Sample records for valley playa nevada

  1. Dixie Valley, Nevada playa bathymetry constructed from Landsat TM data

    NASA Astrophysics Data System (ADS)

    Groeneveld, David P.; Barz, David D.

    2014-05-01

    A bathymetry model was developed from a series of Landsat Thematic Mapper (TM) images to assist discrimination of hydrologic processes on a low-relief, stable saline playa in Dixie Valley, Nevada, USA. The slope of the playa surface, established by field survey on a reference transect, enabled calculation of relative elevation of the edges of pooled brine mapped from Landsat TM5 band 5 reflectance (TMB5) in the 1.55-1.75 μm shortwave infrared region (SWIR) of the spectrum. A 0.02 TMB5 reflectance threshold accurately differentiated the shallow (1-2 mm depth) edges of pools. Isocontours of equal elevations of pool margins were mapped with the TMB5 threshold, forming concentric rings that were assigned relative elevations according to the position that the pool edges intersected the reference transect. These data were used to fit a digital elevation model and a curve for estimating pooled volume given the distance from the playa edge to the intersection of the pool edge with the reference transect. To project pooled volume using the bathymetric model for any TM snapshot, within a geographic information system, the 0.02 TMB5 threshold is first used to define the edge of the exposed brine. The distance of this edge from the playa edge along the reference transect is then measured and input to the bathymetric equation to yield pooled volume. Other satellite platforms with appropriate SWIR bands require calibration to Landsat TMB5. The method has applicability for filling reservoirs, bodies of water that fluctuate and especially bodies of water inaccessible to acoustic or sounding methods.

  2. Geophysical reconnaissance of Lemmon Valley, Washoe County, Nevada

    USGS Publications Warehouse

    Schaefer, Donald H.; Maurer, Douglas K.

    1981-01-01

    Rapid growth in the Lemmon Valley area, Nevada, during recent years has put increasing importance on knowledge of stored ground water for the valley. Data that would fill voids left by previous studies are depth to bedrock and depth to good-quality water beneath the two playas in the valley. Depths to bedrock calculated from a gravity survey in Lemmon Valley indicate that the western part of Lemmon Valley is considerably deeper than the eastern part. Maximum depth in the western part is about 2 ,600 feet below land surface. This depression approximately underlies the Silver Lake playa. A smaller, shallower depression with a maximum depth of about 1,500 feet below land surface exists about 2.5 miles north of the playa. The eastern area is considerably shallower. The maximum calculated depth to bedrock is about 1,000 feet below land surface, but the depth throughout most the eastern area is only about 400 feet below land surface. An electrical resistivity survey in Lemmon Valley consisting of 10 Schlumberger soundings was conducted around the playas. The maximum depth of poor-quality water (characterized by a resistivity less than 20 ohm-meters) differed considerably from place to place. Maximum depths of poor-quality water beneath the playa east of Stead varied from about 120 feet to almost 570 feet below land surface. At the Silver Lake playa, the maximum depths varied from about 40 feet in the west to 490 feet in the east. (USGS)

  3. Evaluating Micrometeorological Estimates of Groundwater Discharge from Great Basin Desert Playas.

    PubMed

    Jackson, Tracie R; Halford, Keith J; Gardner, Philip M

    2018-03-06

    Groundwater availability studies in the arid southwestern United States traditionally have assumed that groundwater discharge by evapotranspiration (ET g ) from desert playas is a significant component of the groundwater budget. However, desert playa ET g rates are poorly constrained by Bowen ratio energy budget (BREB) and eddy-covariance (EC) micrometeorological measurement approaches. Best attempts by previous studies to constrain ET g from desert playas have resulted in ET g rates that are within the measurement error of micrometeorological approaches. This study uses numerical models to further constrain desert playa ET g rates that are within the measurement error of BREB and EC approaches, and to evaluate the effect of hydraulic properties and salinity-based groundwater density contrasts on desert playa ET g rates. Numerical models simulated ET g rates from desert playas in Death Valley, California and Dixie Valley, Nevada. Results indicate that actual ET g rates from desert playas are significantly below the uncertainty thresholds of BREB- and EC-based micrometeorological measurements. Discharge from desert playas likely contributes less than 2% of total groundwater discharge from Dixie and Death Valleys, which suggests discharge from desert playas also is negligible in other basins. Simulation results also show that ET g from desert playas primarily is limited by differences in hydraulic properties between alluvial fan and playa sediments and, to a lesser extent, by salinity-based groundwater density contrasts. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  4. Evaluating Micrometeorological Estimates of Groundwater Discharge from Great Basin Desert Playas

    NASA Astrophysics Data System (ADS)

    Jackson, T.; Halford, K. J.; Gardner, P.

    2017-12-01

    Groundwater availability studies in the arid southwestern United States traditionally have assumed that groundwater discharge by evapotranspiration (ETg) from desert playas is a significant component of the groundwater budget. This result occurs because desert playa ETg rates are poorly constrained by Bowen Ratio energy budget (BREB) and eddy-covariance (EC) micrometeorological measurement approaches. Best attempts by previous studies to constrain ETg from desert playas have resulted in ETg rates that are below the detection limit of micrometeorological approaches. This study uses numerical models to further constrain desert playa ETg rates that are below the detection limit of EC (0.1 mm/d) and BREB (0.3 mm/d) approaches, and to evaluate the effect of hydraulic properties and salinity-based groundwater-density contrasts on desert playa ETg rates. Numerical models simulated ETg rates from desert playas in Death Valley, California and Dixie Valley, Nevada. Results indicate that actual ETg rates from desert playas are significantly below the upper detection limits provided by the BREB- and EC-based micrometeorological measurements. Discharge from desert playas contribute less than 2 percent of total groundwater discharge from Dixie and Death Valleys, which suggests discharge from desert playas is negligible in other basins. Numerical simulation results also show that ETg from desert playas primarily is limited by differences in hydraulic properties between alluvial fan and playa sediments and, to a lesser extent, by salinity-based groundwater density contrasts.

  5. Macropolygon morphology, development, and classification on North Panamint and Eureka playas, Death Valley National Park CA

    USGS Publications Warehouse

    Messina, P.; Stoffer, P.; Smith, W.C.

    2005-01-01

    Panamint and Eureka playas, both located within Death Valley National Park, exhibit a host of surficial features including fissures, pits, mounds, and plant-covered ridges, representing topographic highs and lows that vary up to 2 m of relief from the playa surface. Aerial photographs reveal that these linear strands often converge to form polygons, ranging in length from several meters to nearly a kilometer. These features stand out in generally dark contrast to the brighter intervening expanse of flat, plant-free, desiccated mud of the typical playa surface. Ground-truth mapping of playa features with differential GPS (Global Positioning System) was conducted in 1999 (North Panamint Valley) and 2002 (Eureka Valley). High-resolution digital maps reveal that both playas possess macropolygons of similar scale and geometry, and that fissures may be categorized into one of two genetic groups: (1) shore-parallel or playa-interior desiccation and shrinkage; and (2) tectonic-induced cracks. Early investigations of these features in Eureka Valley concluded that their origin may have been related to agricultural activity by paleo-Indian communities. Although human artifacts are abundant at each locale, there is no evidence to support the inference that surface features reported on Eureka Playa are anthropogenic in origin. Our assumptions into the genesis of polygons on playas is based on our fortuitous experience of witnessing a fissure in the process of formation on Panamint Playa after a flash flood (May 1999); our observations revealed a paradox that saturation of the upper playa crusts contributes to the establishment of some desiccation features. Follow-up visits to the same feature over 2 yrs' time are a foundation for insight into the evolution and possible longevity of these features. ?? 2005 Elsevier B.V. All rights reserved.

  6. Sierra Nevada, California as seen from STS-59

    NASA Image and Video Library

    1994-04-14

    STS059-L09-162 (9-20 April 1994) --- Orient with the snow-covered mountains (Sierra Nevada of California) in the upper right corner. Then Owens Valley runs along the top of the photograph to Owens Lake playa at top center. The upper end of Death Valley extends from right to left in the foreground, with the drainage running down to a playa at Stovepipe Wells in the left foreground. Geologists are studying microwave signatures of the different playa surfaces, and the coatings on alluvial fans that extend from mountain masses, to try to sort out the history of different climates in this formerly wet but now hyperarid region.

  7. Hydrogeologic framework and occurrence, movement, and chemical characterization of groundwater in Dixie Valley, west-central Nevada

    USGS Publications Warehouse

    Huntington, Jena M.; Garcia, C. Amanda; Rosen, Michael R.

    2014-01-01

    Dixie Valley, a primarily undeveloped basin in west-central Nevada, is being considered for groundwater exportation. Proposed pumping would occur from the basin-fill aquifer. In response to proposed exportation, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation and Churchill County, conducted a study to improve the understanding of groundwater resources in Dixie Valley. The objective of this report is to characterize the hydrogeologic framework, the occurrence and movement of groundwater, the general water quality of the basin-fill aquifer, and the potential mixing between basin-fill and geothermal aquifers in Dixie Valley. Various types of geologic, hydrologic, and geochemical data were compiled from previous studies and collected in support of this study. Hydrogeologic units in Dixie Valley were defined to characterize rocks and sediments with similar lithologies and hydraulic properties influencing groundwater flow. Hydraulic properties of the basin-fill deposits were characterized by transmissivity estimated from aquifer tests and specific-capacity tests. Groundwater-level measurements and hydrogeologic-unit data were combined to create a potentiometric surface map and to characterize groundwater occurrence and movement. Subsurface inflow from adjacent valleys into Dixie Valley through the basin-fill aquifer was evaluated using hydraulic gradients and Darcy flux computations. The chemical signature and groundwater quality of the Dixie Valley basin-fill aquifer, and potential mixing between basin-fill and geothermal aquifers, were evaluated using chemical data collected from wells and springs during the current study and from previous investigations. Dixie Valley is the terminus of the Dixie Valley flow system, which includes Pleasant, Jersey, Fairview, Stingaree, Cowkick, and Eastgate Valleys. The freshwater aquifer in the study area is composed of unconsolidated basin-fill deposits of Quaternary age. The basin-fill hydrogeologic unit

  8. Cross-calibration of the Terra MODIS, Landsat 7 ETM+ and EO-1 ALI sensors using near-simultaneous surface observation over the Railroad Valley Playa, Nevada, test site

    USGS Publications Warehouse

    Chander, G.; Angal, A.; Choi, T.; Meyer, D.J.; Xiong, X.; Teillet, P.M.

    2007-01-01

    A cross-calibration methodology has been developed using coincident image pairs from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS), the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Earth Observing EO-1 Advanced Land Imager (ALI) to verify the absolute radiometric calibration accuracy of these sensors with respect to each other. To quantify the effects due to different spectral responses, the Relative Spectral Responses (RSR) of these sensors were studied and compared by developing a set of "figures-of-merit." Seven cloud-free scenes collected over the Railroad Valley Playa, Nevada (RVPN), test site were used to conduct the cross-calibration study. This cross-calibration approach was based on image statistics from near-simultaneous observations made by different satellite sensors. Homogeneous regions of interest (ROI) were selected in the image pairs, and the mean target statistics were converted to absolute units of at-sensor reflectance. Using these reflectances, a set of cross-calibration equations were developed giving a relative gain and bias between the sensor pair.

  9. A spectral reflectance study (0.4-2.5 μm) of selected playa evaporite mineral deposits and related geochemical processes

    USGS Publications Warehouse

    Crowley, James K.

    1990-01-01

    Playa evaporite mineral deposits show major compositional variations related to differences in lithology, hydrology, and groundwater geochemistry. The use of visible and near-infrared (VNIR) spectral reflectance measurements as a technique for investigating the mineralogy of playa efflorescent crusts is examined. Samples of efflorescent crust were collected from 4 playa: Bristol Dry Lake, Saline Valley, Teels Marsh, and Rhodes Marsh--all located in eastern California and western Nevada. Laboratory and field spectral analyses coupled with X-ray diffraction analyses of the crusts yielded the following observations: VNIR spectra of unweathered salt crusts can be used to infer the general chemistry of near-surface brines; VNIR spectra are very sensitive for detecting minor hydrate mineral phases contained in mixtures with anhydrous, spectrally featureless, minerals such as halite (NaCl) and thernardite (Na2So4); borate minerals exhibit particularly strong VNIR spectral features that permit small amounts of borate to be detected in efflorescent salt crusts; remote sensing spectral measurements of playa efflorescent crusts may have applications in global studies of playa brines and minerals.

  10. Hydrology and surface morphology of the Bonneville Salt Flats and Pilot Valley Playa, Utah

    USGS Publications Warehouse

    Lines, Gregory C.

    1979-01-01

    The Bonneville Salt Flats and Pilot Valley are in the western part of the Great Salt Lake Desert in northwest Utah. The areas are separate, though similar, hydrologic basins, and both contain a salt crust. The Bonneville salt crust covered about 40 square miles in the fall of 1976, and the salt crust in Pilot Valley covered 7 square miles. Both areas lack any noticeable surface relief (in 1976, 1.3 feet on the Bonneville salt crust and 0.3 foot on the Pilot Valley salt crust).The salt crust on the Salt Flats has been used for many years for automobile racing, and brines from shallow lacustrine deposits have been used for the production of potash. In recent years, there has been an apparent conflict between these two major uses of the area as the salt crust has diminished in both thickness and extent. Much of the Bonneville Racetrack has become rougher, and there has also been an increase in the amount of sediment on the south end of the racetrack. The Pilot Valley salt crust and surrounding playa have been largely unused.Evaporite minerals on the Salt Flats and the Pilot Valley playa are concentrated in three zones: (1) a carbonate zone composed mainly of authigenic clay-size carbonate minerals, (2) a sulfate zone composed mainly of authigenic gypsum, and (3) a chloride zone composed of crystalline halite (the salt crust). Five major types of salt crust were recognized on the Salt Flats, but only one type was observed in Pilot Valley. Geomorphic differences in the salt crust are caused by differences in their hydrologic environments. The salt crusts are dynamic features that are subject to change because of climatic factors and man's activities.Ground water occurs in three distinct aquifers in much of the western Great Salt Lake Desert: (1) the basin-fill aquifer, which yields water from conglomerate in the lower part of the basin fill, (2) the alluvial-fan aquifer, which yields water from sand and gravel along the western margins of both playas, and (3) the

  11. Railroad Valley, Nevada

    NASA Image and Video Library

    2002-02-01

    Information from images of Railroad Valley, Nevada captured on August 17, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) may provide a powerful tool for monitoring crop health and maintenance procedures. These images cover an area of north central Nevada. The top image shows irrigated fields, with healthy vegetation in red. The middle image highlights the amount of vegetation. The color code shows highest vegetation content in red, orange, yellow, green, blue, and purple and the lowest in black. The final image is a thermal infrared channel, with warmer temperatures in white and colder in black. In the thermal image, the northernmost and westernmost fields are markedly colder on their northwest areas, even though no differences are seen in the visible image or the second, Vegetation Index image. This can be attributed to the presence of excess water, which can lead to crop damage. http://photojournal.jpl.nasa.gov/catalog/PIA03463

  12. Ground-water modeling of the Death Valley Region, Nevada and California

    USGS Publications Warehouse

    Belcher, W.R.; Faunt, C.C.; Sweetkind, D.S.; Blainey, J.B.; San Juan, C. A.; Laczniak, R.J.; Hill, M.C.

    2006-01-01

    The Death Valley regional ground-water flow system (DVRFS) of southern Nevada and eastern California covers an area of about 100,000 square kilometers and contains very complex geology and hydrology. Using a computer model to represent the complex system, the U.S. Geological Survey simulated ground-water flow in the Death Valley region for use with U.S. Department of Energy projects in southern Nevada. The model was created to help address contaminant cleanup activities associated with the underground nuclear testing conducted from 1951 to 1992 at the Nevada Test Site and to support the licensing process for the proposed geologic repository for high-level nuclear waste at Yucca Mountain, Nevada.

  13. Delineation of the Pahute Mesa–Oasis Valley groundwater basin, Nevada

    USGS Publications Warehouse

    Fenelon, Joseph M.; Halford, Keith J.; Moreo, Michael T.

    2016-01-22

    This report delineates the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, where recharge occurs, moves downgradient, and discharges to Oasis Valley, Nevada. About 5,900 acre-feet of water discharges annually from Oasis Valley, an area of springs and seeps near the town of Beatty in southern Nevada. Radionuclides in groundwater beneath Pahute Mesa, an area of historical underground nuclear testing at the Nevada National Security Site, are believed to be migrating toward Oasis Valley. Delineating the boundary of the PMOV groundwater basin is necessary to adequately assess the potential for transport of radionuclides from Pahute Mesa to Oasis Valley.The PMOV contributing area is defined based on regional water-level contours, geologic controls, and knowledge of adjacent flow systems. The viability of this area as the contributing area to Oasis Valley and the absence of significant interbasin flow between the PMOV groundwater basin and adjacent basins are shown regionally and locally. Regional constraints on the location of the contributing area boundary and on the absence of interbasin groundwater flow are shown by balancing groundwater discharges in the PMOV groundwater basin and adjacent basins against available water from precipitation. Internal consistency for the delineated contributing area is shown by matching measured water levels, groundwater discharges, and transmissivities with simulated results from a single-layer, steady-state, groundwater-flow model. An alternative basin boundary extending farther north than the final boundary was rejected based on a poor chloride mass balance and a large imbalance in the northern area between preferred and simulated recharge.

  14. Selected hydrologic data for the Bonneville Salt Flats and Pilot Valley, western Utah, 1991-93

    USGS Publications Warehouse

    Mason, James L.; Brothers, William C.; Gerner, Linda J.; Muir, Pamela S.

    1995-01-01

    This report contains hydrologic data collected during 1991-93 in the Bonneville Salt Flats and Pilot Valley study area of western Utah. These data were collected in cooperation with the U.S. Department of the Interior, Bureau of Land Management, as part of a study to investigate possible salt loss from the Bonneville Salt Flats. The Bonneville Salt Flats and adjacent Pilot Valley are located in the western part of the Great Salt Lake Desert in Utah, near the Nevada border. The Bonneville Salt Flats playa has a thick, perennial salt crust and the Pilot Valley playa has a thin, ephemeral salt crust. Well-completion data, including well depth and screened intervals, are presented in this report for selected shallow and deep monitoring wells. Water-level measurements are reported with corresponding specfic-gravity and temperature measurements. Results of chemical analyses are reported for brine collected from wells and pore fluids extracted from cores.

  15. Mapping playa evaporite minerals with AVIRIS data: A first report from death valley, California

    USGS Publications Warehouse

    Crowley, J.K.

    1993-01-01

    Efflorescent salt crusts in Death Valley, California, were mapped by using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and a recently developed least-squares spectral band-fitting algorithm. Eight different saline minerals were remotely identified, including three borates, hydroboracite, pinnoite, and rivadavite, that have not been previously reported from the Death Valley efflorescent crusts. The three borates are locally important phases in the crusts, and at least one of the minerals, rivadavite, appears to be forming directly from brine. Borates and other evaporite minerals provide a basis for making remote chemical measurements of desert hydrologic systems. For example, in the Eagle Borax Spring area, the AVIRIS mineral maps pointed to elevated magnesium and boron levels in the ground waters, and to the action of chemical divides causing subsurface fractionation of calcium. Many other chemical aspects of playa brines should have an expression in the associated evaporite assemblages. Certain anhydrous evaporites, including anhydrite, glauberite, and thenardite, lack absorption bands in the visible and near-infrared wavelength range, and crusts composed of these minerals could not be characterized by using AVIRIS. In these situations, thermal-infrared remote sensing data may complement visible and near-infrared data for mapping evaporites. Another problem occurred in wet areas of Death Valley, where water absorption caused low signal levels in the 2.0-2.5 ??m wavelength region that obscured any spectral features of evaporite minerals. Despite these difficulties, the results of this study demonstrate the potential for using AVIRIS and other imaging spectrometer data to study playa chemistry. Such data can be useful for understanding chemical linkages between evaporites and ground waters, and will facilitate studies of how desert ground-water regimes change through time in response to climatic and other variables. ?? 1993.

  16. Sliding Rocks on Racetrack Playa, Death Valley National Park: First Observation of Rocks in Motion

    PubMed Central

    Lorenz, Ralph D.; Ray, Jib; Jackson, Brian

    2014-01-01

    The engraved trails of rocks on the nearly flat, dry mud surface of Racetrack Playa, Death Valley National Park, have excited speculation about the movement mechanism since the 1940s. Rock movement has been variously attributed to high winds, liquid water, ice, or ice flotation, but has not been previously observed in action. We recorded the first direct scientific observation of rock movements using GPS-instrumented rocks and photography, in conjunction with a weather station and time-lapse cameras. The largest observed rock movement involved >60 rocks on December 20, 2013 and some instrumented rocks moved up to 224 m between December 2013 and January 2014 in multiple move events. In contrast with previous hypotheses of powerful winds or thick ice floating rocks off the playa surface, the process of rock movement that we have observed occurs when the thin, 3 to 6 mm, “windowpane” ice sheet covering the playa pool begins to melt in late morning sun and breaks up under light winds of ∼4–5 m/s. Floating ice panels 10 s of meters in size push multiple rocks at low speeds of 2–5 m/min. along trajectories determined by the direction and velocity of the wind as well as that of the water flowing under the ice. PMID:25162535

  17. Merging seismic and MT in Garden Valley, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telleen, K.E.

    1986-04-01

    In the northern part of Garden Valley, Nevada, a 1978 regional seismic program encountered a large area of poor to no-reflection data. Surface geology suggested that a large high structure might underlie the valley floor, and that shallowly buried basalts were causing the poor data. The implied strongly layered structure of electrical resistivity - resistive basalt on conductive Tertiary clastics on resistive paleozoic carbonates - formed an ideal theater for the magnetotelluric method. In 1984, Conoco acquired 48 magnetotelluric sites on about a half-mile grid. These data supported the presence of a buried high block in the Paleozoic rocks andmore » allowed confident mapping of its outlines. In addition, the magnetotelluric survey showed a thin, shallowly buried resistor coextensive with the seismic no-reflection area. In 1985, a high-effort repeat of the earlier no-reflection seismic line confirmed the high block, improved the fault interpretation, and provided weak guidance on the depth of the targeted Paleozoic rocks. Because Garden Valley's Paleozoic stratigraphy differs negligibly from that at nearby Grant Canyon field, the high block constitutes an attractive prospect - possibly the first one found in Nevada due largely to magnetotelluric surveying.« less

  18. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    The rocks at Racetrack Playa in Death Valley, Calif., are famous. Photo credit: NASA/GSFC/Maggie McAdam To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  19. Mapping playa evaporite minerals and associated sediments in Death Valley, California, with multispectral thermal infrared images

    USGS Publications Warehouse

    Crowley, J.K.; Hook, S.J.

    1996-01-01

    Efflorescent salt crusts and associated sediments in Death Valley, California, were studied with remote-sensing data acquired by the NASA thermal infrared multispectral scanner (TIMS). Nine spectral classes that represent a variety of surface materials were distinguished, including several classes that reflect important aspects of the playa groundwater chemistry and hydrology. Evaporite crusts containing abundant thenardite (sodium sulfate) were mapped along the northern and eastern margins of the Cottonball Basin, areas where the inflow waters are rich in sodium. Gypsum (calcium sulfate) crusts were more common in the Badwater Basin, particularly near springs associated with calcic groundwaters along the western basin margin. Evaporite-rich crusts generally marked areas where groundwater is periodically near the surface and thus able to replenish the crusts though capillary evaporation. Detrital silicate minerals were prevalent in other parts of the salt pan where shallow groundwater does not affect the surface composition. The surface features in Death Valley change in response to climatic variations on several different timescales. For example, salt crusts on low-lying mudflats form and redissolve during seasonal-to-interannual cycles of wetting and desiccation. In contrast, recent flooding and erosion of rough-salt surfaces in Death Valley probably reflect increased regional precipitation spanning several decades. Remote-sensing observations of playas can provide a means for monitoring changes in evaporite facies and for better understanding the associated climatic processes. At present, such studies are limited by the availability of suitable airborne scanner data. However, with the launch of the Earth Observing System (EOS) AM-1 Platform in 1998, multispectral visible/near-infrared and thermal infrared remote-sensing data will become globally available. Copyright 1996 by the American Geophysical Union.

  20. Groundwater discharge by evapotranspiration, Dixie Valley, west-central Nevada, March 2009-September 2011

    USGS Publications Warehouse

    Garcia, C. Amanda; Huntington, Jena M; Buto, Susan G.; Moreo, Michael T.; Smith, J. LaRue; Andraski, Brian J.

    2014-01-01

    Mean annual basin-scale ETg totaled about 28 million cubic meters (Mm3) (23,000 acre-feet [acre-ft]), and represents the sum of ETg from all ET units. Annual groundwater ET from vegetated areas totaled about 26 Mm3 (21,000 acre-ft), and was dominated by the moderate-to-dense shrubland ET unit (54 percent), followed by sparse shrubland (37 percent) and grassland (9 percent) ET units. Senesced grasses observed in the northern most areas of the moderate-to-dense ET unit likely confounded the vegetation index and led to an overestimate of ETg for this ET unit. Therefore, mean annual ETg for moderate-to-dense shrubland presented here is likely an upper bound. Annual groundwater ET from the playa ET unit was 2.2 Mm3 (1,800 acre-ft), whereas groundwater ET from the playa lake ET unit was 0–0.1 Mm3 (0–100 acre-ft). Oxygen-18 and deuterium data indicate discharge from the playa center predominantly represents removal of local precipitation-derived recharge. The playa lake estimate, therefore, is considered an upper bound. Mean annual ETg estimates for Dixie Valley are assumed to represent the pre‑development, long-term ETg rates within the study area.

  1. Mineralogical Composition and Potential Dust Source of Playas in the Western U.S. and Australia as Remotely Identified Through Imaging Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Raming, L. W.; Farrand, W. H.; Bowen, B.

    2015-12-01

    Playas are significant dust sources and as a result are potentially hazardous to human health. The composition of the dust is a function of the mineralogical content of the playa and associated brines. Playas are found in arid climates globally, however they are challenging to map geologically as they are often hard to access, have subtle variations in mineralogy, and are topographically featureless. This study uses remote sensing in the form of imaging spectroscopy to map the mineralogical composition of five playas from different geologic settings: Railroad Valley Playa, Nevada, USA; Bonneville Salt Flats, Utah, USA; White Sands National Monument, New Mexico, USA; Lake Brown, Western Australia, Australia; and Lake Tyrrell, Victoria, Australia.Multiple spectrometers were used for this study; these include the multispectral sensor ASTER, and the hyperspectral sensors AVIRIS, HICO, and HyMap. All scenes were processed in ENVI and corrected to at surface reflectance using FLAASH, QUAC or Empirical Line methods. Minerals were identified through a standard end-member extraction approach and mapped using multi-range spectral feature fitting and other methods. Additionally, remote data are combined with in-situ field-based spectra and sample-based laboratory spectra.Initial results suggest various and differing mineralogy between playas. The most abundant mineralogy includes clay minerals such as illite and montmorillonite and evaporites such as gypsum. Additionally there has been identification of Fe absorption bands in the visible / near infrared at White Sands National Monument, and Lake Brown and Lake Tyrell, suggesting the presence of iron bearing minerals. Further research will provide a more comprehensive list of minerals identified by absorption features as related to specific sensors. Collectively, these analyses will be used characterize overall patterns in playa surface mineralogy and to evaluate the parameters that influence playa dust source composition.

  2. Topography, surface features, and flooding of Rogers Lake playa, California

    USGS Publications Warehouse

    Dinehart, Randal L.; McPherson, Kelly R.

    1998-01-01

    Rogers Lake is a desert playa used as a military airport for Edwards Air Force Base in the Antelope Valley of southern California. Previous measurements of land subsidence and ground-water levels in the study area indicated that ground-water pumping induced tensional stresses in the playa, which were sporadically relieved through the formation of long cracks. Drying of the sediments beneath the playa also may have accelerated the natural formation of giant desiccation polygons. When water flows across the playa, the cracks erode into fissures of sufficient width and depth to endanger traffic on the playa. Topographic surveys of the playa were made to derive a contour map that would allow examination of erosive flow paths. Crack networks were surveyed in selected areas during 1995 and compared with cracks visible in aerial photographs taken in 1990. Crack networks remained visible in their positions following several inundations of the playa. The density of the crack networks increased in all of the selected areas.

  3. MX Siting Investigation. Gravity Survey - Big Smokey Valley, Nevada.

    DTIC Science & Technology

    1980-11-28

    Monte Cristo Range, on the south by Lone Mountain arid Tonopah, Nevada, and on the north by the T1i7 ,abhv i a7e. True area covered by this report lies...Royston Hills and Monte Cristo Range) are chiefly Tertiary tuffs, rhyolites, andesites, and basalts. Basin-fill deposits within the valley reach combined...east of Royston Hills and Monte Cristo Range. At the southern end where the valley bifurcates, faults are interpreted to be near both flanks of Lone

  4. The Gabbs Valley, Nevada, geothermal prospect: Exploring for a potential blind geothermal resource

    NASA Astrophysics Data System (ADS)

    Payne, J.; Bell, J. W.; Calvin, W. M.

    2012-12-01

    The Gabbs Valley prospect in west-central Nevada is a potential blind geothermal resource system. Possible structural controls on this system were investigated using high-resolution LiDAR, low sun-angle aerial (LSA) photography, exploratory fault trenching and a shallow temperature survey. Active Holocene faults have previously been identified at 37 geothermal systems with indication of temperatures greater than 100° C in the western Nevada region. Active fault controls in Gabbs Valley include both Holocene and historical structures. Two historical earthquakes occurring in 1932 and 1954 have overlapping surface rupture patterns in Gabbs Valley. Three active fault systems identified through LSA and LiDAR mapping have characteristics of Basin and Range normal faulting and Walker Lane oblique dextral faulting. The East Monte Cristo Mountains fault zone is an 8.5 km long continuous NNE striking, discrete fault with roughly 0.5 m right-normal historic motion and 3 m vertical Quaternary separation. The Phillips Wash fault zone is an 8.2 km long distributed fault system striking NE to N, with Quaternary fault scarps of 1-3 m vertical separation and a 500 m wide graben adjacent to the Cobble Cuesta anticline. This fault displays ponded drainages, an offset terrace riser and right stepping en echelon fault patterns suggestive of left lateral offset, and fault trenching exposed non-matching stratigraphy typical of a significant component of lateral offset. The unnamed faults of Gabbs Valley are a 10.6 km long system of normal faults striking NNE and Quaternary scarps are up to 4 m high. These normal faults largely do not have historic surface rupture, but a small segment of 1932 rupture has been identified. A shallow (2 m deep) temperature survey of 80 points covering roughly 65 square kilometers was completed. Data were collected over approximately 2 months, and continual base station temperature measurements were used to seasonally correct temperature measurements. A 2

  5. Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czarnecki, J.B.

    1997-12-31

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the U.S. Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspirationmore » at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition.« less

  6. Ground-water discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; Elliott, Peggy E.; DeMeo, Guy A.; Chatigny, Melissa A.; Roemer, Gaius J.

    2001-01-01

    The Death Valley regional flow system (DVRFS) is one of the larger ground-water flow systems in the southwestern United States and includes much of southern Nevada and the Death Valley region of eastern California. Centrally located within the ground-water flow system is the Nevada Test Site (NTS). The NTS, a large tract covering about 1,375 square miles, historically has been used for testing nuclear devices and currently is being studied as a potential repository for the long-term storage of high-level nuclear waste generated in the United States. The U.S. Department of Energy, as mandated by Federal and State regulators, is evaluating the risk associated with contaminants that have been or may be introduced into the subsurface as a consequence of any past or future activities at the NTS. Because subsurface contaminants can be transported away from the NTS by ground water, components of the ground-water budget are of great interest. One such component is regional ground-water discharge. Most of the ground water leaving the DVRFS is limited to local areas where geologic and hydrologic conditions force ground water upward toward the surface to discharge at springs and seeps. Available estimates of ground-water discharge are based primarily on early work done as part of regional reconnaissance studies. These early efforts covered large, geologically complex areas and often applied substantially different techniques to estimate ground-water discharge. This report describes the results of a study that provides more consistent, accurate, and scientifically defensible measures of regional ground-water losses from each of the major discharge areas of the DVRFS. Estimates of ground-water discharge presented in this report are based on a rigorous quantification of local evapotranspiration (ET). The study identifies areas of ongoing ground-water ET, delineates different ET areas based on similarities in vegetation and soil-moisture conditions, and determines an ET rate for

  7. Gravity survey and depth to bedrock in Carson Valley, Nevada-California

    USGS Publications Warehouse

    Maurer, D.K.

    1985-01-01

    Gravity data were obtained from 460 stations in Carson Valley, Nevada and California. The data have been interpreted to obtain a map of approximate depth to bedrock for use in a ground-water model of the valley. This map delineates the shape of the alluvium-filled basin and shows that the maximum depth to bedrock exceeds 5,000 feet, on the west side of the valley. A north-south trending offset in the bedrock surface shows that the Carson-Valley/Pine-Nut-Mountain block has not been tilted to the west as a simple unit, but is comprised of several smaller blocks. (USGS)

  8. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    The rocks are famous because they move, leaving tell-tale trails in the clay, like this one. This happens at several playa in California and Nevada. There's no record of anybody seeing one of the rocks move, and scientists aren't quite sure how it happens. But they know that it's not the work of animals, gravity, or earthquakes. Photo credit: NASA/GSFC/Cynthia Cheung To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  9. Virgin Valley opal district, Humboldt County, Nevada

    USGS Publications Warehouse

    Staatz, Mortimer Hay; Bauer, Herman L.

    1951-01-01

    The Virgin Valley opal district, Humboldt County, Nevada, is near the Oregon-Nevada border in the Sheldon Game Refuge. Nineteen claims owned by Jack and Toni Crane were examined, sampled, and tested radiometrically for uranium. Numerous discontinuous layers of opal are interbedded with a gently-dipping series of vitric tuff and ash which is at least 300 ft thick. The tuff and ash are capped by a dark, vesicular basalt in the eastern part of the area and by a thin layer of terrace qravels in the area along the west side of Virgin Valley. Silicification of the ash and tuff has produced a rock that ranges from partly opalized rock that resembles silicified shale to completely altered rock that is entirely translucent, and consists of massive, brown and pale-green opal. Carnotite, the only identified uranium mineral, occurs as fracture coatings or fine layers in the opal; in places, no uranium minerals are visible in the radioactive opal. The opal layers are irregular in extent and thickness. The exposed length of the layers ranges from 8 to 1, 200 ft or more, and the thickness of the layers ranges from 0. 1 to 3. 9 ft. The uranium content of each opal layer, and of different parts of the same layer, differs widely. On the east side of Virgin Valley four of the seven observed opal layers, nos. 3, 4, 5, and 7, are more radioactive than the average; and the uranium content ranges from 0. 002 to 0. 12 percent. Two samples, taken 5 ft apart across opal layer no. 7, contained 0. 003 and 0. -049 percent uranium. On the west side of the valley only four of the fifteen observed opal layers, nos; 9, , 10, 14, and 15, are more radioactive than the average; and the uranium content ranges from 0. 004 to 0. 047 percent. Material of the highest grade was found in a small discontinuous layer of pale-green opal (no. 4) on the east side of Virgin Valley. The grade of this layer ranged from 0. 027 to 0. 12 percent uranium.

  10. Preliminary Surficial Geologic Map of the Mesquite Lake 30' X 60' Quadrangle, California and Nevada

    USGS Publications Warehouse

    Schmidt, Kevin M.; McMackin, Matthew

    2006-01-01

    The Quaternary surficial geologic map of the Mesquite Lake, California-Nevada 30'X60' quadrangle depicts deposit age and geomorphic processes of erosion and deposition, as identified by a composite of remote sensing investigations, laboratory analyses, and field work, in the arid to semi-arid Mojave Desert area, straddling the California-Nevada border. Mapping was motivated by the need to address pressing scientific and social issues such as understanding and predicting the effects of climate and associated hydrologic changes, human impacts on landscapes, ecosystem function, and natural hazards at a regional scale. As the map area lies just to the south of Las Vegas, Nevada, a rapidly expanding urban center, land use pressures and the need for additional construction materials are forecasted for the region. The map contains information on the temporal and spatial patterns of surface processes and hazards that can be used to model specific landscape applications. Key features of the geologic map include: (1) spatially extensive Holocene alluvial deposits that compose the bulk of Quaternary units (~25%), (2) remote sensing and field studies that identified fault scarps or queried faults in the Kingston Wash area, Shadow Mountains, southern Pahrump Valley, Bird Spring Range, Lucy Gray Mountains and Piute Valley, (3) a lineament indicative of potential fault offset is located in Mesquite Valley, (4) active eolian dunes and sand ramps located on the east side of Mesquite, Ivanpah, and Hidden Valleys adjacent to playas, (4) groundwater discharge deposits in southern Pahrump Valley, Spring Mountains, and Lucy Gray Mountains and (5) debris-flow deposits spanning almost the entire Quaternary period in age.

  11. Nutrient cycling in the Sierra Nevada: the roles of fire and water at Little Valley, Nevada

    Treesearch

    Dale W. Johnson

    2004-01-01

    Spatial and temporal patterns of water flux, ion flux, and ion concentration were examined in a semiarid, snowmelt-dominated forest on the eastern slope of the Carson Range in Little Valley, Nevada (Johnson and others 2001). Variations in data collected from 1995 to 1999 were used to examine the potential effects of snowpack amount and duration on ion concentrations...

  12. Gravity Data from Newark Valley, White Pine County, Nevada

    USGS Publications Warehouse

    Mankinen, Edward A.; McKee, Edwin H.

    2007-01-01

    The Newark Valley area, eastern Nevada is one of thirteen major ground-water basins investigated by the BARCAS (Basin and Range Carbonate Aquifer Study) Project. Gravity data are being used to help characterize the geophysical framework of the region. Although gravity coverage was extensive over parts of the BARCAS study area, data were sparse for a number of the valleys, including the northern part of Newark Valley. We addressed this lack of data by establishing seventy new gravity stations in and around Newark Valley. All available gravity data were then evaluated to determine their reliability, prior to calculating an isostatic residual gravity map to be used for subsequent analyses. A gravity inversion method was used to calculate depths to pre-Cenozoic basement rock and estimates of maximum alluvial/volcanic fill. The enhanced gravity coverage and the incorporation of lithologic information from several deep oil and gas wells yields a view of subsurface shape of the basin and will provide information useful for the development of hydrogeologic models for the region.

  13. Principal facts for gravity stations in the Elko, Steptoe Valley, Coyote Spring Valley, and Sheep Range areas, eastern and southern Nevada

    USGS Publications Warehouse

    Berger, D.L.; Schaefer, D.H.; Frick, E.A.

    1990-01-01

    Principal facts for 537 gravity stations in the carbonate-rock province of eastern and southern Nevada are tabulated and presented. The gravity data were collected in support of groundwater studies in several valleys. The study areas include the Elko area, northern Steptoe Valley, Coyote Spring Valley, and the western Sheep Range area. The data for each site include values for latitude, longitude, altitude, observed gravity, free- air anomaly, terrain correction, and Bouguer anomaly (calculated at a bedrock density of 2.67 g/cu cm. (USGS)

  14. Interpretive geologic cross sections for the Death Valley regional flow system and surrounding areas, Nevada and California

    USGS Publications Warehouse

    Sweetkind, D.S.; Dickerson, R.P.; Blakely, R.J.; Denning, Paul

    2001-01-01

    This report presents a network of 28 geologic cross sections that portray subsurface geologic relations within the Death Valley regional ground-water system, a ground-water basin that encompasses a 3? x 3? area (approximately 70,000 km2) in southern Nevada and eastern California. The cross sections transect that part of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain. The specific geometric relationships portrayed on the cross sections are discussed in the context of four general sub-regions that have stratigraphic similarities and general consistency of structural style: (1) the Nevada Test Site vicinity; (2) the Spring Mountains, Pahrump Valley and Amargosa Desert region; (3) the Death Valley region; and (4) the area east of the Nevada Test Site. The subsurface geologic interpretations portrayed on the cross sections are based on an integration of existing geologic maps, measured stratigraphic sections, published cross sections, well data, and geophysical data and interpretations. The estimated top of pre-Cenozoic rocks in the cross sections is based on inversion of gravity data, but the deeper parts of the sections are based on geologic conceptual models and are more speculative. The region transected by the cross sections includes part of the southern Basin and Range Province, the northwest-trending Walker Lane belt, the Death Valley region, and the northern Mojave Desert. The region is structurally complex, where a locally thick Tertiary volcanic and sedimentary section unconformably overlies previously deformed Proterozoic through Paleozoic rocks. All of these rocks have been deformed by complex Neogene ex-tensional normal and strike-slip faults. These cross sections form a three-dimensional network that portrays the interpreted stratigraphic and structural relations in the region; the sections form part of the geologic framework that will be

  15. Principal facts for gravity stations in the Dry Valley area, west-central Nevada and east-central California

    USGS Publications Warehouse

    Sanger, Elizabeth A.; Ponce, David A.

    2003-01-01

    In June, 2002, the U.S. Geological Survey (USGS) established 143 new gravity stations and 12 new rock samples in the Dry Valley area, 30 miles north of Reno, Nevada, on the California - Nevada border (see fig. 1). This study reports on gravity, magnetic, and physical property data intended for use in modeling the geometry and depth of Dry Valley for groundwater analysis. It is part of a larger study that aims to characterize the hydrologic framework of several basins in Washoe County. Dry Valley is located south of the Fort Sage Mountains and south-east of Long Valley, on USGS 7.5’ quadrangles Constantia and Seven Lakes (fig. 2). The Cretaceous granitic rocks and Tertiary volcanic rocks that bound the sediment filled basin (fig. 3) may be especially important to future modeling because of their impact on groundwater flow. The granitic and volcanic rocks of Dry Valley exhibit densities and magnetic susceptibilities higher than the overlaying sediments, and create a distinguishable pattern of gravity and magnetic anomalies that reflect these properties.

  16. Gravity and magnetic data in the vicinity of Virgin Valley, southern Nevada

    USGS Publications Warehouse

    Morin, Robert L.

    2006-01-01

    This report contains 10 interpretive cross sections and an integrated text describing the geology of parts of the Colorado, White River, and Death Valley regional ground-water flow systems, Nevada, Utah, and Arizona. The primary purpose of the report is to provide geologic framework data for input into a numerical ground-water model. Therefore, the stratigraphic and structural summaries are written in a hydrogeologic context. The oldest rocks (basement) are Early Proterozoic metamorphic and intrusive crystalline rocks that are considered confining units because of their low permeability. Late Proterozoic to Lower Cambrian clastic units overlie the crystalline rocks and are also considered confining units within the regional flow systems. Above the clastic units are Middle Cambrian to Lower Permian carbonate rocks that are the primary aquifers in the flow systems. The Middle Cambrian to Lower Permian carbonate rocks are overlain by a sequence of mainly clastic rocks of late Paleozoic to Mesozoic age that are mostly considered confining units, but they may be permeable where faulted. Tertiary volcanic and plutonic rocks are exposed in the northern and southern parts of the study area. In the Clover and Delamar Mountains, these rocks are highly deformed by north- and northwest-striking normal and strike-slip faults that are probably important conduits in transmitting ground water from the basins in the northern Colorado and White River flow systems to basins in the southern part of the flow systems. The youngest rocks in the region are Tertiary to Quaternary basin-fill deposits. These rocks consist of middle to late Tertiary sediments consisting of limestone, conglomerate, sandstone, tuff, and gypsum, and younger Quaternary surficial units consisting of alluvium, colluvium, playa deposits, and eolian deposits. Basin-fill deposits are both aquifers and aquitards.

  17. MX Siting Investigation. Water Resources Program. Volume II. Review Draft, Water Appropriations Hearing Presentation and Support Documentation, Dry Lake Valley, Nevada.

    DTIC Science & Technology

    1981-09-30

    will be required to de - liver the 651 gpm (41 l/s) needed for peak water use at the LSC. The existing Air Force test well at 3S-64E-12ca has been pumped...Valley is probably over 10,000 feet (3048 m) thick in the central part of the valley and is composed of alluvial fan, fluvial, playa , srl lacustrine...VALLEY T3.NSmIP STATION T E𔃾P SP. or SS. SILICA C AL C IU4 ACG. E5SILJ4 SCDIU I QANSA-SECT 5 6 C1 Ŕ VQ %;,. DES C CONE PH SOLIDS (5102) CA V$ A% 1 IN/6

  18. Principal facts for gravity stations in the Antelope Valley-Bedell Flat area, west-central Nevada

    USGS Publications Warehouse

    Jewel, Eleanore B.; Ponce, David A.; Morin, Robert L.

    2000-01-01

    In April 2000 the U.S. Geological Survey (USGS) established 211 gravity stations in the Antelope Valley and Bedell Flat area of west-central Nevada (see figure 1). The stations were located about 15 miles north of Reno, Nevada, southwest of Dogskin Mountain, and east of Petersen Mountain, concentrated in Antelope Valley and Bedell Flat (figure 2). The ranges in this area primarily consist of normal-faulted Cretaceous granitic rocks, with some volcanic and metavolcanic rocks. The purpose of the survey was to characterize the hydrogeologic framework of Antelope Valley and Bedell Flat in support of future hydrologic investigations. The information developed during this study can be used in groundwater models. Gravity data were collected between latitude 39°37.5' and 40°00' N and longitude 119°37.5' and 120°00' W. The stations were located on the Seven Lakes Mountain, Dogskin Mountain, Granite Peak, Bedell Flat, Fraser Flat, and Reno NE 7.5 minute quadrangles. All data were tied to secondary base station RENO-A located on the campus of the University of Nevada at Reno (UNR) in Reno, Nevada (latitude 39°32.30' N, longitude 119°48.70' W, observed gravity value 979674.69 mGal). The value for observed gravity was calculated by multiple ties to the base station RENO (latitude 39°32.30' N, longitude 119°48.70' W, observed gravity value 979674.65 mGal), also on the UNR campus. The isostatic gravity map (figure 3) includes additional data sets from the following sources: 202 stations from a Geological Survey digital data set (Ponce, 1997), and 126 stations from Thomas C. Carpenter (written commun., 1998).

