affected thermohaline circulation at the onset of the Intra-Allerød Cold Period. Based on bedform characteristics and fluvial morphology in the HSV, the maximum freshwater flux during the flood event is estimated to be ∼ 0.46 Sv for a duration of ∼ 80 days.

  3. Mean-field approach to evolving spatial networks, with an application to osteocyte network formation

    NASA Astrophysics Data System (ADS)

    Taylor-King, Jake P.; Basanta, David; Chapman, S. Jonathan; Porter, Mason A.

    2017-07-01

    We consider evolving networks in which each node can have various associated properties (a state) in addition to those that arise from network structure. For example, each node can have a spatial location and a velocity, or it can have some more abstract internal property that describes something like a social trait. Edges between nodes are created and destroyed, and new nodes enter the system. We introduce a "local state degree distribution" (LSDD) as the degree distribution at a particular point in state space. We then make a mean-field assumption and thereby derive an integro-partial differential equation that is satisfied by the LSDD. We perform numerical experiments and find good agreement between solutions of the integro-differential equation and the LSDD from stochastic simulations of the full model. To illustrate our theory, we apply it to a simple model for osteocyte network formation within bones, with a view to understanding changes that may take place during cancer. Our results suggest that increased rates of differentiation lead to higher densities of osteocytes, but with a smaller number of dendrites. To help provide biological context, we also include an introduction to osteocytes, the formation of osteocyte networks, and the role of osteocytes in bone metastasis.

  4. 78 FR 12359 - Goodman Networks, Inc., Core Network Engineering (Deployment Engineering) Division Including...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ...., Core Network Engineering (Deployment Engineering) Division Including Workers in the Core Network Engineering (Deployment Engineering) Division in Alpharetta, GA, Hunt Valley, MD, Naperville, IL, and St... Reconsideration applicable to workers and former workers of Goodman Networks, Inc., Core Network Engineering...

  5. 78 FR 775 - Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Alpharetta, GA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ...,846B; TA-W-81,846C; TA-W-81,846D] Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Alpharetta, GA; Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Hunt Valley, MD; Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division...

  6. Geology and ground water in Napa and Sonoma Valleys, Napa and Sonoma Counties, California

    USGS Publications Warehouse

    Kunkel, Fred; Upson, Joseph Edwin

    1960-01-01

    Napa and Sonoma Valleys are adjacent alluvium-filled valleys about 40 miles northeast of San Francisco. They occupy alined and structurally controlled depressions in the northern Coast Ranges physiographic province and drain south into San Pablo Bay. The valleys are surrounded and underlain by unconsolidated marine and continental sediments and volcanic rocks of Pliocene and Pleistocene age, which are water bearing in large part and together make up relatively extensive ground-water basins. Napa Valley, the eastern valley, is the larger and has a valley-floor area of about 85 square miles. Sonoma Valley has a valley-floor area of about 35 square miles; in addition, about 10 square miles is unreclaimed tidal marsh. The rock units of Napa and Sonoma Valleys are divided into four classes on the basis of their distribution and relative capacity to yield water: (a) Consolidated virtually non-water-bearing chiefly sedimentary (some metamorphic) rocks that range in age from Jurassic ( ?) to Pliocene; (b) marine shale and sand of the Petaluma formation (Pliocene) and the Merced formation (Pliocene and Pleistocene) that do not crop out within Napa or Sonoma Valleys but perhaps are penetrated by some deep wells drilled in Sonoma Valley; (c) Sonoma volcanics of Pliocene age, parts of which are non-water-bearing and parts of which locally yield large quantities of water; and (d) unconsolidated alluvial deposits mainly of Quaternary age. The deposits of classes (c) and (d) contain the most important aquifers in the area. Most of the water used in these valleys is pumped from wells in the younger and older alluvium in the Huichica and Glen Ellen formations. and in the Sonoma volcanics. The principal aquifers are the younger and older alluvium. but appreciable quantities of water are pumped locally from the Sonoma volcanics. The Huichica and Glen Ellen formations yield water in small quantities and at most places supply water only for limited domestic uses. The younger alluvium

  7. Effect of homophily on network formation

    NASA Astrophysics Data System (ADS)

    Kim, Kibae; Altmann, Jörn

    2017-03-01

    Although there is much research on network formation based on the preferential attachment rule, the research did not come up with a formula that, on the one hand, can reproduce shapes of cumulative degree distributions of empirical complex networks and, on the other hand, can represent intuitively theories on individual behavior. In this paper, we propose a formula that closes this gap by integrating into the formula for the preferential attachment rule (i.e., a node with higher degree is more likely to gain a new link) a representation of the theory of individual behavior with respect to nodes preferring to connect to other nodes with similar attributes (i.e., homophily). Based on this formula, we simulate the shapes of cumulative degree distributions for different levels of homophily and five different seed networks. Our simulation results suggest that homophily and the preferential attachment rule interact for all five types of seed networks. Surprisingly, the resulting cumulative degree distribution in log-log scale always shifts from a concave shape to a convex shape, as the level of homophily gets larger. Therefore, our formula can explain intuitively why some of the empirical complex networks show a linear cumulative degree distribution in log-log scale while others show either a concave or convex shape. Furthermore, another major finding indicates that homophily makes people of a group richer than people outside this group, which is a surprising and significant finding.

  8. Paired Magnetic Susceptibility Cyclostratigraphy and Revised Magnetostratigraphy with Late Cretaceous Euler Pole from Forbes Formation, Sand Creek, Sacramento Valley, California

    NASA Astrophysics Data System (ADS)

    Slotznick, S. P.; Raub, T.; Mitchell, R. N.; Ward, P. D.; Kirschvink, J. L.

    2012-12-01

    Magnetostratigraphy in Upper Cretaceous rocks of Sacramento Valley has successfully complemented biostratigraphy for correlating between circum-Pacific basins. Most paleomagnetic measurements were done pre-1990 using alternating field demagnetization only, due to oxidation accompanying thermal demagnetization. We present paleomagnetic data collected via thermal demagnetization in a flowing nitrogen atmosphere from 223 cores collected over a 130m of section of Forbes Formation in Sand Creek, CA spanning upper Dobbins Shale, Forbes Unit 2 and lower Unit 3. These results uniformly indicate Reversed Chron 33R, contra previously published magnetostratigraphy of the area (Ward et al. 1983, Verosub et al. 1989). Additionally, these paleomagnetic results yield a tightly-constrained paleolatitude for Forbes Formation of 31±3°, which varies significantly from previous APWP models ca. 83 Ma (Besse and Courtillot, 2002) suggesting an unaccounted-for deficiency in reconstructions of North America at this time. This discrepancy might indicate an inaccurate cratonic reference pole, underestimated intrabatholithic or distributed plate boundary deformation, and/or true polar wander. As opposed to other units yielding anomalous late Cretaceous paleolatitudes from outboard terranes, Forbes Formation in Sacramento Valley laps unambiguously onto the North American continent. A 25m AW34 core was collected using a Winkie drillrig near the top of Dobbins Shale Mbr. Paleomagnetic measurements on subsamples from the Winkie core, unaffected by surface weathering, combine with the surficial dataset, and we propose a new set of Euler pole solutions potentially quantifying Basin and Range extension and late Cretaceous intra-Sierran shear. Through magnetic susceptibility measurements of the Winkie core, we were able to resolve orbital cycles which, paired with rock magnetic measurements, constrain basin subsidence and sedimentation rate off the Sierran arc at its age of termination. Re

  9. The Role of Source Material in Basin Sedimentation, as Illustrated within Eureka Valley, Death Valley National Park, CA.

    NASA Astrophysics Data System (ADS)

    Lawson, M. J.; Yin, A.; Rhodes, E. J.

    2015-12-01

    Steep landscapes are known to provide sediment to sink regions, but often petrological factors can dominate basin sedimentation. Within Eureka Valley, in northwestern Death Valley National Park, normal faulting has exposed a steep cliff face on the western margin of the Last Chance range with four kilometers of vertical relief from the valley floor and an angle of repose of nearly 38 degrees. The cliff face is composed of Cambrian limestone and dolomite, including the Bonanza King, Carrara and Wood Canyon formations. Interacting with local normal faulting, these units preferentially break off the cliff face in coherent blocks, which result in landslide deposits rather than as finer grained material found within the basin. The valley is well known for a large sand dune, which derives its sediment from distal sources to the north, instead of from the adjacent Last Chance Range cliff face. During the Holocene, sediment is sourced primary from the northerly Willow Wash and Cucomungo canyon, a relatively small drainage (less than 80 km2) within the Sylvan Mountains. Within this drainage, the Jurassic quartz monzonite of Beer Creek is heavily fractured due to motion of the Fish Valley Lake - Death Valley fault zone. Thus, the quartz monzonite is more easily eroded than the well-consolidated limestone and dolomite that forms the Last Change Range cliff face. As well, the resultant eroded material is smaller grained, and thus more easily transported than the limestone. Consequently, this work highlights an excellent example of the strong influence that source material can have on basin sedimentation.

  10. Distributed formation control of nonholonomic autonomous vehicle via RBF neural network

    NASA Astrophysics Data System (ADS)

    Yang, Shichun; Cao, Yaoguang; Peng, Zhaoxia; Wen, Guoguang; Guo, Konghui

    2017-03-01

    In this paper, RBF neural network consensus-based distributed control scheme is proposed for nonholonomic autonomous vehicles in a pre-defined formation along the specified reference trajectory. A variable transformation is first designed to convert the formation control problem into a state consensus problem. Then, the complete dynamics of the vehicles including inertia, Coriolis, friction model and unmodeled bounded disturbances are considered, which lead to the formation unstable when the distributed kinematic controllers are proposed based on the kinematics. RBF neural network torque controllers are derived to compensate for them. Some sufficient conditions are derived to accomplish the asymptotically stability of the systems based on algebraic graph theory, matrix theory, and Lyapunov theory. Finally, simulation examples illustrate the effectiveness of the proposed controllers.

  11. Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986-2000

    USGS Publications Warehouse

    Doran, P.T.; McKay, C.P.; Clow, G.D.; Dana, G.L.; Fountain, A.G.; Nylen, T.; Lyons, W.B.

    2002-01-01

    Climate observations from the McMurdo dry valleys, East Antarctica are presented from a network of seven valley floor automatic meteorological stations during the period 1986 to 2000. Mean annual temperatures ranged from -14.8??C to -30.0??C, depending on the site and period of measurement. Mean annual relative humidity is generally highest near the coast. Mean annual wind speed increases with proximity to the polar plateau. Site-to-site variation in mean annual solar flux and PAR is due to exposure of each station and changes over time are likely related to changes in cloudiness. During the nonsummer months, strong katabatic winds are frequent at some sites and infrequent at others, creating large variation in mean annual temperature owing to the warming effect of the winds. Katabatic wind exposure appears to be controlled to a large degree by the presence of colder air in the region that collects at low points and keeps the warm less dense katabatic flow from the ground. The strong influence of katabatic winds makes prediction of relative mean annual temperature based on geographical position (elevation and distance from the coast) alone, not possible. During the summer months, onshore winds dominate and warm as they progress through the valleys creating a strong linear relationship (r2 = 0.992) of increasing potential temperature with distance from the coast (0.09??C km-1). In contrast to mean annual temperature, summer temperature lends itself quite well to model predictions, and is used to construct a statistical model for predicting summer dry valley temperatures at unmonitored sites. Copyright 2002 by the American Geophysical Union.

  12. QUENCHING STAR FORMATION AT INTERMEDIATE REDSHIFTS: DOWNSIZING OF THE MASS FLUX DENSITY IN THE GREEN VALLEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncalves, Thiago S.; Menendez-Delmestre, Karin; Martin, D. Christopher

    2012-11-01

    The bimodality in galaxy properties has been observed at low and high redshifts, with a clear distinction between star-forming galaxies in the blue cloud and passively evolving objects in the red sequence; the absence of galaxies with intermediate properties indicates that the quenching of star formation and subsequent transition between populations must happen rapidly. In this paper, we present a study of over 100 transiting galaxies in the so-called green valley at intermediate redshifts (z {approx} 0.8). By using very deep spectroscopy with the DEIMOS instrument at the Keck telescope we are able to infer the star formation histories ofmore » these objects and measure the stellar mass flux density transiting from the blue cloud to the red sequence when the universe was half its current age. Our results indicate that the process happened more rapidly and for more massive galaxies in the past, suggesting a top-down scenario in which the massive end of the red sequence is forming first. This represents another aspect of downsizing, with the mass flux density moving toward smaller galaxies in recent times.« less

  13. Hydrogeologic framework of the Wood River Valley aquifer system, south-central Idaho

    USGS Publications Warehouse

    Bartolino, James R.; Adkins, Candice B.

    2012-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Hailey, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system, which consists primarily of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on groundwater for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the groundwater resource. As part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the Wood River Valley, this report describes the hydrogeologic framework of the Wood River Valley aquifer system. Although most of the Wood River Valley aquifer system is composed of Quaternary-age sediments and basalts of the Wood River Valley and its tributaries, older igneous, sedimentary, or metamorphic rocks that underlie these Quaternary deposits also are used for water supply. It is unclear to what extent these rocks are hydraulically connected to the main part of Wood River Valley aquifer system and thus whether they constitute separate aquifers. Paleozoic sedimentary rocks in and near the study area that produce water to wells and springs are the Phi Kappa and Trail Creek Formations (Ordovician and Silurian), the Milligen Formation (Devonian), and the Sun Valley Group including the Wood River Formation (Pennsylvanian-Permian) and the Dollarhide Formation (Permian). These sedimentary rocks are intruded by granitic rocks of the Late Cretaceous Idaho batholith. Eocene Challis Volcanic Group rocks overlie all of the older rocks (except where removed by erosion). Miocene Idavada Volcanics are found in the southern part of the study area. Most of these rocks have been folded, faulted, and

  14. System level mechanisms of adaptation, learning, memory formation and evolvability: the role of chaperone and other networks.

    PubMed

    Gyurko, David M; Soti, Csaba; Stetak, Attila; Csermely, Peter

    2014-05-01

    During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here, we describe first the protein structure networks of molecular chaperones, then characterize chaperone containing sub-networks of interactomes called as chaperone-networks or chaperomes. We review the role of molecular chaperones in short-term adaptation of cellular networks in response to stress, and in long-term adaptation discussing their putative functions in the regulation of evolvability. We provide a general overview of possible network mechanisms of adaptation, learning and memory formation. We propose that changes of network rigidity play a key role in learning and memory formation processes. Flexible network topology provides ' learning-competent' state. Here, networks may have much less modular boundaries than locally rigid, highly modular networks, where the learnt information has already been consolidated in a memory formation process. Since modular boundaries are efficient filters of information, in the 'learning-competent' state information filtering may be much smaller, than after memory formation. This mechanism restricts high information transfer to the 'learning competent' state. After memory formation, modular boundary-induced segregation and information filtering protect the stored information. The flexible networks of young organisms are generally in a 'learning competent' state. On the contrary, locally rigid networks of old organisms have lost their 'learning competent' state, but store and protect their learnt information efficiently. We anticipate that the above mechanism may operate at the level of both protein-protein interaction and neuronal networks.

  15. Digital Identity Formation: Socially Being Real and Present on Digital Networks

    ERIC Educational Resources Information Center

    Bozkurt, Aras; Tu, Chih-Hsiung

    2016-01-01

    Social networks have become popular communication and interaction environments recently. As digital environments, so as ecosystems, they have potential in terms of networked learning as they fulfill some roles such as mediating an environment for digital identity formation and providing social and emotional presence. Based on this phenomenon, the…

  16. Early diagenetic microporosity in the Cotton Valley Limestone of east Texas

    NASA Astrophysics Data System (ADS)

    Ahr, Wayne M.

    1989-07-01

    The Upper Jurassic, Cotton Valley Limestone was deposited on a mature ramp where monotonous, regional slopes were punctuated by salt-generated structures and basement topography. The strandline and the crests of paleobathymetric highs were blanketed by oolitic and palletoidal grainstones. The ratio of grainstones to mudstones increases in the upper Cotton Valley, reflecting a regional shallowing phase. Thinner, shoaling-upward sequences are present but they do not correlate easily, especially from basement highs to salt domes, probably because salt movement occurred during deposition of Cotton Valley rocks. The complex diagenetic history of the Cotton Valley, inferred from cross-cutting features observed in thin section and from trace-element and stable-isotope content, includes the origin of "chalky" microporosity, especially in ooids. This intraparticle, intercrystalline porosity occurs in a fabric of equant, subhedral to euhedral, low-Mg calcite micro-rhombs which appear to have developed at the expense of an acicular precursor. Such microporous ooids are present mainly on the crests of paleobathymetric highs; nearby, offstructure ooids contain a mixture of micritic and well-preserved ooids. However, these micritic ooids are different from the micro-rhombic, microporous ones on the highs. The well-preserved low-Mg calcite ooids from offstructure positions exhibit relict acicular microstructures in some of their lamellae. The "chalky" microporosity is crosscut by virtually every other diagenetic feature in the Cotton Valley Limestone. The ɛ 13C values from individual microporous ooids range from +1.65 to +2.76% PDB, which is not in the range of values associated with precipitation in a hydrocarbon-rich environment. The formation of microporosity was followed by the formation of embayed grain contacts, pore-filling cementation, grain compaction, stylolite formation, replacements by quartz and rhombic dolomite, fracturing, fracture-filling cementation, saddle

  17. Irrigation channels of the Upper Rhone valley (Switzerland). Geomorphological analysis of a cultural heritage

    NASA Astrophysics Data System (ADS)

    Reynard, Emmanuel

    2016-04-01

    The Upper Rhone valley (Canton of Valais, Switzerland) is characterised by dry climatic conditions that explain the presence of an important network (about 800 km) of irrigation channels - called Bisses in the French-speaking part of the canton or Suonen in the German-speaking area - dating back to the Middle Ages. This network constitutes a cultural heritage and during the last 30 years these agricultural infrastructures have sparked a renewed interest for tourist and cultural reasons. Indeed, the paths along the channels are used as tourist trails and several abandoned channels have been renovated for tourist use. Based on an inventory of the Bisses/Suonen of Valais, the proposed communication has three aims: (1) to analyse the geomorphological context (morphometric analysis, structural geomorphology, main processes) of various types of channels and to show the impact of the geomorphological context on the building techniques; (2) to identify particularly active processes along the channels; (3) to classify the Bisses/Suonen according to their geomorphological value and to their geomorphological sensitivity, and to propose managing measures. Structural and climatic conditions influence the geomorphological context of the channels. In a structural point of view, irrigation channels are developed in three main contexts: (1) in the Aar Massif crystalline basement; (2) in the limestone and marl cover nappes of the Helvetic Alps; (3) in the metamorphic cover nappes of the Penninic domain. The Rhone River valley is boarded by two high mountain ranges: the Penninic Alps in the South and the Bernese Alps in the North. Because of rain shadow effects, the climate is relatively dry and, between Brig and Martigny, annual rainfall is not more than 600 mm at 500 m ASL and 800 mm at 1600 m ASL. Nevertheless, due to important vertical precipitation gradients annual rainfall totals are high at high altitudes. On the southern facing tributary valleys, the dry climatic conditions

  18. Opinion diversity and community formation in adaptive networks

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Xiao, G.; Li, G.; Tay, W. P.; Teoh, H. F.

    2017-10-01

    It is interesting and of significant importance to investigate how network structures co-evolve with opinions. In this article, we show that, a simple model integrating consensus formation, link rewiring, and opinion change allows complex system dynamics to emerge, driving the system into a dynamic equilibrium with the co-existence of diversified opinions. Specifically, similar opinion holders may form into communities yet with no strict community consensus; and rather than being separated into disconnected communities, different communities are connected by a non-trivial proportion of inter-community links. More importantly, we show that the complex dynamics may lead to different numbers of communities at the steady state with a given tolerance between different opinion holders. We construct a framework for theoretically analyzing the co-evolution process. Theoretical analysis and extensive simulation results reveal some useful insights into the complex co-evolution process, including the formation of dynamic equilibrium, the transition between different steady states with different numbers of communities, and the dynamics between opinion distribution and network modularity.

  19. ASSESSING TRANSBOUNDARY INFLUENCES IN THE LOWER RIO GRANDE VALLEY

    EPA Science Inventory

    The Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP) was a U.S.-Mexico Border XXI Program project to assess transboundary air pollution in and near Brownsville, Texas. The study used a three-site air monitoring network very close to the border to capture the d...

  20. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation

    PubMed Central

    Fritzsche, Marco; Fernandes, Ricardo A.; Chang, Veronica T.; Colin-York, Huw; Clausen, Mathias P.; Felce, James H.; Galiani, Silvia; Erlenkämper, Christoph; Santos, Ana M.; Heddleston, John M.; Pedroza-Pacheco, Isabela; Waithe, Dominic; de la Serna, Jorge Bernardino; Lagerholm, B. Christoffer; Liu, Tsung-li; Chew, Teng-Leong; Betzig, Eric; Davis, Simon J.; Eggeling, Christian

    2017-01-01

    T cell activation and especially trafficking of T cell receptor microclusters during immunological synapse formation are widely thought to rely on cytoskeletal remodeling. However, important details on the involvement of actin in the latter transport processes are missing. Using a suite of advanced optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse. This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament lengths of two differently sized filamentous actin populations, wherein formin-mediated long actin filaments support a very flat and stiff contact at the immunological synapse interface. The initiation of immunological synapse formation, as highlighted by calcium release, requires markedly little contact with activating surfaces and no cytoskeletal rearrangements. Our work suggests that incipient signaling in T cells initiates global cytoskeletal rearrangements across the whole cell, including a stiffening process for possibly mechanically supporting contact formation at the immunological synapse interface as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions. PMID:28691087

  1. Valley-dependent band structure and valley polarization in periodically modulated graphene

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  2. Groundwater quality in the Monterey Bay and Salinas Valley groundwater basins, California

    USGS Publications Warehouse

    Kulongoski, Justin T.; Belitz, Kenneth

    2011-01-01

    The Monterey-Salinas study unit is nearly 1,000 square miles and consists of the Santa Cruz Purisima Formation Highlands, Felton Area, Scotts Valley, Soquel Valley, West Santa Cruz Terrace, Salinas Valley, Pajaro Valley, and Carmel Valley groundwater basins (California Department of Water Resources, 2003; Kulongski and Belitz, 2011). These basins were grouped into four study areas based primarily on geography. Groundwater basins in the north were grouped into the Santa Cruz study area, and those to the south were grouped into the Monterey Bay, the Salinas Valley, and the Paso Robles study areas (Kulongoski and others, 2007). The study unit has warm, dry summers and cool, moist winters. Average annual rainfall ranges from 31 inches in Santa Cruz in the north to 13 inches in Paso Robles in the south. The study areas are drained by several rivers and their principal tributaries: the Salinas, Pajaro, and Carmel Rivers, and San Lorenzo Creek. The Salinas Valley is a large intermontane valley that extends southeastward from Monterey Bay to Paso Robles. It has been filled, up to a thickness of 2,000 feet, with Tertiary and Quaternary marine and terrestrial sediments that overlie granitic basement. The Miocene-age Monterey Formation and Pliocene- to Pleistocene-age Paso Robles Formation, and Pleistocene to Holocene-age alluvium contain freshwater used for supply. The primary aquifers in the study unit are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells are typically drilled to depths of 200 to 650 feet, consist of solid casing from the land surface to depths of about 175 to 500 feet, and are perforated below the solid casing. Water quality in the primary aquifers may differ from that in the shallower and deeper parts of the aquifer system. Groundwater movement is generally from the southern part of the Salinas Valley north towards the Monterey Bay

  3. Erosion of steepland valleys by debris flows

    USGS Publications Warehouse

    Stock, J.D.; Dietrich, W.E.

    2006-01-01

    Episodic debris flows scour the rock beds of many steepland valleys. Along recent debris-flow runout paths in the western United States, we have observed evidence for bedrock lowering, primarily by the impact of large particles entrained in debris flows. This evidence may persist to the point at which debris-flow deposition occurs, commonly at slopes of less than ???0.03-0.10. We find that debris-flow-scoured valleys have a topographic signature that is fundamentally different from that predicted by bedrock river-incision models. Much of this difference results from the fact that local valley slope shows a tendency to decrease abruptly downstream of tributaries that contribute throughgoing debris flows. The degree of weathering of valley floor bedrock may also decrease abruptly downstream of such junctions. On the basis of these observations, we hypothesize that valley slope is adjusted to the long-term frequency of debris flows, and that valleys scoured by debris flows should not be modeled using conventional bedrock river-incision laws. We use field observations to justify one possible debris-flow incision model, whose lowering rate is proportional to the integral of solid inertial normal stresses from particle impacts along the flow and the number of upvalley debris-flow sources. The model predicts that increases in incision rate caused by increases in flow event frequency and length (as flows gain material) downvalley are balanced by rate reductions from reduced inertial normal stress at lower slopes, and stronger, less weathered bedrock. These adjustments lead to a spatially uniform lowering rate. Although the proposed expression leads to equilibrium long-profiles with the correct topographic signature, the crudeness with which the debris-flow dynamics are parameterized reveals that we are far from a validated debris-flow incision law. However, the vast extent of steepland valley networks above slopes of ???0.03-0.10 illustrates the need to understand debris

  4. Geology and ground water in Russian River Valley areas and in Round, Laytonville, and Little Lake Valleys, Sonoma and Mendocino Counties, California

    USGS Publications Warehouse

    Cardwell, G.T.

    1965-01-01

    This report describes the occurrence, availability, and quality of ground water in seven valley areas along the course of the Russian River in Sonoma and Mendocino Counties, Calif., and in three valleys in the upper drainage reach of the Eel River in Mendocino County. Except for the westward-trending lower Russian River valley, the remaining valley areas along the Russian River (Healdsburg, Alexander, Cloverdale, Sanel, Ukiah, and Potter Valleys) lie in northwest-trending structurally controlled depressions formed in marine rocks of Jurassic and Cretaceous age. The principal aquifer in all the valleys is the alluvium of Recent age, which includes highly permeable channel deposits of gravel and sand. Water for domestic, irrigation, industrial, and other uses is developed by (1) direct diversion from the Russian River and its tributaries, (2) withdrawal of ground water and river water from shallow wells near the river, and (3) withdrawals of ground water from wells in alluvial deposits at varying distances from the river. Surface water in the Russian River and most tributaries is of good chemical quality. The water is a calcium magnesium bicarbonate type and contains 75,200 parts per million of dissolved solids. Ground water is also of good chemical quality throughout most of the drainage basin, but the concentration of dissolved solids (100-300 parts per million) is somewhat higher than that in the surface water. Round, Laytonville, and Little Lake Valleys are in central and northern Mendocino County in the drainage basin of the northwestward flowing Eel River. In Round Valley the alluvium of Recent age yields water of good chemical quality in large quantities. Yields are lower and the chemical quality poorer in Laytonville Valley. Ground water in Little Lake Valley is relatively undeveloped. Selected descriptions of wells, drillers' logs, chemical analyses, and hydrographs showing water-level fluctuations are included in the report. Accompanying maps show the

  5. Modelling opinion formation driven communities in social networks

    NASA Astrophysics Data System (ADS)

    Iñiguez, Gerardo; Barrio, Rafael A.; Kertész, János; Kaski, Kimmo K.

    2011-09-01

    In a previous paper we proposed a model to study the dynamics of opinion formation in human societies by a co-evolution process involving two distinct time scales of fast transaction and slower network evolution dynamics. In the transaction dynamics we take into account short range interactions as discussions between individuals and long range interactions to describe the attitude to the overall mood of society. The latter is handled by a uniformly distributed parameter α, assigned randomly to each individual, as quenched personal bias. The network evolution dynamics is realised by rewiring the societal network due to state variable changes as a result of transaction dynamics. The main consequence of this complex dynamics is that communities emerge in the social network for a range of values in the ratio between time scales. In this paper we focus our attention on the attitude parameter α and its influence on the conformation of opinion and the size of the resulting communities. We present numerical studies and extract interesting features of the model that can be interpreted in terms of social behaviour.

  6. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures.

    PubMed

    Nagler, Philipp; Ballottin, Mariana V; Mitioglu, Anatolie A; Mooshammer, Fabian; Paradiso, Nicola; Strunk, Christoph; Huber, Rupert; Chernikov, Alexey; Christianen, Peter C M; Schüller, Christian; Korn, Tobias

    2017-11-16

    Monolayers of semiconducting transition metal dichalcogenides exhibit intriguing fundamental physics of strongly coupled spin and valley degrees of freedom for charge carriers. While the possibility of exploiting these properties for information processing stimulated concerted research activities towards the concept of valleytronics, maintaining control over spin-valley polarization proved challenging in individual monolayers. A promising alternative route explores type II band alignment in artificial van der Waals heterostructures. The resulting formation of interlayer excitons combines the advantages of long carrier lifetimes and spin-valley locking. Here, we demonstrate artificial design of a two-dimensional heterostructure enabling intervalley transitions that are not accessible in monolayer systems. The resulting giant effective g factor of -15 for interlayer excitons induces near-unity valley polarization via valley-selective energetic splitting in high magnetic fields, even after nonselective excitation. Our results highlight the potential to deterministically engineer novel valley properties in van der Waals heterostructures using crystallographic alignment.

  7. Network formation in a multi-asset artificial stock market

    NASA Astrophysics Data System (ADS)

    Wu, Songtao; He, Jianmin; Li, Shouwei; Wang, Chao

    2018-04-01

    A multi-asset artificial stock market is developed. In the market, stocks are assigned to a number of sectors and traded by heterogeneous investors. The mechanism of continuous double auction is employed to clear order book and form daily closed prices. Simulation results of prices at the sector level show an intra-sector similarity and inter-sector distinctiveness, and returns of individual stocks have stylized facts that are ubiquitous in the real-world stock market. We find that the market risk factor has critical impact on both network topology transition and connection formation, and that sector risk factors account for the formation of intra-sector links and sector-based local interaction. In addition, the number of community in threshold-based networks is correlated negatively and positively with the value of correlation coefficients and the ratio of intra-sector links, which are respectively determined by intensity of sector risk factors and the number of sectors.

  8. Rift valley fever in the US: Commerce networks, climate, and susceptible vector and host populations

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a mosquito-borne hemorrhagic viral disease with substantial negative impacts on public and animal health in its endemic range of sub-Saharan Africa. Rift Valley fever virus (RVFV) could enter the United States and lead to widespread morbidity and mortality in humans, domes...

  9. Spatial and seasonal characteristics of cold-air pools in the upper Zêzere valley (Serra da Estrela, Portugal)

    NASA Astrophysics Data System (ADS)

    Mora, Carla

    2010-05-01

    Occurrence, formation, spatial patterns and intensity of cold air pools/lakes were studied in the Serra da Estrela (40° 20'N 7° 35'W, 1993m, Central Portugal) from January to December 2000. Data was collected using a network of air temperature dataloggers installed at different topographic positions (interfluves, valley floors and slopes) recording at 2-h intervals. A k-means classification was applied to the dataset of instantaneous air temperatures, and 3 types of thermal patterns were identified. Type 1 (66% cases) shows events with decreasing air temperatures with altitude. Type 2 (27% cases) shows accumulation of cold air in the valleys with higher valley floors showing the lowest temperatures. Type 3 (7% cases) show accumulation of cold air, but with lowest air temperatures in the valleys at lower altitudes. Causal factors for the occurrence of the patterns were studied by applying discriminant analysis on meteorological and topographical variables. Type 1 occurs under atmospheric instability conditions, while types 2 and 3 relate to atmospheric stability. Types 2 and 3 are controlled by seasonality and local insolation/shadowing effects. For the detailed study of cold air accumulations, two approaches were followed: the analysis of temperature differences between a station in a crest and a station in a glacial cirque floor; and, the analysis of 5-min interval temperature data along a transect in the Zêzere valley.The differences in air temperature between the glacier cirque floor (Covão Cimeiro, 1620m) and the crest (Cântaro Gordo, 1870m) were classified into 9 types of regime. Thermal inversions in the cirque were found in 6 types (48%). These are characterized in detail and the geographical and meteorological controlling factors are analyzed using one-way ANOVA and discriminant analysis. The 6 types show different daily regimes and inversion intensities, as well as a seasonal trend. The maximum inversion intensity was 9 °C, and the minimum

  10. A hierarchical network approach for modeling Rift Valley fever epidemics with applications in North America

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a vector-borne zoonotic disease which causes high morbidity and mortality in livestock. In the event Rift Valley fever virus is introduced to the United States or other non-endemic areas, understanding the potential patterns of spread and the areas at risk based on disease...

  11. Opinion formation in a social network: The role of human activity

    NASA Astrophysics Data System (ADS)

    Grabowski, Andrzej

    2009-03-01

    The model of opinion formation in human population based on social impact theory is investigated numerically. On the basis of a database received from the on-line game server, we examine the structure of social network and human dynamics. We calculate the activity of individuals, i.e. the relative time devoted daily to interactions with others in the artificial society. We study the influence of correlation between the activity of an individual and its connectivity on the process of opinion formation. We find that such correlations have a significant influence on the temperature of the phase transition and the effect of the mass media, modeled as an external stimulation acting on the social network.

  12. Erosional valleys in the Thaumasia region of Mars: Hydrothermal and seismic origins

    USGS Publications Warehouse

    Tanaka, K.L.; Dohm, J.M.; Lias, J.H.; Hare, T.M.

    1998-01-01

    Analysis of erosional valleys, geologic materials and features, and topography through time in the Thaumasia region of Mars using co-registered digital spatial data sets reveals significant associations that relate to valley origin. Valleys tend to originate (1) on Noachian to Early Hesperian (stages 1 and 2) large volcanoes, (2) within 50-100 km of stages 1 and 2 rift systems, and (3) within 100 km of Noachian (stage 1) impact craters >50 km in diameter. These geologic preferences explain observations of higher valley-source densities (VSDs) in areas of higher elevations and regional slopes (>1??) because the volcanoes, rifts, and craters form high, steep topography or occur in terrain of high relief. Other stage 1 and stage 2 high, steep terrains, however, do not show high VSDs. The tendency for valleys to concentrate near geologic features and the overall low drainage densities in Thaumasia compared to terrestrial surfaces rule out widespread precipitation as a major factor in valley formation (as is proposed in wann, wet climate scenarios) except perhaps during the Early Noachian, for which much of the geologic record has been obliterated. Instead, volcanoes and rifts may indicate the presence of shallow crustal intrusions that could lead to local hydrothermal circulation, melting of ground ice and snow, and groundwater sapping. However, impact-crater melt would provide a heat source at the surface that might drive away water, forming valleys in the process. Post-stage 1 craters mostly have low nearby VSDs, which, for valleys incised in older rocks, suggests burial by e??jecta and, for . younger valleys, may indicate desiccation of near-surface water and deepening of the cryosphere. Later Hesperian and Amazonian (stages 3 and 4) valleys originate within 100-200 km of three young, large impact craters and near rifts systems at Warrego Valle??s and the southern part of Coprates rise. These valleys likely developed when the cryosphere was a couple kilometers or

  13. Systematic Mapping and Statistical Analyses of Valley Landform and Vegetation Asymmetries Across Hydroclimatic Gradients

    NASA Astrophysics Data System (ADS)

    Poulos, M. J.; Pierce, J. L.; McNamara, J. P.; Flores, A. N.; Benner, S. G.

    2015-12-01

    Terrain aspect alters the spatial distribution of insolation across topography, driving eco-pedo-hydro-geomorphic feedbacks that can alter landform evolution and result in valley asymmetries for a suite of land surface characteristics (e.g. slope length and steepness, vegetation, soil properties, and drainage development). Asymmetric valleys serve as natural laboratories for studying how landscapes respond to climate perturbation. In the semi-arid montane granodioritic terrain of the Idaho batholith, Northern Rocky Mountains, USA, prior works indicate that reduced insolation on northern (pole-facing) aspects prolongs snow pack persistence, and is associated with thicker, finer-grained soils, that retain more water, prolong the growing season, support coniferous forest rather than sagebrush steppe ecosystems, stabilize slopes at steeper angles, and produce sparser drainage networks. We hypothesize that the primary drivers of valley asymmetry development are changes in the pedon-scale water-balance that coalesce to alter catchment-scale runoff and drainage development, and ultimately cause the divide between north and south-facing land surfaces to migrate northward. We explore this conceptual framework by coupling land surface analyses with statistical modeling to assess relationships and the relative importance of land surface characteristics. Throughout the Idaho batholith, we systematically mapped and tabulated various statistical measures of landforms, land cover, and hydroclimate within discrete valley segments (n=~10,000). We developed a random forest based statistical model to predict valley slope asymmetry based upon numerous measures (n>300) of landscape asymmetries. Preliminary results suggest that drainages are tightly coupled with hillslopes throughout the region, with drainage-network slope being one of the strongest predictors of land-surface-averaged slope asymmetry. When slope-related statistics are excluded, due to possible autocorrelation, valley

  14. Dynamical and topological aspects of consensus formation in complex networks

    NASA Astrophysics Data System (ADS)

    Chacoma, A.; Mato, G.; Kuperman, M. N.

    2018-04-01

    The present work analyzes a particular scenario of consensus formation, where the individuals navigate across an underlying network defining the topology of the walks. The consensus, associated to a given opinion coded as a simple message, is generated by interactions during the agent's walk and manifest itself in the collapse of the various opinions into a single one. We analyze how the topology of the underlying networks and the rules of interaction between the agents promote or inhibit the emergence of this consensus. We find that non-linear interaction rules are required to form consensus and that consensus is more easily achieved in networks whose degree distribution is narrower.

  15. Deffuant model of opinion formation in one-dimensional multiplex networks

    NASA Astrophysics Data System (ADS)

    Shang, Yilun

    2015-10-01

    Complex systems in the real world often operate through multiple kinds of links connecting their constituents. In this paper we propose an opinion formation model under bounded confidence over multiplex networks, consisting of edges at different topological and temporal scales. We determine rigorously the critical confidence threshold by exploiting probability theory and network science when the nodes are arranged on the integers, {{Z}}, evolving in continuous time. It is found that the existence of ‘multiplexity’ impedes the convergence, and that working with the aggregated or summarized simplex network is inaccurate since it misses vital information. Analytical calculations are confirmed by extensive numerical simulations.

  16. Formation of Common Investment Networks by Project Establishment between Agents

    NASA Astrophysics Data System (ADS)

    Navarro-Barrientos, Jesús Emeterio

    We present an investment model integrated with trust and reputation mechanisms where agents interact with each other to establish investment projects. We investigate the establishment of investment projects, the influence of the interaction between agents in the evolution of the distribution of wealth as well as the formation of common investment networks and some of their properties. Simulation results show that the wealth distribution presents a power law in its tail. Also, it is shown that the trust and reputation mechanism proposed leads to the establishment of networks among agents, presenting some of the typical characteristics of real-life networks like a high clustering coefficient and short average path length.

  17. Valleys and Ridges at the Deuteronilus Contact in Isidis Planitia, Mars: Implications for an Isidis Sea

    NASA Astrophysics Data System (ADS)

    Erkeling, G.; Reiss, D.; Hiesinger, H.; Ivanov, M. A.; Bernhardt, H.

    2013-09-01

    Numerous small valleys are incised into the plains of the southern Isidis basin rim between 82°/90°E and 3°/6°N and trend tens of kilometers to the north following the topographic gradient toward the center of Isidis Planitia. The valleys originate exclusively north of the Libya Montes highlands (Fig. 1) [e.g., 1-4] and are indicative of Late Hesperian fluvial activity [1,4,6], which was spatially and temporarily distinct from intense and repeated Noachian fluvial activity in the Libya Montes [1-4,6]. The majority of the valleys terminate on the smooth Isidis exterior plains (hereafter IEP; Fig. 1). A few of them continue across the boundary between the IEP and the knobby Isidis interior plains (hereafter IIP; Fig. 1) and occur as sinuous ridges in the IIP. This boundary has been discussed as a part of the Deuteronilus contact [e.g., 7,8] and is characterised by an onlap of the IIP onto the IEP, i.e., the IIP are superposed on the IEP. Therefore, the ridges occur stratigraphically higher than the valleys. Because the valleys transition to ridges into less-eroded terrain, their formation is difficult to explain by scenarios based on relief inversion proposed for sinuous ridges on Mars [e.g., 9-11] and Earth [e.g., 12,13]. Based on our investigations we propose an alternative fluvio-glacial formation scenario for the morphologic-geologic setting at the Deuteronilus contact. We suggest that the ridges could be glacial meltwater or subglacial streams (eskers) similar to possible eskers identified elsewhere on Mars and Earth [e.g., 14-17] and that their formation is associated with a stationary ice sheet of a proposed Late Hesperian Isidis Sea that readily froze and sublimated and resulted in the formation of the IIP [4,6]. The proposed formation scenario has also implications for the formation of the Isidis thumbprint terrain (hereafter TPT) [e.g., 5,6] that is located in the IIP.

  18. A network architecture for precision formation flying using the IEEE 802.11 MAC Protocol

    NASA Technical Reports Server (NTRS)

    Clare, Loren P.; Gao, Jay L.; Jennings, Esther H.; Okino, Clayton

    2005-01-01

    Precision Formation Flying missions involve the tracking and maintenance of spacecraft in a desired geometric formation. The strong coupling of spacecraft in formation flying control requires inter-spacecraft communication to exchange information. In this paper, we present a network architecture that supports PFF control, from the initial random deployment phase to the final formation. We show that a suitable MAC layer for the application protocol is IEEE's 802.11 MAC protocol. IEEE 802.11 MAC has two modes of operations: DCF and PCF. We show that DCF is suitable for the initial deployment phase while switching to PCF when the spacecraft are in formation improves jitter and throughput. We also consider the effect of routing on protocol performance and suggest when it is profitable to turn off route discovery to achieve better network performance.

  19. Geomorphic controls on Pleistocene knickpoint migration in Alpine valleys

    NASA Astrophysics Data System (ADS)

    Leith, Kerry; Fox, Matt; Moore, Jeffrey R.; Brosda, Julian; Krautblatter, Michael; Loew, Simon

    2014-05-01

    Recent insights into sub-glacial bedrock stress conditions suggest that the erosional efficiency of glaciers may reduce markedly following a major erosional cycle [Leith et al., 2013]. This implies that the formation of large glacial valleys within the Alps is likely to have occurred shortly after the onset of 100 ky glacial-interglacial cycles (at the mid-Pleistocene Revolution (MPR)). The majority of landscape change since this time may have therefore been driven by sub-aerial processes. This hypothesis is supported by observations of hillslope and channel morphology within Canton Valais (Switzerland), where major tributary valleys display a common morphology along their length, hinting at a shared geomorphic history. Glaciers currently occupy the headwaters of many catchments, while the upper reaches of rivers flow across extensive alluvial planes before abruptly transitioning to steep channels consisting of mixed bedrock and talus fan deposits. The rivers then converge to flow out over the alluvial plane of the Rhone Valley. Characteristically rough topographies within the region are suggested to mark the progressive transition from a glacial to fluvially-dominated landscape, and correlate well with steepened river channel sections determined from a 2.5 m resolution LiDAR DEM. We envisage a landscape in which ongoing tectonic uplift drives the emergence of Alpine bedrock through massive sedimentary valley infills (currently concentrated in the Rhone Valley), whose elevation is fixed by the consistent fluvial baselevel at Lake Geneva. As fluvial incision ceases at the onset of glaciation, continued uplift causes the formation of knickpoints at the former transition from bedrock to sedimentary infill. These knickpoints will then propagate upstream during subsequent interglacial periods. By investigating channel morphologies using an approach based on the steady-state form of the stream power equation, we can correlate steepened channel reaches (degraded

  20. Bias, belief, and consensus: Collective opinion formation on fluctuating networks

    NASA Astrophysics Data System (ADS)

    Ngampruetikorn, Vudtiwat; Stephens, Greg J.

    2016-11-01

    With the advent of online networks, societies have become substantially more interconnected with individual members able to easily both maintain and modify their own social links. Here, we show that active network maintenance exposes agents to confirmation bias, the tendency to confirm one's beliefs, and we explore how this bias affects collective opinion formation. We introduce a model of binary opinion dynamics on a complex, fluctuating network with stochastic rewiring and we analyze these dynamics in the mean-field limit of large networks and fast link rewiring. We show that confirmation bias induces a segregation of individuals with different opinions and stabilizes the consensus state. We further show that bias can have an unusual, nonmonotonic effect on the time to consensus and this suggests a novel avenue for large-scale opinion manipulation.

  1. Bias, belief, and consensus: Collective opinion formation on fluctuating networks.

    PubMed

    Ngampruetikorn, Vudtiwat; Stephens, Greg J

    2016-11-01

    With the advent of online networks, societies have become substantially more interconnected with individual members able to easily both maintain and modify their own social links. Here, we show that active network maintenance exposes agents to confirmation bias, the tendency to confirm one's beliefs, and we explore how this bias affects collective opinion formation. We introduce a model of binary opinion dynamics on a complex, fluctuating network with stochastic rewiring and we analyze these dynamics in the mean-field limit of large networks and fast link rewiring. We show that confirmation bias induces a segregation of individuals with different opinions and stabilizes the consensus state. We further show that bias can have an unusual, nonmonotonic effect on the time to consensus and this suggests a novel avenue for large-scale opinion manipulation.

  2. A three-dimensional neural spheroid model for capillary-like network formation.

    PubMed

    Boutin, Molly E; Kramer, Liana L; Livi, Liane L; Brown, Tyler; Moore, Christopher; Hoffman-Kim, Diane

    2018-04-01

    In vitro three-dimensional neural spheroid models have an in vivo-like cell density, and have the potential to reduce animal usage and increase experimental throughput. The aim of this study was to establish a spheroid model to study the formation of capillary-like networks in a three-dimensional environment that incorporates both neuronal and glial cell types, and does not require exogenous vasculogenic growth factors. We created self-assembled, scaffold-free cellular spheroids using primary-derived postnatal rodent cortex as a cell source. The interactions between relevant neural cell types, basement membrane proteins, and endothelial cells were characterized by immunohistochemistry. Transmission electron microscopy was used to determine if endothelial network structures had lumens. Endothelial cells within cortical spheroids assembled into capillary-like networks with lumens. Networks were surrounded by basement membrane proteins, including laminin, fibronectin and collagen IV, as well as key neurovascular cell types. Existing in vitro models of the cortical neurovascular environment study monolayers of endothelial cells, either on transwell inserts or coating cellular spheroids. These models are not well suited to study vasculogenesis, a process hallmarked by endothelial cell cord formation and subsequent lumenization. The neural spheroid is a new model to study the formation of endothelial cell capillary-like structures in vitro within a high cell density three-dimensional environment that contains both neuronal and glial populations. This model can be applied to investigate vascular assembly in healthy or disease states, such as stroke, traumatic brain injury, or neurodegenerative disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. C60-pentacene network formation by 2-D co-crystallization.

    PubMed

    Jin, Wei; Dougherty, Daniel B; Cullen, William G; Robey, Steven; Reutt-Robey, Janice E

    2009-09-01

    We report experiments highlighting the mechanistic role of mobile pentacene precursors in the formation of a network C(60)-pentacene co-crystalline structure on Ag(111). This co-crystalline arrangement was first observed by low temperature scanning tunneling microscopy (STM) by Zhang et al. (Zhang, H. L.; Chen, W.; Huang, H.; Chen, L.; Wee, A. T. S. J. Am. Chem. Soc. 2008, 130, 2720-2721). We now show that this structure forms readily at room temperature from a two-dimensional (2-D) mixture. Pentacene, evaporated onto Ag(111) to coverages of 0.4-1.0 ML, produces a two-dimensional (2-D) gas. Subsequently deposited C(60) molecules combine with the pentacene 2-D gas to generate a network structure, consisting of chains of close-packed C(60) molecules, spaced by individual C(60) linkers and 1 nm x 2.5 nm pores containing individual pentacene molecules. Spontaneous formation of this stoichiometric (C(60))(4)-pentacene network from a range of excess pentacene surface coverage (0.4 to 1.0 ML) indicates a self-limiting assembly process. We refine the structure model for this phase and discuss the generality of this co-crystallization mechanism.

  4. X-Ray Amorphous Phases in Antarctica Dry Valley Soils: Insight into Aqueous Alteration Processes on Mars?

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.; Rampe, E. B.; Golden, D. C.; Quinn, J. E.

    2015-01-01

    The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Curiosity rover has detected abundant amounts (approx. 25-30 weight percentage) of X-ray amorphous materials in a windblown deposit (Rocknest) and in a sedimentary mudstone (Cumberland and John Klein) in Gale crater, Mars. On Earth, X-ray amorphous components are common in soils and sediments, but usually not as abundant as detected in Gale crater. One hypothesis for the abundant X-ray amorphous materials on Mars is limited interaction of liquid water with surface materials, kinetically inhibiting maturation to more crystalline phases. The objective of this study was to characterize the chemistry and mineralogy of soils formed in the Antarctica Dry Valleys, one of the driest locations on Earth. Two soils were characterized from different elevations, including a low elevation, coastal, subxerous soil in Taylor Valley and a high elevation, ultraxerous soil in University Valley. A variety of techniques were used to characterize materials from each soil horizon, including Rietveld analysis of X-ray diffraction data. For Taylor Valley soil, the X-ray amorphous component ranged from about 4 weight percentage in the upper horizon to as high as 15 weight percentage in the lowest horizon just above the permafrost layer. Transmission electron microscopy indicated that the presence of short-range ordered (SRO) smectite was the most likely candidate for the X-ray amorphous materials in the Taylor Valley soils. The SRO smectite is likely an aqueous alteration product of mica inherited from granitic materials during glaciation of Taylor Valley. The drier University Valley soils had lower X-ray amorphous contents of about 5 weight percentage in the lowest horizon. The X-ray amorphous materials in University Valley are attributed to nanoparticles of TiO2 and possibly amorphous SiO2. The high abundance of X-ray amorphous materials in Taylor Valley is surprising for one of the driest places on Earth. These materials

  5. The formation mechanism of defects, spiral wave in the network of neurons.

    PubMed

    Wu, Xinyi; Ma, Jun

    2013-01-01

    A regular network of neurons is constructed by using the Morris-Lecar (ML) neuron with the ion channels being considered, and the potential mechnism of the formation of a spiral wave is investigated in detail. Several spiral waves are initiated by blocking the target wave with artificial defects and/or partial blocking (poisoning) in ion channels. Furthermore, possible conditions for spiral wave formation and the effect of partial channel blocking are discussed completely. Our results are summarized as follows. 1) The emergence of a target wave depends on the transmembrane currents with diversity, which mapped from the external forcing current and this kind of diversity is associated with spatial heterogeneity in the media. 2) Distinct spiral wave could be induced to occupy the network when the target wave is broken by partially blocking the ion channels of a fraction of neurons (local poisoned area), and these generated spiral waves are similar with the spiral waves induced by artificial defects. It is confirmed that partial channel blocking of some neurons in the network could play a similar role in breaking a target wave as do artificial defects; 3) Channel noise and additive Gaussian white noise are also considered, and it is confirmed that spiral waves are also induced in the network in the presence of noise. According to the results mentioned above, we conclude that appropriate poisoning in ion channels of neurons in the network acts as 'defects' on the evolution of the spatiotemporal pattern, and accounts for the emergence of a spiral wave in the network of neurons. These results could be helpful to understand the potential cause of the formation and development of spiral waves in the cortex of a neuronal system.