  19. Isotopes and Sustainability of the Shallow Groundwater System in Spring and Snake Valleys, Eastern White Pine County, Nevada

    NASA Astrophysics Data System (ADS)

    Acheampong, S. Y.

    2007-12-01

    A critical component to managing water resources is understanding the source of ground water that is extracted from a well. Detail information on the source of recharge and the age of groundwater is thus vital for the proper assessment, development, management, and monitoring of the groundwater resources in an area. Great differences in the isotopic composition of groundwater in a basin and the basin precipitation imply that the groundwater in the basin originates from a source outside the basin or is recharged under different climatic conditions. The stable isotopes of oxygen and hydrogen in precipitation were compared with the isotopic composition of water from wells, springs, and creeks to evaluate the source of the shallow groundwater recharge in Spring and Snake Valleys, Nevada, as part of an evaluation of the water resources in the area. Delta deuterium and delta oxygen-18 composition of springs, wells, creeks, and precipitation in Spring and Snake Valleys show that groundwater recharge occurs primarily from winter precipitation in the surrounding mountains. The carbon-14 content of the groundwater ranged from 30 to 95 percent modern carbon (pmc). Twenty two of the thirty samples had carbon-14 values of greater than 50 pmc. The relatively high carbon-14 values suggest that groundwater in the area is recharged by modern precipitation and the waters have rapid travel times. Total dissolved solids content of the samples outside the playa areas are generally low, and suggests that the water has a relatively short travel time between the recharge areas and sample sites. The presence of tritium in some of the springs and wells also indicate that groundwater mixes with post 1952 precipitation. Hydrogen bomb tests which began in 1952 in the northern hemisphere added large amounts of tritium to the atmosphere and reached a peak in 1963. The stable isotopic composition, the high carbon-14 activities, and the presence of tritium, show that the shallow groundwater in

  20. Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackie M. Williams; Erin L. Wallin; Brian D. Rodriguez

    2007-08-15

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU) (Bechtel Nevada, 2006).more » During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006), located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and

  1. Comments on Racetrack playa: Rocks moved by wind alone

    NASA Astrophysics Data System (ADS)

    Sanz-Montero, M. E.; Cabestrero, Ó.; Rodríguez-Aranda, J. P.

    2016-03-01

    The mechanisms by which rocks move across the beds of playa lakes leaving tracks continue to be debated (Sanz-Montero and Rodríguez-Aranda, 2013; Norris et al., 2014; Sanz-Montero et al., 2015a,b; Baumgardner and Shaffer, 2015; Jones and Hooke, 2015). In this regard, the article by Jones and Hooke (Aeolian Research 19, 2015) is particularly interesting since it provides a description of these mechanisms by R. Jones who, during a storm event in 1972, was probably the first person to witness movement of rocks. The dominant meteorological conditions described by Jones during the period when the tracks were formed are, significantly, rather similar to those previously described by Clements (1952) at Little Bonnie Claire Playa (Nevada, USA). The storm conditions referred to in the article also coincide with the observations, measurements and deductions made by Sanz-Montero and Rodríguez-Aranda (2013) and Sanz-Montero et al. (2015a,b) at Altillo Chica playa lake, Central Spain. Furthermore, we were able to carry out an on-site analysis of the sedimentary structures at Racetrack playa in June 2015, allowing us to verify the similarity of the features present at both sites. Together with the important role played by gusty winds in the formation of the tracks, all the above mentioned studies point to the presence of a thin veneer of water, just a few millimeters deep, in the area of the playa lake where the rock movements occur. However, Jones and Hooke (2015) disregard the force exerted by moving water and analyze the coefficient of friction assuming that the rocks are moved by wind alone. We offer an alternative explanation for the movement of rocks both at Racetrack and Altillo Chica playa lake which considers not only the wind but also the role played by moving water in conjunction with other parameters which modify the erosion thresholds (rocks acting as obstacles) and reduce friction (benthic microorganisms).

  2. Hydrogeologic Framework and Ground Water in Basin-Fill Deposits of the Diamond Valley Flow System, Central Nevada

    USGS Publications Warehouse

    Tumbusch, Mary L.; Plume, Russell W.

    2006-01-01

    The Diamond Valley flow system, an area of about 3,120 square miles in central Nevada, consists of five hydrographic areas: Monitor, Antelope, Kobeh, and Diamond Valleys and Stevens Basin. Although these five areas are in a remote part of Nevada, local government officials and citizens are concerned that the water resources of the flow system eventually could be further developed for irrigation or mining purposes or potentially for municipal use outside the study area. In order to better understand the flow system, the U.S. Geological Survey in cooperation with Eureka, Lander, and Nye Counties and the Nevada Division of Water Resources, is conducting a multi-phase study of the flow system. The principal aquifers of the Diamond Valley flow system are in basin-fill deposits that occupy structural basins comprised of carbonate rocks, siliciclastic sedimentary rocks, igneous intrusive rocks, and volcanic rocks. Carbonate rocks also function as aquifers, but their extent and interconnections with basin-fill aquifers are poorly understood. Ground-water flow in southern Monitor Valley is from the valley margins toward the valley axis and then northward to a large area of discharge by evapotranspiration (ET) that is formed south of a group of unnamed hills near the center of the valley. Ground-water flow from northern Monitor Valley, Antelope Valley, and northern and western parts of Kobeh Valley converges to an area of ground-water discharge by ET in central and eastern Kobeh Valley. Prior to irrigation development in the 1960s, ground-water flow in Diamond Valley was from valley margins toward the valley axis and then northward to a large discharge area at the north end of the valley. Stevens Basin is a small upland basin with internal drainage and is not connected with other parts of the flow system. After 40 years of irrigation pumping, a large area of ground-water decline has developed in southern Diamond Valley around the irrigated area. In this part of Diamond

  3. Principal facts for gravity stations in Dixie; Fairview, and Stingaree valleys, Churchill and Pershing counties, Nevada

    USGS Publications Warehouse

    Schaefer, D.H.; Thomas, J.M.; Duffrin, B.G.

    1984-01-01

    During March through July 1979, gravity measurements were made at 300 stations in Dixie Valley, Nevada. In December 1981, 45 additional stations were added--7 in Dixie Valley, 23 in Fairview Valley, and 15 in Stingaree Valley. Most altitudes were determined by using altimeters or topographic maps. The gravity observations were made with a Worden temperature-controlled gravimeter with an initial scale factor of 0.0965 milliGal/scale division. Principal facts for each of the 345 stations are tabulated; they consist of latitude, longitude, altitude, observed gravity, free-air anomaly, terrain correction, and Bouguer anomaly values at a bedrock density of 2.67 grams/cu cm. (Lantz-PTT)

  4. Hydrologic Evaluation of the Jungo Area, Southern Desert Valley, Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.

    2010-01-01

    RecologyTM, the primary San Francisco waste-disposal entity, is proposing to develop a Class 1 landfill near Jungo, Nevada. The proposal calls for the landfill to receive by rail about 20,000 tons of waste per week for up to 50 years. On September 22, 2009, the Interior Appropriation (S.A. 2494) was amended to require the U.S. Geological Survey to evaluate the proposed Jungo landfill site for: (1) potential water-quality impacts on nearby surface-water resources, including Rye Patch Reservoir and the Humboldt River; (2) potential impacts on municipal water resources of Winnemucca, Nevada; (3) locations and altitudes of aquifers; (4) how long it will take waste seepage from the site to contaminate local aquifers; and (5) the direction and distance that contaminated groundwater would travel at 95 and 190 years. This evaluation was based on review of existing data and information. Desert Valley is tributary to the Black Rock Desert via the Quinn River in northern Desert Valley. The Humboldt River and Rye Patch Reservoir would not be affected by surface releases from the proposed Jungo landfill site because they are in the Humboldt basin. Winnemucca, on the Humboldt River, is 30 miles east of the Jungo landfill site and in the Humboldt basin. Groundwater-flow directions indicate that subsurface flow near the proposed Jungo landfill site is toward the south-southwest. Therefore, municipal water resources of Winnemucca would not be affected by surface or subsurface releases from the proposed Jungo landfill site. Basin-fill aquifers underlie the 680-square-mile valley floor in Desert Valley. Altitudes around the proposed Jungo landfill site range from 4,162 to 4,175 feet. Depth to groundwater is fairly shallow in southern Desert Valley and is about 60 feet below land surface at the proposed Jungo landfill site. A groundwater divide exists about 7 miles north of the proposed Jungo landfill site. Groundwater north of the divide flows north towards the Quinn River. South of

  5. Deep Resistivity Structure of Mid Valley, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Wallin, Erin L.; Rodriguez, Brian D.; Williams, Jackie M.

    2009-01-01

    -Tertiary confining units. In particular, a major goal was to define the extent of the upper clastic confining unit (UCCU). The UCCU is composed of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale (National Security Technologies, 2007). The UCCU underlies the Yucca Flat area and extends southwestward toward Shoshone Mountain, westward toward Buckboard Mesa, and northwestward toward Rainier Mesa. Late in 2005 we collected data at an additional 14 MT stations in Mid Valley, CP Hills, and northern Yucca Flat. That work was done to better determine the extent and thickness of the UCCU near the boundary between the southeastern RM-SM CAU and the southwestern YF CAU, and also in the northern YF CAU. The MT data have been released in a separate U.S. Geological Survey report (Williams and others, 2007). The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2-D) resistivity modeling for each profile and inferences on the three-dimensional (3-D) character of the geology within the region.

  6. Sierra Nevada, California

    NASA Image and Video Library

    1994-09-30

    STS068-267-097 (30 September-11 October 1994) --- An extensive view eastward from the irrigated San Joaquin Valley in the foreground, across the Sierra Nevada (living up to its name in early October), into the desert of eastern California and Nevada (which has no snow, despite the name). Mono Lake is just visible at the left edge of the frame; Owens Valley extends southward to Owens Lake, the next valley is Panamint Valley, and then Death Valley. Las Vegas and Lake Mead are visible at the upper right of the frame. The Space Radar Laboratory 2 (SRL-2) obtained extensive, multiple-pass data from many test sites within the region displayed, including Mammoth Mountain ski area south of Mono Lake, and in Death Valley.

  7. Ecology of playa lakes

    USGS Publications Warehouse

    Haukos, David A.; Smith, Loren M.

    1992-01-01

    Between 25,000 and 30,000 playa lakes are in the playa lakes region of the southern high plains (Fig. 1). Most playas are in west Texas (about 20,000), and fewer, in New Mexico, Oklahoma, Kansas, and Colorado. The playa lakes region is one of the most intensively cultivated areas of North America. Dominant crops range from cotton in southern areas to cereal grains in the north. Therefore, most of the native short-grass prairie is gone, replaced by crops and, recently, grasses of the Conservation Reserve Program. Playas are the predominant wetlands and major wildlife habitat of the region.More than 115 bird species, including 20 species of waterfowl, and 10 mammal species have been documented in playas. Waterfowl nest in the area, producing up to 250,000 ducklings in wetter years. Dominant breeding and nesting species are mallards and blue-winged teals. During the very protracted breeding season, birds hatch from April through August. Several million shorebirds and waterfowl migrate through the area each spring and fall. More than 400,000 sandhill cranes migrate through and winter in the region, concentrating primarily on the larger saline lakes in the southern portion of the playa lakes region.The primary importance of the playa lakes region to waterfowl is as a wintering area. Wintering waterfowl populations in the playa lakes region range from 1 to 3 million birds, depending on fall precipitation patterns that determine the number of flooded playas. The most common wintering ducks are mallards, northern pintails, green-winged teals, and American wigeons. About 500,000 Canada geese and 100,000 lesser snow geese winter in the playa lakes region, and numbers of geese have increased annually since the early 1980’s. This chapter describes the physiography and ecology of playa lakes and their attributes that benefit waterfowl.

  8. Isostatic gravity map of the Death Valley ground-water model area, Nevada and California

    USGS Publications Warehouse

    Ponce, D.A.; Blakely, R.J.; Morin, R.L.; Mankinen, E.A.

    2001-01-01

    An isostatic gravity map of the Death Valley groundwater model area was prepared from over 40,0000 gravity stations as part of an interagency effort by the U.S. Geological Survey and the U.S. Department of Energy to help characterize the geology and hydrology of southwest Nevada and parts of California.

  9. Field Surveys, IOC Valleys. Volume III, Part II. Cultural Resources Survey, Pine and Wah Wah Valleys, Utah.

    DTIC Science & Technology

    1981-08-01

    valleys are typical of the Basin and Range Province, characterized by parallel, north-south trending mountain ranges, separated by hydrologically closed... basins . Pine and Wah Wah valleys each have hardpan-playas in their lowest areas. State Highway 21 runs roughly northwest-southeast through both val...have been important for prehis- toric and historic use of the area. Pine Valley: Pine and Wah Wah valleys are closed alluvial basins . The central part

  10. Atmospheric transport of organophosphate pesticides from California's Central Valley to the Sierra Nevada Mountains

    USGS Publications Warehouse

    Zabik, John M.; Seiber, James N.

    1993-01-01

    Atmospheric transport of organophosphate pesticides from California's Central Valley to the Sierra Nevada mountains was assessed by collecting air- and wet-deposition samples during December, January, February, and March, 1990 to 1991. Large-scale spraying of these pesticides occurs during December and January to control insect infestations in valley orchards. Sampling sites were placed at 114- (base of the foothills), 533-, and 1920-m elevations. Samples acquired at these sites contained chlorpyrifos [phosphorothioic acid; 0,0-diethyl 0-(3,5,6-trichloro-2-pyridinyl) ester], parathion [phosphorothioic acid, 0-0-diethylo-(4-nitrophenyl) ester], diazinon {phosphorothioic acid, 0,0-diethyl 0-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] ester} diazinonoxon {phosphoric acid, 0,0-diethyl 0-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] ester}, and paraoxon [phosphoric acid, 0,0-diethyl 0-(4-nitrophenyl) ester] in both air and wet deposition samples. Air concentrations of chloropyrifos, diazinon and parathion ranged from 13 to 13 000 pg/m3 at the base of the foothills. At 533-m air concentrations were below the limit of quantification (1.4 pg/m3) to 83 pg/m3 and at 1920 m concentrations were below the limit of quantification. Concentrations in wet deposition varied with distance and elevation from the Central Valley. Rainwater concentrations at the base of the foot hills ranged from 16 to 7600 pg/mL. At 533-m rain and snow water concentrations ranged from below the limit of quantification (1.3 pg/mL) to 140 pg/mL and at 1920 m concentrations ranged from below the limit of quantification to 48 pg/mL. These findings indicate that atmospheric transport of pesticides applied in the valley to the Sierra Nevada mountains is occurring, but the levels decrease as distance and elevation increase from the valley floor.

  11. Ground-water flow and simulated effects of development in Paradise Valley, a basin tributary to the Humboldt River in Humboldt County, Nevada

    USGS Publications Warehouse

    Prudic, David E.; Herman, M.E.

    1996-01-01

    A computer model was used to characterize ground-water flow in Paradise Valley, Nevada, and to evaluate probable long-term effects of five hypothetical development scenarios. One finding of the study is that concentrating pumping at the south end of Paradise Valley may increase underflow from the adjacent Humboldt River valley, and might affect flow in the river.

  12. Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Williams, Jackie M.; Wallin, Erin L.; Rodriguez, Brian D.; Lindsey, Charles R.; Sampson, Jay A.

    2007-01-01

    Introduction The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-Tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research. In early 2005 we extended that research with 26 additional MT data stations, located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and in northern Yucca Flat basin. That work was done to better determine the extent and thickness of the UCCU near

  13. Airborne SAR determination of relative ages of Walker Valley moraines, eastern Sierra Nevada

    NASA Technical Reports Server (NTRS)

    Fox, A.; Isacks, B.; Bloom, A.; Fielding, E.; Mcmurry, D.

    1991-01-01

    A regional study of the distribution and elevations of Pleistocene moraines in the Andes requires a method of determining relative age from space. One of our primary objectives is to establish the relative chronology of major climatic events responsible for glaciation in the Andes and other regions that are difficult to access on the ground and where suitable material for absolute age determination is lacking. The sensitivity of radar to surface roughness makes it possible to develop a remotely-based relative dating technique for landforms for which surface age and roughness can be correlated. We are developing such a technique with Airborne Synthetic Aperture Radar (AIRSAR) imagery of the eastern Sierra Nevada where independent evidence is available for the ages and physical characteristics of moraines. The Sierra Nevada moraines are similar in form and environmental setting to Andean moraines that we have targeted for study during the pending Shuttle Imaging Radar-C (SIR-C) mission. SAR imagery is used to differentiate the ages of five moraine sequences of Walker Valley in the eastern Sierra Nevada. Other aspects of this investigation are briefly discussed.

  14. Geophysical studies in the vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, north-central Nevada

    USGS Publications Warehouse

    Ponce, David A.

    2012-01-01

    From May 2008 to September 2009, the U.S. Geological Survey (USGS) collected data from more than 660 gravity stations, 100 line-km of truck-towed magnetometer traverses, and 260 physical-property sites in the vicinity of Blue Mountain and Pumpernickel Valley, northern Nevada (fig. 1). Gravity, magnetic, and physical-property data were collected to study regional crustal structures as an aid to understanding the geologic framework of the Blue Mountain and Pumpernickel Valley areas, which in general, have implications for mineral- and geothermal-resource investigations throughout the Great Basin.

  15. A Study of the Connection Among Basin-Fill Aquifers, Carbonate-Rock Aquifers, and Surface-Water Resources in Southern Snake Valley, Nevada

    USGS Publications Warehouse

    ,

    2008-01-01

    The Secretary of the Interior through the Southern Nevada Public Lands Management Act approved funding for research to improve understanding of hydrologic systems that sustain numerous water-dependent ecosystems on Federal lands in Snake Valley, Nevada. Some of the streams and spring-discharge areas in and adjacent to Great Basin National Park have been identified as susceptible to ground-water withdrawals (Elliott and others, 2006) and research has shown a high potential for ground-water flow from southern Spring Valley into southern Snake Valley through carbonate rocks that outcrop along a low topographic divide known as the Limestone Hills (Welch and others, 2007). Comprehensive geologic, hydrologic, and chemical information will be collected and analyzed to assess the hydraulic connection between basin-fill aquifers and surface-water resources, water-dependent ecological features, and the regional carbonate-rock aquifer, the known source of many high-discharge springs. Understanding these connections is important because proposed projects to pump and export ground water from Spring and Snake Valleys in Nevada may result in unintended capture of water currently supplying springs, streams, wetlands, limestone caves, and other biologically sensitive areas (fig. 1). The methods that will be used in this study may be transferable to other areas in the Great Basin. The National Park Service, Bureau of Land Management, U.S. Fish and Wildlife Service, and U.S. Forest Service submitted the proposal for funding this research to facilitate science-based land management. Scientists from the U.S. Geological Survey (USGS) Water Resources and Geologic Disciplines, and the University of Nevada, Reno, will accomplish four research elements through comprehensive data collection and analysis that are concentrated in two distinct areas on the eastern and southern flanks of the Snake Range (fig. 2). The projected time line for this research is from July 2008 through September 2011.

  16. Hydrogeologic framework of Antelope Valley and Bedell Flat, Washoe County, west-central Nevada

    USGS Publications Warehouse

    Berger, D.L.; Ponce, D.A.; Ross, W.C.

    2001-01-01

    Description of the hydrogeologic framework of Antelope Valley and Bedell Flat in west-central Nevada adds to the general knowledge of regional ground-water flow north of the Reno-Sparks metropolitan area. The hydrogeologic framework is defined by the rocks and deposits that transmit ground water or impede its movement and by the combined thickness of Cenozoic deposits. When data are lacking about the subsurface geology of an area, geophysical methods can be used to provide additional information. In this study, gravimetric and seismic-refraction methods were used to infer the form of structural features and to estimate the thickness of Cenozoic deposits in each of the two valleys. In Antelope Valley, the thickness of these deposits probably does not exceed about 300 feet, suggesting that ground-water storage in the basin-fill aquifer is limited. Beneath Bedell Flat is an elongated, northeast-trending structural depression in the pre-Cenozoic basement; the maximum thickness of Cenozoic deposits is about 2,500 feet beneath the south-central part of the valley. Shallow ground water in the northwest corner of Bedell Flat may be a result of decreasing depth to the pre-Cenozoic basement.

  17. 75 FR 57493 - Notice of Inventory Completion: Department of Anthropology & Ethnic Studies, University of Nevada...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ..., Nevada; Shoshone-Paiute Tribes of the Duck Valley Reservation, Nevada; South Fork Band (Constituent Band... of Idaho; Shoshone-Paiute Tribes of the Duck Valley Reservation, Nevada; South Fork Band (Constituent... Idaho; Shoshone-Paiute Tribes of the Duck Valley Reservation, Nevada; South Fork Band; Summit Lake...

  18. Data network, collection, and analysis in the Diamond Valley flow system, central Nevada

    USGS Publications Warehouse

    Knochenmus, Lari A.; Berger, David L.; Moreo, Michael T.; Smith, J. LaRue

    2011-01-01

    Future groundwater development and its effect on future municipal, irrigation, and alternative energy uses in the Diamond Valley flow system are of concern for officials in Eureka County, Nevada. To provide a better understanding of the groundwater resources, the U.S. Geological Survey, in cooperation with Eureka County, commenced a multi-phase study of the Diamond Valley flow system in 2005. Groundwater development primarily in southern Diamond Valley has resulted in water-level declines since the 1960s ranging from less than 5 to 100 feet. Groundwater resources in the Diamond Valley flow system outside of southern Diamond Valley have been relatively undeveloped. Data collected during phase 2 of the study (2006-09) included micrometeorological data at 4 evapotranspiration stations, 3 located in natural vegetation and 1 located in an agricultural field; groundwater levels in 95 wells; water-quality constituents in aquifers and springs at 21 locations; lithologic information from 7 recently drilled wells; and geophysical logs from 3 well sites. This report describes what was accomplished during phase 2 of the study, provides the data collected, and presents the approaches to strengthen relations between evapotranspiration rates measured at micrometeorological stations and spatially distributed groundwater discharge. This report also presents the approach to improve delineation of areas of groundwater discharge and describes the current methodology used to improve the accuracy of spatially distributed groundwater discharge rates in the Diamond Valley flow system.

  19. Interferograms showing land subsidence and uplift in Las Vegas Valley, Nevada, 1992-99

    USGS Publications Warehouse

    Pavelko, Michael T.; Hoffmann, Jörn; Damar, Nancy A.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Nevada Department of Conservation and Natural Resources-Division of Water Resources and the Las Vegas Valley Water District, compiled 44 individual interferograms and 1 stacked interferogram comprising 29 satellite synthetic aperture radar acquisitions of Las Vegas Valley, Nevada, from 1992 to 1999. The interferograms, which depict short-term, seasonal, and long-term trends in land subsidence and uplift, are viewable with an interactive map. The interferograms show that land subsidence and uplift generally occur in localized areas, are responsive to ground-water pumpage and artificial recharge, and, in part, are fault controlled. Information from these interferograms can be used by water and land managers to mitigate land subsidence and associated damage. Land subsidence attributed to ground-water pumpage has been documented in Las Vegas Valley since the 1940s. Damage to roads, buildings, and other engineered structures has been associated with this land subsidence. Land uplift attributed to artificial recharge and reduced pumping has been documented since the 1990s. Measuring these land-surface changes with traditional benchmark and Global Positioning System surveys can be costly and time consuming, and results typically are spatially and temporally sparse. Interferograms are relatively inexpensive and provide temporal and spatial resolutions previously not achievable. The interferograms are viewable with an interactive map. Landsat images from 1993 and 2000 are viewable for frames of reference to locate areas of interest and help determine land use. A stacked interferogram for 1992-99 is viewable to visualize the cumulative vertical displacement for the period represented by the individual interferograms. The interactive map enables users to identify and estimate the magnitude of vertical displacement, visually analyze deformation trends, and view interferograms and Landsat images side by side. The

  20. GPS Imaging suggests links between climate, magmatism, seismicity, and tectonics in the Sierra Nevada-Long Valley Caldera-Walker Lane system, western United States

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Blewitt, G.; Kreemer, C.; Smith, K.

    2017-12-01

    The Walker Lane is a region of complex active crustal transtension in the western Great Basin of the western United States, accommodating about 20% of the 50 mm/yr relative motion between the Pacific and North American plates. The Long Valley caldera lies in the central Walker Lane in eastern California, adjacent to the eastern boundary of the Sierra Nevada/Great Valley microplate, and experiences intermittent inflation, uplift, and volcanic unrest from the magma chamber that resides at middle crustal depths. Normal and transform faults accommodating regional tectonic transtension pass by and through the caldera, complicating the interpretation of the GPS-measured strain rate field, estimates of fault slip rates, and seismic hazard. Several dozen continuously recording GPS stations measure strain and uplift in the area with mm precision. They observe that the most recent episode of uplift at Long Valley began in mid-2011, continuing until late 2016, raising the surface by 100 mm in 6 years. The timing of the initiation of uplift coincides with the beginning of severe drought in California. Furthermore, the timing of a recent pause in uplift coincides with the very wet 2016-2017 winter, which saw approximately double normal snow pack. In prior studies, we showed that the timing of changes in geodetically measured uplift rate of the Sierra Nevada coincides with the timing of drought conditions in California, suggesting a link between hydrological loading and Sierra Nevada elevation. Here we take the analysis three steps further to show that changes in Sierra Nevada uplift rate coincide in time with 1) enhanced inflation at the Long Valley caldera, 2) shifts in the patterns and rates of horizontal tensor strain rate, and 3) seismicity patterns in the central Walker Lane. We use GPS solutions from the Nevada Geodetic Laboratory and the new GPS Imaging technique to produce robust animations of the time variable strain and uplift fields. The goals of this work are to

  1. Ground-water potentialities in the Crescent Valley, Eureka and Lander Counties, Nevada

    USGS Publications Warehouse

    Zones, Christie Paul

    1961-01-01

    The Crescent Valley is an intermontane basin in Eureka and Lander Counties, just south of the Humboldt River in north-central Nevada. The valley floor, with an area of about 150 square miles, has a shape that more nearly resembles a Y than a crescent, although the valley apparently was named after the arc described by its southern part and northeastern arm. The northwestern arm of the Y extends northward to the small railroad town of Beowawe on the Humboldt River; the northeastern arm lies east of the low Dry Hills. The leg of the Y extends southwestward toward a narrow gap which separates the Crescent Valley from the Carico Lake Valley. The total drainage area of the Crescent Valley-about 700 square miles--includes also the slopes of the bordering mountain ranges: the Shoshone Range to the west, the Cortez Mountains to the east, and the Toiyabe Range to the south. The early history of the Crescent Valley was dominated by mining of silver and gold, centered at Lander in the Shoshone Range and at Cortez and Mill Canyon in the Cortez Mountains, but in recent years the only major mining activity has been at Gold Acres; there open-pit mining of low-grade gold ore has supported a community of about 200. For many years the only agricultural enterprises in the valley were two cattle ranches, but recently addition lands have been developed for the raising of crops in the west-central part of the valley. The average annual precipitation upon the floor of the Crescent Valley is probably less than 7 inches, of which only a little more than 1 inch formally falls during the growing season (from June through September). This is far less than the requirement of any plants of economic value, and irrigation is essential to agricultural development. Small perennial streams rising in the mountains have long been utilized for domestic supply, mining and milling activities of the past, and irrigation, and recently some large wells have been developed for irrigation. In 1956 the total

  2. Water-Chemistry Evolution and Modeling of Radionuclide Sorption and Cation Exchange during Inundation of Frenchman Flat Playa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershey, Ronald; Cablk, Mary; LeFebre, Karen

    2013-08-01

    Atmospheric tests and other experiments with nuclear materials were conducted on the Frenchman Flat playa at the Nevada National Security Site, Nye County, Nevada; residual radionuclides are known to exist in Frenchman Flat playa soils. Although the playa is typically dry, extended periods of winter precipitation or large single-event rainstorms can inundate the playa. When Frenchman Flat playa is inundated, residual radionuclides on the typically dry playa surface may become submerged, allowing water-soil interactions that could provide a mechanism for transport of radionuclides away from known areas of contamination. The potential for radionuclide transport by occasional inundation of the Frenchmanmore » Flat playa was examined using geographic information systems and satellite imagery to delineate the timing and areal extent of inundation; collecting water samples during inundation and analyzing them for chemical and isotopic content; characterizing suspended/precipitated materials and archived soil samples; modeling water-soil geochemical reactions; and modeling the mobility of select radionuclides under aqueous conditions. The physical transport of radionuclides by water was not evaluated in this study. Frenchman Flat playa was inundated with precipitation during two consecutive winters in 2009-2010 and 2010-2011. Inundation allowed for collection of multiple water samples through time as the areal extent of inundation changed and ultimately receded. During these two winters, precipitation records from a weather station in Frenchman Flat (Well 5b) provided information that was used in combination with geographic information systems, Landsat imagery, and image processing techniques to identify and quantify the areal extent of inundation. After inundation, water on the playa disappeared quickly, for example, between January 25, 2011 and February 10, 2011, a period of 16 days, 92 percent of the areal extent of inundation receded (2,062,800 m2). Water sampling

  3. Geochemical Data on Waters, gases, scales, and rocks from the Dixie Valley Region, Nevada (1996-1999)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, Fraser; Bergfeld, Deborah; Janik, C.J.

    2002-08-01

    This report tabulates an extensive geochemical database on waters, gases, scales, rocks, and hot-spring deposits from the Dixie Valley region, Nevada. The samples from which the data were obtained were collected and analyzed during 1996 to 1999. These data provide useful information for ongoing and future investigations on geothermal energy, volcanism, ore deposits, environmental issues, and groundwater quality in this region.

  4. Structure and regional significance of the Late Permian(?) Sierra Nevada - Death Valley thrust system, east-central California

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.

    2005-01-01

    An imbricate system of north-trending, east-directed thrust faults of late Early Permian to middle Early Triassic (most likely Late Permian) age forms a belt in east-central California extending from the Mount Morrison roof pendant in the eastern Sierra Nevada to Death Valley. Six major thrust faults typically with a spacing of 15-20 km, original dips probably of 25-35??, and stratigraphic throws of 2-5 km compose this structural belt, which we call the Sierra Nevada-Death Valley thrust system. These thrusts presumably merge into a de??collement at depth, perhaps at the contact with crystalline basement, the position of which is unknown. We interpret the deformation that produced these thrusts to have been related to the initiation of convergent plate motion along a southeast-trending continental margin segment probably formed by Pennsylvanian transform truncation. This deformation apparently represents a period of tectonic transition to full-scale convergence and arc magmatism along the continental margin beginning in the Late Triassic in central California. ?? 2005 Elsevier B.V. All rights reserved.

  5. Geophysical Data from Spring Valley to Delamar Valley, East-Central Nevada

    USGS Publications Warehouse

    Mankinen, Edward A.; Roberts, Carter W.; McKee, Edwin H.; Chuchel, Bruce A.; Morin, Robert L.

    2007-01-01

    Cenozoic basins in eastern Nevada and western Utah constitute major ground-water recharge areas in the eastern part of the Great Basin and these were investigated to characterize the geologic framework of the region. Prior to these investigations, regional gravity coverage was variable over the region, adequate in some areas and very sparse in others. Cooperative studies described herein have established 1,447 new gravity stations in the region, providing a detailed description of density variations in the middle to upper crust. All previously available gravity data for the study area were evaluated to determine their reliability, prior to combining with our recent results and calculating an up-to-date isostatic residual gravity map of the area. A gravity inversion method was used to calculate depths to pre-Cenozoic basement rock and estimates of maximum alluvial/volcanic fill in the major valleys of the study area. The enhanced gravity coverage and the incorporation of lithologic information from several deep oil and gas wells yields a much improved view of subsurface shapes of these basins and provides insights useful for the development of hydrogeologic models for the region.

  6. Map showing depth to pre-Cenozoic basement in the Death Valley ground-water model area, Nevada and California

    USGS Publications Warehouse

    Blakely, R.J.; Ponce, D.A.

    2001-01-01

    A depth to basement map of the Death Valley groundwater model area was prepared using over 40,0000 gravity stations as part of an interagency effort by the U.S. Geological Survey and the U.S. Department of Energy to help characterize the geology and hydrology of southwest Nevada and parts of California.

  7. Geologic investigation of Playa Lakes, Tonopah Test Range, Nevada : data report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rautman, Christopher Arthur

    Subsurface geological investigations have been conducted at two large playa lakes at the Tonopah Test Range in central Nevada. These characterization activities were intended to provide basic stratigraphic-framework information regarding the lateral distribution of ''hard'' and ''soft'' sedimentary materials for use in defining suitable target regions for penetration testing. Both downhole geophysical measurements and macroscopic lithilogic descriptions were used as a surrogate for quantitative mechanical-strength properties, although some quantitative laboratory strength measurements were obtained as well. Both rotary (71) and core (19) holes on a systematic grid were drilled in the southern half of the Main Lake; drill hole spacingsmore » are 300 ft north-south and 500-ft east-west. The drilled region overlaps a previous cone-penetrometer survey that also addressed the distribution of hard and soft material. Holes were drilled to a depth of 40 ft and logged using both geologic examination and down-hole geophysical surveying. The data identify a large complex of very coarse-grained sediment (clasts up to 8 mm) with interbedded finer-grained sands, silts and clays, underlying a fairly uniform layer of silty clay 6 to 12 ft thick. Geophysical densities of the course-grained materials exceed 2.0 g/cm{sup 2}, and this petrophysical value appears to be a valid discriminator of hard vs. soft sediments in the subsurface. Thirty-four holes, including both core and rotary drilling, were drilled on a portion of the much larger Antelope Lake. A set of pre-drilling geophysical surveys, including time-domain electromagnetic methods, galvanic resistivity soundings, and terrain-conductivity surveying, was used to identify the gross distribution of conductive and resistive facies with respect to the present lake outline. Conductive areas were postulated to represent softer, clay-rich sediments with larger amounts of contained conductive ground water. Initial drilling

  8. Geologic map of the Oasis Valley basin and vicinity, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fridrich, C.J.; Minor, S.A.; Ryder, P.L.

    2000-01-13

    This map and accompanying cross sections present an updated synthesis of the geologic framework of the Oasis Valley area, a major groundwater discharge site located about 15 km west of the Nevada Test Site. Most of the data presented in this compilation is new geologic map data, as discussed below. In addition, the cross sections incorporate new geophysical data that have become available in the last three years (Grauch and others, 1997; written comm., 1999; Hildenbrand and others, 1999; Mankinen and others, 1999). Geophysical data are used to estimate the thickness of the Tertiary volcanic and sedimentary rocks on themore » cross sections, and to identify major concealed structures. Large contiguous parts of the map area are covered either by alluvium or by volcanic units deposited after development of the major structures present at the depth of the water table and below. Hence, geophysical data provide critical constraints on our geologic interpretations. A companion paper by Fridrich and others (1999) and the above-cited reports by Hildenbrand and others (1999) and Mankinen and others (1999) provide explanations of the interpretations that are presented graphically on this map. This map covers nine 7.5-minute quadrangles in Nye County, Nevada, centered on the Thirsty Canyon SW quadrangle, and is a compilation of one published quadrangle map (O'Connor and others, 1966) and eight new quadrangle maps, two of which have been previously released (Minor and others, 1997; 1998). The cross sections that accompany this map were drawn to a depth of about 5 km below land surface at the request of hydrologists who are modeling the Death Valley groundwater system.« less

  9. Fault pattern at the northern end of the Death Valley - Furnace Creek fault zone, California and Nevada

    NASA Technical Reports Server (NTRS)

    Liggett, M. A. (Principal Investigator); Childs, J. F.

    1974-01-01

    The author has identified the following significant results. The pattern of faulting associated with the termination of the Death Valley-Furnace Creek Fault Zone in northern Fish Lake Valley, Nevada was studied in ERTS-1 MSS color composite imagery and color IR U-2 photography. Imagery analysis was supported by field reconnaissance and low altitude aerial photography. The northwest-trending right-lateral Death Valley-Furnace Creek Fault Zone changes northward to a complex pattern of discontinuous dip slip and strike slip faults. This fault pattern terminates to the north against an east-northeast trending zone herein called the Montgomery Fault Zone. No evidence for continuation of the Death Valley-Furnace Creek Fault Zone is recognized north of the Montgomery Fault Zone. Penecontemporaneous displacement in the Death Valley-Furnace Creek Fault Zone, the complex transitional zone, and the Montgomery Fault Zone suggests that the systems are genetically related. Mercury mineralization appears to have been localized along faults recognizable in ERTS-1 imagery within the transitional zone and the Montgomery Fault Zone.

  10. Individualized Learning through Computerized Modular Scheduling, Second Report of Scheduling Project at Virgin Valley High School, Mesquite, Nevada.

    ERIC Educational Resources Information Center

    Allan, Blaine W.

    In 1963 Stanford University selected Virgin Valley High School in southern Nevada as one of four pilot schools to use computerized modular scheduling. Schedules for 165 students and assignments for 14 teachers were developed at the Stanford University Computer Computation Center using 30-minute modules with a total of 80 modules per week. After…

  11. MX Siting Investigation. Geotechnical Evaluation. Verification Study - Ralston Valley, Nevada. Volume II. Geotechnical Data.

    DTIC Science & Technology

    1980-06-15

    A3d). A4 Playa and Lacustrine Deposits - Deposits occurring in modern, active playas (A4) or in either inactive playas or older lake beds and abandoned...some f ine gravel 2 1 3403 3 4 vertical Smedium usal 2 10 de tnse GRAVELLY SAND,* brown *f ins to coarse, mell graded ,slightly moist ,sub- 12 o... lima 11𔄀-1 5 of ? - nRm NATIONAL, INS. 47 AFV-O1 -3 FN-TR-27-RV PERCENT FINER BY WEIGHT SAMPLE INTERVAL STANDARD SIEVE OPENING U S STAIIOA

  12. Late Quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    USGS Publications Warehouse

    Brogan, George E.; Kellogg, Karl; Slemmons, D. Burton; Terhune, Christina L.

    1991-01-01

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest-trending pull-apart basin. The largest late Quaternary scarps along the Furnace Creek fault zone, with vertical separation of late Pleistocene surfaces of as much as 64 m (meters), are in Fish Lake Valley. Despite the predominance of normal faulting along the Death Valley fault zone, vertical offset of late Pleistocene surfaces along the Death Valley fault zone apparently does not exceed about 15 m. Evidence for four to six separate late Holocene faulting events along the Furnace Creek fault zone and three or more late Holocene events along the Death Valley fault zone are indicated by rupturing of Q1B (about 200-2,000 years old) geomorphic surfaces. Probably the youngest neotectonic feature observed along the Death Valley-Furnace Creek fault system, possibly historic in age, is vegetation lineaments in southernmost Fish Lake Valley. Near-historic faulting in Death Valley, within several kilometers south of Furnace Creek Ranch, is represented by (1) a 2,000-year-old lake shoreline that is cut by sinuous scarps, and (2) a system of young scarps with free-faceted faces (representing several faulting

  13. Hydrologic Setting and Conceptual Hydrologic Model of the Walker River Basin, West-Central Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. Between 1882 and 2008, agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-ft. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes the hydrologic setting of the Walker River basin and a conceptual hydrologic model of the relations among streams, groundwater, and Walker Lake with emphasis on the lower Walker River basin from Wabuska to Hawthorne, Nevada. The Walker River basin is about 3,950 square miles and straddles the California-Nevada border. Most streamflow originates as snowmelt in the Sierra Nevada. Spring runoff from the Sierra Nevada typically reaches its peak during late May to early June with as much as 2,800 cubic feet per second in the Walker River near Wabuska. Typically, 3 to 4 consecutive years of below average streamflow are followed by 1 or 2 years of average or above average streamflow. Mountain ranges are comprised of consolidated rocks with low hydraulic conductivities, but consolidated rocks transmit water where fractured. Unconsolidated sediments include fluvial deposits along the active channel of the Walker River, valley floors, alluvial slopes, and a playa. Sand and gravel deposited by the Walker River likely are discontinuous strata throughout the valley floor. Thick clay strata likely were deposited in Pleistocene Lake Lahontan and are horizontally continuous, except where strata have been eroded by the Walker River. At Walker Lake, sediments mostly are clay interbedded with alluvial slope, fluvial, and deltaic deposits along the lake margins. Coarse sediments form a multilayered, confined-aquifer system that could extend several miles from the shoreline

  14. The application of remotely sensed data to pedologic and geomorphic mapping on alluvial fan and playa surfaces in Saline Valley, California

    NASA Technical Reports Server (NTRS)

    Miller, D. A.; Petersen, G. W.; Kahle, A. B.

    1986-01-01

    Arid and semiarid regions yield excellent opportunities for the study of pedologic and geomorphic processes. The dominance of rock and soil exposure over vegetation not only provides the ground observer with observational possibilities but also affords good opportunities for measurement by aircraft and satellite remote sensor devices. Previous studies conducted in the area of pedologic and geomorphic mapping in arid regions with remotely sensed data have utilized information obtained in the visible to near-infrared portion of the spectrum. Thermal Infrared Multispectral Scanner (TIMS) and Thematic Mapping (TM) data collected in 1984 are being used in comjunction with maps compiled during a Bureau of Land Management (BLM) soil survey to aid in a detailed mapping of alluvial fan and playa surfaces within the valley. The results from this study may yield valuable information concerning the application of thermal data and thermal/visible data combinations to the problem of dating pedologic and geomorphic features in arid regions.

  15. Precipitation response by Qom Playa, Iran

    NASA Astrophysics Data System (ADS)

    Gillespie, A. R.; Enzel, Y.; Mushkin, A.; Abbott, E.; Amit, R.; Crouvi, O.

    2006-12-01

    Playas, or dry lakes, are common landforms in the arid and semi-arid parts of the world. They integrate hydrologic and sedimentologic responses to climate at all temporal scales (individual storm to millennial) and, equally important, at regional to basin scales. Playas are also a source or sink for dust, depending on the water-sediment interaction. Therefore, playas are potentially useful in mapping and understanding global and regional climate changes, and geologic studies on individual playas have been useful in paleoclimate studies. The main difficulties in constructing and/or using such records lie in the lack of measured hydrological data, simply because most are located in remote areas such as the Sahara, and central and west Asia. High- resolution multispectral satellite remote sensing has been conducted for most of the Earth since 1973 and the archives are publicly available. These images offer a means of examining current and historical regional variations in precipitation, independent of point measurements, and thus may be especially valuable where there are few weather-monitoring programs. However, spectral images are not simple to use and may be impractical because of cost and availability of expertise. We provide here an example how the immense remote-sensing database provides a >40-yr history of surface-wetting events in playas that complements NCEP reanalysis weather data and recent TRMM rainfall data, which are modeled from cloud-top temperatures. Our analysis takes advantage of the temporal length of the archive to detect changes in hydrological conditions in Qom playa, south of Tehran (Iran), based on the spectral changes that attend wetting and drying of salts and clay and changes in the depth of standing water. High-resolution Landsat and Terra images with ~16-day repeats show variations in hydrology as patterns of playa wetting and drying that we tested against precipitation data. We found 259 Landsat cloud-free archived images of Qom Playa

  16. Geohydrology of Monitoring Wells Drilled in Oasis Valley near Beatty, Nye County, Nevada, 1997

    USGS Publications Warehouse

    Robledo, Armando R.; Ryder, Philip L.; Fenelon, Joseph M.; Paillet, Frederick L.

    1999-01-01

    Twelve monitoring wells were installed in 1997 at seven sites in and near Oasis Valley, Nevada. The wells, ranging in depth from 65 to 642 feet, were installed to measure water levels and to collect water-quality samples. Well-construction data and geologic and geophysical logs are presented in this report. Seven geologic units were identified and described from samples collected during the drilling: (1) Ammonia Tanks Tuff; (2) Tuff of Cutoff Road; (3) tuffs, not formally named but informally referred to in this report as the 'tuff of Oasis Valley'; (4) lavas informally named the 'rhyolitic lavas of Colson Pond'; (5) Tertiary colluvial and alluvial gravelly deposits; (6) Tertiary and Quaternary colluvium; and (7) Quaternary alluvium. Water levels in the wells were measured in October 1997 and February 1998 and ranged from about 18 to 350 feet below land surface. Transmissive zones in one of the boreholes penetrating volcanic rock were identified using flowmeter data. Zones with the highest transmissivity are at depths of about 205 feet in the 'rhyolitic lavas of Colson Pond' and 340 feet within the 'tuff of Oasis Valley.'

  17. Occurrence of anthropogenic organic compounds in ground water and finished water of community water systems in Eagle and Spanish Springs Valleys, Nevada, 2002-2004

    USGS Publications Warehouse

    Rosen, Michael R.; Shaefer, Donald H.; Toccalino, Patricia A.; Delzer, Gregory C.

    2006-01-01

    As a part of the U.S. Geological Survey's National Water-Quality Assessment Program, an effort to characterize the quality of major rivers and aquifers used as a source of supply to some of the largest community water systems (CWSs) in the United States has been initiated. These studies, termed Source Water-Quality Assessments (SWQAs), consist of two sampling phases. Phase 1 was designed to determine the frequency of detection and concentrations of about 260 volatile organic compounds (VOCs), pesticides and pesticide degradates, and other anthropogenic organic compounds in source water of 15 CWS wells in each study. Phase 2 monitors concentrations in the source water and also the associated finished water of CWSs for compounds most frequently detected during phase 1. One SWQA was completed in the Nevada Basin and Range area in Nevada. Ten CWS wells in Eagle Valley and five CWS wells in Spanish Springs Valley were sampled. For phase 2, two wells were resampled in Eagle Valley. Samples were collected during 2002-2004 for both phases. Water use in Eagle Valley is primarily for domestic purposes and is supplied through CWSs. Ground-water sources provide about 55 percent of the public-water supply, and surface-water sources supply about 45 percent. Lesser amounts of water are provided by domestic wells. Very little water is used for agriculture or manufacturing. Spanish Springs Valley has water-use characteristics similar to those in Eagle Valley, although there is more agricultural water use in Spanish Springs Valley than in Eagle Valley. Maximum contaminant concentrations were compared to two human-health benchmarks, if available, to describe the water-quality data in a human-health context for these findings. Measured concentrations of regulated contaminants were compared to U.S. Environmental Protection Agency and Nevada Maximum Contaminant Level (MCL) values. Measured concentrations of unregulated contaminants were compared to Health-Based Screening Levels, which

  18. Sierra Nevada Mountain Range as seen from STS-58

    NASA Image and Video Library

    1994-10-20

    STS058-72-004 (18 Oct-1 Nov 1993) --- The Sierra Nevada Mountain Range can be seen in this north-looking high oblique view taken in October, 1993, by the STS-58 crew. Visible in the view to the west of the Sierra Nevada are the San Joaquin and Sacramento Valleys of central California. The San Francisco/Oakland Bay Area can be seen to the west of the valley at the extreme left of the photograph. To the east or right of the Sierra Nevada, the basin and Range Region of central and northern Nevada is visible. Mono Lake, Lake Tahoe and Pyramid Lake are also visible in this scene. The long northwest/southeast trending Walker Lane Shear Zone, which lies just to the east (right) of the Sierra Nevada is also visible. Near the top of the view (near the horizon), the snow covered volcanic peak Mount Shasta can be seen. Over 645 kilometers (400 miles) long and from 65 to 130 kilometers (40 to 80 miles) wide, the Sierra Nevada have many peaks in excess of 3,300 meters (11,000 feet) above sea level. A titled fault block in structure (the largest in the United States) and shaped by glaciers during the last ice age over 12,000 years ago, the Sierra Nevada eastern front rises sharply from the Great Basin of Nevada, while its western slope descends gradually to the hills bordering the Central Valley of California. Snow-fed streams supply much of the irrigation water to the Central Valley and to western Nevada and also generate hydroelectricity. Recent above normal precipitation (snowfall) of the last two years has helped in alleviating the drought conditions that had prevailed throughout most of California in the mid and late 1980's and early 1990's.

  19. Ground-water quality and geochemistry in Dayton, Stagecoach, and Churchill Valleys, western Nevada

    USGS Publications Warehouse

    Thomas, James M.; Lawrence, Stephen J.

    1994-01-01

    The U.S. Geological Survey investigated the quality of ground water in the Dayton, Stagecoach, and Churchill Valleys as part of the Carson River Basin National Water-Quality Assessment (NAWQA) pilot study. Four aquifer systems have been de- lineated in the study area. Principal aquifers are unconsolidated deposits at altitudes of less than 4,900 feet above sea level and more than 50 feet below land surface. Shallow aquifers are at altitudes of less than 4,900 feet and less than 50 feet below land surface. Upland aquifers are above 4,900 feet and provide recharge to the principal aquifers. Thermal aquifers, defined as those having a water temperature greater than 30 degrees Celsius, are also present. Ground water used in Dayton, Stagecoach, and Churchill Valleys is pumped from principal aquifers in unconsolidated basin-fill deposits. Ground water in these aquifers originates as precipitation in the adjacent mountains and is recharged by the Carson River and by underflow from adjacent upstream valleys. Ground-water flow is generally parallel to the direction of surface-water flow in the Carson River. Ground water is discharged by pumping, evapo- transpiration, and underflow into the Carson River. The results of geochemical modeling indicate that as ground water moves from upland aquifers in mountainous recharge areas to principal aquifers in basin-fill deposits, the following processes probably occur: (1) plagioclase feldspar, sodium chloride, gypsum (or pyrite), potassium feldspar, and biotite dissolve; (2) calcite precipitates; (3) kaolinite forms; (4) small amounts of calcium and magnesium in the water exchange for potassium on aquifer minerals; and (5) carbon dioxide is gained or lost. The geochemical models are consistent with (1) phases identified in basin- fill sediments; (2) chemical activity of major cations and silica; (3) saturation indices of calcite and amorphous silica; (4) phase relations for aluminosilicate minerals indicated by activity diagrams; and

  20. Recharge from a subsidence crater at the Nevada test site

    USGS Publications Warehouse

    Wilson, G. V.; Ely, D.M.; Hokett, S. L.; Gillespie, D. R.

    2000-01-01

    Current recharge through the alluvial fans of the Nevada Test Site (NTS) is considered to be negligible, but the impact of more than 400 nuclear subsidence craters on recharge is uncertain. Many of the craters contain a playa region, but the impact of these playas has not been addressed. It was hypothesized that a crater playa would focus infiltration through the surrounding coarser-grained material, thereby increasing recharge. Crater U5a was selected because it represented a worst case for runoff into craters. A borehole was instrumented for neutron logging beneath the playa center and immediately outside the crater. Physical and hydraulic properties were measured along a transect in the crater and outside the crater. Particle-size analysis of the 14.6 m of sediment in the crater and morphological features of the crater suggest that a large ponding event of ≈63000 m3 had occurred since crater formation. Water flow simulations with HYDRUS-2D, which were corroborated by the measured water contents, suggest that the wetting front advanced initially by as much as 30 m yr−1 with a recharge rate 32 yr after the event of 2.5 m yr−1Simulations based on the measured properties of the sediments suggest that infiltration will occur preferentially around the playa perimeter. However, these sediments were shown to effectively restrict future recharge by storing water until removal by evapotranspiration (ET). This work demonstrated that subsidence craters may be self-healing.

  1. Trench Logs and Scarp Data from an Investigation of the Steens Fault Zone, Bog Hot Valley and Pueblo Valley, Humboldt County, Nevada

    USGS Publications Warehouse

    Personius, Stephen F.; Crone, Anthony J.; Machette, Michael N.; Kyung, Jai Bok; Cisneros, Hector; Lidke, David J.; Mahan, Shannon

    2006-01-01

    Introduction: This report contains field and laboratory data from a study of the Steens fault zone near Denio, Nev. The 200-km-long Steens fault zone forms the longest, most topographically prominent fault-bounded escarpment in the Basin and Range of southern Oregon and northern Nevada. The down-to-the-east normal fault is marked by Holocene fault scarps along nearly half its length, including the southern one-third of the fault from the vicinity of Pueblo Mountain in southern Oregon to the southern margin of Bog Hot Valley (BHV) southwest of Denio, Nev. We studied this section of the fault to better constrain late Quaternary slip rates, which we hope to compare to deformation rates derived from a recently established geodetic network in the region (Hammond and Thatcher, 2005). We excavated a trench in May 2003 across one of a series of right-stepping fault scarps that extend south from the southern end of the Pueblo Mountains and traverse the floor of Bog Hot Valley, about 4 km south of Nevada State Highway 140. This site was chosen because of the presence of well-preserved fault scarps, their development on lacustrine deposits thought to be suitable for luminescence dating, and the proximity of two geodetic stations that straddle the fault zone. We excavated a second trench in the southern BHV, but the fault zone in this trench collapsed during excavation and thus no information about fault history was documented from this site. We also excavated a soil pit on a lacustrine barrier bar in the southern Pueblo Valley (PV) to better constrain the age of lacustrine deposits exposed in the trench. The purpose of this report is to present photomosaics and trench logs, scarp profiles and slip data, soils data, luminescence and radiocarbon ages, and unit descriptions obtained during this investigation. We do not attempt to use the data presented herein to construct a paleoseismic history of this part of the Steens fault zone; that history will be the subject of a future

  2. Hydrogeology and Hydrologic Landscape Regions of Nevada

    USGS Publications Warehouse

    Maurer, Douglas K.; Lopes, Thomas J.; Medina, Rose L.; Smith, J. LaRue

    2004-01-01

    units consist of: (1) carbonate rocks, Quaternary to Tertiary age; (2) basaltic, (3) rhyolitic, and (4) andesitic volcanic flows; (5) volcanic breccias, tuffs, and volcanic rocks older than Tertiary age; (6) intrusive and metamorphic rocks; (7) consolidated and semi-consolidated tuffaceous rocks and sediments; and (8) clastic rocks consisting of sandstone and siltstone. Unconsolidated sediments are subdivided into four hydrogeologic units on the basis of flow regime, topographic slope, and mapped stream channels. The four units are (1) alluvial slopes, (2) valley floors, (3) fluvial deposits, and (4) playas. Soil permeability was grouped into five descriptive categories ranging from very high to very low, which generally correspond to mapped geomorphic features such as playas and alluvial slopes. In general, soil permeability is low to moderate in northern, northeastern, and eastern Nevada and high to very high in western, southwestern, and southern Nevada. Within a particular basin, soil permeability decreases downslope from the bedrock contact. The type of parent rock, climate, and streamflow velocities are factors that likely cause these spatial patterns. Faults in unconsolidated sediments usually are barriers to ground-water flow. In consolidated rocks, permeability and ground-water flow is reduced in directions normal to the fault zone and increased in directions parallel to the fault zone. With time, mineral precipitation may seal fractures in consolidated rocks, reducing the permeability. However, continued movement along the fault may form new fractures, resulting in a fault alternating from a zone of preferred flow to a flow barrier during geologic time. The effect of faults on ground-water flow at a particular location is difficult to determine without a site- specific investigation. Hydrologic landscape regions were delineated by overlaying a grid of 100-foot (30-meter) cells over the State, estimating the value of five variables for each cell, an

  3. Estimated ground-water discharge by evapotranspiration from Death Valley, California, 1997-2001

    USGS Publications Warehouse

    DeMeo, Guy A.; Laczniak, Randell J.; Boyd, Robert A.; Smith, J. LaRue; Nylund, Walter E.

    2003-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Inyo County, Calif., collected field data from 1997 through 2001 to accurately estimate the amount of annual ground-water discharge by evapotranspiration (ET) from the floor of Death Valley, California. Multispectral satellite-imagery and National Wetlands Inventory data are used to delineate evaporative ground-water discharge areas on the Death Valley floor. These areas are divided into five general units where ground-water discharge from ET is considered to be significant. Based upon similarities in soil type, soil moisture, vegetation type, and vegetation density; the ET units are salt-encrusted playa (21,287 acres), bare-soil playa (75,922 acres), low-density vegetation (6,625 acres), moderate-density vegetation (5,019 acres), and high-density vegetation (1,522 acres). Annual ET was computed for ET units with micrometeorological data which were continuously measured at six instrumented sites. Total ET was determined at sites that were chosen for their soil- and vegetated-surface conditions, which include salt-encrusted playa (extensive salt encrustation) 0.17 feet per year, bare-soil playa (silt and salt encrustation) 0.21 feet per year, pickleweed (pickleweed plants, low-density vegetation) 0.60 feet per year, Eagle Borax (arrowweed plants and salt grass, moderate-density vegetation) 1.99 feet per year, Mesquite Flat (mesquite trees, high-density vegetation) 2.86 feet per year, and Mesquite Flat mixed grasses (mixed meadow grasses, high-density vegetation) 3.90 feet per year. Precipitation, flooding, and ground-water discharge satisfy ET demand in Death Valley. Ground-water discharge is estimated by deducting local precipitation and flooding from cumulative ET estimates. Discharge rates from ET units were not estimated directly because the range of vegetation units far exceeded the five specific vegetation units that were measured. The rate of annual ground-water discharge by ET for

  4. Heat flow in Railroad Valley, Nevada and implications for geothermal resources in the south-central Great Basin

    USGS Publications Warehouse

    Williams, C.F.; Sass, J.H.

    2006-01-01

    The Great Basin is a province of high average heat flow (approximately 90 mW m-2), with higher values characteristic of some areas and relatively low heat flow (<60 mW m-2) characteristic of an area in south-central Nevada known as the Eureka Low. There is hydrologie and thermal evidence that the Eureka Low results from a relatively shallow, hydrologically controlled heat sink associated with interbasin water flow in the Paleozoic carbonate aquifers. Evaluating this hypothesis and investigating the thermal state of the Eureka Low at depth is a high priority for the US Geological Survey as it prepares a new national geothermal resource assessment. Part of this investigation is focused on Railroad Valley, the site of the largest petroleum reservoirs in Nevada and one of the few locations within the Eureka Low with a known geothermal system. Temperature and thermal conductivity data have been acquired from wells in Railroad Valley in order to determine heat flow in the basin. The results reveal a complex interaction of cooling due to shallow ground-water flow, relatively low (49 to 76 mW m-2) conductive heat flow at depth in most of the basin, and high (up to 234 mW m-2) heat flow associated with the 125??C geothermal system that encompasses the Bacon Flat and Grant Canyon oil fields. The presence of the Railroad Valley geothermal resource within the Eureka Low may be reflect the absence of deep ground-water flow sweeping heat out of the basin. If true, this suggests that other areas in the carbonate aquifer province may contain deep geothermal resources that are masked by ground-water flow.

  5. Soil Biogeochemistry Case Study: Cold Springs, Nevada

    NASA Astrophysics Data System (ADS)

    Morgan, T. A.; Verburg, P.

    2016-12-01

    The University of Nevada, Reno (UNR) Soil Biogeochemistry class, mentored by Dr. Robert Blank, United States Department of Agriculture/ Agricultural Research Service/ Great Basin Rangelands Research Unit (USDA/ARS/GBRRU) soil scientist, examined lithospheric biogeochemical cycles in a sagebrush ecosystem in Cold Springs, Nevada. The Cold Springs, Nevada area was selected to examine soil nutrient cycling under four landscape conditions: playa (no vegetation), invasive species mix of annual grasses and forbs, rabbitbrush (Ericameria nauseosa) encroached area, and sagebrush (Artemisia tridentata) dominant area. Five soil pits were excavated to describe pedons under each of the four landscape conditions. Soil samples were collected every 20 cm throughout a one meter profile, and were brought to the USDA/ARS/GBRRU laboratory for chemical analysis and characterization of physical and nutrient properties. In playa soils, solution-phase Na+ and SO4-2 had the highest concentrations on the top 20 cm. The invasive species soils showed a reduced molar NH4+ in mineral N throughout the profile. These soils also demonstrated a strong correlation between Fe and organic C. In the Rabbitbrush soils, extracted diethylenetriaminepentaacetic acid (DTPA) Fe appears to be cycled by depth across four of the five sites. However, the remaining rabbitbrush site which had the highest concentration of DTPA Fe, did not decline with depth. This indicated a nutrient specific lack of biogeochemical cycling. The rabbitbrush site also had almost double the organic C of the other four sites. Solution-phase K and Bicarb P expressed the highest concentrations in the 40-60 cm depth range. In three of the five sagebrush soils, the DTPA Mn concentration was highest at the surface and declined with depth. The remaining two sagebrush sites displayed the opposite trend. This case study revealed considerable variation in nutrient concentrations and biogeochemical cycling between soils and vegetation type.

  6. A West Valley Demonstration Project Milestone - Achieving Certification to Ship Waste to the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J. P.; Pastor, R. S.

    2002-02-28

    The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, whichmore » Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex.« less

  7. Height changes along selected lines through the Death Valley region, California and Nevada, 1905-1984

    USGS Publications Warehouse

    Castle, Robert O.; Gilmore, Thomas D.; Walker, James P.; Castle, Susan A.

    2005-01-01

    Comparisons among repeated levelings along selected lines through the Death Valley region of California and adjacent parts of Nevada have disclosed surprisingly large vertical displacements. The vertical control data in this lightly populated area is sparse; moreover, as much as a third of the recovered data is so thoroughly contaminated by systematic error and survey blunders that no attempt was made to correct these data and they were simply discarded. In spite of these limitations, generally episodic, commonly large vertical displacements are disclosed along a number of lines. Displacements in excess of 0.4 m, with respect to our selected control point at Beatty, Nevada, and differential displacements of about 0.7 m apparently occurred during the earlier years of the 20th century and continued episodically through at least 1943. While this area contains abundant evidence of continuing tectonic activity through latest Quaternary time, it is virtually devoid of historic seismicity. We have detected no clear connection between the described vertical displacements and fault zones reportedly active during Holocene time, although we sense some association with several more broadly defined tectonic features.

  8. Lithium Mining, Nevada

    NASA Image and Video Library

    2014-08-05

    This image from NASA Terra spacecraft shows the once-abandoned mining town of Silver Peak, Nevada, which began to thrive again when Foote Mineral Company began extracting lithium from brine below the floor of Clayton Valley in 1966.

  9. Astronomy of Nabta Playa

    NASA Astrophysics Data System (ADS)

    McK Mahille, J.; Schild, R.; Wendorf, F.; Brenmer, R.

    2007-07-01

    The repetitive orientation of megaliths, human burials, and cattle burials toward the northern regions of the sky reveals a very early symbolic connection to the heavens at Nabta Playa, Egypt. The groups of shaped stones facing north may have represented spirits of individuals who died on the trail or locally. A second piece of evidence for astronomy at Nabta Playa is the stone circle with its two sightlines toward the north and toward the rising sun at the June solstice. Finally, the five alignments of megaliths, which were oriented to bright stars in the fifth millennium, suggest an even more careful attention to the heavens. The "empty tombs" and deeply buried table rocks of the Complex Structures provide some of the greatest enigmas of Nabta Playa. The recurrent symbolism of the ceremonial centre involves issues that would have been of both practical and symbolic importance to the nomads: death, water, cattle, sun, and stars.

  10. Rock Levitation by Water and Ice; an Explanation for Trails in Racetrack Playa, California

    NASA Astrophysics Data System (ADS)

    Kletetschka, G.; Ryan, A.; McKinney, E.; Fercana, G.; Schwebler, K. P.; McIntire, L.; Miller, D.; Fox, V. K.; Marbourg, J. M.; Naquin, C. A.; Krzykowski, M.; Wilde, J. R.; Kopp, E. S.; Romine, G.; Yawn, K.; Schoch, I.; McAdam, M.; Burger, D.; Rilee, K.; Jackson, B. K.; Parsons, A. M.; Cheung, C. Y.; Lunar; Planetary Science Academy

    2010-12-01

    Through a process that is nearly a century-old mystery, rock fragments race over a desiccated layer of sediment in the California desert, forming the infamous rock trails of the Racetrack playa, found in Death Valley, California. Rocks, randomly distributed over the playa, have indented grooves or trails next to them, appearing as if someone had dragged them over the playa surface when wet. Interestingly, no one has ever witnessed the movement of these rocks. Furthermore, the mechanism responsible for these trails behind the rocks has not yet been explained. Rocks have masses ranging from 0.5 kg to 300 kg, and the trails have a chaotic character, with some trails as long as 1/2 km. Each rock has a mound of raised clay on one side and a mud trail on the other; no other unusual marks are visible. A number of trails have no rocks at the end, with only a mound of solid clay where a rock once appeared to be, as if something was pushing the clay forwards to make the trail but disappeared after the trail was made. Measurements of the humidity and temperature of the sediment pointed towards a unique mechanism of how the trails could form on their own and how simple environmental changes could result in the aforementioned trails in the sediment.

  11. Geophysical Studies Based on Gravity and Seismic Data of Tule Desert, Meadow Valley Wash, and California Wash Basins, Southern Nevada

    USGS Publications Warehouse

    Scheirer, Daniel S.; Page, William R.; Miller, John J.

    2006-01-01

    Gravity and seismic data from Tule Desert, Meadow Valley Wash, and California Wash, Nevada, provide insight into the subsurface geometry of these three basins that lie adjacent to rapidly developing areas of Clark County, Nevada. Each of the basins is the product of Tertiary extension accommodated with the general form of north-south oriented, asymmetrically-faulted half-grabens. Geophysical inversion of gravity observations indicates that Tule Desert and Meadow Valley Wash basins are segmented into subbasins by shallow, buried basement highs. In this study, basement refers to pre-Cenozoic bedrock units that underlie basins filled with Cenozoic sedimentary and volcanic units. In Tule Desert, a small, buried basement high inferred from gravity data appears to be a horst whose placement is consistent with seismic reflection and magnetotelluric observations. Meadow Valley Wash consists of three subbasins separated by basement highs at structural zones that accommodated different styles of extension of the adjacent subbasins, an interpretation consistent with geologic mapping of fault traces oblique to the predominant north-south fault orientation of Tertiary extension in this area. California Wash is a single structural basin. The three seismic reflection lines analyzed in this study image the sedimentary basin fill, and they allow identification of faults that offset basin deposits and underlying basement. The degree of faulting and folding of the basin-fill deposits increases with depth. Pre-Cenozoic units are observed in some of the seismic reflection lines, but their reflections are generally of poor quality or are absent. Factors that degrade seismic reflector quality in this area are rough land topography due to erosion, deformed sedimentary units at the land surface, rock layers that dip out of the plane of the seismic profile, and the presence of volcanic units that obscure underlying reflectors. Geophysical methods illustrate that basin geometry is more

  12. Audiomagnetotelluric data from Spring, Cave, and Coyote Spring Valleys, Nevada

    USGS Publications Warehouse

    McPhee, Darcy K.; Chuchel, Bruce A.; Pellerin, Louise

    2006-01-01

    Audiomagnetotelluric (AMT) data along four profiles in Spring, Cave, and Coyote Spring Valleys are presented here. The AMT method is used to estimate the electrical resistivity of the earth over depth ranges of a few meters to greater than one kilometer. This method is a valuable tool for revealing subsurface structure and stratigraphy within the Basin and Range of eastern Nevada, therefore helping to define the geohydrologic framework in this region. We collected AMT data using the Geometrics StrataGem EH4 system, a four-channel, natural and controlled- source tensor system recording in the range of 10 to 92,000 Hz. To augment the low signal in the natural field, an unpolarized transmitter comprised of two horizontal-magnetic dipoles was used from 1,000 to 70,000 Hz. Profiles were 1.4 - 12.6 km in length with station spacing of 100-400 m. Data were recorded with the electrical (E) field parallel to and perpendicular to the regional geologic strike direction. Station locations and sounding curves, showing apparent resistivity, phase data, and coherency data, are presented here.

  13. A guide for using the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Blainey, Joan B.; Faunt, Claudia C.; Hill, Mary C.

    2006-01-01

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  14. Preliminary estimates of spatially distributed net infiltration and recharge for the Death Valley region, Nevada-California

    USGS Publications Warehouse

    Hevesi, J.A.; Flint, A.L.; Flint, L.E.

    2002-01-01

    A three-dimensional ground-water flow model has been developed to evaluate the Death Valley regional flow system, which includes ground water beneath the Nevada Test Site. Estimates of spatially distributed net infiltration and recharge are needed to define upper boundary conditions. This study presents a preliminary application of a conceptual and numerical model of net infiltration. The model was developed in studies at Yucca Mountain, Nevada, which is located in the approximate center of the Death Valley ground-water flow system. The conceptual model describes the effects of precipitation, runoff, evapotranspiration, and redistribution of water in the shallow unsaturated zone on predicted rates of net infiltration; precipitation and soil depth are the two most significant variables. The conceptual model was tested using a preliminary numerical model based on energy- and water-balance calculations. Daily precipitation for 1980 through 1995, averaging 202 millimeters per year over the 39,556 square kilometers area of the ground-water flow model, was input to the numerical model to simulate net infiltration ranging from zero for a soil thickness greater than 6 meters to over 350 millimeters per year for thin soils at high elevations in the Spring Mountains overlying permeable bedrock. Estimated average net infiltration over the entire ground-water flow model domain is 7.8 millimeters per year.To evaluate the application of the net-infiltration model developed on a local scale at Yucca Mountain, to net-infiltration estimates representing the magnitude and distribution of recharge on a regional scale, the net-infiltration results were compared with recharge estimates obtained using empirical methods. Comparison of model results with previous estimates of basinwide recharge suggests that the net-infiltration estimates obtained using this model may overestimate recharge because of uncertainty in modeled precipitation, bedrock permeability, and soil properties for

  15. AVIRIS study of Death Valley evaporite deposits using least-squares band-fitting methods

    NASA Technical Reports Server (NTRS)

    Crowley, J. K.; Clark, R. N.

    1992-01-01

    Minerals found in playa evaporite deposits reflect the chemically diverse origins of ground waters in arid regions. Recently, it was discovered that many playa minerals exhibit diagnostic visible and near-infrared (0.4-2.5 micron) absorption bands that provide a remote sensing basis for observing important compositional details of desert ground water systems. The study of such systems is relevant to understanding solute acquisition, transport, and fractionation processes that are active in the subsurface. Observations of playa evaporites may also be useful for monitoring the hydrologic response of desert basins to changing climatic conditions on regional and global scales. Ongoing work using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data to map evaporite minerals in the Death Valley salt pan is described. The AVIRIS data point to differences in inflow water chemistry in different parts of the Death Valley playa system and have led to the discovery of at least two new North American mineral occurrences. Seven segments of AVIRIS data were acquired over Death Valley on 31 July 1990, and were calibrated to reflectance by using the spectrum of a uniform area of alluvium near the salt pan. The calibrated data were subsequently analyzed by using least-squares spectral band-fitting methods, first described by Clark and others. In the band-fitting procedure, AVIRIS spectra are fit compared over selected wavelength intervals to a series of library reference spectra. Output images showing the degree of fit, band depth, and fit times the band depth are generated for each reference spectrum. The reference spectra used in the study included laboratory data for 35 pure evaporite spectra extracted from the AVIRIS image cube. Additional details of the band-fitting technique are provided by Clark and others elsewhere in this volume.

  16. GPS Imaging of Sierra Nevada Uplift

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Blewitt, G.; Kreemer, C.

    2015-12-01

    Recent improvements in the scope and precision of GPS networks across California and Nevada have allowed for uplift of the Sierra Nevada to be observed directly. Much of the signal, in the range of 1 to 2 mm/yr, has been attributed to lithospheric scale rebound following massive groundwater withdrawal in the San Joaquin Valley in southern California, exacerbated by drought since 2011. However, natural tectonic deformation associated with long term uplift of the range may also contribute to the observed signal. We have developed new algorithms that enhance the signal of Sierra Nevada uplift and improve our ability to interpret and separate natural tectonic signals from anthropogenic contributions. We apply our new Median Interannual Difference Adjusted for Skewness (MIDAS) algorithm to the vertical times series and a inverse distance-weighted median spatial filtering and Delaunay-based interpolation to despeckle the rate map. The resulting spatially continuous vertical rate field is insensitive to outliers and steps in the GPS time series, and omits isolated features attributable to unstable stations or unrepresentative rates. The resulting vertical rate field for California and Nevada exhibits regionally coherent signals from the earthquake cycle including interseismic strain accumulation in Cascadia, postseismic relaxation of the mantle from recent large earthquakes in central Nevada and southern California, groundwater loading changes, and tectonic uplift of the Sierra Nevada and Coast Ranges. Uplift of the Sierra Nevada extends from the Garlock Fault in the south to an indefinite boundary in the north near the latitude of Mt. Lassen to the eastern Sierra Nevada range front in Owen's Valley. The rates transition to near zero in the southern Walker Lane. The eastern boundary of uplift coincides with the highest strain rates in the western Great Basin, suggesting higher normal fault slip rates and a component of tectonic uplift of the Sierra Nevada.

  17. Conductivity Investigation of Infiltration Through a Playa Lake Near Lubbock, Texas

    NASA Astrophysics Data System (ADS)

    Taylor, T. L.

    2017-12-01

    The playas of the High Plains of the United States are known to contribute to the recharge of the underlying Ogallala aquifer. The investigation of the High Plains playa-aquifer system began in 1895. Since then there has been many conceptual models about recharge beneath playa floors and how they recharge theOgallala aquifer. We are using a compartmentalized playa located in the High Plains of Texas which has the greatest concentration of playas in the US. It is estimated that there is anywhere between 22,000 and 60,000 playas present. Investigation the pathways forinfiltration thorugh playa is necessary to understand therecharge to the Ogallala aquifer.The purpose of this electromagnetic investigation is to study the fluid flow path within a playa structure bymeasurements of conductivity in the subsurface. The measurements have been processed to show a 2-D profile of the Playa. Conductivity measurements were collected with an EM31 and so are confined to the top few meters of the soil. Regions with high conductivity are assumed to contain more water than the areas with low conductivity. Repeated profiles collected before and after rain events to identify regions that accommodate more infiltration than other. The results indicate that there is greater infiltration at the annulus of the playa than in the center.

  18. Water in the Humboldt River Valley near Winnemucca, Nevada

    USGS Publications Warehouse

    Cohen, Philip M.

    1966-01-01

    Most of the work of the interagency Humboldt River Research Project in the Winnemucca reach of the Humboldt River valley has been completed. More than a dozen State and Federal agencies and several private organizations and individuals participated in the study. The major objective of the project, which began in 1959, is to evaluate the water resources of the entire Humboldt River basin. However, because of the large size of the basin, most of the work during the first 5 years of the project was done in the Winnemucca area. The purpose of this report is to summarize briefly and simply the information regarding the water resources of the Winnemucca area-especially the quantitative aspects of the flow system-given in previous reports of the project. The Winnemucca reach of the Humboldt River valley, which is in north-central Nevada, is about 200 miles downstream from the headwaters of the Humboldt River and includes that part of the valley between the Comus and Rose Creek gaging stations. Average annual inflow to the storage area (the valley lowlands) in the Winnemucca reach in water years 1949-62 was about 250,000 acre-feet. Of this amount, about 68 percent was Humboldt River streamflow, as measured at the Comus gaging station, 23 percent was precipitation directly on the storage area, 6 percent was ground-water inflow, and about 3 percent was tributary streamflow. Average annual streamflow at the Rose Creek gaging station during the same period was about 155,000 acre-feet, or about 17,000 acre-feet less than that at the Comus gaging station. Nearly all the streamflow lost was consumed by evapotranspiration in the project area. Total average annual evapotranspiration loss during the period was about 115,000 acre-feet, or about 42 percent of the total average annual outflow. The most abundant ions in the ground and surface water in the area are commonly sodium and bicarbonate. Much of the water has a dissolved-solids content that ranges from 500 to 750 parts per

  19. Recovery Act. Sub-Soil Gas and Fluid Inclusion Exploration and Slim Well Drilling, Pumpernickel Valley, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairbank, Brian D.

    2015-03-27

    Nevada Geothermal Power Company (NGP) was awarded DOE Award DE-EE0002834 in January 2010 to conduct sub-soil gas and fluid inclusion studies and slim well drilling at its Black Warrior Project (now known as North Valley) in Washoe and Churchill Counties, Nevada. The project was designed to apply highly detailed, precise, low-cost subsoil and down-hole gas geochemistry methods from the oil and gas industry to identify upflow zone drilling targets in an undeveloped geothermal prospect. NGP ran into multiple institutional barriers with the Black Warrior project relating to property access and extensive cultural survey requirement. NGP requested that the award bemore » transferred to NGP’s Pumpernickel Valley project, due to the timing delay in obtaining permits, along with additional over-budget costs required. Project planning and permit applications were developed for both the original Black Warrior location and at Pumpernickel. This included obtaining proposals from contractors able to conduct required environmental and cultural surveying, designing the two-meter probe survey methodology and locations, and submitting Notices of Intent and liaising with the Bureau of Land Management to have the two-meter probe work approved. The award had an expiry date of April 30, 2013; however, due to the initial project delays at Black Warrior, and the move of the project from Black Warrior to Pumpernickel, NGP requested that the award deadline be extended. DOE was amenable to this, and worked with NGP to extend the deadline. However, following the loss of the Blue Mountain geothermal power plant in Nevada, NGP’s board of directors changed the company’s mandate to one of cash preservation. NGP was unable to move forward with field work on the Pumpernickel property, or any of its other properties, until additional funding was secured. NGP worked to bring in a project partner to form a joint venture on the property, or to buy the property. This was unsuccessful, and NGP

  20. Paleolimnology of lacustrine rocks in Stewart Valley, Nevada: Evidence for Middle Miocene climatic cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starrat, S.W.

    1993-04-01

    Three diatom floras from Middle Miocene (Barstovian and Clarendonian) lacustrine rocks in Stewart Valley, Nevada have been distinguished. The change in floral composition between the two youngest floras may be indicative of climatic cooling over a period of about 3 m.y. (15--12 Ma). Age control is provided by radiometric (K-Ar) and vertebrate fossil data. The oldest flora is dominated by members of the genus Fragilaria'. Although most common in modern-day marshy areas, the laminated nature of the Stewart Valley strata in which this flora is found suggest that large numbers of these diatoms were washed into deeper waters, where theymore » continued to thrive as a significant part of the planktonic biomass. Stratigraphically equivalent rocks elsewhere in Stewart Valley contain abundant clusters of unopened prasinophyte algae. These unopened algal structures are thought to indicate extreme environmental stress. Environmental stress would also explain the presence of several beds of well-preserved fish fossils in stratigraphically adjacent beds. The other tow floras are preserved in a 45-m-thick section of diatomaceous shale, located about 95 m above the flora discussed above. The flora in the lower part of this section is dominated by the genus Aulacoseira (primarily A. granulata). Modern-day members of this genus are common in areas with abundant summer precipitation and mild winters. The flora in the upper part of the section is dominated by Actinocyclus cedarensis Bradbury and Krebs. If A. cedarensis can be considered an ecological analog of the late Pleistocene (glacial) representatives of the genus Stephanodiscus, then its dominant position in the flora may be indicative of a cooling event. This climate trend is also evident in paleobotanical (leaf and pollen) data from Stewart Valley, as well as many other localities across the Great Basin.« less

  1. La importancia de la protección de las playas

    EPA Pesticide Factsheets

    Las playas son una parte importante de la vida en Estados Unidos. Las playas ofrecen un sinnúmero de beneficios para el medio ambiente, actividades recreativas y la economía local. Aprenda la importancia de las playas y cómo protegerlas.

  2. Results of Gravity Fieldwork Conducted in March 2008 in the Moapa Valley Region of Clark County, Nevada

    USGS Publications Warehouse

    Scheirer, Daniel S.; Andreasen, Arne Dossing

    2008-01-01

    In March 2008, we collected gravity data along 12 traverses across newly-mapped faults in the Moapa Valley region of Clark County, Nevada. In areas crossed by these faults, the traverses provide better definition of the gravity field and, thus, the density structure, than prior gravity observations. Access problems prohibited complete gravity coverage along all of the planned gravity traverses, and we added and adjusted the locations of traverses to maximize our data collection. Most of the traverses exhibit isostatic gravity anomalies that have gradients characteristic of exposed or buried faults, including several of the newly-mapped faults.

  3. Grass buffers for playas in agricultural landscapes: A literature synthesis

    USGS Publications Warehouse

    Melcher, Cynthia P.; Skagen, Susan K.

    2005-01-01

    Future research should entail multiple-scale approaches at regional, wetland-complex, and individual watershed scales. Information needs include direct measures of buffer effectiveness in ‘real-world’ systems, refinement and field tests of buffer-effectiveness models, how buffers may affect floral and faunal communities of playas, and basic ecological information on playa function and playa wildlife ecology. Understanding how wildlife communities respond to patch size and habitat fragmentation is crucial for addressing questions regarding habitat quality of grass buffers in playa systems.

  4. Geothermal resources of the western arm of the Black Rock Desert, northwestern Nevada; Part I, geology and geophysics

    USGS Publications Warehouse

    Schaefer, Donald H.; Welch, Alan H.; Mauzer, Douglas K.

    1983-01-01

    Studies of the geothermal potential of the western arm of the Black Rock Desert in northwestern Nevada included a compilation of existing geologic data on a detailed map, a temperature survey at 1-meter depth, a thermal-scanner survey, and gravity and seismic surveys to determine basin geometry. The temperature survey showed the effects of heating at shallow depths due to rising geothermal fluids near the known hot spring areas. Lower temperatures were noted in areas of probable near-surface ground-water movement. The thermal-scanner survey verified the known geothermal areas and showed relatively high-temperature areas of standing water and ground-water discharge. The upland areas of the desert were found to be distinctly warmer than the playa area, probably due to low thermal diffusivity resulting from low moisture content. The surface geophysical surveys indicated that the maximum thickness of valley-fill deposits in the desert is about 3,200 meters. Gravity data further showed that changes in the trend of the desert axis occurred near thermal areas. (USGS)

  5. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    This group photo of the LPSA interns and trip leaders was taken at Tea Kettle Junction in Death Valley, Calif. (Standing on left side, left to right): Kristopher Schwebler, Valerie Fox, Emily Kopp, Kyle Yawn, Dan Burger, Ian Schoch, Devon Miller; (left to right, sitting) Justin Wilde, Jessica Marbourg, Maggie McAdam (a trip leader), Leva McIntire, Ann Parsons (a trip leader), Mindy Krzykowski, Emma McKinney, Cynthia Cheung (LPSA principal investigator and a trip leader), George Fercana; (standing on right side): Kynan Rilee, Gregory Romine, Clint Naquin, Gunther Kletetschka (a trip leader), Andrew Ryan, and in the very back, Brian Jackson (a trip leader). Photo credit: NASA/GSFC/ Leva McIntire/LPSA intern To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  6. 1. VIEW OF OFFICE OF THE NEVADA LUCKY TIGER MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF OFFICE OF THE NEVADA LUCKY TIGER MILL AND MINE COMPLEX (FEATURE B-I), FACING NORTHEAST. ROAD TO HATCH ADIT IN THE FOREGROUND. (OCTOBER, 1995) - Nevada Lucky Tiger Mill & Mine, Office, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  7. Earthquake processes in the Rainbow Mountain-Fairview Peak-Dixie Valley, Nevada, region 1954-1959

    NASA Astrophysics Data System (ADS)

    Doser, Diane I.

    1986-11-01

    The 1954 Rainbow Mountain-Fairview Peak-Dixie Valley, Nevada, sequence produced the most extensive pattern of surface faults in the intermountain region in historic time. Five earthquakes of M>6.0 occurred during the first 6 months of the sequence, including the December 16, 1954, Fairview Peak (M = 7.1) and Dixie Valley (M = 6.8) earthquakes. Three 5.5≤M≤6.5 earthquakes occurred in the region in 1959, but none exhibited surface faulting. The results of the modeling suggest that the M>6.5 earthquakes of this sequence are complex events best fit by multiple source-time functions. Although the observed surface displacements for the July and August 1954 events showed only dip-slip motion, the fault plane solutions and waveform modeling suggest the earthquakes had significant components of right-lateral strike-slip motion (rakes of -135° to -145°). All of the earthquakes occurred along high-angle faults with dips of 40° to 70°. Seismic moments for individual subevents of the sequence range from 8.0 × 1017 to 2.5 × 1019 N m. Stress drops for the subevents, including the Fairview Peak subevents, were between 0.7 and 6.0 MPa.

  8. Dust emission from wet and dry playas in the Mojave Desert, USA

    USGS Publications Warehouse

    Reynolds, R.L.; Yount, J.C.; Reheis, M.; Goldstein, H.; Chavez, P.; Fulton, R.; Whitney, J.; Fuller, C.; Forester, R.M.

    2007-01-01

    The interactions between playa hydrology and playa-surface sediments are important factors that control the type and amount of dust emitted from playas as a result of wind erosion. The production of evaporite minerals during evaporative loss of near-surface ground water results in both the creation and maintenance of several centimeters or more of loose sediment on and near the surfaces of wet playas. Observations that characterize the texture, mineralogic composition and hardness of playa surfaces at Franklin Lake, Soda Lake and West Cronese Lake playas in the Mojave Desert (California), along with imaging of dust emission using automated digital photography, indicate that these kinds of surface sediment are highly susceptible to dust emission. The surfaces of wet playas are dynamic - surface texture and sediment availability to wind erosion change rapidly, primarily in response to fluctuations in water-table depth, rainfall and rates of evaporation. In contrast, dry playas are characterized by ground water at depth. Consequently, dry playas commonly have hard surfaces that produce little or no dust if undisturbed except for transient silt and clay deposited on surfaces by wind and water. Although not the dominant type of global dust, salt-rich dusts from wet playas may be important with respect to radiative properties of dust plumes, atmospheric chemistry, windborne nutrients and human health.

  9. Evaporation from groundwater discharge playas, Estancia Basin, central New Mexico

    USGS Publications Warehouse

    Menking, Kirsten M.; Anderson, Roger Y.; Brunsell, Nathaniel A.; Allen, Bruce D.; Ellwein, Amy L.; Loveland, Thomas A.; Hostetler, Steven W.

    2000-01-01

    Bowen ratio meteorological stations have been deployed to measure rates of evaporation from groundwater discharge playas and from an adjacent vegetated bench in the Estancia Basin, in central New Mexico. The playas are remnants of late Pleistocene pluvial Lake Estancia and are discharge areas for groundwater originating as precipitation in the adjacent Manzano Mts. They also accumulate water during local precipitation events. Evaporation is calculated from measured values of net radiation, soil heat flux, atmospheric temperature, and relative humidity. Evaporation rates are strongly dependent on the presence or absence of standing water in the playas, with rates increasing more than 600% after individual rainstorms. Evaporation at site E-12, in the southeastern part of the playa Complex, measured 74 cm over a yearlong period from mid-1997 through mid-1998. This value compares favorably to earlier estimates from northern Estancia playas, but is nearly three times greater than evaporation at a similar playa in western Utah. Differences in geographical position, salt crust composition, and physical properties may explain some of the difference in evaporation rates in these two geographic regions.

  10. Ground-water quality and geochemistry in Carson and Eagle Valleys, western Nevada and eastern California

    USGS Publications Warehouse

    Welch, Alan H.

    1994-01-01

    Aquifers in Carson and Eagle Valleys are an important source of water for human consumption and agriculture. Concentrations of major constituents in water from the principal aquifers on the west sides of Carson and Eagle Valleys appear to be a result of natural geochemical reactions with minerals derived primarily from plutonic rocks. In general, water from principal aquifers is acceptable for drinking when compared with current (1993) Nevada State drinking-water maximum contaminant level standards. Water was collected and analyzed for all inorganic constituents for which primary or secondary drinking-water standards have been established. About 3 percent of these sites had con- stituents that exceeded one or more primary or secondary drinking-water standards have been established. About 3 percent of these sites had con- stituents that exceeded one or more primary standards and water at about 10 percent of the sites had at least one constituent that surpassed a secondary standard. Arsenic exceeded the standard in water at less than 1 percent of the principal aquifer sites; nitrate surpassed its standard in water at 3 percent of 93 sites. Water from wells in the principal aquifer with high concentrations of nitrate was in areas where septic systems are used; these concentrations indicate that contamination may be entering the wells. Concentrations of naturally occurring radionuclides in water from the principal aquifers, exceed the proposed Federal standards for some constituents, but were not found t be above current (1993) State standards. The uranium concen- trations exceeded the proposed 20 micrograms per liter Federal standard at 10 percent of the sites. Of the sites analyzed for all of the inorganic constituents with primary standards plus uranium, 15 percent exceed one or more established standards. If the proposed 20 micrograms per liter standard for uranium is applied to the sampled sites, then 23 percent would exceed the standard for uranium or some other

  11. Gravity survey of Dixie Valley, west-central Nevada

    USGS Publications Warehouse

    Schaefer, Donald H.

    1983-01-01

    Dixie Valley, a northeast-trending structural trough typical of valleys in the Basin and Range Province, is filled with a maximum of about 10,000 feet of alluvial and lacustrine deposits , as estimated from residual-gravity measurements obtained in this study. On the basis of gravity measurements at 300 stations on nine east-west profiles, the gravity residuals reach a maximum of 30 milligals near the south-central part of the valley. Results from a three-dimensional inversion model indicate that the central depression of the valley is offset to the west of the geographic axis. This offset is probably due to major faulting along the west side of the valley adjacent to the Stillwater Range. Comparison of depths to bedrock obtained during this study and depths obtained from a previous seismic-refraction study indicates a reasonably good correlation. A heterogeneous distribution of densities within the valley-fill deposits would account for differing depths determined by the two methods. (USGS)

  12. Hydrogeologic framework and estimates of groundwater storage for the Hualapai Valley, Detrital Valley, and Sacramento Valley basins, Mohave County, Arizona

    USGS Publications Warehouse

    Truini, Margot; Beard, L. Sue; Kennedy, Jeffrey; Anning, Dave W.

    2013-01-01

    We have investigated the hydrogeology of the Hualapai Valley, Detrital Valley, and Sacramento Valley basins of Mohave County in northwestern Arizona to develop a better understanding of groundwater storage within the basin fill aquifers. In our investigation we used geologic maps, well-log data, and geophysical surveys to delineate the sedimentary textures and lithology of the basin fill. We used gravity data to construct a basin geometry model that defines smaller subbasins within the larger basins, and airborne transient-electromagnetic modeled results along with well-log lithology data to infer the subsurface distribution of basin fill within the subbasins. Hydrogeologic units (HGUs) are delineated within the subbasins on the basis of the inferred lithology of saturated basin fill. We used the extent and size of HGUs to estimate groundwater storage to depths of 400 meters (m) below land surface (bls). The basin geometry model for the Hualapai Valley basin consists of three subbasins: the Kingman, Hualapai, and southern Gregg subbasins. In the Kingman subbasin, which is estimated to be 1,200 m deep, saturated basin fill consists of a mixture of fine- to coarse-grained sedimentary deposits. The Hualapai subbasin, which is the largest of the subbasins, contains a thick halite body from about 400 m to about 4,300 m bls. Saturated basin fill overlying the salt body consists predominately of fine-grained older playa deposits. In the southern Gregg subbasin, which is estimated to be 1,400 m deep, saturated basin fill is interpreted to consist primarily of fine- to coarse-grained sedimentary deposits. Groundwater storage to 400 m bls in the Hualapai Valley basin is estimated to be 14.1 cubic kilometers (km3). The basin geometry model for the Detrital Valley basin consists of three subbasins: northern Detrital, central Detrital, and southern Detrital subbasins. The northern and central Detrital subbasins are characterized by a predominance of playa evaporite and fine

  13. Death Valley California as seen from STS-59

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This oblique handheld Hasselblad 70mm photo shows Death Valley, near California's border with Nevada. The valley -- the central feature of Death Valley National Monument -- extends north to south for some 140 miles (225 kilometers). Hemmed in to the east by the Amargosa Range and to the west by the Panamints, its width varies from 5 to 15 miles (8 to 24 kilometers).

  14. Strain pattern represented by scarps formed during the earthquakes of October 2, 1915, Pleasant Valley, Nevada

    USGS Publications Warehouse

    Wallace, R.E.