  6. The Formation Mechanism of Defects, Spiral Wave in the Network of Neurons

    PubMed Central

    Wu, Xinyi; Ma, Jun

    2013-01-01

    A regular network of neurons is constructed by using the Morris-Lecar (ML) neuron with the ion channels being considered, and the potential mechnism of the formation of a spiral wave is investigated in detail. Several spiral waves are initiated by blocking the target wave with artificial defects and/or partial blocking (poisoning) in ion channels. Furthermore, possible conditions for spiral wave formation and the effect of partial channel blocking are discussed completely. Our results are summarized as follows. 1) The emergence of a target wave depends on the transmembrane currents with diversity, which mapped from the external forcing current and this kind of diversity is associated with spatial heterogeneity in the media. 2) Distinct spiral wave could be induced to occupy the network when the target wave is broken by partially blocking the ion channels of a fraction of neurons (local poisoned area), and these generated spiral waves are similar with the spiral waves induced by artificial defects. It is confirmed that partial channel blocking of some neurons in the network could play a similar role in breaking a target wave as do artificial defects; 3) Channel noise and additive Gaussian white noise are also considered, and it is confirmed that spiral waves are also induced in the network in the presence of noise. According to the results mentioned above, we conclude that appropriate poisoning in ion channels of neurons in the network acts as ‘defects’ on the evolution of the spatiotemporal pattern, and accounts for the emergence of a spiral wave in the network of neurons. These results could be helpful to understand the potential cause of the formation and development of spiral waves in the cortex of a neuronal system. PMID:23383179

  7. Role of groundwater in formation of Martian channels

    NASA Technical Reports Server (NTRS)

    Howard, Alan D.

    1991-01-01

    A global 3-D model of groundwater flow has been used to study possible behavior of groundwater on Mars and its role in creating fluvial features. Conclusions drawn from an earlier 2-D groundwater model are supplemented and expanded. Topical headings are discussed as follows: timescales of groundwater flow; wet areas on Mars and location of outflow channels; implications for valley networks; the enigma of Hellas; absence of fluvial or periglacial features on Syrtis Major; development of chaotic terrain and associated outflow channels; and structurally controlled valley networks.

  8. A Total Lightning Climatology for the Tennessee Valley Region

    NASA Technical Reports Server (NTRS)

    McCaul, E. W.; Goodman, S. J.; Buechler, D. E.; Blakeslee, R.; Christian, H.; Boccippio, D.; Koshak, W.; Bailey, J.; Hallm, J.; Bateman, M.

    2003-01-01

    Total flash counts derived from the North Alabama Lightning Mapping Array are being processed for 2002 to form a climatology of total lightning for the Tennessee Valley region. The data from this active and interesting period will be compared to data fiom the National Lightning Detection Network, space-based lightning sensors, and weather radars.

  9. On the formation of the tunnel valleys of the southern Laurentide ice sheet

    USGS Publications Warehouse

    Hooke, R. LeB; Jennings, C.E.

    2006-01-01

    Catastrophic releases of meltwater, produced by basal melting and stored for decades in subglacial reservoirs at high pressure, may have been responsible for eroding the broad, deep tunnel valleys that are common along the margins of some lobes of the southern Laurentide ice sheet. We surmise that these releases began when the high water pressure was transmitted to the margin through the substrate. The water pressure in the substrate at the margin would then have been significantly above the overburden pressure, leading to sapping failure. Headward erosion of a conduit in the substrate (piping) could then tap the stored water, resulting in the outburst. In some situations, development of a siphon may have lowered the reservoir below its overflow level, thus tapping additional water. Following the flood, the seal could have reformed and the reservoir refilled, setting up conditions for another outburst. Order of magnitude calculations suggest that once emptied, a subglacial reservoir could refill in a matter of decades. The amount of water released during several outbursts appears to be sufficient to erode a tunnel valley. We think that tunnel valleys are most likely to have formed in this way where and when the glacier margin was frozen to the bed and permafrost extended from the glacier forefield several kilometers back under the glacier, as reservoirs would then have been larger and more common, and the seal more robust and more likely to reform after an outburst. ?? 2006 Elsevier Ltd. All rights reserved.

  10. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National Park, Inyo... an Environmental Impact Statement for the Saline Valley Warm Springs Management Plan, Death Valley... analysis process for the Saline Valley Warm Springs Management Plan for Death Valley [[Page 33238...

  11. What Whole Rock Samples of Portales Valley Can and Cannot Tell Us

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Chen, J. H.; Wasserburg, G. J.

    2002-01-01

    We are on our way to deciding that despite significant young disturbances, the Portales Valley breccia maintains vestiges of early formation. Additional information is contained in the original extended abstract.

  12. Mode Choice between Private and Public Transport in Klang Valley, Malaysia

    PubMed Central

    Karim, Mohamed Rehan; Yusoff, Sumiani

    2014-01-01

    In 2010, Klang Valley has only 17% trips each day were completed using public transport, with the rest of the 83% trips were made through private transport. The inclination towards private car usage will only get worse if the transport policy continues to be inefficient and ineffective. Under the National Key Economic Area, the priority aimed to stimulate the increase of modal share of public transport in the Klang Valley to 50% by 2020. In the 10th Malaysia Plan, the Klang Valley Mass Rapid Transit was proposed, equipped with 141 km of MRT system, and will integrate with the existing rail networks. Nevertheless, adding kilometers into the rail system will not help, if people do not make the shift from private into public transport. This research would like to assess the possible mode shift of travellers in the Klang Valley towards using public transport, based on the utility function of available transport modes. It intends to identify the criteria that will trigger their willingness to make changes in favour of public transport as targeted by the NKEA. PMID:24701165

  13. Ground-water resources investigation in the Amran Valley, Yeman Arab Republic

    USGS Publications Warehouse

    Tibbitts, G. Chase; Aubel, James

    1980-01-01

    A program of hydrologic studies and exploratory drilling was conducted intermittently between 1974 and 1978 to evaluate the water-bearing properties of the unconsolidated alluvial sediments and associated rocks in the semi-arid Amran Valley basin, an 800-square-kilometer area in north-central Yemen Arab Republic. Inventory data from 395 wells were compiled, observation well and rain-gage networks were established and 16 standard complete chemical analyses were made for samples from selected wells. The water resources of the area were overexploited. The chemical quality of the water is generally good. Four aquifer tests were run to determine transmissivity and storage characteristics. The pumping tests show that groundwater occurs under semi-confined leaky-aquifer conditions in the valley fill. Wells drilled in the alluvial fill of the south-central part of the valley have the highest yields. Wells penetrating the limestone and volcanic rocks generally have little or no yield except in fracture zones. Basalt flows occur interbedded with the wadi alluvium at several depths. Cropping out rocks in the Amran Valley range in age from late Jurassic to Holocene. (USGS)

  14. Examining Dimethyl Sulfide Emissions in California's San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Huber, D.; Hughes, S.; Blake, D. R.

    2017-12-01

    Dimethyl Sulfide (DMS) is a sulfur-containing compound that leads to the formation of aerosols which can lead to the formation of haze and fog. Whole air samples were collected on board the NASA C-23 Sherpa aircraft during the 2017 Student Airborne Research Program (SARP) over dairies and agricultural fields in the San Joaquin Valley. Analysis of the samples indicate average DMS concentrations of 23 ± 9 pptv, with a maximum concentration of 49 pptv. When compared with DMS concentrations from previous SARP missions (2009-2016), 2017 by far had the highest frequency of elevated DMS in this region. For this study, agricultural productivity of this region was analyzed to determine whether land use could be contributing to the elevated DMS. Top down and bottom up analysis of agriculture and dairies were used to determine emission rates of DMS in the San Joaquin Valley. Correlations to methane and ethanol were used to determine that DMS emissions were strongly linked to dairies, and resulted in R2 values of 0.61 and 0.43, respectively. These values indicate a strong correlation between dairies and DMS emissions. Combined with NOAA HySPLIT back trajectory data and analysis of ground air samples, results suggest that the contribution of dairies to annual DMS emissions in the San Joaquin Valley exceeds those from corn and alfalfa production.

  15. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  16. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  17. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  18. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  19. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  20. Inflation of Long Valley caldera, California, Basin and Range strain, and possible Mono Craters dike opening from 1990-94 GPS surveys

    USGS Publications Warehouse

    Marshall, G.A.; Langbein, J.; Stein, R.S.; Lisowski, M.; Svarc, J.

    1997-01-01

    Five years of annual Global Positioning System (GPS) surveys of a network centered on Long Valley, California, constrain displacement rates for these stations relative to a central station in the network. These observations are consistent with recent models of resurgent dome inflation in Long Valley (Langbein et al., 1995) and have sufficient signal to detect the presence of Basin and Range strain in the Long Valley region. The data also allow for the possibility of dike inflation beneath the Mono Craters; dike intrusion is consistent with the Mono Craters' recent geologic history of ash eruptions, with seismic tomography, leveling data, and geologic studies of these volcanic domes and flows. Copyright 1997 by the American Geophysical Union.

  1. Bovid ecomorphology and hominin paleoenvironments of the Shungura Formation, lower Omo River Valley, Ethiopia.

    PubMed

    Plummer, Thomas W; Ferraro, Joseph V; Louys, Julien; Hertel, Fritz; Alemseged, Zeresenay; Bobe, René; Bishop, L C

    2015-11-01

    The Shungura Formation in the lower Omo River Valley, southern Ethiopia, has yielded an important paleontological and archeological record from the Pliocene and Pleistocene of eastern Africa. Fossils are common throughout the sequence and provide evidence of paleoenvironments and environmental change through time. This study developed discriminant function ecomorphology models that linked astragalus morphology to broadly defined habitat categories (open, light cover, heavy cover, forest, and wetlands) using modern bovids of known ecology. These models used seven variables suitable for use on fragmentary fossils and had overall classification success rates of >82%. Four hundred and one fossils were analyzed from Shungura Formation members B through G (3.4-1.9 million years ago). Analysis by member documented the full range of ecomorph categories, demonstrating that a wide range of habitats existed along the axis of the paleo-Omo River. Heavy cover ecomorphs, reflecting habitats such as woodland and heavy bushland, were the most common in the fossil sample. The trend of increasing open cover habitats from Members C through F suggested by other paleoenvironmental proxies was documented by the increase in open habitat ecomorphs during this interval. However, finer grained analysis demonstrated considerable variability in ecomorph frequencies over time, suggesting that substantial short-term variability is masked when grouping samples by member. The hominin genera Australopithecus, Homo, and Paranthropus are associated with a range of ecomorphs, indicating that all three genera were living in temporally variable and heterogeneous landscapes. Australopithecus finds were predominantly associated with lower frequencies of open habitat ecomorphs, and high frequencies of heavy cover ecomorphs, perhaps indicating a more woodland focus for this genus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Coastal, valley, and oasis interaction: impact on the evolution of ancient populations in the South Central Andes.

    PubMed

    Varela, Héctor H; Cocilovo, Jose A; Fuchs, María L; O'Brien, Tyler G

    2014-12-01

    The existing biocultural links are analyzed among ancient inhabitants of the Cochabamba valleys (Bolivia) from the Formative and Tiwanaku periods, coastal and inland Azapa region (Chile) from the Late Archaic to the Late periods, and the Atacama Desert oases (Chile) from the Formative period to the time of European contact. Craniometric information obtained from a sample of 565 individuals from different sites of the studied regions was evaluated using methods derived from quantitative genetics and multivariate statistical analysis techniques. It is shown that during the Formative and Tiwanaku periods inhabitants of the Cochabamba valleys maintained contact with the population of northern Chile. This contact was more fluid with the people from the interior valley of Azapa than it was with the settlers of San Pedro Atacama (SPA). An important biological affinity in the Late Period between the inhabitants of the Azapa valley and the late SPA groups is also examined. The Late-Inca Catarpe SPA sample shows a broad genetic variability shared with the majority of the groups studied. The results reaffirm the differences between the coastal and interior Azapa valley groups and strengthen the hypothesis of two pathways to populating the south central Andean area. The divergence observed among subpopulations can be explained by the spatiotemporal dispersion between them, genetic drift dispersion compensated by the action of gene flow, and cultural norms that regulate within group mating. © 2014 Wiley Periodicals, Inc.

  3. Directed networks' different link formation mechanisms causing degree distribution distinction

    NASA Astrophysics Data System (ADS)

    Behfar, Stefan Kambiz; Turkina, Ekaterina; Cohendet, Patrick; Burger-Helmchen, Thierry

    2016-11-01

    Within undirected networks, scientists have shown much interest in presenting power-law features. For instance, Barabási and Albert (1999) claimed that a common property of many large networks is that vertex connectivity follows scale-free power-law distribution, and in another study Barabási et al. (2002) showed power law evolution in the social network of scientific collaboration. At the same time, Jiang et al. (2011) discussed deviation from power-law distribution; others indicated that size effect (Bagrow et al., 2008), information filtering mechanism (Mossa et al., 2002), and birth and death process (Shi et al., 2005) could account for this deviation. Within directed networks, many authors have considered that outlinks follow a similar mechanism of creation as inlinks' (Faloutsos et al., 1999; Krapivsky et al., 2001; Tanimoto, 2009) with link creation rate being the linear function of node degree, resulting in a power-law shape for both indegree and outdegree distribution. Some other authors have made an assumption that directed networks, such as scientific collaboration or citation, behave as undirected, resulting in a power-law degree distribution accordingly (Barabási et al., 2002). At the same time, we claim (1) Outlinks feature different degree distributions than inlinks; where different link formation mechanisms cause the distribution distinctions, (2) in/outdegree distribution distinction holds for different levels of system decomposition; therefore this distribution distinction is a property of directed networks. First, we emphasize in/outlink formation mechanisms as causal factors for distinction between indegree and outdegree distributions (where this distinction has already been noticed in Barker et al. (2010) and Baxter et al. (2006)) within a sample network of OSS projects as well as Java software corpus as a network. Second, we analyze whether this distribution distinction holds for different levels of system decomposition: open

  4. Performance Analysis of Cluster Formation in Wireless Sensor Networks.

    PubMed

    Montiel, Edgar Romo; Rivero-Angeles, Mario E; Rubino, Gerardo; Molina-Lozano, Heron; Menchaca-Mendez, Rolando; Menchaca-Mendez, Ricardo

    2017-12-13

    Clustered-based wireless sensor networks have been extensively used in the literature in order to achieve considerable energy consumption reductions. However, two aspects of such systems have been largely overlooked. Namely, the transmission probability used during the cluster formation phase and the way in which cluster heads are selected. Both of these issues have an important impact on the performance of the system. For the former, it is common to consider that sensor nodes in a clustered-based Wireless Sensor Network (WSN) use a fixed transmission probability to send control data in order to build the clusters. However, due to the highly variable conditions experienced by these networks, a fixed transmission probability may lead to extra energy consumption. In view of this, three different transmission probability strategies are studied: optimal, fixed and adaptive. In this context, we also investigate cluster head selection schemes, specifically, we consider two intelligent schemes based on the fuzzy C-means and k-medoids algorithms and a random selection with no intelligence. We show that the use of intelligent schemes greatly improves the performance of the system, but their use entails higher complexity and selection delay. The main performance metrics considered in this work are energy consumption, successful transmission probability and cluster formation latency. As an additional feature of this work, we study the effect of errors in the wireless channel and the impact on the performance of the system under the different transmission probability schemes.

  5. Performance Analysis of Cluster Formation in Wireless Sensor Networks

    PubMed Central

    Montiel, Edgar Romo; Rivero-Angeles, Mario E.; Rubino, Gerardo; Molina-Lozano, Heron; Menchaca-Mendez, Rolando; Menchaca-Mendez, Ricardo

    2017-01-01

    Clustered-based wireless sensor networks have been extensively used in the literature in order to achieve considerable energy consumption reductions. However, two aspects of such systems have been largely overlooked. Namely, the transmission probability used during the cluster formation phase and the way in which cluster heads are selected. Both of these issues have an important impact on the performance of the system. For the former, it is common to consider that sensor nodes in a clustered-based Wireless Sensor Network (WSN) use a fixed transmission probability to send control data in order to build the clusters. However, due to the highly variable conditions experienced by these networks, a fixed transmission probability may lead to extra energy consumption. In view of this, three different transmission probability strategies are studied: optimal, fixed and adaptive. In this context, we also investigate cluster head selection schemes, specifically, we consider two intelligent schemes based on the fuzzy C-means and k-medoids algorithms and a random selection with no intelligence. We show that the use of intelligent schemes greatly improves the performance of the system, but their use entails higher complexity and selection delay. The main performance metrics considered in this work are energy consumption, successful transmission probability and cluster formation latency. As an additional feature of this work, we study the effect of errors in the wireless channel and the impact on the performance of the system under the different transmission probability schemes. PMID:29236065

  6. Morphology of large valleys on Hawaii - Evidence for groundwater sapping and comparisons with Martian valleys

    NASA Technical Reports Server (NTRS)

    Kochel, R. Craig; Piper, Jonathan F.

    1986-01-01

    Morphometric data on the runoff and sapping valleys on the slopes of Hawaii and Molokai in Hawaii are analyzed. The analysis reveals a clear distinction between the runoff valleys and sapping valleys. The Hawaiian sapping valleys are characterized by: (1) steep valley walls and flat floors, (2) amphitheater heads, (3) low drainage density, (4) paucity of downstream tributaries, (5) low frequency of up-dip tributaries, and (6) structural and stratigraphic control on valley patterns. The characteristics of the Hawaiian sapping valleys are compared to Martian valleys and experimental systems, and good correlation between the data is detected. Flume experiments were also conducted to study the evolution of sapping valleys in response to variable structure and stratigraphy.

  7. Summer mistral at the exit of the Rhône valley

    NASA Astrophysics Data System (ADS)

    Drobinski, P.; Bastin, S.; Guenard, V.; Caccia, J. L.; Dabas, A. M.; Delville, P.; Protat, A.; Reitebuch, O.; Werner, C.

    2005-01-01

    The paper examines the three-dimensional structure and dynamics of the mistral at the Rhône valley exit on 28 June 2001. The mistral refers to a severe wind that develops along the Rhône valley in southern France. This summer mistral event was documented in the framework of the ESCOMPTE field experiment. The dynamical processes driving the circulation of the mistral in the Rhône valley and particularly wake formation and planetary boundary layer (PBL) inhomogeneity at the scale of Rhône valley delta are investigated. Several important data sources are used (airborne Doppler lidar, radiosondes and surface stations) as well as non-hydrostatic mesoscale simulations. This paper analyses experimentally, numerically and theoretically the mechanism of wake formation. It shows that the flow impinging on the Alpine range and the Massif Central becomes supercritical all along the ridge line, including the Rhône valley and continues to accelerate in the lee regions until a hydraulic jump occurs. It leads to the formation of wakes behind and close to the mountain peaks. Compared to the Massif Central wake, the origin of the western Alps wake is rather complicated. In this study, the observations and simulations suggest a combined wall separation/gravity wave breaking mechanism to explain the western Alps wake. Indeed, it is shown that in addition to the flow descending the western Alps slopes and experiencing a strong hydraulic jump, the point where the mistral flow separates from the eastern flank of the Rhône valley located at about 44°N is associated with a 'flank-shock' which is an oblique hydraulic jump (i.e.the downstream Froude number is supercritical). Wake formation in the lee of the Alps and the Massif Central causes large inhomogeneity of the PBL with differences between land and sea. In the Massif Central and western Alps wakes, the continental PBL is deeper (1.8 km) than in the mistral flow (1 km), which is consistent with a subcritical regime associated

  8. Upper Cenozoic sediments of the lower Delaware Valley and the northern Delmarva Peninsula, New Jersey, Pennsylvania, Delaware, and Maryland

    USGS Publications Warehouse

    Owens, James Patrick; Minard, James Pierson

    1979-01-01

    The 'yellow gravels' referred to by R. D. Salisbury in 1898 and the 'Trenton gravel,' as defined by H. C. Lewis in 1880, were investigated along the inner edge of the New Jersey Coastal Plain in southern New Jersey and in the northern Delmarva Peninsula. The highest level deposits, the Beacon Hill gravel, are found on only the highest hills in the New Jersey Coastal Plain. Their distribution suggests deposition from north to south across the plain. After deposition of the Beacon Hill, probably in middle or late Miocene time, a narrow valley was formed paralleling the inner edge of the New Jersey Coastal Plain between Raritan Bay and Camden. South of Camden, the valley broadened, covering much of southern New Jersey. The deposits in this valley are largely the Bridgeton Formation as we have redefined it. A second narrow valley was entrenched through the Bridgeton between Trenton and Salem, N.J. This valley broadens and covers much of the northern Delmarva Peninsula west of the Delaware River. The fill in the valley is largely the Pensauken Formation, as we have redefined it in our report. Collectively, the Beacon Hill, the Bridgeton, and the Pensauken were originally the 'yellow gravels' of Salisbury. These deposits are all fluviatile in origin and were largely formed as a series of step like downcutting channels. The Delaware Valley between Trenton and the lower Delaware Bay region is occupied by the 'Trenton gravel,' which is below the average level of the 'yellow gravels.' Two units recognized throughout the area and informally named the Spring Lake beds and the Van Sciver Lake beds are lithologically distinct from the 'yellow gravel' formations. The lithologies of the Spring Lake beds and the Van Sciver Lake beds are much more heterogeneous than those of the older formations. These two units, particularly, contain much greater amounts of silt and clay, often in thick beds. The depositional environments associated with the two units include fluviatile, estuarine

  9. Sequence stratigraphic controls on reservoir characterization and architecture: case study of the Messinian Abu Madi incised-valley fill, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Mohamed I.; Slatt, Roger M.

    2013-12-01

    Understanding sequence stratigraphy architecture in the incised-valley is a crucial step to understanding the effect of relative sea level changes on reservoir characterization and architecture. This paper presents a sequence stratigraphic framework of the incised-valley strata within the late Messinian Abu Madi Formation based on seismic and borehole data. Analysis of sand-body distribution reveals that fluvial channel sandstones in the Abu Madi Formation in the Baltim Fields, offshore Nile Delta, Egypt, are not randomly distributed but are predictable in their spatial and stratigraphic position. Elucidation of the distribution of sandstones in the Abu Madi incised-valley fill within a sequence stratigraphic framework allows a better understanding of their characterization and architecture during burial. Strata of the Abu Madi Formation are interpreted to comprise two sequences, which are the most complex stratigraphically; their deposits comprise a complex incised valley fill. The lower sequence (SQ1) consists of a thick incised valley-fill of a Lowstand Systems Tract (LST1)) overlain by a Transgressive Systems Tract (TST1) and Highstand Systems Tract (HST1). The upper sequence (SQ2) contains channel-fill and is interpreted as a LST2 which has a thin sandstone channel deposits. Above this, channel-fill sandstone and related strata with tidal influence delineates the base of TST2, which is overlain by a HST2. Gas reservoirs of the Abu Madi Formation (present-day depth ˜3552 m), the Baltim Fields, Egypt, consist of fluvial lowstand systems tract (LST) sandstones deposited in an incised valley. LST sandstones have a wide range of porosity (15 to 28%) and permeability (1 to 5080mD), which reflect both depositional facies and diagenetic controls. This work demonstrates the value of constraining and evaluating the impact of sequence stratigraphic distribution on reservoir characterization and architecture in incised-valley deposits, and thus has an important impact on

  10. The Pinjaur dun (intermontane longitudinal valley) and associated active mountain fronts, NW Himalaya: Tectonic geomorphology and morphotectonic evolution

    NASA Astrophysics Data System (ADS)

    Singh, Vimal; Tandon, S. K.

    2008-12-01

    The Himalayan orogenic belt, formed as a result of collision tectonic processes, shows abundant evidence of neotectonic activity, active tectonics, and the occurrence of historical earthquakes. Its frontal deformation zone is characterized, in some segments, by intermontane longitudinal valleys (duns). Such frontal segments of the Himalaya are marked by the occurrence of multiple mountain fronts. In one such segment of the foothills of the NW Himalaya, the Pinjaur dun is developed and marked by three mountain fronts: MF1A and MF1B associated with the southernmost Himalayan Frontal Thrust (HFT), MF2 associated with the Sirsa fault, and MF3 associated with the Barsar thrust along the southern margin of the relatively higher main part of the sub-Himalaya. Geomorphic responses to the tectonic activity of these and related structural features have been analyzed through the use of geomorphic indices, drainage density, stream longitudinal profiles, drainage anomalies, and hypsometric analysis. Also, fault and fold growth and their expression on landform development was studied using a combination of surface profiles and field observations. The values of valley floor width to height ratio ( Vf) for valleys associated with MF1 ranged between 0.07 and 0.74, and for valleys associated with MF2 ranged from 1.02-5.12. Vf for the four major valleys associated with MF1B ranged from 1.1-1.7. The asymmetry factor for 26 drainage basins related to MF1A indicate these have developed under the influence of a transverse structure. These results taken together with those obtained from the Hack profiles and SL index values, hypsometry, drainage density, and drainage anomalies suggest that the faults associated with the mountain fronts and related structures are active. Active tectonics and neotectonic activity have led to the formation of four surfaces in the Pinjaur dun. In addition, an important drainage divide separating the Sirsa and Jhajara drainage networks also developed in the

  11. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    PubMed Central

    McCullen, Nick; Wagenknecht, Thomas

    2016-01-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system. PMID:27273339

  12. Someone To Talk to and Someone To Listen. The Development of a Support and Learning Network for Palliative Care Workers in the Country Area of the Barossa Valley in South Australia.

    ERIC Educational Resources Information Center

    Elsey, Barry

    A palliative care support and training network was developed in a relatively isolated country area of the Barossa Valley in South Australia. The project was intended to help palliative care workers, volunteers, home carers, and others work collaboratively as a team (holistic model) for the purposes of mutually supporting, sharing information and…

  13. Transition from isotropic to digitated growth modulates network formation in Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Vogel, David; Gautrais, Jacques; Perna, Andrea; Sumpter, David J. T.; Deneubourg, Jean-Louis; Dussutour, Audrey

    2017-01-01

    Some organisms, including fungi, ants, and slime molds, explore their environment and forage by forming interconnected networks. The plasmodium of the slime mold Physarum polycephalum is a large unicellular amoeboid organism that grows a tubular spatial network through which nutrients, body mass, and chemical signals are transported. Individual plasmodia are capable of sophisticated behaviours such as optimizing their network connectivity and dynamics using only decentralized information processing. In this study, we used a population of plasmodia that interconnect through time to analyse the dynamical interactions between growth of individual plasmodia and global network formation. Our results showed how initial conditions, such as the distance between plasmodia, their size, or the presence and quality of food, affect the emerging network connectivity.

  14. Valley s'Asymmetric Characteristics of the Loess Plateau in Northwestern Shanxi Based on DEM

    NASA Astrophysics Data System (ADS)

    Duan, J.

    2016-12-01

    The valleys of the Loess Plateau in northwestern Shanxi show great asymmetry. This study using multi-scale DEMs, high-resolution satellite images and digital terrain analysis method, put forward a quantitative index to describe the asymmetric morphology. Several typical areas are selected to test and verify the spatial variability. Results show: (1) Considering the difference of spatial distribution, Pianguanhe basin, Xianchuanhe basin and Yangjiachuan basin are the areas where show most significant asymmetric characteristics . (2) Considering the difference of scale, the shape of large-scale valleys represents three characteristics: randomness, equilibrium and relative symmetry, while small-scale valleys show directionality and asymmetry. (3) Asymmetric morphology performs orientation, and the east-west valleys extremely obvious. Combined with field survey, its formation mechanism can be interpreted as follows :(1)Loess uneven distribution in the valleys. (2) The distribution diversities of vegetation, water , heat conditions and other factors, make a difference in water erosion capability which leads to asymmetric characteristics.

  15. Late Cenozoic surficial deposits and valley evolution of unglaciated northern New Jersey

    USGS Publications Warehouse

    Stanford, S.D.

    1993-01-01

    Multiple alluvial, colluvial, and eolian deposits in unglaciated northern New Jersey, and the eroded bedrock surfaces on which they rest, provide evidence of both long-term valley evolution driven by sustained eustatic baselevel lowering and short-term filling and excavation of valleys during glacial and interglacial climate cycles. The long-term changes occur over durations of 106 years, the short-term features evolve over durations of 104 to 105 years. Direct glacial effects, including blockage of valleys by glacial ice and sediment, and valley gradient reversals induced by crustal depression, are relatively sudden changes that account for several major Pleistocene drainage shifts. After deposition of the Beacon Hill fluvial gravel in the Late Miocene, lowering of sea level, perhaps in response to growth of the Antarctic ice sheet, led to almost complete dissection of the gravel. A suite of alluvial, colluvial, and eolian sediments was deposited in the dissected landscape. The fluvial Bridgeton Formation was deposited in the Raritan lowland, in the Amboy-Trenton lowland, and in the Delaware valley. Following southeastward diversion of the main Bridgeton river, perhaps during Late Pliocene or Early Pleistocene glaciation, northeastward drainage was established on the inactive Bridgeton fluvial plain. About 30 to 45 m of entrenchment followed, forming narrow, incised valleys within which Late Pleistocene deposits rest. This entrenchment may have occurred in response to lowered sea level caused by growth of ice sheets in the northern hemisphere. Under periglacial conditions in the Middle and Late Pleistocene, valleys were partially filled with alluvium and colluvium. During interglacials slopes were stabilized by vegetation and the alluvial and colluvial valley-fill was excavated by gullying, bank erosion, and spring sapping. During Illinoian and late Wisconsinan glaciation, the lower Raritan River was diverted when glacial deposits blocked its valley, and the

  16. Anatomy of a mountain: The Thebes Limestone Formation (Lower Eocene) at Gebel Gurnah, Luxor, Nile Valley, Upper Egypt

    NASA Astrophysics Data System (ADS)

    King, Christopher; Dupuis, Christian; Aubry, Marie-Pierre; Berggren, William A.; Knox, Robert O.'B.; Galal, Wael Fathi; Baele, Jean-Marc

    2017-12-01

    We present a detailed geologic study of the Thebes Formation at Gebel Gurnah in its locus typicus on the West Bank (opposite Luxor) of the Nile River in the Upper Nile Valley, Egypt. This is the first detailed measurement and lithologic description of the ∼340 m thick (predominantly) carbonate section. The Thebes Formation is divided into thirteen major lithic units (A to M). We interpret data on the lithologic succession and variations, whole rock/clay mineralogy, and macro/micropaleontology in terms of deposition on a shallow carbonate platform episodically influenced by continental runoff, and describe six depositional sequences that we place in the global framework of Lower Eocene (Ypresian) sequence stratigraphy. We note however significant incompatibilities between the Thebes depositional sequences and the global sequences. We emend the definition of the Thebes Formation by defining its top as corresponding to level 326 m at the top of Nodular Limestone 'L' (NLL), and assigning the overlying beds to the Minia Limestone Formation. New biostratigraphic data and revision of previous studies establish the direct assignment of the Thebes Formation to planktonic foraminiferal Zones E4/P6b (upper part), E5/P7 and (indirectly) Zone E6/P8, and (probably, indirectly) Zone E7a/;P9;, and to calcareous nannofossil Zone NP12 and lower Zone NP13 of the Lower Eocene (Ypresian) and provide a temporal framework spanning ∼ 2.8 Myr from <52.45 to ∼49.6 Ma for the deposition of the Thebes Formation prior to the prominent sea level fall (∼49.6 Ma) towards the end of the Early Eocene. Dominantly carbonate deposition, with a strongly reduced detrital influx, occurred on a very wide shelf (probably) at least ∼ 100 km from the coastline. The thick sedimentary succession and the marked vertical lithologic variations are interpreted as resulting from sea level fluctuations imprinted on a long-term decrease in sea-level associated with rapid subsidence reflecting tectonic

  17. Galaxy and Mass Assembly (GAMA): Morphological transformation of galaxies across the green valley

    NASA Astrophysics Data System (ADS)

    Bremer, M. N.; Phillipps, S.; Kelvin, L. S.; De Propris, R.; Kennedy, Rebecca; Moffett, Amanda J.; Bamford, S.; Davies, L. J. M.; Driver, S. P.; Häußler, B.; Holwerda, B.; Hopkins, A.; James, P. A.; Liske, J.; Percival, S.; Taylor, E. N.

    2018-05-01

    We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and on to the red sequence. We select Galaxy And Mass Assembly (GAMA) survey galaxies with 10.25 < log(M*/M⊙) < 10.75 and z < 0.2 classified according to their intrinsic u* - r* colour. From single component Sérsic fits, we find that the stellar mass-sensitive K-band profiles of red and green galaxy populations are very similar while g-band profiles indicate more disc-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disc components and that the blue to red evolution is driven by colour change in the disc. Together, these strongly suggest that galaxies evolve from blue to red through secular disc fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical time-scale for traversing the green valley ˜1-2 Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a rôle in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disc galaxies that are insufficiently supplied with gas to maintain previous levels of disc star formation, eventually attaining passive colours. No single event is needed to quench their star formation.

  18. Seepage Bifurcation as a Critical Process

    NASA Astrophysics Data System (ADS)

    Yi, R.; Rothman, D.

    2015-12-01

    Channel networks form beautiful and surprisingly intricate geometries, yet diligently evade comprehensive mathematical understanding. Work in recent years has shed light on this problem. Networks driven by seepage flow, in particular, have been shown to grow in a field that can be described by the Laplace equation, providing us with an understanding of valley growth and shape. However, the process by which such networks branch to form these ramified shapes is yet a mystery. We focus our attention on a highly ramified seepage valley network in Bristol, Florida. We study the behavior of flux to valley heads as a function of valley length, and use this result to motivate our discussion of branch formation. We then hypothesize that a critical groundwater flux demarcates a transition point where topographic diffusion is overcome by branching processes, and we present network-wide flux calculations, cosmogenic data, and simulation to support our claim. Our results ultimately suggest a mechanism for seepage bifurcation, and inform our understanding of pattern formation in river networks.

  19. Fort Valley Experimental Forest-A Century of Research 1908-2008

    Treesearch

    Susan D. Olberding; Margaret M. Moore

    2008-01-01

    One hundred years ago, the USFS began its forest research program in a two-room cabin near Flagstaff, Arizona, with one staff person, Gustaf A. Pearson. The site became known as the Fort Valley Experiment Station and was the first in a national network of research sites developed to address uncertainties regarding the rehabilitation and conservation for forest and...

  20. Notochord-derived BMP antagonists inhibit endothelial cell generation and network formation.

    PubMed

    Bressan, Michael; Davis, Patricia; Timmer, John; Herzlinger, Doris; Mikawa, Takashi

    2009-02-01

    Embryonic blood vessel formation is initially mediated through the sequential differentiation, migration, and assembly of endothelial cells (ECs). While many molecular signals that promote vascular development have been identified, little is known about suppressors of this process. In higher vertebrates, including birds and mammals, the vascular network forms throughout the embryonic disk with the exception of a region along the midline. We have previously shown that the notochord is responsible for the generation and maintenance of the avascular midline and that BMP antagonists expressed by this embryonic tissue, including Noggin and Chordin, can mimic this inhibitory role. Here we report that the notochord suppresses the generation of ECs from the mesoderm both in vivo and in vitro. We also report that the notochord diminishes the ability of mature ECs to organize into a primitive plexus. Furthermore, Noggin mimics notochord-based inhibition by preventing mesodermal EC generation and mature EC network formation. These findings suggest that the mesoderm surrounding the midline is competent to give rise to ECs and to form blood vessels, but that notochord derived-BMP antagonists suppress EC differentiation and maturation processes leading to inhibition of midline vessel formation.

  1. GPS measurements of strain accumulation across the Imperial Valley, California: 1986-1989

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert

    1989-01-01

    The Global Positioning System (GPS) data collected in southern California from 1986 to 1989 indicate considerable strain accumulation across the Imperial Valley. Displacements are computed at 29 stations in and near the valley from 1986 to 1988, and at 11 sites from 1988 to 1989. The earlier measurements indicate 5.9 +/- 1.0 cm/yr right-lateral differential velocity across the valley, although the data are heavily influenced by the 1987 Superstition Hills earthquake sequence. Some measurements, especially the east-trending displacements, are suspects for large errors. The 1988 to 1989 GPS displacements are best modeled by 5.2 +/- 0.9 cm/yr of valley crossing deformation, but rates calculated from conventional geodetic measurements (3.4 to 4.3 cm/yr) fit the data nearly as well. There is evidence from GPS and Very Long Base Interferometry (VLBI) observations that the present slip rate along the southern San Andreas fault is smaller than the long-term geologic estimate, suggesting a lower earthquake potential than is currently assumed. Correspondingly, a higher earthquake potential is indicated for the San Jacinto fault. The Imperial Valley GPS sites form part of a 183 station network in southern California and northern Baja California, which spans a cross-section of the North American-Pacific plate boundary.

  2. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2.

    PubMed

    Mai, Cong; Barrette, Andrew; Yu, Yifei; Semenov, Yuriy G; Kim, Ki Wook; Cao, Linyou; Gundogdu, Kenan

    2014-01-08

    Single layer MoS2 is an ideal material for the emerging field of "valleytronics" in which charge carrier momentum can be finely controlled by optical excitation. This system is also known to exhibit strong many-body interactions as observed by tightly bound excitons and trions. Here we report direct measurements of valley relaxation dynamics in single layer MoS2, by using ultrafast transient absorption spectroscopy. Our results show that strong Coulomb interactions significantly impact valley population dynamics. Initial excitation by circularly polarized light creates electron-hole pairs within the K-valley. These excitons coherently couple to dark intervalley excitonic states, which facilitate fast electron valley depolarization. Hole valley relaxation is delayed up to about 10 ps due to nondegeneracy of the valence band spin states. Intervalley biexciton formation reveals the hole valley relaxation dynamics. We observe that biexcitons form with more than an order of magnitude larger binding energy compared to conventional semiconductors. These measurements provide significant insight into valley specific processes in 2D semiconductors. Hence they could be used to suggest routes to design semiconducting materials that enable control of valley polarization.

  3. A Progressive Black Top Hat Transformation Algorithm for Estimating Valley Volumes from DEM Data

    NASA Astrophysics Data System (ADS)

    Luo, W.; Pingel, T.; Heo, J.; Howard, A. D.

    2013-12-01

    The amount of valley incision and valley volume are important parameters in geomorphology and hydrology research, because they are related to the amount erosion (and thus the volume of sediments) and the amount of water needed to create the valley. This is not only the case for terrestrial research but also for planetary research as such figuring out how much water was on Mars. With readily available digital elevation model (DEM) data, the Black Top Hat (BTH) transformation, an image processing technique for extracting dark features on a variable background, has been applied to DEM data to extract valley depth and estimate valley volume. However, previous studies typically use one single structuring element size for extracting the valley feature and one single threshold value for removing noise, resulting in some finer features such as tributaries not being extracted and underestimation of valley volume. Inspired by similar algorithms used in LiDAR data analysis to separate above ground features and bare earth topography, here we propose a progressive BTH (PBTH) transformation algorithm, where the structuring elements size is progressively increased to extract valleys of different orders. In addition, a slope based threshold was introduced to automatically adjust the threshold values for structuring elements with different sizes. Connectivity and shape parameters of the masked regions were used to keep the long linear valleys while removing other smaller non-connected regions. Preliminary application of the PBTH to Grand Canyon and two sites on Mars has produced promising results. More testing and fine-tuning is in progress. The ultimate goal of the project is to apply the algorithm to estimate the volume of valley networks on Mars and the volume of water needed to form the valleys we observe today and thus infer the nature of the hydrologic cycle on early Mars. The project is funded by NASA's Mars Data Analysis program.

  4. Statistical and simulation analysis of hydraulic-conductivity data for Bear Creek and Melton Valleys, Oak Ridge Reservation, Tennessee

    USGS Publications Warehouse

    Connell, J.F.; Bailey, Z.C.

    1989-01-01

    A total of 338 single-well aquifer tests from Bear Creek and Melton Valley, Tennessee were statistically grouped to estimate hydraulic conductivities for the geologic formations in the valleys. A cross-sectional simulation model linked to a regression model was used to further refine the statistical estimates for each of the formations and to improve understanding of ground-water flow in Bear Creek Valley. Median hydraulic-conductivity values were used as initial values in the model. Model-calculated estimates of hydraulic conductivity were generally lower than the statistical estimates. Simulations indicate that (1) the Pumpkin Valley Shale controls groundwater flow between Pine Ridge and Bear Creek; (2) all the recharge on Chestnut Ridge discharges to the Maynardville Limestone; (3) the formations having smaller hydraulic gradients may have a greater tendency for flow along strike; (4) local hydraulic conditions in the Maynardville Limestone cause inaccurate model-calculated estimates of hydraulic conductivity; and (5) the conductivity of deep bedrock neither affects the results of the model nor does it add information on the flow system. Improved model performance would require: (1) more water level data for the Copper Ridge Dolomite; (2) improved estimates of hydraulic conductivity in the Copper Ridge Dolomite and Maynardville Limestone; and (3) more water level data and aquifer tests in deep bedrock. (USGS)

  5. Motif formation and industry specific topologies in the Japanese business firm network

    NASA Astrophysics Data System (ADS)

    Maluck, Julian; Donner, Reik V.; Takayasu, Hideki; Takayasu, Misako

    2017-05-01

    Motifs and roles are basic quantities for the characterization of interactions among 3-node subsets in complex networks. In this work, we investigate how the distribution of 3-node motifs can be influenced by modifying the rules of an evolving network model while keeping the statistics of simpler network characteristics, such as the link density and the degree distribution, invariant. We exemplify this problem for the special case of the Japanese Business Firm Network, where a well-studied and relatively simple yet realistic evolving network model is available, and compare the resulting motif distribution in the real-world and simulated networks. To better approximate the motif distribution of the real-world network in the model, we introduce both subgraph dependent and global additional rules. We find that a specific rule that allows only for the merging process between nodes with similar link directionality patterns reduces the observed excess of densely connected motifs with bidirectional links. Our study improves the mechanistic understanding of motif formation in evolving network models to better describe the characteristic features of real-world networks with a scale-free topology.

  6. Valley Fever (Coccidioidomycosis) Statistics

    MedlinePlus

    ... Valley fever may be under-recognized. 2 , 3 Public health surveillance for Valley fever Valley fever is reportable ... MMWR) . Check with your local, state, or territorial public health department for more information about disease reporting requirements ...

  7. Seasonal reversal at Miryang Eoreumgol (Ice Valley), Korea: observation and monitoring

    NASA Astrophysics Data System (ADS)

    Byun, Hi-Ryong; Tanaka, Hiroshi L.; Choi, Pom-Yong; Kim, Do-Woo

    2011-12-01

    We investigate an anomalous phenomenon evident in the Miryang Eoreumgol (Ice Valley), Korea: The wind and water are cold during summer and warm during winter, and ice formation does not occur in winter but in summer. We have initiated observations and investigations into the origin of heat sources particularly with regard to the mechanism of ice formation in summer. Previous theories, e.g., concerning underground gravity currents, water evaporation, diurnal and seasonal respirations of the talus, effects of ground heat, radiation and topography, etc., are considered. After a calculation of heat sources, we propose two new concepts—a repetitious heat separation mechanism and a positive feedback mechanism of cold air generation—to demonstrate that the heat mechanism of the seasonal reversal of the ice valley may be controlled by the use of the phase change between ice and water vapor with only a small amount of additional unknown energy.

  8. Formation of nanoscale networks: selectively swelling amphiphilic block copolymers with CO2-expanded liquids

    NASA Astrophysics Data System (ADS)

    Gong, Jianliang; Zhang, Aijuan; Bai, Hua; Zhang, Qingkun; Du, Can; Li, Lei; Hong, Yanzhen; Li, Jun

    2013-01-01

    Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a temperature range of 45-60 °C. The formation mechanism of the network, involving plasticization of PS and selective swelling of P4VP, was proposed. Because the diblock copolymer diffusion process is controlled by the activated hopping of individual block copolymer chains with the thermodynamic barrier for moving PVP segments from one to another, the formation of the network structures is achieved in a short time scale and shows ``thermodynamically restricted'' character. Furthermore, the resulting polymer networks were employed as templates, for the preparation of polypyrrole networks, by an electrochemical polymerization process. The prepared porous polypyrrole film was used to fabricate a chemoresistor-type gas sensor which showed high sensitivity towards ammonia.Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a

  9. Valley polarization in bismuth

    NASA Astrophysics Data System (ADS)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  10. Formation of Oxidized Organic Aerosol (OOA) through Fog Processing in the Po Valley

    NASA Astrophysics Data System (ADS)

    Gilardoni, S.; Paglione, M.; Rinaldi, M.; Giulianelli, L.; Massoli, P.; Hillamo, R. E.; Carbone, S.; Lanconelli, C.; Laaksonen, A. J.; Russell, L. M.; Poluzzi, V.; Fuzzi, S.; Facchini, C.

    2014-12-01

    Aqueous phase chemistry might be responsible for the formation of a significant fraction of the organic aerosol (OA) observed in the atmosphere, and could explain some of the discrepancies between OA concentration and properties predicted by models and observed in the environment. Aerosol - fog interaction and its effect on submicron aerosol properties were investigated in the Po Valley (northern Italy) during fall 2011, in the framework of the Supersite project (ARPA Emilia Romagna). Composition and physical properties of submicron aerosol were measured online by a High Resolution- Time of Flight - Aerosol Mass Spectrometer (HR-TOF-AMS), a Soot Photometer - Aerosol Mass Spectrometer (SP-AMS), and a Tandem Differential Mobility Particle Sizer (TDMPS). Organic functional group analysis was performed off-line by Hydrogen - Nuclear Magnetic Resonance (H-NMR) spectrometry and by Fourier Transform Infrared (FTIR) spectrometry. Aerosol absorption, scattering, and total extinction were measured simultaneously with a Particle Soot Absorption Photometer (PSAP), a Nephelometer, and a Cavity Attenuated Phase Shift Spectrometer particle extinction monitor (CAPS PMex), respectively. Water-soluble organic carbon in fog-water was characterized off-line by HR-TOF-AMS. Fourteen distinct fog events were observed. Fog dissipation left behind an aerosol enriched in particles larger than 400 nm, typical of fog and cloud processing, and dominated by secondary species, including ammonium nitrate, ammonium sulfate and oxidized OA (OOA). Source apportionment of OA allowed us to identify OOA as the difference between total OA and primary OA (hydrocarbon like OA and biomass burning OA). The formation of OOA through fog processing is proved by the correlation of OOA concentration with hydroxyl methyl sulfonate signal and by the similarity of OOA spectra with organic mass spectra obtained by re-aerosolization of fog water samples. The oxygen to carbon ratio and the hydrogen to carbon ratio of

  11. Analysis of the packet formation process in packet-switched networks

    NASA Astrophysics Data System (ADS)

    Meditch, J. S.

    Two new queueing system models for the packet formation process in packet-switched telecommunication networks are developed, and their applications in process stability, performance analysis, and optimization studies are illustrated. The first, an M/M/1 queueing system characterization of the process, is a highly aggregated model which is useful for preliminary studies. The second, a marked extension of an earlier M/G/1 model, permits one to investigate stability, performance characteristics, and design of the packet formation process in terms of the details of processor architecture, and hardware and software implementations with processor structure and as many parameters as desired as variables. The two new models together with the earlier M/G/1 characterization span the spectrum of modeling complexity for the packet formation process from basic to advanced.

  12. Agricultural Development, Land Change, and Livelihoods in Tanzania's Kilombero Valley

    NASA Astrophysics Data System (ADS)

    Connors, John Patrick

    The Kilombero Valley lies at the intersection of a network of protected areas that cross Tanzania. The wetlands and woodlands of the Valley, as well as the forest of surrounding mountains are abundant in biodiversity and are considered to be critical areas for conservation. This area, however, is also the home to more than a half million people, primarily poor smallholder farmers. In an effort to support the livelihoods and food security of these farmers and the larger Tanzanian population, the country has recently targeted a series of programs to increase agricultural production in the Kilombero Valley and elsewhere in the country. Bridging concepts and methods from land change science, political ecology, and sustainable livelihoods, I present an integrated assessment of the linkages between development and conservation efforts in the Kilombero Valley and the implications for food security. This dissertation uses three empirical studies to understand the process of development in the Kilombero Valley and to link the priorities and perceptions of conservation and development efforts to the material outcomes in food security and land change. The first paper of this dissertation examines the changes in land use in the Kilombero Valley between 1997 and 2014 following the privatization of agriculture and the expansion of Tanzania's Kilimo Kwanza program. Remote sensing analysis reveals a two-fold increase in agricultural area during this short time, largely at the expense of forest. Protected areas in some parts of the Valley appear to be deterring deforestation, but rapid agricultural growth, particularly surrounding a commercial rice plantation, has led to loss of extant forest and sustained habitat fragmentation. The second paper focuses examines livelihood strategies in the Valley and claims regarding the role of agrobiodiversity in food security. The results of household survey reveal no difference or lower food security among households that diversify their

  13. Formation of Polymer Networks for Fast In-Plane Switching of Liquid Crystals at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Yu, Byeong-Hun; Song, Dong Han; Kim, Ki-Han; Wok Park, Byung; Choi, Sun-Wook; Park, Sung Il; Kang, Sung Gu; Yoon, Jeong Hwan; Kim, Byeong Koo; Yoon, Tae-Hoon

    2013-09-01

    We formed a polymer structure to enable fast in-plane switching of liquid crystals at low temperatures. The problem of the inevitable slow response at low temperatures was reduced by the formation of in-cell polymer networks in in-plane switching (IPS) cells. The electro-optic characteristics of polymer-networked IPS cells were measured at temperatures ranging from -10 to 20 °C. The turn-on and turn-off times of an IPS cell were reduced by 44.5 and 47.2% at -10 °C by the formation of polymer networks. We believe that the proposed technology can be applied to emerging display devices such as mobile phones and automotive displays that may be used at low temperatures.

  14. Petroleum systems and geologic assessment of undiscovered oil and gas, Cotton Valley group and Travis Peak-Hosston formations, East Texas basin and Louisiana-Mississippi salt basins provinces of the northern Gulf Coast region. Chapters 1-7.

    USGS Publications Warehouse

    ,

    2006-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas potential of the Cotton Valley Group and Travis Peak and Hosston Formations in the East Texas Basin and Louisiana-Mississippi Salt Basins Provinces in the Gulf Coast Region (USGS Provinces 5048 and 5049). The Cotton Valley Group and Travis Peak and Hosston Formations are important because of their potential for natural gas resources. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define one total petroleum system and eight assessment units. Seven assessment units were quantitatively assessed for undiscovered oil and gas resources.

  15. Late Noachian Icy Highlands climate model: Exploring the possibility of transient melting and fluvial/lacustrine activity through peak annual and seasonal temperatures

    NASA Astrophysics Data System (ADS)

    Palumbo, Ashley M.; Head, James W.; Wordsworth, Robin D.

    2018-01-01

    The nature of the Late Noachian climate of Mars remains one of the outstanding questions in the study of the evolution of martian geology and climate. Despite abundant evidence for flowing water (valley networks and open/closed basin lakes), climate models have had difficulties reproducing mean annual surface temperatures (MAT) > 273 K in order to generate the ;warm and wet; climate conditions presumed to be necessary to explain the observed fluvial and lacustrine features. Here, we consider a ;cold and icy; climate scenario, characterized by MAT ∼225 K and snow and ice distributed in the southern highlands, and ask: Does the formation of the fluvial and lacustrine features require continuous ;warm and wet; conditions, or could seasonal temperature variation in a ;cold and icy; climate produce sufficient summertime ice melting and surface runoff to account for the observed features? To address this question, we employ the 3D Laboratoire de Météorologie Dynamique global climate model (LMD GCM) for early Mars and (1) analyze peak annual temperature (PAT) maps to determine where on Mars temperatures exceed freezing in the summer season, (2) produce temperature time series at three valley network systems and compare the duration of the time during which temperatures exceed freezing with seasonal temperature variations in the Antarctic McMurdo Dry Valleys (MDV) where similar fluvial and lacustrine features are observed, and (3) perform a positive-degree-day analysis to determine the annual volume of meltwater produced through this mechanism, estimate the necessary duration that this process must repeat to produce sufficient meltwater for valley network formation, and estimate whether runoff rates predicted by this mechanism are comparable to those required to form the observed geomorphology of the valley networks. When considering an ambient CO2 atmosphere, characterized by MAT ∼225 K, we find that: (1) PAT can exceed the melting point of water (>273 K) in

  16. Stratigraphic Units in Las Vegas Valley, Nevada

    NASA Astrophysics Data System (ADS)

    Donovan, D.

    2013-12-01

    Using 25 well logs, 15 of which also had accompanying geophysical and aquifer test data were used to describe and establish three alloformations including the Tule Spring and Paradise Valley Alloformations and four aquiformations, the most well defined being, the Las Vegas Springs Aquiformation, in the west central part of the bolson (Donovan, 1996), primarily in Township 20 South, Range 60 East, Mount Diablo Baseline and Meridian (MDBLM), with the stratotypes designated in T20S, R61E S31 MDBLM (36° 9'59.89"N 115°11'26.34"W). The allostratigraphic units were developed using the recommendations in the North American Code of Stratigraphic Nomenclature (NACSN, 1983 and 2005). The hydrostratigraphic units were developed following the recommendations of Seaber (1992). The units constitute the bulk of the upper 500 meter section. Twenty additional wells in the same geographic area, drilled and completed between 1995 and 2005 with detailed geologic and hydrologic information provided confirmation of these units. The proposed stratigraphic units are not part of either, and are located between, the two previously named and non-contiguous formations in the bolson (the Miocene Muddy Creek Formation and the late Pleistocene Las Vegas Formation) (Longwell et al 1965). Las Vegas Valley contains a metropolitan area of approximately two million people. The deeper part of the alluvial basin below 300 ft below ground surface is of interest for supply and storage. The shallower part is of interest for water quality and the interaction between the ground water system and engineered structures.

  17. The role of endogenous and exogenous mechanisms in the formation of R&D networks

    NASA Astrophysics Data System (ADS)

    Tomasello, Mario V.; Perra, Nicola; Tessone, Claudio J.; Karsai, Márton; Schweitzer, Frank

    2014-07-01

    We develop an agent-based model of strategic link formation in Research and Development (R&D) networks. Empirical evidence has shown that the growth of these networks is driven by mechanisms which are both endogenous to the system (that is, depending on existing alliances patterns) and exogenous (that is, driven by an exploratory search for newcomer firms). Extant research to date has not investigated both mechanisms simultaneously in a comparative manner. To overcome this limitation, we develop a general modeling framework to shed light on the relative importance of these two mechanisms. We test our model against a comprehensive dataset, listing cross-country and cross-sectoral R&D alliances from 1984 to 2009. Our results show that by fitting only three macroscopic properties of the network topology, this framework is able to reproduce a number of micro-level measures, including the distributions of degree, local clustering, path length and component size, and the emergence of network clusters. Furthermore, by estimating the link probabilities towards newcomers and established firms from the data, we find that endogenous mechanisms are predominant over the exogenous ones in the network formation, thus quantifying the importance of existing structures in selecting partner firms.

  18. Optical manipulation of valley pseudospin

    DOE PAGES

    Ye, Ziliang; Sun, Dezheng; Heinz, Tony F.

    2016-09-19

    The coherent manipulation of spin and pseudospin underlies existing and emerging quantum technologies, including quantum communication and quantum computation. Valley polarization, associated with the occupancy of degenerate, but quantum mechanically distinct valleys in momentum space, closely resembles spin polarization and has been proposed as a pseudospin carrier for the future quantum electronics. Valley exciton polarization has been created in the transition metal dichalcogenide monolayers using excitation by circularly polarized light and has been detected both optically and electrically. In addition, the existence of coherence in the valley pseudospin has been identified experimentally. The manipulation of such valley coherence has, however,more » remained out of reach. In this paper, we demonstrate all-optical control of the valley coherence by means of the pseudomagnetic field associated with the optical Stark effect. Using below-bandgap circularly polarized light, we rotate the valley exciton pseudospin in monolayer WSe 2 on the femtosecond timescale. Both the direction and speed of the rotation can be manipulated optically by tuning the dynamic phase of excitons in opposite valleys. Finally, this study unveils the possibility of generation, manipulation, and detection of the valley pseudospin by coupling to photons.« less

  19. Utilizing Lidar Data for Detection of Channel Migration: Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Barlow, M. C.; Telling, J. W.; Glennie, C.; Fountain, A.

    2017-12-01

    The McMurdo Dry Valleys is the largest ice-free expanse in Antarctica and one of the most studied regions on the continent. The valleys are a hyper-arid, cold-polar desert that receives little precipitation (<50 mm weq yr-1). The valley bottoms are covered in a sandy-gravel, dotted with ice-covered lakes and ponds, and alpine glaciers that descend from the surrounding mountains. Glacial melt feeds the lakes via ephemeral streams that flow 6 - 10 weeks each summer. Field observations indicate that the valley floors, particularly in Taylor Valley, contain numerous abandoned stream channels but, given the modest stream flows, channel migration is rarely observed. Only a few channels have been surveyed in the field due to the slow pace of manual methods. Here we present a method to assess channel migration over a broad region in order to study the pattern of channel migration as a function of climatic and/or geologic gradients in Taylor Valley. Raster images of high-resolution topography were created from two lidar (Light Detection and Ranging) datasets and were used to analyze channel migration in Taylor Valley. The first lidar dataset was collected in 2001 by NASA's Airborne Topographic Mapper (ATM) and the second was collected by the National Center for Airborne Laser Mapping (NCALM) in 2014 with an Optech Titan Sensor. The channels were extracted for each dataset using GeoNet, which is an open source tool used for the automatic extraction of channel networks. Channel migration was found to range from 0 to 50 cm per year depending upon the location. Channel complexity was determined based on the change in the number of channel branches and their length. We present the results for various regions in Taylor Valley with differing degrees of stream complexity. Further research is being done to determine factors that drive channel migration rates in this unique environment.

  20. Effects of Hofmeister salt series on gluten network formation: Part II. Anion series.

    PubMed

    Tuhumury, H C D; Small, D M; Day, L

    2016-12-01

    Different anion salts from the Hofmeister series were used to investigate their effects on gluten network formation. The effects of these anion salts on the mixing properties of the dough and the rheological and chemical properties of gluten samples extracted from the dough with these respective salts were compared. The aim of this work was to determine how different anion salts influence the formation of the gluten structure during dough mixing. It was found that the Hofmeister anion salts affected the gluten network formation by interacting directly with specific amino acid residues that resulted in changes in gluten protein composition, specifically the percentage of the unextractable polymeric protein fractions (%UPP). These changes consequently led to remarkable differences in the mixing profiles and microstructural features of the dough, small deformation rheological properties of the gluten and a strain hardening behaviour of both dough and gluten samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Geologic map of the Lower Valley quadrangle, Caribou County, Idaho

    USGS Publications Warehouse

    Oberlindacher, H. Peter; Hovland, R. David; Miller, Susan T.; Evans, James G.; Miller, Robert J.

    2018-04-05

    The Lower Valley 7.5-minute quadrangle, located in the core of the Southeast Idaho Phosphate Resource Area, includes Mississippian to Triassic marine sedimentary rocks, Pliocene to Pleistocene basalt, and Tertiary to Holocene surficial deposits. The Mississippian to Triassic marine sedimentary sequence was deposited on a shallow shelf between an emergent craton to the east and the Antler orogenic belt to the west. The Meade Peak Phosphatic Shale Member of the Permian Phosphoria Formation hosts high-grade deposits of phosphate that were the subject of geologic studies through much of the 20th century. Open-pit mining of the phosphate has been underway within and near the Lower Valley quadrangle for several decades.

  2. Reservoir performance of Late Eocene incised valley fills, Cusiana Field, Llanos Foothills, Eastern Colombia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulham, A.; Edward, W.; App, J.

    1996-12-31

    The Cusiana Field is located in the Llanos Foothills of Eastern Colombia. The principal reservoir is the late Eocene Mirador Formation which comprises >50% of reserves. Currently the Mirador reservoir is providing nearly all of the 150,00bopd of production from the Cusiana Field. The Mirador reservoir comprises a stack of incised valley deposits. The fills of the valleys are dominated by quartz arenite sandstones. The average porosity of the valley sandstones is 8% which reflects abundant quartz cement ({approximately}14%) and significant compaction during deep burial ({approximately}20,000feet). Single valleys are up to 70 feet thick and exhibit a distinctive bipartite fillmore » that reflects changing energy conditions during filling. Bases of valleys have the coarsest grain size and have sedimentological and trace fossil evidence for deposition in highly stressed, brackish water environments. The upper parts of the valleys are typically finer grained and were deposited in more saline settings. Despite the low porosity of the Mirador valleys, drill stem tests and production log data show that they have phenomenal performance characteristics. Rates of {ge}10,000bopd are achieved from single valleys. Bases of the valley fills are the key contributors to flow. Integration of detailed core and pore system analysis with the reservoir performance data shows that the permeability fabric of the Mirador can be explained by original depositional architecture and simple loss of primary porosity. Comparison of Cusiana with other quartz-rich sandstones from around the world suggests that it`s low porosity/high performance is predictable.« less

  3. Groundwater quality in the Owens Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  4. Reputation drives cooperative behaviour and network formation in human groups.

    PubMed

    Cuesta, Jose A; Gracia-Lázaro, Carlos; Ferrer, Alfredo; Moreno, Yamir; Sánchez, Angel

    2015-01-19

    Cooperativeness is a defining feature of human nature. Theoreticians have suggested several mechanisms to explain this ubiquitous phenomenon, including reciprocity, reputation, and punishment, but the problem is still unsolved. Here we show, through experiments conducted with groups of people playing an iterated Prisoner's Dilemma on a dynamic network, that it is reputation what really fosters cooperation. While this mechanism has already been observed in unstructured populations, we find that it acts equally when interactions are given by a network that players can reconfigure dynamically. Furthermore, our observations reveal that memory also drives the network formation process, and cooperators assort more, with longer link lifetimes, the longer the past actions record. Our analysis demonstrates, for the first time, that reputation can be very well quantified as a weighted mean of the fractions of past cooperative acts and the last action performed. This finding has potential applications in collaborative systems and e-commerce.

  5. Induced Seismicity of the Paradox Valley Brine Injection

    NASA Astrophysics Data System (ADS)

    Bachmann, C. E.; Foxall, W.; Daley, T. M.

    2013-12-01

    The Paradox Valley Unit (PVU) is operated by the U.S. Bureau of Reclamation (USBR) and is built to control the water quality of the Dolores River - a feeder of the Colorado River. Brine is extracted along the river from several shallow wells. Before it is injected into a 4.8km deep well for long-term storage, it is filtered at a surface-treatment facility. The target zone of the injection is a subhorizontal formation of a Mississippian-age limestone. The first injection test started in 1991, continuous injections started in 1996 and are still ongoing. The injection of the fluid in the underground induces micro-seismicity that is monitored by the USBR with the 15-station Paradox Valley Seismic Network. This network located more then 5700 events in the 20 years since the injection started. The locations of the seismic events give crucial insights to the pathways of the injected fluid. In this study we analyze the seismicity up to the end of 2011, which does not include the magnitude 3.9 event that caused a temporary shut down of the PVU in January 2013. The largest event included in our study period is an event with M4.3 of May 2000. The majority (75%) of events are micro-seismic events with magnitudes of 1 or smaller; only 74 events have magnitudes larger or equal to 2.5 of which only 4 are larger or equal to 3.5. Most of the seismicity is constrained to the vicinity of the injection well with roughly 80% of the events occurring within a 4km radius. However, there is one active zone more then 10 km away from the injection well that showed first activity in late 2010. More than 500 micro-seismic events occurred within several weeks in this new zone. The goal behind this study is to understand the processes behind a long-term injection of fluid into the underground where no circulation takes place. While other such projects exist, such as different wastewater injections, none of them has been monitored as well as the Paradox Valley seismicity and or has been going on

  6. Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures.

    PubMed

    Lantoine, Joséphine; Grevesse, Thomas; Villers, Agnès; Delhaye, Geoffrey; Mestdagh, Camille; Versaevel, Marie; Mohammed, Danahe; Bruyère, Céline; Alaimo, Laura; Lacour, Stéphanie P; Ris, Laurence; Gabriele, Sylvain

    2016-05-01

    The ability to construct easily in vitro networks of primary neurons organized with imposed topologies is required for neural tissue engineering as well as for the development of neuronal interfaces with desirable characteristics. However, accumulating evidence suggests that the mechanical properties of the culture matrix can modulate important neuronal functions such as growth, extension, branching and activity. Here we designed robust and reproducible laminin-polylysine grid micropatterns on cell culture substrates that have similar biochemical properties but a 100-fold difference in Young's modulus to investigate the role of the matrix rigidity on the formation and activity of cortical neuronal networks. We found that cell bodies of primary cortical neurons gradually accumulate in circular islands, whereas axonal extensions spread on linear tracks to connect circular islands. Our findings indicate that migration of cortical neurons is enhanced on soft substrates, leading to a faster formation of neuronal networks. Furthermore, the pre-synaptic density was two times higher on stiff substrates and consistently the number of action potentials and miniature synaptic currents was enhanced on stiff substrates. Taken together, our results provide compelling evidence to indicate that matrix stiffness is a key parameter to modulate the growth dynamics, synaptic density and electrophysiological activity of cortical neuronal networks, thus providing useful information on scaffold design for neural tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. GDTN: Genome-Based Delay Tolerant Network Formation in Heterogeneous 5G Using Inter-UA Collaboration.

    PubMed

    You, Ilsun; Sharma, Vishal; Atiquzzaman, Mohammed; Choo, Kim-Kwang Raymond

    2016-01-01

    With a more Internet-savvy and sophisticated user base, there are more demands for interactive applications and services. However, it is a challenge for existing radio access networks (e.g. 3G and 4G) to cope with the increasingly demanding requirements such as higher data rates and wider coverage area. One potential solution is the inter-collaborative deployment of multiple radio devices in a 5G setting designed to meet exacting user demands, and facilitate the high data rate requirements in the underlying networks. These heterogeneous 5G networks can readily resolve the data rate and coverage challenges. Networks established using the hybridization of existing networks have diverse military and civilian applications. However, there are inherent limitations in such networks such as irregular breakdown, node failures, and halts during speed transmissions. In recent years, there have been attempts to integrate heterogeneous 5G networks with existing ad hoc networks to provide a robust solution for delay-tolerant transmissions in the form of packet switched networks. However, continuous connectivity is still required in these networks, in order to efficiently regulate the flow to allow the formation of a robust network. Therefore, in this paper, we present a novel network formation consisting of nodes from different network maneuvered by Unmanned Aircraft (UA). The proposed model utilizes the features of a biological aspect of genomes and forms a delay tolerant network with existing network models. This allows us to provide continuous and robust connectivity. We then demonstrate that the proposed network model has an efficient data delivery, lower overheads and lesser delays with high convergence rate in comparison to existing approaches, based on evaluations in both real-time testbed and simulation environment.

  8. GDTN: Genome-Based Delay Tolerant Network Formation in Heterogeneous 5G Using Inter-UA Collaboration

    PubMed Central

    2016-01-01

    With a more Internet-savvy and sophisticated user base, there are more demands for interactive applications and services. However, it is a challenge for existing radio access networks (e.g. 3G and 4G) to cope with the increasingly demanding requirements such as higher data rates and wider coverage area. One potential solution is the inter-collaborative deployment of multiple radio devices in a 5G setting designed to meet exacting user demands, and facilitate the high data rate requirements in the underlying networks. These heterogeneous 5G networks can readily resolve the data rate and coverage challenges. Networks established using the hybridization of existing networks have diverse military and civilian applications. However, there are inherent limitations in such networks such as irregular breakdown, node failures, and halts during speed transmissions. In recent years, there have been attempts to integrate heterogeneous 5G networks with existing ad hoc networks to provide a robust solution for delay-tolerant transmissions in the form of packet switched networks. However, continuous connectivity is still required in these networks, in order to efficiently regulate the flow to allow the formation of a robust network. Therefore, in this paper, we present a novel network formation consisting of nodes from different network maneuvered by Unmanned Aircraft (UA). The proposed model utilizes the features of a biological aspect of genomes and forms a delay tolerant network with existing network models. This allows us to provide continuous and robust connectivity. We then demonstrate that the proposed network model has an efficient data delivery, lower overheads and lesser delays with high convergence rate in comparison to existing approaches, based on evaluations in both real-time testbed and simulation environment. PMID:27973618

  9. Synthetic river valleys: Creating prescribed topography for form-process inquiry and river rehabilitation design

    NASA Astrophysics Data System (ADS)

    Brown, R. A.; Pasternack, G. B.; Wallender, W. W.

    2014-06-01

    The synthesis of artificial landforms is complementary to geomorphic analysis because it affords a reflection on both the characteristics and intrinsic formative processes of real world conditions. Moreover, the applied terminus of geomorphic theory is commonly manifested in the engineering and rehabilitation of riverine landforms where the goal is to create specific processes associated with specific morphology. To date, the synthesis of river topography has been explored outside of geomorphology through artistic renderings, computer science applications, and river rehabilitation design; while within geomorphology it has been explored using morphodynamic modeling, such as one-dimensional simulation of river reach profiles, two-dimensional simulation of river networks, and three-dimensional simulation of subreach scale river morphology. To date, no approach allows geomorphologists, engineers, or river rehabilitation practitioners to create landforms of prescribed conditions. In this paper a method for creating topography of synthetic river valleys is introduced that utilizes a theoretical framework that draws from fluvial geomorphology, computer science, and geometric modeling. Such a method would be valuable to geomorphologists in understanding form-process linkages as well as to engineers and river rehabilitation practitioners in developing design surfaces that can be rapidly iterated. The method introduced herein relies on the discretization of river valley topography into geometric elements associated with overlapping and orthogonal two-dimensional planes such as the planform, profile, and cross section that are represented by mathematical functions, termed geometric element equations. Topographic surfaces can be parameterized independently or dependently using a geomorphic covariance structure between the spatial series of geometric element equations. To illustrate the approach and overall model flexibility examples are provided that are associated with

  10. Approach jamming effectiveness evaluation for surface-type infrared decoy in network centric warship formation

    NASA Astrophysics Data System (ADS)

    Lv, Mingshan

    2015-10-01

    The passive and photoelectrical jamming to anti-ship missile in the condition of network centric warship formation is an important research issue of fleet EW operation. An approach jamming method of shipborne surface-type infrared decoy countering the infrared image guided anti-ship missile is put forward. By analyzing the countering process the jamming effectiveness evaluation model is constructed. By simulation the method is proved t reasonable and effective. This method breaks through the traditional restrict that the passive and photoelectricity jamming measure can only be used in the end self-defence and provides a new method for network centric worship formation to support each other.

  11. Applying of the Artificial Neural Networks (ANN) to Identify and Characterize Sweet Spots in Shale Gas Formations

    NASA Astrophysics Data System (ADS)

    Puskarczyk, Edyta

    2018-03-01

    The main goal of the study was to enhance and improve information about the Ordovician and Silurian gas-saturated shale formations. Author focused on: firstly, identification of the shale gas formations, especially the sweet spots horizons, secondly, classification and thirdly, the accurate characterization of divisional intervals. Data set comprised of standard well logs from the selected well. Shale formations are represented mainly by claystones, siltstones, and mudstones. The formations are also partially rich in organic matter. During the calculations, information about lithology of stratigraphy weren't taken into account. In the analysis, selforganizing neural network - Kohonen Algorithm (ANN) was used for sweet spots identification. Different networks and different software were tested and the best network was used for application and interpretation. As a results of Kohonen networks, groups corresponding to the gas-bearing intervals were found. The analysis showed diversification between gas-bearing formations and surrounding beds. It is also shown that internal diversification in sweet spots is present. Kohonen algorithm was also used for geological interpretation of well log data and electrofacies prediction. Reliable characteristic into groups shows that Ja Mb and Sa Fm which are usually treated as potential sweet spots only partially have good reservoir conditions. It is concluded that ANN appears to be useful and quick tool for preliminary classification of members and sweet spots identification.

  12. Soil formation in the Tsauchab Valley, Namibia

    NASA Astrophysics Data System (ADS)

    Eden, Marie; Bens, Oliver; Ramisch, Arne; Schwindt, Daniel; Völkel, Jörg

    2016-04-01

    The BMBF-funded project GeoArchives (Spaces) investigates soils and sediments in Southern Africa. A focus area lies on the Tsauchab Valley (Namibia), South of the Naukluft mountain range (24°26'40'' S, 16°10'40'' E). On a gently sloping alluvial fan facing East towards the river, the surface is characterized by a desert pavement covering soils used as farmland. The landscape units were mapped and the area at the lower slope of a hill was divided into three units: a rinsing surface and a gravel plain, separated by a channel. On these surfaces soil profiles were excavated. Profile description followed the German system (Bodenkundliche Kartieranleitung KA 5) and disturbed samples were taken at various depths and analysed in the lab. Undisturbed soil cores with a volume of 100 cm³ were taken just below the surface at a depth of ~1-6 cm. Lab analyses included texture and gravel content, colour, pH, electrical conductivity, carbonates, CNS, cation exchange capacity, pedogenic oxides, main and trace elements (XRF), and clay mineral distribution (XRD). Undisturbed samples were used to determine soil water retention curve, air permeability and bulk density. The profiles revealed moderately developed cambic soils rich in clay minerals and with total carbon contents ranging up to 1.8 %, bearing shrubs and after episodic rainfall a dense grass vegetation. Their genesis is discussed and interpreted in the context of the landscape and climate history of this semi-desert environment.

  13. Biologically Informed Individual-based Network Model for Rift Valley Fever in the US and Evaluation of Mitigation Strategies

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a zoonotic disease endemic in Sub-Saharan Africa with periodic outbreaks in human and animal populations. Mosquitoes are the primary disease vectors; however, Rift Valley fever virus (RVFV) can also spread by direct contact with infected tissues. The transmission cycle is ...

  14. Reconstruction of Flooding Events for the Central Valley, California from Instrumental and Documentary Weather Records

    NASA Astrophysics Data System (ADS)

    Dodds, S. F.; Mock, C. J.

    2009-12-01

    All available instrumental winter precipitation data for the Central Valley of California back to 1850 were digitized and analyzed to construct continuous time series. Many of these data, in paper or microfilm format, extend prior to modern National Weather Service Cooperative Data Program and Historical Climate Network data, and were recorded by volunteer observers from networks such as the US Army Surgeon General, Smithsonian Institution, and US Army Signal Service. Given incomplete individual records temporally, detailed documentary data from newspapers, personal diaries and journals, ship logbooks, and weather enthusiasts’ instrumental data, were used in conjunction with instrumental data to reconstruct precipitation frequency per month and season, continuous days of precipitation, and to identify anomalous precipitation events. Multilinear regression techniques, using surrounding stations and the relationships between modern and historical records, bridge timeframes lacking data and provided homogeneous nature of time series. The metadata for each station was carefully screened, and notes were made about any possible changes to the instrumentation, location of instruments, or an untrained observer to verify that anomalous events were not recorded incorrectly. Precipitation in the Central Valley varies throughout the entire region, but waterways link the differing elevations and latitudes. This study integrates the individual station data with additional accounts of flood descriptions through unique newspaper and journal data. River heights and flood extent inundating cities, agricultural lands, and individual homes are often recorded within unique documentary sources, which add to the understanding of flood occurrence within this area. Comparisons were also made between dam and levee construction through time and how waters are diverted through cities in natural and anthropogenically changed environments. Some precipitation that lead to flooding events that

  15. Stratigraphic sections of Middle Jurassic Entrade sandstone and related rocks from Salt Valley to Dewey Bridge in East-Central Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Sullivan, R.B.

    1981-01-01

    The San Rafael Group of Middle Jurassic age form extensive dip slopes on the north side of Salt Valley and crops out in bold cliffs from Salt Wash eastward to Dewey Bridge. In the San Rafael Swell about 70 km west of Salt Valley; the San Rafael Group consists in ascending order of Page Sandstone, Carmel Formation, Entrada Sandstone, and the Curtis and Summerville Formations. Fifteen stratigraphic sections are included on the map interpretation of the stratigraphy aids petroleum and natural gas investigations. (DP)

  16. Subsurface and petroleum geology of the southwestern Santa Clara Valley ("Silicon Valley"), California

    USGS Publications Warehouse

    Stanley, Richard G.; Jachens, Robert C.; Lillis, Paul G.; McLaughlin, Robert J.; Kvenvolden, Keith A.; Hostettler, Frances D.; McDougall, Kristin A.; Magoon, Leslie B.

    2002-01-01

    and 1929 to total depths as great as 840 m. At least one pump unit is still standing. Although no lithologic or paleontologic samples are available from the wells, driller's logs indicate the presence of thick intervals of brown shale and sandstone resembling nearby outcrops of the Miocene Monterey Formation. Small amounts of oil and gas were observed in several wells, but commercial production was never established. Oil from the Peck well in Los Gatos is highly biodegraded, contains biomarkers commonly found in oils derived from the Monterey Formation, and has a stable-C-isotopic (d13C) composition of –23.32 permil, indicating derivation from a Miocene Monterey Formation source rock. Preliminary calculations suggest that about 1 billion barrels of oil may have been generated from source rocks within the Monterey Formation in the deepest part of the subsurface sedimentary basin between Los Gatos and Cupertino. Most of this oil was probably lost to biodegradation, oxidation, and leakage to the surface, but some oil may have accumulated in as-yet-undiscovered structural and stratigraphic traps along the complex structural boundary between the Santa Clara Valley and the Santa Cruz Mountains. Although some of these undiscovered accumulations of oil may be of commercial size, future petroleum exploration is unlikely because most of the area is currently devoted to residential, recreational, commercial, and industrial uses.

  17. Luminescence dating of paleolake deltas and glacial deposits in Garwood Valley, Antarctica: Implications for climate, Ross ice sheet dynamics, and paleolake duration

    USGS Publications Warehouse

    Levy, Joseph S.; Rittenour, Tammy M.; Fountain, Andrew G.; O'Connor, Jim E.

    2017-01-01

    The formation of perched deltas and other lacustrine deposits in the McMurdo Dry Valleys of Antarctica is widely considered to be evidence of valley-filling lakes dammed by the grounded Ross Sea ice sheet during the local Last Glacial Maximum, with lake drainage interpreted as a record of grounding line retreat. We used luminescence dating to determine the age of paleolake deltas and glacial tills in Garwood Valley, a coastal dry valley that opens to the Ross Sea. Luminescence ages are stratigraphically consistent with radiocarbon results from algal mats within the same delta deposits but suggest radiocarbon dates from lacustrine carbonates may overestimate deposit ages by thousands of years. Results suggest that late Holocene delta deposition into paleolake Howard in Garwood Valley persisted until ca. 3.5 ka. This is significantly younger than the date when grounded ice is thought to have retreated from the Ross Sea. Our evidence suggests that the local, stranded ice-cored till topography in Garwood Valley, rather than regional ice-sheet dynamics, may have controlled lake levels for some McMurdo Dry Valleys paleolakes. Age control from the supraglacial Ross Sea drift suggests grounding and up-valley advance of the Ross Sea ice sheet into Garwood valley during marine oxygen isotope stage (MIS) 4 (71–78 ka) and the local Last Glacial Maximum (9–10 ka). This work demonstrates the power of combining luminescence dating with existing radiocarbon data sets to improve understanding of the relationships among paleolake formation, glacial position, and stream discharge in response to climate change.

  18. Chuckwalla Valley multiple-well monitoring site, Chuckwalla Valley, Riverside County

    USGS Publications Warehouse

    Everett, Rhett

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, is evaluating the geohydrology and water availability of the Chuckwalla Valley, California. As part of this evaluation, the USGS installed the Chuckwalla Valley multiple-well monitoring site (CWV1) in the southeastern portion of the Chuckwalla Basin. Data collected at this site provide information about the geology, hydrology, geophysics, and geochemistry of the local aquifer system, thus enhancing the understanding of the geohydrologic framework of the Chuckwalla Valley. This report presents construction information for the CWV1 multiple-well monitoring site and initial geohydrologic data collected from the site.

  19. Processes of Terrace Formation on the Piedmont of the Santa Cruz River Valley During Quaternary Time, Green Valley-Tubac Area, Southeastern Arizona

    USGS Publications Warehouse

    Lindsey, David A.; Van Gosen, Bradley S.

    2010-01-01

    In this report we describe a series of stepped Quaternary terraces on some piedmont tributaries of the Santa Cruz River valley in southeastern Arizona. These terraces began to form in early Pleistocene time, after major basin-and-range faulting ceased, with lateral planation of basin fill and deposition of thin fans of alluvium. At the end of this cycle of erosion and deposition, tributaries of the Santa Cruz River began the process of dissection and terrace formation that continues to the present. Vertical cutting alternated with periods of equilibrium, during which streams cut laterally and left thin deposits of channel fill. The distribution of terraces was mapped and compiled with adjacent mapping to produce a regional picture of piedmont stream history in the middle part of the Santa Cruz River valley. For selected tributaries, the thickness of terrace fill was measured, particle size and lithology of gravel were determined, and sedimentary features were photographed and described. Mapping of terrace stratigraphy revealed that on two tributaries, Madera Canyon Wash and Montosa Canyon Wash, stream piracy has played an important role in piedmont landscape development. On two other tributaries, Cottonwood Canyon Wash and Josephine Canyon Wash, rapid downcutting preempted piracy. Two types of terraces are recognized: erosional and depositional. Gravel in thin erosional terraces has Trask sorting coefficients and sedimentary structures typical of streamflood deposits, replete with bar-and-swale surface topography on young terraces. Erosional-terrace fill represents the channel fill of the stream that cuts the terrace; the thickness of the fill indicates the depth of channel scour. In contrast to erosional terraces, depositional terraces show evidence of repeated deposition and net aggradation, as indicated by their thickness (as much as 20+ m) and weakly bedded structure. Depositional terraces are common below mountain-front canyon mouths where streams drop their

  20. Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Ouraga, Zady; Guy, Nicolas; Pouya, Amade

    2018-05-01

    In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.

  1. Sacramento Valley, CA, USA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Sacramento Valley (40.5N, 121.5W) of California is the northern extension of the Central Valley, main agriculture region of the state. Hundreds of truck farms, vineyards and orchards can be seen throughout the length and breadth of the valley which was reclaimed from the desert by means of intensive and extensive irrigation projects.

  2. Understanding the process of social network evolution: Online-offline integrated analysis of social tie formation

    PubMed Central

    Kwak, Doyeon

    2017-01-01

    It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks. PMID:28542367

  3. Understanding the process of social network evolution: Online-offline integrated analysis of social tie formation.

    PubMed

    Kwak, Doyeon; Kim, Wonjoon

    2017-01-01

    It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks.

  4. Coordinating Chemical and Mineralogical Analyses of Antarctic Dry Valley Sediments as Potential Analogs for Mars

    NASA Technical Reports Server (NTRS)

    Patel, S. N.; Bishop, J. L.; Englert, P.; Gibson, E. K.

    2015-01-01

    The Antarctic Dry Valleys (ADV) provide a unique terrestrial analog for Martian surface processes as they are extremely cold and dry sedimentary environments. The surface geology and the chemical composition of the Dry Valleys that are similar to Mars suggest the possible presence of these soil-formation processes on Mars. The soils and sediments from Wright Valley, Antarctica were investigated in this study to examine mineralogical and chemical changes along the surface layer in this region and as a function of depth. Surface samples collected near Prospect Mesa and Don Juan Pond of the ADV were analyzed using visible/near-infrared (VNIR) and mid-IR reflectance spectroscopy and major and trace element abundances.

  5. Reputation drives cooperative behaviour and network formation in human groups

    PubMed Central

    Cuesta, Jose A.; Gracia-Lázaro, Carlos; Ferrer, Alfredo; Moreno, Yamir; Sánchez, Angel

    2015-01-01

    Cooperativeness is a defining feature of human nature. Theoreticians have suggested several mechanisms to explain this ubiquitous phenomenon, including reciprocity, reputation, and punishment, but the problem is still unsolved. Here we show, through experiments conducted with groups of people playing an iterated Prisoner's Dilemma on a dynamic network, that it is reputation what really fosters cooperation. While this mechanism has already been observed in unstructured populations, we find that it acts equally when interactions are given by a network that players can reconfigure dynamically. Furthermore, our observations reveal that memory also drives the network formation process, and cooperators assort more, with longer link lifetimes, the longer the past actions record. Our analysis demonstrates, for the first time, that reputation can be very well quantified as a weighted mean of the fractions of past cooperative acts and the last action performed. This finding has potential applications in collaborative systems and e-commerce. PMID:25598347

  6. Green valley galaxies as a transition population in different environments

    NASA Astrophysics Data System (ADS)

    Coenda, Valeria; Martínez, Héctor J.; Muriel, Hernán

    2018-02-01

    We present a comparative analysis of the properties of passive, star-forming and transition (green valley) galaxies in four discrete environments: field, groups, the outskirts and the core of X-ray clusters. We construct samples of galaxies from the Sloan Digital Sky Survey in these environments so that they are bound to have similar redshift distributions. The classification of galaxies into the three sequences is based on the UV-optical colour NUV - r. We study a number of galaxy properties: stellar mass, morphology, specific star formation rate and the history of star formation. The analysis of green valley (GV) galaxies reveals that the physical mechanisms responsible for external quenching become more efficient moving from the field to denser environments. We confirm previous findings that GV galaxies have intermediate morphologies; moreover, we find that this appears to be independent of the environment. Regarding the stellar mass of GV galaxies, we find that they tend to be more massive in the field than in denser environments. On average, GV galaxies account for ∼ 20 per cent of all galaxies in groups and X-ray clusters. We find evidence that the field environment is inefficient in transforming low-mass galaxies. GV galaxies have average star formation histories intermediate between passive and star-forming galaxies, and have a clear and consistent dependence on the environment: both, the quenching time and the amplitude of the star formation rate, decrease towards higher density environments.

  7. Possible Analogs for Small Valleys on Mars at the Haughton Impact Crater Site, Devon Island, Canadian High Arctic

    NASA Technical Reports Server (NTRS)

    Lee, P.; Rice, J. W., Jr.; Bunch, Theodore E.; Grieve, R. A. F.; McKay, C. P.; Schutt, J. W.; Zent, A. P.

    1999-01-01

    Small valleys are perhaps the clearest evidence for an aqueous past on Mars. While small valley formation has occurred even in Amazonian times, most small valleys on Mars are associated with the heavily cratered Noachian terrains. Martian small valleys are often cited as evidence for a putative warmer and wetter climate on Early Mars in which rain and subsequent surface runoff would have acted as significant erosional agents, but the morphology of many small valleys has at the same time been recognized as having several unusual characteristics, making their origin still enigmatic and climatic inferences from them uncertain. Meanwhile, martian climate modeling efforts have been facing difficulties over the past decades with the problem of making the early martian climate warm enough to achieve temperature above 273 K to allow rainfall and the sustained flow of liquid water at the martian surface.

  8. Stable isotopic compositions of early calcite cements in the Middle Devonian Coralville Formation (Cedar Valley Group), eastern Iowa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludvigson, G.A.; Gonzalez, L.S.; Witzke, B.J.

    1993-03-01

    The Middle-Upper Devonian Cedar Valley Gp in Iowa is subdivided into four formations each representing a broad transgressive-regressive (T-R) cycle of deposition. Cycles consist of basal open marine facies that shallow upward into capping peritidal facies. Results from ongoing diagenetic studies of the Coralville Fm (late Givetian), the second T-R cycle of the Cedar Valley Gp, have focused attention on the origins of early cements. Early calcite cements in the Coralville Fm of Johnson County, Iowa, include blocky equant spars filling fenestral voids in birdseye limestones of the Iowa City Mbr and isopachous bladed spars that occur throughout the Coralville.more » Bladed spars fill stromatactis and microkarstic voids in the Iowa City Mbr, and sheltered voids in underlying open-marine skeletal packstones of the Cou Falls Mbr (lower Coralville cycle). The bladed spars include nonluminescent inclusion-free domains that contain up to 4,000 ppm Mg, and luminescent inclusion-rich domains that contain less than 2,000 ppm Mg. Birdseye spars have a constructive oscillatory luminescent-nonluminescent zonation controlled by Mn contents and contain less than 1,000 ppm Mg. Nonluminescent domains in bladed spars have the heaviest oxygen isotopic compositions of all components in the Coralville, similar to the isotopically heaviest nonluminescent brachiopods but have [delta][sup 13]C values ranging from [minus]3 to [minus]5 [per thousand]. They are interpreted to have precipitated from marine fluids saturated by CO[sub 2] produced from bacterial oxidation of organic matter. Altered luminescent domains in the bladed spars have the same [delta][sup 13]C compositions, but have widely varying [delta][sup 18]O compositions, ranging to [minus]9 [per thousand].« less

  9. Ising-based model of opinion formation in a complex network of interpersonal interactions

    NASA Astrophysics Data System (ADS)

    Grabowski, A.; Kosiński, R. A.

    2006-03-01

    In our work the process of opinion formation in the human population, treated as a scale-free network, is modeled and investigated numerically. The individuals (nodes of the network) are characterized by their authorities, which influence the interpersonal interactions in the population. Hierarchical, two-level structures of interpersonal interactions and spatial localization of individuals are taken into account. The effect of the mass media, modeled as an external stimulation acting on the social network, on the process of opinion formation is investigated. It was found that in the time evolution of opinions of individuals critical phenomena occur. The first one is observed in the critical temperature of the system TC and is connected with the situation in the community, which may be described by such quantifiers as the economic status of people, unemployment or crime wave. Another critical phenomenon is connected with the influence of mass media on the population. As results from our computations, under certain circumstances the mass media can provoke critical rebuilding of opinions in the population.

  10. Carbonate clumped isotopes and in situ temperature monitoring for Holocene soils in the San Luis Valley, USA indicate springtime carbonate formation

    NASA Astrophysics Data System (ADS)

    Hudson, A. M.; Paces, J. B.; Ruleman, C.

    2017-12-01

    Pedogenic carbonate horizons are abundant in semi-arid and arid regions worldwide and within the geologic record. They present a widely distributed archive of past environmental conditions, driven by global climate or tectonically-controlled elevation changes. Oxygen and carbon isotopes in calcite-rich nodules and clast rinds are widely-applied indicators of past soil water and CO2 composition linked to changing precipitation and plant communities. The temperature of carbonate formation, however, provides key constraint on past water/CO2 values and elucidate why they may have changed in the past. Clumped isotope thermometry can provide this constraint and additional climate information, given the carbonate forming system is well understood. We present preliminary clumped isotope (Δ47) temperatures for Holocene soil carbonates, constrained by 14C and U-Th disequilibrium dating, compared with two years of in situ soil temperature data to better understand the mechanism and seasonality of carbonate formation in the San Luis Valley region of the southern Rocky Mountains. Five temperature-monitoring sites ranging in elevation (1940-2450 m) and latitude (36.2-37.9°N) were installed in a variety of settings (range front, valley center, and canyon). The resulting records show indistinguishable seasonal temperature variations at >60 cm depth. This suggests Δ47 temperatures should be comparable at sites across the region. Temperatures based on Δ47 measurements of Holocene (>1.8 to 11.0 ka BP) carbonates at these sites yield consistent inter-site temperatures of 10±4°C, which are similar to modern springtime soil temperatures at depth. This seasonality matches previous results of isotopic modeling at sites further south along the Rio Grande corridor. Temperatures during March to May show multiple, abrupt warming and cooling cycles on weekly timescales caused by wetting and drying of the soil during spring precipitation events. This may drive carbonate precipitation

  11. Structure of the San Fernando Valley region, California: implications for seismic hazard and tectonic history

    USGS Publications Warehouse

    Langenheim, V.E.; Wright, T.L.; Okaya, D.A.; Yeats, R.S.; Fuis, G.S.; Thygesen, K.; Thybo, H.

    2011-01-01

    Industry seismic reflection data, oil test well data, interpretation of gravity and magnetic data, and seismic refraction deep-crustal profiles provide new perspectives on the subsurface geology of San Fernando Valley, home of two of the most recent damaging earthquakes in southern California. Seismic reflection data provide depths to Miocene–Quaternary horizons; beneath the base of the Late Miocene Modelo Formation are largely nonreflective rocks of the Middle Miocene Topanga and older formations. Gravity and seismic reflection data reveal the North Leadwell fault zone, a set of down-to-the-north faults that does not offset the top of the Modelo Formation; the zone strikes northwest across the valley, and may be part of the Oak Ridge fault system to the west. In the southeast part of the valley, the fault zone bounds a concealed basement high that influenced deposition of the Late Miocene Tarzana fan and may have localized damage from the 1994 Northridge earthquake. Gravity and seismic refraction data indicate that the basin underlying San Fernando Valley is asymmetric, the north part of the basin (Sylmar subbasin) reaching depths of 5–8 km. Magnetic data suggest a major boundary at or near the Verdugo fault, which likely started as a Miocene transtensional fault, and show a change in the dip sense of the fault along strike. The northwest projection of the Verdugo fault separates the Sylmar subbasin from the main San Fernando Valley and coincides with the abrupt change in structural style from the Santa Susana fault to the Sierra Madre fault. The Simi Hills bound the basin on the west and, as defined by gravity data, the boundary is linear and strikes ~N45°E. That northeast-trending gravity gradient follows both the part of the 1971 San Fernando aftershock distribution called the Chatsworth trend and the aftershock trends of the 1994 Northridge earthquake. These data suggest that the 1971 San Fernando and 1994 Northridge earthquakes reactivated portions of

  12. Study on Plan of Rural Waterfront Greenway in Beijing Based On Valley Economy

    NASA Astrophysics Data System (ADS)

    Feng, Li; Ma, Xiaoyan

    2018-01-01

    Valley economy is a major strategy for the development of Beijing mountainous area. This paper tried to apply the theory of rural waterfront greenway in valley, propose the grade system of rural greenway, which has important meaning to the refining of ecological network, the integration of tourism resources, and the promotion of agricultural industry in rural area. By way of illustration, according to the detailed analysis of the hydrology, altitude, slope, aspect, soil and vegetation conditions by GIS, the waterfront greenway, named ‘four seasons flowers’, in Yanqing county area was planned, so as to provide scientific guidance for the rural waterfront greenway construction.

  13. Mechanisms Responsible for the Observed Thermodynamic Structure in a Convective Boundary Layer Over the Hudson Valley of New York State

    NASA Astrophysics Data System (ADS)

    Freedman, Jeffrey M.; Fitzjarrald, David R.

    2017-02-01

    We examine cases of a regional elevated mixed layer (EML) observed during the Hudson Valley Ambient Meteorology Study (HVAMS) conducted in New York State, USA in 2003. Previously observed EMLs referred to topographic domains on scales of 105 -106 km2 . Here, we present observational evidence of the mechanisms responsible for the development and maintenance of regional EMLs overlying a valley-based convective boundary layer (CBL) on much smaller spatial scales (<5000 km2) . Using observations from aircraft-based, balloon-based, and surface-based platforms deployed during the HVAMS, we show that cross-valley horizontal advection, along-valley channelling, and fog-induced cold-air pooling are responsible for the formation and maintenance of the EML and valley-CBL coupling over New York State's Hudson Valley. The upper layer stability of the overlying EML constrains growth of the valley CBL, and this has important implications for air dispersion, aviation interests, and fog forecasting.

  14. Development of an Exchange Format for the European Environmental Chemical Data and Information Network (ECDIN).

    ERIC Educational Resources Information Center

    And Others; Proctor, David, J.

    1978-01-01

    Uses collection and storage of data in an environmental chemicals data bank to develop an exchange format of hierarchical tree structure between network partners. Rules identify and process the nodes in the tree in such a way that information is neither lost nor degraded upon transfer between network partners. (CWM)

  15. A biological approach to assembling tissue modules through endothelial capillary network formation.

    PubMed

    Riesberg, Jeremiah J; Shen, Wei

    2015-09-01

    To create functional tissues having complex structures, bottom-up approaches to assembling small tissue modules into larger constructs have been emerging. Most of these approaches are based on chemical reactions or physical interactions at the interface between tissue modules. Here we report a biological assembly approach to integrate small tissue modules through endothelial capillary network formation. When adjacent tissue modules contain appropriate extracellular matrix materials and cell types that support robust endothelial capillary network formation, capillary tubules form and grow across the interface, resulting in assembly of the modules into a single, larger construct. It was shown that capillary networks formed in modules of dense fibrin gels seeded with human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (MSCs); adjacent modules were firmly assembled into an integrated construct having a strain to failure of 117 ± 26%, a tensile strength of 2208 ± 83 Pa and a Young's modulus of 2548 ± 574 Pa. Under the same culture conditions, capillary networks were absent in modules of dense fibrin gels seeded with either HUVECs or MSCs alone; adjacent modules disconnected even when handled gently. This biological assembly approach eliminates the need for chemical reactions or physical interactions and their associated limitations. In addition, the integrated constructs are prevascularized, and therefore this bottom-up assembly approach may also help address the issue of vascularization, another key challenge in tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Sacramento Valley, CA, USA

    NASA Image and Video Library

    1973-06-22

    SL2-04-179 (22 June 1973) --- The Sacramento Valley (40.5N, 121.5W) of California is the northern extension of the Central Valley, main agriculture region of the state. Hundreds of truck farms, vineyards and orchards can be seen throughout the length and breadth of the valley which was reclaimed from the desert by means of intensive and extensive irrigation projects. Photo credit: NASA

  17. Formation of Molecular Networks: Tailored Quantum Boxes and Behavior of Adsorbed CO in Them

    NASA Astrophysics Data System (ADS)

    Wyrick, Jon; Sun, Dezheng; Kim, Dae-Ho; Cheng, Zhihai; Lu, Wenhao; Zhu, Yeming; Luo, Miaomiao; Kim, Yong Su; Rotenberg, Eli; Kim, Kwangmoo; Einstein, T. L.; Bartels, Ludwig

    2011-03-01

    We show that the behavior of CO adsorbed into the pores of large regular networks on Cu(111) is significantly affected by their nano-scale lateral confinement and that formation of the networks themselves is directed by the Shockley surface state. Saturation coverages of CO are found to exhibit persistent dislocation lines; at lower coverages their mobility increases. Individual CO within the pores titrate the surface state, providing crucial information for understanding formation of the network as a result of optimization of the number N of electrons bound within each pore. Determination of N is based on quinone-coverage-dependent UPS data and an analysis of states of particles in a pore-shaped box (verified by CO's titration); a wide range of possible pore shapes and sizes has been considered. Work at UCR supported by NSF CHE 07-49949; at UMD by NSF CHE 07-50334 & UMD NSF-MRSEC DMR 05-20471.

  18. River-damming, late-Quaternary rockslides in the Ötz Valley region (Tyrol, Austria)

    NASA Astrophysics Data System (ADS)

    Dufresne, A.; Ostermann, M.; Preusser, F.

    2018-06-01

    The Ötz Valley and adjacent regions in Tyrol (Austria) have been repeatedly affected by large rockslope failures following deglaciation. Six rockslides, each over 107 m3 in volume, were emplaced into the Ötz and Inn valleys, five of which formed persistent rockslide dams. Even though catastrophic rockslope failures are short-lived events (commonly minutes) they can have long-lasting impacts on the landscape. For example, large fans have built in the Ötz Valley and knickpoints persist at the former dam sites even though the Ötz River has eroded through the deposits during the past thousands of years; exact age-constraints of rockslide dam failure, however, are still scarce. Empirical, geomorphic stability indices from the literature successfully identified the least and the most stable dams of this group, whereas the rest remain inconclusive with some indices variably placing the dams in the stable, unstable, and uncertain categories. This shows (a) that further index calibrations and (b) better age constraints on dam formation and failure are needed, and (c) that the exact processes of dam failure are not always trivial to pinpoint for ancient (partially) breached dams. This study is a contribution towards better constraining the nature and landscape impact of dam formation following large rockslope failures.

  19. Observation of acoustic valley vortex states and valley-chirality locked beam splitting

    NASA Astrophysics Data System (ADS)

    Ye, Liping; Qiu, Chunyin; Lu, Jiuyang; Wen, Xinhua; Shen, Yuanyuan; Ke, Manzhu; Zhang, Fan; Liu, Zhengyou

    2017-05-01

    We report an experimental observation of the classical version of valley polarized states in a two-dimensional hexagonal sonic crystal. The acoustic valley states, which carry specific linear momenta and orbital angular momenta, were selectively excited by external Gaussian beams and conveniently confirmed by the pressure distribution outside the crystal, according to the criterion of momentum conservation. The vortex nature of such intriguing bulk crystal states was directly characterized by scanning the phase profile inside the crystal. In addition, we observed a peculiar beam-splitting phenomenon, in which the separated beams are constructed by different valleys and locked to the opposite vortex chirality. The exceptional sound transport, encoded with valley-chirality locked information, may serve as the basis of designing conceptually interesting acoustic devices with unconventional functions.

  20. Wireless network interface energy consumption implications of popular streaming formats

    NASA Astrophysics Data System (ADS)

    Chandra, Surendar

    2001-12-01

    With the proliferation of mobile streaming multimedia, available battery capacity constrains the end-user experience. Since streaming applications tend to be long running, wireless network interface card's (WNIC) energy consumption is particularly an acute problem. In this work, we explore the WNIC energy consumption implications of popular multimedia streaming formats from Microsoft (Windows media), Real (Real media) and Apple (Quick Time). We investigate the energy consumption under varying stream bandwidth and network loss rates. We also explore history-based client-side strategies to reduce the energy consumed by transitioning the WNICs to a lower power consuming sleep state. We show that Microsoft media tends to transmit packets at regular intervals; streams optimized for 28.8 Kbps can save over 80% in energy consumption with 2% data loss. A high bandwidth stream (768 Kbps) can still save 57% in energy consumption with less than 0.3% data loss. For high bandwidth streams, Microsoft media exploits network-level packet fragmentation, which can lead to excessive packet loss (and wasted energy) in a lossy network. Real stream packets tend to be sent closer to each other, especially at higher bandwidths. Quicktime packets sometimes arrive in quick succession; most likely an application level fragmentation mechanism. Such packets are harder to predict at the network level without understanding the packet semantics.

  1. Dry Valleys, Antarctica

    NASA Image and Video Library

    2009-11-02

    The McMurdo Dry Valleys are a row of valleys west of McMurdo Sound, Antarctica. They are so named because of their extremely low humidity and lack of snow and ice cover. This image was acquired December 8, 2002 by NASA Terra spacecraft.

  2. Channels and valleys on Mars: Cold climate features formed as a result of a thickening cryosphere

    USGS Publications Warehouse

    Carr, M.H.

    1996-01-01

    Large flood channels, valley networks, and a variety of features attributed to the action of ground ice indicate that Mars emerged from heavy bombardment around 3.8Gyr ago, with an inventory of water at the surface equivalent to at least a few hundred meters spread over the whole planet, as compared with 3 km for the Earth. The surface water resided primarily in a porous, kilometers thick, megaregolith created by the high impact rates. At the end of heavy bombardment a rapid decline in erosion rates by a factor of 1000 suggests a major change in the global climate. It is proposed that at this time the climate became similar to today's and that this climate has been maintained throughout the rest of Mars' history. The various drainage features represent an adjustment of the distribution of water to the surface relief inherited from the period of heavy bombardment and to a thickening of the cryosphere as the heat flow declined. The valley networks formed mostly at the end of heavy bombardment when erosion rates were high and climatic conditions permitted an active water cycle. They continued to form after heavy bombardment when the cryosphere started to form by a combination of episodic flooding and mass-wasting aided by the presence of liquid water at shallow depths. As the cryosphere thickened with declining heat flow, water could no longer easily access the surface and the rate of valley formation declined. Hydrostatic pressures built below the cryosphere. Eruptions of groundwater became more catastrophic and massive floods resulted, mainly in upper Hesperian time. Flood sources were preferentially located in low-lying, low-latitude areas where the cryosphere was thin, or near volcanoes where a thinner than typical cryosphere is also expected. Floods caused a drawdown in the global water table so that few formed in the second half of Mars' history. The floodwaters pooled in low-lying areas, mostly in the northern plains. Some of the water may still be present as

  3. Evidences of early aqueous Mars: Implications on the origin of branched valleys in the Ius Chasma, Mars

    NASA Astrophysics Data System (ADS)

    Martha, Tapas R.; Jain, Nirmala; Vamshi, Gasiganti T.; Vinod Kumar, K.