    1979-01-01

    The pattern of scarps developed during the earthquakes of October 2, 1915, in Pleasant Valley, Nevada, may have formed as a result of a modern stress system acting on a set of fractures produced by an earlier stress system which was oriented differently. Four major scarps developed in a right-stepping, en-echelon pattern suggestive of left-lateral slip across the zone and an extension axis oriented approximately S85??W. The trend of the zone is N25??E. However, the orientation of simple dip-slip on most segments trending approximately N20-40?? E and a right-lateral component of displacement on several N- and NW-trending segments of the scarps indicate that the axis of regional extension was oriented between N50?? and 70?? W, normal to the zone. The cumulative length of the scarps is 60 km, average vertical displacement 2 m, and the maximum vertical displacement near the Pearce School site 5.8 m. Almost everywhere the 1915 scarps formed along an older scarp line, and in some places older scarps represent multiple previous events. The most recent displacement event prior to 1915 is interpreted to have occurred more than 6600 years ago, but possibly less than 20,000 years ago. Some faults expressed by older scarps that trend northwest were not reactivated in 1915, possibly because they are oriented at a low angle with respect to the axis of modern regional extension. The 1915 event occurred in an area of overlap of three regional fault trends oriented northwest, north, and northeast and referred to, respectively, as the Oregon-Nevada, Northwest Nevada, and Midas-Battle Moutain trends. Each of these trends may have developed at a different time; the Oregon-Nevada trend was possibly the earliest and developed in Late Miocene time (Stewart et al. 1975). Segments of the 1915 scarps are parallel to each of these trends, suggesting influence by older sets of fractures. ?? 1979.

  15. Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California; with a section on estimating evapotranspiration using the energy-budget eddy-correlation technique

    USGS Publications Warehouse

    Czarnecki, John B.; Stannard, David I.

    1997-01-01

    Franklin Lake playa is one of the principal discharge areas of the ground-water-flow system associated with Yucca Mountain, Nevada, the potential site of a high-level nuclear-waste repository. By using the energy-budget eddy-correlation technique, measurements made between June 1983 and April 1984 to estimate evapotranspiration were found to range from 0.1 centimeter per day during winter months to about 0.3 centimeter per day during summer months; the annual average was 0.16 centimeter per day. These estimates were compared with evapotranspiration estimates calculated from six other methods.

  16. Proposed Operational Base Site, Steptoe Valley, Ely Area, Nevada.

    DTIC Science & Technology

    1980-03-31

    1629, respectively (White Pine Chamber of Commerce , WPCC, 1980). The city of Ely is incorporated; the suburb of East Ely is not. For purposes of this...Site SAF Security Alert Facility WPCC White Pine Chamber of Commerce WPPP White Pine Power Project IL__ _ FN-TR-35 38 BIBLIOGRAPHY Cardinalli, J., 1979...Nevada Forecasts for the Future--Agriculture, State Engineer’s Office, Carson City, Nevada. *1 White Pine Chamber of Commerce , 1980, Oral

  17. Low- to moderate-temperature geothermal resource assessment for Nevada: area specific studies, Pumpernickel Valley, Carlin and Moana. Final report June 1, 1981-July 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trexler, D.T.; Flynn, T.; Koenig, B.A.

    1982-01-01

    Geological, geophysical and geochemical surveys were used in conjunction with temperature gradient hole drilling to assess the geothermal resources in Pumpernickel Valley and Carlin, Nevada. This program is based on a statewide assessment of geothermal resources that was completed in 1979. The exploration techniques are based on previous federally-funded assessment programs that were completed in six other areas in Nevada and include: literature search and compilation of existing data, geologic reconnaissance, chemical sampling of thermal and non-thermal fluids, interpretation of satellite imagery, interpretation of low-sun angle aerial photographs, two-meter depth temperature probe survey, gravity survey, seismic survey, soil-mercury survey, andmore » temperature gradient drilling.« less

  18. Groundwater recharge in desert playas: current rates and future effects of climate change

    NASA Astrophysics Data System (ADS)

    McKenna, Owen P.; Sala, Osvaldo E.

    2018-01-01

    Our results from playas, which are topographic low areas situated in closed-catchments in drylands, indicated that projected climate change in Southwestern USA would have a net positive impact over runon and groundwater recharge beneath playas. Expected increased precipitation variability can cause up to a 300% increase in annual groundwater recharge beneath playas. This increase will overshadow the effect of decreased precipitation amount that could cause up to a 50% decrease in recharge beneath playas. These changes could have a significant impact on groundwater and carbon storage. These results are important given that groundwater resources in Southwestern USA continue to decline due to human consumption outpacing natural recharge of aquifers. Here, we report on groundwater recharge rates ranging from less than 1 mm to greater than 25 mm per year beneath desert playas. Playas located in larger and steeper catchments with finer-textured soils had the highest rates of recharge. Vegetation cover had no effect on recharge beneath playas. We modeled catchment runoff generation and found that the amount of runon a playa receives annually strongly correlated to the rate of groundwater recharge beneath that playa. Runon occurred during precipitation events larger than 20 mm and increased linearly with events above that threshold.

  19. Dust deposition in southern Nevada and California, 1984-1989: Relations to climate, source area, and source lithology

    NASA Astrophysics Data System (ADS)

    Reheis, Marith C.; Kihl, Rolf

    1995-05-01

    Dust samples collected annually for 5 years from 55 sites in southern Nevada and California provide the first regional source of information on modern rates of dust deposition, grain size, and mineralogical and chemical composition relative to climate and to type and lithology of dust source. The average silt and clay flux (rate of deposition) in southern Nevada and southeastern California ranges from 4.3 to 15.7 g/m2/yr, but in southwestern California the average silt and clay flux is as high as 30 g/m2/yr. The climatic factors that affect dust flux interact with each other and with the factors of source type (playas versus alluvium), source lithology, geographic area, and human disturbance. Average dust flux increases with mean annual temperature but is not correlated to decreases in mean annual precipitation because the regional winds bring dust to relatively wet areas. In contrast, annual dust flux mostly reflects changes in annual precipitation (relative drought) rather than temperature. Although playa and alluvial sources produce about the same amount of dust per unit area, the total volume of dust from the more extensive alluvial sources is much larger. In addition, playa and alluvial sources respond differently to annual changes in precipitation. Most playas produce dust that is richer in soluble salts and carbonate than that from alluvial sources (except carbonate-rich alluvium). Gypsum dust may be produced by the interaction of carbonate dust and anthropogenic or marine sulfates. The dust flux in an arid urbanizing area may be as much as twice that before disturbance but decreases when construction stops. The mineralogic and major-oxide composition of the dust samples indicates that sand and some silt is locally derived and deposited, whereas clay and some silt from different sources can be far-traveled. Dust deposited in the Transverse Ranges of California by the Santa Ana winds appears to be mainly derived from sources to the north and east.

  20. Trends in nitrate and dissolved-solids concentrations in ground water, Carson Valley, Douglas County, Nevada, 1985-2001

    USGS Publications Warehouse

    Rosen, Michael R.

    2003-01-01

    Analysis of trends in nitrate and total dissolved-solids concentrations over time in Carson Valley, Nevada, indicates that 56 percent of 27 monitoring wells that have long-term records of nitrate concentrations show increasing trends, 11 percent show decreasing trends, and 33 percent have not changed. Total dissolved-solids concentrations have increased in 52 percent of these wells and are stable in 48 percent. None of these wells show decreasing trends in total dissolved-solids concentrations. The wells showing increasing trends in nitrate and total dissolved-solids concentrations were always in areas that use septic waste-disposal systems. Therefore, the primary cause of these increases is likely the increase in septic-tank usage over the past 40 years.

  1. Temporal, Spatial, and Spectral Variability at Ivanpah Playa Vicarious Calibration Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa-Aleman, E.

    2003-01-07

    The Savannah River Technology Center (SRTC) conducted four reflectance vicarious calibrations at Ivanpah Playa, California since July 2000 in support of the MTI satellite. The multi-year study shows temporal, spatial and spectral variability at the playa. The temporal variability in the wavelength dependent reflectance and emissivity across the playa suggests a dependency with precipitation during the winter and early spring seasons. Satellite imagery acquired on September and November 2000, May 2001 and March 2002 in conjunction with ground truth during the September, May and March campaigns and water precipitation records were used to demonstrate the correlation observed at the playa

  2. Hydrologic and geologic characteristics of the Yucca Mountain site relevant to the performance of a potential repository: Day 1, Las Vegas, Nevada to Pahrump, Nevada: Stop 6A. Keane Wonder Spring and regional groundwater flow in the Death Valley region

    USGS Publications Warehouse

    Steinkampf, W.C.

    2000-01-01

    Yucca Mountain, located ~100 mi northwest of Las Vegas, Nevada, has been designated by Congress as a site to be characterized for a potential mined geologic repository for high-level radioactive waste. This field trip will examine the regional geologic and hydrologic setting for Yucca Mountain, as well as specific results of the site characterization program, The first day focuses on the regional seeing with emphasis on current and paleo hydrology, which are both of critical concern for predicting future performance of a potential repository. Morning stops will be in southern Nevada and afternoon stops will be in Death Valley. The second day will be spent at Yucca Mountain. The filed trip will visit the underground testing sites in the "Exploratory Studies Facility" and the "Busted Butte Unsaturated Zone Transport Field Test" plus several surface-based testing sites. Much of the work at the site has concentrated on studies of the unsaturated zone, and element of the hydrologic system that historically has received little attention. Discussions during the second day will comprise selected topics of Yucca Mountain geology, mic hazard in the Yucca Mountain area. Evening discussions will address modeling of regional groundwater flow, the geology and hydrology of Yucca Mountain to the performance of a potential repository. Day 3 will examine the geologic framework and hydrology of the Pahute Mesa-Oasis Valley Groundwater Basin and then will continue to Reno via Hawthorne, Nevada and the Walker Lake area.

  3. 40 CFR 81.329 - Nevada.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... classified Better than national standards (Township Range): Clark County: Las Vegas Valley (212)(15-24S, 56... County refers to 27 hydrographic areas either entirely or partially located within Clark County as shown... (September 1971), excluding the two designated areas in Clark County specifically listed in the table. Nevada...

  4. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    USGS Publications Warehouse

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, J. LaRue; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  5. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    The summer interns with the 2010 Lunar and Planetary Science Academy (LPSA) at NASA's Goddard Space Flight Center came to study the Racetrack Playa rocks. Photo credit: NASA/GSFC/Mindy Krzykowski/LPSA intern To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  6. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    The main mystery on Racetrack Playa is how the rocks move, but another, possibly greater mystery, is why some trails don't have rocks. Photo credit: NASA/GSFC/Mindy Krzykowski/LPSA intern To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  7. Remotely-Sensed Regional-Scale Evapotranspiration of a Semi-Arid Great Basin Desert and its Relationship to Geomorphology, Soils, and Vegetation

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Quattrochi, D.; Malek, E.; Hipps, L.; Boettinger, J.; McCurdy, G.

    1998-01-01

    Landsat thematic mapper data are used to estimate instantaneous regional-scale surface water and energy fluxes in a semi-arid Great Basin desert of the western United States. Results suggest that it is possible to scale from point measurements of environmental state variables to regional estimates of water and energy exchange. This research characterizes the unifying thread in the classical climate-topography-soil-vegetation relation -the surface water and energy balance-through maps of the partitioning of energy throughout the landscape. The study was conducted in Goshute Valley of northeastern Nevada, which is characteristic of most faulted graben valleys of the Basin and Range Province of the western United States. The valley comprises a central playa and lake plain bordered by alluvial fans emanating from the surrounding mountains. The distribution of evapotranspiration (ET) is lowest in the middle reaches of the fans where the water table is deep and plants are small, resulting in low evaporation and transpiration. Highest ET occurs in the center of the valley, particularly in the playa, where limited to no vegetation occurs, but evaporation is relatively high because of a shallow water table and silty clay soil capable of large capillary movement. Intermediate values of ET are associated with large shrubs and is dominated by transpiration.

  8. Remotely-Sensed Regional-Scale Evapotranspiration of a Semi-Arid Great Basin Desert and its Relationship to Geomorphology, Soils, and Vegetation

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Quattrochi, D.; Malek, E.; Hipps, L.; Boettinger, J.; McCurdy, G.

    1997-01-01

    Landsat Thematic Mapper data is used to estimate instantaneous regional-scale surface water and energy fluxes in a semi-arid Great Basin desert of the western United States. Results suggest that it is possible to scale from point measurements of environmental state variables to regional estimates of water and energy exchange. This research characterizes the unifying thread in the classical climate-topography-soil-vegetation relation-the surface water and energy balance-through maps of the partitioning of energy throughout the landscape. The study was conducted in Goshute Valley of northeastern Nevada, which is characteristic of most faulted graben valleys of the Basin and Range Province of the western United States. The valley comprises a central playa and lake plain bordered by alluvial fans emanating from the surrounding mountains. The distribution of evapotranspiration (ET) is lowest in the middle reaches of the fans where the water table is deep and plants are small, resulting in low evaporation and transpiration. Highest ET occurs in the center of the valley, particularly in the playa, where limited to no vegetation occurs, but evaporation is relatively high because of a shallow water table and silty clay soil capable of large capillary movement. Intermediate values of ET are associated with large shrubs and is dominated by transpiration.

  9. Geodetic Constraints on the Rigidity and Eastern Boundary of the Sierra Nevada Micro-Plate, from Mohawk Valley to Southern Walker Lane

    NASA Astrophysics Data System (ADS)

    Kreemer, C. W.; Hammond, W. C.; Blewitt, G.

    2009-12-01

    The Sierra Nevada - Great Valley (SNGV) micro-plate has long been recognized as a tectonically rigid, though mobile, entity within the Pacific - North America plate boundary zone. The motion of the SNGV relative to stable North America (and the Colorado Plateau) provides the kinematic boundary condition for, and perhaps drives, the deformation in the Basin and Range Province (BRP) and Walker Lane. In the north the motion of the SNGV is aligned with the Mohawk Valley fault zone, which could have a slip rate of over a few mm/yr. The crest of the Sierras marks the SNGV’s eastern edge, but the obliquity between orientation of this boundary and the block’s motion implies an expected increase in rangefront-normal extension from the northern to southern Walker Lane. We use new GPS data from the EarthScope Plate Boundary Observatory (PBO) and our own semi-continuous MAGNET network to revisit the following questions: 1) Do the data still support rigidity of the SNGV?; 2) How far east does the rigidity extend and how does this relate to SNGV lithology?; 3) How does the direction of SNGV motion relate to the strike of its eastern margin and observed strain partitioning (and its along strike variation) in the Walker Lane?; and 4) How is SNGV-BRP motion accommodated between the Walker Lane and the Cascadia forearc? We analyze data from all the available continuous GPS sites in the greater SNGV region, including new data from PBO, as well as data from MAGNET. All data are processed with the GIPSY-OASIS II precise point positioning software using recently reprocessed orbits from JPL's IGS Analysis Center. The processing includes satellite and station antenna calibrations and all data have the phase ambiguities fixed using the Ambizap algorithm. Positions are estimated in our custom-made North America reference frame in which continental-scale common-mode errors are removed. Velocities and uncertainties are estimated using the CATS software in which we assuming an error model

  10. Gravity and magnetic study of the Pahute Mesa and Oasis Valley region, Nye County, Nevada

    USGS Publications Warehouse

    Mankinen, Edward A.; Hildenbrand, Thomas G.; Dixon, Gary L.; McKee, Edwin H.; Fridrich, Christopher J.; Laczniak, Randell J.

    1999-01-01

    Regional gravity and aeromagnetic maps reveal the existence of deep basins underlying much of the southwestern Nevada volcanic field, approximately 150 km northwest of Las Vegas. These maps also indicate the presence of prominent features (geophysical lineaments) within and beneath the basin fill. Detailed gravity surveys were conducted in order to characterize the nature of the basin boundaries, delineate additional subsurface features, and evaluate their possible influence on the movement of ground-water. Geophysical modeling of gravity and aeromagnetic data indicates that many of the features may be related to processes of caldera formation. Collapse of the various calderas within the volcanic field resulted in dense basement rocks occurring at greater depths within caldera boundaries. Modeling indicates that collapse occurred along faults that are arcuate and steeply dipping. There are indications that the basement in the western Pahute Mesa - Oasis Valley region consists predominantly of granitic and/or fine-grained siliceous sedimentary rocks that may be less permeable to groundwater flow than the predominantly fractured carbonate rock basement to the east and southeast of the study area. The northeast-trending Thirsty Canyon lineament, expressed on gravity and basin thickness maps, separates dense volcanic rocks on the northwest from less dense intracaldera accumulations in the Silent Canyon and Timber Mountain caldera complexes. The source of the lineament is an approximately 2-km wide ring fracture system with step-like differential displacements, perhaps localized on a pre-existing northeast-trending Basin and Range fault. Due to vertical offsets, the Thirsty Canyon fault zone probably juxtaposes rock types of different permeability and, thus, it may act as a barrier to ground-water flow and deflect flow from Pahute Mesa along its flanks toward Oasis Valley. Within the Thirsty Canyon fault zone, highly fractured rocks may serve also as a conduit

  11. Review: Recharge rates and chemistry beneath playas of the High Plains aquifer, USA

    NASA Astrophysics Data System (ADS)

    Gurdak, Jason J.; Roe, Cassia D.

    2010-12-01

    Playas are ephemeral, closed-basin wetlands that are hypothesized as an important source of recharge to the High Plains aquifer in central USA. The ephemeral nature of playas, low regional recharge rates, and a strong reliance on groundwater from the High Plains aquifer has prompted many questions regarding the contribution and quality of recharge from playas to the High Plains aquifer. As a result, there has been considerable scientific debate about the potential for water to infiltrate the relatively impermeable playa floors, travel through the unsaturated zone sediments that are tens of meters thick, and subsequently recharge the High Plains aquifer. This critical review examines previously published studies on the processes that control recharge rates and chemistry beneath playas. Reported recharge rates beneath playas range from less than 1.0 to more than 500 mm/yr and are generally 1-2 orders of magnitude higher than recharge rates beneath interplaya settings. Most studies support the conceptual model that playas are important zones of recharge to the High Plains aquifer and are not strictly evaporative pans. The major findings of this review provide science-based implications for management of playas and groundwater resources of the High Plains aquifer and directions for future research.

  12. MISR Sees the Sierra Nevadas in Stereo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These MISR images of the Sierra Nevada mountains near the California-Nevada border were acquired on August 12, 2000 during Terra orbit 3472. On the left is an image from the vertical-viewing (nadir) camera. On the right is a stereo 'anaglyph' created using the nadir and 45.6-degree forward-viewing cameras, providing a three-dimensional view of the scene when viewed with red/blue glasses. The red filter should be placed over your left eye. To facilitate the stereo viewing, the images have been oriented with north toward the left.

    Some prominent features are Mono Lake, in the center of the images; Walker Lake, to its left; and Lake Tahoe, near the lower left. This view of the Sierra Nevadas includes Yosemite, Kings Canyon, and Sequoia National Parks. Mount Whitney, the highest peak in the contiguous 48 states (elev. 14,495 feet), is visible near the righthand edge. Above it (to the east), the Owens Valley shows up prominently between the Sierra Nevada and Inyo ranges.

    Precipitation falling as rain or snow on the Sierras feeds numerous rivers flowing southwestward into the San Joaquin Valley. The abundant fields of this productive agricultural area can be seen along the lower right; a large number of reservoirs that supply water for crop irrigation are apparent in the western foothills of the Sierras. Urban areas in the valley appear as gray patches; among the California cities that are visible are Fresno, Merced, and Modesto.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  13. Biogeochemistry of a soil catena in the eastern Sierra Nevada Range, NV

    USDA-ARS?s Scientific Manuscript database

    As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized five pedons at Little Valley, NV, at the eastern edge of the Sierra Nevada. Developed largely from granite, the catena encompassed five pedons, which from high to low elev...

  14. Late quaternary environmental changes in the upper Las Vegas valley, Nevada

    NASA Astrophysics Data System (ADS)

    Quade, Jay

    1986-11-01

    Five stratigraphic units and five soils of late Pleistocene to Holocene age crop out in dissected badlands on Corn Creek Flat, 30 km northwest of Las Vegas, Nevada, and at Tule Springs, nearer to Las Vegas. The record is dominantly fluvial but contains evidence of several moister, marsh-forming periods: the oldest (Unit B) dates perhaps to the middle Wisconsin, and the more widespread Unit D falls between 30,000 and 15,000 yr B.P. Unit D therefore correlates with pluvial maximum lacustrine deposits elsewhere in the Great Basin. Standing water was not of sufficient depth or extent during either period to form lake strandlines. Between 14,000 and 7200 yr B.P. (Unit E), standing surface water gradually decreased, a trend also apparent in Great Basin pluvial lake chronologies during the same period. Groundwater carbonate cementation and burrowing by cicadas (Cicadae) accompany the moist-phase units. After 7200 yr B.P., increased wind action, decreased biotic activity, and at least 25 m of water-table lowering accompanied widespread erosion of older fine-grained deposits. Based on pack-rat midden and pollen evidence, this coincides with major vegetation changes in the valley, from sagebrush-dominated steppe to lower Mohave desertscrub.

  15. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    Four LPSA interns test the clay at Bonnie Claire Playa, another location where the rocks move, to see how quickly water is absorbed. Interns, clockwise: Kyle Yawn (standing), Gregory Romine, Emily Kopp, and Clint Naquin. Photo credit: NASA/GSFC/Maggie McAdam To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  16. An evaluation of lead contamination in plastic toys collected from day care centers in the Las Vegas Valley, Nevada, USA.

    PubMed

    Greenway, Joseph A; Gerstenberger, Shawn

    2010-10-01

    Childhood exposure to environmental lead continues to be a major health concern. This study examined lead content within the plastic of children's toys collected from licensed day care centers in the Las Vegas valley, Nevada. It was hypothesized that the use of lead as a plastics stabilizer would result in elevated lead (≥600 ppm) in polyvinyl chloride plastics (PVC) compared to non-PVC plastics. It was also hypothesized that, due to the use of lead chromate as a coloring agent, yellow toys would contain higher concentrations of lead (≥600 ppm) than toys of other colors. Toy samples were limited to those found in day care centers in Las Vegas, Nevada. 10 day care centers were visited and approximately 50 toy samples were taken from each center. Of the 535 toys tested, 29 contained lead in excess of 600 parts per million (ppm). Of those 29 toys, 20 were PVC and 17 were yellow. Both of the two hypotheses were strongly supported by the data.

  17. Dust Generation Resulting from Desiccation of Playa Systems: Studies on Mono and Owens Lakes, California

    NASA Astrophysics Data System (ADS)

    Gill, Thomas Edward

    1995-01-01

    Playas, evaporites, and aeolian sediments frequently are linked components within the Earth system. Anthropogenic water diversions from terminal lakes form playas that release fugitive dust. These actions, documented worldwide, simulate aeolian processes activated during palaeoclimatic pluvial/interpluvial transitions, and have significant environmental impacts. Pluvial lakes Russell and Owens in North America's Great Basin preceded historic Mono and Owens Lakes, now desiccated by water diversions into dust-generating, evaporite -encrusted playas. Geochemical and hydrologic cycles acting on the Owens (Dry) Lake playa form three distinct crust types each year. Although initial dust production results from deflation of surface efflorescences after the playa dries, most aerosols are created by saltation abrasion of salt/silt/clay crusts at crust/ sand sheet contacts. The warm-season, clastic "cemented" crust is slowest to degrade into dust. If the playa surface is stabilized by an unbroken, non-efflorescent crust, dust formation is discouraged. When Mono Lake's surFace elevation does not exceed 1951 meters (6400 feet), similar processes will also generate dust from its saline lower playa. Six factors--related to wind, topography, groundwater, and sediments--control dust formation at both playas. These factors were combined into a statistical model relating suspended dust concentrations to playa/lake morphometry. The model shows the extent and severity of Mono Lake dust storms expands significantly below the surface level 6376 feet (1943.5 meters). X-ray diffraction analysis of Mono Basin soils, playa sediments, and aerosols demonstrates geochemical cycling of materials through land, air and water during Mono Lake's 1982 low stand. Soils and clastic playa sediments contain silicate minerals and tephra. Saline groundwater deposited calcite, halite, thenardite, gaylussite, burkeite and glauberite onto the lower playa. Aerosols contained silicate minerals (especially

  18. Spatial Distribution and Morphology of Sediments in Texas Southern High Plains Playa Wetlands

    USDA-ARS?s Scientific Manuscript database

    Playas are depressional geomorphic features on the U.S. High Plains and about 20,000 Southern High Plains playa wetlands serve as runoff catchment basins, which are thought to be focal points of Ogallala aquifer recharge. Sediments in playas can alter biodiversity services, impede aquifer recharge,...

  19. Hydraulic-property estimates for use with a transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Elliott, Peggy E.; Geldon, Arthur L.

    2001-01-01

    The Death Valley regional ground-water flow system encompasses an area of about 43,500 square kilometers in southeastern California and southern Nevada, between latitudes 35? and 38?15' north and longitudes 115? and 117?45' west. The study area is underlain by Quaternary to Tertiary basin-fill sediments and mafic-lava flows; Tertiary volcanic, volcaniclastic, and sedimentary rocks; Tertiary to Jurassic granitic rocks; Triassic to Middle Proterozoic carbonate and clastic sedimentary rocks; and Early Proterozoic igneous and metamorphic rocks. The rock assemblage in the Death Valley region is extensively faulted as a result of several episodes of tectonic activity. This study is comprised of published and unpublished estimates of transmissivity, hydraulic conductivity, storage coefficient, and anisotropy ratios for hydrogeologic units within the Death Valley region study area. Hydrogeologic units previously proposed for the Death Valley regional transient ground-water flow model were recognized for the purpose of studying the distribution of hydraulic properties. Analyses of regression and covariance were used to assess if a relation existed between hydraulic conductivity and depth for most hydrogeologic units. Those analyses showed a weak, quantitatively indeterminate, relation between hydraulic conductivity and depth.

  20. Preliminary Pseudo 3-D Imagery of the State Line Fault, Stewart Valley, Nevada Using Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Saldaña, S. C.; Snelson, C. M.; Taylor, W. J.; Beachly, M.; Cox, C. M.; Davis, R.; Stropky, M.; Phillips, R.; Robins, C.; Cothrun, C.

    2007-12-01

    The Pahrump Fault system is located in the central Basin and Range region and consists of three main fault zones: the Nopah range front fault zone, the State Line fault zone and the Spring Mountains range fault zone. The State Line fault zone is made up north-west trending dextral strike-slip faults that run parallel to the Nevada- California border. Previous geologic and geophysical studies conducted in and around Stewart Valley, located ~90 km from Las Vegas, Nevada, have constrained the location of the State Line fault zone to within a few kilometers. The goals of this project were to use seismic methods to definitively locate the northwestern most trace of the State Line fault and produce pseudo 3-D seismic cross-sections that can then be used to characterize the subsurface geometry and determine the slip of the State Line fault. During July 2007, four seismic lines were acquired in Stewart Valley: two normal and two parallel to the mapped traces of the State Line fault. Presented here are preliminary results from the two seismic lines acquired normal to the fault. These lines were acquired utilizing a 144-channel geode system with each of the 4.5 Hz vertical geophones set out at 5 m intervals to produce a 595 m long profile to the north and a 715 m long profile to the south. The vibroseis was programmed to produce an 8 s linear sweep from 20-160 Hz. These data returned excellent signal to noise and reveal subsurface lithology that will subsequently be used to resolve the subsurface geometry of the State Line fault. This knowledge will then enhance our understanding of the evolution of the State Line fault. Knowing how the State Line fault has evolved gives insight into the stick-slip fault evolution for the region and may improve understanding of how stress has been partitioned from larger strike-slip systems such as the San Andreas fault.

  1. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2010-08-11

    This is a Hygrochron sensor. Sensors were buried at different depths, to see how the temperature and moisture levels in the ground changed close to and farther from the surface. Special permission from the National Park Service is needed to dig at Racetrack Playa. Photo credit: NASA/GSFC/Maggie McAdam To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  2. Water-level database update for the Death Valley regional groundwater flow system, Nevada and California, 1907-2007

    USGS Publications Warehouse

    Pavelko, Michael T.

    2010-01-01

    The water-level database for the Death Valley regional groundwater flow system in Nevada and California was updated. The database includes more than 54,000 water levels collected from 1907 to 2007, from more than 1,800 wells. Water levels were assigned a primary flag and multiple secondary flags that describe hydrologic conditions and trends at the time of the measurement and identify pertinent information about the well or water-level measurement. The flags provide a subjective measure of the relative accuracy of the measurements and are used to identify which water levels are appropriate for calculating head observations in a regional transient groundwater flow model. Included in the report appendix are all water-level data and their flags, selected well data, and an interactive spreadsheet for viewing hydrographs and well locations.

  3. Estimates of evapotranspiration from the Ruby Lake National Wildlife Refuge area, Ruby Valley, northeastern Nevada, May 1999-October 2000

    USGS Publications Warehouse

    Berger, David L.; Johnson, Michael J.; Tumbusch, Mary L.; Mackay, Jeffrey

    2001-01-01

    The Ruby Lake National Wildlife Refuge in Ruby Valley, Nevada, contains the largest area of perennial wetlands in northeastern Nevada and provides habitat to a large number of migratory and nesting waterfowl. The long-term preservation of the refuge depends on the availability of sufficient water to maintain optimal habitat conditions. In the Ruby Valley water budget, evapotranspiration (ET) from the refuge is one of the largest components of natural outflow. To help determine the amount of inflow needed to maintain wetland habitat, estimates of ET for May 1999 through October 2000 were made at major habitats throughout the refuge. The Bowen-ratio method was used to estimate daily ET at four sites: over open water, in a moderate-to-dense cover of bulrush marsh, in a moderate cover of mixed phreatophytic shrubs, and in a desert-shrub upland. The eddy-correlation method was used to estimate daily ET for periods of 2 to 12 weeks at a meadow site and at four sites in a sparse-to-moderate cover of phreatophytic shrubs. Daily ET rates ranged from less than 0.010 inch per day at all of the sites to a maximum of 0.464 inch per day at the open-water site. Average daily ET rates estimated for open water and a bulrush marsh were about four to five times greater than in areas of mixed phreatophytic shrubs, where the depth to ground water is less than 5 feet. Based on the seasonal distribution of major habitats in the refuge and on winter and summer ET rates, an estimated total of about 89,000 acre-feet of water was consumed by ET during October 1999-September 2000 (2000 water year). Of this total, about 49,800 acre-feet was consumed by ET in areas of open water and bulrush marsh.

  4. Ground truthing for methane hotspots at Railroad Valley, NV - application to Mars

    NASA Astrophysics Data System (ADS)

    Detweiler, A. M.; Kelley, C. A.; Bebout, B.; McKay, C. P.; DeMarines, J.; Yates, E. L.; Iraci, L. T.

    2011-12-01

    During the 2010 Greenhouse gas Observing SATellite (GOSAT) calibration and validation campaign at Railroad Valley (RRV) playa, NV, unexpected methane and carbon dioxide fluctuations were observed at the dry lakebed. Possible sources included the presence of natural gas (thermogenic methane) from oil deposits in the surrounding playa, and/or methane production from microbial activity (biogenic) in the subsurface of the playa. In the summer of 2011, measurements were undertaken to identify potential methane sources at RRV. The biogenicity of the methane was determined based on δ13C values and methane/ethane ratios. Soil gas samples and sediments were collected at different sites in the playa and surrounding areas. The soils of the playa consist of a surface crust layer (upper ~ 10 cm) grading to a dense clay below about 25 cm. Soil gas from the playa, sampled at about 20 and 80 cm depths, reflected atmospheric methane concentrations, ranging from 2 to 2.4 ppm, suggesting that no methane was produced within the playa. Natural springs on the northeast and western border of the playa, detected as methane hotspots from a flyover by the Sensor Integrated Environmental Remote Research Aircraft (SIERRA), were also sampled. Bubbles in these springs had methane concentrations that ranged from 69 to 84% by volume. In addition, ethane was detected at very low concentrations, giving methane/ethane ratios in excess of 100,000, indicating biogenic methane in the springs. Soils and sediments collected at the playa and spring sites were incubated in vials over a period of ~23 days. Methane production was observed in the spring sites (avg. 228.6 ± 49.1 nmol/g/d at Kate Springs), but was not evident for the playa sites. The incubation data, therefore, corroborated in situ methane concentration measurements. Particulate organic carbon (POC) was low for all sites samples (0.05-0.38%), with the exception of Kate Springs, which had a much higher POC concentration of 3.4 ± 0

  5. Water resources of the Humboldt River Valley near Winnemucca, Nevada

    USGS Publications Warehouse

    Cohen, Philip M.

    1965-01-01

    This report, resulting from studies made by the U.S. Geological Survey as part of the interagency Humboldt River Research Project, describes the qualitative and quantitative relations among the components of the hydrologic system in the Winnemucca Reach of the Humboldt River valley. The area studied includes the segment of the Humboldt River valley between the Comus and Rose Creek gaging stations. It is almost entirely in Humboldt County in north-central Nevada, and is about 200 miles downstream from the headwaters of the Humboldt River. Agriculture is the major economic activity in the area. Inasmuch as the valley lowlands receive an average of about 8 inches of precipitation per year and because the rate of evaporation from free-water surfaces is about six times the average annual precipitation, all crops in the area (largely forage crops) are irrigated. About 85 percent of the cultivated land is irrigated with Humboldt River water; the remainder is irrigated from about 20 irrigation wells. The consolidated rocks of the uplifted fault-block mountains are largely barriers to the movement of ground water and form ground-water and surface-water divides. Unconsolidated deposits of late Tertiary and Quaternary age underlie the valley lowlands to a maximum depth of about 5,000 feet. These deposits are in hydraulic continuity with the Humboldt River and store and transmit most of the economically recoverable ground water. Included in the valley fill is a highly permeable sand and gravel deposit having a maximum thickness of about 90-100 feet; it underlies the flood plain and bordering terraces throughout most of the project area. This deposit is almost completely saturated and contains about 500,000 acre-feet of ground water in storage. The Humboldt River is the source of 90-95 percent of the surface-water inflow to the area. In water years 1949-62 the average annual streamflow at the Comus gaging station at the upstream margin of the area was 172,100 acre-feet; outflow

  6. Ground-water flow and quality, and geochemical processes, in Indian Wells Valley, Kern, Inyo, and San Bernardino counties, California, 1987-88

    USGS Publications Warehouse

    Berenbrock, Charles; Schroeder, R.A.

    1994-01-01

    An existing water-quality data base for the 300- square-mile Indian Wells Valley was updated by means of chemical and isotopic analysis of ground water. The wide range in measured concentrations of major ions and of minor constituents such as fluoride, borate, nitrate, manganese, and iron is attributed to geochemical reactions within lacustrine deposits of the valley floor. These reactions include sulfate reduction accompanied by generation of alkalinity, precipitation of carbonates, exchange of aqueous alkaline-earth ions for sodium on clays, and dissolution of evaporite minerals. Differences in timing and location of recharge, which originates primarily in the Sierra Nevada to the west, and evapotranspiration from a shallow water table on the valley floor result in a wide range in ratios of stable hydrogen and oxygen isotopes. As ground water moves from alluvium into lustrine deposits of the ancestral China Lake, dissolved-solids concen- trations increase from about 200 to more than 1,000 milligrams per liter; further large increases to several thousand milligrams per liter occur beneath the China Lake playa. Historical data show an increase during the past 20 years in dissolved- solids concentration in several wells in the principal pumping areas at Ridgecrest and between Ridgecrest and Inyokern. The increase apparently is caused by induced flow of saline ground water from nearby China, Mirror, and Satellite Lakes. A simplified advective-transport model calculates ground-water travel times between parts of the valley of at least several thousand years, indi- cating the presence of old ground water. A local ground-water line and an evaporation line estimated using isotopic data from the China Lake area inter- sect at a delta-deuterium value of about -125 permil. This indicates that late Pleistocene recharge was 15 to 35 permil more negative than current recharge.

  7. Quantification of the contribution of nitrogen from septic tanks to ground water in Spanish Springs Valley, Nevada

    USGS Publications Warehouse

    Rosen, Michael R.; Kropf, Christian; Thomas, Karen A.

    2006-01-01

    Analysis of total dissolved nitrogen concentrations from soil water samples collected within the soil zone under septic tank leach fields in Spanish Springs Valley, Nevada, shows a median concentration of approximately 44 milligrams per liter (mg/L) from more than 300 measurements taken from four septic tank systems. Using two simple mass balance calculations, the concentration of total dissolved nitrogen potentially reaching the ground-water table ranges from 25 to 29 mg/L. This indicates that approximately 29 to 32 metric tons of nitrogen enters the aquifer every year from natural recharge and from the 2,070 houses that use septic tanks in the densely populated portion of Spanish Springs Valley. Natural recharge contributes only 0.25 metric tons because the total dissolved nitrogen concentration of natural recharge was estimated to be low (0.8 mg/L). Although there are many uncertainties in this estimate, the sensitivity of these uncertainties to the calculated load is relatively small, indicating that these values likely are accurate to within an order of magnitude. The nitrogen load calculation will be used as an input function for a ground-water flow and transport model that will be used to test management options for controlling nitrogen contamination in the basin.

  8. Physical, chemical, and mineralogical data from surficial deposits, groundwater levels, and water composition in the area of Franklin Lake playa and Ash Meadows, California and Nevada

    USGS Publications Warehouse

    Goldstein, Harland L.; Breit, George N.; Yount, James C.; Reynolds, Richard L.; Reheis, Marith C.; Skipp, Gary L.; Fisher, Eric M.; Lamothe, Paul J.

    2011-01-01

    This report presents data and describes the methods used to determine the physical attributes, as well as the chemical and mineralogical composition of surficial deposits; groundwater levels; and water composition in the area of Franklin Lake playa and Ash Meadows, California and Nevada. The results support studies that examine (1) the interaction between groundwater and the ground surface, and the transport of solutes through the unsaturated zone; (2) the potential for the accumulation of metals and metalloids in surface crusts; (3) emission of dust from metal-rich salt crust; and (4) the effects of metal-rich dusts on human and ecosystem health. The evaporation of shallow (<3 to 4 m) groundwater in saline, arid environments commonly results in the accumulation of salt in the subsurface and (or) the formation of salt crusts at the ground surface. Ground-surface characteristics such as hardness, electrical conductivity, and mineralogy depend on the types and forms of these salt crusts. In the study area, salt crusts range from hard and bedded to soft and loose (Reynolds and others, 2009). Depending on various factors such as the depth and composition of groundwater and sediment characteristics of the unsaturated zone, salt crusts may accumulate relatively high contents of trace elements. Soft, loose salt crusts are highly vulnerable to wind erosion and transport. These vulnerable crusts, which may contain high contents of potentially toxic trace elements, can travel as atmospheric dust and affect human and ecosystem health at local to regional scales.

  9. Methods of Determining Playa Surface Conditions Using Remote Sensing

    DTIC Science & Technology

    1987-10-08

    NO. 11. TITLE (include Security Classification) METHODS OF DETERMINING PLAYA SURFACE CONDITIONS USING REMOTE SENSING 12. PERSONAL AUTHOR(S) J. PONDER...PLAYA SURFACE CONDITIONS USING REMOTE SENSING J. Ponder Henley U. S. Army Engineer Topographic Laboratories Fort Belvoir, Virginia 22060-5546 "ABSTRACT...geochemistry, hydrology and remote sensing but all of these are important to the understanding of these unique geomorphic features. There is a large body

  10. Groundwater quality in the Southern Sierra Nevada, California

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tehachapi-Cummings Valley and Kern River Valley basins and surrounding watersheds in the Southern Sierra Nevada constitute one of the study units being evaluated.

  11. Geologic map of the southern Funeral Mountains including nearby groundwater discharge sites in Death Valley National Park, California and Nevada

    USGS Publications Warehouse

    Fridrich, C.J.; Thompson, R.A.; Slate, J.L.; Berry, M.E.; Machette, M.N.

    2012-01-01

    This 1:50,000-scale geologic map covers the southern part of the Funeral Mountains, and adjoining parts of four structural basins—Furnace Creek, Amargosa Valley, Opera House, and central Death Valley—in California and Nevada. It extends over three full 7.5-minute quadrangles, and parts of eleven others—an area of about 1,000 square kilometers (km2). The boundaries of this map were drawn to include all of the known proximal hydrogeologic features that may affect the flow of groundwater that discharges from springs of the Furnace Creek basin, in the west-central part of the map. These springs provide the main potable water supply for Death Valley National Park. Major hydrogeologic features shown on this map include: (1) springs of the Furnace Creek basin, (2) a large Pleistocene groundwater discharge mound in the northeastern part of the map, (3) the exposed extent of limestones and dolomites that constitute the Paleozoic carbonate aquifer, and (4) the exposed extent of the alluvial conglomerates that constitute the Funeral Formation aquifer.

  12. Investigation of a playa lake bed using geophysical electrical methods

    NASA Astrophysics Data System (ADS)

    Herrmenn, M.; Gurrola, H.; William, R.; Montalvo, R.; Horton, S.; Homberg, J.; Allen, T.; Bribiesca, E.; Lindsey, C.; Anderson, H.; Seshadri, S.; Manns, S.; Hassan, A.; Loren, C.

    2005-12-01

    The 2005 undergraduate applied geophysical class of Texas Tech University conducted a geophysical survey of a playa lake approximately 10 miles northwest of Lubbock Texas. The playa lake is primarily used as grazing land for two llamas and a hand full of sheep, and has been recently used as a dump for broken down sheds and barrels. Our goal was to model the subsurface of the transition from the playa to plains geology and investigate the possible contamination, of the soil and the data, by the metal dumped at the surface. We conducted our survey with and EM31 and homemade D.C. resistivity and SP equipment that allowed students to grasp the theories more clearly. SP readings were collected using clay pots constructed from terracotta pots and copper tubing purchased at the local hardware store and voltage measurements collected with handle held multi-meters. D.C. resistivity data were collected in a dipole-dipole array using 20 nine volt batteries connected in series with a large enough variable resistor and amp meter to regulate steady current flow. A multi meter was used to collect voltage readings. Wenner array data were collected using a home-made multi-filament cable connected switch box to allow a central user to regulate current and take voltage reading. A map of conductivity produced from a 10 m of EM31 reading show that conductivity anomalies mirror topography. The SP profiles show high values in the playa lake that drop off as we move from the clay rich lake bed to normal grassland. Analysis of both the Dipole-Dipole and Wenner array data support a model with 3 flat layers increasing in resistivity with depth. It appears that these remain flat passing beneath the playa and the playa is eroded into these layers.

  13. Long Valley caldera and the UCERF depiction of Sierra Nevada range-front faults

    USGS Publications Warehouse

    Hill, David P.; Montgomery-Brown, Emily K.

    2015-01-01

    Long Valley caldera lies within a left-stepping offset in the north-northwest-striking Sierra Nevada range-front normal faults with the Hilton Creek fault to the south and Hartley Springs fault to the north. Both Uniform California Earthquake Rupture Forecast (UCERF) 2 and its update, UCERF3, depict slip on these major range-front normal faults as extending well into the caldera, with significant normal slip on overlapping, subparallel segments separated by ∼10  km. This depiction is countered by (1) geologic evidence that normal faulting within the caldera consists of a series of graben structures associated with postcaldera magmatism (intrusion and tumescence) and not systematic down-to-the-east displacements consistent with distributed range-front faulting and (2) the lack of kinematic evidence for an evolving, postcaldera relay ramp structure between overlapping strands of the two range-front normal faults. The modifications to the UCERF depiction described here reduce the predicted shaking intensity within the caldera, and they are in accord with the tectonic influence that underlapped offset range-front faults have on seismicity patterns within the caldera associated with ongoing volcanic unrest.

  14. Dependence on Solar Phase Angle and Grain Size of the Spectral Reflectance of the Railroad Valley Playa for GOSAT/GOSAT-2 Vicarious Calibration

    NASA Astrophysics Data System (ADS)

    Arai, T.; Matsunaga, T.

    2017-12-01

    GOSAT and the next generation GOSAT-2 satellites estimate the concentration of greenhouse gasses, and distribution of aerosol and cloud to observe solar light reflection and radiation from surface and atmosphere of the Earth. Precise information of the surface and the bidirectional reflectance distribution function (BRDF) are required for the estimation because the surface reflectance of solar light varies with the observation geometry and the surface condition. The purpose of this study is to search an appropriate BRDF model of the GOSAT calibration site (Railroad Valley playa). In 2017, JAXA, NIES, and NASA/OCO-2 teams collaboratively performed 9th vicarious experiments by the simultaneous observation with GOSAT, OCO-2, and ground-based equipment (Kuze et al., 2014) at the Railroad Valley from June 25 to 30. We performed the BRDF measurement to observe solar light reflection by varying with observed angles using a spectroradiometer (FieldSpec4, ASD Inc.) mounted on a one-axis goniometer. The surface sand was shifted to several sizes of grain (75, 125, 250, 500, and 1000 μm), which was measured for the limited area of 5mm diameter with a collimating lens (74-UV, OceanOptics). The BRDF parameters for the observed reflectance were determined by the least squares fitting with the free parameters of a single scattering albedo and an asymmetric factor (Hapke, 2012) for the ultraviolet to near infrared wavelength bands of GOSAT. The resulting value of the single scattering albedo increased with decreasing the grain size of the sands. The observed reflectance of the fine grain sands (below 250 μm) is not varied with observed phase angles (solar incident light - surface sand - detector) as a Lambertian reflectance, but the spectra of coarse grain sands (above 500 μm) are varied with the observation angles. Therefore, a priori information of the target surface such as grain size is required for the determination of the precise reflectance of the target.

  15. Recharge Rates and Chemistry Beneath Playas of the High Plains Aquifer - A Literature Review and Synthesis

    USGS Publications Warehouse

    Gurdak, Jason J.; Roe, Cassia D.

    2009-01-01

    Playas are ephemeral, closed-basin wetlands that are important zones of recharge to the High Plains (or Ogallala) aquifer and critical habitat for birds and other wildlife in the otherwise semiarid, shortgrass prairie and agricultural landscape. The ephemeral nature of playas, low regional recharge rates, and a strong reliance on ground water from the High Plains aquifer has prompted many questions regarding the contribution of recharge from playas to the regional aquifer. To address these questions and concerns, the U.S. Geological Survey, in cooperation with the Playa Lakes Joint Venture, present a review and synthesis of the more than 175 publications about recharge rates and chemistry beneath playas and interplaya settings. Although a number of questions remain regarding the controls on recharge rates and chemistry beneath playas, the results from most published studies indicate that recharge rates beneath playas are substantially (1 to 2 orders of magnitude) higher than recharge rates beneath interplaya settings. The synthesis presented here supports the conceptual model that playas are important zones of recharge to the High Plains aquifer and are not strictly evaporative pans. The major findings of this synthesis yield science-based implications for the protection and management of playas and ground-water resources of the High Plains aquifer and directions for future research.