    2017-11-01

    This study shows results of morphological and spectroscopic analyses of Ius Chasma and its southern branched valleys using Orbiter datasets such as Mars Reconnaissance Orbiter (MRO)-Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), High Resolution Imaging Science Experiment (MRO-HiRISE) and digital terrain model (HRSC-DTM). Result of the spectral analysis reveals presence of hydrated minerals such as opal, nontronite and vermiculite in the floor and wall rock areas Ius Chasma indicating alteration of parent rock in an water rich environment of early Mars. Topographic gradient and morphological evidences such as V-shaped valleys with theatre shaped stubby channels, dendritic drainage and river piracy indicate that these valleys were initially developed by surface runoff due to episodic floods and further expanded due to groundwater sapping controlled by faults and fractures. Minerals formed by aqueous alteration during valley formation and their intricate association with different morphological domains suggest that surface runoff played a key role in the development of branched valleys south of Ius Chasma on Mars.

  4. Soft-sediment deformation in a tectonically active area: The Plio-Pleistocene Zarzal Formation in the Cauca Valley (Western Colombia)

    NASA Astrophysics Data System (ADS)

    Neuwerth, Ralph; Suter, Fiore; Guzman, Carlos A.; Gorin, Georges E.

    2006-04-01

    The Plio-Pleistocene Zarzal Formation corresponds to fluvio-lacustrine sediments deposited in an intramontane depression within the Colombian Andes, associated with the Cauca-Romeral Fault System. It crops out mainly in the Cauca Valley where numerous field sections have permitted the mapping of the vertical and lateral lithological variations. Lacustrine deposits of sands, silts, clays and diatomites are interbedded with fluvial sand and gravel beds and fluvio-volcanic mass flows derived from the volcanic Central Cordillera. Numerous soft-sediment deformation structures are encountered in this formation, particularly in fine- to medium-grained sands, silts and clays: load structures (load casts, flame structures, pseudonodules), water escape structures (water escape cusps, dish-and-pillar and pocket-and-pillar structures), soft-sediment intrusions (clastic sills and dykes), disturbed laminites, convolute laminations, slumps and synsedimentary faulting. Deformation mechanisms and driving forces are related essentially to gravitational instabilities, dewatering, liquidization and brittle deformations. Field and regional geological data show that most of these deformations are related to seismicity and can be interpreted as seismites. This area has a geological and recent seismic history and outcrops show both syn- and post-depositional faulting related to the transpressional regime of this part of the Colombian Andes, which generates strike-slip faults and associated local normal faults. The drainage pattern within the Zarzal Formation shows the signature of neotectonics. Moreover, the fine to coarse-grained sands of the Zarzal Formation are lithologies prone to liquefaction when affected by seismic waves. The intercalation of the deformed intervals within undisturbed strata confirms the catastrophic nature of the events. Finally, the large areal extent of the deformations and the type of structures are compatible with seismites. Consequently, the existence of

  5. Fort Valley Experimental Forest-A Century of Research 1908-2008 (P-53)

    Treesearch

    Susan D. Olberding; Margaret M. Moore

    2008-01-01

    One hundred years ago, the USFS began its forest research program in a two-room cabin near Flagstaff, Arizona, with one staff person, Gustaf A. Pearson. The site became known as the Fort Valley Experiment Station and was the first in a national network of research sites developed to address uncertainties regarding the rehabilitation and conservation for forest and...

  6. Regional dust storm modeling for health services: The case of valley fever

    NASA Astrophysics Data System (ADS)

    Sprigg, William A.; Nickovic, Slobodan; Galgiani, John N.; Pejanovic, Goran; Petkovic, Slavko; Vujadinovic, Mirjam; Vukovic, Ana; Dacic, Milan; DiBiase, Scott; Prasad, Anup; El-Askary, Hesham

    2014-09-01

    On 5 July 2011, a massive dust storm struck Phoenix, Arizona (USA), raising concerns for increased cases of valley fever (coccidioidomycosis, or, cocci). A quasi-operational experimental airborne dust forecast system predicted the event and provides model output for continuing analysis in collaboration with public health and air quality communities. An objective of this collaboration was to see if a signal in cases of valley fever in the region could be detected and traced to the storm - an American haboob. To better understand the atmospheric life cycle of cocci spores, the DREAM dust model (also herein, NMME-DREAM) was modified to simulate spore emission, transport and deposition. Inexact knowledge of where cocci-causing fungus grows, the low resolution of cocci surveillance and an overall active period for significant dust events complicate analysis of the effect of the 5 July 2011 storm. In the larger context of monthly to annual disease surveillance, valley fever statistics, when compared against PM10 observation networks and modeled airborne dust concentrations, may reveal a likely cause and effect. Details provided by models and satellites fill time and space voids in conventional approaches to air quality and disease surveillance, leading to land-atmosphere modeling and remote sensing that clearly mark a path to advance valley fever epidemiology, surveillance and risk avoidance.

  7. Simultaneous wavelength and format conversion in SDN/NFV for flexible optical network based on FWM in SOA

    NASA Astrophysics Data System (ADS)

    Zhan, Yueying; Wang, Danshi; Zhang, Min

    2018-04-01

    We propose an all-optical wavelength and format conversion model (CM) for a dynamic data center interconnect node and coherent passive optical network (PON) optical network unit (ONU) in software-defined networking and network function virtualization system based on four-wave mixing in a semiconductor optical amplifier. Five wavelength converted DQPSK signals and two format converted DPSK signals are generated; the performances of the generated signals for two strategies of setting CM in the data center interconnect node and coherent PON ONU, which are over 10 km fiber transmission, have been verified. All of the converted signals are with a power penalty less than 2.2 dB at FEC threshold of 3.8 × 10 - 3, and the optimum bias current of SOA is 300 mA.

  8. The Impact of Soil Properties on Valley-Bottom Gully Form, Northwest Highlands of Ethiopia.

    NASA Astrophysics Data System (ADS)

    Amare, S. D.; Langendoen, E. J.; Keesstra, S.; van der Ploeg, M. J.; Steenhuis, T. S.; Tilahun, S. A.

    2017-12-01

    Gully erosion is an important environmental and food security challenge facing the world. Despite the immense damages resulting from gully erosion, comprehensive studies on the processes of gully formation and its management strategies are limited. This is especially true for valley-bottom gullies, which form under different conditions and are caused by different processes than hillslope gullies. A recent review on valley-bottom gully erosion causes and controlling factors identified that gully geomorphological processes, particularly related to gully bank retreat, governed gully occurrence and reclamations. However, most valley-bottom gully erosion studies do not consider gully bank stability and how it is impacted by soil hydrology and soil intrinsic properties. The aim is to analyze these impacts on gully bank retreat in the Koga river watershed, Ethiopia, for Nitisol and Vertisols, using field and numerical modeling approaches. Field observations showed gully network in Vertisols were greater than those in Nitisols. On the other hand, Nitisol gullies are wider and deeper than Vertisols. Monitoring of hydro-meteorological and soil data was started in June 2017 and will continue until the end of the 2017 rainy season (September) and for 2018 rainy periods as well. Thirty-six piezometers were installed at 4m average depth covering an area of 20 km2 near the gully reaches. Ground anchors were used to measure soil swelling and shrinkage. Soil moisture content and potential were measured using GS1 Soil Moisture sensors and MPS-6 Water Potential sensors. Gully bank soil physicochemical and engineering properties have been sampled and analyzed. Preliminary results from the early portion of the rainy season showed that most piezometers were already filled up with water. However, relatively deep (2m) water tables were recorded in piezometers located near the gully banks. The soil matric potential dropped from the onset of the rainy season (-6800 kPa ) towards the middle

  9. Pliocene transpressional modification of depositional basins by convergent thrusting adjacent to the "Big Bend" of the San Andreas fault: An example from Lockwood Valley, southern California

    USGS Publications Warehouse

    Kellogg, K.S.; Minor, S.A.

    2005-01-01

    The "Big Bend" of the San Andreas fault in the western Transverse Ranges of southern California is a left stepping flexure in the dextral fault system and has long been recognized as a zone of relatively high transpression compared to adjacent regions. The Lockwood Valley region, just south of the Big Bend, underwent a profound change in early Pliocene time (???5 Ma) from basin deposition to contraction, accompanied by widespread folding and thrusting. This change followed the recently determined initiation of opening of the northern Gulf of California and movement along the southern San Andreas fault at about 6.1 Ma, with the concomitant formation of the Big Bend. Lockwood Valley occupies a 6-km-wide, fault-bounded structural basin in which converging blocks of Paleoproterozoic and Cretaceous crystalline basement and upper Oligocene and lower Miocene sedimentary rocks (Plush Ranch Formation) were thrust over Miocene and Pliocene basin-fill sedimentary rocks (in ascending order, Caliente Formation, Lockwood Clay, and Quatal Formation). All the pre-Quatal sedimentary rocks and most of the Pliocene Quatal Formation were deposited during a mid-Tertiary period of regional transtension in a crustal block that underwent little clockwise vertical-axis rotation as compared to crustal blocks to the south. Ensuing Pliocene and Quaternary transpression in the Big Bend region began during deposition of the poorly dated Quatal Formation and was marked by four converging thrust systems, which decreased the areal extent of the sedimentary basin and formed the present Lockwood Valley structural basin. None of the thrusts appears presently active. Estimated shortening across the center of the basin was about 30 percent. The fortnerly defined eastern Big Pine fault, now interpreted to be two separate, oppositely directed, contractional reverse or thrust faults, marks the northwestern structural boundary of Lockwood Valley. The complex geometry of the Lockwood Valley basin is similar

  10. Enhanced toxicity of aerosol in fog conditions in the Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Decesari, Stefano; Sowlat, Mohammad Hossein; Hasheminassab, Sina; Sandrini, Silvia; Gilardoni, Stefania; Facchini, Maria Cristina; Fuzzi, Sandro; Sioutas, Constantinos

    2017-06-01

    While numerous studies have demonstrated the association between outdoor exposure to atmospheric particulate matter (PM) and adverse health effects, the actual chemical species responsible for PM toxicological properties remain a subject of investigation. We provide here reactive oxygen species (ROS) activity data for PM samples collected at a rural site in the Po Valley, Italy, during the fog season (i.e., November-March). We show that the intrinsic ROS activity of Po Valley PM, which is mainly composed of biomass burning and secondary aerosols, is comparable to that of traffic-related particles in urban areas. The airborne concentration of PM components responsible for the ROS activity decreases in fog conditions, when water-soluble species are scavenged within the droplets. Due to this partitioning effect of fog, the measured ROS activity of fog water was contributed mainly by water-soluble organic carbon (WSOC) and secondary inorganic ions rather than by transition metals. We found that the intrinsic ROS activity of fog droplets is even greater (> 2.5 times) than that of the PM on which droplets are formed, indicating that redox-active compounds are not only scavenged from the particulate phase, but are also produced within the droplets. Therefore, even if fog formation exerts a scavenging effect on PM mass and redox-active compounds, the aqueous-phase formation of reactive secondary organic compounds can eventually enhance ROS activity of PM when fog evaporates. These findings, based on a case study during a field campaign in November 2015, indicate that a significant portion of airborne toxicity in the Po Valley is largely produced by environmental conditions (fog formation and fog processing) and not simply by the emission and transport of pollutants.

  11. Ground-water conditions in southern Utah Valley and Goshen Valley, Utah

    USGS Publications Warehouse

    Cordova, R.M.

    1970-01-01

    The investigation of ground-water conditions in southern Utah Valley and Goshen Valley, Utah, was made by the U. S. Geological Survey as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights, to investigate the water resources of the State. The purposes of the investigation were to (1) determine the occurrence, recharge, discharge, movement, storage, chemical quality, and availability of ground water; (2) appraise the effects of increased withdrawal of water from wells; and (3) evaluate the effect of the Central Utah Project on the ground-water reservoir and the water supply of Utah Lake.This report presents a description of the aquifer system in the two valleys, a detailed description of the ground-water resources, and conclusions about potential development and its effect on the hydrologic conditions in the valleys. Two supplementary reports are products of the investigation. A basic-data release (Cordova, 1969) contains most of the basic data collected for the investigation, including well characteristics, drillers' logs, water levels, pumpage from wells, chemical analyses of ground and surface waters, and discharge of selected springs, drains, and streams. An interpretive report (Cordova and Mower, 1967) contains the results of a large-scale aquifer test in southern Utah Valley.

  12. Neural network disturbance observer-based distributed finite-time formation tracking control for multiple unmanned helicopters.

    PubMed

    Wang, Dandan; Zong, Qun; Tian, Bailing; Shao, Shikai; Zhang, Xiuyun; Zhao, Xinyi

    2018-02-01

    The distributed finite-time formation tracking control problem for multiple unmanned helicopters is investigated in this paper. The control object is to maintain the positions of follower helicopters in formation with external interferences. The helicopter model is divided into a second order outer-loop subsystem and a second order inner-loop subsystem based on multiple-time scale features. Using radial basis function neural network (RBFNN) technique, we first propose a novel finite-time multivariable neural network disturbance observer (FMNNDO) to estimate the external disturbance and model uncertainty, where the neural network (NN) approximation errors can be dynamically compensated by adaptive law. Next, based on FMNNDO, a distributed finite-time formation tracking controller and a finite-time attitude tracking controller are designed using the nonsingular fast terminal sliding mode (NFTSM) method. In order to estimate the second derivative of the virtual desired attitude signal, a novel finite-time sliding mode integral filter is designed. Finally, Lyapunov analysis and multiple-time scale principle ensure the realization of control goal in finite-time. The effectiveness of the proposed FMNNDO and controllers are then verified by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Family Child Care Home Education Network

    ERIC Educational Resources Information Center

    Russom, Dianne

    2006-01-01

    This article features the Family Child Care Home Education Network (FCCHEN), a groundbreaking program operated by the Riverside County Office of Education's Division of Children and Family Services. The FCCHEN is a network of family child care homes located throughout the Coachella Valley that receive funding for subsidized child care through an…

  14. Disruptive innovation, labor markets, and Big Valley STEM School: network analysis in STEM education

    NASA Astrophysics Data System (ADS)

    Ellison, Scott; Allen, Ben

    2018-03-01

    A defining characteristic of contemporary trends in global education policy is the promotion of STEM learning in the primary, secondary, and tertiary sectors of education as a means to generate innovation and prosperity in the economy. Intertwined with common sensical assumptions about future labor markets and the transformative potential of technology in education, STEM has become a hegemonic discourse informing policy formation and educational practice. In Gramscian terms, the struggle over STEM as a discursive practice, between proponents of instrumental learning of marketable economic skills and those of education towards humanistic goals, reveals insights about the ideological characteristics of the push for STEM learning. This article explores the power dynamics behind the push for STEM learning as an ideological discourse propagated by global networks of elite policy actors and enacted by non-elite policy actors at the school level. The findings point toward a disjuncture between the discourse of elite policy actors in the US, the realities of STEM labor markets, and the actualization of this policy discourse into classroom practice. The implications of this study indicate that analyses of vertical power relations in network governance in STEM education should attend to the semiotics, materiality, and mutability of networked spaces.

  15. Dry Valley streams in Antarctica: Ecosystems waiting for water

    USGS Publications Warehouse

    McKnight, Diane M.; Niyogi, D.K.; Alger, A.S.; Bomblies, A.; Conovitz, P.A.; Tate, C.M.

    1999-01-01

    An axiom of ecology is: 'Where there is water, there is life.' In dry valley ecosystems of Antarctica, this axiom can be extended to: 'Where there has been and will be water, there is life.' Stream communities in the dry valleys can withstand desiccation on an annual basis and also for longer periods - as much as decades or even centuries. These intact ecosystems, consisting primarily of cyanobacteria and eukaryotic algae, spring back to life with the return of water. Soil organisms in the dry valleys also have remarkable survival capabilities (Virginia and Wall 1999), emerging from dormancy with the arrival of water. Streams in the dry valleys carry meltwater from a glacier or ice-field source to the lakes on the valley floors and generally flow for 4-10 weeks during the summer, depending on climatic conditions. Many of these streams contain abundant algal mats that are perennial in the sense that they are in a freeze-dried state during the winter and begin growing again within minutes of becoming wetted by the first flow of the season. The algal species present in the streams are mainly filamentous cyanobacteria (approximately 20 species of the genera Phormidium, Oscillatoria, and Nostoc), two green algal species of the genus Prasiola, and numerous diatom taxa that are characteristic of soil habitats and polar regions. Algal abundances are greatest in those streams in which periglacial processes, acting over periods of perhaps a century, have produced a stable stone pavement in the streambed. This habitat results in a less turbulent flow regime and limits sediment scour from the streambed. Because dry valley glaciers advance and retreat over periods of centuries and millennia and stream networks in the dry valleys evolve through sediment deposition and transport, some of the currently inactive stream channels may receive flow again in the future. Insights- into the process of algal persistence and reactivation will come from long-term experiments that study the

  16. Polygonal Ridge Networks on Mars

    NASA Astrophysics Data System (ADS)

    Kerber, Laura; Dickson, James; Grosfils, Eric; Head, James W.

    2016-10-01

    Polygonal ridge networks, also known as boxwork or reticulate ridges, are found in numerous locations and geological contexts across Mars. While networks formed from mineralized fractures hint at hot, possibly life-sustaining circulating ground waters, networks formed by impact-driven clasting diking, magmatic dikes, gas escape, or lava flows do not have the same astrobiological implications. Distinguishing the morphologies and geological context of the ridge networks sheds light on their potential as astrobiological and mineral resource sites of interest. The most widespread type of ridge morphology is characteristic of the Nili Fossae and Nilosyrtis region and consists of thin, criss-crossing ridges with a variety of heights, widths, and intersection angles. They are found in ancient Noachian terrains at a variety of altitudes and geographic locations and may be a mixture of clastic dikes, brecciated dikes, and mineral veins. They occur in the same general areas as valley networks and ancient lake basins, but they are not more numerous where these features are concentrated, and can appear in places where they morphologies are absent. Similarly, some of the ridge networks are associated with hydrated mineral detections, but some occur in locations without detections. Smaller, light-toned ridges of variable widths have been found in Gale Crater and other rover sites and are interpreted to be smaller version of the Nili-like ridges, in this case formed by the mineralization of fractures. This type of ridge is likely to be found in many other places on Mars as more high-resolution data becomes available. Hellas Basin is host to a third type of ridge morphology consisting of large, thick, light-toned ridges forming regular polygons at several superimposed scales. While still enigmatic, these are most likely to be the result of sediment-filled fractures. The Eastern Medusae Fossae Formation contains large swaths of a fourth, previously undocumented, ridge network type

  17. Mapping Aquifer Systems with Airborne Electromagnetics in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Knight, R. J.; Smith, R.; Asch, T. H.; Abraham, J.; Cannia, J.; Fogg, G. E.; Viezzoli, A.

    2016-12-01

    The Central Valley of California is an important agricultural region struggling to meet the need for irrigation water. Recent periods of drought have significantly reduced the delivery of surface water, resulting in extensive pumping of groundwater. This has exacerbated an already serious problem in the Central Valley, where a number of areas have experienced declining water levels for several decades leading to ongoing concerns about depletion of aquifers and impacts on ecosystems, as well as subsidence of the ground surface. The overdraft has been so significant, that there are now approximately140 million acre-feet (MAF) of unused groundwater storage in the Central Valley, storage that could be used to complement the 42 MAF of surface storage. The alluvial sedimentary geology of the Central Valley is typically composed of more than 50 to 70 percent fine-grained deposits dominated by silt and clay beds. These fine grained deposits can block potential recharge, and are associated with the large amount of observed subsidence. Fortunately, the geologic processes that formed the region created networks of sand and gravel which provide both a supply of water and pathways for recharge from the surface to the aquifers. The challenge is to find these sand and gravel deposits and thus identify optimal locations for surface spreading techniques so that recharge could be dramatically increased, and re-pressurization of the confined aquifer networks could be accomplished. We have acquired 100 line kilometers of airborne electromagnetic data over an area in the San Joaquin Valley, imaging the subsurface hydrostratigraphy to a depth of 500 m with spatial resolution on the order of meters to tens of meters. Following inversion of the data to obtain resistivity models along the flight lines, we used lithology logs in the area to transform the models to images displaying the distribution of sand and gravel, clay, and mixed fine and coarse materials. The quality of the data and

  18. Silane–Acrylate Chemistry for Regulating Network Formation in Radical Photopolymerization

    PubMed Central

    2017-01-01

    Photoinitiated silane–ene chemistry has the potential to pave the way toward spatially resolved organosilicon compounds, which might find application in biomedicine, microelectronics, and other advanced fields. Moreover, this approach could serve as a viable alternative to the popular photoinitiated thiol–ene chemistry, which gives access to defined and functional photopolymer networks. A difunctional bis(trimethylsilyl)silane with abstractable hydrogens (DSiH) was successfully synthesized in a simple one-pot procedure. The radical reactivity of DSiH with various homopolymerizable monomers (i.e., (meth)acrylate, vinyl ester, acrylamide) was assessed via 1H NMR spectroscopic studies. DSiH shows good reactivity with acrylates and vinyl esters. The most promising silane–acrylate system was further investigated in cross-linking formulations toward its reactivity (e.g., heat of polymerization, curing time, occurrence of gelation, double-bond conversion) and compared to state-of-the-art thiol–acrylate resins. The storage stability of prepared resin formulations is greatly improved for silane–acrylate systems vs thiol–ene resins. Double-bond conversion at the gel point (DBCgel) and overall DBC were increased, and polymerization-induced shrinkage stress has been significantly reduced with the introduction of silane–acrylate chemistry. Resulting photopolymer networks exhibit a homogeneous network architecture (indicated by a narrow glass transition) that can be tuned by varying silane concentration, and this confirms the postulated regulation of radical network formation. Similar to thiol–acrylate networks, this leads to more flexible photopolymer networks with increased elongation at break and improved impact resistance. Additionally, swelling tests indicate a high gel fraction for silane–acrylate photopolymers. PMID:29033466

  19. Surface Magnetism on pristine silicon thin film for spin and valley transport

    NASA Astrophysics Data System (ADS)

    Sun, Jia-Tao

    The spin and valley degree of freedom for an electron have received tremendous attention in condensed matters physics because of the potential application for spintronics and valleytronics. It has been widely accepted that d0 light elemental materials of single component are not taken as ferromagnetic candidates because of the absence of odd paired electrons. The ferromagnetism has to be introduced by ferromagnetic impurity, edge functionalization, or proximity with ferromagnetic neighbors etc. These special surface or interface structures require atomically precise control which significantly increases experimental uncertainty and theoretical understanding. By means of density functional theory (DFT) computations, we found that the spin- and valley- polarized state can be introduced in pristine silicon thin films without any alien components. The key point to this aim is the formation of graphene-like hexagonal structures making a spin-polarized Dirac fermion with half-filling. The resulting fundamental physics such as quantum valley Hall effect (QVHE), quantum anomalous Hall effect (QAHE) and magnetoelectric effect will be discussed.

  20. Analysis of Mining-induced Valley Closure Movements

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.

    2016-05-01

    Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.

  1. The Inter-Valley Soil Comparative Survey: the ecology of Dry Valley edaphic microbial communities

    PubMed Central

    Lee, Charles K; Barbier, Béatrice A; Bottos, Eric M; McDonald, Ian R; Cary, Stephen Craig

    2012-01-01

    Recent applications of molecular genetics to edaphic microbial communities of the McMurdo Dry Valleys and elsewhere have rejected a long-held belief that Antarctic soils contain extremely limited microbial diversity. The Inter-Valley Soil Comparative Survey aims to elucidate the factors shaping these unique microbial communities and their biogeography by integrating molecular genetic approaches with biogeochemical analyses. Although the microbial communities of Dry Valley soils may be complex, there is little doubt that the ecosystem's food web is relatively simple, and evidence suggests that physicochemical conditions may have the dominant role in shaping microbial communities. To examine this hypothesis, bacterial communities from representative soil samples collected in four geographically disparate Dry Valleys were analyzed using molecular genetic tools, including pyrosequencing of 16S rRNA gene PCR amplicons. Results show that the four communities are structurally and phylogenetically distinct, and possess significantly different levels of diversity. Strikingly, only 2 of 214 phylotypes were found in all four valleys, challenging a widespread assumption that the microbiota of the Dry Valleys is composed of a few cosmopolitan species. Analysis of soil geochemical properties indicated that salt content, alongside altitude and Cu2+, was significantly correlated with differences in microbial communities. Our results indicate that the microbial ecology of Dry Valley soils is highly localized and that physicochemical factors potentially have major roles in shaping the microbiology of ice-free areas of Antarctica. These findings hint at links between Dry Valley glacial geomorphology and microbial ecology, and raise previously unrecognized issues related to environmental management of this unique ecosystem. PMID:22170424

  2. 27 CFR 9.132 - Rogue Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Rogue Valley. 9.132... Rogue Valley. (a) Name. The name of the viticultural area described in this section is “Rouge Valley.” (b) Approved map. The appropriate map for determining the boundaries of the Rogue Valley viticultural...

  3. Thin-skinned tectonics of the Upper Ojai Valley and Sulphur Mountain area, Ventura basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huftile, G.J.

    1991-08-01

    By integrating surface mapping with subsurface well data and drawing cross sections and subsurface maps, the geometry of shallow structures and their geologic history of the Upper Ojai Valley of California can be reconstructed. The geometry of shallow structures, the geologic history, and the location of earthquake foci then offer constraints on the deep structure of this complex area. The Upper Ojai Valley is a tectonic depression between opposing reverse faults. Its northern border is formed by the active, north-dipping San Cayetano fault, which has 6.0 km of stratigraphic separation in the Silverthread area of the Ojai oil field andmore » 2.6 km of stratigraphic separation west of Sisar Creek. The fault dies out farther west in Ojai Valley, where the south-vergent shortening is transferred to a blind thrust. The southern border of the Upper Ojai Valley is formed by the Quaternary Lion fault set, which dips south and merges into the Sisar decollement within the south-dipping, ductile, lower Miocene Rincon formation. By the middle Pleistocene, the Sulphur Mountain anticlinorium and the Big Canyon syncline began forming as a fault-propagation fold; the fault-propagation fold is rooted in the Sisar decollement, a passive backthrust rising from a blind thrust at depth. The formation of the Sulphur Mountain anticlinorium was followed closely by the ramping of the south-dipping Lion fault set to the surface over the nonmarine upper Pleistocene Saugus Formation. To the east, the San Cayetano fault overrides and folds the Lion Fault set near the surface. Area-balancing of the deformation shows shortening of 15.5 km, and suggests a 17 km depth to the brittle-ductile transition.« less

  4. The brainstem reticular formation is a small-world, not scale-free, network

    PubMed Central

    Humphries, M.D; Gurney, K; Prescott, T.J

    2005-01-01

    Recently, it has been demonstrated that several complex systems may have simple graph-theoretic characterizations as so-called ‘small-world’ and ‘scale-free’ networks. These networks have also been applied to the gross neural connectivity between primate cortical areas and the nervous system of Caenorhabditis elegans. Here, we extend this work to a specific neural circuit of the vertebrate brain—the medial reticular formation (RF) of the brainstem—and, in doing so, we have made three key contributions. First, this work constitutes the first model (and quantitative review) of this important brain structure for over three decades. Second, we have developed the first graph-theoretic analysis of vertebrate brain connectivity at the neural network level. Third, we propose simple metrics to quantitatively assess the extent to which the networks studied are small-world or scale-free. We conclude that the medial RF is configured to create small-world (implying coherent rapid-processing capabilities), but not scale-free, type networks under assumptions which are amenable to quantitative measurement. PMID:16615219

  5. Geologic map of the Lockwood Valley Quadrangle, Ventura County, California

    USGS Publications Warehouse

    Kellogg, Karl S.

    2001-01-01

    The Lockwood Valley quadrangle is located in the western Transverse Ranges of California, about 10 km southwest of Frazier Park. It includes the western flank of Frazier Mountain, southern Lockwood Valley, and a region of the Los Padres National Forest near northern Piru Creek. The oldest rocks are mostly biotite augen gneiss, in the hanging wall of the Frazier Mountain thrust and in a large body south of the thrust. A U-Pb zircon age for the gneiss is 1690+5 Ma (W. Premo, unpublished data). Two Cretaceous intrusive rocks are named the quartz monzonite of Sheep Creek and the coarse-grained granodiorite of Lockwood Peak. A U-Pb zircon age on the latter is 76.05+0.22 Ma (W. Premo, unpublished data). The northeastern edge of a large Eocene marine basin, comprising the sandstones, shales, and conglomerates of the Juncal Formation, occupies the southwestern 25 percent of the quadrangle. Miocene fluvial rocks, including coarse boulder conglomerates, sandstones, and shale, of the Caliente Formation crop out mostly in the northwestern part of the quadrangle. Commercially exploitable Lockwood Clay unconformably overlies the Caliente, which, in turn, is overlain by the mostly fluvial Pliocene Quatal Formation. Two major south-directed thrusts, the Frazier Mountain thrust and the South Frazier Mountain thrust, place crystalline rocks over Miocene and Pliocene sedimentary rocks. The South Frazier Mountain thrust is transected by the newly recognized, north-directed Lockwood Peak reverse fault. In addition, the newly recognized south-directed Yellowjacket thrust displaces rocks of the Pliocene Quatal Formation.

  6. Development of an Updated Strategic Marketing Plan for Fox Valley Technical College.

    ERIC Educational Resources Information Center

    May, Susan A.

    This project was conducted to develop a comprehensive strategic marketing plan for Fox Valley Technical College (FVTC). Components included a review of the literature, establishing criteria for the plan, validation of the criteria, the actual development of the plan involving a formative committee, and the review of institutional marketing plans…

  7. Geochemical correlation and 40Ar/39Ar dating of the Kern River ash bed and related tephra layers: Implications for the stratigraphy of petroleum-bearing formations in the San Joaquin Valley, California

    USGS Publications Warehouse

    Baron, D.; Negrini, R.M.; Golob, E.M.; Miller, D.; Sarna-Wojcicki, A.; Fleck, R.J.; Hacker, B.; Erendi, A.

    2008-01-01

    The Kern River ash (KRA) bed is a prominent tephra layer separating the K and G sands in the upper part of the Kern River Formation, a major petroleum-bearing formation in the southern San Joaquin Valley (SSJV) of California. The minimum age of the Kern River Formation was based on the tentative major-element correlation with the Bishop Tuff, a 0.759??0.002 Ma volcanic tephra layer erupted from the Long Valley Caldera. We report a 6.12??0.05 Ma 40Ar/39Ar date for the KRA, updated major-element correlations, trace-element correlations of the KRA and geochemically similar tephra, and a 6.0??0.2 Ma 40Ar/39Ar age for a tephra layer from the Volcano Hills/Silver Peak eruptive center in Nevada. Both major and trace-element correlations show that despite the similarity to the Bishop Tuff, the KRA correlates most closely with tephra from the Volcano Hills/Silver Peak eruptive center. This geochemical correlation is supported by the radiometric dates which are consistent with a correlation of the KRA to the Volcano Hills/Silver Peak center but not to the Bishop Tuff. The 6.12??0.05 Ma age for the KRA and the 6.0??0.2 Ma age for the tephra layer from the Volcano Hills/Silver Peak eruptive center suggest that the upper age of the Kern River Formation is over 5 Ma older than previously thought. Re-interpreted stratigraphy of the SSJV based on the new, significantly older age for the Kern River Formation opens up new opportunities for petroleum exploration in the SSJV and places better constraints on the tectonostratigraphic development of the SSJV. ?? 2007 Elsevier Ltd and INQUA.

  8. Opinion formation in time-varying social networks: The case of the naming game

    NASA Astrophysics Data System (ADS)

    Maity, Suman Kalyan; Manoj, T. Venkat; Mukherjee, Animesh

    2012-09-01

    We study the dynamics of the naming game as an opinion formation model on time-varying social networks. This agent-based model captures the essential features of the agreement dynamics by means of a memory-based negotiation process. Our study focuses on the impact of time-varying properties of the social network of the agents on the naming game dynamics. In particular, we perform a computational exploration of this model using simulations on top of real networks. We investigate the outcomes of the dynamics on two different types of time-varying data: (1) the networks vary on a day-to-day basis and (2) the networks vary within very short intervals of time (20 sec). In the first case, we find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the naming game in these networks maintains clusters of coexisting opinions indefinitely leading to metastability. In the second case, we investigate the evolution of the naming game in perfect synchronization with the time evolution of the underlying social network shedding new light on the traditional emergent properties of the game that differ largely from what has been reported in the existing literature.

  9. Comparison of Cell Regeneration Mechanisms Between Isolated Cb Clouds Moving Along A Valley and Over Flat Terrain

    NASA Astrophysics Data System (ADS)

    Curic, M.; Janc, D.; Vuckovic, V.; Vujovic, D.

    Cell regeneration mechanism within air-mass Cb cloud moving along the river valley is investigated by three-dimensional mesoscale ARPS model with improved micro- physics. Simulated cloud characteristics are then compared with those performed for the flat terrain conditions. The Western Morava valley area (Serbia) has selected as an important place for formation of such clouds in agreement with observations. Ana- lyzed results suggest that the river valley plays an important role for the cell regenera- tion mechanism in front of the mother cloud. Futher, it contributes to the fast Cb cloud propagation along the valley. In contrast, the front-side cell regeneration mechanism is absent for the flat terrain conditions since the cold air below cloud base deverges in all directions without any restrictions. This investigation gives us more complete insight in cell regeneration mechanisms than classic approach.

  10. Hydrologic conditions in the Bill Williams River National Wildlife Refuge and Planet Valley, Arizona, 2000

    USGS Publications Warehouse

    Wilson, Richard P.; Owen-Joyce, Sandra J.

    2002-01-01

    During a period of sustained base-flow conditions in the Bill Williams River below Alamo Dam in west central Arizona from March to July 2000, the channel of the river through Planet Valley was dry, and the water table sloped almost due west parallel to the main slope of the flood plain. Water from the river infiltrated into the channel bottom at the head of Planet Valley, moved downgradient in the subsurface, and reappeared in the channel about 0.3 mile downstream from the east boundary of the Bill Williams River National Wildlife Refuge. A river aquifer in hydraulic connection with the Bill Williams River was mapped from a point 6.3 miles upstream from Highway 95 to the upstream end of Planet Valley. Formations that make up the river aquifer in Planet Valley are younger alluvium, older alluviums, and fanglomerate. Total thickness of the river aquifer probably is less than 200 feet in the bedrock canyons to as much as 1,035 feet in Planet Valley. The purpose of this study was to investigate the current hydrologic conditions along the Bill Williams River, which included an inventory of wells within the river aquifer of the Colorado River and in Planet Valley, and to determine the configuration of the water table. A map shows the elevation and configuration of the water table from the east end of Planet Valley to the confluence of the Bill Williams River with Lake Havasu.

  11. Kinetics of selenium release in mine waste from the Meade Peak Phosphatic Shale, Phosphoria Formation, Wooley Valley, Idaho, USA

    USGS Publications Warehouse

    Stillings, Lisa L.; Amacher, Michael C.

    2010-01-01

    Phosphorite from the Meade Peak Phosphatic Shale member of the Permian Phosphoria Formation has been mined in southeastern Idaho since 1906. Dumps of waste rock from mining operations contain high concentrations of Se which readily leach into nearby streams and wetlands. While the most common mineralogical residence of Se in the phosphatic shale is elemental Se, Se(0), Se is also an integral component of sulfide phases (pyrite, sphalerite and vaesite–pyritess) in the waste rock. It may also be present as adsorbed selenate and/or selenite, and FeSe2 and organo-selenides.Se release from the waste rock has been observed in field and laboratory experiments. Release rates calculated from waste rock dump and column leachate solutions describe the net, overall Se release from all of the possible sources of Se listed above. In field studies, Se concentration in seepage water (pH 7.4–7.8) from the Wooley Valley Unit 4 dump ranges from 3600 µg/L in May to 10 µg/L by Sept. Surface water flow, Q, from the seep also declines over the summer, from 2 L/s in May to 0.03 L/s in Sept. Se flux ([Se] ⁎ Q) reaches a steady-state of < 150 mg/day in 1–4 months, depending upon the volume of Q. Se release (mg/L) follows a first order reaction with a rate constant, k, = 1.35 – 6.35e−3 h− 1 (11.8–55.6 yr− 1).Laboratory experiments were performed with the waste shale in packed bed reactors; residence time varied from 0.09 to 400 h and outlet pH ∼ 7.5. Here, Se concentration increased with increasing residence time and release was modeled with a first order reaction with k = 2.19e−3 h− 1 (19.2 yr− 1).Rate constants reported here fall within an order of magnitude of reported rate constants for oxidation of Se(0) formed by bacterial precipitation. This similarity among rate constants from both field and laboratory studies combined with the direct observation of Se(0) in waste shales of the Phosphoria Formation suggests that oxidation of Se(0

  12. Inventory of amphibians and reptiles at Death Valley National Park

    USGS Publications Warehouse

    Persons, Trevor B.; Nowak, Erika M.

    2006-01-01

    As part of the National Park Service Inventory and Monitoring Program in the Mojave Network, we conducted an inventory of amphibians and reptiles at Death Valley National Park in 2002-04. Objectives for this inventory were to: 1) Inventory and document the occurrence of reptile and amphibian species occurring at DEVA, primarily within priority sampling areas, with the goal of documenting at least 90% of the species present; 2) document (through collection or museum specimen and literature review) one voucher specimen for each species identified; 3) provide a GIS-referenced list of sensitive species that are federally or state listed, rare, or worthy of special consideration that occur within priority sampling locations; 4) describe park-wide distribution of federally- or state-listed, rare, or special concern species; 5) enter all species data into the National Park Service NPSpecies database; and 6) provide all deliverables as outlined in the Mojave Network Biological Inventory Study Plan. Methods included daytime and nighttime visual encounter surveys, road driving, and pitfall trapping. Survey effort was concentrated in predetermined priority sampling areas, as well as in areas with a high potential for detecting undocumented species. We recorded 37 species during our surveys, including two species new to the park. During literature review and museum specimen database searches, we recorded three additional species from DEVA, elevating the documented species list to 40 (four amphibians and 36 reptiles). Based on our surveys, as well as literature and museum specimen review, we estimate an overall inventory completeness of 92% for Death Valley and an inventory completeness of 73% for amphibians and 95% for reptiles. Key Words: Amphibians, reptiles, Death Valley National Park, Inyo County, San Bernardino County, Esmeralda County, Nye County, California, Nevada, Mojave Desert, Great Basin Desert, inventory, NPSpecies.

  13. Hydrogeologic framework and estimates of groundwater storage for the Hualapai Valley, Detrital Valley, and Sacramento Valley basins, Mohave County, Arizona

    USGS Publications Warehouse

    Truini, Margot; Beard, L. Sue; Kennedy, Jeffrey; Anning, Dave W.

    2013-01-01

    We have investigated the hydrogeology of the Hualapai Valley, Detrital Valley, and Sacramento Valley basins of Mohave County in northwestern Arizona to develop a better understanding of groundwater storage within the basin fill aquifers. In our investigation we used geologic maps, well-log data, and geophysical surveys to delineate the sedimentary textures and lithology of the basin fill. We used gravity data to construct a basin geometry model that defines smaller subbasins within the larger basins, and airborne transient-electromagnetic modeled results along with well-log lithology data to infer the subsurface distribution of basin fill within the subbasins. Hydrogeologic units (HGUs) are delineated within the subbasins on the basis of the inferred lithology of saturated basin fill. We used the extent and size of HGUs to estimate groundwater storage to depths of 400 meters (m) below land surface (bls). The basin geometry model for the Hualapai Valley basin consists of three subbasins: the Kingman, Hualapai, and southern Gregg subbasins. In the Kingman subbasin, which is estimated to be 1,200 m deep, saturated basin fill consists of a mixture of fine- to coarse-grained sedimentary deposits. The Hualapai subbasin, which is the largest of the subbasins, contains a thick halite body from about 400 m to about 4,300 m bls. Saturated basin fill overlying the salt body consists predominately of fine-grained older playa deposits. In the southern Gregg subbasin, which is estimated to be 1,400 m deep, saturated basin fill is interpreted to consist primarily of fine- to coarse-grained sedimentary deposits. Groundwater storage to 400 m bls in the Hualapai Valley basin is estimated to be 14.1 cubic kilometers (km3). The basin geometry model for the Detrital Valley basin consists of three subbasins: northern Detrital, central Detrital, and southern Detrital subbasins. The northern and central Detrital subbasins are characterized by a predominance of playa evaporite and fine

  14. Fretted Terrain Valleys

    NASA Technical Reports Server (NTRS)

    2004-01-01

    30 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows shallow tributary valleys in the Ismenius Lacus fretted terrain region of northern Arabia Terra. These valleys exhibit a variety of typical fretted terrain valley wall and floor textures, including a lineated, pitted material somewhat reminiscent of the surface of a brain. Origins for these features are still being debated within the Mars science community; there are no clear analogs to these landforms on Earth. This image is located near 39.9oN, 332.1oW. The picture covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  15. Catastrophic valley fills record large Himalayan earthquakes, Pokhara, Nepal

    NASA Astrophysics Data System (ADS)

    Stolle, Amelie; Bernhardt, Anne; Schwanghart, Wolfgang; Hoelzmann, Philipp; Adhikari, Basanta R.; Fort, Monique; Korup, Oliver

    2017-12-01

    Uncertain timing and magnitudes of past mega-earthquakes continue to confound seismic risk appraisals in the Himalayas. Telltale traces of surface ruptures are rare, while fault trenches document several events at best, so that additional proxies of strong ground motion are needed to complement the paleoseismological record. We study Nepal's Pokhara basin, which has the largest and most extensively dated archive of earthquake-triggered valley fills in the Himalayas. These sediments form a 148-km2 fan that issues from the steep Seti Khola gorge in the Annapurna Massif, invading and plugging 15 tributary valleys with tens of meters of debris, and impounding several lakes. Nearly a dozen new radiocarbon ages corroborate at least three episodes of catastrophic sedimentation on the fan between ∼700 and ∼1700 AD, coinciding with great earthquakes in ∼1100, 1255, and 1344 AD, and emplacing roughly >5 km3 of debris that forms the Pokhara Formation. We offer a first systematic sedimentological study of this formation, revealing four lithofacies characterized by thick sequences of mid-fan fluvial conglomerates, debris-flow beds, and fan-marginal slackwater deposits. New geochemical provenance analyses reveal that these upstream dipping deposits of Higher Himalayan origin contain lenses of locally derived river clasts that mark time gaps between at least three major sediment pulses that buried different parts of the fan. The spatial pattern of 14C dates across the fan and the provenance data are key to distinguishing these individual sediment pulses, as these are not evident from their sedimentology alone. Our study demonstrates how geomorphic and sedimentary evidence of catastrophic valley infill can help to independently verify and augment paleoseismological fault-trench records of great Himalayan earthquakes, while offering unparalleled insights into their long-term geomorphic impacts on major drainage basins.

  16. Coupled Hydro-mechanical process of natural fracture network formation in sedimentary basin

    NASA Astrophysics Data System (ADS)

    Ouraga, zady; Guy, Nicolas; Pouya, amade

    2017-04-01

    In sedimentary basin numerous phenomenon depending on the geological time span and its history can lead to a decrease in effective stress and therefore result in fracture initiation. Thus, during its formation, under certain conditions, natural fracturing and fracture network formation can occur in various context such as under erosion, tectonic loading and the compaction disequilibrium due to significant sedimentation rate. In this work, natural fracture network and fracture spacing induced by significant sedimentation rate is studied considering mode I fracture propagation, using a coupled hydro-mechanical numerical methods. Assumption of vertical fracture can be considered as a relevant hypothesis in our case of low ratio of horizontal total stress to vertical stress. A particular emphasis is put on synthetic geological structure on which a constant sedimentation rate is imposed on its top. This synthetic geological structure contains defects initially closed and homogeneously distributed. The Fractures are modeled with a constitutive model undergoing damage and the flow is described by poiseuille's law. The damage parameter affects both the mechanical and the hydraulic opening of the fracture. For the numerical simulations, the code Porofis based on finite element modeling is used, fractures are taken into account by cohesive model and the flow is described by Poiseuille's law. The effect of several parameters is also studied and the analysis lead to a fracture network and fracture spacing criterion for basin modeling.

  17. Death Valley, California

    NASA Image and Video Library

    1994-04-11

    STS059-S-026 (11 April 1994) --- This is an image of Death Valley, California, centered at 36.629 degrees north latitude, 117.069 degrees west longitude. The image shows Furnace Creek alluvial fan and Furnace Creek Ranch at the far right, and the sand dunes near Stove Pipe Wells at the center. The dark fork-shaped feature between Furnace Creek fan and the dunes is a smooth flood-plain which encloses Cottonball Basin. The SIR-C/X-SAR supersite is an area of extensive field investigations and has been visited by both Space Radar Lab astronaut crews. Elevations in the Valley range from 70 meters below sea level, the lowest in the United States, to more than 3300 meters above sea level. Scientists are using SIR-C/X-SAR data from Death Valley to help answer a number of different questions about the Earth's geology. One question concerns how alluvial fans are formed and change through time under the influence of climatic changes and earthquakes. Alluvial fans are gravel deposits that wash down from the mountains over time. They are visible in the image as circular, fan-shaped bright areas extending into the darker valley floor from the mountains. Information about the alluvial fans help scientists study Earth's ancient climate. Scientists know the fans are bulit up through climatic and tectonic processes and they will use the SIR-C/X-SAR data to understand the nature and rates of weathering processes on the fans, soil formation, and the transport of sand and dust by the wind. SIR-C/X-SAR's sensitivity to centimeter-scale (or inch-scale) roughness provides detailed maps of surface texture. Such information can be used to study the occurrence and movement of dust storms and sand dunes. the goal of these studies is to gain a better understanding of the record of past climatic changes and the effects of those changes on a sensitive environment. This may lead to a better ability to predict future response of the land to different potential global cimate-change scenarios

  18. A metro-access integrated network with all-optical virtual private network function using DPSK/ASK modulation format

    NASA Astrophysics Data System (ADS)

    Tian, Yue; Leng, Lufeng; Su, Yikai

    2008-11-01

    All-optical virtual private network (VPN), which offers dedicated optical channels to connect users within a VPN group, is considered a promising approach to efficient internetworking with low latency and enhanced security implemented in the physical layer. On the other hand, time-division multiplexed (TDM) / wavelength-division multiplexed (WDM) network architecture based on a feeder-ring with access-tree topology, is considered a pragmatic migration scenario from current TDM-PONs to future WDM-PONs and a potential convergence scheme for access and metropolitan networks, due to its efficiently shared hardware and bandwidth resources. All-optical VPN internetworking in such a metro-access integrated structure is expected to cover a wider service area and therefore is highly desirable. In this paper, we present a TDM/WDM metro-access integrated network supporting all-optical VPN internetworking among ONUs in different sub- PONs based on orthogonal differential-phase-shift keying (DPSK) / amplitude-shift keying (ASK) modulation format. In each ONU, no laser but a single Mach-Zehnder modulator (MZM) is needed for the upstream and VPN signal generation, which is cost-effective. Experiments and simulations are performed to verify its feasibility as a potential solution to the future access service.

  19. Geologic history of the Yosemite Valley

    USGS Publications Warehouse

    Matthes, Francois E.

    1930-01-01

    Projection of the longitudinal profiles of these hanging valleys forward to the axis of the Merced Canyon shows that they are closely accordant in height. Their profiles indicate a series of points on a former profile of the Merced with respect to which the side streams had graded their courses prior to the last uplift. This old profile can be extended upward into the glaciated part of the Merced Canyon above El Portal and even into the profoundly glaciated Yosemite Valley, accordant points being furnished by a number of hanging side valleys (due allowance being made for glacial erosion suffered by those valleys). However, not all the hanging valleys of the Yosemite region are accordant with this set. Several of them, including the upland valley of Yosemite Creek, constitute a separate set indicating another old profile of the Merced at a level 600 to 1,000 feet higher than the first. Others, including the hanging gulch of lower Bridalveil Creek, point to an old profile of the Merced about 1,200 feet lower than the first. There are thus three distinct sets of hanging valleys produced in three cycles of stream erosion. The valleys of the upper set, like those of the middle set, were left hanging as a result of rapid trenching by the Merced induced by an uplift of the range, there having been two such uplifts. Only the valleys of the lower set hang because of glacial deepening and widening of the Yosemite Valley, the cycle in which they were cut having been interrupted by the advent of the Pleistocene glaciers. They consequently indicate the preglacial depth of the Yosemite Valley. That depth, measured from the brow of El Capitan, was about 2,400 feet; measured from the rim at Glacier Point it was about 2,000 feet.

  20. Unravelling the secret of seed-based gels in water: the nanoscale 3D network formation.

    PubMed

    Samateh, Malick; Pottackal, Neethu; Manafirasi, Setareh; Vidyasagar, Adiyala; Maldarelli, Charles; John, George

    2018-05-09

    Chia (Salvia hispanica) and basil (Ocimum basilicum) seeds have the intrinsic ability to form a hydrogel concomitant with moisture-retention, slow releasing capability and proposed health benefits such as curbing diabetes and obesity by delaying digestion process. However, the underlying mode of gelation at nanoscopic level is not clearly explained or explored. The present study elucidates and corroborates the hypothesis that the gelling behavior of such seeds is due to their nanoscale 3D-network formation. The preliminary study revealed the influence of several conditions like polarity, pH and hydrophilicity/hydrophobicity on fiber extrusion from the seeds which leads to gelation. Optical microscopic analysis clearly demonstrated bundles of fibers emanating from the seed coat while in contact with water, and live growth of fibers to form 3D network. Scanning electron microscope (SEM) and transmission electron microscope (TEM) studies confirmed 3D network formation with fiber diameters ranging from 20 to 50 nm.

  1. Interpretive geologic cross sections for the Death Valley regional flow system and surrounding areas, Nevada and California

    USGS Publications Warehouse

    Sweetkind, D.S.; Dickerson, R.P.; Blakely, R.J.; Denning, Paul

    2001-01-01

    This report presents a network of 28 geologic cross sections that portray subsurface geologic relations within the Death Valley regional ground-water system, a ground-water basin that encompasses a 3? x 3? area (approximately 70,000 km2) in southern Nevada and eastern California. The cross sections transect that part of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain. The specific geometric relationships portrayed on the cross sections are discussed in the context of four general sub-regions that have stratigraphic similarities and general consistency of structural style: (1) the Nevada Test Site vicinity; (2) the Spring Mountains, Pahrump Valley and Amargosa Desert region; (3) the Death Valley region; and (4) the area east of the Nevada Test Site. The subsurface geologic interpretations portrayed on the cross sections are based on an integration of existing geologic maps, measured stratigraphic sections, published cross sections, well data, and geophysical data and interpretations. The estimated top of pre-Cenozoic rocks in the cross sections is based on inversion of gravity data, but the deeper parts of the sections are based on geologic conceptual models and are more speculative. The region transected by the cross sections includes part of the southern Basin and Range Province, the northwest-trending Walker Lane belt, the Death Valley region, and the northern Mojave Desert. The region is structurally complex, where a locally thick Tertiary volcanic and sedimentary section unconformably overlies previously deformed Proterozoic through Paleozoic rocks. All of these rocks have been deformed by complex Neogene ex-tensional normal and strike-slip faults. These cross sections form a three-dimensional network that portrays the interpreted stratigraphic and structural relations in the region; the sections form part of the geologic framework that will be

  2. The formation and distribution of hippocampal synapses on patterned neuronal networks

    NASA Astrophysics Data System (ADS)

    Dowell-Mesfin, Natalie M.