  16. Uraniferous opal, Virgin Valley, Nevada: conditions of formation and implications for uranium exploration

    USGS Publications Warehouse

    Zielinski, R.A.

    1982-01-01

    Uraniferous, fluorescent opal, which occurs in tuffaceous sedimentary rocks at Virgin Valley, Nevada, records the temperature and composition of uranium-rich solutions as well as the time of uranium-silica coprecipitation. Results are integrated with previous geologic and geochronologic data for the area to produce a model for uranium mobility that may be used to explore for uranium deposits in similar geologic settings. Uraniferous opal occurs as replacements of diatomite, or silicic air-fall ash layers in tuffaceous lakebeds of the Virgin Valley Formation (Miocene) of Merriam (1907). Fission-track radiography shows uranium to be homogeneously dispersed throughout the opal structure, suggesting coprecipitation of dissolved uranium and silica gel. Fluid inclusions preserved within opal replacements of diatomite have homogenization temperatures in the epithermal range and are of low salinity. Four samples of opal from one locality all have U-Pb apparent ages which suggest uraniferous opal precipitation in late Pliocene time. These ages correspond to a period of local, normal faulting, and highangle faults may have served as vertical conduits for transport of deep, thermalized ground water to shallower levels. Lateral migration of rising solutions occurred at intersections of faults with permeable strata. Silica and some uranium were dissolved from silica-rich host strata of 5-20 ppm original uranium content and reprecipitated as the solutions cooled. The model predicts that in similar geologic settings, ore-grade concentrations of uranium will occur in permeable strata that intersect high-angle faults and that contain uranium source rocks as well as efficient reductant traps for uranium. In the absence of sufficient quantities of reductant materials, uranium will be flushed from the system or will accumulate in low-grade disseminated hosts such as uraniferous opal. ?? 1982.

  17. Simulated natural hydrologic regime of an intermountain playa conservation site

    USGS Publications Warehouse

    Sanderson, J.S.; Kotliar, N.B.; Steingraeber, D.A.; Browne, C.

    2008-01-01

    An intermountain playa wetland preserve in Colorado's San Luis Valley was studied to assess how its current hydrologic function compares to its natural hydrologic regime. Current hydrologic conditions were quantified, and on-site effects of off-site water use were assessed. A water-budget model was developed to simulate an unaltered (i.e., natural) hydrologic regime, and simulated natural conditions were compared to observed conditions. From 1998-2002, observed stream inflows accounted for ??? 80% of total annual water inputs. No ground water discharged to the wetland. Evapotranspiration (ET) accounted for ??? 69% of total annual water loss. Simulated natural conditions differed substantially from current altered conditions with respect to depth, variability, and frequency of flooding. During 1998-2002, observed monthly mean surface-water depth was 65% lower than under simulated natural conditions. Observed monthly variability in water depth range from 129% greater (May) to 100% less (September and October) than simulated. As observed, the wetland dried completely (i.e., was ephemeral) in all years; as simulated, the wetland was ephemeral in two of five years. For the period 1915-2002, the simulated wetland was inundated continuously for as long as 16 years and nine months. The large differences in observed and simulated surface-water dynamics resulted from differences between altered and simulated unaltered stream inflows. The maximum and minimum annual total stream inflows observed from 1998-2005 were 3.1 ?? 106 m3 and 0 m3, respectively, versus 15.5 ?? 106 m3 and 3.2 ?? 106 m3 under simulated natural conditions from 1915-2002. The maximum simulated inflow was 484% greater than observed. These data indicate that the current hydrologic regime of this intermountain playa differs significantly from its natural hydrologic regime, which has important implications for planning and assessing conservation success. ?? 2008, The Society of Wetland Scientists.

  18. Hydrochemical evolution of regional groundwaters to playa brines in central Australia

    NASA Astrophysics Data System (ADS)

    Jankowski, J.; Jacobson, G.

    A large-scale groundwater system in central Australia discharges to a chain of playas. Recharge in calcrete and fractured rock aquifers gives rise to relatively low-salinity HCO 3 Cl SO 4 groundwaters, which evolve through regional saline groundwaters, to highly saline playa brines. The hydrochemical evolution of the groundwaters follows the anionic sequence HCO 3 Cl SO 4 → ClbHCO 3SO 4 → ClSO 4HCO 3 → ClSO 4 → Cl. With increasing salinity, there is a relative increase in Na, K, Mg, Cl and SO 4; however, there is a relative decrease in HCO 3, Ca, and SiO 2 owing to the precipitation of carbonate, sulphate and silicate minerals, and the resultant brines are depleted in these ions. Significant chemical variation in the composition of playa brines is a result of complex processes of solution, evaporative concentration, precipitation and mineralogical change, including dolomitisation. Thermodynamic calculations based on the Pitzer equations have enabled a general model to be developed for these evolutionary processes in saline groundwaters up to the stage of halite saturation. At an early stage the regional groundwaters are saturated with respect to the carbonate minerals, dolomite first, then calcite. With increasing salinity, sulphate minerals begin to precipitate: saturation with respect to gypsum is attained at a chlorinity of 19‰, and saturation with respect to anhydrite is attained at 122‰. The playa brines attain saturation with respect to halite at a chlorinity of 144‰. Solute budgets based on a chloride concentration factor show that final playa brines are 178 times more concentrated than recharge groundwaters, and confirm the virtually complete loss of HCO 3, Ca and SiO 2 through precipitation. There are subtle differences in the hydrochemistry of different central Australian playa brines and also vis-à-vis playa brines described from other parts of the world. Most Australian playas have brines of the ClNa type with SO 4 and

  19. Facies analysis of Tertiary basin-filling rocks of the Death Valley regional ground-water system and surrounding areas, Nevada and California

    USGS Publications Warehouse

    Sweetkind, Donald S.; Fridrich, Christopher J.; Taylor, Emily

    2001-01-01

    Existing hydrologic models of the Death Valley region typically have defined the Cenozoic basins as those areas that are covered by recent surficial deposits, and have treated the basin-fill deposits that are concealed under alluvium as a single unit with uniform hydrologic properties throughout the region, and with depth. Although this latter generalization was known to be flawed, it evidently was made because available geologic syntheses did not provide the basis for a more detailed characterization. As an initial attempt to address this problem, this report presents a compilation and synthesis of existing and new surface and subsurface data on the lithologic variations between and within the Cenozoic basin fills of this region. The most permeable lithologies in the Cenozoic basin fills are freshwater limestones, unaltered densely welded tuffs, and little-consolidated coarse alluvium. The least permeable lithologies are playa claystones, altered nonwelded tuffs, and tuffaceous and clay-matrix sediments of several types. In all but the youngest of the basin fills, permeability probably decreases strongly with depth owing to a typically increasing abundance of volcanic ash or clay in the matrices of the clastic sediments with increasing age (and therefore with increasing depth in general), and to increasing consolidation and alteration (both hydrothermal and diagenetic) with increasing depth and age. This report concludes with a categorization of the Cenozoic basins of the Death Valley region according to the predominant lithologies in the different basin fills and presents qualitative constraints on the hydrologic properties of these major lithologic categories.

  20. D.C. resistivity investigation to identify pathways for infiltration through playa lake in the High Plains of Texas

    NASA Astrophysics Data System (ADS)

    Abila, H.; Gurrola, H.; Fernandez, A.; Taylor, T. L.; Gonzalez, I.; Duron, Z. W.; Garza, J.; Ortega, J.

    2017-12-01

    Playa lakes an important resource for the recharge of the Ogallala aquifer but we do not fully understand how water passes through these features. This is in part because playas can be very different in their ability to retain water. To help develop a better understanding of these playa lakes the geophysics class at Texas Tech University conducted a geophysical investigation (including seismic and conductivity measurements as well as soil sampling) of a playa lake that is a short distance north of Lubbock, Texas. This playa lake is compartmentalized and appears to be two small playas in close proximity. The wester of the two playa retains water better than does the eastern playa. The primary goal is to find geophysical anomalies beneath playas to identify "the wet spots" that may shed light as to the pathways for infiltration. This abstract reports on the results of the dipole-dipole D.C.-resistivity component of the investigation. Resistivity was collected using several 9 volt batteries connected in series with a switch box and hand held multimeters to collect current and voltage data. Pseudosections produced before the rainy season began showed a conductive body the match the distribution of the clay rich floor of the Playa. We believe this clay rich player was about 1 to 1.5 meters thick based on sharp increase in the conductivity at that depth interval that was flat across the entire playa. Pseudosections produced from data collected after rain storms showed that this conductive layer increased in depth by up to 1 meter and there appears to be vertical conductive anomalies through the playa floor that may indicate infiltration pathways through the clay floor of the playa.

  1. Physical setting and natural sources of exposure to carcinogenic trace elements and radionuclides in Lahontan Valley, Nevada

    USGS Publications Warehouse

    Seiler, Ralph L.

    2012-01-01

    In Lahontan Valley, Nevada, arsenic, cobalt, tungsten, uranium, radon, and polonium-210 are carcinogens that occur naturally in sediments and groundwater. Arsenic and cobalt are principally derived from erosion of volcanic rocks in the local mountains and tungsten and uranium are derived from erosion of granitic rocks in headwater reaches of the Carson River. Radon and 210Po originate from radioactive decay of uranium in the sediments. Arsenic, aluminum, cobalt, iron, and manganese concentrations in household dust suggest it is derived from the local soils. Excess zinc and chromium in the dust are probably derived from the vacuum cleaner used to collect the dust, or household sources such as the furnace. Some samples have more than 5 times more cobalt in the dust than in the local soil, but whether the source of the excess cobalt is anthropogenic or natural cannot be determined with the available data. Cobalt concentrations are low in groundwater, but arsenic, uranium, radon, and 210Po concentrations often exceed human-health standards, and sometime greatly exceed them. Exposure to radon and its decay products in drinking water can vary significantly depending on when during the day that the water is consumed. Although the data suggests there have been no long term changes in groundwater chemistry that corresponds to the Lahontan Valley leukemia cluster, the occurrence of the very unusual leukemia cluster in an area with numerous 210Po and arsenic contaminated wells is striking, particularly in conjunction with the exceptionally high levels of urinary tungsten in Lahontan Valley residents. Additional research is needed on potential exposure pathways involving food or inhalation, and on synergistic effects of mixtures of these natural contaminants on susceptibility to development of leukemia.

  2. Physical setting and natural sources of exposure to carcinogenic trace elements and radionuclides in Lahontan Valley, Nevada.

    PubMed

    Seiler, Ralph

    2012-04-05

    In Lahontan Valley, Nevada, arsenic, cobalt, tungsten, uranium, radon, and polonium-210 are carcinogens that occur naturally in sediments and groundwater. Arsenic and cobalt are principally derived from erosion of volcanic rocks in the local mountains and tungsten and uranium are derived from erosion of granitic rocks in headwater reaches of the Carson River. Radon and 210Po originate from radioactive decay of uranium in the sediments. Arsenic, aluminum, cobalt, iron, and manganese concentrations in household dust suggest it is derived from the local soils. Excess zinc and chromium in the dust are probably derived from the vacuum cleaner used to collect the dust, or household sources such as the furnace. Some samples have more than 5 times more cobalt in the dust than in the local soil, but whether the source of the excess cobalt is anthropogenic or natural cannot be determined with the available data. Cobalt concentrations are low in groundwater, but arsenic, uranium, radon, and 210Po concentrations often exceed human-health standards, and sometime greatly exceed them. Exposure to radon and its decay products in drinking water can vary significantly depending on when during the day that the water is consumed. Although the data suggests there have been no long term changes in groundwater chemistry that corresponds to the Lahontan Valley leukemia cluster, the occurrence of the very unusual leukemia cluster in an area with numerous 210Po and arsenic contaminated wells is striking, particularly in conjunction with the exceptionally high levels of urinary tungsten in Lahontan Valley residents. Additional research is needed on potential exposure pathways involving food or inhalation, and on synergistic effects of mixtures of these natural contaminants on susceptibility to development of leukemia. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Assessing Nebraska playa wetland inundation status during 1985-2015 using Landsat data and Google Earth Engine.

    PubMed

    Tang, Zhenghong; Li, Yao; Gu, Yue; Jiang, Weiguo; Xue, Yuan; Hu, Qiao; LaGrange, Ted; Bishop, Andy; Drahota, Jeff; Li, Ruopu

    2016-12-01

    Playa wetlands in Nebraska provide globally important habitats for migratory waterfowl. Inundation condition is an important indicator of playa wetland functionality. However, there is a lack of long-term continuous monitoring records for playa wetlands. The objective of this study was to determine a suitable index for Landsat images to map the playa inundation status in March and April during 1985-2015. Four types of spectral indices-negative normalized vegetation index, Normalized Difference Water Index (NDWI), modified NDWI, and Tasseled Cap Wetness-Greenness Difference (TCWGD)-were evaluated to detect playa inundation conditions from Landsat images. The results indicate that the TCWGD is the most suitable index for distinguishing playa inundation status. By using Landsat images and Google Earth Engine, we mapped the spring inundation condition of Nebraska playas during 1985-2015. The results show that the total inundated areas were 176.79 km 2 in spring migratory season, representing 18.92% of the total area of playa wetlands. There were 9898 wetlands inundated at least once in either March or April during the past 30 years, representing 29.41% of a total of 33,659 historical wetlands. After comparing the historical hydric soil footprints and the inundated areas, the results indicate that the hydrological conditions of the majority of playas in Nebraska have changed. The inundated wetlands are candidates for protection and/or partial restoration, and the un-inundated wetlands need more attention for wetland restoration. Wetlands in areas enrolled in conservation easements had a significantly high level of playa inundation status than non-conserved wetlands during spring migratory seasons in the past decades.These conservation easements only count for 4.29% of the total footprint areas, but they have contributed 20.82% of the inundation areas in Nebraska during the past 30 years.

  4. Biophysical Controls over Carbon and Nitrogen Stocks in Desert Playa Wetlands

    NASA Astrophysics Data System (ADS)

    McKenna, O. P.; Sala, O. E.

    2014-12-01

    Playas are ephemeral desert wetlands situated at the bottom of closed catchments. Desert playas in the Southwestern US have not been intensively studied despite their potential importance for the functioning of desert ecosystems. We want to know which geomorphic and ecological variables control of the stock size of soil organic carbon, and soil total nitrogen in playas. We hypothesize that the magnitude of carbon and nitrogen stocks depends on: (a) catchment size, (b) catchment slope, (d) catchment vegetation cover, (e) bare-ground patch size, and (f) catchment soil texture. We chose thirty playas from across the Jornada Basin (Las Cruces, NM) ranging from 0.5-60ha in area and with varying catchment characteristics. We used the available 5m digital elevation map (DEM) to calculate the catchment size and catchment slope for these thirty playas. We measured percent cover, and patch size using the point-intercept method with three 10m transects in each catchment. We used the Bouyoucos-hydrometer soil particle analysis to determine catchment soil texture. Stocks of organic carbon and nitrogen were measured from soil samples at four depths (0-10 cm, 10-30 cm, 30-60 cm, 60-100 cm) using C/N combustion analysis. In terms of nitrogen and organic carbon storage, we found soil nitrogen values in the top 10cm ranging from 41.963-214.365 gN/m2, and soil organic carbon values in the top 10cm ranging from 594.339-2375.326 gC/m2. The results of a multiple regression analysis show a positive relationship between catchment slope and both organic carbon and nitrogen stock size (nitrogen: y= 56.801 +47.053, R2=0.621; organic carbon: y= 683.200 + 499.290x, R2= 0.536). These data support our hypothesis that catchment slope is one of factors controlling carbon and nitrogen stock in desert playas. We also applied our model to the 69 other playas of the Jornada Basin and estimated stock sizes (0-10cm) between 415.07-447.97 Mg for total soil nitrogen and 4627.99-5043.51 Mg for soil organic

  5. Kinematic Model for the Sierra Nevada Frontal Fault Zone, California: Paleomagnetism of the Eureka Valley Tuff

    NASA Astrophysics Data System (ADS)

    Rood, D. H.; Burbank, D. W.; Luyendyk, B. P.

    2005-12-01

    region may be an accommodation zone between two linking faults, possibly an active fold that accommodates N-S shortening at a large-scale left step in the range front fault system. We collected ~200 paleomagnetic samples from the Late Miocene Eureka Valley Tuff of the Stanislaus Group at 21 sites over a 125-km-long, E-W transect (from the Sierra Nevada foothills to east of Mono Basin). Stepwise AF demagnetization reveals a stable characteristic remnant magnetization. Our preliminary data suggest 20-40 degrees of clockwise rotation adjacent to faults of the SNFFZ. An expanded dataset aims to identify specific structural domains, quantify differential vertical axis block rotations, and test geometric models of transrotation (i.e. block-specific versus gradational) during transtensional lithospheric deformation.

  6. Strain accumulation across the central Nevada seismic zone, 1973-1994

    NASA Astrophysics Data System (ADS)

    Savage, J. C.; Lisowski, M.; Svarc, J. L.; Gross, W. K.

    1995-10-01

    Five trilateration networks extending for 280 km along the central Nevada seismic zone (1915 Pleasant Valley, M = 7.3; 1954 Dixie Valley, M = 6.8; 1954 Stillwater, M = 6.8; 1954 Rainbow Mountain, M = 6.6; 1954 Fairview Peak, M = 7.1; and 1932 Cedar Mountain, M = 7.2) have been surveyed 6 times since 1973 to determine deformation along the zone. Within the precision of measurement the deformation appears uniform along the zone and is described by the principal strain rates 0.036±0.008 μstrain/yr N60°W±3° and -0.031±0.008 μstrain/yr N30°E±3°, extension reckoned positive. The observed strain rates are consistent with simple, right-lateral, tensor shear at the rate of 0.033 μstrain/yr across a shear zone striking N15°W. This central Nevada shear zone appears to be the northward continuation of the eastern California shear zone. The orientation of the strike-slip and normal-slip ruptures within the central Nevada seismic zone are consistent with principal stress axes parallel to the measured principal strain rate axes. Space-based geodetic measurements (very long baseline interferometry) indicate that the relative motion accommodated across the Basin and Range province west of Ely, Nevada, is about 9.1±1.5 mm/yr N16°W±8° (Dixon et al., 1995.) Notice that the right-lateral shear zone postulated to explain deformation in the central Nevada seismic zone is properly oriented to accommodate that relative motion. However, a 135-km effective width of the shear zone would be required to accommodate all of the 9.1 mm/yr relative motion at the strain rates observed in the Nevada seismic zone; only about 3 mm/yr of that relative motion is accommodated within the span of the trilateration networks.

  7. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined withmore » geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells

  8. Ground-water conditions and effects of mine dewatering in Desert Valley, Humboldt and Pershing Counties, northwestern Nevada, 1962-91

    USGS Publications Warehouse

    Berger, D.L.

    1995-01-01

    Desert Valley is a 1,200-square-mile, north- trending, structural basin, about 30 miles northwest of Winnemucca, Nevada. Unconsolidated basin-fill deposits exceeding 7,000 feet in thickness constitute the primary ground-water reservoir. Dewatering operations at an open-pit mine began in the Spring of 1985 in the northeast part of Desert Valley. Ground-water withdrawal for mine dewatering in 1991 was greater than three times the estimated average annual recharge from precipitation. The mine discharge water has been allowed to flow to areas west of the mine where it has created an artificial wetlands. This report documents the 1991 hydrologic conditions in Desert Valley and the change in conditions since predevelopment (pre-1962). It also summarizes the results of analyzing the simulated effects of open-pit mine dewatering on a basin-wide scale over time. Water-level declines associated with the dewatering have propagated north and south of the mine, but have been attenuated to the west due to the infiltration beneath the artificial wetlands. Maximum water-level declines beneath the open pits at the mine, as of Spring 1991, are about 300 feet. Changes in the hydrologic conditions since predevelopment are observed predominantly near the dewatering operations and the associated discharge lakes. General ground-water chemistry is essentially unchanged since pre- development. On the basis of a ground-water flow model used to simulate mine dewatering, a new equilibrium may slowly be approached only after 100 years of recovery from the time mine dewatering ceases.

  9. Wind effects on water and salt loss in playa lakes

    NASA Astrophysics Data System (ADS)

    Torgersen, T.

    1984-10-01

    The theory behind wind stress induced setup of water surface slope on a playa lake is reviewed. Due to the low gradient of the bottom in most playa lakes (1-20 cm km -1), the advance and retreat of lake waters due to wind stress can expose or cover many square kilometers. It is even possible for the surface slope to exceed the bottom slope and thereby create a "roving" lake. Such water movements can transport lake water over undersaturated "shore" sediments and water can therefore infiltrate and be lost without an increase in lake salinity. This case is demonstrated with data from Lake George, New South Wales, Australia. Such wind effects need to be examined for their relation to the diagenesis of sediments, the composition of the bitterns, and the salt budget of playa lakes.

  10. Effectiveness of vegetation buffers surrounding playa wetlands at contaminant and sediment amelioration

    USGS Publications Warehouse

    Haukos, David A.; Johnson, Lacrecia A.; Smith, Loren M.; McMurry, Scott T.

    2016-01-01

    Playa wetlands, the dominant hydrological feature of the semi-arid U.S. High Plains providing critical ecosystem services, are being lost and degraded due to anthropogenic alterations of the short-grass prairie landscape. The primary process contributing to the loss of playas is filling of the wetland through accumulation of soil eroded and transported by precipitation from surrounding cultivated watersheds. We evaluated effectiveness of vegetative buffers surrounding playas in removing metals, nutrients, and dissolved/suspended sediments from precipitation runoff. Storm water runoff was collected at 10-m intervals in three buffer types (native grass, fallow cropland, and Conservation Reserve Program). Buffer type differed in plant composition, but not in maximum percent removal of contaminants. Within the initial 60 m from a cultivated field, vegetation buffers of all types removed >50% of all measured contaminants, including 83% of total suspended solids (TSS) and 58% of total dissolved solids (TDS). Buffers removed an average of 70% of P and 78% of N to reduce nutrients entering the playa. Mean maximum percent removal for metals ranged from 56% of Na to 87% of Cr. Maximum removal was typically at 50 m of buffer width. Measures of TSS were correlated with all measures of metals and nutrients except for N, which was correlated with TDS. Any buffer type with >80% vegetation cover and 30–60 m in width would maximize contaminant removal from precipitation runoff while ensuring that playas would continue to function hydrologically to provide ecosystem services. Watershed management to minimize erosion and creations of vegetation buffers could be economical and effective conservation tools for playa wetlands.

  11. Dust emissions from undisturbed and disturbed, crusted playa surfaces: cattle trampling effects

    USDA-ARS?s Scientific Manuscript database

    Dry playa lake beds can be significant sources of fine dust emission. This study used a portable field wind tunnel to quantify the PM10 emissions from a bare, fine-textured playa surface located in the far northern Chihuahua Desert. The natural, undisturbed crust and its subjection to two levels of ...

  12. Ratosa playa lake in southern Spain. Karst pan or compound sink?

    PubMed

    Rodríguez-Rodríguez, Miguel; Martos-Rosillo, Sergio; Pedrera, Antonio; Benavente-Herrera, José

    2015-04-01

    In Andalusia (Spain), there are more than 45 semiarid playa lakes protected as natural reserves and related to karstic outcrops. Some of them are located over regional karstic aquifers and have internal drainage networks with sporadic surface outlets, such as sinkholes (compound sinks), but the majority of such playas have no internal drainage systems, so the only water output is evaporation (karst pans). Karst pans are perched and disconnected from the groundwater system. The fact that the Ratosa playa lake is partially located over a karstic Sierra, as well as other hydromorphological observations, it is suggested that the system could be of a compound type, but a detailed hydrogeological analysis showed that the playa is disconnected from the aquifer, so it is in fact a karst pan. Once the hydrological functioning had been established, a monthly water balance for a 10-year period (1998-2008), enabled us to reproduce the evolution of the water level of the playa lake. Estimations of runoff were carried out by a soil water estimate for a water holding capacity in the soil of 191 mm. Results show a good correlation (>90%) after calibration with the time series of water level in the lake for the same period confirming geological observations. Our results highlight that this water body is extremely vulnerable to hydrological alterations of its watershed caused by human activities, particularly those related to land-use change for agriculture. For this reason, we propose a new protection zone, based on hydrological knowledge, instead of the present Peripheral Area of Protection.

  13. Dust Emissions from Undisturbed and Disturbed, Crusted Playa Surfaces: Cattle Trampling Effect

    USDA-ARS?s Scientific Manuscript database

    Dry playa lake beds can be a significant source of fine dust emissions during high wind events in arid and semiarid landscapes. The physical and chemical properties of the playa surface control the amount and properties of the dust emitted. In this study, we use a field wind tunnel to quantify the...

  14. Distribution and movement of Big Spring spinedace (Lepidomeda mollispinis pratensis) in Condor Canyon, Meadow Valley Wash, Nevada

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.

    2013-01-01

    Big Spring spinedace (Lepidomeda mollispinis pratensis) is a cyprinid whose entire population occurs within a section of Meadow Valley Wash, Nevada. Other spinedace species have suffered population and range declines (one species is extinct). Managers, concerned about the vulnerability of Big Spring spinedace, have considered habitat restoration actions or translocation, but they have lacked data on distribution or habitat use. Our study occurred in an 8.2-km section of Meadow Valley Wash, including about 7.2 km in Condor Canyon and 0.8 km upstream of the canyon. Big Spring spinedace were present upstream of the currently listed critical habitat, including in the tributary Kill Wash. We found no Big Spring spinedace in the lower 3.3 km of Condor Canyon. We tagged Big Spring spinedace ≥70 mm fork length (range 70–103 mm) with passive integrated transponder tags during October 2008 (n = 100) and March 2009 (n = 103) to document movement. At least 47 of these individuals moved from their release location (up to 2 km). Thirty-nine individuals moved to Kill Wash or the confluence area with Meadow Valley Wash. Ninety-three percent of movement occurred in spring 2009. Fish moved both upstream and downstream. We found no movement downstream over a small waterfall at river km 7.9 and recorded only one fish that moved downstream over Delmue Falls (a 12-m drop) at river km 6.1. At the time of tagging, there was no significant difference in fork length or condition between Big Spring Spinedace that were later detected moving and those not detected moving. We found no significant difference in fork length or condition at time of tagging of Big Spring spinedace ≥70 mm fork length that were detected moving and those not detected moving. Kill Wash and its confluence area appeared important to Big Spring spinedace; connectivity with these areas may be key to species persistence. These areas may provide a habitat template for restoration or translocation. The lower 3.3 km of

  15. Groundwater recharge in desert playas: current rates and future effects of climate change

    USDA-ARS?s Scientific Manuscript database

    Our results from playas, which are topographic low areas situated in closed-catchments in drylands, indicated that projected climate change in Southwestern USA would have a net positive impact over runon and groundwater recharge beneath playas. Expected increased precipitation variability can cause ...

  16. Microbial mats in playa lakes and other saline habitats: Early Mars analog?

    NASA Technical Reports Server (NTRS)

    Bauld, John

    1989-01-01

    Microbial mats are cohesive benthic microbial communities which inhabit various Terra (Earth-based) environments including the marine littoral and both permanent and ephemeral (playa) saline lakes. Certain geomorphological features of Mars, such as the Margaritifer Sinus, were interpreted as ancient, dried playa lakes, presumably formed before or during the transition to the present Mars climate. Studies of modern Terran examples suggest that microbial mats on early Mars would have had the capacity to survive and propagate under environmental constraints that would have included irregularly fluctuating regimes of water activity and high ultraviolet flux. Assuming that such microbial communities did indeed inhabit early Mars, their detection during the Mars Rover Sample Return (MRSR) mission depends upon the presence of features diagnostic of the prior existence of these communities or their component microbes or, as an aid to choosing suitable landing, local exploration or sampling sites, geomorphological, sedimentological or chemical features characteristic of their playa lake habitats. Examination of modern Terran playas (e.g., the Lake Eyre basin) shows that these features span several orders of magnitude in size. While stromatolites are commonly centimeter-meter scale features, bioherms or fields of individuals may extend to larger scales. Preservation of organic matter (mats and microbes) would be favored in topographic lows such as channels or ponds of high salinity, particularly those receiving silica-rich groundwaters. These areas are likely to be located near former zones of groundwater emergence and/or where flood channels entered the paleo-playa. Fossil playa systems which may aid in assessing the applicability of this particular Mars analog include the Cambrian Observatory Hill Beds of the Officer Basin and the Eocene Wilkins Peak Member of the Green River Formation.

  17. Granite Springs Valley, Nevada - Well data and Temperature Survey

    DOE Data Explorer

    Faulds, Jim

    2017-09-14

    This data is associated with the Nevada Play Fairway project and includes excel files containing raw 2-meter temperature data and corrections. GIS shapefiles and layer files contain ing location and attribute information for the data are included. Well data includes both deep and shallow TG holes, GIS shapefiles and layer files.

  18. Water availability and subsidence in California's Central Valley

    USGS Publications Warehouse

    Faunt, Claudia C.; Sneed, Michelle

    2015-01-01

    California’s Central Valley covers about 52,000 square kilometers (km2) and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the broad alluvial filled structural trough, with an estimated value exceeding $20 billion per year (Faunt 2009) (Figure 1). Central Valley agriculture depends on state and federal water systems that divert surface water, predominantly originating from Sierra Nevada snowmelt, to agricultural fields. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture, as it grew, developed a reliance on groundwater for irrigation.

  19. Precision Topography of Pluvial Features in Nevada as Analogs for Possible Pluvial Landforms on Mars

    NASA Astrophysics Data System (ADS)

    Zimbelman, J. R.; Garry, W. B.; Irwin, R. P.

    2009-12-01

    Topographic measurements with better than 2 cm horizontal and 4 cm vertical precision were obtained for pluvial features in Nevada using a Trimble R8 Differential Global Positioning System (DGPS), making use of both real-time kinematic and post-processed kinematic techniques. We collected ten transects across shorelines in the southern end of Surprise Valley, near the California border in NW Nevada, on April 15-17, 2008, plus five transects of shorelines and eight transects of a wavecut scarp in Long Valley, near the Utah border in NE Nevada, on May 5-7, 2009. Each transect consists of topographic points keyed to field notes and photographs. In Surprise Valley, the highstand shoreline was noted at 1533.4 m elevation in 8 of the 10 transects, and several prominent intermediate shorelines could be correlated between two or more transects. In Long Valley, the well preserved highstand shoreline elevation of 1908.7 m correlated (within 0.6 m) to the base of the wavecut scarp along a horizontal distance of 1.2 km. These results demonstrate that adherence to a geopotential elevation level is one of the strongest indicators that a possible shoreline feature is the result of pluvial processes, and that elevation levels of features can be clearly detected and documented with precise topographic measurements. The High Resolution Imaging Science Experiment (HiRISE) is returning images of Mars that show potential shoreline features in remarkable detail (e.g., image PSP_009998_2165, 32 cm/pixel, showing a possible shoreline in NW Arabia). Our results from studying shorelines in Nevada will provide a basis for evaluating the plausibility of possible shoreline features on Mars, the implications of which are significant for the overall history of Mars.

  20. Online Resource for Earth-Observing Satellite Sensor Calibration

    NASA Technical Reports Server (NTRS)

    McCorkel, J.; Czapla-Myers, J.; Thome, K.; Wenny, B.

    2015-01-01

    The Radiometric Calibration Test Site (RadCaTS) at Railroad Valley Playa, Nevada is being developed by the University of Arizona to enable improved accuracy and consistency for airborne and satellite sensor calibration. Primary instrumentation at the site consists of ground-viewing radiometers, a sun photometer, and a meteorological station. Measurements made by these instruments are used to calculate surface reflectance, atmospheric properties and a prediction for top-of-atmosphere reflectance and radiance. This work will leverage research for RadCaTS, and describe the requirements for an online database, associated data formats and quality control, and processing levels.

  1. Cenozoic tectonic reorganizations of the Death Valley region, southeast California and southwest Nevada

    USGS Publications Warehouse

    Fridrich, Christopher J.; Thompson, Ren A.

    2011-01-01

    The Death Valley region, of southeast California and southwest Nevada, is distinct relative to adjacent regions in its structural style and resulting topography, as well as in the timing of basin-range extension. Cenozoic basin-fill strata, ranging in age from greater than or equal to 40 to approximately 2 million years are common within mountain-range uplifts in this region. The tectonic fragmentation and local uplift of these abandoned basin-fills indicate a multistage history of basin-range tectonism. Additionally, the oldest of these strata record an earlier, pre-basin-range interval of weak extension that formed broad shallow basins that trapped sediments, without forming basin-range topography. The Cenozoic basin-fill strata record distinct stratigraphic breaks that regionally cluster into tight age ranges, constrained by well-dated interbedded volcanic units. Many of these stratigraphic breaks are long recognized formation boundaries. Most are angular unconformities that coincide with abrupt changes in depositional environment. Deposits that bound these unconformities indicate they are weakly diachronous; they span about 1 to 2 million years and generally decrease in age to the west within individual basins and regionally, across basin boundaries. Across these unconformities, major changes are found in the distribution and provenance of basin-fill strata, and in patterns of internal facies. These features indicate rapid, regionally coordinated changes in strain patterns defined by major active basin-bounding faults, coincident with step-wise migrations of the belt of active basin-range tectonism. The regionally correlative unconformities thus record short intervals of radical tectonic change, here termed "tectonic reorganizations." The intervening, longer (about 3- to 5-million-year) interval of gradual, monotonic evolution in the locus and style of tectonism are called "tectonic stages." The belt of active tectonism in the Death Valley region has abruptly

  2. Audiomagnetotelluric Data and Two-Dimensional Models from Spring, Snake, and Three Lakes Valleys, Nevada

    USGS Publications Warehouse

    McPhee, Darcy K.; Chuchel, Bruce A.; Pellerin, Louise

    2007-01-01

    Audiomagnetotelluric (AMT) data along thirteen profiles in Spring, Snake, and Three Lakes Valleys, and the corresponding two-dimensional (2-D) inverse models, are presented. The AMT method is a valuable tool for estimating the electrical resistivity of the Earth over depth ranges of a few meters to roughly one kilometer. It is important for revealing subsurface structure and stratigraphy within the Basin and Range province of eastern Nevada that can be used to define the geohydrologic framework of the region. We collected AMT data using the Geometrics StrataGem EH4 system. Profiles were 1.2 to 4.6 km in length with station spacing of 100-400 m. Data were recorded in a coordinate system parallel to and perpendicular to the assumed regional geologic strike direction. We show station locations, sounding curves of apparent resistivity, phase, and coherency, and 2-D models. The 2-D inverse models are computed from the transverse electric (TE), transverse magnetic (TM), and TE+TM mode data using the conjugate gradient, finite-difference method of Rodi and Mackie (2001). Preliminary interpretation of these models defines the structural framework of the basins and the resistivity contrasts between alluvial basin-fill, volcanic units, and carbonate/clastic rocks.

  3. Evaluation of the Location and Recency of Faulting Near Prospective Surface Facilities in Midway Valley, Nye County, Nevada

    USGS Publications Warehouse

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2001-01-01

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern

  4. Preliminary results of dust emission data from Yellow Lake Playa, West Texas, USA

    USDA-ARS?s Scientific Manuscript database

    We investigated the relationship between groundwater and dust emission rates at Yellow Lake, a saline “wet” playa in West Texas with a long history of wind erosion. Deflation of the playa surface has generated lunettes composed of silt-clay aggregates and gypsum. Saltation sensors indicate that most...

  5. Documentation of model input and output values for simulation of pumping effects in Paradise Valley, a basin tributary to the Humboldt River, Humboldt County, Nevada

    USGS Publications Warehouse

    Carey, A.E.; Prudic, David E.

    1996-01-01

    Documentation is provided of model input and sample output used in a previous report for analysis of ground-water flow and simulated pumping scenarios in Paradise Valley, Humboldt County, Nevada.Documentation includes files containing input values and listings of sample output. The files, in American International Standard Code for Information Interchange (ASCII) or binary format, are compressed and put on a 3-1/2-inch diskette. The decompressed files require approximately 8.4 megabytes of disk space on an International Business Machine (IBM)- compatible microcomputer using the MicroSoft Disk Operating System (MS-DOS) operating system version 5.0 or greater.

  6. An update of the Death Valley regional groundwater flow system transient model, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Sweetkind, Donald S.; Faunt, Claudia C.; Pavelko, Michael T.; Hill, Mary C.

    2017-01-19

    Since the original publication of the Death Valley regional groundwater flow system (DVRFS) numerical model in 2004, more information on the regional groundwater flow system in the form of new data and interpretations has been compiled. Cooperators such as the Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, the Department of Energy, and Nye County, Nevada, recognized a need to update the existing regional numerical model to maintain its viability as a groundwater management tool for regional stakeholders. The existing DVRFS numerical flow model was converted to MODFLOW-2005, updated with the latest available data, and recalibrated. Five main data sets were revised: (1) recharge from precipitation varying in time and space, (2) pumping data, (3) water-level observations, (4) an updated regional potentiometric map, and (5) a revision to the digital hydrogeologic framework model.The resulting DVRFS version 2.0 (v. 2.0) numerical flow model simulates groundwater flow conditions for the Death Valley region from 1913 to 2003 to correspond to the time frame for the most recently published (2008) water-use data. The DVRFS v 2.0 model was calibrated by using the Tikhonov regularization functionality in the parameter estimation and predictive uncertainty software PEST. In order to assess the accuracy of the numerical flow model in simulating regional flow, the fit of simulated to target values (consisting of hydraulic heads and flows, including evapotranspiration and spring discharge, flow across the model boundary, and interbasin flow; the regional water budget; values of parameter estimates; and sensitivities) was evaluated. This evaluation showed that DVRFS v. 2.0 simulates conditions similar to DVRFS v. 1.0. Comparisons of the target values with simulated values also indicate that they match reasonably well and in some cases (boundary flows and discharge) significantly better than in DVRFS v. 1.0.

  7. Dust emission at Franklin Lake Playa, Mojave Desert (USA): Response to meteorological and hydrologic changes 2005-2008

    USGS Publications Warehouse

    Reynolds, Richard L.; Bogle, Rian; Vogel, John; Goldstein, Harland L.; Yount, James

    2009-01-01

    Playa type, size, and setting; playa hydrology; and surface-sediment characteristics are important controls on the type and amount of atmospheric dust emitted from playas. Soft, evaporite-rich sediment develops on the surfaces of some Mojave Desert (USA) playas (wet playas), where the water table is shallow (< 4 m). These areas are sources of atmospheric dust because of continuous or episodic replenishment of wind-erodible salts and disruption of the ground surface during salt formation by evaporation of ground water. Dust emission at Franklin Lake playa was monitored between March 2005 and April 2008. The dust record, based on day-time remote digital camera images captured during high wind, and compared with a nearby precipitation record, shows that aridity suppresses dust emission. High frequency of dust generation appears to be associated with relatively wet periods, identified as either heavy precipitation events or sustained regional precipitation over a few months. Several factors may act separately or in combination to account for this relation. Dust emission may respond rapidly to heavy precipitation when the dissolution of hard, wind-resistant evaporite mineral crusts is followed by the development of soft surfaces with thin, newly formed crusts that are vulnerable to wind erosion and (or) the production of loose aggregates of evaporite minerals that are quickly removed by even moderate winds. Dust loading may also increase when relatively high regional precipitation leads to decreasing depth to the water table, thereby increasing rates of vapor discharge, development of evaporite minerals, and temporary softening of playa surfaces. The seasonality of wind strength was not a major factor in dust-storm frequency at the playa. The lack of major dust emissions related to flood-derived sediment at Franklin Lake playa contrasts with some dry-lake systems elsewhere that may produce large amounts of dust from flood sediments. Flood sediments do not commonly

  8. Geology and mineral deposits of Churchill County, Nevada

    USGS Publications Warehouse

    Willden, Ronald; Speed, Robert C.

    1974-01-01

    Churchill County, in west-central Nevada, is an area of varied topography and geology that has had a rather small total mineral production. The western part of the county is dominated by the broad low valley of the Carson Sink, which is underlain by deposits of Lake Lahontan. The bordering mountain ranges to the west and south are of low relief and underlain largely by Tertiary volcanic and sedimentary units. Pre-Tertiary rocks are extensively exposed east of the Carson Sink in the Stillwater Range, Clan Alpine Mountains, Augusta Mountains, and New Pass Mountains. The eastern valleys are underlain by Quaternary alluvial and lacustrine deposits contemporaneous with the western deposits of Lake Lahontan. The eastern mountain ranges are more rugged than the western ranges and have higher relief; the eastern valleys are generally narrower.

  9. Groundwater quality in the Indian Wells Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  10. Clustering of velocities in a GPS network spanning the Sierra Nevada Block, the Northern Walker Lane Belt, and the Central Nevada Seismic Belt, California-Nevada

    NASA Astrophysics Data System (ADS)

    Savage, J. C.; Simpson, R. W.

    2013-09-01

    The deformation across the Sierra Nevada Block, the Walker Lane Belt, and the Central Nevada Seismic Belt (CNSB) between 38.5°N and 40.5°N has been analyzed by clustering GPS velocities to identify coherent blocks. Cluster analysis determines the number of clusters required and assigns the GPS stations to the proper clusters. The clusters are shown on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. Four significant clusters are identified. Those clusters are strips separated by (from west to east) the Mohawk Valley-Genoa fault system, the Pyramid Lake-Wassuk fault system, and the Central Nevada Seismic Belt. The strain rates within the westernmost three clusters approximate simple right-lateral shear (~13 nstrain/a) across vertical planes roughly parallel to the cluster boundaries. Clustering does not recognize the longitudinal segmentation of the Walker Lane Belt into domains dominated by either northwesterly trending, right-lateral faults or northeasterly trending, left-lateral faults.

  11. Clustering of velocities in a GPS network spanning the Sierra Nevada Block, the northern Walker Lane Belt, and the Central Nevada Seismic Belt, California-Nevada

    USGS Publications Warehouse

    Savage, James C.; Simpson, Robert W.

    2013-01-01

    The deformation across the Sierra Nevada Block, the Walker Lane Belt, and the Central Nevada Seismic Belt (CNSB) between 38.5°N and 40.5°N has been analyzed by clustering GPS velocities to identify coherent blocks. Cluster analysis determines the number of clusters required and assigns the GPS stations to the proper clusters. The clusters are shown on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. Four significant clusters are identified. Those clusters are strips separated by (from west to east) the Mohawk Valley-Genoa fault system, the Pyramid Lake-Wassuk fault system, and the Central Nevada Seismic Belt. The strain rates within the westernmost three clusters approximate simple right-lateral shear (~13 nstrain/a) across vertical planes roughly parallel to the cluster boundaries. Clustering does not recognize the longitudinal segmentation of the Walker Lane Belt into domains dominated by either northwesterly trending, right-lateral faults or northeasterly trending, left-lateral faults.

  12. Environmental Assessment for Changes to Reveille Airspace at Nevada Test and Training Range Nellis Air Force Base, Nevada

    DTIC Science & Technology

    2002-03-01

    basin and range characteristics associated with the Great Basin . The base elevation of the area is 5000 feet above Mean Sea Level (MSL) to 6000 MSL...REVEILLE AIRSPACE AT NEVADA TEST AND TRAINING RANGE The area is located within the Great Basin , a physiographic region with no external drainage...characterized by “ basin and range” topography, in which hydrographically isolated basins or valleys are separated by north-south trending low mountain

  13. Seismic investigation of Infiltration Through a Playa of the Llano Estacado Region of Texas

    NASA Astrophysics Data System (ADS)

    Fernandez-Canel, A.; Gurrola, H.; Taylor, L.; Abila, H.; Oviedo, R.; Harry, E.; Garza, J.

    2017-12-01

    Most of the population and economy of the south central United States (the bread baskets of the United States) is heavily dependent on the Ogallala aquifer as the main water resource. The overexploitation of the Ogallala aquifer can have catastrophic consequences. This project is a seismic investigation of the hydraulic behavior of the playa lakes of the southern high plains which are considered the main recharge source for the Ogallala. We deployed Texans (Ref Tek RT125A) data loggers with 4.5 Hz single component geophones before and after rain events and after controlled infiltration test to provide a data set to investigate infiltration pathways through the playas. The playa is about eight miles northeast of Lubbock, Texas. We refer to it as compartmentalized because it appears to be two very closely spaced playa; one of which retains water more efficiently than the other. The infiltration tests included the use of 4x8 foot infiltrometers and a 50 foot soaker hose in a compartmentalized playa. Preliminary results from analysis of two repeated profiles suggest that the seismic velocities beneath the infiltrometers and the soaker hose were lower than before flooding. These results suggest that measurements of seismic P-wave velocities may be useful to model the pathway for infiltration through the subsurface of the playa. We have collected (and will continue to collect) additional data sets following rain storms and infiltration test for a few months. We will present the results of these tests at the AGU meeting.

  14. Color and 3D views of the Sierra Nevada mountains

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A stereo 'anaglyph' created using the nadir and 45.6-degree forward-viewing cameras provides a three-dimensional view of the scene when viewed with red/blue glasses. The red filter should be placed over your left eye. To facilitate the stereo viewing, the images have been oriented with north toward the left. Some prominent features are Mono Lake, in the center of the image; Walker Lake, to its left; and Lake Tahoe, near the lower left. This view of the Sierra Nevadas includes Yosemite, Kings Canyon, and Sequoia National Parks. Mount Whitney, the highest peak in the contiguous 48 states (elev. 14,495 feet), is visible near the righthand edge. Above it (to the east), the Owens Valley shows up prominently between the Sierra Nevada and Inyo ranges. Precipitation falling as rain or snow on the Sierras feeds numerous rivers flowing southwestward into the San Joaquin Valley. The abundant fields of this productive agricultural area can be seen along the lower right; a large number of reservoirs that supply water for crop irrigation are apparent in the western foothills of the Sierras. Urban areas in the valley appear as gray patches; among the California cities that are visible are Fresno, Merced, and Modesto.

  15. Death Valley California as seen from STS-59

    NASA Image and Video Library

    1994-04-13

    STS059-86-059 (9-20 April 1994) --- This oblique handheld Hasselblad 70mm photo shows Death Valley, near California's border with Nevada. The valley -- the central feature of Death Valley National Monument -- extends north to south for some 140 miles (225 kilometers). Hemmed in to the east by the Amargosa Range and to the west by the Panamints, its width varies from 5 to 15 miles (8 to 24 kilometers). Using Spaceborne Imaging Radar (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) onboard the Space Shuttle Endeavour, the crew was able to record a great deal of data on this and other sites, as part of NASA's Mission to Planet Earth.

  16. Geologic map of the Mound Spring quadrangle, Nye and Clark Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Lundstrom, Scott C.; Mahan, Shannon; Blakely, Richard J.; Paces, James B.; Young, Owen D.; Workman, Jeremiah B.; Dixon, Gary L.

    2003-01-01

    The Mound Spring quadrangle, the southwestern-most 7.5' quadrangle of the area of the Las Vegas 1:100,000-scale quadrangle, is entirely within the Pahrump Valley, spanning the Nevada/California State line. New geologic mapping of the predominantly Quaternary materials is combined with new studies of gravity and geochronology in this quadrangle. Eleven predominantly fine-grained units are delineated, including playa sediment, dune sand, and deposits associated with several cycles of past groundwater discharge and distal fan sedimentation. These units are intercalated with 5 predominantly coarse-grained alluvial-fan and wash gravel units mainly derived from the Spring Mountains. The gravel units are distinguished on the basis of soil development and associated surficial characteristics. Thermoluminescence and U-series geochronology constrain most of the units to the Holocene and late and middle Pleistocene. Deposits of late Pleistocene groundwater discharge in the northeast part of the quadrangle are associated with a down-to-the-southwest fault zone that is expressed by surface fault scarps and a steep gravity gradient. The gravity field also defines a northwest-trending uplift along the State line, in which the oldest sediments are poorly exposed. About 2 km to the northeast a prominent southwest-facing erosional escarpment is formed by resistant beds in middle Pleistocene fine-grained sediments that dip northeast away from the uplift. These sediments include cycles of groundwater discharge that were probably caused by upwelling of southwesterly groundwater flow that encountered the horst.

  17. Diversity of Salmonella serovars in feedyard and nonfeedyard playas of the Southern High Plains in the summer and winter.

    PubMed

    Purdy, Charles W; Straus, David C; Clark, R Nolan

    2004-01-01

    To compare Salmonella isolates cultured from feedyard and nonfeedyard (control) playas (ie, temporary shallow lakes) of the Southern High Plains. Water and muck (sediment) samples were obtained from 7 feedyard playas and 3 nonfeedyard playas in the winter and summer. Each water and muck sample was enriched with sulfur-brilliant-green broth and incubated in a shaker at 37 degrees C for 24 hours. A sample (100 mL) of the incubated bacterial-enriched broth was then mixed with 100 mL of fresh sulfur-brilliant-green enrichment broth and incubated in a shaker at 37 degrees C for 24 hours. After the second incubation, a swab sample was streaked on differential media. Suspect Salmonella isolates were further identified by use of biochemical tests, and Salmonella isolates were confirmed and serovar determinations made. Salmonella isolates were not recovered from the 3 control playas. Seven Salmonella enterica serovars were isolated from 5 of 7 feedyard playas in the summer, and 13 S. enterica serovars were isolated from 7 of 7 feedyard playas in the winter. In the summer, 296 isolates were cultured, and 47 were Salmonella organisms. In the winter, 288 isolates were cultured, and 171 were Salmonella organisms. Results indicated that feedyard playas are frequently contaminated with many Salmonella serovars. These pathogens should be considered whenever feedyard managers contemplate the use of water from these playas. Water from feedyard playas should not be used to cool cattle in the summer or for dust abatement.

  18. ERTS-1 evaluation of natural resources management applications in the Great Basin

    NASA Technical Reports Server (NTRS)

    Tueller, P. T.; Lorain, G.

    1973-01-01

    The relatively cloud free weather in the Great Basin has allowed the accumulation of several dates of excellent ERTS-1 imagery. Mountains, valleys, playas, stream courses, canyons, alluvial fans, and other landforms are readily delineated on ERTS-1 imagery, particularly with MSS-5. Each band is useful for identifying and studying one or more natural resource features. For example, crested wheatgrass seedings were most easily identified and measured on MSS-7. Color enhancements simulating CIR were useful for depicting meadow and phreatophytic vegetation along water bodies and stream courses. Work is underway to inventory and monitor wildfire areas by age and successional status. Inventories have been completed on crested wheatgrass seedings over the entire State of Nevada, and inventories of playa surfaces, water surfaces, phreatophytic vegetation, snow cover, meadows, and other features is continuing. Vegetation ecotones are being delineated for vegetation mapping. The pinyon/juniper-northern desert shrub ecotone has been identified with considerable success. Phenology changes can be used to describe vegetation changes for management.

  19. Gypsum ground: a new occurrence of gypsum sediment in playas of central Australia

    NASA Astrophysics Data System (ADS)

    Xiang Yang Chen; Bowler, James M.; Magee, John W.

    1991-06-01

    There are many playas (dry salt lakes) in arid central Australia (regional rainfall about 250 mm/y and pan evaporation around 3000 mm/y). Highly soluble salts, such as halite, only appear as a thin (several centimetres thick), white, ephemeral efflorescent crust on the dry surface. Gypsum is the major evaporite precipitating both at present and preserved in sediment sequences. One type of gypsum deposit forms a distinctive surface feature, which is here termed "gypsum ground". It consists of a thick (up to 80 cm) gypsum zone which rises from the surrounding smooth white playa surface and is overlain by a heaved brown crust. The gypsum zone, with an average gypsum content above 60%, consists of pure gypsum sublayers and interlayered clastic bands of sandy clay. The gypsum crystals are highly corroded, especially in the direction parallel to the c-axis and on the upper sides where illuviated clay has accumulated in corrosion hollows. Overgrowth parallel to the a- and b-axes is very common, forming highly discoidal habits. These secondary changes (corrosion and overgrowth) are well-developed in the vadose zone and absent from crystals below the long-term watertable (depth around 40 cm). These crystal characteristics indicate a rainwater leaching process. At Lake Amadeus, one of the largest playas (800 km 2) of central Australia, such gypsum ground occupies 16% of the total area. The gypsum ground is interpreted as an alteration of a pre-existing gypsum deposit which probably extended across the whole playa before breaking down, leaving a playa marginal terrace and several terrace islands within the gypsum ground. This pre-existing gypsum deposit, preserved in the residual islands, consists of pure, pale, sand-sized lenticular crystals. It is believed to have been deposited during an episode of high regional watertable, causing active groundwater seepage and more frequent surface brine in the playa. A later fall in watertable, probably resulting from climatic change

  20. Bacterial succession within an ephemeral hypereutrophic Mojave Desert playa Lake.

    PubMed

    Navarro, Jason B; Moser, Duane P; Flores, Andrea; Ross, Christian; Rosen, Michael R; Dong, Hailiang; Zhang, Gengxin; Hedlund, Brian P

    2009-02-01

    Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by approximately 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of approximately 1x10(6) cells ml(-1) of culturable heterotrophs was replaced by a dense population of more than 1x10(9) cells ml(-1), which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria.

  1. Bacterial succession within an ephemeral hypereutrophic mojave desert playa lake

    USGS Publications Warehouse

    Navarro, J.B.; Moser, D.P.; Flores, A.; Ross, C.; Rosen, Michael R.; Dong, H.; Zhang, G.; Hedlund, B.P.

    2009-01-01

    Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of 1 ?????106 cells ml-1 of culturable heterotrophs was replaced by a dense population of more than 1????????109 cells ml-1, which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria. ?? 2008 Springer Science+Business Media, LLC.

  2. Middle Pleistocene infill of Hinkley Valley by Mojave River sediment and associated lake sediment: Depositional architecture and deformation by strike-slip faults

    USGS Publications Warehouse

    Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.

    2018-01-01

    Hinkley Valley in the Mojave Desert, near Barstow about 140 km northeast of Los Angeles and midway between Victorville Valley and the Lake Manix basin, contains a thick sedimentary sequence delivered by the Mojave River. Our study of sediment cores drilled in the valley indicates that Hinkley Valley was probably a closed playa basin with stream inflow from four directions prior to Mojave River inflow. The Mojave River deposited thick and laterally extensive clastic wedges originating from the southern valley that rapidly filled much of Hinkley Valley. Sedimentary facies representing braided stream, wetland, delta, and lacustrine depositional environments all are found in the basin fill; in some places, the sequence is greater than 74 m (245 ft) thick. The sediment is dated in part by the presence of the ~631 ka Lava Creek B ash bed low in the section, and thus represents sediment deposition after Victorville basin was overtopped by sediment and before the Manix basin began to be filled. Evidently, upstream Victorville basin filled with sediment by about 650 ka, causing the ancestral Mojave River to spill to the Harper and Hinkley basins, and later to Manix basin.Initial river sediment overran wetland deposits in many places in southern Hinkley Valley, indicating a rapidly encroaching river system. These sediments were succeeded by a widespread lake (“blue” clay) that includes the Lava Creek B ash bed. Above the lake sediment lies a thick section of interlayered stream sediment, delta and nearshore lake sediment, mudflat and/or playa sediment, and minor lake sediment. This stratigraphic architecture is found throughout the valley, and positions of lake sediment layers indicate a successive northward progression in the closed basin. A thin overlapping sequence at the north end of the valley contains evidence for a younger late Pleistocene lake episode. This late lake episode, and bracketing braided stream deposits of the Mojave River, indicate that the river

  3. M-X Environmental Technical Report. Alternative Potential Operating Base Locations, Coyote Spring Valley.

    DTIC Science & Technology

    1980-12-22

    necessary and identify by block number) MX Coyote Spring, Nevada Siting Analysis Nevada Environnental Report 20. ABSTRACT (Continue on reverse side If...necessary and Identify by block number) The area of analysis (AO) for the Coyote Spring Valley operating base option includes both Clark and Lincoln...counties, and is located in the southern portion of the designated region of influence. Las Vegas and the surrounding suburbs are the major settlements and

  4. Quantitative analysis of surface characteristics and morphology in Death Valley, California using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Kierein-Young, K. S.; Kruse, F. A.; Lefkoff, A. B.

    1992-01-01

    The Jet Propulsion Laboratory Airborne Synthetic Aperture Radar (JPL-AIRSAR) is used to collect full polarimetric measurements at P-, L-, and C-bands. These data are analyzed using the radar analysis and visualization environment (RAVEN). The AIRSAR data are calibrated using in-scene corner reflectors to allow for quantitative analysis of the radar backscatter. RAVEN is used to extract surface characteristics. Inversion models are used to calculate quantitative surface roughness values and fractal dimensions. These values are used to generate synthetic surface plots that represent the small-scale surface structure of areas in Death Valley. These procedures are applied to a playa, smooth salt-pan, and alluvial fan surfaces in Death Valley. Field measurements of surface roughness are used to verify the accuracy.

  5. Evaluating connection of aquifers to springs and streams, Great Basin National Park and vicinity, Nevada

    USGS Publications Warehouse

    Prudic, David E.; Sweetkind, Donald S.; Jackson, Tracie R.; Dotson, K. Elaine; Plume, Russell W.; Hatch, Christine E.; Halford, Keith J.

    2015-12-22

    Groundwater flow from southern Spring Valley continues through the western side of Hamlin Valley before being directed northeast toward the south end of Snake Valley. This flow is constrained by southward-flowing groundwater from Big Spring Wash and northward-flowing groundwater beneath central Hamlin Valley. The redirection to the northeast corresponds to a narrowing of the width of flow in southern Snake Valley caused by a constriction formed by a steeply dipping middle Paleozoic siliciclastic confining unit exposed in the flanks of the mountains and hills on the east side of southern Snake Valley and shallowly buried beneath basin fill in the valley. The narrowing of groundwater flow could be responsible for the large area where groundwater flows to springs or is lost to evapotranspiration between Big Springs in Nevada and Pruess Lake in Utah.

  6. Potential hazards from floodflows in Grapevine Canyon, Death Valley National Monument, California and Nevada

    USGS Publications Warehouse

    Bowers, J.C.

    1990-01-01

    Grapevine Canyon is on the western slope of the Grapevine Mountains in the northern part of Death Valley National Monument , California and Nevada. Grapevine Canyon Road covers the entire width of the canyon floor in places and is a frequently traveled route to Scotty 's Castle in the canyon. The region is arid and subject to flash flooding because of infrequent but intense convective storms. When these storms occur, normally in the summer, the resulting floods may create a hazard to visitor safety and property. Historical data on rainfall and floodflow in Grapevine Canyon are sparse. Data from studies made for similar areas in the desert mountains of southern California provide the basis for estimating discharges and the corresponding frequency of floods in the study area. Results of this study indicate that high-velocity flows of water and debris , even at shallow depths, may scour and damage Grapevine Canyon Road. When discharge exceeds 4,900 cu ft/sec, expected at a recurrence interval of between 25 and 50 years, the Scotty 's Castle access road and bridge may be damaged and the parking lot partly inundated. A flood having a 100-year or greater recurrence interval probably would wash out the bridge and present a hazard to the stable and garage buildings but not to the castle buildings, whose foundations are higher than the predicted maximum flood level. (USGS)

  7. Audiomagnetotelluric Data and Preliminary Two-Dimensional Models from Spring, Dry Lake, and Delamar Valleys, Nevada

    USGS Publications Warehouse

    McPhee, Darcy K.; Chuchel, Bruce A.; Pellerin, Louise

    2008-01-01

    This report presents audiomagnetotelluric (AMT) data along fourteen profiles in Spring, Delamar, and Dry Lake Valleys, and the corresponding preliminary two-dimensional (2-D) inverse models. The AMT method is a valuable tool for estimating the electrical resistivity of the Earth over depth ranges from a few meters to less than one kilometer, and it is important for revealing subsurface structure and stratigraphy within the Basin and Range province of eastern Nevada, which can be used to define the geohydrologic framework of the region. We collected AMT data by using the Geometrics StrataGem EH4 system. Profiles were 0.7 - 3.2 km in length with station spacing of 50-400 m. Data were recorded in a coordinate system parallel to and perpendicular to the regional geologic-strike direction with Z positive down. We show AMT station locations, sounding curves of apparent resistivity, phase, and coherency, and 2-D models of subsurface resistivity along the profiles. The 2-D inverse models are computed from the transverse electric (TE), transverse magnetic (TM), and TE+TM mode data by using a conjugate gradient, finite-difference method. Preliminary interpretation of the 2-D models defines the structural framework of the basins and the resistivity contrasts between alluvial basin-fill, volcanic units, and carbonate basement rocks.

  8. Regional ground-water evapotranspiration and ground-water budgets, Great Basin, Nevada

    USGS Publications Warehouse

    Nichols, William D.

    2000-01-01

    PART A: Ground-water evapotranspiration data from five sites in Nevada and seven sites in Owens Valley, California, were used to develop equations for estimating ground-water evapotranspiration as a function of phreatophyte plant cover or as a function of the depth to ground water. Equations are given for estimating mean daily seasonal and annual ground-water evapotranspiration. The equations that estimate ground-water evapotranspiration as a function of plant cover can be used to estimate regional-scale ground-water evapotranspiration using vegetation indices derived from satellite data for areas where the depth to ground water is poorly known. Equations that estimate ground-water evapotranspiration as a function of the depth to ground water can be used where the depth to ground water is known, but for which information on plant cover is lacking. PART B: Previous ground-water studies estimated groundwater evapotranspiration by phreatophytes and bare soil in Nevada on the basis of results of field studies published in 1912 and 1932. More recent studies of evapotranspiration by rangeland phreatophytes, using micrometeorological methods as discussed in Chapter A of this report, provide new data on which to base estimates of ground-water evapotranspiration. An approach correlating ground-water evapotranspiration with plant cover is used in conjunction with a modified soil-adjusted vegetation index derived from Landsat data to develop a method for estimating the magnitude and distribution of ground-water evapotranspiration at a regional scale. Large areas of phreatophytes near Duckwater and Lockes in Railroad Valley are believed to subsist on ground water discharged from nearby regional springs. Ground-water evapotranspiration by the Duckwater phreatophytes of about 11,500 acre-feet estimated by the method described in this report compares well with measured discharge of about 13,500 acre-feet from the springs near Duckwater. Measured discharge from springs near Lockes

  9. Hydrogeologic setting and hydrologic data of the Smoke Creek Desert basin, Washoe County, Nevada, and Lassen County, California, water years 1988-90

    USGS Publications Warehouse

    Maurer, D.K.

    1993-01-01

    Smoke Creek Desert is a potential source of water for urban development in Washoe County, Nevada. Hydrogeologic data were collected from 1988 to 1990 to learn more about surface- and ground-water flow in the basin. Impermeable rocks form a boundary to ground-water flow on the east side of the basin and at unknown depths at the base of the flow system. Permeable volcanic rocks on the west and north sides of the basin represent a previously unrecognized aquifer and provide potential avenues for interbasin flow. Geophysical data indicate that basin-fill sediments are about 2,000 feet thick near the center of the basin. The geometry of the aquifers, however, remains largely unknown. Measurements of water levels, pressure head, flow rate, water temperature, and specific conductance at 19 wells show little change from 1988 to 1990. Chemically, ground water begins as a dilute sodium and calcium bicarbonate water in the mountain blocks, changes to a slightly saline sodium bicarbonate solution beneath the alluvial fans, and becomes a briny sodium chloride water near the playa. Concentrations of several inorganic constituents in the briny water near the playa commonly exceed Nevada drinking-water standards. Ground water in the Honey Lake basin and Smoke Creek Desert basin has similar stable-isotope composition, except near Sand Pass. If interbasin flow takes place, it likely occurs at depths greater than 400-600 feet beneath Sand Pass or through volcanic rocks to the north of Sand Pass. Measure- ments of streamflow indicate that about 2,800 acre-feet/year discharged from volcanic rocks to streamflow and a minimum of 7.300 acre-feet/year infiltrated and recharged unconsolidated sediments near Smoke, Buffalo, and Squaw Creeks during the period of study. Also about 1,500 acre-feet per year was lost to evapotranspiration along the channel of Smoke Creek, and about 1,680 acre-feet per year of runoff from Smoke, Buffalo, and Squaw Creeks was probably lost to evaporation from the

  10. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    USGS Publications Warehouse

    Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  11. Geophysical Studies in the Vicinity of the Warner Mountains and Surprise Valley, Northeast California, Northwest Nevada, and Southern Oregon

    USGS Publications Warehouse

    Ponce, David A.; Glen, Jonathan M.G.; Egger, Anne E.; Bouligand, Claire; Watt, Janet T.; Morin, Robert L.

    2009-01-01

    From May 2006 to August 2007, the U.S. Geological Survey (USGS) collected 793 gravity stations, about 102 line-kilometers of truck-towed and ground magnetometer data, and about 325 physical-property measurements in northeastern California, northwestern Nevada, and southern Oregon. Gravity, magnetic, and physical-property data were collected to study regional crustal structures and geology as an aid to understanding the geologic framework of the Surprise Valley geothermal area and, in general, geothermal systems throughout the Great Basin. The Warner Mountains and Surprise Valley mark the transition from the extended Basin and Range province to the unextended Modoc Plateau. This transition zone, in the northwestern corner of the Basin and Range, is relatively diffuse compared to other, more distinct boundaries, such as the Wasatch front in Utah and the eastern Sierran range front. In addition, this transition zone is the site of a geothermal system with potential for development, and previous studies have revealed a complex structural setting consisting of several obliquely oriented fault sets. As a result, this region has been the subject of several recent geological and geophysical investigations. The gravity and magnetic data presented here support and supplement those studies, and although the study area is composed predominantly of Tertiary volcanic rocks of the Modoc Plateau rocks, the physical properties of these and others rocks create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer subsurface geologic structure.

  12. Development rates of Late Quaternary soils, Silver Lake Playa, California

    USGS Publications Warehouse

    Reheis, M.C.; Harden, J.W.; McFadden, L.D.; Shroba, R.R.

    1989-01-01

    Soils formed on alluvial fan deposits that range in age from about 35 000 to 200 yr BP near Silver Lake playa in the Mojave Desert permit study of the rates of soil development in an arid, hyperthermic climate. Field-described properties of soils were quantified and analyzed using a soil development index that combines properties and horizon thicknesses. Pedogenic CaCO3 (as indicated by color), pH increase, and dry consistence appear to change with age at linear rates, whereas rubification appears to change at a logarithmic rate. The linear rates are best attributed to the progressive accumulation of CaCO3- and salt-rich eolian dust derived from the playa and other mnore distant sources. The total-texture values of soils on fans older than 10 000 yr BP are similar, which suggests that playas in this area may have been wet enough to restrict the availability of fines from these sources for many thousands of years prior to 10 000 yr BP. Equations derived from regressions of soil age and properties can be used to estimate ages of undated, lithologically similar deposits in similar climates and geomorphic settings. -from Authors

  13. Modeling sediment accumulation in North American playa wetlands in response to climate change, 1940-2100

    USGS Publications Warehouse

    Burris, Lucy; Skagen, Susan K.

    2013-01-01

    Playa wetlands on the west-central Great Plains of North America are vulnerable to sediment infilling from upland agriculture, putting at risk several important ecosystem services as well as essential habitats and food resources of diverse wetland-dependent biota. Climate predictions for this semi-arid area indicate reduced precipitation which may alter rates of erosion, runoff, and sedimentation of playas. We forecasted erosion rates, sediment depths, and resultant playa wetland depths across the west-central Great Plains and examined the relative roles of land use context and projected changes in precipitation in the sedimentation process. We estimated erosion with the Revised Universal Soil Loss Equation (RUSLE) using historic values and downscaled precipitation predictions from three general circulation models and three emissions scenarios. We calibrated RUSLE results using field sediment measurements. RUSLE is appealing for regional scale modeling because it uses climate forecasts with monthly resolution and other widely available values including soil texture, slope and land use. Sediment accumulation rates will continue near historic levels through 2070 and will be sufficient to cause most playas (if not already filled) to fill with sediment within the next 100 years in the absence of mitigation. Land use surrounding the playa, whether grassland or tilled cropland, is more influential in sediment accumulation than climate-driven precipitation change.

  14. The impact of climate and composition on playa surface roughness: Investigation of atmospheric mineral dust emission mechanisms

    NASA Astrophysics Data System (ADS)

    Tollerud, H. J.; Fantle, M. S.

    2011-12-01

    Atmospheric mineral dust has a wide range of impacts, including the transport of elements in geochemical cycles, health hazards from small particles, and climate forcing via the reflection of sunlight from dust particles. In particular, the mineral dust component of climate forcing is one of the most uncertain elements in the IPCC climate forcing summary. Mineral dust is also an important component of geochemical cycles. For instance, dust inputs to the ocean potentially affect the iron cycle by stimulating natural iron fertilization, which could then modify climate via the biological pump. Also dust can transport nutrients over long distances and fertilize nutrient-poor regions, such as island ecosystems or the Amazon rain forest. However, there are still many uncertainties in quantifying dust emissions from source regions. One factor that influences dust emission is surface roughness and texture, since a weak, unconsolidated surface texture is more easily ablated by wind than a strong, hard crust. We are investigating the impact of processes such as precipitation, groundwater evaporation, and wind on surface roughness in a playa dust source region. We find that water has a significant influence on surface roughness. We utilize ESA's Advanced Synthetic Aperture Radar (ASAR) instrument to measure roughness in the playa. A map of roughness indicates where the playa surface is smooth (on the scale of centimeters) and potentially very strong, and where it is rough and might be more sensitive to disturbance. We have analyzed approximately 40 ASAR observations of the Black Rock Desert from 2007-2011. In general, the playa is smoother and more variable over time relative to nearby areas. There is also considerable variation within the playa. While the playa roughness maps changed significantly between summers and between observations during the winters, over the course of each summer, the playa surface maintained essentially the same roughness pattern. This suggests that

  15. Fog and Haze in California's San Joaquin Valley

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This illustration features images of southern California and southwestern Nevada acquired on January 3, 2001 (Terra orbit 5569), and includes data from three of MISR's nine cameras. The San Joaquin Valley, which comprises the southern extent of California's Central Valley, covers much of the viewed area. Also visible are several of the Channel Islands near the bottom, and Mono and Walker Lakes, which stand out as darker patches near the top center, especially in the vertical and backward oblique images. Near the lower right of each image is the Los Angeles Basin, with the distinctive chevron shape of the Mojave Desert to its north.

    The Central Valley is a well-irrigated and richly productive agricultural area situated between the Coast Range and the snow-capped Sierra Nevadas. During the winter, the region is noted for its hazy overcasts and a low, thick ground fog known as the Tule. Owing to the effects of the atmosphere on reflected sunlight, dramatic differences in the MISR images are apparent as the angle of view changes. An area of thick, white fog in the San Joaquin Valley is visible in all three of the images. However, the pervasive haze that fills most of the valley is only slightly visible in the vertical view. At the oblique angles, the haze is highly distinguishable against the land surface background, particularly in the forward-viewing direction. Just above image center, the forward view also reveals bluish-tinged plumes near Lava Butte in Sequoia National Forest, where the National Interagency Coordination Center reported an active forest fire.

    The changing surface visibility in the multi-angle data allows us to derive the amount of atmospheric haze. In the lower right quadrant is a map of haze amount determined from automated processing of the MISR imagery. Low amounts of haze are shown in blue, and a variation in hue through shades of green, yellow, and red indicates progressively larger amounts of airborne particulates. Due to the

  16. A Summary interpretation of geologic, hydrologic, and geophysical data for Yucca Valley, Nevada test site, Nye County, Nevada

    USGS Publications Warehouse

    Wilmarth, Verl Richard; Healey, D.L.; Clebsch, Alfred; Winograd, I.J.; Zietz, Isadore; Oliver, H.W.

    1959-01-01

    This report summarizes an interpretation of the geology of Yucca Valley to depths of about 2,300 feet below the surface, the characteristics features of ground water in Yucca and Frenchman Valleys, and the seismic, gravity, and magnetic data for these valleys. Compilation of data, preparation of illustrations, and writing of the report were completed during the period December 26, 1958 to January 10, 1959. Some of the general conclusions must be considered as tentative until more data are available. This work was done by the U.S. Geological Survey on behalf of Albuquerque Operations Office, U.S. Atomic Energy Commission.

  17. Comparison of inversion models using AIRSAR data for Death Valley, California

    NASA Technical Reports Server (NTRS)

    Kierein-Young, Kathryn S.

    1993-01-01

    Polarimetric Airborne Synthetic Aperture Radar (AIRSAR) data were collected for the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley, California, USA, in September 1989. AIRSAR is a four-look, quid-polarizaiton, three frequency instrument. It collects measurements at C-band (5.66 cm), L-band (23.98 cm), and P-band (68.13 cm), and has a GIFOV of 10 meters and a swath width of 12 kilometers. Because the radar measures at three wavelengths, different scales of surface roughness are measured. Also, dielectric constants can be calculated from the data. The scene used in this study is in Death Valley, California and is located over Trail Canyon alluvial fan, the valley floor, and Artists Drive alluvial fan. The fans are very different in mineralogic makeup, size, and surface roughness. Trail Canyon fan is located on the west side of the valley at the base of the Panamint Range and is a large fan with older areas of desert pavement and younger active channels. The source for the material on southern part of the fan is mostly quartzites and there is an area of carbonate source on the northern part of the fan. Artists Drive fan is located at the base of the Black Mountains on the east side of the valley and is a smaller, young fan with its source mostly from volcanic rocks. The valley floor contains playa and salt deposits that range from smooth to Devil's Golf course type salt pinnacles.

  18. Appraisal of the water resources of Death Valley, California-Nevada

    USGS Publications Warehouse

    Miller, Glenn Allen

    1977-01-01

    The hydrologic system in Death Valley is probably in a steady-state condition--that is, recharge and discharge are equal, and net changes in the quantity of ground water in storage are not occurring. Recharge to ground water in the valley is derived from interbasin underflow and from local precipitation. The two sources may be of the same magnitude. Ground water beneath the valley moves toward the lowest area, a 200-square-mile saltpan, much of which is underlain by rock salt and other saline minerals, probably to depths of hundreds of feet or even more than 1,000 feet. Some water discharges from the saltpan by evaportranspiration. Water beneath the valley floor, excluding the saltpan, typically contains between 3,000 and 5,000 milligrams per liter of dissolved solids. Water from most springs and seeps in the mountains contains a few hundred to several hundred milligrams per liter of dissolved solids. Water from large springs that probably discharge from interbasin flow systems typically contains between 500 and 1,000 milligrams per liter dissolved solids. Present sites of intensive use by man are supplied by springs, with the exception of the Stovepipe Wells Hotel area. Potential sources of supply for this area include (1) Emigrant Spring area, (2) Cottonwood Spring, and (3) northern Mesquite Flat. (Woodard-USGS)

  19. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift.

    PubMed

    Hammond, William C; Blewitt, Geoffrey; Kreemer, Corné

    2016-10-01

    We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5-20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011-2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane.

  20. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift

    PubMed Central

    Blewitt, Geoffrey; Kreemer, Corné

    2016-01-01

    Abstract We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5–20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011–2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane. PMID:27917328

  1. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift

    NASA Astrophysics Data System (ADS)

    Hammond, William C.; Blewitt, Geoffrey; Kreemer, Corné

    2016-10-01

    We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5-20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011-2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane.

  2. Water regime of Playa Lakes from southern Spain: conditioning factors and hydrological modeling.

    PubMed

    Moral, Francisco; Rodriguez-Rodriguez, Miguel; Beltrán, Manuel; Benavente, José; Cifuentes, Victor Juan

    2013-07-01

    Andalusia's lowland countryside has a network of small geographically isolated playa lakes scattered across an area of 9000 km2 whose watersheds are mostly occupied by clayey rocks. The hydrological model proposed by the authors seeks to find equilibrium among usefulness, simplicity, and applicability to isolated playas in a semiarid context elsewhere. Based in such model, the authors have used monthly climatic data, water stage measurements, and the basin morphometry of a particular case (Los Jarales playa lake) to calibrate the soil water budget in the catchment and the water inputs from the watershed (runoff plus groundwater flow) at different scales, from monthly to daily. After the hydrologic model was calibrated, the authors implemented simulations with the goal of reproducing the past hydrological dynamics and forecasting water regime changes that would be caused by a modification of the wetland morphometry.

  3. Three-dimensional geologic mapping of the Cenozoic basin fill, Amargosa Desert basin, Nevada and California

    USGS Publications Warehouse

    Taylor, Emily M.; Sweetkind, Donald S.

    2014-01-01

    Understanding the subsurface geologic framework of the Cenozoic basin fill that underlies the Amargosa Desert in southern Nevada and southeastern California has been improved by using borehole data to construct three-dimensional lithologic and interpreted facies models. Lithologic data from 210 boreholes from a 20-kilometer (km) by 90-km area were reduced to a limited suite of descriptors based on geologic knowledge of the basin and distributed in three-dimensional space using interpolation methods. The resulting lithologic model of the Amargosa Desert basin portrays a complex system of interfingered coarse- to fine-grained alluvium, playa and palustrine deposits, eolian sands, and interbedded volcanic units. Lithologic units could not be represented in the model as a stacked stratigraphic sequence due to the complex interfingering of lithologic units and the absence of available time-stratigraphic markers. Instead, lithologic units were grouped into interpreted genetic classes, such as playa or alluvial fan, to create a three-dimensional model of the interpreted facies data. Three-dimensional facies models computed from these data portray the alluvial infilling of a tectonically formed basin with intermittent internal drainage and localized regional groundwater discharge. The lithologic and interpreted facies models compare favorably to resistivity, aeromagnetic, and geologic map data, lending confidence to the interpretation.

  4. Laboratory Studies of the Cloud Droplet Activation Properties and Corresponding Chemistry of Saline Playa Dust

    NASA Astrophysics Data System (ADS)

    Gaston, C.; Pratt, K.; Suski, K. J.; May, N.; Gill, T. E.; Prather, K. A.

    2016-12-01

    Saline playas (dried lake beds) emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dust for cloud formation, several models assume that dust is non-hygroscopic highlighting the need for measurements to clarify the role of dust from multiple sources in aerosol-cloud-climate interactions. Here we present water uptake measurements onto playa dust represented by the hygroscopicity parameter κ, which ranged from 0.002 ± 0.001 to 0.818 ± 0.094. Single-particle measurements made using an aircraft-aerosol time-of-flight mass spectrometer (A-ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that dust composition plays in water uptake. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values; however, several samples were poorly predicted using bulk particle composition. The lack of measurements/model agreement using this method and the strong correlations between κ and single-particle data are suggestive of chemical heterogeneities as a function of particle size and/or chemically distinct particle surfaces that dictate the water uptake properties of playa dust particles. Overall, our results highlight the ability of playa dust particles to act as cloud condensation nuclei that should be accounted for in models.

  5. Big Spring spinedace and associated fish populations and habitat conditions in Condor Canyon, Meadow Valley Wash, Nevada

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie S.; Dixon, Chris

    2011-01-01

    Executive Summary: This project was designed to document habitat conditions and populations of native and non-native fish within the 8-kilometer Condor Canyon section of Meadow Valley Wash, Nevada, with an emphasis on Big Spring spinedace (Lepidomeda mollispinis pratensis). Other native fish present were speckled dace (Rhinichthys osculus) and desert sucker (Catostomus clarki). Big Spring spinedace were known to exist only within this drainage and were known to have been extirpated from a portion of their former habitat located downstream of Condor Canyon. Because of this extirpation and the limited distribution of Big Spring spinedace, the U.S. Fish and Wildlife Service listed this species as threatened under the Endangered Species Act in 1985. Prior to our effort, little was known about Big Spring spinedace populations or life histories and habitat associations. In 2008, personnel from the U.S. Geological Survey's Columbia River Research Laboratory began surveys of Meadow Valley Wash in Condor Canyon. Habitat surveys characterized numerous variables within 13 reaches, thermologgers were deployed at 9 locations to record water temperatures, and fish populations were surveyed at 22 individual sites. Additionally, fish were tagged with Passive Integrated Transponder (PIT) tags, which allowed movement and growth information to be collected on individual fish. The movements of tagged fish were monitored with a combination of recapture events and stationary in-stream antennas, which detected tagged fish. Meadow Valley Wash within Condor Canyon was divided by a 12-meter (m) waterfall known as Delmue Falls. About 6,100 m of stream were surveyed downstream of the falls and about 2,200 m of stream were surveyed upstream of the falls. Although about three-quarters of the surveyed stream length was downstream of Delmue Falls, the highest densities and abundance of native fish were upstream of the falls. Big Spring spinedace and desert sucker populations were highest near the

  6. The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voegele, Michael; McCracken, Robert; Herrera, Troy

    As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening withmore » the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)« less

  7. The Pilot Valley shoreline: An early record of Lake Bonneville dynamics: Chapter 3

    USGS Publications Warehouse

    Miller, David; Phelps, Geoffrey

    2016-01-01

    The Pilot Valley shoreline is named for distinctive gravel beaches on the eastern, northern, and western sides of Pilot Valley playa, Utah. The shoreline has been identified across the Bonneville basin where it is characterized by one to three beach crests between ~ 1305 and 1309 m elevation, all overlain by deep-water marl of Lake Bonneville. It thus represents the lowest and earliest recognized shoreline of Lake Bonneville. Features of the shoreline indicate that both high wave energy and high stream sediment discharge contributed to shoreline development. Basin hypsometry did not play a role in the development of the shoreline, which must have been caused by a combination of climatically driven hydrologic and storm factors, such as reduced precipitation that stabilized lake level and increase in storm-driven wave energy. The Pilot Valley shoreline is poorly dated at about 30 ka. If it is somewhat older, correlation with Greenland Interstadial 5.1 at 30.8–30.6 ka could explain the stabilization of lake level.

  8. Groundwater quality in the Owens Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  9. DISTRIBUTIONS OF AIRBORNE AGRICULTURAL CONTAMINANTS RELATIVE TO AMPHIBIAN POPULATIONS IN THE SOUTHERN SIERRA NEVADA, CA

    EPA Science Inventory

    The Sierra Nevada mountain range lies adjacent to one of the heaviest pesticide use areas in the USA, the Central Valley of California. Because of this proximity, concern has arisen that agricultural pesticides, in addition to other contaminants, are adversely affecting the natur...

  10. Comparison of Infiltration Flux in Playa Lakes in Grassland and Cropland Basins, Southern High Plains of Texas

    USDA-ARS?s Scientific Manuscript database

    Playas are the dominant wetland type on the Southern High Plains (SHP) of Texas and capture runoff during periods of heavy rainfall. Observing the hydrologic functions of playa wetlands is important to evaluate their ecological services, which include encouragement of species biodiversity and recha...

  11. Regional potentiometric-surface map of the Great Basin carbonate and alluvial aquifer system in Snake Valley and surrounding areas, Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada

    USGS Publications Warehouse

    Gardner, Philip M.; Masbruch, Melissa D.; Plume, Russell W.; Buto, Susan G.

    2011-01-01

    Water-level measurements from 190 wells were used to develop a potentiometric-surface map of the east-central portion of the regional Great Basin carbonate and alluvial aquifer system in and around Snake Valley, eastern Nevada and western Utah. The map area covers approximately 9,000 square miles in Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada. Recent (2007-2010) drilling by the Utah Geological Survey and U.S. Geological Survey has provided new data for areas where water-level measurements were previously unavailable. New water-level data were used to refine mapping of the pathways of intrabasin and interbasin groundwater flow. At 20 of these locations, nested observation wells provide vertical hydraulic gradient data and information related to the degree of connection between basin-fill aquifers and consolidated-rock aquifers. Multiple-year water-level hydrographs are also presented for 32 wells to illustrate the aquifer system's response to interannual climate variations and well withdrawals.

  12. Stratigraphic Units in Las Vegas Valley, Nevada

    NASA Astrophysics Data System (ADS)

    Donovan, D.

    2013-12-01

    Using 25 well logs, 15 of which also had accompanying geophysical and aquifer test data were used to describe and establish three alloformations including the Tule Spring and Paradise Valley Alloformations and four aquiformations, the most well defined being, the Las Vegas Springs Aquiformation, in the west central part of the bolson (Donovan, 1996), primarily in Township 20 South, Range 60 East, Mount Diablo Baseline and Meridian (MDBLM), with the stratotypes designated in T20S, R61E S31 MDBLM (36° 9'59.89"N 115°11'26.34"W). The allostratigraphic units were developed using the recommendations in the North American Code of Stratigraphic Nomenclature (NACSN, 1983 and 2005). The hydrostratigraphic units were developed following the recommendations of Seaber (1992). The units constitute the bulk of the upper 500 meter section. Twenty additional wells in the same geographic area, drilled and completed between 1995 and 2005 with detailed geologic and hydrologic information provided confirmation of these units. The proposed stratigraphic units are not part of either, and are located between, the two previously named and non-contiguous formations in the bolson (the Miocene Muddy Creek Formation and the late Pleistocene Las Vegas Formation) (Longwell et al 1965). Las Vegas Valley contains a metropolitan area of approximately two million people. The deeper part of the alluvial basin below 300 ft below ground surface is of interest for supply and storage. The shallower part is of interest for water quality and the interaction between the ground water system and engineered structures.

  13. Earthquakes in the Classroom, Las Vegas, NV: The Nevada Educational Seismic Network (NESN)

    NASA Astrophysics Data System (ADS)

    Hopkins, J.; Snelson, C. M.; Zaragoza, S. A.; Smith, K.; Depolo, D.

    2002-12-01

    Geophysics is a term guaranteed to strike fear into the heart of the bravest high school science student. Using math to describe the earth can involve complex equations that can only be deciphered by enigmatic computer programs. But high school science students in the Las Vegas Valley have been given a unique opportunity to gather important research information while learning about geophysics, real-time data collection, and Internet communications in a less threatening environment. Three seismograph stations funded by the Department of Energy and the University of Nevada, Las Vegas have been installed in three different high schools in the Clark County School District. These three stations form a triangle in the Las Vegas Valley basin covering areas where the basin depths change significantly. The geophones are buried outside and a cable connects the sensors and GPS receiver to a digitizer on a local PC. The data is transmitted continuously in real-time via Internet communications protocols to the Seismic Explorer Monitoring Network. There it is available to all schools and to researchers who will analyze the data. These short-period geophones will record small local earthquakes and larger more distant events contributing to real-time seismic network operations in southern Nevada. Students at a school site are able to see live real-time data from other school stations as well as from seismograph stations in southern Nevada, the western US, and the world. Mentored by researchers at the University of Nevada, Reno and University of Nevada, Las Vegas, the teachers and students conduct simple waveform analysis to determine earthquake locations and magnitudes and operate the stations in this cooperative research effort. The goal of this partnership between secondary and university educational systems is to create a successful alliance that will benefit the research community as well as the classroom teacher and his/her students. Researchers will use the data collected

  14. Ractopamine in particulate matter emitted from beef cattle feedyards and playa wetlands in the Central Plains.

    PubMed

    Wooten, Kimberly J; Sandoz, Melissa A; Smith, Philip N

    2018-04-01

    Beef cattle in the United States are routinely administered ractopamine, a β-adrenergic receptor agonist, to enhance growth. The present study is the first to quantify ractopamine in feedyard-emitted particulate matter and playa wetlands near feedyards. Ractopamine was present in 92% of particulate matter samples, 16% of playa sediment samples, and 3% of playa water samples, at maximum concentrations of 4.7 μg/g, 5.2 ng/g (dry wt), and 271 ng/L, respectively. These data suggest that aerial transmission and deposition of particulate matter is a transport mechanism for ractopamine between feedyards and aquatic systems in the region. Environ Toxicol Chem 2018;37:970-974. © 2017 SETAC. © 2017 SETAC.

  15. Environmental Assessment for Travis AFB C-17 Use of Instrument Routes 264, 275, 280, 281 , and 282 in Central Nevada

    DTIC Science & Technology

    2013-09-01

    alteration of surface water flows that would change existing downstream flows . Although wetlands occur within central Nevada, none of the activities...Range Ecoregion is internally drained by rivers flowing off the east slopes of the Sierra Nevada and by the Humboldt River, one of the longest...Valley and near Humboldt Lake are at the terminus of rivers; they receive return flow from flood-irrigated fields which, in turn, degrades water

  16. Earthquake Hazard Class Mapping by Parcel in Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Pancha, A.; Pullammanappallil, S.; Louie, J. N.; Hellmer, W. K.

    2011-12-01

    Clark County, Nevada completed the very first effort in the United States to map earthquake hazard class systematically through an entire urban area. The map is used in development and disaster response planning, in addition to its direct use for building code implementation and enforcement. The County contracted with the Nevada System of Higher Education to classify about 500 square miles including urban Las Vegas Valley, and exurban areas considered for future development. The Parcel Map includes over 10,000 surface-wave array measurements accomplished over three years using Optim's SeisOpt° ReMi measurement and processing techniques adapted for large scale data. These array measurements classify individual parcels on the NEHRP hazard scale. Parallel "blind" tests were conducted at 93 randomly selected sites. The rms difference between the Vs30 values yielded by the blind data and analyses and the Parcel Map analyses is 4.92%. Only six of the blind-test sites showed a difference with a magnitude greater than 10%. We describe a "C+" Class for sites with Class B average velocities but soft surface soil. The measured Parcel Map shows a clearly definable C+ to C boundary on the west side of the Valley. The C to D boundary is much more complex. Using the parcel map in computing shaking in the Valley for scenario earthquakes is crucial for obtaining realistic predictions of ground motions.

  17. Aquifer systems in the Great Basin region of Nevada, Utah, and adjacent states: A study plan

    USGS Publications Warehouse

    Harrill, James R.; Welch, Alan H.; Prudic, David E.; Thomas, James M.; Carman, Rita L.; Plume, Russell W.; Gates, Joseph S.; Mason, James L.

    1983-01-01

    The Great Basin Regional Aquifer Study includes about 140,000 square miles in parts of Nevada, Utah, California, Idaho, Oregon, and Arizona. Within that area, 240 hydrographic areas occupy structural depressions formed primarily by basin-and-range faulting. The principal aquifers are in basin- fill deposits; however, permeable carbonate rocks underlie valleys in much of eastern Nevada and western Utah and are significant regional aquifers. Anticipated future water needs require a better understanding of the resource so that wise management will be possible. In October 1980, the U.S Geological Survey started a 4-year study to (1) describe the ground-water systems as they existed under natural conditions and as they exist today, (2) analyze the changes that have led to the systems' present condition, (3) tie the results of this and previous studies together in a regional analysis, and (4) provide means by which effects of future ground-water development can be estimated.A plan of work is presented that describes the general approach to be taken in this study. It defines (1) the major task necessary to meet objectives and (2) constraints on the scope of work. The approach has been strongly influenced by the diverse nature of ground-water flow systems and the large number of basins. A detailed appraisal of 240 individual areas would require more resources than are available. Consequently, the general approach is to study selected "typical" areas and key hydrologic processes. Effort during the first 3 years will be directed toward describing the regional hydrology, conducting detailed studies of "type" areas, and studying selected hydrologic processes. Effort during the final year will be directed toward developing a regional analyses of results.Special studies that will address hydrologic processes, key components of the ground-water system, and improved use of technology include evaluations of regional geochemistry, regional hydrogeology, recharge, ground

  18. Late quaternary slip-rate variations along the Warm Springs Valley fault system, northern Walker Lane, California-Nevada border

    USGS Publications Warehouse

    Gold, Ryan; dePolo, Craig; Briggs, Richard W.; Crone, Anthony

    2013-01-01

    The extent to which faults exhibit temporally varying slip rates has important consequences for models of fault mechanics and probabilistic seismic hazard. Here, we explore the temporal behavior of the dextral‐slip Warm Springs Valley fault system, which is part of a network of closely spaced (10–20 km) faults in the northern Walker Lane (California–Nevada border). We develop a late Quaternary slip record for the fault using Quaternary mapping and high‐resolution topographic data from airborne Light Distance and Ranging (LiDAR). The faulted Fort Sage alluvial fan (40.06° N, 119.99° W) is dextrally displaced 98+42/-43 m, and we estimate the age of the alluvial fan to be 41.4+10.0/-4.8 to 55.7±9.2  ka, based on a terrestrial cosmogenic 10Be depth profile and 36Cl analyses on basalt boulders, respectively. The displacement and age constraints for the fan yield a slip rate of 1.8 +0.8/-0.8 mm/yr to 2.4 +1.2/-1.1 mm/yr (2σ) along the northern Warm Springs Valley fault system for the past 41.4–55.7 ka. In contrast to this longer‐term slip rate, shorelines associated with the Sehoo highstand of Lake Lahontan (~15.8  ka) adjacent to the Fort Sage fan are dextrally faulted at most 3 m, which limits a maximum post‐15.8 ka slip rate to 0.2  mm/yr. These relations indicate that the post‐Lahontan slip rate on the fault is only about one‐tenth the longer‐term (41–56 ka) average slip rate. This apparent slip‐rate variation may be related to co‐dependent interaction with the nearby Honey Lake fault system, which shows evidence of an accelerated period of mid‐Holocene earthquakes.