    Communication within the central nervous system is highly orchestrated with neurons forming trillions of specialized junctions called synapses. In vivo, biochemical and topographical cues can regulate neuronal growth. Biochemical cues also influence synaptogenesis and synaptic plasticity. The effects of topography on the development of synapses have been less studied. In vitro, neuronal growth is unorganized and complex making it difficult to study the development of networks. Patterned topographical cues guide and control the growth of neuronal processes (axons and dendrites) into organized networks. The aim of this dissertation was to determine if patterned topographical cues can influence synapse formation and distribution. Standard fabrication and compression molding procedures were used to produce silicon masters and polystyrene replicas with topographical cues presented as 1 mum high pillars with diameters of 0.5 and 2.0 mum and gaps of 1.0 to 5.0 mum. Embryonic rat hippocampal neurons grown unto patterned surfaces. A developmental analysis with immunocytochemistry was used to assess the distribution of pre- and post-synaptic proteins. Activity-dependent pre-synaptic vesicle uptake using functional imaging dyes was also performed. Adaptive filtering computer algorithms identified synapses by segmenting juxtaposed pairs of pre- and post-synaptic labels. Synapse number and area were automatically extracted from each deconvolved data set. In addition, neuronal processes were traced automatically to assess changes in synapse distribution. The results of these experiments demonstrated that patterned topographic cues can induce organized and functional neuronal networks that can serve as models for the study of synapse formation and plasticity as well as for the development of neuroprosthetic devices.

  3. A new building block for DNA network formation by self-assembly and polymerase chain reaction.

    PubMed

    Bußkamp, Holger; Keller, Sascha; Robotta, Marta; Drescher, Malte; Marx, Andreas

    2014-01-01

    The predictability of DNA self-assembly is exploited in many nanotechnological approaches. Inspired by naturally existing self-assembled DNA architectures, branched DNA has been developed that allows self-assembly to predesigned architectures with dimensions on the nanometer scale. DNA is an attractive material for generation of nanostructures due to a plethora of enzymes which modify DNA with high accuracy, providing a toolbox for many different manipulations to construct nanometer scaled objects. We present a straightforward synthesis of a rigid DNA branching building block successfully used for the generation of DNA networks by self-assembly and network formation by enzymatic DNA synthesis. The Y-shaped 3-armed DNA construct, bearing 3 primer strands is accepted by Taq DNA polymerase. The enzyme uses each arm as primer strand and incorporates the branched construct into large assemblies during PCR. The networks were investigated by agarose gel electrophoresis, atomic force microscopy, dynamic light scattering, and electron paramagnetic resonance spectroscopy. The findings indicate that rather rigid DNA networks were formed. This presents a new bottom-up approach for DNA material formation and might find applications like in the generation of functional hydrogels.

  4. Prediction of Austenite Formation Temperatures Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Schulze, P.; Schmidl, E.; Grund, T.; Lampke, T.

    2016-03-01

    For the modeling and design of heat treatments, in consideration of the development/ transformation of the microstructure, different material data depending on the chemical composition, the respective microstructure/phases and the temperature are necessary. Material data are, e.g. the thermal conductivity, heat capacity, thermal expansion and transformation data etc. The quality of thermal simulations strongly depends on the accuracy of the material data. For many materials, the required data - in particular for different microstructures and temperatures - are rare in the literature. In addition, a different chemical composition within the permitted limits of the considered steel alloy cannot be predicted. A solution for this problem is provided by the calculation of material data using Artificial Neural Networks (ANN). In the present study, the start and finish temperatures of the transformation from the bcc lattice to the fcc lattice structure of hypoeutectoid steels are calculated using an Artificial Neural Network. An appropriate database containing different transformation temperatures (austenite formation temperatures) to train the ANN is selected from the literature. In order to find a suitable feedforward network, the network topologies as well as the activation functions of the hidden layers are varied and subsequently evaluated in terms of the prediction accuracy. The transformation temperatures calculated by the ANN exhibit a very good compliance compared to the experimental data. The results show that the prediction performance is even higher compared to classical empirical equations such as Andrews or Brandis. Therefore, it can be assumed that the presented ANN is a convenient tool to distinguish between bcc and fcc phases in hypoeutectoid steels.

  5. 76 FR 22746 - Conecuh Valley Railway, LLC-Acquisition and Operation Exemption-Conecuh Valley Railroad Co., Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... Railway, LLC--Acquisition and Operation Exemption--Conecuh Valley Railroad Co., Inc. Conecuh Valley Railway, LLC (CVR), a noncarrier, has filed a verified notice of exemption under 49 CFR 1150.31 to acquire from Conecuh Valley Railroad Co., Inc. (COEH), and to operate [[Page 22747

  6. Age, genesis, and paleoclimatic interpretation of the Sangamon/Loveland complex in the Lower Mississippi Valley, USA

    USGS Publications Warehouse

    Markewich, H.W.; Wysocki, D.A.; Pavich, M.J.; Rutledge, E.M.

    2011-01-01

    For more than a century, the Sangamon paleosol (the Sangamon) has been an integral part of geologic and pedologic investigations in the central United States, including the Upper Mississippi and Lower Missouri River Valleys. Compositional, pedologic, micromorphologic, stratigraphic, and age data indicate that the prominent reddish paleosol developed in silt-rich deposits of the Lower Mississippi Valley, from southernmost Illinois to northwestern Mississippi, represents multiple periods of soil formation, and is wholly or in part time equivalent to the Sangamon of the central United States. Thermoluminescence data, for localities where the Sangamon developed in loess, indicate that the primary period of loess deposition was from 190 to 130 ka (oxygen isotope stage, OIS6), that loess deposition continued intermittently from 130 to 74 ka (OIS5), and that deposition was wholly or in part coeval with Loveland loess deposition in the central United States. Beryllium-10, chemical, and pedologic data indicate that in the Lower Mississippi Valley: (1) the Sangamon represents a minimum time period of 60-80 k.y.; (2) there were at least two periods of soil formation, ca. 130-90 ka and 74-58 ka (OIS4); and (3) rates of weathering and pedogenesis equaled or exceeded the net loess-accumulation rate until at least 46 ka (OIS3) and resulted in development of a paleosol in the overlying basal Roxana Silt. Along a N-S transect from southern Illinois to western Mississippi, Sangamon macroscopic characteristics as well asthe micro-morphology, chemistry, and mineralogy, suggest a regional paleoclimate during periods of soil formation that: (1) was warm to hot, with a wider range in temperature, precipitation, and evapotranspiration than present; (2) had seasonal to decadal or longer periods of drought; and (3) had down-valley (southward) trends of increasing temperature and precipitation and decreasing seasonality and variation in annualto decadal precipitation. ?? 2011 Geological

  7. Natural curiosities of the Bug river valley near Janów Podlaski as a chance of the specialized tourism development

    NASA Astrophysics Data System (ADS)

    Kusznerczuk, Marta

    2009-01-01

    This paper presents the most precious natural curiosities of the Bug river valley near Janów Podlaski (between Zaczopki and Gnojno). This area is protected as the landscape park - "Podlasie Bug Water Gap". The natural abiotic elements, among others geomorphological ones significantly conditioning unrepeatable charms of the Bug river valley landscape, are regarded as marginal in many papers concerning the unique values of this valley. The presented natural curiosities are arranged in genetic and chronological order. These main relief elements of the Bug river valley are associated with different morphogenetic processes, i.e. the gap formation, the Bug river metamorphosis and gully erosion. These elements can be a chance of the development of specialised tourism, which will influence the economic mobilization of this undeveloped region.

  8. SOME NEW PROCESSING TECHNIQUES FOR THE IMPERIAL VALLEY 1979 AFTERSHOCKS.

    USGS Publications Warehouse

    Brady, A. Gerald; ,

    1983-01-01

    This paper describes some of the features of the latest processing improvements that the U. S. Geological Survey (USGS) is currently applying to strong-motion accelerograms from the national network of permanent stations. At the same time it introduces the application of this processing to the set of Imperial Valley aftershocks recorded following the main shock of October 15, 1979. Earlier processing of the 22 main shock recordings provided corrected accelerations, velocity and displacement, response spectra, and Fourier spectra.

  9. Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Lee, H.-H.; Chen, S.-H.; Kleeman, M. J.; Zhang, H.; DeNero, S. P.; Joe, D. K.

    2015-11-01

    The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-dimensional chemical variable (X, Z, Y, Size Bins, Source Types, Species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and longwave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into CCN at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.

  10. Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Lee, Hsiang-He; Chen, Shu-Hua; Kleeman, Michael J.; Zhang, Hongliang; DeNero, Steven P.; Joe, David K.

    2016-07-01

    The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and was applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-D chemical variable (X, Z, Y, size bins, source types, species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and long-wave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into cloud condensation nuclei (CCN) at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.

  11. Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks.

    PubMed

    Khan, Faisal Nadeem; Zhong, Kangping; Zhou, Xian; Al-Arashi, Waled Hussein; Yu, Changyuan; Lu, Chao; Lau, Alan Pak Tao

    2017-07-24

    We experimentally demonstrate the use of deep neural networks (DNNs) in combination with signals' amplitude histograms (AHs) for simultaneous optical signal-to-noise ratio (OSNR) monitoring and modulation format identification (MFI) in digital coherent receivers. The proposed technique automatically extracts OSNR and modulation format dependent features of AHs, obtained after constant modulus algorithm (CMA) equalization, and exploits them for the joint estimation of these parameters. Experimental results for 112 Gbps polarization-multiplexed (PM) quadrature phase-shift keying (QPSK), 112 Gbps PM 16 quadrature amplitude modulation (16-QAM), and 240 Gbps PM 64-QAM signals demonstrate OSNR monitoring with mean estimation errors of 1.2 dB, 0.4 dB, and 1 dB, respectively. Similarly, the results for MFI show 100% identification accuracy for all three modulation formats. The proposed technique applies deep machine learning algorithms inside standard digital coherent receiver and does not require any additional hardware. Therefore, it is attractive for cost-effective multi-parameter estimation in next-generation elastic optical networks (EONs).

  12. Opinion formation and distribution in a bounded-confidence model on various networks

    NASA Astrophysics Data System (ADS)

    Meng, X. Flora; Van Gorder, Robert A.; Porter, Mason A.

    2018-02-01

    In the social, behavioral, and economic sciences, it is important to predict which individual opinions eventually dominate in a large population, whether there will be a consensus, and how long it takes for a consensus to form. Such ideas have been studied heavily both in physics and in other disciplines, and the answers depend strongly both on how one models opinions and on the network structure on which opinions evolve. One model that was created to study consensus formation quantitatively is the Deffuant model, in which the opinion distribution of a population evolves via sequential random pairwise encounters. To consider heterogeneity of interactions in a population along with social influence, we study the Deffuant model on various network structures (deterministic synthetic networks, random synthetic networks, and social networks constructed from Facebook data). We numerically simulate the Deffuant model and conduct regression analyses to investigate the dependence of the time to reach steady states on various model parameters, including a confidence bound for opinion updates, the number of participating entities, and their willingness to compromise. We find that network structure and parameter values both have important effects on the convergence time and the number of steady-state opinion groups. For some network architectures, we observe that the relationship between the convergence time and model parameters undergoes a transition at a critical value of the confidence bound. For some networks, the steady-state opinion distribution also changes from consensus to multiple opinion groups at this critical value.

  13. Origin of Theater-Headed Tributaries to Escalante and Glen Canyons, Utah: Analogs to Martian Valley Networks

    NASA Astrophysics Data System (ADS)

    Irwin, R. P.; Fortezzo, C. M.; Tooth, S. E.; Howard, A. D.; Zimbelman, J. R.; Barnhart, C. J.; Benthem, A. J.; Brown, C. C.; Parsons, R. A.

    2008-12-01

    Some tributaries to Glen and Escalante Canyons in southern Utah share similar characteristics to typical Martian fluvial valleys, motivating their frequent use as process analogs. In the spring of 2008, we investigated six tributary canyons formed in Navajo sandstone (two branches of Bowns, Explorer, Fence, and two branches of a tributary between the latter two) to test the hypothesis that seepage weathering and erosion are the dominant geomorphic processes. Measurements included spring discharge, pH, and hardness; compressive strength by Schmidt hammer of Navajo and underlying Kayenta beds; Selby bulk strength of Navajo sandstone; discharge estimates for flash floods; size of transported rocks; and vertical profiles of valley headwalls and alcoves. Plateau slickrock surfaces are commonly rounded on 10-100-m length scales and yield abundant runoff, as during rainfall observed on May 21-22. Incision into the Navajo surface by overland flow yields narrow, high-gradient valleys with V-shaped cross-sections; abrasion by sediment and weathering by standing water in closely spaced potholes facilitate downcutting. These small contributing valleys funnel waterfalls over the broad headscarps, forming small plunge pools. Headwalls are largely swept clear of debris relative to sidewalls. Canyon dimensions increase significantly below seeps, and wide alcoves are found only at these locations. We found no significant difference in rock strength at the top and bottom of the Navajo headwalls, suggesting that headscarp retreat requires basal weathering. Diverse weathering processes affect different sections of the headscarp relief. An intermittent waterfall may directly attack the base of an alcove, processes related to vegetation usually affect its lower slope (wetted by seepage from a discrete layer exposed in the deepest zone), and salt weathering often occurs on the roof. Scarps above an alcove are relatively unweathered and retreat primarily by sheet fracturing. The parabolic

  14. Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Yu, Shui-Beih; Kuo, Long-Chen

    2001-04-01

    The NNE-striking Longitudinal Valley Fault (LVF) in eastern Taiwan is an extremely active high-angle thrust fault. It bounds the Coastal Range and the Longitudinal Valley, which is considered a collision boundary between the Philippine Sea and the Eurasian plates. Repeated GPS data in the Longitudinal Valley area from 1992 to 1999 are utilized to study the spatial variation of crustal motion along the LVF. With respect to Penghu in the Chinese continental margin, velocities for stations on the western side of the LVF (Longitudinal Valley and eastern Central Range) are 18-35 mm/yr in directions 283-311°, whereas those on the eastern side of the LVF, the Coastal Range, are 28-68 mm/yr in directions 303-324°. A major discontinuity of about 30 mm/yr on the rate of crustal motion across the Longitudinal Valley is attributed to the aseismic slip along the LVF as revealed by trilateration data previously. To the south of Fengping, the block motions of the Coastal Range are 31-40 mm/yr in 317-330° relative to the Central Range, while the near-fault motions are 13-33 mm/yr in 309-336°. Various partitions on the left-lateral strike-slip and convergent components along the LVF are found. In the southern Longitudinal Valley crustal motion is mainly accommodated on the LVF and the Luyeh Fault. In contrast, those in the central and northern Longitudinal Valley are partly taken up on the faults to the east of the LVF or result in the elastic deformation of the Coastal Range. The crustal motion in the northern Longitudinal Valley area is likely to be distributed in the several NE-striking thrusts in a horsetail pattern and obliquely cut the northern Coastal Range, with a small portion of fault-slips along the LVF. Data from dense-deployed GPS networks across the LVF can be employed to give better estimates of near-fault motions and delineate the surface traces of the LVF. Repeated GPS and leveling data from two stations on both ends of the Yuli Bridge that are 575 m apart

  15. Opinion formation of free speech on the directed social network

    NASA Astrophysics Data System (ADS)

    Su, Jiongming; Ma, Hongxu; Liu, Baohong; Li, Qi

    2014-12-01

    A dynamical model with continuous opinion is proposed to study how the speech order and the topology of directed social network affect the opinion formation of free speech. In the model, agents express their opinions one by one with random order (RO) or probability order (PO), other agents paying attentions to the speaking agent, receive provider's opinion, update their opinions and then express their new opinions in their turns. It is proved that with the same agent j repeats its opinion more, other agents who pay their attentions to j and include j's opinion in their confidence level at initial time, will continue approaching j's opinion. Simulation results reveal that on directed scale-free network: (1) the model for PO forms fewer opinion clusters, larger maximum cluster (MC), smaller standard deviation (SD), and needs less waiting time to reach a middle level of consensus than RO; (2) as the parameter of scale-free degree distribution decreases or the confidence level increases, the results often get better for both speech orders; (3) the differences between PO and RO get smaller as the size of network decreases.

  16. Upper Neogene stratigraphy and tectonics of Death Valley - A review

    USGS Publications Warehouse

    Knott, J.R.; Sarna-Wojcicki, A. M.; Machette, M.N.; Klinger, R.E.

    2005-01-01

    New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from > 3.58 Ma to < 1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe-Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ???3.3 Ma the Furnace Creek basin was a northwest-southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique-normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. Post -3.3 Ma geometric, structural, and kinematic changes in the Black Mountains and Towne Pass fault zones led to the break up of Furnace Creek basin and uplift of the Copper Canyon and Nova basins. Internal kinematics of northern Death Valley are interpreted as either rotation of blocks or normal slip along the northeast-southwest-trending Towne Pass and Tin Mountain fault zones within the Eastern California shear zone. ?? 2005 Elsevier B.V. All rights reserved.

  17. Topological Valley Currents in Gapped Dirac Materials

    NASA Astrophysics Data System (ADS)

    Lensky, Yuri D.; Song, Justin C. W.; Samutpraphoot, Polnop; Levitov, Leonid S.

    2015-06-01

    Gapped 2D Dirac materials, in which inversion symmetry is broken by a gap-opening perturbation, feature a unique valley transport regime. Topological valley currents in such materials are dominated by bulk currents produced by electronic states just beneath the gap rather than by edge modes. The system ground state hosts dissipationless persistent valley currents existing even when topologically protected edge modes are absent. Valley currents induced by an external bias are characterized by a quantized half-integer valley Hall conductivity. The undergap currents dominate magnetization and the charge Hall effect in a light-induced valley-polarized state.

  18. Field Surveys, IOC Valleys. Volume III, Part II. Cultural Resources Survey, Pine and Wah Wah Valleys, Utah.

    DTIC Science & Technology

    1981-08-01

    valleys are typical of the Basin and Range Province, characterized by parallel, north-south trending mountain ranges, separated by hydrologically closed... basins . Pine and Wah Wah valleys each have hardpan-playas in their lowest areas. State Highway 21 runs roughly northwest-southeast through both val...have been important for prehis- toric and historic use of the area. Pine Valley: Pine and Wah Wah valleys are closed alluvial basins . The central part

  19. Network formation and gelation in telechelic star polymers

    NASA Astrophysics Data System (ADS)

    Wadgaonkar, Indrajit; Chatterji, Apratim

    2017-02-01

    We investigate the efficiency of gelation and network formation in telechelic star polymer melt, where the tips of polymer arms are dipoles while the rest of the monomers are uncharged. Our work is motivated by the experimental observations [A. Kulkarni et al., Macromolecules 48, 6580 (2015)] in which rheological studies of telechelic star polymers of poly-(L-lactide), a bio-degradable polymer, showed a drastic increase in elastic properties (up to 2000 times) compared to corresponding star polymers without the telechelic arm ends. In contrast to previous studies, we avoid using effective attractive Lennard-Jones potentials or dipolar potentials to model telechelic interactions. Instead we use explicit Coulomb positive and negative charges at the tip of polymer-arms of our bead-spring model of star polymers. By our simulations we show that the dipoles at the tip of star arms aggregate together to form clusters of dipoles. Each cluster has contributions from several stars, and in turn each star contributes to several clusters. Thus the entire polymer melt forms a connected network. Network forming tendencies decrease with a decrease of the value of the effective charge constituting the dipole: this can be experimentally realized by choosing a different ionomer for the star tip. We systematically varied the value of dipole charges, the fraction of star-arms with dipoles at the tip, and the length of the arms. The choice of explicit charges in our calculations enables us to make better quantitative predictions about the onset of gelation; moreover we get qualitatively distinct results about structural organization of dipoles within a dipole-cluster.

  20. Network formation and gelation in telechelic star polymers.

    PubMed

    Wadgaonkar, Indrajit; Chatterji, Apratim

    2017-02-28

    We investigate the efficiency of gelation and network formation in telechelic star polymer melt, where the tips of polymer arms are dipoles while the rest of the monomers are uncharged. Our work is motivated by the experimental observations [A. Kulkarni et al., Macromolecules 48, 6580 (2015)] in which rheological studies of telechelic star polymers of poly-(L-lactide), a bio-degradable polymer, showed a drastic increase in elastic properties (up to 2000 times) compared to corresponding star polymers without the telechelic arm ends. In contrast to previous studies, we avoid using effective attractive Lennard-Jones potentials or dipolar potentials to model telechelic interactions. Instead we use explicit Coulomb positive and negative charges at the tip of polymer-arms of our bead-spring model of star polymers. By our simulations we show that the dipoles at the tip of star arms aggregate together to form clusters of dipoles. Each cluster has contributions from several stars, and in turn each star contributes to several clusters. Thus the entire polymer melt forms a connected network. Network forming tendencies decrease with a decrease of the value of the effective charge constituting the dipole: this can be experimentally realized by choosing a different ionomer for the star tip. We systematically varied the value of dipole charges, the fraction of star-arms with dipoles at the tip, and the length of the arms. The choice of explicit charges in our calculations enables us to make better quantitative predictions about the onset of gelation; moreover we get qualitatively distinct results about structural organization of dipoles within a dipole-cluster.

  1. Untangling the web: Mechanisms underlying ER network formation

    PubMed Central

    Goyal, Uma; Blackstone, Craig

    2013-01-01

    The ER is a continuous membrane system consisting of the nuclear envelope, flat sheets often studded with ribosomes, and a polygonal network of highly-curved tubules extending throughout the cell. Although protein and lipid biosynthesis, protein modification, vesicular transport, Ca2+dynamics, and protein quality control have been investigated in great detail, mechanisms that generate the distinctive architecture of the ER have been uncovered only recently. Several protein families including the reticulons and REEPs/DP1/Yop1p harbor hydrophobic hairpin domains that shape high-curvature ER tubules and mediate intramembrane protein interactions. Members of the atlastin/RHD3/Sey1p family of dynamin-related GTPases interact with the ER-shaping proteins and mediate the formation of three-way junctions responsible for the polygonal structure of the tubular ER network, with Lunapark proteins acting antagonistically. Additional classes of tubular ER proteins including some REEPs and the M1 spastin ATPase interact with the microtubule cytoskeleton. Flat ER sheets possess a different complement of proteins such as p180, CLIMP-63 and kinectin implicated in shaping, cisternal stacking and cytoskeletal interactions. The ER is also in constant motion, and numerous signaling pathways as well as interactions among cytoskeletal elements, the plasma membrane, and organelles cooperate to position and shape the ER dynamically. Finally, many proteins involved in shaping the ER network are mutated in the most common forms of hereditary spastic paraplegia, indicating a particular importance for proper ER morphology and distribution in large, highly-polarized cells such as neurons. PMID:23602970

  2. An Overview of the Geological and Geotechnical Aspects of the New Railway Line in the Lower Inn Valley

    NASA Astrophysics Data System (ADS)

    Eder, Stefan; Poscher, Gerhard; Sedlacek, Christoph

    The new railway line in the lower Inn-valley is part of the Brenner railway axis from Munich to Verona (feeder north). The first section between the villages of Kundl and Radfeld, west of Wörgl, and the village of Baumkirchen, east of Innsbruck, will become one of the biggest infrastructure projects ever built in Austria, with a length of approx. 43 km and an underground portion of approx. 80%. The article gives an overview of the various geologic formations - hard rock sections in the valley slopes, different water-saturated gravel and sand formations in the valley floor and geotechnically difficult conditions in sediments of Quaternary terraces. It also describes the methodology of the soil reconnaissance using groundwater models for hydrogeologic estimations, core drillings for evaluating geologic models and describes the experiences gained from the five approx. 7.5 km long reconnaissance tunnels for geotechnical and hydrogeological testing. The results of the soil reconnaissance were used to plan different construction methods, such as excavation in soft rock under a jet grouting roof and compressed-air, as well as mechanised shield with fluid support.

  3. Wintertime Ambient Ammonia Concentrations in Northern Utah's Urban Valleys

    NASA Astrophysics Data System (ADS)

    Hammond, I. A.; Martin, R. S.; Silva, P.; Baasandorj, M.

    2017-12-01

    Many of the population centers in northern Utah are currently classified as non-attainment or serious non-attainment, Wasatch Front, for PM2.5 and previous studies have shown ammonium nitrate to often be the largest contributor to the particulate mass. Furthermore, measurements have shown several of the Wasatch Front cities and Cache Valley (UT/ID) consistently recorded some of the highest ambient ammonia (NH3) concentrations in the continental United States. As a part of the multi-organization 2017 Utah Winter Fine Particulate Study real-time NH3 concentrations were monitored in the Cache Valley at the Logan, UT site, collocated at an EPA sampling trailer near the Utah State University (USU) campus. A Picarro model G2508 was to used collect 5-sec averaged concentrations of NH3, carbon dioxide (CO2), and methane (CH4) from January 16th to February 14th, 2017. Parts of three inversion events, wherein the PM2.5 concentrations approached or exceeded the National Ambient Air Quality Standards, were captured during the sampling period, including a 10-day event from January 25th to February 4th. Concentrations of all three of the observed species showed significant accumulation during the events, with NH3 concentrations ranging from below the detection limit (<0.5 ppb) to >70 ppb. Preliminary analysis suggested the temporal NH3 changes tracked the increase in PM2.5 throughout the inversion events; however, a one-day period of NH3 depletion during the main inversion event was observed while PM2.5 continued to increase. Additionally, a network of passive NH3 samplers (Ogawa Model 3300) were arrayed at 25 sites throughout the Cache Valley and at 11 sites located along the Wasatch Front. These networks sampled for three 7-day periods, during the same study time frame. Ion chromatographic (IC) analyses of the sample pads are not yet finalized; however, preliminary results show concentrations in the tens of ppb and seemingly spatially correlate with previous studies showing

  4. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patheja, Pooja, E-mail: pooja.patheja8@gmail.com; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra; Sahu, Khageswar

    Infiltrating macrophages in tumor microenvironment, through their secreted cytokines and growth factors, regulate several processes of cancer progression such as cancer cell survival, proliferation, invasion, metastasis and angiogenesis. Recently, intercellular cytoplasmic bridges between cancer cells referred as tunneling nanotubes (TNTs) have been recognized as novel mode of intercellular communication between cancer cells. In this study, we investigated the effect of inflammatory mediators present in conditioned medium derived from macrophages on the formation of TNTs in breast adenocarcinoma cells MCF-7. Results show that treatment with macrophage conditioned medium (MφCM) not only enhanced TNT formation between cells but also stimulated the releasemore » of independently migrating viable cytoplasmic fragments, referred to as microplasts, from MCF-7 cells. Time lapse microscopy revealed that microplasts were released from parent cancer cells in extracellular space through formation of TNT-like structures. Mitochondria, vesicles and cytoplasm could be transferred from parent cell body to microplasts through connecting TNTs. The microplasts could also be resorbed into the parent cell body by retraction of the connecting TNTs. Microplast formation inhibited in presence cell migration inhibitor, cytochalasin-B. Notably by utilizing migratory machinery within microplasts, distantly located MCF-7 cells formed several TNT based intercellular connections, leading to formation of physically connected network of cells. Together, these results demonstrate novel role of TNTs in microplast formation, novel modes of TNT formation mediated by microplasts and stimulatory effect of MφCM on cellular network formation in MCF-7 cells mediated through enhanced TNT and microplast formation.« less

  5. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments.

    PubMed

    Patheja, Pooja; Sahu, Khageswar

    2017-06-15

    Infiltrating macrophages in tumor microenvironment, through their secreted cytokines and growth factors, regulate several processes of cancer progression such as cancer cell survival, proliferation, invasion, metastasis and angiogenesis. Recently, intercellular cytoplasmic bridges between cancer cells referred as tunneling nanotubes (TNTs) have been recognized as novel mode of intercellular communication between cancer cells. In this study, we investigated the effect of inflammatory mediators present in conditioned medium derived from macrophages on the formation of TNTs in breast adenocarcinoma cells MCF-7. Results show that treatment with macrophage conditioned medium (MɸCM) not only enhanced TNT formation between cells but also stimulated the release of independently migrating viable cytoplasmic fragments, referred to as microplasts, from MCF-7 cells. Time lapse microscopy revealed that microplasts were released from parent cancer cells in extracellular space through formation of TNT-like structures. Mitochondria, vesicles and cytoplasm could be transferred from parent cell body to microplasts through connecting TNTs. The microplasts could also be resorbed into the parent cell body by retraction of the connecting TNTs. Microplast formation inhibited in presence cell migration inhibitor, cytochalasin-B. Notably by utilizing migratory machinery within microplasts, distantly located MCF-7 cells formed several TNT based intercellular connections, leading to formation of physically connected network of cells. Together, these results demonstrate novel role of TNTs in microplast formation, novel modes of TNT formation mediated by microplasts and stimulatory effect of MɸCM on cellular network formation in MCF-7 cells mediated through enhanced TNT and microplast formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Quaternary Geochronology, Paleontology, and Archaeology of the Upper San Pedro River Valley, Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Gaines, E. P.

    2013-12-01

    This poster presents the results of multi-disciplinary investigations of the preservation and extent of Quaternary fossil-bearing strata in the San Pedro River Valley in Sonora, Mexico. Geologic deposits in the portions of the San Pedro Valley in southern Arizona contain one of the best late Cenozoic fossil records known in North America and the best record of early humans and extinct mammals on the continent. The basin in the U.S. is one of the type locations for the Blancan Land Mammal Age. Hemiphilian and Irvingtonian fossils are common. Rancholabrean remains are widespread. Strata in the valley adjacent to the international border with Mexico have yielded the densest concentration of archaeological mammoth-kill sites known in the western hemisphere. Despite more than 60 years of research in the U.S., however, and the fact that over one third of the San Pedro River lies south of the international boundary, little has been known about the late Cenozoic geology of the valley in Mexico. The study reported here utilized extensive field survey, archaeological documentation, paleontological excavations, stratigraphic mapping and alluvial geochronology to determine the nature and extent of Quaternary fossil-bearing deposits in the portions of the San Pedro Valley in Sonora, Mexico. The results demonstrate that the Plio-Pleistocene fossil -bearing formations known from the valley in Arizona extend into the uppermost reaches of the valley in Mexico. Several new fossil sites were discovered that yielded the remains of Camelids, Equus, Mammuthus, and other Proboscidean species. Late Pleistocene archaeological remains were found on the surface of the surrounding uplands. AMS radiocarbon dating demonstrates the widespread preservation of middle- to late- Holocene deposits. However, the late Pleistocene deposits that contain the archaeological mammoth-kill sites in Arizona are absent in the valley in Mexico, and are now known to be restricted to relatively small portions of

  7. A landscape scale valley confinement algorithm: Delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications

    Treesearch

    David E. Nagel; John M. Buffington; Sharon L. Parkes; Seth Wenger; Jaime R. Goode

    2014-01-01

    Valley confinement is an important landscape characteristic linked to aquatic habitat, riparian diversity, and geomorphic processes. This report describes a GIS program called the Valley Confinement Algorithm (VCA), which identifies unconfined valleys in montane landscapes. The algorithm uses nationally available digital elevation models (DEMs) at 10-30 m resolution to...

  8. Graphene Nanobubbles as Valley Filters and Beam Splitters

    NASA Astrophysics Data System (ADS)

    Settnes, Mikkel; Power, Stephen R.; Brandbyge, Mads; Jauho, Antti-Pekka

    2016-12-01

    The energy band structure of graphene has two inequivalent valleys at the K and K' points of the Brillouin zone. The possibility to manipulate this valley degree of freedom defines the field of valleytronics, the valley analogue of spintronics. A key requirement for valleytronic devices is the ability to break the valley degeneracy by filtering and spatially splitting valleys to generate valley polarized currents. Here, we suggest a way to obtain valley polarization using strain-induced inhomogeneous pseudomagnetic fields (PMFs) that act oppositely on the two valleys. Notably, the suggested method does not involve external magnetic fields, or magnetic materials, unlike previous proposals. In our proposal the strain is due to experimentally feasible nanobubbles, whose associated PMFs lead to different real space trajectories for K and K' electrons, thus allowing the two valleys to be addressed individually. In this way, graphene nanobubbles can be exploited in both valley filtering and valley splitting devices, and our simulations reveal that a number of different functionalities are possible depending on the deformation field.

  9. Holocene loess deposition and soil formation as competing processes, Matanuska Valley, southern Alaska

    USGS Publications Warehouse

    Muhs, D.R.; McGeehin, J.P.; Beann, J.; Fisher, E.

    2004-01-01

    Although loess-paleosol sequences are among the most important records of Quaternary climate change and past dust deposition cycles, few modern examples of such sedimentation systems have been studied. Stratigraphic studies and 22 new accelerator mass spectrometry radiocarbon ages from the Matanuska Valley in southern Alaska show that loess deposition there began sometime after ???6500 14C yr B.P. and has continued to the present. The silts are produced through grinding by the Matanuska and Knik glaciers, deposited as outwash, entrained by strong winds, and redeposited as loess. Over a downwind distance of ???40 km, loess thickness, sand content, and sand-plus-coarse-silt content decrease, whereas fine-silt content increases. Loess deposition was episodic, as shown by the presence of paleosols, at distances >10 km from the outwash plain loess source. Stratigraphic complexity is at a maximum (i.e., the greatest number of loesses and paleosols) at intermediate (10-25 km) distances from the loess source. Surface soils increase in degree of development with distance downwind from the source, where sedimentation rates are lower. Proximal soils are Entisols or Inceptisols, whereas distal soils are Spodosols. Ratios of mobile CaO, K2O, and Fe2O3 to immobile TiO2 show decreases in surface horizons with distance from the source. Thus, as in China, where loess deposition also takes place today, eolian sedimentation and soil formation are competing processes. Study of loess and paleosols in southern Alaska shows that particle size can vary over short distances, loess deposition can be episodic over limited time intervals, and soils developed in stabilized loess can show considerable variability under the same vegetation. ?? 2004 University of Washington. All rights reserved.

  10. Smoking Behavior and Friendship Formation: The Importance of Time Heterogeneity in Studying Social Network Dynamics

    DTIC Science & Technology

    2010-01-01

    Smoking Behavior and Friendship Formation: The Importance of Time Heterogeneity in Studying Social Network Dynamics Joshua A. Lospinoso Department of...djsatchell@gmail.com Abstract—This study illustrates the importance of assessing and accounting for time heterogeneity in longitudinal social net- work...analysis. We apply the time heterogeneity model selection procedure of [1] to a dataset collected on social tie formation for university freshman in the

  11. The Long Valley Caldera GIS database

    USGS Publications Warehouse

    Battaglia, Maurizio; Williams, M.J.; Venezky, D.Y.; Hill, D.P.; Langbein, J.O.; Farrar, C.D.; Howle, J.F.; Sneed, M.; Segall, P.

    2003-01-01

    This database provides an overview of the studies being conducted by the Long Valley Observatory in eastern California from 1975 to 2001. The database includes geologic, monitoring, and topographic datasets related to Long Valley caldera. The CD-ROM contains a scan of the original geologic map of the Long Valley region by R. Bailey. Real-time data of the current activity of the caldera (including earthquakes, ground deformation and the release of volcanic gas), information about volcanic hazards and the USGS response plan are available online at the Long Valley observatory web page (http://lvo.wr.usgs.gov). If you have any comments or questions about this database, please contact the Scientist in Charge of the Long Valley observatory.

  12. 27 CFR 9.78 - Ohio River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ohio River Valley. 9.78... River Valley. (a) Name. The name of the viticultural area described in this section is “Ohio River Valley.” (b) Approved maps. The approved maps for determining the boundary of the Ohio River Valley...

  13. Valley dependent transport in graphene L junction

    NASA Astrophysics Data System (ADS)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  14. A detrital zircon provenance study of the Lower Carboniferous sequences in the East Fife section of the Midland Valley of Scotland

    NASA Astrophysics Data System (ADS)

    Murchie, Sean; Robinson, Ruth, ,, Dr; Lancaster, Penelope, ,, Dr

    2014-05-01

    Detrital zircons from the Lower Carboniferous clastic rocks of the Midland Valley of Scotland have been dated using U-Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) to determine which source areas contributed sediment to the basin during its development, and to investigate whether provenance changed during deposition of these units. Specific provenance detection using U/Pb dating of zircons has never been attempted in these rocks, and there are uncertainties remaining about the regional paleogeographic setting for the Midland Valley. Four samples from the Dinantian Strathclyde Group have been analysed, and the units are locally known as the Fife Ness, Anstruther, Pittenweem, Sandy Craig, and Pathhead formations. The formations are composed of shallow marine, deltaic, fluvial and floodplain deposits and these predominantly siliciclastic sedimentary rocks are interbedded with thin fossiliferous carbonate bands. The samples are quartz arenitic, sub-arkosic and lithic arkosic medium-grained sandstones, predominantly from a fluvial origin. The British Geological Survey developed a lithostratigraphy which is the most used framework for the Strathclyde Group (Browne et al., 1997), but a different biostratigraphical framework based on palynology has been proposed by Owens et al. (2005). In addition to identifying provenance, the zircon age populations for each formation are compared to test which stratigraphic framework is correct. More broadly, the provenance data provides a way to improve the regional palaeogeographic setting for the Midland Valley. Zircon ages in the Strathclyde Group are dominated by Late Mesoproterozoic to Late Palaeoproterozoic (0.9 - 2.0 Ga) and Early Palaeozoic (350 - 450 Ma) ages which reflect Caledonide (Laurentian-Baltica margin including Scotland, Scandinavia, Greenland, Newfoundland), Grampian and internal Midland Valley source areas. Notable peaks occur at 400 Ma, 1.0 --1.1 Ga, 1.3 Ga, 1.6 - 1.7 Ga, and 2.7 Ga, and

  15. Down in the Valley.

    ERIC Educational Resources Information Center

    Salter, Linda Graef

    1999-01-01

    Describes the partnerships formed by West Valley Mission Community College District (California) with its surrounding Silicon Valley business community in an effort to benefit workforce development. Asserts that community colleges are uniquely positioned to provide a lifelong education that will yield a skilled workforce to meet the needs of…

  16. A Low-Complexity Subgroup Formation with QoS-Aware for Enhancing Multicast Services in LTE Networks

    NASA Astrophysics Data System (ADS)

    Algharem, M.; Omar, M. H.; Rahmat, R. F.; Budiarto, R.

    2018-03-01

    The high demand of Multimedia services on in Long Term Evolution (LTE) and beyond networks forces the networks operators to find a solution that can handle the huge traffic. Along with this, subgroup formation techniques are introduced to overcome the limitations of the Conventional Multicast Scheme (CMS) by splitting the multicast users into several subgroups based on the users’ channels quality signal. However, finding the best subgroup configuration with low complexity is need more investigations. In this paper, an efficient and simple subgroup formation mechanisms are proposed. The proposed mechanisms take the transmitter MAC queue in account. The effectiveness of the proposed mechanisms is evaluated and compared with CMS in terms of throughput, fairness, delay, Block Error Rate (BLER).

  17. Late Cenozoic geology and lacustrine history of Searles Valley, Inyo and San Bernardino Counties, California

    USGS Publications Warehouse

    Smith, George I.

    2009-01-01

    Searles Valley is an arid, closed basin lying 70 km east of the south end of the Sierra Nevada, California. It is bounded on the east and northeast by the Slate Range, on the west by the Argus Range and Spangler Hills, and on the south by the Lava Mountains; Searles (dry) Lake occupies the north-central part of the valley. During those parts of late Pliocene and Pleistocene time when precipitation and runoff from the east side of the Sierra Nevada into the Owens River were much greater than at present, a chain of as many as five large lakes was created, of which Searles Lake was third. The stratigraphic record left in Searles Valley when that lake expanded, contracted, or desiccated, is fully revealed by cores from beneath the surface of Searles (dry) Lake and partly recorded by sediments cropping out around the edge of the valley. The subsurface record is described elsewhere. This volume includes six geologic maps (scales: 1:50,000 and 1:10,000) and a text that describes the outcrop record, most of which represents sedimentation since 150 ka. Although this outcrop record is discontinuous, it provides evidence indicating the lake's water depths during each expansion, which the subsurface record does not. Maximum-depth lakes rose to the 2,280-ft (695 m) contour, the level of the spillway that led overflowing waters to Panamint Valley; that spillway is about 660 ft (200 m) above the present dry-lake surface. Several rock units of Tertiary and early Quaternary ages crop out in Searles Valley. Siltstone and sandstone of Tertiary age, mostly lacustrine in nature and locally deformed to near-vertical dips, are exposed in the southern part of the valley, as is the younger(?) upper Miocene Bedrock Spring Formation. Unnamed, mostly mafic volcanic rocks of probable Miocene or Pliocene age are exposed along the north and south edges of the basin. Slightly deformed lacustrine sandstones are mapped in the central-southwestern and southern parts of the study area. The Christmas

  18. Hazardous Waste Cleanup: West Valley Demonstration Project USDOE in West Valley, New York

    EPA Pesticide Factsheets

    The U.S. Department of Energy's West Valley Demonstration Project is located at 10282 Rock Spring Road in West Valley, New York. This is a 167 acre, Department of Energy (DOE)-operated portion of a 3,300-acre site owned by the New York State Energy

  19. Geohydrology and water-chemistry of the Alexander Valley, Sonoma County, California

    USGS Publications Warehouse

    Metzger, Loren F.; Farrar, Christopher D.; Koczot, Kathryn M.; Reichard, Eric G.

    2006-01-01

    This study of the geohydrology and water chemistry of the Alexander Valley, California, was done to provide an improved scientific basis for addressing emerging water-management issues, including potential increases in water demand and changes in flows in the Russian River. The study tasks included (1) evaluation of existing geohydrological, geophysical, and geochemical data; (2) collection and analysis of new geohydrologic data, including subsurface lithologic data, ground-water levels, and streamflow records; and (3) collection and analysis of new water-chemistry data. The estimated total water use for the Alexander Valley for 1999 was approximately 15,800 acre-feet. About 13,500 acre-feet of this amount was for agricultural use, primarily vineyards, and about 2,300 acre-feet was for municipal/industrial use. Ground water is the main source of water supply for this area. The main sources of ground water in the Alexander Valley are the Quaternary alluvial deposits, the Glen Ellen Formation, and the Sonoma Volcanics. The alluvial units, where sufficiently thick and saturated, comprise the best aquifer in the study area. Average recharge to the Alexander Valley is estimated from a simple, basinwide water budget. On the basis of an estimated annual average of 298,000 acre-feet of precipitation, 160,000 acre-feet of runoff, and 113,000 to 133,000 acre-feet of evapotranspiration, about 5,000 to 25,000 acre-feet per year is available for ground-water recharge. Because this estimate is based on differences between large numbers, there is significant uncertainty in this recharge estimate. Long-term changes in ground-water levels are evident in parts of the study area, but because of the sparse network and lack of data on well construction and lithology, it is uncertain if any significant changes have occurred in the northern part of the study area since 1980. In the southern half of the study area, ground-water levels generally were lower at the end of the 2002 irrigation

  20. Infill of tunnel valleys associated with landward-flowing ice sheets: The missing Middle Pleistocene record of the NW European rivers?

    NASA Astrophysics Data System (ADS)

    Moreau, Julien; Huuse, Mads

    2014-01-01

    The southern termination of the Middle and Late Pleistocene Scandinavian ice sheets was repeatedly located in the southern North Sea (sNS) and adjacent, north-sloping land areas. Giant meltwater-excavated valleys (tunnel valleys) formed at the southern termination of the ice sheets and contain a hitherto enigmatic succession of northward prograding clinoforms, comprising 1000s km3 of sediment. This study analyses 3D seismic data, covering the entire sNS, and demonstrates for the first time that the formation of these tunnel valleys was separate from their infill. The infill constitutes the postglacial record of the NW European river deltas, which had so far been considered missing.

  1. Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  2. Single-phase and two-phase flow properties of mesaverde tight sandstone formation; random-network modeling approach

    NASA Astrophysics Data System (ADS)

    Bashtani, Farzad; Maini, Brij; Kantzas, Apostolos

    2016-08-01

    3D random networks are constructed in order to represent the tight Mesaverde formation which is located in north Wyoming, USA. The porous-space is represented by pore bodies of different shapes and sizes which are connected to each other by pore throats of varying length and diameter. Pore bodies are randomly distributed in space and their connectivity varies based on the connectivity number distribution which is used in order to generate the network. Network representations are then validated using publicly available mercury porosimetry experiments. The network modeling software solves the fundamental equations of two-phase immiscible flow incorporating wettability and contact angle variability. Quasi-static displacement is assumed. Single phase macroscopic properties (porosity, permeability) are calculated and whenever possible are compared to experimental data. Using this information drainage and imbibition capillary pressure, and relative permeability curves are predicted and (whenever possible) compared to experimental data. The calculated information is grouped and compared to available literature information on typical behavior of tight formations. Capillary pressure curve for primary drainage process is predicted and compared to experimental mercury porosimetry in order to validate the virtual porous media by history matching. Relative permeability curves are also calculated and presented.

  3. Karst geomorphology and hydrology of the Shenandoah Valley near Harrisonburg, Virginia

    USGS Publications Warehouse

    Doctor, Daniel H.; Orndorff, Wil; Maynard, Joel; Heller, Matthew J.; Casile, Gerolamo C.

    2014-01-01

    The karst of the central Shenandoah Valley has characteristics of both shallow and deep phreatic formation. This field guide focuses on the region around Harrisonburg, Virginia, where a number of these karst features and their associated geologic context can be examined. Ancient, widespread alluvial deposits cover much of the carbonate bedrock on the western side of the valley, where shallow karstification has resulted in classical fluviokarst development. However, in upland exposures of carbonate rock, isolated caves exist atop hills not affected by surface processes other than exposure during denudation. The upland caves contain phreatic deposits of calcite and fine-grained sediments. They lack any evidence of having been invaded by surface streams. Recent geologic mapping and LIDAR (light detection and ranging) elevation data have enabled interpretive association between bedrock structure, igneous intrusions, silicification and brecciation of host carbonate bedrock, and the location of several caves and karst springs. Geochemistry, water quality, and water temperature data support the broad categorization of springs into those affected primarily by shallow near-surface recharge, and those sourced deeper in the karst aquifer. The deep-seated karst formation occurred in the distant past where subvertical fracture and fault zones intersect thrust faults and/or cross-strike faults, enabling upwelling of deep-circulating meteoric groundwater. Most caves formed in such settings have been overprinted by later circulation of shallow groundwater, thus removing evidence of the history of earliest inception; however, several caves do preserve evidence of an earlier formation.

  4. DOC and DON Dynamics along the Bagmati Drainage Network in Kathmandu Valley

    NASA Astrophysics Data System (ADS)

    Bhatt, M. P.; McDowell, W. H.

    2005-05-01

    We studied organic matter dynamics and inorganic chemistry of the Bagmati River in Kathmandu valley, Nepal, to understand the influence of human and geochemical processes on chemical loads along the drainage system. Population density appears to be the most fundamental control on the chemistry of surface waters within the Bagmati drainage system. DOC concentration increases 10-fold with distance downstream (from 2.38 to 23.95 mg/L) and shows a strong relationship with human population density. The composition of river water (nutrients, Cl) suggests that sewage effluent to the river has a major effect on water quality. Concentrations were highest during summer, and lowest during the winter monsoon season. In contrast to DOC, DON concentration shows surprisingly little variation, and tends to decrease in concentration with distance downstream. Ammonium contributes almost all nitrogen in the total dissolved nitrogen fraction and the concentration of nitrate is negligible, probably due to rapid denitrification within the stream channel under relatively low-oxygen conditions. Decreases in sulfate along the stream channel may also be due to the reduction of sulfate to sulfide due to the heavy organic matter loading. Water quality is unacceptable for any use and the whole ecosystem is severely affected within the urban areas. Based on a comparison of downstream and upstream water quality, it appears that human activities along the Bagmati, principally inputs of human sewage, are largely responsible for the changes in surface water chemistry within Kathmandu valley.

  5. An evaluation of Skylab (EREP) remote sensing techniques applied to investigation of crustal structure. [Death Valley and Greenwater Valley (CA)

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. A study of Greenwater Valley indicates that the valley is bounded on the north and east by faults, on the south by a basement high, and on the west by the dip slope of the black mountains, movement of ground water from the valley is thus Movement of ground water from the valley is thus restricted, indicating the valley is a potential water reservoir.

  6. Modelling the effect of buried valleys on groundwater flow: case study in Ventspils vicinity, Latvia

    NASA Astrophysics Data System (ADS)

    Delina, Aija; Popovs, Konrads; Bikse, Janis; Retike, Inga; Babre, Alise; Kalvane, Gunta

    2015-04-01

    Buried subglacial valleys are widely distributed in glaciated regions and they can have great influence on groundwater flow and hence on groundwater resources. The aim of this study is to evaluate the effect of the buried valleys on groundwater flow in a confined aquifer (Middle Devonian Eifelian stage Arukila aquifer, D2ar) applying numerical modelling. The study area is located at vicinity of Ventspils Town, near wellfield Ogsils where number of the buried valleys with different depth and filling material are present. Area is located close to the Baltic Sea at Piejūra lowland Rinda plain and regional groundwater flow is towards sea. Territory is covered by thin layer of Quaternary sediments in thicknesses of 10 to 20 meters although Prequaternary sediments are exposed at some places. Buried valleys are characterized as narrow, elongated and deep formations that is be filled with various, mainly Pleistocene glacigene sediments - either till loam of different ages or sand and gravel or interbedding of both above mentioned. The filling material of the valleys influences groundwater flow in the confined aquifers which is intercepted by the valleys. It is supposed that glacial till loam filled valleys serves as a barrier to groundwater flow and as a recharge conduit when filled with sand and gravel deposits. Numerical model was built within MOSYS modelling system (Virbulis et al. 2012) using finite element method in order to investigate buried valley influence on groundwater flow in the study area. Several conceptual models were tested in numerical model depending on buried valley filling material: sand and gravel, till loam or mixture of them. Groundwater flow paths and travel times were studied. Results suggested that valley filled with glacial till is acting as barrier and it causes sharp drop of piezometric head and downward flow. Valley filled with sand and gravel have almost no effect on piezometric head distribution, however it this case buried valleys

  7. Network formation of nanofibrillated cellulose in solution blended poly(methyl methacrylate) composites.

    PubMed

    Littunen, Kuisma; Hippi, Ulla; Saarinen, Tapio; Seppälä, Jukka

    2013-01-02

    Composites of poly(methyl methacrylate) (PMMA) and nanofibrillated cellulose (NFC) were prepared by solution blending and further processed by injection and compression molding. To improve adhesion at the PMMA/NFC interface, the nanofibrils were covalently grafted with PMMA. Formation of a percolating nanofibril network was observed between 1 and 5 wt.% of NFC by dynamic rotational rheometry in molten state. This observation was further supported by the behavior of glass transition temperature which decreased at low NFC concentrations but recovered above the percolation threshold, indicating a decreased mobility of the matrix polymer. This effect was more pronounced with ungrafted NFC, possibly due to a stronger network. The unmodified NFC induced a minor degradation of the molar mass of PMMA. As thin plates, the composites were transparent at low NFC concentrations but became partially aggregated at the highest NFC concentrations. Despite the continuous NFC network, tensile testing showed no improvement of the mechanical properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Biomineralization of endolithic microbes in rocks from the McMurdo Dry Valleys of Antarctica: implications for microbial fossil formation and their detection.

    PubMed

    Wierzchos, Jacek; Sancho, Leopoldo García; Ascaso, Carmen

    2005-04-01

    In some zones of Antarctica's cold and dry desert, the extinction of cryptoendolithic microorganisms leaves behind inorganic traces of microbial life. In this paper, we examine the transition from live microorganisms, through their decay, to microbial fossils using in situ microscopy (transmission electron microscopy, scanning electron microscopy in back-scattered electron mode) and microanalytical (energy dispersive X-ray spectroscopy) techniques. Our results demonstrate that, after their death, endolithic microorganisms inhabiting Commonwealth Glacier sandstone from the Antarctica McMurdo Dry Valleys become mineralized. In some cases, epicellular deposition of minerals and/or simply filling up of empty moulds by minerals leads to the formation of cell-shaped structures that may be considered biomarkers. The continuous deposition of allochthonous clay minerals and sulfate-rich salts fills the sandstone pores. This process can give rise to microbial fossils with distinguishable cell wall structures. Often, fossilized cell interiors were of a different chemical composition to the mineralized cell walls. We propose that the microbial fossil formation observed was induced by mineral precipitation resulting from inorganic processes occurring after the death of cryptoendolithic microorganisms. Nevertheless, it must have been the organic template that provoked the diffusion of mineral elements and gave rise to their characteristic distribution pattern inside the fossilized cells.

  9. Data for four geologic test holes in the Sacramento Valley, California

    USGS Publications Warehouse

    Berkstresser, C.F.; French, J.J.; Schaal, M.E.

    1985-01-01

    The report provides geological and geophysical data for four of seven test holes drilled as a part of the Central Valley Aquifer Project, which is part of the Regional Aquifer Systems Analysis. The holes were drilled with a rotary well drilling machine to depths of 900 feet in the southwestern part of the Sacramento Valley in Solano and Yolo Counties. Geologic data for each well include lithology, texture, color, character of the contact, sorting, rounding, and cementation, determined from cuttings, cores, and sidewall covers. Fifty cores, 3 feet long, were obtained from each hole, and from eight to fourteen sidewall cores were collected. Geophysical data include a dual-induction log, spherically focused log (SFL), compensated neutron-formation density log, gamma-ray log, and a caliper log. These data are presented in four tables and on four plates. (USGS)

  10. Application of U-Th-Pb phosphate geochronology to young orogenic gold deposits: New age constraints on the formation of the Grass Valley gold district, Sierra Foothills province, California

    USGS Publications Warehouse

    Taylor, Ryan D.; Goldfarb, Richard J.; Monecke, Thomas; Fletcher, Ian R.; Cosca, Michael A.; Kelly, Nigel M.

    2015-01-01

    The Grass Valley orogenic gold district in the Sierra Nevada foothills province, central California, the largest historic gold producer of the North American Cordillera, comprises both steeply dipping east-west (E-W) veins located along lithologic contacts in accreted ca. 300 and 200 Ma oceanic rocks and shallowly dipping north-south (N-S) veins hosted by the Grass Valley granodiorite; the latter have yielded about 70 percent of the 13 million ounces of historic lode gold production in the district. The oceanic host rocks were accreted to the western margin of North America between 200 and 170 Ma, metamorphosed to greenschist and amphibolite facies, and uplifted between 175 and 160 Ma. Large-scale magmatism in the Sierra Nevada occurred between 170-140 Ma and 120-80 Ma, with the Grass Valley granodiorite being emplaced during the older episode of magmatism. Uranium-lead isotopic dating of hydrothermal xenotime yielded the first absolute age of 162±5 Ma for the economically more significant N-S veins. The vein-hosted xenotime, as well as associated monazite, are unequivocally of hydrothermal origin as indicated by textural and chemical characteristics, including grain shape, lack of truncated growth banding, lack of a Eu anomaly, and low U and Th concentrations. Furthermore, the crack-seal texture of the veins, with abundant wallrock slivers, suggests their formation as a result of episodic fluid flow possibly related to reoccurring seismic events, rather than a period of fluid exsolution from an evolving magma. The N-S veins are temporally distinct from a younger 153-151 Ma gold event that was previously reported for the E-W veins. Overlapping U-Pb zircon (159.9±2.2 Ma) and 40Ar/39Ar biotite and hornblende (159.7±0.6 to 161.9±1.4 Ma) ages and geothermobarometric calculations indicate that the Grass Valley granodiorite was emplaced at ca. 160 Ma at elevated temperatures (~800°C) within approximately 3 km of the paleosurface and rapidly cooled to the ambient

  11. 27 CFR 9.154 - Chiles Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Chiles Valley. (a) Name. The name of the viticultural area described in this section is “Chiles Valley... viticultural area are four 1:24,000 Scale U.S.G.S. topography maps. They are titled: (1) St. Helena, CA 1960 photorevised 1980; (2) Rutherford, CA 1951 photorevised 1968; (3) Chiles Valley, CA 1958 photorevised 1980; (4...

  12. Active turnover regulates pattern formation and stress transmission in disordered acto-myosin networks

    NASA Astrophysics Data System (ADS)

    McCall, Patrick; Stam, Samantha; Kovar, David; Gardel, Margaret

    The shape and mechanics of animal cells are controlled by a dynamic, thin network of semiflexible actin filaments and myosin-II motor proteins called the actomyosin cortex. Motor-generated stresses in the cortex drive changes in cell shape during cell division and morphogenesis, while dynamic turnover of actin filaments dissipates stress. The relative effects that force generation, force dissipation, and disassembly and reassembly of material have on motion in these networks are unknown. We find that cross-linked actin networks in vitro contract under myosin-generated stresses, resulting in partial filament disassembly, the formation of asters, and clustering of myosin motors. We observe a rapid restoration of uniform polymer density in the presence of the assembly factors which catalyze network turnover through elongation of severed actin filaments. When severing is accelerated further by the addition of a severing protein, network contraction and motor clustering are dramatically suppressed. We test the relative effects of material regeneration and force transmission using image analysis, and conclude that the dominant mechanism for this effect is relatively short-lived stresses that do not propagate over considerable distance or push network deformation into the nonlinear contractile regime we have previously characterized. Our results present a framework to understand cytoskeletal active matter that are influenced by a complex interplay between stress generation, network reorganization, and polymer turnover.

  13. Meter-Scale Characteristics of Martian Channels and Valleys

    USGS Publications Warehouse

    Carr, M.H.; Malin, M.C.

    2000-01-01

    Mars Global Surveyor images, with resolutions as high as 1.5 m pixel, enable characterization of martian channels and valleys at resolutions one to two orders of magnitude better than was previously possible. A major surprise is the near-absence of valleys a few hundred meters wide and narrower. The almost complete absence of fine-scale valleys could be due to lack of precipitation, destruction of small valleys by erosion, or dominance of infiltration over surface runoff. V-shaped valleys with a central channel, such as Nanedi Vallis, provide compelling evidence for sustained or episodic flow of water across the surface. Larger valleys appear to have formed not by headward erosion as a consequence of groundwater sapping but by erosion from water sources upstream of the observed sections. The freshest appearing valleys have triangular cross sections, with talus from opposing walls meeting at the center of the valley. The relations suggest that the width of the valleys is controlled by the depth of incision and the angle of repose of the walls. The flat floors of less fresh-appearing valleys result primarily from later eolian fill. Several discontinuous valleys and lines of craters suggest massive subsurface solution or erosion. The climatic implications of the new images will remain obscure until the cause for the scarcity of fine-scale dissection is better understood. ?? 2000 Academic Press.

  14. The DYNAFLUX / DYNACOLD (Dynamics, Fluxes, Stability, Succession and Landscape Formation in Cold Environments) Network (2004-2017)

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.

    2017-04-01

    There is a wide range of high-latitude and high-altitude cold climate landscapes within Europe, covering a significant proportion of the total land surface area. This spectrum of defined cold-climate landscapes represents a variety of stages of deglaciation history and landscape formation. We can find landscapes at different levels of postglacial stabilization which is providing the unique opportunity to study the interactions between geo-, bio-, social and socio-economic systems at the land surface. The DYNAFLUX / DYNACOLD Network (2004-2017) bridges across the geo-, bio-, social and socio-economic sciences in order to analyze the complex dynamics of adjustment, stabilization, succession and landscape formation during and after ice retreat and under ongoing anthropogenic influences. The network provides a multidisciplinary forum where researchers come together and discuss. In addition, this network is linking a number of other scientific networks, working groups and programs and creates an umbrella network and a forum for sharing knowledge and experience. The scientific focus of DYNAFLUX / DYNACOLD is also relevant for a number of end users, including risk and vulnerability assessment, sustainable land use, land management and conservation. In addition, present key questions related to environmental change like, e.g., hazards, permafrost degradation and loss of biodiversity are addressed and discussed. Further information is found under http://www.ngu.no/sediflux.

  15. Subsurface valleys and geoarcheology of the Eastern Sahara revealed by shuttle radar

    USGS Publications Warehouse

    McCauley, J.F.; Schaber, G.G.; Breed, C.S.; Grolier, M.J.; Haynes, C.V.; Issawi, B.; Elachi, C.; Blom, R.

    1982-01-01

    The shuttle imaging radar (SIR-A) carried on the space shuttle Columbia in November 1981 penetrated the extremely dry Selima Sand Sheet, dunes, and drift sand of the eastern Sahara, revealing previously unknown buried valleys, geologic structures, and possible Stone Age occupation sites. Radar responses from bedrock and gravel surfaces beneath windblown sand several centimeters to possibly meters thick delineate sand- and alluvium-filled valleys, some nearly as wide as the Nile Valley and perhaps as old as middle Tertiary. The nov-vanished maijor river systems that carved these large valleys probably accomplished most of the erosional stripping of this extraordinarily flat, hyperarid region. Underfit and incised dry wadis, many superimposed on the large valleys, represent erosion by intermittent running water, probably during Quaternary pluvials. Stone Age artifacts associated with soils in the alluvium suggest that areas near the wadis may have been sites of early human occupation. The presence of old drainage networks beneath the sand sheet provides a geologic explanation for the locations of many playas and present-day oases which have been centers of episodic human habitation. Radar penetration of dry sand and soils varies with the wavelength of the incident signals (24 centimeters for the SIR-A system), incidence angle, and the electrical properties of the materials, which are largely determined by moisture content. The calculated depth of radar penetration of dry sand and granules, based on laboratory measurements of the electrical properties of samples from the Selima Sand Sheet, is at least 5 meters. Recent (September 1982) field studies in Egypt verified SIR-A signal penetration depths of at least 1 meter in the Selima Sand Sheet and in drift sand and 2 or more meters in sand dunes. Copyright ?? 1982 AAAS.

  16. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California

    NASA Astrophysics Data System (ADS)

    Schubert, Brian A.; Lowenstein, Tim K.; Timofeeff, Michael N.

    2009-06-01

    Primary fluid inclusions in halite crystallized in Saline Valley, California, in 1980, 2004-2005, and 2007, contain rod- and coccoid-shaped microparticles the same size and morphology as archaea and bacteria living in modern brines. Primary fluid inclusions from a well-dated (0-100,000 years), 90 m long salt core from Badwater Basin, Death Valley, California, also contain microparticles, here interpreted as halophilic and halotolerant prokaryotes. Prokaryotes are distinguished from crystals on the basis of morphology, optical properties (birefringence), and uniformity of size. Electron micrographs of microparticles from filtered modern brine (Saline Valley), dissolved modern halite crystals (Saline Valley), and dissolved ancient halite crystals (Death Valley) support in situ microscopic observations that prokaryotes are present in fluid inclusions in ancient halite. In the Death Valley salt core, prokaryotes in fluid inclusions occur almost exclusively in halite precipitated in perennial saline lakes 10,000 to 35,000 years ago. This suggests that trapping and preservation of prokaryotes in fluid inclusions is influenced by the surface environment in which the halite originally precipitated. In all cases, prokaryotes in fluid inclusions in halite from the Death Valley salt core are miniaturized (<1 μm diameter cocci, <2.5 μm long, very rare rod shapes), which supports interpretations that the prokaryotes are indigenous to the halite and starvation survival may be the normal response of some prokaryotes to entrapment in fluid inclusions for millennia. These results reinforce the view that fluid inclusions in halite and possibly other evaporites are important repositories of microbial life and should be carefully examined in the search for ancient microorganisms on Earth, Mars, and elsewhere in the Solar System.

  17. Valley Vortex States in Sonic Crystals

    NASA Astrophysics Data System (ADS)

    Lu, Jiuyang; Qiu, Chunyin; Ke, Manzhu; Liu, Zhengyou

    2016-03-01

    Valleytronics is quickly emerging as an exciting field in fundamental and applied research. In this Letter, we study the acoustic version of valley states in sonic crystals and reveal a vortex nature of such states. In addition to the selection rules established for exciting valley polarized states, a mimicked valley Hall effect of sound is proposed further. The extraordinary chirality of valley vortex states, detectable in experiments, may open a new possibility in sound manipulations. This is appealing to scalar acoustics that lacks a spin degree of freedom inherently. In addition, the valley selection enables a handy way to create vortex matter in acoustics, in which the vortex chirality can be controlled flexibly. Potential applications can be anticipated with the exotic interaction of acoustic vortices with matter, such as to trigger the rotation of the trapped microparticles without contact.

  18. Geothermal energy from deep sedimentary basins: The Valley of Mexico (Central Mexico)

    NASA Astrophysics Data System (ADS)

    Lenhardt, Nils; Götz, Annette E.

    2015-04-01

    The geothermal potential of the Valley of Mexico has not been addressed in the past, although volcaniclastic settings in other parts of the world contain promising target reservoir formations. A first assessment of the geothermal potential of the Valley of Mexico is based on thermophysical data gained from outcrop analogues, covering all lithofacies types, and evaluation of groundwater temperature and heat flow values from literature. Furthermore, the volumetric approach of Muffler and Cataldi (1978) leads to a first estimation of ca. 4000 TWh (14.4 EJ) of power generation from Neogene volcanic rocks within the Valley of Mexico. Comparison with data from other sedimentary basins where deep geothermal reservoirs are identified shows the high potential of the Valley of Mexico for future geothermal reservoir utilization. The mainly low permeable lithotypes may be operated as stimulated systems, depending on the fracture porosity in the deeper subsurface. In some areas also auto-convective thermal water circulation might be expected and direct heat use without artificial stimulation becomes reasonable. Thermophysical properties of tuffs and siliciclastic rocks qualify them as promising target horizons (Lenhardt and Götz, 2015). The here presented data serve to identify exploration areas and are valuable attributes for reservoir modelling, contributing to (1) a reliable reservoir prognosis, (2) the decision of potential reservoir stimulation, and (3) the planning of long-term efficient reservoir utilization. References Lenhardt, N., Götz, A.E., 2015. Geothermal reservoir potential of volcaniclastic settings: The Valley of Mexico, Central Mexico. Renewable Energy. [in press] Muffler, P., Cataldi, R., 1978. Methods for regional assessment of geothermal resources. Geothermics, 7, 53-89.

  19. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    PubMed

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  20. Smectite deposits in Marathon Valley, Endeavour Crater, Mars, identified using CRISM hyperspectral reflectance data

    NASA Astrophysics Data System (ADS)

    Fox, V. K.; Arvidson, R. E.; Guinness, E. A.; McLennan, S. M.; Catalano, J. G.; Murchie, S. L.; Powell, K. E.

    2016-05-01

    The ~100 m wide Marathon Valley crosscuts the Cape Tribulation rim segment of the 22 km diameter, Noachian-age Endeavour impact crater on Mars. Single-scattering albedo spectra retrieved from three Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) Full-Resolution Targeted (FRT, regularized to 18 m/pixel) and two Along Track Oversampled (ATO, regularized to 12 m/pixel) observations indicate the presence of Fe3+-Mg2+ smectite exposures located in Marathon Valley with combination vibration metal-OH absorption strength comparable to smectite spectral signatures in Mawrth Vallis. The Opportunity rover was directed to the exposures and documented the presence of Shoemaker formation impact breccias that have been isochemically altered, likely by fracture-controlled aqueous fluids.

  1. Optical tuning of electronic valleys (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sie, Edbert J.; Gedik, Nuh

    2017-02-01

    Monolayer transition-metal dichalcogenides such as MoS2 and WS2 are prime examples of atomically thin semiconducting crystals that exhibit remarkable electronic and optical properties. They have a pair of valleys that can serve as a new electronic degree of freedom, and these valleys obey optical selection rules with circularly polarized light. Here, we discuss how ultrafast laser pulses can be used to tune their energy levels in a controllable valley-selective manner. The energy tunability is extremely large, comparable to what would be obtained using a hundred Tesla of magnetic field. We will also show that such valley tunability can be performed while we effectively manipulate the valley selection rules. Finally, we will explore the prospect of using this technique through photoemission spectroscopy to create a new phase of matter called a valley Floquet topological insulator.

  2. Characterization of VOC Emissions from Various Components of Dairy Farming and their effect on San Joaquin Valley Air Quality

    NASA Astrophysics Data System (ADS)

    Yang, M. M.; Meinardi, S.; Krauter, C.; Blake, D.

    2008-12-01

    The San Joaquin Valley Air Basin in Central California is classified by the U.S. Environmental Protection Agency (EPA) as a serious non-attainment area for health-based eight-hour federal ozone (smog) standard (1). In August 2005, the San Joaquin Valley Air Pollution Control District issued a report identifying dairies as a main source of Volatile Organic Compounds (VOCs) and fine particulate matter in the valley (2). Among these compounds, we have found that ethanol, methanol, acetone and acetaldehyde are produced in major quantities throughout the San Joaquin valley as by-products of yeast fermentation of silage and photochemical oxidation. These oxygenates, especially ethanol, play an important role in ozone (O3) formation within the valley. Three different types of sampling protocols were employed in order to determine the degree of enhancement of the four oxygenates in the valley air shed, as well as to determine their sources, emission profiles and emission rates. An assessment of the emissions of these oxygenates in the valley was achieved using data obtained on low altitude flights through the valley and from ground level samples collected thoughout the valley. The photochemical production of ozone was calculated for each of the four oxygenates and approximately one hundred other quantified VOCs. Based on the Maximum Incremental Reactivity (MIR) scale and concentrations of each oxygenate in the atmosphere, as much as 20% of O3 production in the valley is from ethanol and its photochemical by-product acetaldehyde. Our findings suggest that improvement to the valley air quality may be obtained by focusing on instituting new silage containment practices and regulations. 1. Lindberg, J. "Analysis of the San Joaquin Valley 2007 Ozone Plan." State of California Air Resources Board. Final Draft Staff Report. 5/30/2007. 2. Crow, D., executive director/APCO. "Air Pollution Control Officer's Determination of VOC Emisison Factors for Dairies." San Joaquin Valley Air

  3. Magnetotelluric study of the Pahute Mesa and Oasis Valley regions, Nye County, Nevada

    USGS Publications Warehouse

    Schenkel, Clifford J.; Hildenbrand, Thomas G.; Dixon, Gary L.

    1999-01-01

    Magnetotelluric data delineate distinct layers and lateral variations above the pre-Tertiary basement. On Pahute Mesa, three resistivity layers associated with the volcanic rocks are defined: a moderately resistive surface layer, an underlying conductive layer, and a deep resistive layer. Considerable geologic information can be derived from the conductive layer which extents from near the water table down to a depth of approximately 2 km. The increase in conductivity is probably related to zeolite zonation observed in the volcanic rock on Pahute Mesa, which is relatively impermeable to groundwater flow unless fractured. Inferred faults within this conductive layer are modeled on several profiles crossing the Thirsty Canyon fault zone. This fault zone extends from Pahute Mesa into Oasis Valley basin. Near Colson Pond where the basement is shallow, the Thirsty Canyon fault zone is several (~2.5) kilometers wide. Due to the indicated vertical offsets associated with the Thirsty Canyon fault zone, the fault zone may act as a barrier to transverse (E-W) groundwater flow by juxtaposing rocks of different permeabilities. We propose that the Thirsty Canyon fault zone diverts water southward from Pahute Mesa to Oasis Valley. The electrically conductive nature of this fault zone indicates the presence of abundant alteration minerals or a dense network of open and interconnected fractures filled with electrically conductive groundwater. The formation of alteration minerals require the presence of water suggesting that an extensive interconnected fracture system exists or existed at one time. Thus, the fractures within the fault zone may be either a barrier or a conduit for groundwater flow, depending on the degree of alteration and the volume of open pore space. In Oasis Valley basin, a conductive surface layer, composed of alluvium and possibly altered volcanic rocks, extends to a depth of 300 to 500 m. The underlying volcanic layer, composed mostly of tuffs, fills the

  4. A cold-wet middle-latitude environment on Mars during the Hesperian-Amazonian transition: Evidence from northern Arabia valleys and paleolakes

    NASA Astrophysics Data System (ADS)

    Wilson, Sharon A.; Howard, Alan D.; Moore, Jeffrey M.; Grant, John A.

    2016-09-01

    The growing inventory of post-Noachian fluvial valleys may represent a late, widespread episode of aqueous activity on Mars, contrary to the paradigm that fluvial activity largely ceased around the Noachian-Hesperian boundary. Fresh shallow valleys (FSVs) are widespread from ~30 to 45° in both hemispheres with a high concentration in northern Arabia Terra. Valleys in northern Arabia Terra characteristically start abruptly on steeper slopes and terminate in topographic depressions at elevations corresponding to model-predicted lake levels. Longer valley systems flowed into and out of chains of paleolakes. Minimum discharges based on the dimensions of the incised channel assuming medium to coarse sand-size grains ranges from tens to hundreds of m3 s-1, respectively, consistent with formation via snowmelt from surface or sub-ice flows. Hydrologic calculations indicate the valleys likely formed in hundreds of years or less, and crater statistics constrain the timing of fluvial activity to between the Hesperian and middle Amazonian. Several craters with channels extending radially outward supports evidence for overflow of interior crater lakes possibly fed by groundwater. Most FSVs occur away from young impact craters which make an association with impact processes improbable. The widespread occurrence of FSVs along with their similar morphology and shared modest state of degradation is consistent with most forming during a global interval of favorable climate, perhaps contemporaneous with alluvial fan formation in equatorial and midlatitudes. Evidence for a snowmelt-based hydrology and considerable depths of water on the landscape in Arabia supports a cold, wet, and possibly habitable environment late in Martian history.

  5. Martian oceans, valleys and climate

    USGS Publications Warehouse

    Carr, M.H.

    2000-01-01

    The new Mars Global Surveyor altimetry shows that the heavily cratered southern hemisphere of Mars is 5 km higher that the sparely cratered plains of the northern hemisphere. Previous suggestions that oceans formerly occupied that northern plains as evidenced by shorelines are partly supported by the new data. A previously identified outer boundary has a wide range of elevations and is unlikely to be a shoreline but an inner contact with a narrow range of elevations is a more likely candidate. No shorelines are visible in the newly acquired, 2.5 metre/pixel imaging. Newly imaged valleys provide strong support for sustained or episodic flow of water across the Martian surface. A major surprise, however, is the near absence of valleys less than 100 m across. Martian valleys seemingly do not divide into ever smaller valleys as terrestrial valleys commonly do. This could be due to lack of precipitation or lack of surface runoff because of high infiltration rates. High erosion rates and supports warm climates and presence of large bodies of water during heavy bombardment. The climate history and fate of the water after heavy bombardment remain cotroversial.

  6. Late Permian vertebrate community of the Pranhita Godavari valley, India

    NASA Astrophysics Data System (ADS)

    Ray, Sanghamitra; Bandyopadhyay, Saswati

    2003-03-01

    The Kundaram Formation of the Pranhita-Godavari valley yields the only Late Permian multispecies terrestrial vertebrate assemblage from India. This includes various medium and small dicynodonts such as Endothiodon, Oudenodon, Kingoria, Emydops, Cistecephalus and Pristerodon. At present two species of Endothiodon ( E. mahalanobisi and E. uniseries) are known. Apart from these dicynodonts, the Kundaram vertebrate fauna also contains a medium-sized gorgonopsian and a small captorhinid. The material, from the red mudstone dominated Kundaram Formation, includes numerous isolated, disarticulated skulls and lower jaws. Postcranial elements are relatively rare except for a few broken limb ends and vertebrae. The bones are encrusted by iron rich matrix and most of them had suffered deformation. This skull dominant accumulation is attributed to prolonged aerial exposure prior to burial resulting in disarticulation of the skeletons and subsequent inundation by floodwater. The limb bones and other postcranial elements of the already disarticulated skeletons were winnowed out by shallow competent flow while the relatively heavier skulls and lower jaws resisting transportation were buried near the site of death. The Late Permian scenario of the Pranhita-Godavari valley was characterised by the dominance of herbivores. This abundance of herbivores at the base and the presence of relatively few carnivores and omnivores at the top of the Kundaram food pyramid indicate a trophic structure similar to that of the modern-day terrestrial ecosystem.

  7. Foehn-induced effects on local dust pollution, frontal clouds and solar radiation in the Dead Sea valley

    NASA Astrophysics Data System (ADS)

    Kishcha, Pavel; Starobinets, Boris; Savir, Amit; Alpert, Pinhas; Kaplan, Michael

    2018-06-01

    Despite the long history of investigation of foehn phenomena, there are few studies of the influence of foehn winds on air pollution and none in the Dead Sea valley. For the first time the foehn phenomenon and its effects on local dust pollution, frontal cloudiness and surface solar radiation were analyzed in the Dead Sea valley, as it occurred on 22 March 2013. This was carried out using both numerical simulations and observations. The foehn winds intensified local dust emissions, while the foehn-induced temperature inversion trapped dust particles beneath this inversion. These two factors caused extreme surface dust concentration in the western Dead Sea valley. The dust pollution was transported by west winds eastward, to the central Dead Sea valley, where the speed of these winds sharply decreased. The transported dust was captured by the ascending airflow contributing to the maximum aerosol optical depth (AOD) over the central Dead Sea valley. On the day under study, the maximum surface dust concentration did not coincide with the maximum AOD: this being one of the specific effects of the foehn phenomenon on dust pollution in the Dead Sea valley. Radar data showed a passage of frontal cloudiness through the area of the Dead Sea valley leading to a sharp drop in noon solar radiation. The descending airflow over the downwind side of the Judean Mountains led to the formation of a cloud-free band followed by only the partial recovery of solar radiation because of the extreme dust pollution caused by foehn winds.

  8. Chemistry and Mineralogy of Antarctica Dry Valley Soils: Implications for Mars

    NASA Technical Reports Server (NTRS)

    Quinn, J. E.; Golden, D. C.; Graff, T. G.; Ming, D. W.; Morris, R. V.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Tamppari, L, K.; Smith, P. H.; hide

    2011-01-01

    The Antarctic Dry Valleys (ADV) comprise the largest ice-free region of Antarctica. Precipitation almost always occurs as snow, relative humidity is frequently low, and mean annual temperatures are about -20 C. The ADV soils have previously been categorized into three soil moisture regimes: subxerous, xerous and ultraxerous, based on elevation and climate influences. The subxerous regime is predominately a coastal zone soil, and has the highest average temperature and precipitation, while the ultraxerous regime occurs at high elevation (>1000 m) and have very low temperature and precipitation. The amounts and types of salts present in the soils vary between regions. The nature, origin and significance of salts in the ADV have been previously investigated. Substantial work has focused on soil formation in the ADVs, however, little work has focused on the mineralogy of secondary alteration phases. The dominant weathering process in the ADV region is physical weathering, however, chemical weathering has been well documented. The objective of this study was to characterize the chemistry and mineralogy, including the alteration mineralogy, of soils from two sites, a subxerous soil in Taylor Valley, and an ultraxerous soil in University Valley. The style of aqueous alteration in the ADVs may have implications for pedogenic processes on Mars.

  9. Magnetic control of valley pseudospin in monolayer WSe 2

    DOE PAGES

    Aivazian, G.; Gong, Zhirui; Jones, Aaron M.; ...

    2015-01-26

    Local energy extrema of the bands in momentum space, or valleys, can endow electrons in solids with pseudo-spin in addition to real spin 1-5. In transition metal dichalcogenides this valley pseudo-spin, like real spin, is associated with a magnetic moment1,6 which underlies the valley-dependent circular dichroism 6 that allows optical generation of valley polarization 7-9, intervalley quantum coherence 10, and the valley Hall effect 11. However, magnetic manipulation of valley pseudospin via this magnetic moment 12-13, analogous to what is possible with real spin, has not been shown before. Here we report observation of the valley Zeeman splitting and magneticmore » tuning of polarization and coherence of the excitonic valley pseudospin, by performing polarization-resolved magneto-photoluminescence on monolayer WSe 2. Our measurements reveal both the atomic orbital and lattice contributions to the valley orbital magnetic moment; demonstrate the deviation of the band edges in the valleys from an exact massive Dirac fermion model; and reveal a striking difference between the magnetic responses of neutral and charged valley excitons which is explained by renormalization of the excitonic spectrum due to strong exchange interactions.« less

  10. On Parle Francais Ici: The People of the St. John Valley Have a Tremendous Advantage.

    ERIC Educational Resources Information Center

    Banville, Beurmond J.

    1995-01-01

    A change in philosophy concerning the maintenance of native languages has led to local efforts to revive the French language in the St. John Valley (Maine), including the formation of a community organization and implementation of language programs in which children in all grades receive daily instruction in French. (LP)

  11. In situ recording of particle network formation in liquids by ion conductivity measurements.

    PubMed

    Pfaffenhuber, Christian; Sörgel, Seniz; Weichert, Katja; Bele, Marjan; Mundinger, Tabea; Göbel, Marcus; Maier, Joachim

    2011-09-21

    The formation of fractal silica networks from a colloidal initial state was followed in situ by ion conductivity measurements. The underlying effect is a high interfacial lithium ion conductivity arising when silica particles are brought into contact with Li salt-containing liquid electrolytes. The experimental results were modeled using Monte Carlo simulations and tested using confocal fluorescence laser microscopy and ζ-potential measurements.

  12. Spin and valley filter across line defect in silicene

    NASA Astrophysics Data System (ADS)

    Wang, Sake; Ren, Chongdan; Li, Yunfang; Tian, Hongyu; Lu, Weitao; Sun, Minglei

    2018-05-01

    We propose a new scheme to achieve an effective spin/valley filter in silicene with extended line defect on the basis of spin–valley coupling due to the intrinsic spin-orbit coupling (SOC). The transmission coefficient of the spin/valley states is seriously affected by the SOC. When a perpendicular magnetic field is applied on one side of the line defect, one valley state will experience backscattering, but the other valley will not; this leads to high valley polarization in all transmission directions. Moreover, the spin/valley polarization can be enhanced to 96% with the aid of a perpendicular electric field.

  13. Aquatic habitats of Canaan Valley, West Virginia: Diversity and environmental threats

    USGS Publications Warehouse

    Snyder, C.D.; Young, J.A.; Stout, B. M.

    2006-01-01

    We conducted surveys of aquatic habitats during the spring and summer of 1995 in Canaan Valley, WV, to describe the diversity of aquatic habitats in the valley and identify issues that may threaten the viability of aquatic species. We assessed physical habitat and water chemistry of 126 ponds and 82 stream sites, and related habitat characteristics to landscape variables such as geology and terrain. Based on our analyses, we found two issues likely to affect the viability of aquatic populations in the valley. The first issue was acid rain and the extent to which it potentially limits the distribution of aquatic and semi-aquatic species, particularly in headwater portions of the watershed. We estimate that nearly 46%, or 56 kilometers of stream, had pH levels that would not support survival and reproduction of Salvelinuw fontinalis (brook trout), one of the most acid-tolerant fishes in the eastern US. The second issue was the influence of Castor canadensis (beaver) activity. In the Canaan Valley State Park portion of the valley, beaver have transformed 4.7 kilometers of stream (approximately 17% of the total) to pond habitat through their dam building. This has resulted in an increase in pond habitat, a decrease in stream habitat, and a fragmented stream network (i.e., beaver ponds dispersed among stream reaches). In addition, beaver have eliminated an undetermined amount of forested riparian area through their foraging activities. Depending on the perspective, beaver-mediated changes can be viewed as positive or negative. Increases in pond habitat may increase habitat heterogeneity with consequent increases in biological diversity. In contrast, flooding associated with beaver activity may eliminate lowland wetlands and associated species, create barriers to fish dispersal, and possibly contribute to low dissolved oxygen levels in the Blackwater River. We recommend that future management strategies for the wildlife refuge be viewed in the context of these two issues

  14. Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications.

    PubMed

    Fortunato, Tiago M; Beltrami, Cristina; Emanueli, Costanza; De Bank, Paul A; Pula, Giordano

    2016-05-04

    Revascularisation is a key step for tissue regeneration and complete organ engineering. We describe the generation of human platelet lysate gel (hPLG), an extracellular matrix preparation from human platelets able to support the proliferation of endothelial colony forming cells (ECFCs) in 2D cultures and the formation of a complete microvascular network in vitro in 3D cultures. Existing extracellular matrix preparations require addition of high concentrations of recombinant growth factors and allow only limited formation of capillary-like structures. Additional advantages of our approach over existing extracellular matrices are the absence of any animal product in the composition hPLG and the possibility of obtaining hPLG from patients to generate homologous scaffolds for re-implantation. This discovery has the potential to accelerate the development of regenerative medicine applications based on implantation of microvascular networks expanded ex vivo or the generation of fully vascularised organs.

  15. Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications

    PubMed Central

    Fortunato, Tiago M.; Beltrami, Cristina; Emanueli, Costanza; De Bank, Paul A.; Pula, Giordano

    2016-01-01

    Revascularisation is a key step for tissue regeneration and complete organ engineering. We describe the generation of human platelet lysate gel (hPLG), an extracellular matrix preparation from human platelets able to support the proliferation of endothelial colony forming cells (ECFCs) in 2D cultures and the formation of a complete microvascular network in vitro in 3D cultures. Existing extracellular matrix preparations require addition of high concentrations of recombinant growth factors and allow only limited formation of capillary-like structures. Additional advantages of our approach over existing extracellular matrices are the absence of any animal product in the composition hPLG and the possibility of obtaining hPLG from patients to generate homologous scaffolds for re-implantation. This discovery has the potential to accelerate the development of regenerative medicine applications based on implantation of microvascular networks expanded ex vivo or the generation of fully vascularised organs. PMID:27141997

  16. Evolutionarily Conserved Sequence Features Regulate the Formation of the FG Network at the Center of the Nuclear Pore Complex

    PubMed Central

    Peyro, M.; Soheilypour, M.; Lee, B.L.; Mofrad, M.R.K.

    2015-01-01

    The nuclear pore complex (NPC) is the portal for bidirectional transportation of cargos between the nucleus and the cytoplasm. While most of the structural elements of the NPC, i.e. nucleoporins (Nups), are well characterized, the exact transport mechanism is still under much debate. Many of the functional Nups are rich in phenylalanine-glycine (FG) repeats and are believed to play the key role in nucleocytoplasmic transport. We present a bioinformatics study conducted on more than a thousand FG Nups across 252 species. Our results reveal the regulatory role of polar residues and specific sequences of charged residues, named ‘like charge regions’ (LCRs), in the formation of the FG network at the center of the NPC. Positively charged LCRs prepare the environment for negatively charged cargo complexes and regulate the size of the FG network. The low number density of charged residues in these regions prevents FG domains from forming a relaxed coil structure. Our results highlight the significant role of polar interactions in FG network formation at the center of the NPC and demonstrate that the specific localization of LCRs, FG motifs, charged, and polar residues regulate the formation of the FG network at the center of the NPC. PMID:26541386

  17. Aperiodic dynamics in a deterministic adaptive network model of attitude formation in social groups

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan A.; Grindrod, Peter

    2014-07-01

    Adaptive network models, in which node states and network topology coevolve, arise naturally in models of social dynamics that incorporate homophily and social influence. Homophily relates the similarity between pairs of nodes' states to their network coupling strength, whilst social influence causes coupled nodes' states to convergence. In this paper we propose a deterministic adaptive network model of attitude formation in social groups that includes these effects, and in which the attitudinal dynamics are represented by an activato-inhibitor process. We illustrate that consensus, corresponding to all nodes adopting the same attitudinal state and being fully connected, may destabilise via Turing instability, giving rise to aperiodic dynamics with sensitive dependence on initial conditions. These aperiodic dynamics correspond to the formation and dissolution of sub-groups that adopt contrasting attitudes. We discuss our findings in the context of cultural polarisation phenomena. Social influence. This reflects the fact that people tend to modify their behaviour and attitudes in response to the opinions of others [22-26]. We model social influence via diffusion: agents adjust their state according to a weighted sum (dictated by the evolving network) of the differences between their state and the states of their neighbours. Homophily. This relates the similarity of individuals' states to their frequency and strength of interaction [27]. Thus in our model, homophily drives the evolution of the weighted ‘social' network. A precise formulation of our model is given in Section 2. Social influence and homophily underpin models of social dynamics [21], which cover a wide range of sociological phenomena, including the diffusion of innovations [28-32], complex contagions [33-36], collective action [37-39], opinion dynamics [19,20,40,10,11,13,15,41,16], the emergence of social norms [42-44], group stability [45], social differentiation [46] and, of particular relevance

  18. Characterizing the ozone formation potential of agricultural sources in California's San Joaquin Valley: A computational and experimental approach

    NASA Astrophysics Data System (ADS)

    Howard, Cody Jerome

    The global pattern of expanding urban centers and increasing agricultural intensity is leading to more frequent interactions between air pollution emissions from urban and agricultural sources. The confluence of these emissions that traditionally have been separated by hundreds of kilometers is creating new air quality challenges in numerous regions across the United States. An area of particular interest is California's San Joaquin Valley (SJV), which has an agricultural output higher than many countries, a rapidly expanding human population, and ozone concentrations that are already higher than many dense urban areas. New regulations in the SJV restrict emissions of reactive organic gases (ROG) from animal sources in an attempt to meet Federal and State ozone standards designed to protect human health. A transportable "smog" chamber was developed and tested to directly measure the ozone formation potential of a variety of agricultural emissions in representative urban and rural atmospheres. After validation of the experimental procedure, four animal types were examined: beef cattle, dairy cattle, swine, and poultry, as well as six commonly used animal feeds: cereal silage (wheat grain and oat grain), alfalfa silage, corn silage, high moisture ground corn, almond shells, almond hulls, and total mixed ration. The emitted ROG composition was also measured so that the theoretical incremental reactivity could be calculated for a variety of atmospheres and directly compared with the measured ozone formation potential (OFP) under the experimental conditions. A computational model was created based on a modified form of the Caltech Atmospheric Chemistry Mechanism and validated against experimental results. After validation, the computational model was used to predict OFP across a range of NOx and ROG concentrations. The ROG OFP measurements combined with adjusted agricultural ROG emissions inventory estimates were used to predict the actual ozone production in the SJV

  19. 27 CFR 9.36 - McDowell Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....” (b) Approved maps. The appropriate map for determining the boundaries of the McDowell Valley... and the ridge line (highest elevation line) between the McDowell Creek Valley and the Dooley Creek Valley. (3) Then southeasterly along the ridge line (highest elevation line) to the intersection of the...

  20. 27 CFR 9.36 - McDowell Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....” (b) Approved maps. The appropriate map for determining the boundaries of the McDowell Valley... and the ridge line (highest elevation line) between the McDowell Creek Valley and the Dooley Creek Valley. (3) Then southeasterly along the ridge line (highest elevation line) to the intersection of the...

  1. Ground water in Tooele Valley, Tooele County, Utah

    USGS Publications Warehouse

    Thomas, H.E.

    1946-01-01

    Tooele Valley is a typical basin of the Basin and Range Province located about 30 miles southwest of Salt Lake City. It is roughly 15 miles long and 10 miles wide and has a population of about 7,000. Bordered on the west by the Stansbury Range, on the east by the Oquirrh Range, and on the south by South Mountain, it opens northward to Great Salt Lake. The bordering mountain ranges are formed by Paleozoic rocks ranging in age from Lower Cambrian to Pennsylvanian but with the Ordovician and Silurian periods unrepresented. There is no sedimentary record of the interval between Pennsylvanian and Tertiary times, and the Tertiary, Quaternary, and Recent sediments are of continental origin. These continental deposits play the dominant role in the ground-water hydrology of the basin, and were mapped and studied in detail. Pleistocene sediments are of major importance because they form the surface rock over most of the area, and give rise to conditions which yield water by artesian flow in the lower part of the valley.The development of the present land forms in this area began with the folding of Paleozoic and probably Mesozoic sediments during the Laramide revolution. The cycle of highland erosion and lowland deposition thus initiated has continued through recurrent uplift along Basin-Range faults to the present day. The principal physiographic subdivisions of the valley were developed as a result of the Basin-Range faulting, which began early in the Tertiary and has continued to Recent times.There are about 1,100 wells in Tooele Valley, about 90 per cent of which yield or have yielded water by artesian flow. Most of them are located in the lower part of the valley below an altitude of 4,400 feet. These wells and many of the springs derive their water from the unconsolidated Quaternary sediments, which include discontinuous, lenticular and commonly elongated bodies of sand, clay, gravel, and boulders of alluvial origin alternating and inter-fingered with lacustrine beds

  2. Valley Near Nilus Chaos

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-504, 5 October 2003

    This August 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a valley near Nilus Chaos, around 25.2oN, 80.3oW. The scene has a uniform albedo, indicating that all of the landforms are probably mantled by fine, bright dust. Dark streaks on the valley walls indicate places where recent dust avalanches have occurred. The ripple-like dune features on the valley floor were formed by wind, but today they are inactive and covered with dust. A few craters, created by impacting debris, have formed on the dunes, again attesting to their inactivity in the modern martian environment. The image covers an area 3 km (1.9 mi) wide; it is illuminated by sunlight from the lower left.

  3. Carbon pools along headwater streams with differing valley geometry in Rocky Mountain National Park, Colorado (Abstract)

    Treesearch

    Kathleen A. Dwire; Ellen E. Wohl; Nicholas A. Sutfin; Roberto A. Bazan; Lina Polvi-Pilgrim

    2012-01-01

    Headwaters are known to be important in the global carbon cycle, yet few studies have investigated carbon (C) pools along stream-riparian corridors. To better understand the spatial distribution of C storage in headwater fluvial networks, we estimated above- and below-ground C pools in 100-m-long reaches in six different valley types in Rocky Mountain National Park,...

  4. Shoals and valley plugs in the Hatchie River watershed

    USGS Publications Warehouse

    Diehl, Timothy H.

    2000-01-01

    Agricultural land use and gully erosion have historically contributed more sediment to the streams of the Hatchie River watershed than those streams can carry. In 1970, the main sedimentation problem in the watershed occurred in the tributary flood plains. This problem motivated channelization projects (U.S. Department of Agriculture, 1970). By the mid-1980's, concern had shifted to sedimentation in the Hatchie River itself where channelized tributaries were understood to contribute much of the sediment. The Soil Conservation Service [Natural Resources Conservation Service (NRCS) since 1996] estimated that 640,000 tons of bedload (sand) accumulates in the Hatchie River each year and identified roughly the eastern two-thirds of the watershed, where loess is thin or absent, as the main source of sand (U.S. Department of Agriculture, 1986a). The U.S. Geological Survey (USGS), in cooperation with the West Tennessee River Basin Authority (WTRBA), conducted a study of sediment accumulation in the Hatchie River and its tributaries. This report identifies the types of tributaries and evaluates sediment, shoal formation, and valley-plug problems. The results presented here may contribute to a better understanding of similar problems in West Tennessee and the rest of the southeastern coastal plain. This information also will help the WTRBA manage sedimentation and erosion problems in the Hatchie River watershed.The source of the Mississippi section of the Hatchie River is in the sand hills southwest of Corinth, Mississippi (fig. 1). This section of the Hatchie River flows northward in an artificial drainage canal, gathering water from tributary streams that also are channelized. The drainage canal ends 2 miles south of the Tennessee State line. The Tennessee section of the Hatchie River winds north and west in a meandering natural channel to the Mississippi River. Although most of the Hatchie River tributaries are also drainage canals, the river's main stem has kept most of

  5. Quaternary Sedimentary and Geomorphic History of River Valleys in the Lake Titicaca Basin, Peru and Bolivia

    NASA Astrophysics Data System (ADS)

    Rigsby, C. A.; Farabaugh, R. L.; Baker, P. A.

    2002-12-01

    Lacustrine sediments have become important archives of paleoclimatic history in the tropical Andes of South America. The history of lake level of Lake Titicaca (LT) has played a central role in these reconstructions. Here we report on our ongoing studies of the late Quaternary sedimentary and geomorphic histories of two of the major tributaries to LT (the Rios Ramis and Ilave) and on our earlier studies of LT's only outlet (the Rio Desaguadero). The strata and fluvial terraces in these valleys record large-scale aggradation and downcutting events that are apparently correlative with both climate changes in the LT basin and local complex response mechanisms (changes in sediment source, topographic variability, etc.). Both the Ramis and Ilave valleys have 5 terrace tracts, ranging from less than 1 m to approximately 53 m above the river level and occurring as both paired and unpaired tracts and as cut-fill, fill-, and strath terraces. The Rio Desaguadero valley has 4, locally paired, cut-fill and fill terrace tracts that range in height from approximately 2 m to 40 m above river level. In all three valleys, the terraces are underlain by meandering- and braided-river sands and gravels and by lacustrine muds. Radiocarbon dates from the Ilave and Desaguadero valleys suggest that strata in these valleys aggraded during periods of high or rising levels of LT, high or increasing sedimentation rates in the Rio Ilave delta, high (but variable) regional precipitation, and lacustrine sedimentation in the upstream-most reaches of the Rio Desaguadero valley. These same strata were downcut during periods of low or falling levels of LT, low or rapidly decreasing sedimentation rates in the Rio Ilave delta, and lower regional precipitation and runoff. In all three valleys, aggradational periods are punctuated by equilibrium periods of soil formation, downcutting events are episodic, and the most recent events are aggradation and subsequent downcutting of a low, young fill

  6. 27 CFR 9.194 - San Antonio Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... significance. (b) Approved Maps. The appropriate maps for determining the boundary of the San Antonio Valley...) Hames Valley, California, 1949, photorevised 1978; (2) Tierra Redonda Mountain, California, 1949... southeast corner of section 14, T23S, R9E, on the Hames Valley map; (2) From the beginning point, proceed...

  7. High pollution events in the Great Salt Lake Basin and its adjacent valleys. Insights on mechanisms and spatial distribution of the formation of secondary aerosol.

    NASA Astrophysics Data System (ADS)

    Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.; Fibiger, D. L.; Goldberger, L.; McDuffie, E. E.; Moravek, A.; Murphy, J. G.; Thornton, J. A.; Womack, C.

    2017-12-01

    High pollution events are common in many locations in the U.S.A. and around the world. They can last several days or up to weeks and they negatively affect human health, deteriorate visibility, and increase premature mortality. The main causes for high pollution events are related to meteorology and sources. They often happen in the winter, when high emissions, stagnation and reduced mixing, due to a shallow boundary layer, cause high concentrations of pollutants to accumulate. In the last decades, the air quality in the U.S. has seen an overall improvement, due to the reductions in particulate and gaseous pollutants. However, some areas remain critical. The Great Salt Lake Basin and its adjacent valleys are currently areas where high pollution events are a serious environmental problem involving more than 2.4 million people. We will present the results of the Utah Wintertime Fine Particulate Study (UWFPS) that took place in winter 2017. During UWFPS, we carried out airborne measurements of aerosol chemical composition and precursor vapor concentrations over the Great Salt Lake Basin and its adjacent valleys. We will give insights into how and under which conditions conversion of precursor vapors into aerosol particles takes place in the area. We will also present a comparison of our measurements with models that will provide an insight of the mechanisms that lead to the formation of secondary aerosol particles. With the results of our work, we aim to inform strategies for pollution control in the future.

  8. The Role of Subsurface Water in Carving Hesperian Amphitheater-Headed Valleys

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G. A.; Lamb, M. P.

    2017-12-01

    Groundwater sapping may play a role in valley formation in rare cases on Earth, typically in sand or weakly cemented sandstones. Small-scale valleys resulting from groundwater seepage in loose sand typically have amphitheater-shaped canyon heads with roughly uniform widths. By analogy to terrestrial sapping valleys, Hesperian-aged amphitheater canyons on Mars have been interpreted to result from groundwater sapping, with implications for subsurface and surface water flows on ancient Mars. However, other studies suggest that martian amphitheater canyons carved in fractured rock may instead result from large overland floods, by analogy to dry cataracts in scabland terrains in the northwestern U.S. Understanding the formation of bedrock canyons is critical to our understanding of liquid water reservoirs on ancient Mars. Can groundwater sapping carve canyons in substrates other than sand? There is currently no model to predict the necessary conditions for groundwater to carve canyons in substrates ranging from loose sediment of various sizes to competent rock. To bridge this knowledge gap, we formulate a theoretical model coupling equations of groundwater flow and sediment transport that can be applied to a wide range of substrates. The model is used to infer whether groundwater sapping could have carved canyons in the absence of overland flows, and requires limited inputs that are measureable in the field or from orbital images. Model results show that sapping erosion is capable of forming canyons, but only in loose well-sorted sand. Coarser sediment is more permeable, but more difficult to transport. Finer sediment is more easily transported, but lower permeability precludes the necessary seepage discharge. Finally, fractured rock is highly permeable, but seepage discharges are far below those required to transport typical talus boulders. Using orbiter-based lithological constraints, we conclude that canyons near Echus Chasma are carved into bedrock and therefore

  9. Formation of the Wiesloch Mississippi Valley-type Zn-Pb-Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany

    USGS Publications Warehouse

    Pfaff, Katharina; Hildebrandt, Ludwig H.; Leach, David L.; Jacob, Dorrit E.; Markl, Gregor

    2010-01-01

    The Mississippi Valley-type (MVT) Zn-Pb-Ag deposit in the Wiesloch area, Southwest Germany, is controlled by graben-related faults of the Upper Rhinegraben. Mineralization occurs as vein fillings and irregular replacement ore bodies consisting of sphalerite, banded sphalerite, galena, pyrite, sulfosalts (jordanite and geocronite), barite, and calcite in the Middle Triassic carbonate host rock. Combining paragenetic information, fluid inclusion investigations, stable isotope and mineral chemistry with thermodynamic modeling, we have derived a model for the formation of the Wiesloch deposit. This model involves fluid mixing between ascending hot brines (originating in the crystalline basement) with sedimentary formation waters. The ascending brines originally had a near-neutral pH (around 6) and intermediate oxidation state, reflecting equilibrium with granites and gneisses in the basement. During fluid ascent and cooling, the pH of the brine shifted towards more acidic (around 4) and the oxidation state increased to conditions above the hematite-magnetite buffer. These chemical characteristics contrast strongly with those of the pore and fracture fluid residing in the limestone aquifer, which had a pH between 8 and 9 in equilibrium with calcite and was rather reduced due to the presence of organic matter in the limestone. Mixing between these two fluids resulted in a strong decrease in the solubility of silver-bearing sphalerite and galena, and calcite. Besides Wiesloch, several Pb-Zn deposits are known along the Upper Rhinegraben, including hydrothermal vein-type deposits like Badenweiler and the Michael mine near Lahr. They all share the same fluid origin and formation process and only differ in details of their host rock and fluid cooling paths. The mechanism of fluid mixing also seems to be responsible for the formation of other MVT deposits in Europe (e.g., Reocin, Northern Spain; Treves, Southern France; and Cracow-Silesia, Poland), which show notable

  10. Investigating Groundwater Depletion and Aquifer Degradation in Central Valley California from Space

    NASA Astrophysics Data System (ADS)

    Ojha, C.; Shirzaei, M.; Werth, S.; Argus, D. F.