  19. Evidence of spatial and temporal slip partitioning in the northern Central Nevada Seismic Belt from ground-based imaging of offset landforms

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Cowgill, E.; Kreylos, O.

    2010-12-01

    Measurements derived from high-resolution terrestrial LiDAR (t-Lidar) surveys of landforms displaced during the 16 December 1954 Mw 6.8 Dixie Valley earthquake in central Nevada confirm the absence of historical strike slip north of latitude 39.5°N. This conclusion has implications for the effect of stress changes on the spatial and temporal evolution of the central Nevada seismic belt. The Dixie Valley fault is a low-angle, east-dipping, range-bounding normal fault located in the central-northern reach of the central Nevada seismic belt (CNSB), a ~N-S trending group of historical ruptures that may represent a migration of northwest trending right-lateral Pacific-North American plate motion into central Nevada. Migration of a component of right slip eastward from the eastern California shear zone/Walker lane to the CNSB is supported by the presence of pronounced right-lateral motion observed in most of the CNSB earthquakes south of the Dixie Valley fault and by GPS data spanning the CNSB. Such eastward migration and northward propagation of right-slip into the CNSB predicts a component of lateral slip on the Dixie Valley fault. However, landforms offsets have previously been reported to indicate only purely normal slip in the 1954 Dixie Valley event. To check the direction of motion during the Dixie Valley earthquake using higher precision methods than previously employed, we collected t-LiDAR data to quantify displacements of two well-preserved debris flow chutes separated along strike by ~10 km and at locations where the local fault strike diverges by >10° from the regional strike. Our highest confidence measurements yield a horizontal slip vector azimuth of ~107° at both sites, orthogonal to the average regional fault strike of ~17°. Thus, we find no compelling evidence for regional lateral motion in our other measurements. This result indicates that continued northward propagation of right lateral slip from its diffuse termination at the northern end of the

  20. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    USGS Publications Warehouse

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  1. Structural organization of process zones in upland watersheds of central Nevada and its influence on basin connectivity, dynamics, and wet meadow complexes

    Treesearch

    Jerry R. Miller; Mark L. Lord; Lionel F. Villarroel; Dru Germanoski; Jeanne C. Chambers

    2012-01-01

    The drainage network within upland watersheds in central Nevada can be subdivided into distinct zones each dominated by a unique set of processes on the basis of valley form, the geological materials that comprise the valley floor, and the presence or absence of surficial channels. On hillslopes, the type and structure (frequency, length, and spatial arrangement) of...

  2. Geochemical Analyses of Geologic Materials from Areas of Critical Environmental Concern, Clark and Nye Counties, Nevada

    USGS Publications Warehouse

    Ludington, Steve; Castor, Stephen B.; Budahn, James R.; Flynn, Kathryn S.

    2005-01-01

    INTRODUCTION An assessment of known and undiscovered mineral resources of selected areas administered by the Bureau of Land Management (BLM) in Clark and Nye Counties, Nevada was conducted by the U.S. Geological Survey (USGS), Nevada Bureau of Mines and Geology (NBMG), and University of Nevada, Las Vegas (UNLV). The purpose of this work was to provide the BLM with information for use in their long-term planning process in southern Nevada so that they can make better-informed decisions. The results of the assessment are in Ludington (2006). Existing information about the areas, including geology, geophysics, geochemistry, and mineral-deposit information was compiled, and field examinations of selected areas and mineral occurrences was conducted. This information was used to determine the geologic setting, metallogenic characteristics, and mineral potential of the areas. Twenty-five Areas of Critical Environmental Concern (ACECs) were identified by BLM as the object of this study. They range from tiny (less than one km2) to large (more than 1,000 km2). The location of the study areas is shown on Figure 1. This report includes geochemical data for rock samples collected by staff of the USGS and NBMG in these ACECs and nearby areas. Samples have been analyzed from the Big Dune, Ash Meadows, Arden, Desert Tortoise Conservation Center, Coyote Springs Valley, Mormon Mesa, Virgin Mountains, Gold Butte A and B, Whitney Pockets, Rainbow Gardens, River Mountains, and Piute-Eldorado Valley ACECs.

  3. Nevada Monitoring System to Assess Climate Variability and Change

    NASA Astrophysics Data System (ADS)

    Devitt, D. A.; Arnone, J.; Biondi, F.; Fenstermaker, L. F.; Saito, L.; Young, M.; Riddle, B.; Strachan, S. D.; Bird, B.; McCurdy, G.; Lyles, B. F.

    2010-12-01

    The Nevada System of Higher Education (University of Nevada Las Vegas, University of Nevada Reno and the Desert Research Institute) was awarded a multiyear NSF EPSCoR grant to support infrastructure associated with regional climate change research. The overall project is comprised of 5 components: education, cyberinfrastructure, policy, climate modeling and water/ecology. The water and ecology components are using their infrastructure funding for the assessment of climate variability and change on ecosystem function and hydrologic services. A series of 10 m tall towers are under construction and are being equipped with a wide array of sensors to monitor atmospheric, soil and plant parameters over time. The towers are located within the Mojave and Great Basin Deserts in two transects; the Mojave Desert transect is located in the southern Nevada Sheep Mountain Range and the Great Basin transect is located in the east central Nevada Snake Mountain Range. The towers are centrally positioned in well-defined vegetation zones. In southern Nevada these zones are represented by the following plant species: Creosote/Bursage (Creosotebush scrub zone); Blackbrush/Joshua Tree (Blackbrush zone); Pinyon/ Juniper (pygmy conifer zone), Ponderosa Pine (montane zone) and Bristlecone Pine (subalpine zone). The Snake Mountain transect incorporates the eastern and western valleys on both sides of the mountain range. The vegetation zones are represented by: Greasewood and mixed shrub (salt desert zone); Big Sage (sagebrush zone); Pinyon/Juniper (pygmy conifer zone); White/Douglas Fir, Ponderosa Pine and Aspen (montane zone); and Bristlecone/Limber Pine and Engelmann Spruce (subalpine zone). We are currently in the third year of funding with a goal of having the majority of towers fully operational by winter 2010. In close collaboration with our cyberinfrastructure component team, all data acquired from the transect monitoring stations will be made available to other researchers and the

  4. New Geologic Map and Structural Cross Sections of the Death Valley Extended Terrain (southern Sierra Nevada, California to Spring Mountains, Nevada): Toward 3D Kinematic Reconstructions

    NASA Astrophysics Data System (ADS)

    Lutz, B. M.; Axen, G. J.; Phillips, F. M.

    2017-12-01

    Tectonic reconstructions for the Death Valley extended terrain (S. Sierra Nevada to Spring Mountains) have evolved to include a growing number of offset markers for strike-slip fault systems but are mainly map view (2D) and do not incorporate a wealth of additional constraints. We present a new 1:300,000 digital geologic map and structural cross sections, which provide a geometric framework for stepwise 3D reconstructions of Late Cenozoic extension and transtension. 3D models will decipher complex relationships between strike-slip, normal, and detachment faults and their role in accommodating large magnitude extension/rigid block rotation. Fault coordination is key to understanding how extensional systems and transform margins evolve with changing boundary conditions. 3D geometric and kinematic analysis adds key strain compatibility unavailable in 2D reconstructions. The stratigraphic framework of Fridrich and Thompson (2011) is applied to rocks outside of Death Valley. Cenozoic basin deposits are grouped into 6 assemblages differentiated by age, provenance, and bounding unconformities, which reflect Pacific-North American plate boundary events. Pre-Cenozoic rocks are grouped for utility: for example, Cararra Formation equivalents are grouped because they form a Cordilleran thrust decollement zone. Offset markers are summarized in the associated tectonic map. Other constraints include fault geometries and slip rates, age, geometry and provenance of Cenozoic basins, gravity, cooling histories of footwalls, and limited seismic/well data. Cross sections were constructed parallel to net-transport directions of fault blocks. Surface fault geometries were compiled from previous mapping and projected to depth using seismic/gravity data. Cooling histories of footwalls guided geometric interpretation of uplifted detachment footwalls. Mesh surfaces will be generated from 2D section lines to create a framework for stepwise 3D reconstruction of extension and transtension in

  5. Nutrient fluxes in forests of the eastern Sierra Nevada: comparisons with humid forest systems

    Treesearch

    Dale W. Johnson; Richard B. Susfalk; Randy A. Dahlgreen; Virginia Boucher; Andrzej Bytnerowicz

    1998-01-01

    Preliminary results of studies on nutrient fluxes in forests of the eastern Sierra Nevada were compared to those from more humid and polluted ecosystems. Snowmelt, soil solution, soil, and streamwater were collected from Jeffrey and lodgepole pine (Pinus jeffreyii [Grev. and Balf.] and Pinus contorta Dougl.) stands in Little Valley...

  6. Compilation of selected hydrologic data from the MX missile-siting investigation, east-central Nevada and western Utah

    USGS Publications Warehouse

    Bunch, Robin L.; Harrill, James R.

    1984-01-01

    Construction, water-level, and water-quality data for wells and site-description, discharge, and water-quality data for springs and streams in 37 hydrographic areas in Nevada and Utah are presented in this report. These data are grouped in tables, by area. Additional tables contain a summary of data and aquifer-test results for wells in valley-fill deposits at 42 sites in Nevada and Utah and for wells in carbonate rocks at five sites in Nevada. The data in this report were gathered by Ertec Western, Inc., or their subcontractors, for the U.S. Department of the Air Force as part of the MX missile-siting project and were originally presented in a number of individual reports.

  7. Next-Level ShakeZoning for Earthquake Hazard Definition in Nevada

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Savran, W. H.; Flinchum, B. A.; Dudley, C.; Prina, N.; Pullammanappallil, S.; Pancha, A.

    2011-12-01

    We are developing "Next-Level ShakeZoning" procedures tailored for defining earthquake hazards in Nevada. The current Federally sponsored tools- the USGS hazard maps and ShakeMap, and FEMA HAZUS- were developed as statistical summaries to match earthquake data from California, Japan, and Taiwan. The 2008 Wells and Mogul events in Nevada showed in particular that the generalized statistical approach taken by ShakeMap cannot match actual data on shaking from earthquakes in the Intermountain West, even to first order. Next-Level ShakeZoning relies on physics and geology to define earthquake shaking hazards, rather than statistics. It follows theoretical and computational developments made over the past 20 years, to capitalize on detailed and specific local data sets to more accurately model the propagation and amplification of earthquake waves through the multiple geologic basins of the Intermountain West. Excellent new data sets are now available for Las Vegas Valley. Clark County, Nevada has completed the nation's very first effort to map earthquake hazard class systematically through an entire urban area using Optim's SeisOpt° ReMi technique, which was adapted for large-scale data collection. Using the new Parcel Map in computing shaking in the Valley for scenario earthquakes is crucial for obtaining realistic predictions of ground motions. In an educational element of the project, a dozen undergraduate students have been computing 50 separate earthquake scenarios affecting Las Vegas Valley, using the Next-Level ShakeZoning process. Despite affecting only the upper 30 meters, the Vs30 geotechnical shear-velocity from the Parcel Map shows clear effects on 3-d shaking predictions computed so far at frequencies from 0.1 Hz up to 1.0 Hz. The effect of the Parcel Map on even the 0.1-Hz waves is prominent even with the large mismatch of wavelength to geotechnical depths. Amplifications and de-amplifications affected by the Parcel Map exceed a factor of two, and are

  8. Water-Surface Elevations, Discharge, and Water-Quality Data for Selected Sites in the Warm Springs Area near Moapa, Nevada

    USGS Publications Warehouse

    Beck, David A.; Ryan, Roslyn; Veley, Ronald J.; Harper, Donald P.; Tanko, Daron J.

    2006-01-01

    The U.S. Geological Survey, in cooperation with Southern Nevada Water Authority and the Nevada Division of Water Resources, operates and maintains a surface-water monitoring network of 6 continuous-record stream-flow gaging stations and 11 partial-record stations in the Warm Springs area near Moapa, Nevada. Permanent land-surface bench marks were installed within the Warm Springs area by the Las Vegas Valley Water District, the Southern Nevada Water Authority, and the U.S. Geological Survey to determine water-surface elevations at all network monitoring sites. Vertical datum elevation and horizontal coordinates were established for all bench marks through a series of Differential Global Positioning System surveys. Optical theodolite surveys were made to transfer Differential Global Positioning System vertical datums to reference marks installed at each monitoring site. The surveys were completed in June 2004 and water-surface elevations were measured on August 17, 2004. Water-surface elevations ranged from 1,810.33 feet above North American Vertical Datum of 1988 at a stream-gaging station in the Pederson Springs area to 1,706.31 feet at a station on the Muddy River near Moapa. Discharge and water-quality data were compiled for the Warm Springs area and include data provided by the U.S. Geological Survey, Nevada Division of Water Resources, U.S. Fish and Wildlife Service, Moapa Valley Water District, Desert Research Institute, and Converse Consultants. Historical and current hydrologic data-collection networks primarily are related to changes in land- and water-use activities in the Warm Springs area. These changes include declines in ranching and agricultural use, the exportation of water to other areas of Moapa Valley, and the creation of a national wildlife refuge. Water-surface elevations, discharge, and water-quality data compiled for the Warm Springs area will help identify (1) effects of changing vegetation within the former agricultural lands, (2) effects

  9. Airborne Pesticides as an Unlikely Cause for Population Declines of Alpine Frogs in the Sierra Nevada, California

    EPA Science Inventory

    Airborne pesticides from the Central Valley of California have been implicated as a cause for population declines of several amphibian species, with the strongest evidence for the mountain yellow-legged frog complex (Rana muscosa and R. sierrae) in the Sierra Nevada. We measured...

  10. Three-dimensional crustal structure of the southern Sierra Nevada from seismic fan profiles and gravity modeling

    USGS Publications Warehouse

    Fliedner, M.M.; Ruppert, S.; Malin, P.E.; Park, S.K.; Jiracek, G.; Phinney, R.A.; Saleeby, J.B.; Wernicke, B.; Clayton, R.; Keller, Rebecca Hylton; Miller, K.; Jones, C.; Luetgert, J.H.; Mooney, W.D.; Oliver, H.; Klemperer, S.L.; Thompson, G.A.

    1996-01-01

    Traveltime data from the 1993 Southern Sierra Nevada Continental Dynamics seismic refraction experiment reveal low crustal velocities in the southern Sierra Nevada and Basin and Range province of California (6.0 to 6.6 km/s), as well as low upper mantle velocities (7.6 to 7.8 km/s). The crust thickens from southeast to northwest along the axis of the Sierra Nevada from 27 km in the Mojave Desert to 43 km near Fresno, California. A crustal welt is present beneath the Sierra Nevada, but the deepest Moho is found under the western slopes, not beneath the highest topography. A density model directly derived from the crustal velocity model but with constant mantle density satisfies the pronounced negative Bouguer anomaly associated with the Sierra Nevada, but shows large discrepancies of >50 mgal in the Great Valley and in the Basin and Range province. Matching the observed gravity with anomalies in the crust alone is not possible with geologically reasonable densities; we require a contribution from the upper mantle, either by lateral density variations or by a thinning of the lithosphere under the Sierra Nevada and the Basin and Range province. Such a model is consistent with the interpretation that the uplift of the present Sierra Nevada is caused and dynamically supported by asthenospheric upwelling or lithospheric thinning under the Basin and Range province and eastern Sierra Nevada.

  11. Flood of January 1997 in the Carson River Basin, California and Nevada

    USGS Publications Warehouse

    Thomas, Karen A.; Williams, Rhea P.

    1997-01-01

    In late December 1996, storms built up a large snowpack (more than 180 percent of normal) in the higher altitudes of the Sierra Nevada (Daniel Greenlee, Natural Resource Conservation Service, oral commun., 1997) and also covered the valleys along the eastern Sierra Nevada. Then, a subtropical storm system originating in the central Pacific Ocean near the Hawaiian Islands brought heavy, unseasonably warm rain to the Sierra Nevada from December 30, 1996, through January 2, 1997. During this period, the Natural Resource Conservation Service recorded 16.4 inches (provisional data; Daniel Greenlee, oral commun., 1997) of precipitation at Ebbetts Pass, Calif. (8,700 feet above sea level), and the National Weather Service recorded 3.5 inches (National Oceanic and Atmospheric Administration, National Climate Data Center, written commun., 1997) at Minden (4,710 feet above sea level). Rain falling below about 10,000 feet depleted about 20 percent of the high-altitude snowpack and melted about 80 percent of the snowpack below about 7,000 feet.

  12. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    The trails have some curious features. Sometimes the clay gets pushed into a mound at the trail's end, as in this photo. Photo credit: NASA/GSFC/Cynthia Cheung To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  13. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    In some cases, the trail starts narrow and gets wider, as in this photo. Photo credit: NASA/GSFC/Leva McIntire/LPSA intern To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  14. Uranium in Holocene valley-fill sediments, and uranium, radon, and helium in waters, Lake Tahoe-Carson Range area, Nevada and California, U.S.A.

    USGS Publications Warehouse

    Otton, J.K.; Zielinski, R.A.; Been, J.M.

    1989-01-01

    Uraniferous Holocene sediments occur in the Carson Range of Nevada and California, U.S.A., between Lake Tahoe and Carson Valley. The hosts for the uranium include peat and interbedded organic-rich sand, silt, and mud that underly valley floors, fens, and marshes along stream valleys between the crest of the range and the edge of Lake Tahoe. The known uranium accumulations extend along the Carson Range from the area just southeast of South Lake Tahoe northward to the area just east of Carson City; however, they almost certainly continue beyond the study area to the north, west, and south. Due to the young age of the accumulations, uranium in them is in gross disequilibrium with its highly radioactive daughter products. These accumulations have thus escaped discovery with radiation detection equipment in the past. The uranium content of these sediments approaches 0.6 percent; however, the average is in the range of 300-500 ppm. Waters associated with these sediments locally contain as much as 177 ppb uranium. Modest levels of helium and radon also occur in these waters. Uraniferous waters are clearly entering the private and public water supply systems in some parts of the study area; however, it is not known how much uranium is reaching users of these water supplies. Many of the waters sampled in the study area exceed the published health effects guidance level of the Environmental Protection Agency. Regulatory standards for uranium in waters have not been published, however. Much uranium is stored in the sediments along these stream valleys. Estimates for a marsh and a fen along one drainage are 24,000 and 15,000 kg, respectively. The potential effects of man-induced environmental changes on the uranium are uncertain. Laboratory studies of uraniferous sediment rich in organic matter may allow us to evaluate the potential of liberating uranium from such sediments and creating transient increases in the level of uranium moving in water in the natural environment

  15. Digital Geologic Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Slate, Janet L.; Berry, Margaret E.; Rowley, Peter D.; Fridrich, Christopher J.; Morgan, Karen S.; Workman, Jeremiah B.; Young, Owen D.; Dixon, Gary L.; Williams, Van S.; McKee, Edwin H.; Ponce, David A.; Hildenbrand, Thomas G.; Swadley, W.C.; Lundstrom, Scott C.; Ekren, E. Bartlett; Warren, Richard G.; Cole, James C.; Fleck, Robert J.; Lanphere, Marvin A.; Sawyer, David A.; Minor, Scott A.; Grunwald, Daniel J.; Laczniak, Randell J.; Menges, Christopher M.; Yount, James C.; Jayko, Angela S.

    1999-01-01

    This digital geologic map of the Nevada Test Site (NTS) and vicinity, as well as its accompanying digital geophysical maps, are compiled at 1:100,000 scale. The map compilation presents new polygon (geologic map unit contacts), line (fault, fold axis, metamorphic isograd, dike, and caldera wall) and point (structural attitude) vector data for the NTS and vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California. The map area covers two 30 x 60-minute quadrangles-the Pahute Mesa quadrangle to the north and the Beatty quadrangle to the south-plus a strip of 7.5-minute quadrangles on the east side-72 quadrangles in all. In addition to the NTS, the map area includes the rest of the southwest Nevada volcanic field, part of the Walker Lane, most of the Amargosa Desert, part of the Funeral and Grapevine Mountains, some of Death Valley, and the northern Spring Mountains. This geologic map improves on previous geologic mapping of the same area (Wahl and others, 1997) by providing new and updated Quaternary and bedrock geology, new geophysical interpretations of faults beneath the basins, and improved GIS coverages. Concurrent publications to this one include a new isostatic gravity map (Ponce and others, 1999) and a new aeromagnetic map (Ponce, 1999).

  16. Silicification of holocene soils in northern Monitor Valley, Nevada

    NASA Astrophysics Data System (ADS)

    Chadwick, O. A.; Hendricks, D. M.; Nettleton, W. D.

    1989-02-01

    Chemical, physical, and microscopic data for three soils in the northern Monitor Valley are analyzed. The soils ranked in order of increasing age are: Mule, Rotinom, and Nayped. The procedures and techniques used to obtain and study that data are described. It is observed that: (1) redistribution of carbonate is detectable in all soils; (2) clay illuviation is insignificant in the Mule soil, weak but identifiable in the Rotinom soil, and significant in the Nayped soil; and (3) the maximum sodium adsorption ratio (SAR) and electrical conductivity (EC) for the Mule soil is between 64-89 cm, for the Rotinom soil the values are below 100 cm, and for Nayped the maximum SAR values range from 51-117 cm and maximum EC values are between 117-152 cm. The relationship between volcanic glass weathering and the amount of silica cementation in the soils is studied. It is noted that silicification of Monitor Valley holocene soils is due to there being enough moisture to release silica from volcanic glass, but not enough to leach the weathering products from the profile.

  17. Silicification of holocene soils in northern Monitor Valley, Nevada

    NASA Technical Reports Server (NTRS)

    Chadwick, O. A.; Hendricks, D. M.; Nettleton, W. D.

    1989-01-01

    Chemical, physical, and microscopic data for three soils in the northern Monitor Valley are analyzed. The soils ranked in order of increasing age are: Mule, Rotinom, and Nayped. The procedures and techniques used to obtain and study that data are described. It is observed that: (1) redistribution of carbonate is detectable in all soils; (2) clay illuviation is insignificant in the Mule soil, weak but identifiable in the Rotinom soil, and significant in the Nayped soil; and (3) the maximum sodium adsorption ratio (SAR) and electrical conductivity (EC) for the Mule soil is between 64-89 cm, for the Rotinom soil the values are below 100 cm, and for Nayped the maximum SAR values range from 51-117 cm and maximum EC values are between 117-152 cm. The relationship between volcanic glass weathering and the amount of silica cementation in the soils is studied. It is noted that silicification of Monitor Valley holocene soils is due to there being enough moisture to release silica from volcanic glass, but not enough to leach the weathering products from the profile.

  18. Preliminary results of hydrogeologic investigations Humboldt River Valley, Winnemucca, Nevada

    USGS Publications Warehouse

    Cohen, Philip M.

    1964-01-01

    Most of the ground water of economic importance and nearly all the ground water closely associated with the flow o# the Humboldt River in the. 40-mile reach near Winnemucca, Nev., are in unconsolidated sedimentary deposits. These deposits range in age from Pliocene to Recent and range in character from coarse poorly sorted fanglomerate to lacustrine strata of clay, silt, sand, and gravel. The most permeable deposit consists of sand and gravel of Lake Lahontan age--the so-called medial gravel unit--which is underlain and overlain by fairly impermeable silt and clay also of Lake Lahontan age. The ultimate source of nearly all the water in the study area is precpitation within the drainage basin of the Humboldt River. Much of this water reaches the study, area as flow or underflow of the Humboldt River and as underflow from other valleys tributary to the study area. Little if any flow from the tributary streams in the study area usually reaches the Humboldt River. Most of the tributary streamflow within the study area evaporates or is transpired by vegetation, but a part percolates downward through unconsolidated deposits of the alluvial fans flanking the mountains and move downgradient as ground-water underflow toward the Humboldt River. Areas that contribute significant amounts of ground-water underflow to. the valley of the Humboldt River within the study area are (1) the valley of the Humboldt River upstream from the study area, (2) the Pole Creek-Rock Creek area, (3) Paradise Valley, and (4) Grass Valley and the northwestern slope of the Sonoma Range. The total average underflow from these areas in the period 1949-61 was about 14,000-19,000 acre-feet per year. Much of this underflow discharged into the Humboldt River within the study area and constituted a large part of the base flow of the river. Streamflow in the Humboldt River increases substantially in the early spring, principally because of runoff to the river in the reaches upstream from the study area

  19. A case study: Death Valley National Monument California-Nevada

    Treesearch

    Daniel Hamson; Ristau Toni

    1979-01-01

    With passage of the Mining in the Parks Act (P.L. 94-429) in 1976, the National Park Service, Department of the Interior, was given the responsibility of preparing a report to Congress outlining the environmental consequences of mining on claims within Death Valley National Monument. In addition, the Secretary of the Interior is required to formulate a recommendation...

  20. Effects of landuse and precipitation on pesticides and water quality in playa lakes of the southern high plains.

    PubMed

    Anderson, Todd A; Salice, Christopher J; Erickson, Richard A; McMurry, Scott T; Cox, Stephen B; Smith, Loren M

    2013-06-01

    The 25000 playa wetlands within the Southern High Plains (SHP) of the United States of America (USA) are the dominant hydrogeomorphic feature in the region, providing habitat for numerous plants and wildlife. The SHP are among the most intensively cultivated regions; there are concerns over the degradation and/or loss of playa wetland habitat. We examined water quality in playa wetlands surrounded by both grassland and agriculture and measured water concentrations of pesticides used on cotton (acephate, trifluralin, malathion, pendimethalin, tribufos, bifenthrin, λ-cyhalothrin, acetamiprid, and thiamethoxam), the dominant crop in the SHP. Pesticides used on cotton were detected in water samples collected from all playas. Precipitation events and the amount of cultivation were related to pesticide concentrations in sediment and water. Our results show that pesticide concentrations were related in some circumstances to time, precipitation, and tilled-index for some but not all pesticides. We further compared measured pesticide concentrations in playas to toxicity benchmarks used by the US EPA in pesticide ecological risk assessments to obtain some insight into the potential for ecological effects. For all pesticides in water, the maximum measured concentrations exceeded at least one toxicity benchmark, while median concentrations did not exceed any benchmarks. This analysis indicates that there is a potential for adverse effects of pesticides to aquatic organisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Laboratory Studies of the Cloud Droplet Activation Properties and Corresponding Chemistry of Saline Playa Dust.

    PubMed

    Gaston, Cassandra J; Pratt, Kerri A; Suski, Kaitlyn J; May, Nathaniel W; Gill, Thomas E; Prather, Kimberly A

    2017-02-07

    Playas emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dusts for cloud formation, most climate models assume that all dust is nonhygroscopic; however, measurements are needed to clarify the role of dusts in aerosol-cloud interactions. Here, we report measurements of CCN activation from playa dusts and parameterize these results in terms of both κ-Köhler theory and adsorption activation theory for inclusion in atmospheric models. κ ranged from 0.002 ± 0.001 to 0.818 ± 0.094, whereas Frankel-Halsey-Hill (FHH) adsorption parameters of A FHH = 2.20 ± 0.60 and B FHH = 1.24 ± 0.14 described the water uptake properties of the dusts. Measurements made using aerosol time-of-flight mass spectrometry (ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that mineralogy, including salts, plays in water uptake by dust. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values. However, several samples were poorly predicted suggesting that chemical heterogeneities as a function of size or chemically distinct particle surfaces can determine the hygroscopicity of playa dusts. Our results further demonstrate the importance of dust in aerosol-cloud interactions.

  2. 77 FR 23191 - State of Nevada; Regional Haze State and Federal Implementation Plans; BART Determination for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R9-OAR-2011-0130; FRL-9661-4] State of Nevada... Station AGENCY: Environmental Protection Agency (EPA). ACTION: Announcement of public hearing. SUMMARY... on May 3, 2012. ADDRESSES: We will hold a public hearing at Moapa Valley Empowerment High School...

  3. Critical Elements in Produced Fluids from Nevada and Utah

    DOE Data Explorer

    Simmons, Stuart

    2017-07-27

    Critical elements and related analytical data for produced fluids from geothermal fields in Nevada and Utah, Sevier thermal belt hot springs, Utah, and Uinta basin oil-gas wells, Utah are reported. Analytical results include pH, major species, trace elements, transition metals, other metals, metalloids and REEs. Gas samples were collected and analyzed from Beowawe, Dixie Valley, Roosevelt Hot Springs, and Thermo. Helium gases and helium isotopes were analyzed on samples collected at Patua, San Emido and two wells in the Uinta basin.

  4. 77 FR 3756 - Nevada Irrigation District; Notice of Application Accepted for Filing, Soliciting Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ...: Federal Power Act 16 USC 791 (a)-825(r) . h. Applicant Contact: Ron Nelson, General Manager, Nevada Irrigation District, 1036 West Main Street, Grass Valley, CA 95945, (530) 271-6824 or email [email protected] Support. A copy is also available for inspection and reproduction at the address in item h above. Register...

  5. Conceptual framework and trend analysis of water-level responses to hydrologic stresses, Pahute Mesa–Oasis Valley groundwater basin, Nevada, 1966-2016

    USGS Publications Warehouse

    Jackson, Tracie R.; Fenelon, Joseph M.

    2018-05-31

    This report identifies water-level trends in wells and provides a conceptual framework that explains the hydrologic stresses and factors causing the trends in the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, southern Nevada. Water levels in 79 wells were analyzed for trends between 1966 and 2016. The magnitude and duration of water-level responses to hydrologic stresses were analyzed graphically, statistically, and with water-level models.The conceptual framework consists of multiple stress-specific conceptual models to explain water-level responses to the following hydrologic stresses: recharge, evapotranspiration, pumping, nuclear testing, and wellbore equilibration. Dominant hydrologic stresses affecting water-level trends in each well were used to categorize trends as nonstatic, transient, or steady state.The conceptual framework of water-level responses to hydrologic stresses and trend analyses provide a comprehensive understanding of the PMOV basin and vicinity. The trend analysis links water-level fluctuations in wells to hydrologic stresses and potential factors causing the trends. Transient and steady-state trend categorizations can be used to determine the appropriate water-level data for groundwater studies.

  6. Geology and water resources of Owens Valley, California

    USGS Publications Warehouse

    Hollett, Kenneth J.; Danskin, Wesley R.; McCaffrey, William F.; Walti, Caryl L.

    1991-01-01

    Owens Valley, a long, narrow valley located along the east flank of the Sierra Nevada in east-central California, is the main source of water for the city of Los Angeles. The city diverts most of the surface water in the valley into the Owens River-Los Angeles Aqueduct system, which transports the water more than 200 miles south to areas of distribution and use. Additionally, ground water is pumped or flows from wells to supplement the surface-water diversions to the river-aqueduct system. Pumpage from wells needed to supplement water export has increased since 1970, when a second aqueduct was put into service, and local concerns have been expressed that the increased pumpage may have had a detrimental effect on the environment and the indigenous alkaline scrub and meadow plant communities in the valley. The scrub and meadow communities depend on soil moisture derived from precipitation and the unconfined part of a multilayered aquifer system. This report, which describes the hydrogeology of the aquifer system and the water resources of the valley, is one in a series designed to (1) evaluate the effects that groundwater pumping has on scrub and meadow communities and (2) appraise alternative strategies to mitigate any adverse effects caused by, pumping. Two principal topographic features are the surface expression of the geologic framework--the high, prominent mountains on the east and west sides of the valley and the long, narrow intermountain valley floor. The mountains are composed of sedimentary, granitic, and metamorphic rocks, mantled in part by volcanic rocks as well as by glacial, talus, and fluvial deposits. The valley floor is underlain by valley fill that consists of unconsolidated to moderately consolidated alluvial fan, transition-zone, glacial and talus, and fluvial and lacustrine deposits. The valley fill also includes interlayered recent volcanic flows and pyroclastic rocks. The bedrock surface beneath the valley fill is a narrow, steep-sided graben

  7. Digital geologic map of the Nevada Test Site and vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slate, J.L.; Berry, M.E.; Rowley, P.D.

    2000-03-08

    This digital geologic map of the Nevada Test Site (NTS) and vicinity, as well as its accompanying digital geophysical maps, are compiled at 1:100,000 scale. The map area covers two 30 {times} 60-minute quadrangles-the Pahute Mesa quadrangle to the north and the Beatty quadrangle to the south-plus a strip of 7 1/2-minute quadrangles on the east side. In addition to the NTS, the map area includes the rest of the southwest Nevada volcanic field, part of the Walker Lane, most of the Amargosa Desert, part of the Funeral and Grapevine Mountains, some of Death Valley, and the northern Spring Mountains.more » This geologic map improves on previous geologic mapping of the same area by providing new and updated Quaternary and bedrock geology, new geophysical interpretations of faults beneath the basins, and improved GIS coverages. This publication also includes a new isostatic gravity map and a new aeromagnetic map. The primary purpose of the three maps is to provide an updated geologic framework to aid interpretation of ground-water flow through and off the NTS. The NTS is centrally located within the area of the Death Valley regional ground-water flow system of southwestern Nevada and adjacent California. During the last 40 years, DOE and its predecessor agencies have conducted about 900 nuclear tests on the NTS, of which 100 were atmospheric tests and the rest were underground tests. More than 200 of the tests were detonated at or beneath the water table, which commonly is about 500 to 600 m below the surface. Because contaminants introduced by these test may move into water supplies off the NTS, rates and directions of ground-water flow must be determined. Knowledge about the ground water also is needed to properly appraise potential future effects of the possible nuclear waste repository at Yucca Mountain, adjacent to the NTS.« less

  8. MX Siting Investigation. Water Resources Program. Results of Regional Carbonate Aquifer Testing, Coyote Spring Valley, Nevada.

    DTIC Science & Technology

    1981-12-18

    Winograd and Thordarson (1975) and the regional transmissivity of 200,000 gpd/ft (2500 m2/day) esti- mated by Eakin (1966) for the carbonate aquifers...flow, southern Great Basin, Nevada and California, U.S. Geological Survey Bulletin, v. 83, p. 3691-3708. Winograd, I. J., and Thordarson , W., 1975...Survey Professional Paper No. 712-C, p. 126. Winograd, I. J., Thordarson , W., and Young, R. A., 1971, Hy- drology of the Nevada Test Site and vicinity

  9. Mineralogy of Drill Cuttings Beowawe, Dixie Valley and Roosevelt Hot Springs

    DOE Data Explorer

    Simmons, Stuart

    2017-01-25

    Mineralogical, lithological, and geospatial data of drill cuttings from exploration production wells in Beowawe, Dixie Valley and Roosvelt Hot Springs. These data support whole rock analyses for major, minor and critical elements to assess critical metals in produced fluids from Nevada and Utah geothermal fields. The samples were analyzed by x-ray diffraction (legacy data) and then checked by thin section analysis.

  10. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    Sometimes, a gunfight breaks out, like this one between (left) Mindy Krzykowski and (right) Leva McIntire. This is the wild West, after all. Photo credit: NASA/GSFC/Maggie McAdam To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  11. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    Intern Kyle Yawn marked the boundaries of this trail by placing pushpins into cracks in the clay. Now, he photographs the trail to document it. Photo credit: NASA/GSFC/Maggie McAdam To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  12. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    There's nothing special about these rocks, which are ordinary dolomite from the surrounding mountains. The rocks move because of where they are, not what they are made of. Credit: NASA/GSFC/Maggie McAdam To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  13. Surficial Geologic Map of the Death Valley Junction 30' x 60' Quadrangle, California and Nevada

    USGS Publications Warehouse

    Slate, Janet L.; Berry, Margaret E.; Menges, Christopher M.

    2009-01-01

    This surficial geologic map of the Death Valley Junction 30' x 60' quadrangle was compiled digitally at 1:100,000 scale. The map area covers the central part of Death Valley and adjacent mountain ranges - the Panamint Range on the west and the Funeral Mountains on the east - as well as areas east of Death Valley including some of the Amargosa Desert, the Spring Mountains and Pahrump Valley. Shaded relief delineates the topography and appears as gray tones in the mountain ranges where the bedrock is undifferentiated and depicted as a single unit.

  14. The utilization of ERTS-1-generated photographs in the evaluation of the Iranian playas as potential locations for economic and engineering development. [hydrology and morphology of playa soils

    NASA Technical Reports Server (NTRS)

    Krinsley, D. B. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Hydrologic inventories, throughout the year, were made in interior basins that have not been measured previously because of their inaccessibility. Interior basins during the last ERTS-1 year (August 1972 to August 1973) had driest ground conditions in late September 1972 and had wettest ground conditions from March through May 1973, depending upon location. Bearing strengths of playa soils can be inferred from the changing hydrologic conditions through the seasons as recorded by ERTS-1, with prior ground control. Slight differences in salt-crust morphology and in moisture contest of playa soils can be greatly enhanced by rationing and stretching techniques. Differences in water area and silt content can be enhanced by using a three-stage photographic masking technique employing bands 4, 5, and 7.

  15. Depositional and diagenetic processes of Qa Khanna playa, North Jordan basaltic plateau, Jordan

    NASA Astrophysics Data System (ADS)

    Howari, F. M.; Banat, K. M.; Abu-Salha, Y. A.

    2010-09-01

    The present study explored mineral occurrences and sediment characteristics of playas from northern Jordan and explained depositional and diagenetic processes as reflected from bulk chemistry and sedimentary structures. Mudcracks of different sizes and shape patterns, laminations, intersediment vesicles, and bioturbation pipes are the main sedimentary structures. Plagioclase, olivine, orthopyroxene, nepheline and other opaque minerals are all of detrital origin, and are derived from the basaltic bedrocks surrounding the studied playa. Evaporites are very rare; they are represented only by trace amounts of gypsum. The identified clay minerals in the clay fraction of the studied sediments, arranged according to their decreasing abundances are palygorskite, illite, kaolinite, smectite and chlorite. The elemental abundances were tied to clay, CaCO 3 and nearby igneous rocks. The type of clay minerals, the high pH values of the studied sediments, and the considerable incorporation of Mg and K in palygorskite and illite respectively, may strongly reflect a high evaporative and alkaline environment under arid to semi-arid conditions in an ephemeral lake of the Qa Khanna. Concentrations and distributions of both major and trace elements are essentially controlled by the clay mineralogy and the calcium carbonate content; Ca is mainly incorporated in the CaCO 3, which is either generated authigenically or by aeolian deposition. Fe and K are incorporated and fixed by illite under an evaporative and alkaline environment. Mg is incorporated in palygorskite while Mn is adsorbed on various clay minerals. Sr substitutes for Ca in the aeolian CaCO 3 and its presence in the studied sediments is independent of the prevailing conditions during the playa evolution. Rb substitutes for K in illite under the prevailing chemical conditions in the studied playa.

  16. Ground-water storage depletion in Pahrump Valley, Nevada-California, 1962-75

    USGS Publications Warehouse

    Harrill, James R.

    1982-01-01

    During the 13-year period, February 1962 to February 1975, about 540,000 acre-feet of ground water was pumped from Pahrump Valley. This resulted in significant water-level declines along the base of the Pahrump and Manse fans where pumping was concentrated. Maximum observed net decline was slightly more than 60 feet. Much smaller declines occurred in the central valley, and locally, water levels in some shallow wells rose due to recharge derived from the deep percolation of irrigation water. The pumping resulted in about 219,000 acre-feet of storage depletion. Of this, 155,000 acre-feet was from the draining of unconsolidated material, 46,000 was from compaction of fine-grained sediments, and 18,000 acre-feet was from the elastic response of the aquifer and water. The total storage depletion was equal to about 40 percent of the total pumpage. The remaining pumped water was derived from the capture of natural ground-water discharge and reuse of pumped water that had recirculated back to ground water. Natural recharge to and discharge from the ground-water system is estimated to be 37,000 acre-feet per year. Of this, 18,000 acre-feet per year leaves the area as subsurface outflow through carbonate-rock aquifers which form a multivalley flow system. The extent of this system was not precisely determined by this study. The most probable discharge area for this outflow is along the flood plain of the Amargosa River between the towns of Shoshone and Tecopa. This outflow probably cannot be economically captured by pumping from Pahrump Valley. Consequently, the maximum amount of natural discharge available for capture is 19,000 acre-feet per year. This is larger than the 12,000 acre-feet per year estimated in a previous study; the difference is due to different techniques used in the analysis. As of 1975, pumping was causing an overdraft of 11,000 acre-feet per year on the ground-water system. No new equilibrium is probable in the foreseeable future. Water levels will

  17. Groundwater-level change and evaluation of simulated water levels for irrigated areas in Lahontan Valley, Churchill County, west-central Nevada, 1992 to 2012

    USGS Publications Warehouse

    Smith, David W.; Buto, Susan G.; Welborn, Toby L.

    2016-09-14

    The acquisition and transfer of water rights to wetland areas of Lahontan Valley, Nevada, has caused concern over the potential effects on shallow aquifer water levels. In 1992, water levels in Lahontan Valley were measured to construct a water-table map of the shallow aquifer prior to the effects of water-right transfers mandated by the Fallon Paiute-Shoshone Tribal Settlement Act of 1990 (Public Law 101-618, 104 Stat. 3289). From 1992 to 2012, approximately 11,810 water-righted acres, or 34,356 acre-feet of water, were acquired and transferred to wetland areas of Lahontan Valley. This report documents changes in water levels measured during the period of water-right transfers and presents an evaluation of five groundwater-flow model scenarios that simulated water-level changes in Lahontan Valley in response to water-right transfers and a reduction in irrigation season length by 50 percent.Water levels measured in 98 wells from 2012 to 2013 were used to construct a water-table map. Water levels in 73 of the 98 wells were compared with water levels measured in 1992 and used to construct a water-level change map. Water-level changes in the 73 wells ranged from -16.2 to 4.1 feet over the 20-year period. Rises in water levels in Lahontan Valley may correspond to annual changes in available irrigation water, increased canal flows after the exceptionally dry and shortened irrigation season of 1992, and the increased conveyance of water rights transferred to Stillwater National Wildlife Refuge. Water-level declines generally occurred near the boundary of irrigated areas and may be associated with groundwater pumping, water-right transfers, and inactive surface-water storage reservoirs. The largest water-level declines were in the area near Carson Lake.Groundwater-level response to water-right transfers was evaluated by comparing simulated and observed water-level changes for periods representing water-right transfers and a shortened irrigation season in areas near Fallon

  18. Analytical results and sample locality map of stream-sediment, heavy mineral-concentrate, rock and water samples from the Skedaddle (CA-020- 612) and Dry Valley Rim (CA-020-615) Wilderness Study Areas, Lassen County, California, and Washoe County, Nevada

    USGS Publications Warehouse

    Adrian, B.M.; Frisken, J.G.; Bradley, L.A.; Taylor, Cliff D.; McHugh, J.B.

    1987-01-01

    In the summer of 1985, the U.S. Geological Survey conducted a reconnaissance geochemical survey of the Skedaddle (CA-020-612) and Dry Valley Rim (CA-020-615) Wilderness Study Areas in Lassen County, California, and Washoe County, Nevada.Skedaddle and Dry Valley Rim are contiguous wilderness study areas (WSA) located in the eastern part of the Modoc Plateau in Lassen County, northeastern California, and Washoe County, northwestern Nevada (fig. 1). The Skedaddle study area encompasses 39,420 acres and the Dry Valley Rim study area encompasses 54,480 acres of Bureau of Land Management administered public land about 25 mi east of Susanville, California. The Skedaddle study area is bounded on the east by the Skedaddle road, on the north by the Smoke Creek Road, on the south by the Wendel road, and on the west by the rim west of Wendel Canyon. The Dry Valley Rim study area is bounded on the east by the lower Smoke Creek road, the Dry Valley road, and the Pipe Springs Road. The northern boundary is the Smoke Creek Ranch road, the southern boundary the Wendel road, and the western boundary the east-side Skedaddle road. Access to the study areas is provided by several light-duty dirt roads and ways that join the boundary roads. Elevations range from 3,800 (1158 m) to 7,552 ft (2302 m). Steep rim rock walls and talus-covered canyons are common in the eastern third of the Dry Valley Rim study area, and the western third of the Skedaddle study area, while the majority of both study areas is gradually sloping, covered only by sparse sagebrush. Existing geologic maps that cover the two study areas consist of Lydon and others (I960), Bonham (1969), and Diggles and others (1986).The Skedaddle Wilderness Study Area consists of two parallel ridges, the Skedaddle Mountains and the Amedee Mountains. The ridges bound the Wendel and Spencer basins, an area of bleached and silicified rocks. Dry Valley Rim is a 17-mi (5.2 m)-long north-south-trending fault block that is situated 1,500 ft

  19. Audiomagnetotelluric investigation of Snake Valley, eastern Nevada and western Utah

    USGS Publications Warehouse

    McPhee, Darcy K.; Pari, Keith; Baird, Frank

    2009-01-01

    As support for an exploratory well-drilling and hydraulic-testing program, AMT data were collected using a Geometrics Stratagem EH4 system along four profiles that extend roughly east-west from the southern Snake Range into Snake Valley. The profiles range from 3 to 5 kilometers in length, and station spacing was 200 to 400 meters. Two-dimensional inverse models were computed using the data from the transverse-electric (TE), transverse-magnetic (TM), and combined (TE+TM) mode using a conjugate gradient, finite-difference method. Interpretation of the 2-D AMT models defines several faults, some of which may influence ground-water flow in the basins, as well as identify underlying Paleozoic carbonate and clastic rocks and the thickness of basin-fill sediments. These AMT data and models, coupled with the geologic mapping and other surface geophysical methods, form the basis for identifying potential well sites and defining the subsurface structures and stratigraphy within Snake Valley.