    2017-12-01

    The Central Valley in California includes one of the world's largest and yet most stressed aquifer systems. The large demand for groundwater, accelerated by population growth and extreme droughts, has been depleting the region's groundwater resources for decades. However, the lack of dense monitoring networks and inaccurate information on geophysical aquifer response pose serious challenges to water management efforts in the area and put the groundwater at high risk. Here, we performed a joint analysis of large SAR interferometric data sets acquired by ALOS L-band satellite in conjunction with the groundwater level observations across the Central Valley. We used 420 L-band SAR images acquired on the ascending orbit track during period Dec 24, 2006 - Jan 1, 2010, and generated more than 1600 interferograms with a pixel size of 100 m × 100 m. We also use data from 1600 observational wells providing continuous measurements of groundwater level within the study period for our analysis. We find that in the south and near Tulare Lake, north of Tule and south of Kaweah basin in San Joaquin valley, the subsidence rate is greatest at up to 20-25 cm/yr, while in Sacramento Valley the subsidence rate is lower at 1-3 cm/yr. From the characterization of the elastic and inelastic storage coefficients, we find that Kern, Tule, Tulare, Kaweah and Merced basins in the San Joaquin Valley are more susceptible to permanent compaction and aquifer storage loss. Kern County shows 0.23%-1.8% of aquifer storage loss during the study period, and has higher percentage loss than adjacent basins such as Tule and Tulare Lake with 0.15%-1.2% and 0.2 %-1.5% loss, respectively. Overall, we estimate that the aquifers across the valley lost a total of 28 km3 of groundwater and 2% of their storage capacity during the study period. Our unique observational evidence including valley-wide estimate of mechanical properties of aquifers and model results will not only facilitate monitoring water deficits

  11. Late Cenozoic geology and lacustrine history of Searles Valley, Inyo and San Bernardino Counties, California

    NASA Astrophysics Data System (ADS)

    Nathenson, M.; Smith, G. I.; Robinson, J. E.; Stauffer, P. H.; Zigler, J. L.

    2010-12-01

    George Smith’s career-long study of the surface geology of the Searles Valley was recently published by the USGS (Smith, 2009, online and printed). The co-authors of this abstract are the team responsible for completing the publication from the original materials. Searles Valley is an arid, closed basin lying 70 km east of the south end of the Sierra Nevada, California. During those parts of late Pliocene and Pleistocene time when precipitation and runoff from the east side of the Sierra Nevada into the Owens River were much greater than at present, a chain of as many as five large lakes was created, of which Searles Lake was third. The stratigraphic record left in Searles Valley when that lake expanded, contracted, or desiccated is fully revealed by cores taken from beneath the surface of Searles (dry) Lake and partly recorded by sediments cropping out around the edge of the valley. Although this outcrop record is discontinuous, it provides direct evidence of the lake’s water depths during each expansion, which the subsurface record does not. Maximum-depth lakes rose to the 2,280-ft (695 m) contour, the level of the spillway that led overflowing waters to Panamint Valley; that spillway is about 660 ft (200 m) above the present dry-lake surface. Most of this study concerns sediments of the newly described Searles Lake Formation, whose deposition spanned the period between about 150 ka and 2 ka. The outcrop record is documented in six geologic maps (scales: 1:50,000 and 1:10,000). The Searles Lake Formation is divided into seven main units. The depositional intervals of the units that make up the Searles Lake Formation are determined primarily by correlation with subsurface deposits that are dated by radiocarbon ages on organic carbon and U-series dates on salts. Shorelines, the most obvious geologic expressions of former lakes, are abundant around Searles Valley. Erosional shorelines have cut as much as 100 m into brecciated bedrock; depositional shorelines

  12. Morning Transition Tracer Experiments in a Deep Narrow Valley.

    NASA Astrophysics Data System (ADS)

    Whiteman, C. David

    1989-07-01

    Three sulfur hexafluoride atmospheric tracer experiments were conducted during the post-sunrise temperature inversion breakup period in the deep, narrow Brush Creek Valley of Colorado. Experiments were conducted under clear, undisturbed weather conditions.A continuous elevated tracer plume was produced along the axis of the valley before sunrise and the behavior of the plume during the inversion breakup period was detected down-valley from the release point using an array of radio-controlled sequential bag samplers, a vertical SF6 profiling system carried on a tethered balloon, two portable gas chromatographs operated on a sidewall of the valley, and a continuous real-time SF6 monitor operated from a research aircraft. Supporting meteorological data came primarily from tethered balloon profilers. The nocturnal elevated plume was carried and diffused in down-valley flows. After sunrise, convective boundary layers grew upward from the sunlit valley surfaces, fumigating the elevated plume onto the valley floor and sidewalls. Upslope flow developed in the growing convective boundary layers, carrying fumigated SF6 up the sidewalls and causing a compensating subsidence over the valley center. High post-sunrise SF6 concentrations were experienced on the northeast-facing sidewall of the northwest-southeast oriented valley as a result of cross-valley flow, which developed due to differential solar heating of the sidewalls. Reversal of the down-valley wind system brought air with lower SF6 concentrations into the lower valley.

  13. The Central Valley Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Faunt, C.; Belitz, K.; Hanson, R. T.

    2009-12-01

    Historically, California’s Central Valley has been one of the most productive agricultural regions in the world. The Central Valley also is rapidly becoming an important area for California’s expanding urban population. In response to this competition for water, a number of water-related issues have gained prominence: conjunctive use, artificial recharge, hydrologic implications of land-use change, subsidence, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS made a detailed assessment of the Central Valley aquifer system that includes the present status of water resources and how these resources have changed over time. The principal product of this assessment is a tool, referred to as the Central Valley Hydrologic Model (CVHM), that simulates surface-water flows, groundwater flows, and land subsidence in response to stresses from human uses and from climate variability throughout the entire Central Valley. The CVHM utilizes MODFLOW combined with a new tool called “Farm Process” to simulate groundwater and surface-water flow, irrigated agriculture, land subsidence, and other key processes in the Central Valley on a monthly basis. This model was discretized horizontally into 20,000 1-mi2 cells and vertically into 10 layers ranging in thickness from 50 feet at the land surface to 750 feet at depth. A texture model constructed by using data from more than 8,500 drillers’ logs was used to estimate hydraulic properties. Unmetered pumpage and surface-water deliveries for 21 water-balance regions were simulated with the Farm Process. Model results indicate that human activities, predominately surface-water deliveries and groundwater pumping for irrigated agriculture, have dramatically influenced the hydrology of the Central Valley. These human activities have increased flow though the aquifer system by about a factor of six compared to pre-development conditions. The simulated hydrology reflects spatial

  14. NV PFA - Steptoe Valley

    DOE Data Explorer

    Jim Faulds

    2015-10-29

    All datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.

  15. 27 CFR 9.27 - Lime Kiln Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lime Kiln Valley. 9.27... OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.27 Lime Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln Valley...

  16. Water-level changes induced by local and distant earthquakes at Long Valley caldera, California

    USGS Publications Warehouse

    Roeloffs, Evelyn A.; Sneed, Michelle; Galloway, Devin L.; Sorey, Michael L.; Farrar, Christopher D.; Howle, James F.; Hughes, J.

    2003-01-01

    Distant as well as local earthquakes have induced groundwater-level changes persisting for days to weeks at Long Valley caldera, California. Four wells open to formations as deep as 300 m have responded to 16 earthquakes, and responses to two earthquakes in the 3-km-deep Long Valley Exploratory Well (LVEW) show that these changes are not limited to weathered or unconsolidated near-surface rocks. All five wells exhibit water-level variations in response to earth tides, indicating they can be used as low-resolution strainmeters. Earthquakes induce gradual water-level changes that increase in amplitude for as long as 30 days, then return more slowly to pre-earthquake levels. The gradual water-level changes are always drops at wells LKT, LVEW, and CH-10B, and always rises at well CW-3. At a dilatometer just outside the caldera, earthquake-induced strain responses consist of either a step followed by a contractional strain-rate increase, or a transient contractional signal that reaches a maximum in about seven days and then returns toward the pre-earthquake value. The sizes of the gradual water-level changes generally increase with earthquake magnitude and decrease with hypocentral distance. Local earthquakes in Long Valley produce coseismic water-level steps; otherwise the responses to local earthquakes and distant earthquakes are indistinguishable. In particular, water-level and strain changes in Long Valley following the 1992 M7.3 Landers earthquake, 450 km distant, closely resemble those initiated by a M4.9 local earthquake on November 22, 1997, during a seismic swarm with features indicative of fluid involvement. At the LKT well, many of the response time histories are identical for 20 days after each earthquake, and can be matched by a theoretical solution giving the pore pressure as a function of time due to diffusion of a nearby, instantaneous, pressure drop. Such pressure drops could be produced by accelerated inflation of the resurgent dome by amounts too

  17. Valley Pearl’ table grape

    USDA-ARS?s Scientific Manuscript database

    Valley Pearl’ is an early to mid-season, white seedless table grape (Vitis vinifera L.) suitable for commercial table grape production where V. vinifera can be grown. Significant characteristics of ‘Valley Pearl’ are its high and consistent fruit production on spur pruned vines and large round berr...

  18. Three-Dimensional P-wave Velocity Structure Beneath Long Valley Caldera, California, Using Local-Regional Double-Difference Tomography

    NASA Astrophysics Data System (ADS)

    Menendez, H. M.; Thurber, C. H.

    2011-12-01

    Eastern California's Long Valley Caldera (LVC) and the Mono-Inyo Crater volcanic systems have been active for the past ~3.6 million years. Long Valley is known to produce very large silicic eruptions, the last of which resulted in the formation of a 17 km by 32 km wide, east-west trending caldera. Relatively recent unrest began between 1978-1980 with five ML ≥ 5.7 non-double-couple (NDC) earthquakes and associated aftershock swarms. Similar shallow seismic swarms have continued south of the resurgent dome and beneath Mammoth Mountain, surrounding sites of increased CO2 gas emissions. Nearly two decades of increased volcanic activity led to the 1997 installation of a temporary three-component array of 69 seismometers. This network, deployed by the Durham University, the USGS, and Duke University, recorded over 4,000 high-frequency events from May to September. A local tomographic inversion of 283 events surrounding Mammoth Mountain yielded a velocity structure with low Vp and Vp/Vs anomalies at 2-3 km bsl beneath the resurgent dome and Casa Diablo hot springs. These anomalies were interpreted to be CO2 reservoirs (Foulger et al., 2003). Several teleseismic and regional tomography studies have also imaged low Vp anomalies beneath the caldera at ~5-15 km depth, interpreted to be the underlying magma reservoir (Dawson et al., 1990; Weiland et al., 1995; Thurber et al., 2009). This study aims to improve the resolution of the LVC regional velocity model by performing tomographic inversions using the local events from 1997 in conjunction with regional events recorded by the Northern California Seismic Network (NCSN) between 1980 and 2010 and available refraction data. Initial tomographic inversions reveal a low velocity zone at ~2 to 6 km depth beneath the caldera. This structure may simply represent the caldera fill. Further iterations and the incorporation of teleseismic data may better resolve the overall shape and size of the underlying magma reservoir.

  19. Lack of serotonin reuptake during brain development alters rostral raphe-prefrontal network formation.

    PubMed

    Witteveen, Josefine S; Middelman, Anthonieke; van Hulten, Josephus A; Martens, Gerard J M; Homberg, Judith R; Kolk, Sharon M

    2013-01-01

    Besides its "classical" neurotransmitter function, serotonin (5-HT) has been found to also act as a neurodevelopmental signal. During development, the 5-HT projection system, besides an external placental source, represents one of the earliest neurotransmitter systems to innervate the brain. One of the targets of the 5-HT projection system, originating in the brainstem raphe nuclei, is the medial prefrontal cortex (mPFC), an area involved in higher cognitive functions and important in the etiology of many neurodevelopmental disorders. Little is known, however, about the exact role of 5-HT and its signaling molecules in the formation of the raphe-prefrontal network. Using explant essays, we here studied the role of the 5-HT transporter (5-HTT), an important modulator of the 5-HT signal, in rostral raphe-prefrontal network formation. We found that the chemotrophic nature of the interaction between the origin (rostral raphe cluster) and a target (mPFC) of the 5-HT projection system was affected in rats lacking the 5-HTT (5-HTT(-/-)). While 5-HTT deficiency did not affect the dorsal raphe 5-HT-positive outgrowing neurites, the median raphe 5-HT neurites switched from a strong repulsive to an attractive interaction when co-cultured with the mPFC. Furthermore, the fasciculation of the mPFC outgrowing neurites was dependent on the amount of 5-HTT. In the mPFC of 5-HTT(-/-) pups, we observed clear differences in 5-HT innervation and the identity of a class of projection neurons of the mPFC. In the absence of the 5-HTT, the 5-HT innervation in all subareas of the early postnatal mPFC increased dramatically and the number of Satb2-positive callosal projection neurons was decreased. Together, these results suggest a 5-HTT dependency during early development of these brain areas and in the formation of the raphe-prefrontal network. The tremendous complexity of the 5-HT projection system and its role in several neurodevelopmental disorders highlights the need for further

  20. Dynamics of Katabatic Winds in Colorado' Brush Creek Valley.

    NASA Astrophysics Data System (ADS)

    Vergeiner, I.; Dreiseitl, E.; Whiteman, C. David

    1987-01-01

    A method is proposed to evaluate the coupled mass, momentum and thermal energy budget equations for a deep valley under two-dimensional, steady-state flow conditions. The method requires the temperature, down- valley wind and valley width fields to be approximated by simple analytical functions. The vertical velocity field is calculated using the mass continuity equation. Advection terms in the momentum and energy equations are then calculated using finite differences computed on a vertical two-dimensional grid that runs down the valley's axis. The pressure gradient term in the momentum equation is calculated from the temperature field by means of the hydrostatic equation. The friction term is then calculated as a residual in the xmomentum equation, and the diabatic cooling term is calculated as a residual in the thermal energy budget equation.The method is applied to data from an 8-km-long segment of Colorado's; Brush Creek Valley on the night of 30-31 July 1982. Pressure decreased with distance down the peak on horizontal surfaces, with peak horizontal pressure gradients of 0.04 hPa km1. The valley mass budget indicated that subsidence was required in the valley to support calculated mean along-valley mass flux divergence. Peak subsidence rates on the order of 0.10 m s1 were calculated. Subsiding motions in the valley produced negative vertical down-valley momentum fluxes in the upper valley atmosphere, but produced positive down-valley momentum fluxes below the level of the jet. Friction, calculated as a residual in the x momentum equation, was negative, as expected on physical grounds. and attained reasonable quantitative values.The strong subsidence field in the stable valley atmosphere produced subsidence warming that was only partly counteracted by down-valley cold air advection. Strong diabatic cooling was therefore required in order to account for the weak net cooling of the valley atmosphere during the nighttime period when tethered balloon observations

  1. Network formation, governance, and evolution in public health: The North American Quitline Consortium case

    PubMed Central

    Provan, Keith G.; Beagles, Jonathan E.; Leischow, Scott J.

    2014-01-01

    Background Collaborative networks of health organizations have received a great deal of attention in recent years as a way of enhancing the flow of information and coordination of services. However, relatively little is known about how such networks are formed and evolve, especially outside a local, community-based setting. This article is an in-depth discussion of the evolution of the North American Quitline Consortium (NAQC). The NAQC is a network of U.S. and Canadian organizations that provide telephone-based counseling and related services to people trying to quit smoking. Methodology The research draws on data from interviews, documents, and a survey of NAQC members to assess how the network emerged, became formalized, and effectively governed. Findings The findings provide an understanding of how multiregional public health networks evolve, while building on and extending the broader literature on organizational networks in other sectors and settings. Specifically, we found that the network form that ultimately emerged was a product of the back-and-forth interplay between the internal needs and goals of those organizations that would ultimately become network members, in this case, state-, and provincial-level tobacco quitline organizations. We also found that network formation, and then governance through a network administrative organization, was driven by important events and shifts in the external environment, including the impact and influence of major national organizations. Practice Implications The results of the study provide health care leaders and policy officials an understanding of how the activities of a large number of organizations having a common health goal, but spanning multiple states and countries, might be coordinated and integrated through the establishment of a formal network. PMID:21712725

  2. Network formation, governance, and evolution in public health: the North American Quitline Consortium case.

    PubMed

    Provan, Keith G; Beagles, Jonathan E; Leischow, Scott J

    2011-01-01

    Collaborative networks of health organizations have received a great deal of attention in recent years as a way of enhancing the flow of information and coordination of services. However, relatively little is known about how such networks are formed and evolve, especially outside a local, community-based setting. This article is an in-depth discussion of the evolution of the North American Quitline Consortium (NAQC). The NAQC is a network of U.S. and Canadian organizations that provide telephone-based counseling and related services to people trying to quit smoking. The research draws on data from interviews, documents, and a survey of NAQC members to assess how the network emerged, became formalized, and effectively governed. The findings provide an understanding of how multiregional public health networks evolve, while building on and extending the broader literature on organizational networks in other sectors and settings. Specifically, we found that the network form that ultimately emerged was a product of the back-and-forth interplay between the internal needs and goals of those organizations that would ultimately become network members, in this case, state-, and provincial-level tobacco quitline organizations. We also found that network formation, and then governance through a network administrative organization, was driven by important events and shifts in the external environment, including the impact and influence of major national organizations. The results of the study provide health care leaders and policy officials an understanding of how the activities of a large number of organizations having a common health goal, but spanning multiple states and countries, might be coordinated and integrated through the establishment of a formal network.

  3. Fretted Terrain Valley in Coloe Fossae Region

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1 Click on image for larger version

    The image in figure 1 shows lineated valley fill in one of a series of enclosed, intersecting troughs known as Coloe (Choloe) Fossae. Lineated valley fill consists of rows of material in valley centers that are parallel to the valley walls. It is probably made of ice-rich material and boulders that are left behind when the ice-rich material sublimates. Very distinct rows can be seen near the south (bottom) wall of the valley. Lineated valley fill is thought to result from mass wasting (downslope movement) of ice-rich material from valley walls towards their centers. It is commonly found in valleys near the crustal dichotomy that separates the two hemispheres of Mars. The valley shown here joins four other valleys with lineated fill near the top left corner of this image. Their juncture is a topographic low, suggesting that the lineated valley fill from the different valleys may be flowing or creeping towards the low area (movement towards the upper left of the image). The valley walls appear smooth at first glance but are seen to be speckled with small craters several meters in diameter at HiRISE resolution (see contrast-enhanced subimage). This indicates that at least some of the wall material has been stable to mass wasting for some period of time. Also seen on the valley wall are elongated features shaped like teardrops. These are most likely slightly older craters that have been degraded due to potentially recent downhill creep. It is unknown whether the valley walls are shedding material today. The subimage is approximately 140 x 400 m (450 x 1280 ft).

    Image PSP_001372_2160 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 11, 2006. The complete image is centered at 35.5 degrees latitude, 56.8 degrees East longitude. The range to the target site was 290.3 km (181

  4. Victor Valley College Agreement between the Victor Valley Community College District and the Victor Valley College California Teachers Association Chapter 1170. July 1989 - June 1992.

    ERIC Educational Resources Information Center

    Victor Valley Community Coll. District, Victorville, CA.

    The collective bargaining agreement between the Victor Valley College Board of Trustees and the Victor Valley College California Teachers Association/National Education Association is presented. This contract, covering the period from July 1989 through June 1992, deals with the following topics: bargaining agent recognition; district and…

  5. A combined road weather forecast system to prevent road ice formation in the Adige Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Di Napoli, Claudia; Piazza, Andrea; Antonacci, Gianluca; Todeschini, Ilaria; Apolloni, Roberto; Pretto, Ilaria

    2016-04-01

    Road ice is a dangerous meteorological hazard to a nation's transportation system and economy. By reducing the pavement friction with vehicle tyres, ice formation on pavements increases accident risk and delays travelling times thus posing a serious threat to road users' safety and the running of economic activities. Keeping roads clear and open is therefore essential, especially in mountainous areas where ice is likely to form during the winter period. Winter road maintenance helps to restore road efficiency and security, and its benefits are up to 8 times the costs sustained for anti-icing strategies [1]. However, the optimization of maintenance costs and the reduction of the environmental damage from over-salting demand further improvements. These can be achieved by reliable road weather forecasts, and in particular by the prediction of road surface temperatures (RSTs). RST is one of the most important parameters in determining road surface conditions. It is well known from literature that ice forms on pavements in high-humidity conditions when RSTs are below 0°C. We have therefore implemented an automatic forecast system to predict critical RSTs on a test route along the Adige Valley complex terrain, in the Italian Alps. The system considers two physical models, each computing heat and energy fluxes between the road and the atmosphere. One is Reuter's radiative cooling model, which predicts RSTs at sunrise as a function of surface temperatures at sunset and the time passed since then [2]. One is METRo (Model of the Environment and Temperature of Roads), a road weather forecast software which also considers heat conduction through road material [3]. We have applied the forecast system to a network of road weather stations (road weather information system, RWIS) installed on the test route [4]. Road and atmospheric observations from RWIS have been used as initial conditions for both METRo and Reuter's model. In METRo observations have also been coupled to

  6. Valley spin polarization of Tl/Si(111)

    NASA Astrophysics Data System (ADS)

    Stolwijk, Sebastian D.; Schmidt, Anke B.; Sakamoto, Kazuyuki; Krüger, Peter; Donath, Markus

    2017-11-01

    The metal/semiconductor hybrid system Tl/Si(111)-(1 ×1 ) exhibits a unique Tl-derived surface state with remarkable properties. It lies within the silicon band gap and forms spin-momentum-locked valleys close to the Fermi energy at the K ¯ and K¯' points. These valleys are completely spin polarized with opposite spin orientation at K ¯ and K¯' and show a giant spin splitting of more than 0.5 eV. We present a detailed preparation study of the surface system and demonstrate that the electronic valleys are extremely robust, surviving exposure to 100 L hydrogen and 500 L oxygen. We investigate the influence of additional Tl atoms on the spin-polarized valleys. By combining photoemission and inverse photoemission, we prove the existence of fully spin-polarized valleys crossing the Fermi level. Moreover, these metallic valleys carry opposite Berry curvature at K ¯ and K¯', very similar to WSe2, promising a large spin Hall effect. Thus, Tl/Si(111)-(1 ×1 ) possesses all necessary key properties for spintronic applications.

  7. Electrical valley filtering in transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Hsieh, Tzu-Chi; Chou, Mei-Yin; Wu, Yu-Shu

    2018-03-01

    This work investigates the feasibility of electrical valley filtering for holes in transition metal dichalcogenides. We look specifically into the scheme that utilizes a potential barrier to produce valley-dependent tunneling rates, and perform the study with both a k .p -based analytic method and a recursive Green's function-based numerical method. The study yields the transmission coefficient as a function of incident energy and transverse wave vector, for holes going through lateral quantum barriers oriented in either armchair or zigzag directions, in both homogeneous and heterogeneous systems. The main findings are the following: (1) The tunneling current valley polarization increases with increasing barrier width or height; (2) both the valley-orbit interaction and band structure warping contribute to valley-dependent tunneling, with the former contribution being manifest in structures with asymmetric potential barriers, and the latter being orientation dependent and reaching maximum for transmission in the armchair direction; and (3) for transmission ˜0.1 , a tunneling current valley polarization of the order of 10 % can be achieved.

  8. Observation of valley-dependent beams in photonic graphene.

    PubMed

    Deng, Fusheng; Sun, Yong; Wang, Xiao; Xue, Rui; Li, Yuan; Jiang, Haitao; Shi, Yunlong; Chang, Kai; Chen, Hong

    2014-09-22

    Valley-dependent propagation of light in an artificial photonic hexagonal lattice, akin to electrons in graphene, is investigated in microwave regime. Both numerical and experimental results show that the valley degeneracy in the photonic graphene is broken when the frequency is away from the Dirac point. The peculiar anisotropic wave transport property due to distinct valleys is analyzed using the equifrequency contours. More interestingly, the valley-dependent self-collimation and beam splitting phenomena are experimentally demonstrated with the armchair and zigzag interfaces, respectively. Our results confirm that there are two inequivalent Dirac points that lead to two distinct valleys in photonic graphene, which could be used to control the flow of light and might be used to carry information in valley polarized beam splitter, collimator or guiding device.

  9. 27 CFR 9.58 - Carmel Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....” (b) Approved maps. The approved maps for determining the boundary of the Carmel Valley viticultural... Ridge, Calif., dated 1956; and (5) Rana Creek, Calif., dated 1956. (c) Boundary. The Carmel Valley...

  10. 27 CFR 9.58 - Carmel Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....” (b) Approved maps. The approved maps for determining the boundary of the Carmel Valley viticultural... Ridge, Calif., dated 1956; and (5) Rana Creek, Calif., dated 1956. (c) Boundary. The Carmel Valley...

  11. Water resources of Parowan Valley, Iron County, Utah

    USGS Publications Warehouse

    Marston, Thomas M.

    2017-08-29

    Parowan Valley, in Iron County, Utah, covers about 160 square miles west of the Red Cliffs and includes the towns of Parowan, Paragonah, and Summit. The valley is a structural depression formed by northwest-trending faults and is, essentially, a closed surface-water basin although a small part of the valley at the southwestern end drains into the adjacent Cedar Valley. Groundwater occurs in and has been developed mainly from the unconsolidated basin-fill aquifer. Long-term downward trends in groundwater levels have been documented by the U.S. Geological Survey (USGS) since the mid-1950s. The water resources of Parowan Valley were assessed during 2012 to 2014 with an emphasis on refining the understanding of the groundwater and surface-water systems and updating the groundwater budget.Surface-water discharge of five perennial mountain streams that enter Parowan Valley was measured from 2013 to 2014. The total annual surface-water discharge of the five streams during 2013 to 2014 was about 18,000 acre-feet (acre-ft) compared to the average annual streamflow of about 22,000 acre-ft from USGS streamgages operated on the three largest of these streams from the 1940s to the 1980s. The largest stream, Parowan Creek, contributes more than 50 percent of the annual surface-water discharge to the valley, with smaller amounts contributed by Red, Summit, Little, and Cottonwood Creeks.Average annual recharge to the Parowan Valley groundwater system was estimated to be about 25,000 acre-ft from 1994 to 2013. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall on the Markagunt Plateau east of the valley. Smaller amounts of recharge occur as infiltration of streamflow and unconsumed irrigation water near the east side of the valley on alluvial fans associated with mountain streams at the foot of the Red Cliffs. Subsurface flow from the mountain block to the east of the valley is a significant source of groundwater recharge to the basin-fill aquifer

  12. Becoming popular: interpersonal emotion regulation predicts relationship formation in real life social networks.

    PubMed

    Niven, Karen; Garcia, David; van der Löwe, Ilmo; Holman, David; Mansell, Warren

    2015-01-01

    Building relationships is crucial for satisfaction and success, especially when entering new social contexts. In the present paper, we investigate whether attempting to improve others' feelings helps people to make connections in new networks. In Study 1, a social network study following new networks of people for a 12-week period indicated that use of interpersonal emotion regulation (IER) strategies predicted growth in popularity, as indicated by other network members' reports of spending time with the person, in work and non-work interactions. In Study 2, linguistic analysis of the tweets from over 8000 Twitter users from formation of their accounts revealed that use of IER predicted greater popularity in terms of the number of followers gained. However, not all types of IER had positive effects. Behavioral IER strategies (which use behavior to reassure or comfort in order to regulate affect) were associated with greater popularity, while cognitive strategies (which change a person's thoughts about his or her situation or feelings in order to regulate affect) were negatively associated with popularity. Our findings have implications for our understanding of how new relationships are formed, highlighting the important the role played by intentional emotion regulatory processes.

  13. Becoming popular: interpersonal emotion regulation predicts relationship formation in real life social networks

    PubMed Central

    Niven, Karen; Garcia, David; van der Löwe, Ilmo; Holman, David; Mansell, Warren

    2015-01-01

    Building relationships is crucial for satisfaction and success, especially when entering new social contexts. In the present paper, we investigate whether attempting to improve others’ feelings helps people to make connections in new networks. In Study 1, a social network study following new networks of people for a 12-week period indicated that use of interpersonal emotion regulation (IER) strategies predicted growth in popularity, as indicated by other network members’ reports of spending time with the person, in work and non-work interactions. In Study 2, linguistic analysis of the tweets from over 8000 Twitter users from formation of their accounts revealed that use of IER predicted greater popularity in terms of the number of followers gained. However, not all types of IER had positive effects. Behavioral IER strategies (which use behavior to reassure or comfort in order to regulate affect) were associated with greater popularity, while cognitive strategies (which change a person’s thoughts about his or her situation or feelings in order to regulate affect) were negatively associated with popularity. Our findings have implications for our understanding of how new relationships are formed, highlighting the important the role played by intentional emotion regulatory processes. PMID:26483718

  14. Delineating riparian zones for entire river networks using geomorphological criteria

    NASA Astrophysics Data System (ADS)

    Fernández, D.; Barquín, J.; Álvarez-Cabria, M.; Peñas, F. J.

    2012-03-01

    Riparian zone delineation is a central issue for riparian and river ecosystem management, however, criteria used to delineate them are still under debate. The area inundated by a 50-yr flood has been indicated as an optimal hydrological descriptor for riparian areas. This detailed hydrological information is, however, not usually available for entire river corridors, and is only available for populated areas at risk of flooding. One of the requirements for catchment planning is to establish the most appropriate location of zones to conserve or restore riparian buffer strips for whole river networks. This issue could be solved by using geomorphological criteria extracted from Digital Elevation Models. In this work we have explored the adjustment of surfaces developed under two different geomorphological criteria with respect to the flooded area covered by the 50-yr flood, in an attempt to rapidly delineate hydrologically-meaningful riparian zones for entire river networks. The first geomorphological criterion is based on the surface that intersects valley walls at a given number of bankfull depths above the channel (BFDAC), while the second is based on the surface defined by a~threshold value indicating the relative cost of moving from the stream up to the valley, accounting for slope and elevation change (path distance). As the relationship between local geomorphology and 50-yr flood has been suggested to be river-type dependant, we have performed our analyses distinguishing between three river types corresponding with three valley morphologies: open, shallow vee and deep vee valleys (in increasing degree of valley constrainment). Adjustment between the surfaces derived from geomorphological and hydrological criteria has been evaluated using two different methods: one based on exceeding areas (minimum exceeding score) and the other on the similarity among total area values. Both methods have pointed out the same surfaces when looking for those that best match with

  15. Optical manipulation of valley pseduospin in 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Ye, Ziliang

    Valley polarization associated with the occupancy in the energy degenerate but quantum mechanically distinct valleys in the momentum space closely resembles spin polarization and has been proposed as a pseudospin carrier for future quantum information technologies. Monolayers of transition metal dichalcogenide (TMDC) crystals, with broken inversion symmetry and large spin-orbital coupling, support robust valley polarization and therefore provide an important platform for studying valley-dependent physics. Besides optical excitation and photoluminescence detection, valley polarization has been electrically measured through the valley Hall effect and created through spin injection from ferromagnetic semiconductor contacts. Moreover, the energy degeneracy of the valley degree of freedom has been lifted by the optical Stark effect. Recently, we have demonstrated optical manipulation of valley coherence, i.e., of the valley pseudospin, by the optical Stark effect in monolayer WSe2. Using below-bandgap circularly polarized light, we rotated the valley pseudospin on the femtosecond time scale. Both the direction and speed of the rotation can be optically controlled by tuning the dynamic phase of excitons in opposite valleys. The pseudospin rotation was identified by changes in the polarization of the photoluminescence. In addition, by varying the time delay between the excitation and control pulses, we directly probed the lifetime of the intervalley coherence. Similar rotation levels have also been observed in static magneto-optic experiments. Our work presents an important step towards the full control of the valley degree of freedom in 2D semiconductors. The work was done in collaboration with Dr. Dezheng Sun and Prof. Tony F. Heinz.

  16. EPA Region 1 - Valley Depth in Meters

    EPA Pesticide Factsheets

    Raster of the Depth in meters of EPA-delimited Valleys in Region 1.Valleys (areas that are lower than their neighbors) were extracted from a Digital Elevation Model (USGS, 30m) by finding the local average elevation, subtracting the actual elevation from the average, and selecting areas where the actual elevation was below the average. The landscape was sampled at seven scales (circles of 1, 2, 4, 7, 11, 16, and 22 km radius) to take into account the diversity of valley shapes and sizes. Areas selected in at least four scales were designated as valleys.

  17. Ponding, draining and tilting of the Cerberus Plains; a cryolacustrine origin for the sinuous ridge and channel networks in Rahway Vallis, Mars

    NASA Astrophysics Data System (ADS)

    Ramsdale, J. D.; Balme, M. R.; Conway, S. J.; Gallagher, C.

    2015-06-01

    Rahway Vallis sits within a shallow basin (the "Rahway basin") in the Cerberus Plains of Mars containing a branching network of channels converging on the basin floor. Using topographic cross-profiles of the channels we have found that they are set within broader, subtly-expressed, valleys. These valleys are shallow (around 15 m vertically compared to several kilometres in the horizontal) and have convex to rectilinear slope profiles that are consistent in form across the whole Rahway basin. Both channels and valleys descend and deepen consistently from west to east. The channels typically widen down-slope and increase in width at confluences. The morphology and topology of this channel system are consistent with formation by contributory fluid flow, generated from many distributed sources. The transition between the older heavily cratered terrain and the floor of the Rahway basin is bounded by near-horizontal continuous topographic terraces. Plotting the elevation of the terraces shows that they conform to a plane with a height difference of around 100 m east to west for the 300 km width of the Rahway basin. We calculate that the volume of material needed to fill the topography up to the level of the plane best fit by the terraces is ∼1500 km3. Bordering the channels are sinuous ridges, typically several kilometres long, 20 m across, with heights on the order of 10 m. They sometimes form branching networks leading into the channels, but also occur individually and parallel to the channels. The multiple tilted terraces, the channel/valley network with many fluvial-like characteristics, and the distributed source regions, suggest that the landforms within the Rahway basin are unlikely to have formed through purely volcanic processes. Rather, the channels within the Rahway basin are consistent with a genesis requiring the flow of liquid water, and the sinuous ridges with melting of a static ice body that occupied the basin. We suggest a hypothesis of rapid basin

  18. Preliminary hydrogeologic assessment near the boundary of the Antelope Valley and El Mirage Valley groundwater basins, California

    USGS Publications Warehouse

    Stamos, Christina L.; Christensen, Allen H.; Langenheim, Victoria

    2017-07-19

    The increasing demands on groundwater for water supply in desert areas in California and the western United States have resulted in the need to better understand groundwater sources, availability, and sustainability. This is true for a 650-square-mile area that encompasses the Antelope Valley, El Mirage Valley, and Upper Mojave River Valley groundwater basins, about 50 miles northeast of Los Angeles, California, in the western part of the Mojave Desert. These basins have been adjudicated to ensure that groundwater rights are allocated according to legal judgments. In an effort to assess if the boundary between the Antelope Valley and El Mirage Valley groundwater basins could be better defined, the U.S. Geological Survey began a cooperative study in 2014 with the Mojave Water Agency to better understand the hydrogeology in the area and investigate potential controls on groundwater flow and availability, including basement topography.Recharge is sporadic and primarily from small ephemeral washes and streams that originate in the San Gabriel Mountains to the south; estimates range from about 400 to 1,940 acre-feet per year. Lateral underflow from adjacent basins has been considered minor in previous studies; underflow from the Antelope Valley to the El Mirage Valley groundwater basin has been estimated to be between 100 and 1,900 acre-feet per year. Groundwater discharge is primarily from pumping, mostly by municipal supply wells. Between October 2013 and September 2014, the municipal pumpage in the Antelope Valley and El Mirage Valley groundwater basins was reported to be about 800 and 2,080 acre-feet, respectively.This study was motivated by the results from a previously completed regional gravity study, which suggested a northeast-trending subsurface basement ridge and saddle approximately 3.5 miles west of the boundary between the Antelope Valley and El Mirage Valley groundwater basins that might influence groundwater flow. To better define potential basement

  19. Introduction to Blueweb: A Decentralized Scatternet Formation Algorithm for Bluetooth Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Yu, Chih-Min; Huang, Chia-Chi

    In this letter, a decentralized scatternet formation algorithm called Bluelayer is proposed. First, Bluelayer uses a designated root to construct a tree-shaped subnet and propagates an integer variable k1 called counter limit as well as a constant k in its downstream direction to determine new roots. Then each new root asks its upstream master to start a return connection procedure to convert the tree-shaped subnet into a web-shaped subnet for its immediate upstream root. At the same time, each new root repeats the same procedure as the root to build its own subnet until the whole scatternet is formed. Simulation results show that Bluelayer achieves good network scalability and generates an efficient scatternet configuration for various sizes of Bluetooth ad hoc network.

  20. Monitoring land subsidence in Sacramento Valley, California, using GPS

    USGS Publications Warehouse

    Blodgett, J.C.; Ikehara, M.E.; Williams, Gary E.

    1990-01-01

    Land subsidence measurement is usually based on a comparison of bench-mark elevations surveyed at different times. These bench marks, established for mapping or the national vertical control network, are not necessarily suitable for measuring land subsidence. Also, many bench marks have been destroyed or are unstable. Conventional releveling of the study area would be costly and would require several years to complete. Differences of as much as 3.9 ft between recent leveling and published bench-mark elevations have been documented at seven locations in the Sacramento Valley. Estimates of land subsidence less than about 0.3 ft are questionable because elevation data are based on leveling and adjustment procedures that occured over many years. A new vertical control network based on the Global Positioning System (GPS) provides highly accurate vertical control data at relatively low costs, and the survey points can be placed where needed to obtain adequate areal coverage of the area affected by land subsidence.

  1. Reconnaissance geology of the Central Mastuj Valley, Chitral State, Pakistan

    USGS Publications Warehouse

    Stauffer, Karl W.

    1975-01-01

    The Mastuj Valley in Chitral State is a part of the Hindu Kush Range, and is one of the structurally most complicated areas in northern Pakistan. Sedimentary rocks ranging from at least Middle Devonian to Cretaceous, and perhaps Early Tertiary age lie between ridge-forming granodiorite intrusions and are cut by thrust faults. The thrust planes dip 10? to 40? to the north- west. Movement of the upper thrust plates has been toward the southeast relative to the lower blocks. If this area is structurally typical of the Hindu-Kush and Karakoram Ranges, then these mountains are much more tectonically disturbed than previously recorded, and suggest compression on a scale compatible with the hypothesis that the Himalayan, Karakoram, and Hindu Kush Ranges form part of a continental collision zone. The thrust faults outline two plates consisting of distinctive sedimentary rocks. The lower thrust plate is about 3,000 feet thick and consists of the isoclinally folded Upper Cretaceous to perhaps lower Tertiary Reshun Formation. It has overridden the Paleozoic metasedimentary rocks of the Chitral Slate unit. This thrust plate is, in turn, overridden by an 8,000-foot thick sequence consisting largely of Devonian to Carboniferous limestones and quartzites. A key factor in the tectonic processes has been the relatively soft and plastic lithology of the siltstone layers in the Reshun Formation which have acted as lubricants along the principal thrust faults, where they are commonly found today as fault slices and smears. The stratigraphic sequence, in the central Mastuj Valley was tentatively divided into 9 mapped units. The fossiliferous shales and carbonates of the recently defined Shogram Formation and the clastlcs of the Reshun Formation have been fitted into a sequence of sedimentary rocks that has a total thick- ness of at least 13,000 feet and ranges in age from Devonian to Neogene. Minerals of potential economic significance include antimony sulfides which have been mined

  2. Control of Exciton Valley Coherence in Transition Metal Dichalcogenide Monolayers

    NASA Astrophysics Data System (ADS)

    Wang, Gang

    Current research on Transition Metal Dichalcogenide (TMD) Monolayers is stimulated by their strong light-matter interaction and the possibility to use the valley index in addition to spin as an information carrier. The direct gap interband transitions in TMD monolayers are governed by chiral optical selection rules. Determined by laser helicity, optical transitions in either the K+ or K- valley in momentum space are induced. Very recently the optical generation of valley polarization and valley coherence (coherent superposition of valley states) have been reported. In this work we go a step further by discussing the coherent manipulation of valley states. Linearly polarized laser excitation prepares a coherent superposition of valley states. We demonstrate the control of the exciton valley coherence in monolayer WSe2 by tuning the applied magnetic field perpendicular to the monolayer plane. The induced valley Zeeman splitting between K+ and K- results in a change of the oscillation frequency of the superposition of the valley states, which corresponds to a rotation of the exciton valley pseudo-spin. We show rotation of this coherent superposition of valley states by angles as large as 30 degrees in applied fields up to 9T and discuss valley coherence in other TMD monolayer materials. This exciton valley coherence control on ps time scale could be an important step towards complete control of qubits based on the valley degree of freedom. In collaboration with X. Marie, T. Amand, C. Robert, F. Cadiz, P. Renucci, B. Urbaszek (Université de Toulouse, INSA-CNRS-UPS, LPCNO, France), B. L. Liu (Institute of Physics, Chinese Academy of Sciences, China) and we acknowledge ERC Grant No. 306719.

  3. Geology and water resources of Owens Valley, California

    USGS Publications Warehouse

    Hollett, Kenneth J.; Danskin, Wesley R.; McCaffrey, William F.; Walti, Caryl L.

    1991-01-01

    Owens Valley, a long, narrow valley located along the east flank of the Sierra Nevada in east-central California, is the main source of water for the city of Los Angeles. The city diverts most of the surface water in the valley into the Owens River-Los Angeles Aqueduct system, which transports the water more than 200 miles south to areas of distribution and use. Additionally, ground water is pumped or flows from wells to supplement the surface-water diversions to the river-aqueduct system. Pumpage from wells needed to supplement water export has increased since 1970, when a second aqueduct was put into service, and local concerns have been expressed that the increased pumpage may have had a detrimental effect on the environment and the indigenous alkaline scrub and meadow plant communities in the valley. The scrub and meadow communities depend on soil moisture derived from precipitation and the unconfined part of a multilayered aquifer system. This report, which describes the hydrogeology of the aquifer system and the water resources of the valley, is one in a series designed to (1) evaluate the effects that groundwater pumping has on scrub and meadow communities and (2) appraise alternative strategies to mitigate any adverse effects caused by, pumping. Two principal topographic features are the surface expression of the geologic framework--the high, prominent mountains on the east and west sides of the valley and the long, narrow intermountain valley floor. The mountains are composed of sedimentary, granitic, and metamorphic rocks, mantled in part by volcanic rocks as well as by glacial, talus, and fluvial deposits. The valley floor is underlain by valley fill that consists of unconsolidated to moderately consolidated alluvial fan, transition-zone, glacial and talus, and fluvial and lacustrine deposits. The valley fill also includes interlayered recent volcanic flows and pyroclastic rocks. The bedrock surface beneath the valley fill is a narrow, steep-sided graben

  4. Geohydrology of the Unconsolidated Valley-Fill Aquifer in the Meads Creek Valley, Schuyler and Steuben Counties, New York

    USGS Publications Warehouse

    Miller, Todd S.; Bugliosi, Edward F.; Reddy, James E.

    2008-01-01

    The Meads Creek valley encompasses 70 square miles of predominantly forested uplands in the upper Susquehanna River drainage basin. The valley, which was listed as a Priority Waterbody by the New York State Department of Environmental Conservation in 2004, is prone to periodic flooding, mostly in its downstream end, where development is occurring most rapidly. Hydraulic characteristics of the unconsolidated valley-fill aquifer were evaluated, and seepage rates in losing and gaining tributaries were calculated or estimated, in an effort to delineate the aquifer geometry and identify the factors that contribute to flooding. Results indicated that (1) Meads Creek gained about 61 cubic feet of flow per second (about 6.0 cubic feet per second per mile of stream channel) from ground-water discharge and inflow from tributaries in its 10.2-mile reach between the northernmost and southernmost measurement sites; (2) major tributaries in the northern part of the valley are not significant sources of recharge to the aquifer; and (3) major tributaries in the central and southern part of the valley provide recharge to the aquifer. The ground-water portion of streamflow in Meads Creek (excluding tributary inflow) was 11.3 cubic feet per second (ft3/s) in the central part of the valley and 17.2 ft3/s in the southern part - a total of 28.5 ft3/s. Ground-water levels were measured in 29 wells finished in unconfined deposits for construction of a potentiometric-surface map to depict directions of ground-water flow within the valley. In general, ground water flows from the edges of the valley toward Meads Creek and ultimately discharges to it. The horizontal hydraulic gradient for the entire 12-mile-long aquifer averages about 30 feet per mile, whereas the gradient in the southern fourth of the valley averages about half that - about 17 feet per mile. A water budget for the aquifer indicated that 28 percent of recharge was derived from precipitation that falls on the aquifer, 32

  5. Late Tharsis formation and implications for early Mars

    NASA Astrophysics Data System (ADS)

    Bouley, Sylvain; Baratoux, David; Matsuyama, Isamu; Forget, Francois; Séjourné, Antoine; Turbet, Martin; Costard, Francois

    2016-03-01

    The Tharsis region is the largest volcanic complex on Mars and in the Solar System. Young lava flows cover its surface (from the Amazonian period, less than 3 billion years ago) but its growth started during the Noachian era (more than 3.7 billion years ago). Its position has induced a reorientation of the planet with respect to its spin axis (true polar wander, TPW), which is responsible for the present equatorial position of the volcanic province. It has been suggested that the Tharsis load on the lithosphere influenced the orientation of the Noachian/Early Hesperian (more than 3.5 billion years ago) valley networks and therefore that most of the topography of Tharsis was completed before fluvial incision. Here we calculate the rotational figure of Mars (that is, its equilibrium shape) and its surface topography before Tharsis formed, when the spin axis of the planet was controlled by the difference in elevation between the northern and southern hemispheres (hemispheric dichotomy). We show that the observed directions of valley networks are also consistent with topographic gradients in this configuration and thus do not require the presence of the Tharsis load. Furthermore, the distribution of the valleys along a small circle tilted with respect to the equator is found to correspond to a southern-hemisphere latitudinal band in the pre-TPW geographical frame. Preferential accumulation of ice or water in a south tropical band is predicted by climate model simulations of early Mars applied to the pre-TPW topography. A late growth of Tharsis, contemporaneous with valley incision, has several implications for the early geological history of Mars, including the existence of glacial environments near the locations of the pre-TPW poles of rotation, and a possible link between volcanic outgassing from Tharsis and the stability of liquid water at the surface of Mars.

  6. Late Tharsis formation and implications for early Mars.

    PubMed

    Bouley, Sylvain; Baratoux, David; Matsuyama, Isamu; Forget, Francois; Séjourné, Antoine; Turbet, Martin; Costard, Francois

    2016-03-17

    The Tharsis region is the largest volcanic complex on Mars and in the Solar System. Young lava flows cover its surface (from the Amazonian period, less than 3 billion years ago) but its growth started during the Noachian era (more than 3.7 billion years ago). Its position has induced a reorientation of the planet with respect to its spin axis (true polar wander, TPW), which is responsible for the present equatorial position of the volcanic province. It has been suggested that the Tharsis load on the lithosphere influenced the orientation of the Noachian/Early Hesperian (more than 3.5 billion years ago) valley networks and therefore that most of the topography of Tharsis was completed before fluvial incision. Here we calculate the rotational figure of Mars (that is, its equilibrium shape) and its surface topography before Tharsis formed, when the spin axis of the planet was controlled by the difference in elevation between the northern and southern hemispheres (hemispheric dichotomy). We show that the observed directions of valley networks are also consistent with topographic gradients in this configuration and thus do not require the presence of the Tharsis load. Furthermore, the distribution of the valleys along a small circle tilted with respect to the equator is found to correspond to a southern-hemisphere latitudinal band in the pre-TPW geographical frame. Preferential accumulation of ice or water in a south tropical band is predicted by climate model simulations of early Mars applied to the pre-TPW topography. A late growth of Tharsis, contemporaneous with valley incision, has several implications for the early geological history of Mars, including the existence of glacial environments near the locations of the pre-TPW poles of rotation, and a possible link between volcanic outgassing from Tharsis and the stability of liquid water at the surface of Mars.

  7. Neural network-based sliding mode control for atmospheric-actuated spacecraft formation using switching strategy

    NASA Astrophysics Data System (ADS)

    Sun, Ran; Wang, Jihe; Zhang, Dexin; Shao, Xiaowei

    2018-02-01

    This paper presents an adaptive neural networks-based control method for spacecraft formation with coupled translational and rotational dynamics using only aerodynamic forces. It is assumed that each spacecraft is equipped with several large flat plates. A coupled orbit-attitude dynamic model is considered based on the specific configuration of atmospheric-based actuators. For this model, a neural network-based adaptive sliding mode controller is implemented, accounting for system uncertainties and external perturbations. To avoid invalidation of the neural networks destroying stability of the system, a switching control strategy is proposed which combines an adaptive neural networks controller dominating in its active region and an adaptive sliding mode controller outside the neural active region. An optimal process is developed to determine the control commands for the plates system. The stability of the closed-loop system is proved by a Lyapunov-based method. Comparative results through numerical simulations illustrate the effectiveness of executing attitude control while maintaining the relative motion, and higher control accuracy can be achieved by using the proposed neural-based switching control scheme than using only adaptive sliding mode controller.

  8. Robust distributed control of spacecraft formation flying with adaptive network topology

    NASA Astrophysics Data System (ADS)

    Shasti, Behrouz; Alasty, Aria; Assadian, Nima

    2017-07-01

    In this study, the distributed six degree-of-freedom (6-DOF) coordinated control of spacecraft formation flying in low earth orbit (LEO) has been investigated. For this purpose, an accurate coupled translational and attitude relative dynamics model of the spacecraft with respect to the reference orbit (virtual leader) is presented by considering the most effective perturbation acceleration forces on LEO satellites, i.e. the second zonal harmonic and the atmospheric drag. Subsequently, the 6-DOF coordinated control of spacecraft in formation is studied. During the mission, the spacecraft communicate with each other through a switching network topology in which the weights of its graph Laplacian matrix change adaptively based on a distance-based connectivity function between neighboring agents. Because some of the dynamical system parameters such as spacecraft masses and moments of inertia may vary with time, an adaptive law is developed to estimate the parameter values during the mission. Furthermore, for the case that there is no knowledge of the unknown and time-varying parameters of the system, a robust controller has been developed. It is proved that the stability of the closed-loop system coupled with adaptation in network topology structure and optimality and robustness in control is guaranteed by the robust contraction analysis as an incremental stability method for multiple synchronized systems. The simulation results show the effectiveness of each control method in the presence of uncertainties and parameter variations. The adaptive and robust controllers show their superiority in reducing the state error integral as well as decreasing the control effort and settling time.

  9. Ground-water conditions in the Grand County area, Utah, with emphasis on the Mill Creek-Spanish Valley area

    USGS Publications Warehouse

    Blanchard, Paul J.

    1990-01-01

    The Grand County area includes all of Grand County, the Mill Creek and Pack Creek drainages in San Juan County, and the area between the Colorado and Green Rivers in San Juan County. The Grand County area includes about 3,980 square miles, and the Mill Creek-Spanish Valley area includes about 44 square miles. The three principal consolidated-rock aquifers in the Grand County area are the Entrada, Navajo, and Wingate aquifers in the Entrada Sandstone, the Navajo Sandstone, and the Wingate Sandstone, and the principal consolidated-rock aquifer in the Mill Creek-Spanish Valley area is the Glen Canyon aquifer in the Glen Canyon Group, comprised of the Navajo Sandstone, the Kayenta Formation, and the Wingate Sandstone.Recharge to the Entrada, Navajo, and Glen Canyon aquifers typically occurs where the formations containing the aquifers crop out or are overlain by unconsolidated sand deposits. Recharge is enhanced where the sand deposits are saturated at a depth of more than about 6 feet below the land surface, and the effects of evaporation begin to decrease rapidly with depth. Recharge to the Wingate aquifer typically occurs by downward movement of water from the Navajo aquifer through the Kayenta Formation, and primarily occurs where the Navajo Sandstone, Kayenta Formation, and the Wingate Sandstone are fractured.

  10. Geological and petrological considerations relevant to the disposal of radioactive wastes by hydraulic fracturing: an example at the US Department of Energy's Oak Ridge National Laboratory. [Pumpkin Valley shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, C.S.

    1982-01-01

    At Oak Ridge National Laboratory the Pumpkin Valley Shale is used as a host formation for hydraulic-fracturing waste disposal. Determination of the relationships between the distribution of different lithologies and porosity-permeability trends within this host formation allows these properties, important to hydraulic-fracturing operations, to be related to measurable and mappable geological and petrological parameters. It also permits extrapolation of such patterns to little-studied portions of the Pumpkin Valley Shale. Such knowledge better allows for the satisfactory operation and assessment of the hydraulic fracturing at Oak Ridge National Laboratory.

  11. MX Siting Investigation. Geotechnical Evaluation. Aggregate Resources Study, Lake Valley, Nevada.

    DTIC Science & Technology

    1981-02-27

    KILOMETERS Mx SITING INVESTIGATION IGURE IPARTMENT OF TNt Ag1 FORCE - GMO 2 -_ONiO NATIONAL INC. FlU It FN-TR-37-f 5 2. Aerial and ground reconnaissance...fine, or crushed rock) and potential construction use ( con - crete and/or road base). TOM. FN-TR -37-f 6 2.0 STUDY APPROACH 2.1 EXISTING DATA Collection...2 the southwestern part of Lake Valley. This formation also pro - vides Class I crushed rock aggregate material in the southern White Rock Mountains

  12. Southern Appalachian Regional Seismic Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M.

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even withmore » its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern.« less

  13. Meteorological Support Interface Control Working Group (MSICWG) Instrumentation, Data Format, and Networks Document

    NASA Technical Reports Server (NTRS)

    Brenton, James; Roberts, Barry C.

    2017-01-01

    The purpose of this document is to provide an overview of instrumentation discussed at the Meteorological Interface Control Working Group (MSICWG), a reference for data formats currently used by members of the group, a summary of proposed formats for future use by the group, an overview of the data networks of the group's members. This document will be updated as new systems are introduced, old systems are retired, and when the MSICWG community necessitates a change to the formats. The MSICWG consists of personnel from the National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC), NASA Marshall Space Flight Center (MSFC), NASA Johnson Space Center (JSC), National Oceanic and Atmospheric Administration National Weather Service Spaceflight Meteorology Group (SMG), and the United States Air Force (USAF) 45th Space Wing and Weather Squadron. The purpose of the group is to coordinate the distribution of weather related data to support NASA space launch related activities.

  14. Comparing Two Versions of Professional Development for Teachers Using Formative Assessment in Networked Mathematics Classrooms

    ERIC Educational Resources Information Center

    Yin, Yue; Olson, Judith; Olson, Melfried; Solvin, Hannah; Brandon, Paul R.

    2015-01-01

    This study compared two versions of professional development (PD) designed for teachers using formative assessment (FA) in mathematics classrooms that were networked with Texas Instruments Navigator (NAV) technology. Thirty-two middle school mathematics teachers were randomly assigned to one of the two groups: FA-then-NAV group and FA-and-NAV…

  15. Observation of valley-selective microwave transport in photonic crystals

    NASA Astrophysics Data System (ADS)

    Ye, Liping; Yang, Yuting; Hong Hang, Zhi; Qiu, Chunyin; Liu, Zhengyou

    2017-12-01

    Recently, the discrete valley degree of freedom has attracted extensive attention in condensed matter physics. Here, we present an experimental observation of the intriguing valley transport for microwaves in photonic crystals, including the bulk valley transport and the valley-projected edge modes along the interface separating different photonic insulating phases. For both cases, valley-selective excitations are realized by a point-like chiral source located at proper locations inside the samples. Our results are promising for exploring unprecedented routes to manipulate microwaves.

  16. The McMurdo Dry Valleys, Antarctica: Terrestrial and aquatic ecosystems responding to climatic events that enhance hydrologic transport acress the landscape

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Lyons, W. B.; Fountain, A. G.; Gooseff, M. N.; Doran, P. T.; Wall, D. H.; Virginia, R. A.; Priscu, J. C.; Adams, B.; Vesbach-Takacs, C.; Barrett, J. E.; Howkins, A.

    2014-12-01

    The McMurdo Dry Valleys of Antarctica is comprised of alpine and terminal glaciers, large expanses of patterned ground, and permanently ice-covered lakes in the valley floors, which are linked by glacial meltwater streams that flow during the austral summer. These valleys were first explored by Robert Scott and his party in 1903. In 1968 the New Zealand Antarctic Program began a gauging network on the Onyx River, a 32 km river in Wright Valley which is the longest river in Antarctica. As part of the McMurdo Dry Valleys Long-Term Ecological research project our research group has monitored meteorological conditions, glacial mass balance, lake level and streamflow in the adjacent Taylor Valley. The extent of liquid water throughout the landscape is strongly controlled by summer climate, and the availability of liquid water in turn is a limitation to the microscopic life that is present in the diverse habitats in the valleys. We have studied the responses of soil, lake, stream and cryoconite ecosystems through a sustained cooling period that has been driven by atmospheric changes associated with the ozone hole. In the past decade, this cooling period appears to have ceased and summer conditions have become more variable. Three warm sunny summers have occurred since 2001/02. These conditions have created weeks long "flood events" in the valleys, causing wet areas to emerge in the soils, thermokarsting in some stream channels and increases in lake level. These flood events can be considered as pulse events that drive an increase in ecosystem connectivity, changing rates of biogeochemical processes and the distribution of biota. Collectively the ecosystems of the McMurdo Dry Valleys are highly responsive to dynamic climatic influences associated with the ozone hole and global warming.

  17. Social factors shaping the formation of a multi-stakeholder trails network group for the Monongahela National Forest, West Virginia

    Treesearch

    Karen Robinson; Steven Selin; Chad Pierskalla

    2009-01-01

    This paper reports the results and management implications of a longitudinal research study examining the social factors affecting the formation of a trails network advisory group for the Monongahela National Forest (MNF) in West Virginia. A collaborative process of creating an MNF trails network with input from local users and stakeholders has been largely...

  18. California's Central Valley Groundwater Study: A Powerful New Tool to Assess Water Resources in California's Central Valley

    USGS Publications Warehouse

    Faunt, Claudia C.; Hanson, Randall T.; Belitz, Kenneth; Rogers, Laurel

    2009-01-01

    Competition for water resources is growing throughout California, particularly in the Central Valley. Since 1980, the Central Valley's population has nearly doubled to 3.8 million people. It is expected to increase to 6 million by 2020. Statewide population growth, anticipated reductions in Colorado River water deliveries, drought, and the ecological crisis in the Sacramento-San Joaquin Delta have created an intense demand for water. Tools and information can be used to help manage the Central Valley aquifer system, an important State and national resource.

  19. SDSS IV MaNGA - sSFR profiles and the slow quenching of discs in green valley galaxies

    NASA Astrophysics Data System (ADS)

    Belfiore, Francesco; Maiolino, Roberto; Bundy, Kevin; Masters, Karen; Bershady, Matthew; Oyarzún, Grecco; Lin, Lihwai; Cano-Diaz, Mariana; Wake, David; Spindler, Ashley; Thomas, Daniel; Brownstein, Joel R.; Drory, Niv; Yan, Renbin

    2018-03-01

    We study radial profiles in Hα equivalent width and specific star formation rate (sSFR) derived from spatially-resolved SDSS-IV MaNGA spectroscopy to gain insight on the physical mechanisms that suppress star formation and determine a galaxy's location in the SFR-M_\\star diagram. Even within the star-forming `main sequence', the measured sSFR decreases with stellar mass, both in an integrated and spatially-resolved sense. Flat sSFR radial profiles are observed for log(M_\\star / M_⊙ ) < 10.5, while star-forming galaxies of higher mass show a significant decrease in sSFR in the central regions, a likely consequence of both larger bulges and an inside-out growth history. Our primary focus is the green valley, constituted by galaxies lying below the star formation main sequence, but not fully passive. In the green valley we find sSFR profiles that are suppressed with respect to star-forming galaxies of the same mass at all galactocentric distances out to 2 effective radii. The responsible quenching mechanism therefore appears to affect the entire galaxy, not simply an expanding central region. The majority of green valley galaxies of log(M_\\star / M_⊙ ) > 10.0 are classified spectroscopically as central low-ionisation emission-line regions (cLIERs). Despite displaying a higher central stellar mass concentration, the sSFR suppression observed in cLIER galaxies is not simply due to the larger mass of the bulge. Drawing a comparison sample of star forming galaxies with the same M_\\star and Σ _{1 kpc} (the mass surface density within 1 kpc), we show that a high Σ _{1 kpc} is not a sufficient condition for determining central quiescence.

  20. SDSS IV MaNGA - sSFR profiles and the slow quenching of discs in green valley galaxies

    NASA Astrophysics Data System (ADS)

    Belfiore, Francesco; Maiolino, Roberto; Bundy, Kevin; Masters, Karen; Bershady, Matthew; Oyarzún, Grecco A.; Lin, Lihwai; Cano-Diaz, Mariana; Wake, David; Spindler, Ashley; Thomas, Daniel; Brownstein, Joel R.; Drory, Niv; Yan, Renbin

    2018-07-01

    We study radial profiles in H α equivalent width and specific star formation rate (sSFR) derived from spatially resolved SDSS-IV MaNGA spectroscopy to gain insight on the physical mechanisms that suppress star formation and determine a galaxy's location in the SFR-M⋆ diagram. Even within the star-forming `main sequence', the measured sSFR decreases with stellar mass, in both an integrated and spatially resolved sense. Flat sSFR radial profiles are observed for log(M⋆/M⊙) < 10.5, while star-forming galaxies of higher mass show a significant decrease in sSFR in the central regions, a likely consequence of both larger bulges and an inside-out growth history. Our primary focus is the green valley, constituted by galaxies lying below the star formation main sequence, but not fully passive. In the green valley we find sSFR profiles that are suppressed with respect to star-forming galaxies of the same mass at all galactocentric distances out to 2 effective radii. The responsible quenching mechanism therefore appears to affect the entire galaxy, not simply an expanding central region. The majority of green valley galaxies of log(M⋆/M⊙) > 10.0 are classified spectroscopically as central low-ionization emission-line regions (cLIERs). Despite displaying a higher central stellar mass concentration, the sSFR suppression observed in cLIER galaxies is not simply due to the larger mass of the bulge. Drawing a comparison sample of star-forming galaxies with the same M⋆ and Σ _{1 kpc} (the mass surface density within 1 kpc), we show that a high Σ _{1 kpc} is not a sufficient condition for determining central quiescence.

  1. Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia.

    PubMed

    Lehtola, Markku J; Juhna, Tālis; Miettinen, Ilkka T; Vartiainen, Terttu; Martikainen, Pertti J

    2004-12-01

    The formation of biofilms in drinking water distribution networks is a significant technical, aesthetic and hygienic problem. In this study, the effects of assimilable organic carbon, microbially available phosphorus (MAP), residual chlorine, temperature and corrosion products on the formation of biofilms were studied in two full-scale water supply systems in Finland and Latvia. Biofilm collectors consisting of polyvinyl chloride pipes were installed in several waterworks and distribution networks, which were supplied with chemically precipitated surface waters and groundwater from different sources. During a 1-year study, the biofilm density was measured by heterotrophic plate counts on R2A-agar, acridine orange direct counting and ATP-analyses. A moderate level of residual chlorine decreased biofilm density, whereas an increase of MAP in water and accumulated cast iron corrosion products significantly increased biofilm density. This work confirms, in a full-scale distribution system in Finland and Latvia, our earlier in vitro finding that biofilm formation is affected by the availability of phosphorus in drinking water.

  2. 27 CFR 9.90 - Willamette Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) “Roseburg,” Location Diagram NL 10-2, 1958 (revised 1970). (c) Boundaries. The Willamette Valley... valleys of Little River, Mosby Creek, Sharps Creek and Lost Creek to the intersection of R1W/R1E and State...

  3. Valley photonic crystals for control of spin and topology

    NASA Astrophysics Data System (ADS)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  4. A review of empirical evidence on different uncanny valley hypotheses: support for perceptual mismatch as one road to the valley of eeriness

    PubMed Central

    Kätsyri, Jari; Förger, Klaus; Mäkäräinen, Meeri; Takala, Tapio

    2015-01-01

    The uncanny valley hypothesis, proposed already in the 1970s, suggests that almost but not fully humanlike artificial characters will trigger a profound sense of unease. This hypothesis has become widely acknowledged both in the popular media and scientific research. Surprisingly, empirical evidence for the hypothesis has remained inconsistent. In the present article, we reinterpret the original uncanny valley hypothesis and review empirical evidence for different theoretically motivated uncanny valley hypotheses. The uncanny valley could be understood as the naïve claim that any kind of human-likeness manipulation will lead to experienced negative affinity at close-to-realistic levels. More recent hypotheses have suggested that the uncanny valley would be caused by artificial–human categorization difficulty or by a perceptual mismatch between artificial and human features. Original formulation also suggested that movement would modulate the uncanny valley. The reviewed empirical literature failed to provide consistent support for the naïve uncanny valley hypothesis or the modulatory effects of movement. Results on the categorization difficulty hypothesis were still too scarce to allow drawing firm conclusions. In contrast, good support was found for the perceptual mismatch hypothesis. Taken together, the present review findings suggest that the uncanny valley exists only under specific conditions. More research is still needed to pinpoint the exact conditions under which the uncanny valley phenomenon manifests itself. PMID:25914661

  5. Soils, surficial geology, and geomorphology of the Bear Creek Valley Low-Level Waste Disposal Development and Demonstration Program site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lietzke, D.A.; Lee, S.Y.; Lambert, R.E.

    1988-04-01

    An intensive soil survey was conducted on the proposed Low-Level Waste Disposal Development and Demonstration Program site (LLWDDD) in Bear Creek Valley. Soils on the site were related to the underlying residuum and to the surficial colluvium and alluvium. Within any particular geologic formation, soils were subdivided based mostly on the degree of weathering, as reflected by saprolite weathering and morphologic features of the soils. Degree of weathering was related both to slope shape and gradient and to the joint-fracture system. Erosion classes were also used to make further subdivisions of any particular soil. Deep pits were dug in eachmore » of the major Conasauga Group formations (Pumpkin Valley, Rogersville, Maryville, and Nolichucky) for soil and saprolite characterization. Because of the widespread presence of alluvium and colluvium, which are potential sources of fill and final cover material, pits and trenches were dug to characterize the properties of these soils and to try to understand the past geomorphic history of the site. The results of the soil survey investigation indicated that the deeply weathered Pumpkin Valley residuum has good potential for the construction of tumuli or other types of belowground or aboveground burial of prepackaged compacted waste. 11 refs., 30 figs., 3 tabs.« less

  6. The Salzach Valley overdeeping: A most precise bedrock model of a major alpine glacial basin

    NASA Astrophysics Data System (ADS)

    Pomper, Johannes; Salcher, Bernhard; Eichkitz, Christoph

    2016-04-01

    Overdeepenings are impressive phenomena related to the erosion in the ablation zone of major glaciers. They are common features in glaciated and deglaciated regions worldwide and their sedimentary fillings may act as important archives for regional environmental change and glaciation history. Sedimentary fillings are also important targets of geotechnical exploration and construction including groundwater resource management, shallow geothermal exploitation, tunneling and the foundation of buildings. This is especially true in densely populated areas such as the European Alps and their foreland areas, regions which have been multiply glaciated during the last million years. However, due depths often exceeding some hundreds of meters, the overall knowledge on their geometry, formation and sedimentary content is still poor and commonly tied to some local spots. Here we present a bedrock model of the overall lower Salzach Valley, one of the largest glacial overdeepings in the European Alps. We utilized seismic sections from hydrocarbon exploration surveys and deep drillings together with topographic and modelling data to construct a 3D bedrock model. Through the existence of seismic inline and crossline valley sections, multiple drillings reaching the bedrock surface, log and abundant outcrop data we were, as far to our knowledge, able to create the most accurate digital bedrock topography of an alpine major overdeepening. We furthermore analyzed the sedimentary content of the valley as recorded by driller's lithologic logs. Our results suggest that the valley is far from being a regular U-shaped trough with constant depth, rather highlighting highs and lows of different magnitude and underground valley widths of variable extent. Data also indicates that the largest overdeepening of bedrock, reaching around 450 m below the alluvial fill, is not situated after a major glacial confluence following a prominent bedrock gorge but shifted several km down the valley. The

  7. Gravity survey of Dixie Valley, west-central Nevada

    USGS Publications Warehouse

    Schaefer, Donald H.

    1983-01-01

    Dixie Valley, a northeast-trending structural trough typical of valleys in the Basin and Range Province, is filled with a maximum of about 10,000 feet of alluvial and lacustrine deposits , as estimated from residual-gravity measurements obtained in this study. On the basis of gravity measurements at 300 stations on nine east-west profiles, the gravity residuals reach a maximum of 30 milligals near the south-central part of the valley. Results from a three-dimensional inversion model indicate that the central depression of the valley is offset to the west of the geographic axis. This offset is probably due to major faulting along the west side of the valley adjacent to the Stillwater Range. Comparison of depths to bedrock obtained during this study and depths obtained from a previous seismic-refraction study indicates a reasonably good correlation. A heterogeneous distribution of densities within the valley-fill deposits would account for differing depths determined by the two methods. (USGS)

  8. Sapping Features of the Colorado Plateau: a Comparative Planetary Geology Field Guide

    NASA Technical Reports Server (NTRS)

    Howard, Alan D. (Editor); Kochel, R. Craig (Editor); Holt, Henry E. (Editor)

    1987-01-01

    This book is an attempt to determine geomorphic criteria to be used to distinguish between channels formed predominantly by sapping and seepage erosion and those formed principally by surface runoff processes. The geologic nature of the Colorado Plateau has resulted in geomorphic features that show similarities to some areas on Mars, especially certain valley networks within thick sandstone formations. Where spring sapping is an effective process, the valleys that develop are unique in terms of their morphology and network pattern.

  9. Napa Valley Community College District and Napa Valley College Faculty Association/CTA/NEA 1988-89 Agreement.

    ERIC Educational Resources Information Center

    Napa Valley Community Coll. District, Napa, CA.

    The collective bargaining agreement between the Board of Trustees of the Napa Valley Community College District and the Napa Valley College Faculty Association/California Teachers Association/National Education Association is presented. This contract, in effect from June 1988 through July 1989, deals with the following topics: bargaining agent…

  10. Channels and valleys on Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1983-01-01

    Tentative conclusions about the origins of channels and valleys on Mars based on the consensus of investigators who have studied the problem are presented. The morphology of outflow channels is described in detail, and the morphology, distribution, and genesis of Martian valleys are addressed. Secondary modification of channels and valleys by mass-wasting phenomena, eolian processes, cratering, and mantling by lava flows is discussed. The physics of the flows needed to account for the immense volumes of Martian outflow channels is considered in detail, including the possible influence of debris flows and mudflows, glaciers, and ice sheets. It is concluded that Mars once probably possessed an atmosphere with higher temperatures and pressures than at present which played an essential role in an active hydrological cycle.

  11. The geochemistry of groundwater resources in the Jordan Valley: The impact of the Rift Valley brines

    USGS Publications Warehouse

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Polak, A.; Shavit, U.

    2007-01-01

    The chemical composition of groundwater in the Jordan Valley, along the section between the Sea of Galilee and the Dead Sea, is investigated in order to evaluate the origin of the groundwater resources and, in particular, to elucidate the role of deep brines on the chemical composition of the regional groundwater resources in the Jordan Valley. Samples were collected from shallow groundwater in research boreholes on two sites in the northern and southern parts of the Jordan Valley, adjacent to the Jordan River. Data is also compiled from previous published studies. Geochemical data (e.g., Br/Cl, Na/Cl and SO4/Cl ratios) and B, O, Sr and S isotopic compositions are used to define groundwater groups, to map their distribution in the Jordan valley, and to evaluate their origin. The combined geochemical tools enabled the delineation of three major sources of solutes that differentially affect the quality of groundwater in the Jordan Valley: (1) flow and mixing with hypersaline brines with high Br/Cl (>2 ?? 10-3) and low Na/Cl (<0.8) ratios; (2) dissolution of highly soluble salts (e.g., halite, gypsum) in the host sediments resulting in typically lower Br/Cl signal (<2 ?? 10-3); and (3) recharge of anthropogenic effluents, primarily derived from evaporated agricultural return flow that has interacted (e.g., base-exchange reactions) with the overlying soil. It is shown that shallow saline groundwaters influenced by brine mixing exhibit a north-south variation in their Br/Cl and Na/Cl ratios. This chemical trend was observed also in hypersaline brines in the Jordan valley, which suggests a local mixing process between the water bodies. ?? 2007 Elsevier Ltd. All rights reserved.

  12. Formation of raiding parties for intergroup violence is mediated by social network structure

    PubMed Central

    Glowacki, Luke; Isakov, Alexander; Wrangham, Richard W.; McDermott, Rose; Fowler, James H.; Christakis, Nicholas A.

    2016-01-01

    Intergroup violence is common among humans worldwide. To assess how within-group social dynamics contribute to risky, between-group conflict, we conducted a 3-y longitudinal study of the formation of raiding parties among the Nyangatom, a group of East African nomadic pastoralists currently engaged in small-scale warfare. We also mapped the social network structure of potential male raiders. Here, we show that the initiation of raids depends on the presence of specific leaders who tend to participate in many raids, to have more friends, and to occupy more central positions in the network. However, despite the different structural position of raid leaders, raid participants are recruited from the whole population, not just from the direct friends of leaders. An individual’s decision to participate in a raid is strongly associated with the individual’s social network position in relation to other participants. Moreover, nonleaders have a larger total impact on raid participation than leaders, despite leaders’ greater connectivity. Thus, we find that leaders matter more for raid initiation than participant mobilization. Social networks may play a role in supporting risky collective action, amplify the emergence of raiding parties, and hence facilitate intergroup violence in small-scale societies. PMID:27790996

  13. 36 CFR 7.26 - Death Valley National Monument.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Death Valley National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.26 Death Valley National Monument. (a) Mining. Mining in Death Valley National Monument is subject to the following regulations, which are...

  14. Total carbon and nitrogen in mineral soil after 26 years of prescribed fire: Long Valley and Fort Valley Experimental Forests

    Treesearch

    Daniel G. Neary; Sally M. Haase; Steven T. Overby

    2008-01-01

    Prescribed fire was introduced to high density ponderosa pine stands at Fort Valley and Long Valley Experimental Forests in 1976. This paper reports on mineral soil total carbon (C) and nitrogen (N) at Long Valley. Total soil C and N levels were highly variable and exhibited an increasing, but inconsistent, concentration trend related to burn interval. Total N ranged...

  15. Valley-polarized quantum transport generated by gauge fields in graphene

    NASA Astrophysics Data System (ADS)

    Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan

    2017-09-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.

  16. Groundwater availability of the Central Valley Aquifer, California

    USGS Publications Warehouse

    Faunt, Claudia C.

    2009-01-01

    California's Central Valley covers about 20,000 square miles and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year. This irrigated agriculture relies heavily on surface-water diversions and groundwater pumpage. Approximately one-sixth of the Nation's irrigated land is in the Central Valley, and about one-fifth of the Nation's groundwater demand is supplied from its aquifers. The Central Valley also is rapidly becoming an important area for California's expanding urban population. Since 1980, the population of the Central Valley has nearly doubled from 2 million to 3.8 million people. The Census Bureau projects that the Central Valley's population will increase to 6 million people by 2020. This surge in population has increased the competition for water resources within the Central Valley and statewide, which likely will be exacerbated by anticipated reductions in deliveries of Colorado River water to southern California. In response to this competition for water, a number of water-related issues have gained prominence: conservation of agricultural land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS Groundwater Resources Program made a detailed assessment of groundwater availability of the Central Valley aquifer system, that includes: (1) the present status of groundwater resources; (2) how these resources have changed over time; and (3) tools to assess system responses to stresses from future human uses and climate variability and change. This effort builds on previous investigations, such as the USGS Central Valley Regional Aquifer System and Analysis (CV-RASA) project and several other groundwater studies in the Valley completed by Federal, State and local agencies at differing scales. The

  17. Characterization of a 21-Story Reinforced Building in the Valley of Mexico Using MEMS Accelerometers.

    NASA Astrophysics Data System (ADS)

    Husker, A. L.; Dominguez, L. A.; Becerril, A.; Espejo, L.; Cochran, E. S.

    2014-12-01

    Low cost MEMS accelerometers are becoming increasingly higher resolution making them useful in strong motion studies. Here we present a building response analysis in the lakebed zone of the Valley of Mexico. The Valley of Mexico represents one of the highest seismic risk locations in the world and incorporates Mexico City and part of Mexico State. More than 20 million people live there and it is the political and economic center of Mexico. In addition the valley has very high site effects with amplifications 100 - 500 times that of sites outside of the basin (Singh et al., 1988; Singh et al., 1995). We instrumented a 21-story building with MEMS accelerometers as part of the Quake Catcher Network or Red Atrapa Sismos as it is called in Mexico. The building known as the Centro Cultural de Tlateloco is located in an important historical and political area as well as a zone with some of the highest amplifications in the Valley of Mexico that had some of the worst destruction after the 1985 M8.1 Michoacan earthquake. During the earthquake most of the buildings that failed were between 7 - 18 stories tall. The peak accelerations near Tlateloco were at periods of 2 seconds. Since the earthquake the building has been retrofitted with N-S crossing supports to help withstand another earthquake. We present the measurements of frequencies and amplifications between floors for the length of the building.

  18. Valley-selective optical Stark effect in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Gedik, Nuh

    Monolayer semiconducting transition-metal dichalcogenides (TMDs) have a pair of valleys that, by time-reversal symmetry, are energetically degenerate. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley specific band engineering and offer additional control in valleytronic applications. In this talk, I will show that circularly polarized light, which breaks time-reversal symmetry, can be used to lift the valley degeneracy by means of the optical Stark effect. We demonstrate that this effect is capable of raising the exciton level in monolayer TMD WS2 by as much as 18 meV in a controllable valley-selective manner. The resulting energy shift is extremely large, comparable to the shift that would be obtained using a very high magnetic field (approximately 100 Tesla). These results offer a novel way to control valley degree of freedom, and may provide a means to realize new valley-selective Floquet topological state of matter.

  19. Different states of the transient luminous phenomena in Hessdalen valley, Norway.

    NASA Astrophysics Data System (ADS)

    Hauge, B. G.; Montebugnoli, S.

    2012-04-01

    The transient luminous phenomena's in Hessdalen valley has at least been observed for 200 years, since 1811, when the priest Jacob T. Krogh did the first written documentation. The valley is located in the middle of Norway, isolated and with sub arctic climate. The former mining district has no more than 140 inhabitants, and the deep mines are closed and filled with water. The valley has been under scientific surveillance since 1998 when the first automated and remote controlled observatory was put into action. Today a Norwegian, Italian and French collaboration runs 3 different research stations inside the valley. Each year a scientific field campaign establishes 4 temporary bases in the mountains, and up to 100 students and researchers man these bases for up to 14 days in september when the moon is down. The Hessdalen phenomena is not easy to detect, and approximately only 20 observations is done each year. The work done the last 14 years suggests that the phenomenon has different states, at least 6 detected so far. The states are so different that to se a coupling between them is difficult. New work done into dusty plasma physics suggest that the different phenomena's may be of the same origin, since the ionized grains of dusty plasma can change states from weakly coupled (gaseous) to crystalline, altering shape/formation and leading to different phenomena. Optical spectrometry from 2007 suggested that the luminous phenomena consisted of burning air and dust from the valley. Work done by G.S Paiva and C.A Taft suggests that radon decay from closed mines may be the mechanism that ionizes dust and triggers this phenomena. The 6 different main states of the Hessdalen phenomena, Doublet, Fireball, Plasma ray, Dust cloud, Flash and Invisible state is described and discussed. Investigation of the atmosphere inside the Hessdalen valley with low frequency directional RADAR, reveals large areas of ionized matter, giving a reflecting area big enough to saturate the input

  20. Holocene intramontane lake development: A new model in the Jáchal River Valley, Andean Precordillera, San Juan, Argentina

    NASA Astrophysics Data System (ADS)

    Colombo, Ferran; Busquets, Pere; Sole de Porta, Nuria; Limarino, Carlos Oscar; Heredia, Nemesio; Rodriguez-Fernandez, Luis Roberto; Alvarez-Marron, Joaquina

    2009-10-01

    The Jáchal River Valley displays a number of significant Holocene sedimentary accumulations made up of fine-grained materials. These deposits are interpreted as the sedimentary infill of shallow temporary lakes that were generated by slow growing episodes of alluvial fans that obstructed the Jáchal River Valley. The association of fossil remains through the Holocene sedimentary sequence suggests that the accumulation of lacustrine sediments was affected by climate variations. The predominant aridity was punctuated by very few humid episodes characterised by fresh-water gastropoda and the intercalations of muddy sediments. The high proportion of charcoal particles in some samples indicates periodic forest fires. Abundant non-pollen forest remains suggest that an open zone dominated by several types of grasses underwent a dry season during part of the year. The palynomorph associations found in the Jáchal River Valley Holocene lacustrine sediments suggest that the humid conditions were less intense than those in the San Juan River Valley located more than one hundred kilometres southwards. Our study suggests that lake formation could have been controlled by climate oscillation probably related to the ENSO variation at 30° south latitude.

  1. Toward Efficient Team Formation for Crowdsourcing in Noncooperative Social Networks.

    PubMed

    Wang, Wanyuan; Jiang, Jiuchuan; An, Bo; Jiang, Yichuan; Chen, Bing

    2017-12-01

    Crowdsourcing has become a popular service computing paradigm for requesters to integrate the ubiquitous human-intelligence services for tasks that are difficult for computers but trivial for humans. This paper focuses on crowdsourcing complex tasks by team formation in social networks (SNs) where a requester connects to a large number of workers. A good indicator of efficient team collaboration is the social connection among workers. Most previous social team formation approaches, however, either assume that the requester can maintain information of all workers and can directly communicate with them to build teams, or assume that the workers are cooperative and be willing to join the specific team built by the requester, both of which are impractical in many real situations. To this end, this paper first models each worker as a selfish entity, where the requester prefers to hire inexpensive workers that require less payment and workers prefer to join the profitable teams where they can gain high revenue. Within the noncooperative SNs, a distributed negotiation-based team formation mechanism is designed for the requester to decide which worker to hire and for the worker to decide which team to join and how much should be paid for his skill service provision. The proposed social team formation approach can always build collaborative teams by allowing team members to form a connected graph such that they can work together efficiently. Finally, we conduct a set of experiments on real dataset of workers to evaluate the effectiveness of our approach. The experimental results show that our approach can: 1) preserve considerable social welfare by comparing the benchmark centralized approaches and 2) form the profitable teams within less negotiation time by comparing the traditional distributed approaches, making our approach a more economic option for real-world applications.

  2. The formation and failure of natural dams

    USGS Publications Warehouse

    Costa, J.E.; Schuster, R.L.

    1987-01-01

    Of the numerous kinds of dams that form by natural processes, dams formed from landslides, glacial ice, and neoglacial moraines present the greatest threat to people and property. The most common types of mass movements that form landslide dams are rock and debris avalanches, rock and soil slumps and slides, and mud, debris, and earth flows. The most common initiation mechanisms for dam-forming landslides are excessive rainfall and snowmelt and earthquakes. Landslide dams can be classified into six categories based on their relation with the valley floor. Type I dams (11%) of the 81 landslide dams around the world that were classifed do not reach from one valley side to the other. Type II dams (44%) span the entire valley flood, occasionally depositing material high up on opposite valley sides. Type III dams (41%) move considerable distances both upstream and downstream from the landslide failure. Type IV dams (1%) are rare and involve the contemporaneous failure of material from both sides of a valley. Type V dams (1%) are also rare, and are created when a single landslide sends multiple tongues of debris into a valley forming two or more landslide dams in the same surfaces, that extend under the stream or valley and emerge on the opposite valley side. Many landslide dams fail shortly after formation. Overtopping is by far the most common cause of failure. Glacial ice dams can produce at least nine kinds of ice-dammed lakes. The most dangerous are lakes formed in main valleys dammed by tributary glaciers. Failure can occur by erosion of a drainage tunnel under or through the ice dam or by a channel over the ice dam. Cold polar ice dams generally drain supraglacially or marginally by downmelting of an outlet channel. Warmer temperate-ice dams tend to fail by sudden englacial or subglacial breaching and drainage. Late neoglacial moraine-dammed lakes are located in steep mountain areas affected by the advances and retreats of valley glaciers in the last several

  3. Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide

    PubMed Central

    Plechinger, Gerd; Nagler, Philipp; Arora, Ashish; Schmidt, Robert; Chernikov, Alexey; del Águila, Andrés Granados; Christianen, Peter C.M.; Bratschitsch, Rudolf; Schüller, Christian; Korn, Tobias

    2016-01-01

    Monolayer transition-metal dichalcogenides have recently emerged as possible candidates for valleytronic applications, as the spin and valley pseudospin are directly coupled and stabilized by a large spin splitting. The optical properties of these two-dimensional crystals are dominated by tightly bound electron–hole pairs (excitons) and more complex quasiparticles such as charged excitons (trions). Here we investigate monolayer WS2 samples via photoluminescence and time-resolved Kerr rotation. In photoluminescence and in energy-dependent Kerr rotation measurements, we are able to resolve two different trion states, which we interpret as intravalley and intervalley trions. Using time-resolved Kerr rotation, we observe a rapid initial valley polarization decay for the A exciton and the trion states. Subsequently, we observe a crossover towards exciton–exciton interaction-related dynamics, consistent with the formation and decay of optically dark A excitons. By contrast, resonant excitation of the B exciton transition leads to a very slow decay of the Kerr signal. PMID:27586517

  4. Hydrologic effects of stress-relief fracturing in an Appalachian Valley

    USGS Publications Warehouse

    Wyrick, Granville G.; Borchers, James W.

    1981-01-01

    A hydrologic study at Twin Falls State Park, Wyoming County, West Virginia, was made to determine how fracture systems affect the occurrence and movement of ground water in a typical valley of the Appalachian Plateaus Physiographic Province. Twin Falls was selected because it is generally unaffected by factors that would complicate an analysis of the data. The study area was the Black Fork Valley at Twin Falls. The valley is about 3 miles long and 400 to 600 feet wide and is cut into massive sandstone units interbedded with thin coal and shale beds. The study was made to determine how aquifer characteristics were related to fracture systems in this valley, so that the relation could be applied to studies of other valleys. Two sites were selected for test drilling, pumping tests, and geophysical studies. One site is in the upper part of the valley, and the second is near the lower central part. At both sites, ground water occurs mainly in horizontal bedding-plane fractures under the valley floor and in nearly vertical and horizontal slump fractures along the valley wall. The aquifer is under confined conditions under the valley floor and unconfined conditions along the valley wall. The fractures pinch out under the valley walls, which form impermeable barriers. Tests of wells near the valley center indicated a change in storage coefficient as the cone of depression caused by pumping reached the confined-unconfined boundaries; the tests also indicated barrier-image effects when the cone reached the impermeable boundaries. Drawdown from pumping near the center of the valley affected water levels at both sites, indicating a hydraulic connection from the upper to the lower end of the valley. Stream gain-and-loss studies show that ground water discharges to the stream from horizontal fractures beneath Black Fork Falls, near the mouth of Black Fork. The fracture systems that constitute most of the transmissive part of the aquifer at Twin Falls are like those described as

  5. Opinion formation models in static and dynamic social networks

    NASA Astrophysics Data System (ADS)

    Singh, Pramesh

    We study models of opinion formation on static as well as dynamic networks where interaction among individuals is governed by widely accepted social theories. In particular, three models of competing opinions based on distinct interaction mechanisms are studied. A common feature in all of these models is the existence of a tipping point in terms of a model parameter beyond which a rapid consensus is reached. In the first model that we study on a static network, a node adopts a particular state (opinion) if a threshold fraction of its neighbors are already in that state. We introduce a few initiator nodes which are in state '1' in a population where every node is in state '0'. Thus, opinion '1' spreads through the population until no further influence is possible. Size of the spread is greatly affected by how these initiator nodes are selected. We find that there exists a critical fraction of initiators pc that is needed to trigger global cascades for a given threshold phi. We also study heuristic strategies for selecting a set of initiator nodes in order to maximize the cascade size. The structural properties of networks also play an important role in the spreading process. We study how the dynamics is affected by changing the clustering in a network. It turns out that local clustering is helpful in spreading. Next, we studied a model where the network is dynamic and interactions are homophilic. We find that homophily-driven rewiring impedes the reaching of consensus and in the absence of committed nodes (nodes that are not influenceable on their opinion), consensus time Tc diverges exponentially with network size N . As we introduce a fraction of committed nodes, beyond a critical value, the scaling of Tc becomes logarithmic in N. We also find that slight change in the interaction rule can produce strikingly different scaling behaviors of T c . However, introducing committed agents in the system drastically improves the scaling of the consensus time regardless of

  6. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. Anmore » extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The

  7. Formation of the Embryonic Head in the Mouse: Attributes of a Gene Regulatory Network.

    PubMed

    Tam, Patrick P L; Fossat, Nicolas; Wilkie, Emilie; Loebel, David A F; Ip, Chi Kin; Ramialison, Mirana

    2016-01-01

    The embryonic head is the first major body part to be constructed during embryogenesis. The allocation and the assembly of the progenitor tissues, which start at gastrulation, are accompanied by the spatiotemporal activity of transcription factors and signaling pathways that drives lineage specification, germ layer formation, and cell/tissue movement. The morphogenesis, regionalization, and patterning of the brain and craniofacial structures rely on the function of LIM-domain, homeodomain, and basic helix-loop-helix transcription factors. These factors constitute the central nodes of a gene regulatory network (GRN) which encompasses and intersects with signaling pathways involved with head formation. It is predicted that the functional output of this "head GRN" impacts on cellular function and cell-cell interactions that are essential for lineage differentiation and tissue modeling, which are key processes underpinning the formation of the head. © 2016 Elsevier Inc. All rights reserved.

  8. Groundwater quality in the Santa Clara River Valley, California

    USGS Publications Warehouse

    Burton, Carmen A.; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    The Santa Clara River Valley (SCRV) study unit is located in Los Angeles and Ventura Counties, California, and is bounded by the Santa Monica, San Gabriel, Topatopa, and Santa Ynez Mountains, and the Pacific Ocean. The 460-square-mile study unit includes eight groundwater basins: Ojai Valley, Upper Ojai Valley, Ventura River Valley, Santa Clara River Valley, Pleasant Valley, Arroyo Santa Rosa Valley, Las Posas Valley, and Simi Valley (California Department of Water Resources, 2003; Montrella and Belitz, 2009). The SCRV study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 12 to 28 inches. The study unit is drained by the Ventura and Santa Clara Rivers, and Calleguas Creek. The primary aquifer system in the Ventura River Valley, Ojai Valley, Upper Ojai Valley, and Simi Valley basins is largely unconfined alluvium. The primary aquifer system in the remaining groundwater basins mainly consists of unconfined sands and gravels in the upper portion and partially confined marine and nonmarine deposits in the lower portion. The primary aquifer system in the SCRV study unit is defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. Public-supply wells typically are completed in the primary aquifer system to depths of 200 to 1,100 feet below land surface (bls). The wells contain solid casing reaching from the land surface to a depth of about 60-700 feet, and are perforated below the solid casing to allow water into the well. Water quality in the primary aquifer system may differ from the water in the shallower and deeper parts of the aquifer. Land use in the study unit is approximately 40 percent (%) natural (primarily shrubs, grassland, and wetlands), 37% agricultural, and 23% urban. The primary crops are citrus, avocados, alfalfa, pasture, strawberries, and dry beans. The largest urban areas in the study unit are the cities of

  9. Depositional and provenance record of the Paleogene transition from foreland to hinterland basin evolution during Andean orogenesis, northern Middle Magdalena Valley Basin, Colombia

    NASA Astrophysics Data System (ADS)

    Moreno, Christopher J.; Horton, Brian K.; Caballero, Victor; Mora, Andrés; Parra, Mauricio; Sierra, Jair

    2011-10-01

    The Central Cordillera and Eastern Cordillera of the northern Andes form the topographic flanks of the north-trending Magdalena Valley Basin. Constraining the growth of these ranges and intervening basin has implications for Andean shortening and the transformation from a foreland to hinterland basin configuration. We present sedimentological, paleocurrent, and sandstone petrographic results from Cenozoic type localities to provide insights into the tectonic history of the northern Middle Magdalena Valley Basin of Colombia. In the Nuevo Mundo Syncline, the mid-Paleocene transition from marine to nonmarine deposystems of the Lisama Formation corresponds with a paleocurrent shift from northward to eastward transport. These changes match detrital geochronological evidence for a contemporaneous shift from cratonic (Amazonian) to orogenic (Andean) provenance, suggesting initial shortening-related uplift of the Central Cordillera and foreland basin generation in the Magdalena Valley by mid-Paleocene time. Subsequent establishment of a meandering fluvial system is recorded in lower-middle Eocene strata of the lower La Paz Formation. Eastward paleocurrents in mid-Paleocene through uppermost Eocene fluvial deposits indicate a continuous influence of western sediment source areas. However, at the upper middle Eocene (˜40 Ma) boundary between the lower and upper La Paz Formation, sandstone compositions show a drastic decrease in lithic content, particularly lithic volcanic fragments. This change is accompanied by a facies shift from mixed channel and overbank facies to thick, amalgamated braided fluvial deposits of possible fluvial megafans, reflecting changes in both the composition and proximity of western sediment sources. We attribute these modifications to the growing influence of exhumed La Cira-Infantas paleohighs in the axial Magdalena Valley, features presently buried beneath upper Eocene-Quaternary basin fill along the western flank of the Nuevo Mundo Syncline. In

  10. California's restless giant: the Long Valley Caldera

    USGS Publications Warehouse

    Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.; Marcaida, Mae

    2014-01-01

    Scientists have monitored geologic unrest in the Long Valley, California, area since 1980. In that year, following a swarm of strong earthquakes, they discovered that the central part of the Long Valley Caldera had begun actively rising. Unrest in the area persists today. The U.S. Geological Survey (USGS) continues to provide the public and civil authorities with current information on the volcanic hazard at Long Valley and is prepared to give timely warnings of any impending eruption.

  11. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined withmore » geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells

  12. Spatial reasoning to determine stream network from LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Wang, S.; Elliott, D. B.

    1983-01-01

    In LANDSAT imagery, spectral and spatial information can be used to detect the drainage network as well as the relative elevation model in mountainous terrain. To do this, mixed information of material reflectance in the original LANDSAT imagery must be separated. From the material reflectance information, big visible rivers can be detected. From the topographic modulation information, ridges and valleys can be detected and assigned relative elevations. A complete elevation model can be generated by interpolating values for nonridge and non-valley pixels. The small streams not detectable from material reflectance information can be located in the valleys with flow direction known from the elevation model. Finally, the flow directions of big visible rivers can be inferred by solving a consistent labeling problem based on a set of spatial reasoning constraints.

  13. 27 CFR 9.191 - Ramona Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Ramona Valley. 9.191 Section 9.191 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT...) Borrego Valley, California, 1982 edition; and (2) El Cajon, California, 1979 edition. (c) Boundary. The...

  14. 27 CFR 9.191 - Ramona Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ramona Valley. 9.191 Section 9.191 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT...) Borrego Valley, California, 1982 edition; and (2) El Cajon, California, 1979 edition. (c) Boundary. The...

  15. Use of formative research and social network theory to develop a group walking intervention: Sumter County on the Move!

    PubMed

    Forthofer, Melinda; Burroughs-Girardi, Ericka; Stoisor-Olsson, Liliana; Wilcox, Sara; Sharpe, Patricia A; Pekuri, Linda M

    2016-10-01

    Although social support is a frequently cited enabler of physical activity, few studies have examined how to harness social support in interventions. This paper describes community-based formative research to design a walking program for mobilizing naturally occurring social networks to support increases in walking behavior. Focus group methods were used to engage community members in discussions about desired walking program features. The research was conducted with underserved communities in Sumter County, South Carolina. The majority of focus group participants were women (76%) and African American (92%). Several important themes emerged from the focus group results regarding attitudes toward walking, facilitators of and barriers to walking, ideal walking program characteristics, and strategies for encouraging community members to walk. Most noteably, the role of existing social networks as a supportive influence on physical activity was a recurring theme in our formative research and a gap in the existing evidence base. The resulting walking program focused on strategies for mobilizing, supporting and reinforcing existing social networks as mechanisms for increasing walking. Our approach to linking theory, empirical evidence and community-based formative research for the development of a walking intervention offers an example for practitioners developing intervention strategies for a wide range of behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dynamics of valley pseudospin in single-layer WSe2. Inter-valley scattering mediated by electron-phonon interaction

    NASA Astrophysics Data System (ADS)

    Molina-Sanchez, Alejandro; Sangalli, Davide; Wirtz, Ludger; Marini, Andrea

    In a time-dependent Kerr experiment a circularly polarized laser field is used to selectively populate the K+/- electronic valleys of single-layer WSe2. This carrier population corresponds to a finite pseudospin polarization that dictates the valleytronic properties of WSe2, but whose decay mechanism still remains largely debated. Time-dependent Kerr experiments provide an accurate way to visualize the pseudospin dynamics by measuring the rotation of a linearly polarized probe pulse applied after a circularly polarized and short pump pulse. We present here a clear, accurate and parameter-free description of the valley pseudospin dynamics in single-layer WSe2. By using an ab-initio approach we solve unambiguously the long standing debate about the dominant mechanism that drives the valley depolarization. Our results are in excellent agreement with recent time-dependent Kerr experiments. The decay dynamics and peculiar temperature dependence is explained in terms of electron phonon mediated processes that induce spin-flip inter-valley transitions.

  17. Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Joseph; Divan, Deepak; Brumsickle, William

    2004-02-01

    Power-quality events are of increasing concern for the economy because today's equipment, particularly computers and automated manufacturing devices, is susceptible to these imperceptible voltage changes. A small variation in voltage can cause this equipment to shut down for long periods, resulting in significant business losses. Tiny variations in power quality are difficult to detect except with expensive monitoring equipment used by trained technicians, so many electricity customers are unaware of the role of power-quality events in equipment malfunctioning. This report describes the findings from a pilot study coordinated through the Silicon Valley Manufacturers Group in California to explore the capabilitiesmore » of I-Grid(R), a new power-quality monitoring system. This system is designed to improve the accessibility of power-quality in formation and to increase understanding of the growing importance of electricity reliability and power quality to the economy. The study used data collected by I-Grid sensors at seven Silicon Valley firms to investigate the impacts of power quality on individual study participants as well as to explore the capabilities of the I-Grid system to detect events on the larger electricity grid by means of correlation of data from the sensors at the different sites. In addition, study participants were interviewed about the value they place on power quality, and their efforts to address electricity-reliability and power-quality problems. Issues were identified that should be taken into consideration in developing a larger, potentially nationwide, network of power-quality sensors.« less

  18. A Framework for Fracture Network Formation in Overpressurised Impermeable Shale: Deformability Versus Diagenesis

    NASA Astrophysics Data System (ADS)

    Alevizos, Sotiris; Poulet, Thomas; Sari, Mustafa; Lesueur, Martin; Regenauer-Lieb, Klaus; Veveakis, Manolis

    2017-03-01

    Understanding the formation, geometry and fluid connectivity of nominally impermeable unconventional shale gas and oil reservoirs is crucial for safe unlocking of these vast energy resources. We present a recent discovery of volumetric instabilities of ductile materials that may explain why impermeable formations become permeable. Here, we present the fundamental mechanisms, the critical parameters and the applicability of the novel theory to unconventional reservoirs. We show that for a reservoir under compaction, there exist certain ambient and permeability conditions at which diagenetic (fluid-release) reactions may provoke channelling localisation instabilities. These channels are periodically interspersed in the matrix and represent areas where the excess fluid from the reaction is segregated at high velocity. We find that channelling instabilities are favoured from pore collapse features for extremely low-permeability formations and fluid-release diagenetic reactions, therefore providing a natural, periodic network of efficient fluid pathways in an otherwise impermeable matrix (i.e. fractures). Such an outcome is of extreme importance the for exploration and extraction phases of unconventional reservoirs.

  19. Brains striving for coherence: Long-term cumulative plot formation in the default mode network.

    PubMed

    Tylén, K; Christensen, P; Roepstorff, A; Lund, T; Østergaard, S; Donald, M

    2015-11-01

    Many everyday activities, such as engaging in conversation or listening to a story, require us to sustain attention over a prolonged period of time while integrating and synthesizing complex episodic content into a coherent mental model. Humans are remarkably capable of navigating and keeping track of all the parallel social activities of everyday life even when confronted with interruptions or changes in the environment. However, the underlying cognitive and neurocognitive mechanisms of such long-term integration and profiling of information remain a challenge to neuroscience. While brain activity is generally traceable within the short time frame of working memory (milliseconds to seconds), these integrative processes last for minutes, hours or even days. Here we report two experiments on story comprehension. Experiment I establishes a cognitive dissociation between our comprehension of plot and incidental facts in narratives: when episodic material allows for long-term integration in a coherent plot, we recall fewer factual details. However, when plot formation is challenged, we pay more attention to incidental facts. Experiment II investigates the neural underpinnings of plot formation. Results suggest a central role for the brain's default mode network related to comprehension of coherent narratives while incoherent episodes rather activate the frontoparietal control network. Moreover, an analysis of cortical activity as a function of the cumulative integration of narrative material into a coherent story reveals to linear modulations of right hemisphere posterior temporal and parietal regions. Together these findings point to key neural mechanisms involved in the fundamental human capacity for cumulative plot formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Inflation of Long Valley Caldera from 1 year of continuous GPS observations

    NASA Technical Reports Server (NTRS)

    Webb, Frank H.; Bursik, Marcus; Dixon, Timothy; Farina, Frederic; Marshall, Grant; Stein, Ross S.

    1995-01-01

    A permanent Global Positioning System (GPS) receiver at Casa Diablo Hot Springs, Long Valley Caldera, California was installed in January, 1993, and has operated almost continuously since then. The data have been transmitted daily to the Jet Propulsion Laboratory (JPL) for routine analysis with data from the Fiducial Laboratories for an International Natural sciences Network (FLINN) by the JPL FLINN analysis center. Results from these analyses have been used to interpret the on going deformation at Long Valley, with data excluded from periods when the antenna was covered under 2.5 meters of snow and from some periods when Anti Spoofing was enforced on the GPS signal. The remaining time series suggests that uplift of the resurgent dome of Long Valley Caldera during 1993 has been 2.5 +/- 1.1 cm/yr and horizontal motion has been 3.0 +/- 0.7 cm/yr at S53W in a no-net-rotation global reference frame, or 1.5 +/- 0.7 cm/yr at S14W relative to the Sierra Nevada block. These rates are consistent with uplift predicted from frequent horizontal strain measurements. Spectral analysis of the observations suggests that tidal forcing of the magma chamber is not a source of the variability in the 3 dimensional station location. These results suggest that remotely operated, continuously recording GPS receivers could prove to be a reliable tool for volcanic monitoring throughout the world.