  20. Analysis of deformation bands in the Aztec Sandstone, Valley of Fire State Park, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, R.E.

    1993-04-01

    This research concerns two types of deformation structures, deformation bands and low-angle slip surfaces, that occur in the Aztec Sandstone in the Valley of Fire State Park, Nevada. Deformation bands were analyzed by mapping and describing over 500 of the structures on a bedding surface of about 560 square meters. Deformation bands are narrow zones of reduced porosity which form resistant ribs in the sandstone. Three sets of deformation bands are present at the study site (type 1,2, and 3). Type 1 and 2 bands are interpreted as coeval and form a conjugate set with a dihedral angle of 90more » degrees. These sets are usually composed of multiple bands. A third set is interpreted to be subsidiary to the older set, and intersections angles with the earlier formed sets are approximately 45 degrees. In contrast with the older sets, the third set is nearly always a single band which is sinuous or jagged along its length. All three sets of deformation bands are crosscut and sometimes offset by low-angle slip surfaces. These faults have reverse dip slip displacement and locally have mullions developed. Displacements indicate eastward movement of the hanging wall which is consistent with the inferred movements of major Mesozoic thrust faults in the vicinity. The change of deformation style from deformation bands to low-angle slip surfaces may document a change in the stress regime. Paleostress interpretation of the deformation band geometry indicates the intermediate stress axis is vertical. The low-angle slip surfaces indicate the least compressive stress axis is vertical. This possible change in stress axes may be the result of increasing pore pressure associated with tectonic loading from emplacement of the Muddy Mountain thrust.« less

  1. Chemical quality of water and bottom sediment, Stillwater National Wildlife Refuge, Lahontan Valley, Nevada

    USGS Publications Warehouse

    Thodal, Carl E.

    2017-12-28

    The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service collected data on water and bottom-sediment chemistry to be used to evaluate a new water rights acquisition program designed to enhance wetland habitat in Stillwater National Wildlife Refuge and in Lahontan Valley, Churchill County, Nevada. The area supports habitat critical to the feeding and resting of migratory birds travelling the Pacific Flyway. Information about how water rights acquisitions may affect the quality of water delivered to the wetlands is needed by stakeholders and Stillwater National Wildlife Refuge managers in order to evaluate the effectiveness of this approach to wetlands management. A network of six sites on waterways that deliver the majority of water to Refuge wetlands was established to monitor the quality of streamflow and bottom sediment. Each site was visited every 4 to 6 weeks and selected water-quality field parameters were measured when flowing water was present. Water samples were collected at varying frequencies and analyzed for major ions, silica, and organic carbon, and for selected species of nitrogen and phosphorus, trace elements, pharmaceuticals, and other trace organic compounds. Bottom-sediment samples were collected for analysis of selected trace elements.Dissolved-solids concentrations exceeded the recommended criterion for protection of aquatic life (500 milligrams per liter) in 33 of 62 filtered water samples. The maximum arsenic criterion (340 micrograms per liter) was exceeded twice and the continuous criterion was exceeded seven times. Criteria protecting aquatic life from continuous exposure to aluminum, cadmium, lead, and mercury (87, 0.72, 2.5, and 0.77 micrograms per liter, respectively) were exceeded only once in filtered samples (27, 40, 32, and 36 samples, respectively). Mercury was the only trace element analyzed in bottom-sediment samples to exceed the published probable effect concentration (1,060 micrograms per kilogram).

  2. Three-dimensional hydrogeologic framework model for use with a steady-state numerical ground-water flow model of the Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Faunt, Claudia C.; D'Agnese, Frank A.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Department of Energy and other Federal, State, and local agencies, is evaluating the hydrogeologic characteristics of the Death Valley regional ground-water flow system. The ground-water flow system covers an area of about 100,000 square kilometers from latitude 35? to 38?15' North to longitude 115? to 118? West, with the flow system proper comprising about 45,000 square kilometers. The Death Valley regional ground-water flow system is one of the larger flow systems within the Southwestern United States and includes in its boundaries the Nevada Test Site, Yucca Mountain, and much of Death Valley. Part of this study includes the construction of a three-dimensional hydrogeologic framework model to serve as the foundation for the development of a steady-state regional ground-water flow model. The digital framework model provides a computer-based description of the geometry and composition of the hydrogeologic units that control regional flow. The framework model of the region was constructed by merging two previous framework models constructed for the Yucca Mountain Project and the Environmental Restoration Program Underground Test Area studies at the Nevada Test Site. The hydrologic characteristics of the region result from a currently arid climate and complex geology. Interbasinal regional ground-water flow occurs through a thick carbonate-rock sequence of Paleozoic age, a locally thick volcanic-rock sequence of Tertiary age, and basin-fill alluvium of Tertiary and Quaternary age. Throughout the system, deep and shallow ground-water flow may be controlled by extensive and pervasive regional and local faults and fractures. The framework model was constructed using data from several sources to define the geometry of the regional hydrogeologic units. These data sources include (1) a 1:250,000-scale hydrogeologic-map compilation of the region; (2) regional-scale geologic cross sections; (3) borehole information, and (4

  3. Sodium toxicity and pathology associated with exposure of waterfowl to hypersaline playa lakes of southeast New Mexico

    USGS Publications Warehouse

    Meteyer, C.U.; Dubielzig, R.D.; Dein, F.J.; Baeten, L.A.; Moore, M.K.; Jehl, J.R.; Wesenberg, K.E.

    1997-01-01

    Cause of mortality was studied in waterfowl in hypersaline playa lakes of southeast New Mexico during spring and fall migration. Mortality was not common in wild ducks resting on the playas during good weather. However, when birds remained on the lakes for prolonged periods of time, such as during experimental trials and stormy weather, a heavy layer of salt precipitated on their feathers. Sodium toxicity was the cause of death for all experimental mallards housed on playa water and for 50% of the wild waterfowl found moribund or dead during the spring of 1995. Gross lesions included heavy salt precipitation on the feathers, ocular lens opacities, deeply congested brains, and dilated, thin-walled, fluid-filled cloacae. Microscopic lesions in the more severely affected birds included liquefaction of ocular lens cortex with lens fiber swelling and multifocal to diffuse ulcerative conjunctivitis with severe granulocytic inflammation, edema, and granulocytic vasculitis resulting in thrombosis. Inflammation similar to that seen in the conjunctiva occasionally involved the mucosa of the mouth, pharynx, nasal turbinates, cloaca, and bursa. Transcorneal movement of water in response to the hypersaline conditions on the playa lakes or direct contact with salt crystals could induce anterior segment dehydration of the aqueous humor and increased osmotic pressure on the lens, leading to cataract formation.

  4. Hydrogeological behaviour of the Fuente-de-Piedra playa lake and tectonic origin of its basin (Malaga, southern Spain)

    NASA Astrophysics Data System (ADS)

    Rodriguez-Rodriguez, Miguel; Martos-Rosillo, Sergio; Pedrera, Antonio

    2016-12-01

    Changes in the quantity of groundwater input due to water extraction for irrigation and urban supply has modified the water balance in the Fuente de Piedra playa lake. We have analysed the hydrogeology of the playa-lake system and developed a water-level model by means of a simple long-term water balance and piezometric analysis. In addition, a tectonic model is proposed to explain the endorheic basin development that led to the formation of the playa. Upright folds developed since the late Miocene and density-driven subsidence favoured the setting-up of and endorheic system located between the Atlantic and the Mediterranean basins in the Quaternary. The underlying low permeability rocks beneath the playa form a very stable aquitard with highly saline groundwater that prevents groundwater recharge of the lake into the aquitard. The hydrological modelling allowed us to simulate the evolution of the wáter level under a scenario of unaltered conditions during a 13-year period, showing that the percentage of days with dry conditions varies from 24.8% of the time under altered conditions to 14.9% as far as an unaltered scenario is concerned.

  5. Visible and near-infrared (0.4-2.5 μm) reflectance spectra of playa evaporite minerals

    USGS Publications Warehouse

    Crowley, James K.

    1991-01-01

    Visible and near-infrared (VNIR; 0.4–2.4 μm) reflectance spectra were recorded for 35 saline minerals that represent the wide range of mineral and brine chemical compositions found in playa evaporite settings. The spectra show that many of the saline minerals exhibit diagnostic near-infrared absorption bands, chiefly attributable to vibrations of hydrogen-bonded structural water molecules. VNIR reflectance spectra can be used to detect minor hydrate phases present in mixtures dominated by anhydrous halite or thenardite, and therefore will be useful in combination with X ray diffraction data for characterizing natural saline mineral assemblages. In addition, VNIR reflectance spectra are sensitive to differences in sample hydration state and should facilitate in situ studies of minerals that occur as fragile, transitory dehydration products in natural salt crusts. The use of spectral reflectance measurements in playa studies should aid in mapping evaporite mineral distributions and may provide insight into the geochemical and hydrological controls on playa mineral and brine development.

  6. Structural evolution of the east Sierra Valley system (Owens Valley and vicinity), California: a geologic and geophysical synthesis

    USGS Publications Warehouse

    Stevens, Calvin H.; Stone, Paul; Blakely, Richard J.

    2013-01-01

    The tectonically active East Sierra Valley System (ESVS), which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm), which is moving relatively NW. The recent history of the ESVS is characterized by oblique extension partitioned between NNW-striking normal and strike-slip faults oriented at an angle to the more northwesterly relative motion of the SN-GVm. Spatially variable extension and right-lateral shear have resulted in a longitudinally segmented valley system composed of diverse geomorphic and structural elements, including a discontinuous series of deep basins detected through analysis of isostatic gravity anomalies. Extension in the ESVS probably began in the middle Miocene in response to initial westward movement of the SN-GVm relative to the Colorado Plateau. At ca. 3-3.5 Ma, the SN-GVm became structurally separated from blocks directly to the east, resulting in significant basin-forming deformation in the ESVS. We propose a structural model that links high-angle normal faulting in the ESVS with coeval low-angle detachment faulting in adjacent areas to the east.

  7. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    Many of the moving rocks are about the size of a loaf of bread and weigh about 25 pounds. Interns Kristopher Schwebler and Valerie Fox make notes about this one. Photo credit: NASA/GSFC/Leva McIntire/LPSA intern To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  8. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    Data from the sensors were downloaded, and then the sensors were reburied. The LPSA team plans to publish a research paper that will present their data and offer their explanation for how the rocks move. Photo credit: NASA/GSFC/Maggie McAdam To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  9. Map showing drill-hole depths, lithologic intercepts, and partial isopachs of basin fill in the Winnemucca 1 degree by 2 degrees Quadrangle, Nevada

    USGS Publications Warehouse

    Moring, B.C.

    1990-01-01

    Wells logs used for this map of the Winnemucca quadrangle are from the following sources: (1) logs of more than 1,000 water wells reported to the State of Nevada Division of Water Resources, which are on file with them in Reno and at the with U.S. Geological Survey in Carson City, (2) 44 petroleum wells collected by the Nevada Bureau of Mines (Lintz, 1957; Schilling and Garside, 1968; Garside and Schilling, 1977, Garside and others, 1977; 1988), and (3) Two geothermal wells reported in Zoback (1979) and Flynn and others (1982). Data from isostatic residual and Bouguer gravity maps by Wagini (1985) contributed to the interpretation of basin configuration. Gravity models of Dixie Valley (Schaefer, 1982, and Speed, 1976) and Grass Valley (Grannell and Noble, 1977) and seismic profiles of Grass and Pine Valleys (Potter and others, 1987) helped refine basis interpretations in those areas. The geologic base map of Paleozoic and Mesozoic igneous and sedimentary rocks, Tertiary volcanic and sedimentary rocks, and Cenozoic structures was simplified from Stewart and Carlson (1976b).

  10. 76 FR 24466 - Nevada Irrigation District; Notice of Application Tendered for Filing With the Commission and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ...: Federal Power Act, 16 U.S.C. 791(a)-825(r). h. Applicant Contact: Ron Nelson, General Manager, Nevada Irrigation District, 1036 West Main Street, Grass Valley, CA 95945, (530) 271-6824 or e-mail [email protected] available for inspection and reproduction at the address in item (h) above. m. You may also register online...

  11. Seismicity and stress transfer studies in eastern California and Nevada: Implications for earthquake sources and tectonics

    NASA Astrophysics Data System (ADS)

    Ichinose, Gene Aaron

    The source parameters for eastern California and western Nevada earthquakes are estimated from regionally recorded seismograms using a moment tensor inversion. We use the point source approximation and fit the seismograms, at long periods. We generated a moment tensor catalog for Mw > 4.0 since 1997 and Mw > 5.0 since 1990. The catalog includes centroid depths, seismic moments, and focal mechanisms. The regions with the most moderate sized earthquakes in the last decade were in aftershock zones located in Eureka Valley, Double Spring Flat, Coso, Ridgecrest, Fish Lake Valley, and Scotty's Junction. The remaining moderate size earthquakes were distributed across the region. The 1993 (Mw 6.0) Eureka Valley earthquake occurred in the Eastern California Shear Zone. Careful aftershock relocations were used to resolve structure from aftershock clusters. The mainshock appears to rupture along the western side of the Last Change Range along a 30° to 60° west dipping fault plane, consistent with previous geodetic modeling. We estimate the source parameters for aftershocks at source-receiver distances less than 20 km using waveform modeling. The relocated aftershocks and waveform modeling results do not indicate any significant evidence of low angle faulting (dips > 30°. The results did reveal deformation along vertical faults within the hanging-wall block, consistent with observed surface rupture along the Saline Range above the dipping fault plane. The 1994 (Mw 5.8) Double Spring Flat earthquake occurred along the eastern Sierra Nevada between overlapping normal faults. Aftershock migration and cross fault triggering occurred in the following two years, producing seventeen Mw > 4 aftershocks The source parameters for the largest aftershocks were estimated from regionally recorded seismograms using moment tensor inversion. We estimate the source parameters for two moderate sized earthquakes which occurred near Reno, Nevada, the 1995 (Mw 4.4) Border Town, and the 1998 (Mw

  12. Field Surveys, IOC Valleys. Volume III, Part I. Cultural Resources Survey, Dry Lake Valley, Nevada.

    DTIC Science & Technology

    1981-08-01

    and from* Catherine Fowler, Great Basin ethnographer and bibliographer. Personnel from Facilitators, Inc. and HDR provided information on contemporary...Caliente (see Figure 1-6 above). Together with Muleshoe Valley to the north, it occupies a surficially closel trough in the Basin and Range physiographic...province of the Great Basin (Eakin, ; Fenneman, 1931). It is bounded on the east by the Burnt Springs, Ely, Highland, and aristol ranges. The Chief

  13. Geological literature on the San Joaquin Valley of California

    USGS Publications Warehouse

    Maher, J.C.; Trollman, W.M.; Denman, J.M.

    1973-01-01

    The following list of references includes most of the geological literature on the San Joaquin Valley and vicinity in central California (see figure 1) published prior to January 1, 1973. The San Joaquin Valley comprises all or parts of 11 counties -- Alameda, Calaveras, Contra Costa, Fresno, Kern, Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare (figure 2). As a matter of convenient geographical classification the boundaries of the report area have been drawn along county lines, and to include San Benito and Santa Clara Counties on the west and Mariposa and Tuolumne Counties on the east. Therefore, this list of geological literature includes some publications on the Diablo and Temblor Ranges on the west, the Tehachapi Mountains and Mojave Desert on the south, and the Sierra Nevada Foothills and Mountains on the east.

  14. Hydrology of the Valley-fill and carbonate-rock reservoirs, Pahrump Valley, Nevada-California

    USGS Publications Warehouse

    Malmberg, Glenn T.

    1967-01-01

    This is the second appraisal of the water supply of Pahrump Valley, made 15 years after the first cooperative study. In the first report the average recharge was estimated to be 23,000 acre-feet per year, only 1,000 acre-feet more than the estimate made in this report. All this recharge was considered to be available for development. Because of the difficulty in salvaging the subsurface outflow from the deep carbonate-rock reservoir, this report concludes that the perennial yield may be only 25,000 acre-feet. In 1875, Bennetts and Manse Springs reportedly discharged a total of nearly 10,000 acre-feet of water from the valley-fill reservoir. After the construction of several flowing wells in 1910, the spring discharge began to decline. In the mid-1940's many irrigation wells were drilled, and large-capacity pumps were installed. During the 4-year period of this study (1959-62), the net pumping draft averaged about 25,000 acre-feet per year, or about twice the estimated yield. In 1962 Bennetts Spring was dry, and the discharge from Marse Spring was only 1,400 acre-feet. During the period February 1959-February 1962, pumping caused an estimated storage depletion of 45,000 acre-feet, or 15,000 acre-feet per year. If the overdraft is maintained, depletion of stored water will continue and pumping costs will increase. Water levels in the vicinity of the Pahrump, Manse, and Fowler Ranches declined more than ]0 feet in response to the pumping during this period, and they can be expected to continue to decline at ,the projected rate of more than 3 feet per year. The chemical quality of the pumped water has been satisfactory for irrigation and domestic use. Recycling of water pumped or irrigation, however, could result in deterioration of the water quality with time.

  15. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    Researchers think that water, ice, and wind work together to move the stones. In this photo, the students dig up small sensors called Hygrochrons, which had been buried three months before the interns arrived and recorded temperature and humidity data electronically. Photo credit: NASA/GSFC/Maggie McAdam To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  16. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    The trails can be straight, or they can curve. Sometimes, two trails run alongside each other. Those two lines running from left to right in the back look like they were made by a car; but they were made by rocks. Photo credit: NASA/GSFC/Maggie McAdam To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  17. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    Treesearch

    Haiganoush K. Preisler; Shiyuan (Sharon) Zhong; Annie Esperanza; Timothy J. Brown; Andrzej Bytnerowicz; Leland Tarnay

    2010-01-01

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an...

  18. EXPOSURE OF AMPHIBIANS TO SEMI-VOLATILE ORGANIC COMPOUNDS IN THE SIERRA NEVADA MOUNTAINS AND CALIFORNIA CASCADES: RELATIONSHIP BETWEEN TADPOLE TISSUE AND SEDIMENT CONCENTRATIONS

    EPA Science Inventory

    Pesticides and other semi-volatile organic compounds (SOCs) undergo regional and longrange atmospheric transport. One such example is the transport of current-use pesticides from the intensely cultivated Central Valley of California into the adjacent Sierra Nevada and Cascade Mou...

  19. Corrective Action Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996 as amended). CAU 366 consists of the following six Corrective Action Sites (CASs) located in Area 11 of the Nevada National Security Site: · CAS 11-08-01, Contaminated Waste Dump #1 · CAS 11-08-02, Contaminated Waste Dump #2 · CAS 11-23-01, Radioactively Contaminated Area A · CAS 11-23-02, Radioactively Contaminated Area B · CAS 11-23-03, Radioactively Contaminated Area C · CAS 11-23-04, Radioactively Contaminated Area D Site characterization activities weremore » performed in 2011 and 2012, and the results are presented in Appendix A of the Corrective Action Decision Document (CADD) for CAU 366 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2012a). The following closure alternatives were recommended in the CADD: · No further action for CAS 11-23-01 · Closure in place for CASs 11-08-01, 11-08-02, 11-23-02, 11-23-03, and 11-23-04 The scope of work required to implement the recommended closure alternatives includes the following: · Non-engineered soil covers approximately 3 feet thick will be constructed at CAS 11-08-01 over contaminated waste dump (CWD) #1 and at CAS 11-08-02 over CWD #2. · FFACO use restrictions (URs) will be implemented for the areas where the total effective dose (TED) exceeds the final action level (FAL) of 25 millirems per Occasional Use Area year (mrem/OU-yr). The FAL is based on an assumption that the future use of the site includes occasional work activities and that workers will not be assigned to the area on a regular basis. A site worker under this scenario is assumed to be on site for a maximum of 80 hours per year for 5 years. The FFACO UR boundaries will encompass the areas where a worker would be exposed to 25 millirems of radioactivity per year if they are present

  20. Insights on Lithospheric Foundering from the Sierra Nevada Earthscope Project (SNEP)

    NASA Astrophysics Data System (ADS)

    Zandt, G.; Gilbert, H.; Frassetto, A.; Owens, T.; Jones, C.

    2004-12-01

    Interdisciplinary studies in the southern Sierra Nevada have documented an ongoing removal of the dense residual root from beneath the southern Sierra Nevada batholith. However, many questions remain concerning the timing, spatial extent, mechanism, and consequences of this lithospheric foundering event. The Sierra Nevada Earthscope Project (SNEP) is a scientific experiment designed to investigate these questions with a 2- phase (2 year) seismic deployment of 46 broadband Flex-Array stations embedded in the existing stations of the USArray Transportable Array (TA) in the region. In the 2 phases, approximately 80 sites have been occupied from the northern edge of Kings Canyon north to Honey Lake and from the Central Valley into the Great Basin. In this presentation, we will focus on the most recent common-conversion-point (CCP) stacks of the receiver functions that provide a 3D image of lithospheric layering beneath the central and northern Sierra Nevada. Examining sequential cross-sections reveals distinctive lithospheric "reflectivity" patterns that characterize different tectonic imprints. From phase 1 data, we observed that the westernmost Basin and Range exhibits strong layering with multiple low-velocity zones in the crust and uppermost mantle and a relatively flat and strong Moho varying slowly in depth between 30 and 35 km. In the south this Basin and Range character terminates on the eastern edge of the Sierra Nevada; however, north of Big Pine the Basin and Range character intrudes progressively farther into the range and ends up more than 50 km west of the eastern edge of the range. The lithosphere beneath the southern high Sierra Nevada is characterized by a relatively transparent (homogeneous) crust and sharp Moho that disappears westward beneath the adjacent foothills. The crustal thickness in this area is mostly between 30-35 km with localized welts of thicker crust. The phase 1 observations imply that the removal process appears to be actively

  1. Insights on Lithospheric Foundering from the Sierra Nevada Earthscope Project (SNEP)

    NASA Astrophysics Data System (ADS)

    Zandt, G.; Gilbert, H.; Frassetto, A.; Owens, T.; Jones, C.

    2007-12-01

    Interdisciplinary studies in the southern Sierra Nevada have documented an ongoing removal of the dense residual root from beneath the southern Sierra Nevada batholith. However, many questions remain concerning the timing, spatial extent, mechanism, and consequences of this lithospheric foundering event. The Sierra Nevada Earthscope Project (SNEP) is a scientific experiment designed to investigate these questions with a 2- phase (2 year) seismic deployment of 46 broadband Flex-Array stations embedded in the existing stations of the USArray Transportable Array (TA) in the region. In the 2 phases, approximately 80 sites have been occupied from the northern edge of Kings Canyon north to Honey Lake and from the Central Valley into the Great Basin. In this presentation, we will focus on the most recent common-conversion-point (CCP) stacks of the receiver functions that provide a 3D image of lithospheric layering beneath the central and northern Sierra Nevada. Examining sequential cross-sections reveals distinctive lithospheric "reflectivity" patterns that characterize different tectonic imprints. From phase 1 data, we observed that the westernmost Basin and Range exhibits strong layering with multiple low-velocity zones in the crust and uppermost mantle and a relatively flat and strong Moho varying slowly in depth between 30 and 35 km. In the south this Basin and Range character terminates on the eastern edge of the Sierra Nevada; however, north of Big Pine the Basin and Range character intrudes progressively farther into the range and ends up more than 50 km west of the eastern edge of the range. The lithosphere beneath the southern high Sierra Nevada is characterized by a relatively transparent (homogeneous) crust and sharp Moho that disappears westward beneath the adjacent foothills. The crustal thickness in this area is mostly between 30-35 km with localized welts of thicker crust. The phase 1 observations imply that the removal process appears to be actively

  2. Unravelling aquifer-wetland interaction using CSAMT and gravity methods: the Mollina-Camorra aquifer and the Fuente de Piedra playa-lake, southern Spain

    NASA Astrophysics Data System (ADS)

    Pedrera, A.; Martos-Rosillo, S.; Galindo-Zaldívar, J.; Rodríguez-Rodríguez, M.; Benavente, J.; Martín-Rodríguez, J. F.; Zúñiga-López, M. I.

    2016-06-01

    The hydrological regime of Fuente de Piedra playa-lake (Málaga, southern Spain) has been significantly affected by the intensive exploitation of groundwater in the area. The playa-lake is situated above clays, marls, and gypsum, and under unaltered conditions received surface-subsurface runoff within the watershed as well as groundwater discharge from two carbonate aquifers. We have analyzed the structure of the main one, the Mollina-Camorra carbonate aquifer, by combining controlled source audio magnetotellurics (CSAMT), gravity prospecting, and time-domain electromagnetic (TDEM) soundings. This geophysical information, together with new structural and hydrogeological data, was gathered to develop a new conceptual hydrogeological model. This model allows the hydrological linkage of the carbonate aquifer with the playa-lake system to be established. Moreover, the intensive exploitation in the carbonate aquifer, even outside the watershed of the playa-lake, has affected the hydrological regime of the system. This multidisciplinary work demonstrates the potential of geophysical methods for understanding wetland-aquifer interaction, having important groundwater management implications.

  3. Simulation of net infiltration and potential recharge using a distributed-parameter watershed model of the Death Valley region, Nevada and California

    USGS Publications Warehouse

    Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.

    2003-01-01

    This report presents the development and application of the distributed-parameter watershed model, INFILv3, for estimating the temporal and spatial distribution of net infiltration and potential recharge in the Death Valley region, Nevada and California. The estimates of net infiltration quantify the downward drainage of water across the lower boundary of the root zone and are used to indicate potential recharge under variable climate conditions and drainage basin characteristics. Spatial variability in recharge in the Death Valley region likely is high owing to large differences in precipitation, potential evapotranspiration, bedrock permeability, soil thickness, vegetation characteristics, and contributions to recharge along active stream channels. The quantity and spatial distribution of recharge representing the effects of variable climatic conditions and drainage basin characteristics on recharge are needed to reduce uncertainty in modeling ground-water flow. The U.S. Geological Survey, in cooperation with the Department of Energy, developed a regional saturated-zone ground-water flow model of the Death Valley regional ground-water flow system to help evaluate the current hydrogeologic system and the potential effects of natural or human-induced changes. Although previous estimates of recharge have been made for most areas of the Death Valley region, including the area defined by the boundary of the Death Valley regional ground-water flow system, the uncertainty of these estimates is high, and the spatial and temporal variability of the recharge in these basins has not been quantified. To estimate the magnitude and distribution of potential recharge in response to variable climate and spatially varying drainage basin characteristics, the INFILv3 model uses a daily water-balance model of the root zone with a primarily deterministic representation of the processes controlling net infiltration and potential recharge. The daily water balance includes precipitation

  4. Opposing environmental gradients govern vegetation zonation in an intermountain playa

    USGS Publications Warehouse

    Sanderson, J.S.; Kotliar, N.B.; Steingraeber, D.A.

    2008-01-01

    Vegetation zonation was investigated at an intermountain playa wetland (Mishak Lakes) in the San Luis Valley (SLV) of southern Colorado. Plant composition and abiotic conditions were quantified in six vegetation zones. Reciprocal transplants were performed to test the importance of abiotic factors in governing zonation. Abiotic conditions differed among several vegetation zones. Prolonged inundation led to anaerobic soils in the Eleocharis palustris and the submerged aquatics zones, on the low end of the site's 1.25 m elevation gradient. On the high end of the gradient, soil salinity and sodicity (a measure of exchangeable sodium) were high in the Distichlis spicata zone (electrical conductivity, EC = 5.3 dS/m, sodium absorption ratio, SAR = 44.0) and extreme in the Sarcobatus vermiculatus zone (EC = 21 dS/m, SAR = 274). Transplanted species produced maximum biomass in the zone where they originated, not in any other higher or lower vegetation zone. The greatest overall transplant effect occurred for E. palustris, which experienced a ??? 77% decline in productivity when transplanted to other zones. This study provides evidence that physical factors are a major determinant of vegetation zone composition and distribution across the entire elevation gradient at Mishak Lakes. Patterns at Mishak Lakes arise from counter-directional stress gradients: a gradient from anaerobic to well-oxygenated from basin bottom to upland and a gradient from extremely high salinity to low salinity in the opposing direction. Because abiotic conditions dominate vegetation zonation, restoration of the altered hydrologic regime of this wetland to a natural hydrologic regime may be sufficient to re-establish many of the natural biodiversity functions provided by these wetlands. ?? 2008 The Society of Wetland Scientists.

  5. 78 FR 7808 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Buffalo Valley...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... amended, the Bureau of Land Management (BLM) Mount Lewis Field Office, Battle Mountain, Nevada, intends to... Buffalo Valley Mine Project, a proposed open pit gold mine, mill, and associated facilities, located on..._mountain_field.html . In order to be considered during the preparation of the Draft EIS, all comments must...

  6. Subsurface valleys and geoarcheology of the Eastern Sahara revealed by shuttle radar

    USGS Publications Warehouse

    McCauley, J.F.; Schaber, G.G.; Breed, C.S.; Grolier, M.J.; Haynes, C.V.; Issawi, B.; Elachi, C.; Blom, R.

    1982-01-01

    The shuttle imaging radar (SIR-A) carried on the space shuttle Columbia in November 1981 penetrated the extremely dry Selima Sand Sheet, dunes, and drift sand of the eastern Sahara, revealing previously unknown buried valleys, geologic structures, and possible Stone Age occupation sites. Radar responses from bedrock and gravel surfaces beneath windblown sand several centimeters to possibly meters thick delineate sand- and alluvium-filled valleys, some nearly as wide as the Nile Valley and perhaps as old as middle Tertiary. The nov-vanished maijor river systems that carved these large valleys probably accomplished most of the erosional stripping of this extraordinarily flat, hyperarid region. Underfit and incised dry wadis, many superimposed on the large valleys, represent erosion by intermittent running water, probably during Quaternary pluvials. Stone Age artifacts associated with soils in the alluvium suggest that areas near the wadis may have been sites of early human occupation. The presence of old drainage networks beneath the sand sheet provides a geologic explanation for the locations of many playas and present-day oases which have been centers of episodic human habitation. Radar penetration of dry sand and soils varies with the wavelength of the incident signals (24 centimeters for the SIR-A system), incidence angle, and the electrical properties of the materials, which are largely determined by moisture content. The calculated depth of radar penetration of dry sand and granules, based on laboratory measurements of the electrical properties of samples from the Selima Sand Sheet, is at least 5 meters. Recent (September 1982) field studies in Egypt verified SIR-A signal penetration depths of at least 1 meter in the Selima Sand Sheet and in drift sand and 2 or more meters in sand dunes. Copyright ?? 1982 AAAS.

  7. First Observation of Rock Motion on Racetrack Playa, Death Valley National Park—Role of a Persistent Pool, Sun, Zephyrs, Windowpane Ice, and Tugboats

    NASA Astrophysics Data System (ADS)

    Norris, R. D.; Norris, J. M.

    2014-12-01

    Trails in the mud-cracked surface of Racetrack Playa have been scored by hundreds of rocks up to 320 kg, but the mechanism of movement is debated. In Winter 2013-2014, we observed rocks in motion associated with a transient pool formed by winter precipitation. The pond was 7 cm deep on the southern edge of the playa, tapering to a mud flat to the north. Freezing during cold winter nights formed floating "windowpane" ice 3-5 mm thick. Rocks repeatedly moved on sunny days under light winds of 3-5 m/second, as the ice broke up near midday and was set into motion by wind stress on melt pools and the ice surface. Ice panels shoved rocks along the mud like a tugboat, sometimes forming moving imbricated ice piles upstream of the rocks and in other cases moving faster than the rocks and forming brash-filled leads downstream. GPS units mounted in experimental rocks recorded a creeping pace of 2-6 m/minute, a speed that made it difficult to observe trail formation visually. The 2013-2014 pond formed on November 20-24 and persisted through early February 2014. During this time rocks were observed moving at least five times, and studies of "stiz marks" formed by rocks at the ends of trail segments show that there were likely 3-5 additional move events. Observed travel times ranged from a few seconds to 16 minutes. In one event, two experimental rocks 153 m apart began moving simultaneously and traveled 64.1 and 65.6 m respectively, ultimately moving 157-162 m in subsequent events. Rock motion depends on the creation of winter pools sufficiently deep to allow the formation of floating ice and exposed to the light winds and sun needed for ice breakup. The combination of these events is extremely rare, leading to highly episodic trail formation. Our observations differ from previous hypotheses in that the rocks were moved by thinner ice, at slower speeds, and by lighter winds than predicted.

  8. Early Permian conodont fauna and stratigraphy of the Garden Valley Formation, Eureka County, Nevada

    USGS Publications Warehouse

    Wardlaw, Bruce R.; Gallegos, Dora M.; Chernykh, Valery V.; Snyder, Walter S.

    2015-01-01

    The lower Part of the Garden Valley Formation yields two distinct conodont faunas. One of late Asselian age dominated by Mesogondolella and Streptognathodus and one of Artinskian age dominated by Sweetognathus with Mesogondolella. The Asselian fauna contains the same species as those found in the type area of the Asselian in the southern Urals including Mesogondolella dentiseparata, described for the first time outside of the Urals. Apparatuses for Sweetognathus whitei, Diplognathodus stevensi, and Idioprioniodus sp. are described. The Garden Valley Formation represents a marine pro-delta basin and platform, and marine and shore fan delta complex deposition. The fan-delta complex was most likely deposited from late Artinskian to lateWordian. The Garden Valley Formation records tremendous swings in depositional setting from shallow-water to basin to shore.

  9. Early Permian conodont fauna and stratigraphy of the Garden Valley Formation, Eureka County, Nevada

    USGS Publications Warehouse

    Wardlaw, Bruce R.; Gallegos, Dora M.; Chernykh, Valery V.; Snyder, Walter S.

    2015-01-01

    The lower part of the Garden Valley Formation yields two distinct conodont faunas. One of late Asselian age dominated by Mesogondolella and Streptognathodus and one of Artinskian age dominated by Sweetognathus with Mesogondolella. The Asselian fauna contains the same species as those found in the type area of the Asselian in the southern Urals including Mesogondolella dentiseparata, described for the first time outside of the Urals. Apparatuses for Sweetognathus whitei, Diplognathodus stevensi, and Idioprioniodus sp. are described. The Garden Valley Formation represents a marine pro-delta basin and platform, and marine and shore fan delta complex deposition. The fan-delta complex was most likely deposited from late Artinskian to late Wordian. The Garden Valley Formation records tremendous swings in depositional setting from shallow-water to basin to shore.

  10. GPS and InSAR Observations of Active Mountain Growth Across the Sierra Nevada/Great Basin Transition

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Blewitt, G.; Li, Z.; Kreemer, C. W.; Plag, H.

    2010-12-01

    Topographic relief across the Sierra Nevada Mountains and Great Basin of the western United States is dominated by mountain ranges and valleys that are the product of active tectonic deformation. The contemporary rate of uplift of the Sierra Nevada via slip on range front faults and/or tilting of the Sierra Nevada/Great Valley microplate (SNGV) has been the subject of controversy. For example, geologic estimates of the age of the modern range topography vary by one order of magnitude, from 3 to 30 million years. With present elevations near 3 km, the more rapid of these implied rates is large enough to be detected by the most precise GPS measurements. We use GPS vertical and horizontal components, and InSAR time series analysis to address these long standing questions about the rates of Sierran uplift. The data are from western U.S. high precision GPS networks including the EarthScope Plate Boundary Observatory, its nucleus networks, the University of Nevada Mobile Array of GPS for Nevada Transtension, and from integrated InSAR+GPS time series analysis of ERS and ENVISAT scenes acquired between 1992 and 2010 from the GeoEarthScope and WinSAR data archives. GPS data are processed using the GIPSY OASIS II software, with ambiguities resolved, ocean tidal loading, latest GMF troposphere model and antenna calibrations applied. InSAR time series analysis results provide enhanced geographic resolution, improving our ability to locate the boundary of SNGV block-like behavior. Vertical velocities from long-running continuous stations in eastern Nevada are very similar to one another, averaging -0.1 mm/yr, with standard deviation of 0.27 mm/yr, placing an upper bound on the uncertainty in vertical rates. We find agreement between the results of InSAR time series analysis aligned to GPS and GPS line of site rates at the level of 0.35 mm/yr, placing an upper bound on the uncertainty of InSAR time series results. Because we seek to infer long-term uplift rates, applicable over

  11. Spatial Patterns of Atmospherically Deposited Organic Contaminants at High-Elevation in the Southern Sierra Nevada Mountains, California, USA

    PubMed Central

    Bradford, David F.; Stanley, Kerri; McConnell, Laura L.; Tallent-Halsell, Nita G.; Nash, Maliha S.; Simonich, Staci M.

    2011-01-01

    Atmospherically deposited contaminants in the Sierra Nevada mountains of California, USA have been implicated as adversely affecting amphibians and fish, yet little is known about the distributions of contaminants within the mountains, particularly at high elevation. We tested the hypothesis that contaminant concentrations in a high-elevation portion of the Sierra Nevada decrease with distance from the adjacent San Joaquin Valley. We sampled air, sediment, and tadpoles twice at 28 water bodies in 14 dispersed areas in Sequoia and Kings Canyon National Parks (2785 – 3375 m elevation; 43 – 82 km from Valley edge). We detected up to 15 chemicals frequently in sediment and tadpoles, including current- and historic-use pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. Only β-endosulfan was found frequently in air. Concentrations of all chemicals detected were very low, averaging in the parts-per-billion range or less in sediment and tadpoles, and on the order of 10 pg/m3 for β-endosulfan in air. Principal components analysis indicated that chemical compositions were generally similar among sites, suggesting that chemical transport patterns were likewise similar among sites. In contrast, transport processes did not appear to strongly influence concentration differences among sites because variation in concentrations among nearby sites was high relative to sites far from each other. Moreover, a general relationship for concentrations as a function of distance from the valley was not evident across chemical, medium, and time. Nevertheless, concentrations for some chemical/medium/time combinations showed significant negative relationships with metrics for distance from the Valley. However, the magnitude of these distance effects among high-elevation sites was small relative to differences found in other studies between the valley edge and the nearest high-elevation sites. PMID:20821540

  12. Is the Isabella anomaly a fossil slab or the foundered lithospheric root of the Sierra Nevada batholith?

    NASA Astrophysics Data System (ADS)

    Hoots, C. R.; Schmandt, B.; Clayton, R. W.; Hansen, S. M.; Dougherty, S. L.

    2015-12-01

    The Isabella Anomaly is a volume of relatively high seismic velocity upper mantle beneath the southern Great Valley in California. We deployed ~45 broadband seismometers in central California to test two main hypotheses for the origin of the Isabella Anomaly. One suggests that the Isabella Anomaly is the foundered lithospheric root of the southern Sierra Nevada batholith, which delaminated on account of eclogite-rich composition and translated westward as it began to sink into the asthenosphere. The other hypothesis suggests that the Isabella Anomaly is a fossil slab fragment attached to the Monterey microplate that lies offshore of central California and thus it is mechanically coupled to the Pacific plate. Prior seismic imaging with ~70 km station spacing cannot resolve the landward termination of Monterey microplate lithosphere beneath coastal California or where/if the Isabella Anomaly is attached to North America lithosphere beneath the Great Valley. The new temporary broadband array consists of 40 broadband seismometers with ~7 km spacing extending from the central California coast to the western Sierra Nevada batholith, plus some outliers to fill gaps in the regional network coverage. The temporary array was initially deployed in early 2014 and will continue to record until October 2015 so the complete data are not yet available. Preliminary Ps scattered wave images show an abrupt ~6 km increase in Moho depth eastward across the San Andreas fault, a strong positive impedance contrast that dips westward from ~7-25 km beneath Great Valley, and a sharp Moho with a slight westward dip beneath the western edge of the Sierra Nevada batholith. Apparently low impedance contrast characterizes the Moho beneath the eastern Great Valley and foothills, consistent with near mantle velocities in the lower crust. Processing of the cumulative data that will be available in October 2015 and incorporation of new tomography models into scattered wave imaging are needed before

  13. Playa Soil Moisture and Evaporation Dynamics During the MATERHORN Field Program

    NASA Astrophysics Data System (ADS)

    Hang, Chaoxun; Nadeau, Daniel F.; Jensen, Derek D.; Hoch, Sebastian W.; Pardyjak, Eric R.

    2016-06-01

    We present an analysis of field data collected over a desert playa in western Utah, USA in May 2013, the most synoptically active month of the year, as part of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program. The results show that decreasing surface albedo, decreasing Bowen ratio and increasing net radiation with increasing soil moisture sustained a powerful positive feedback mechanism promoting large evaporation rates immediately following rain events. Additionally, it was found that, while nocturnal evaporation was negligible during dry periods, it was quite significant (up to 30 % of the daily cumulative flux) during nights following rain events. Our results further show that the highest spatial variability in surface soil moisture is found under dry conditions. Finally, we report strong spatial heterogeneities in evaporation rates following a rain event. The cumulative evaporation for the different sampling sites over a five-day period varied from ≈ 0.1 to ≈ 6.6 mm. Overall, this study allows us to better understand the mechanisms underlying soil moisture dynamics of desert playas as well as evaporation following occasional rain events.

  14. Using 87Sr/86Sr Ratios of Carbonate Minerals in Dust to Quantify Contributions from Desert Playas to the Urban Wasatch Front, Utah, USA

    NASA Astrophysics Data System (ADS)

    Goodman, M.; Carling, G. T.; Fernandez, D. P.; Rey, K.; Hale, C. A.; Nelson, S.; Hahnenberger, M.

    2017-12-01

    Desert playas are important dust sources globally, with potential harmful health impacts for nearby urban areas. The Wasatch Front (population >2 million) in western Utah, USA, is located directly downwind of several playas that contribute to poor air quality on dust event days. Additionally, the exposed lakebed of nearby Great Salt Lake is a growing dust source as water levels drop in response to drought and river diversions. To investigate contributions of playa dust to the Wasatch Front, we sampled dust emissions from the exposed lakebed of Great Salt Lake and seven playas in western Utah, including Sevier Dry Lake, and dust deposition at four locations stretching 160 km from south to north along the Wasatch Front, including Provo, Salt Lake City, Ogden, and Logan. The samples were analyzed for mineralogy, bulk chemistry, and 87Sr/86Sr ratios for source apportionment. The mineralogy of playa dust and Wasatch Front dust samples was dominated by quartz, feldspar, chlorite and calcite. Bulk geochemical composition was similar for all playa dust sources, with higher anthropogenic metal concentrations in the Wasatch Front. Strontium isotope (87Sr/86Sr) ratios in the carbonate fraction of the dust samples were variable in the playa dust sources, ranging from 0.7105 in Sevier Dry Lake to 0.7150 in Great Salt Lake, providing a powerful tool for apportioning dust. Based on 87Sr/86Sr mixing models, Great Salt Lake contributed 0% of the dust flux at Provo, 20% of the dust flux at Salt Lake City, and 40% of the dust flux at Ogden and Logan during Fall 2015. Contrastingly, Great Salt Lake dust was less important in Spring of 2016, contributing 0% of the dust flux at Provo and <10% of the dust flux to Salt Lake City and Logan. Two major dust events that occurred on 3 November 2015 and 23 April 2016 had similar wind and climate conditions as understood by HYSPLIT backward trajectories, meaning that seasonal variability in dust emissions is due to playa surface conditions

  15. Water-Table Levels and Gradients, Nevada, 1947-2004

    USGS Publications Warehouse

    Lopes, Thomas J.; Buto, Susan G.; Smith, J. LaRue; Welborn, Toby L.

    2006-01-01

    information for 49 of 232 basins and for most consolidated-rock hydrogeologic units. Depth to water is commonly less than 50 feet beneath valley floors, 50 to 500 feet beneath alluvial fans, and more than 500 feet in some areas such as north-central and southern Nevada. In areas without water-table information, greasewood and mapped ground-water discharge areas are good indicators of depth to water less than 100 feet. The average difference between measured depth to water and depth to water estimated from surfaces was 90 feet. More recent and detailed information may be needed than that presented in this report to evaluate a specific site. Temporal changes in water-table levels were evaluated for 1,981 wells with 10 or more years between the first depth-to-water measurement and last measurement made since 1990. The greatest increases in depth to water occurred where the first measurement was less than 200 feet, where the time between first and last measurements was 40 years or less, and for wells between 100 and 600 feet deep. These characteristics describe production wells where ground water is fairly shallow in recently developing areas such as the Las Vegas and Reno metropolitan areas. In basins with little pumping, 90 percent of the changes during the past 100 years are within ?20 feet, which is about the natural variation in the water table due to changes in the climate and recharge. Gradients in unconsolidated sediments of the Great Basin are generally steep near mountain fronts, shallow beneath valley floors, and depend on variables such as the horizontal hydraulic conductivity of adjacent consolidated rocks and recharge. Gradients beneath alluvial fans and valley floors at 58 sites were correlated with selected variables to identify those variables that are statistically related. Water-table measurements at three sites were used to characterize the water table between the valley floor and consolidated rock. Water-table gradients beneath alluvial fan

  16. Potential effects of existing and proposed groundwater withdrawals on water levels and natural groundwater discharge in Snake Valley, Juab and Millard Counties, Utah, White Pine County, Nevada, and surrounding areas in Utah and Nevada

    USGS Publications Warehouse

    Masbruch, Melissa D.; Gardner, Philip M.

    2014-01-01

    Applications have been filed for several water-right changes and new water rights, with total withdrawals of about 1,800 acre-feet per year, in Snake Valley near Eskdale and Partoun, Utah. The Bureau of Land Management has identified 11 sites where the Bureau of Land Management holds water rights and 7 other springs of interest that could be affected by these proposed groundwater withdrawals. This report presents a hydrogeologic analysis of areas within Snake Valley to assess the potential effects on Bureau of Land Management water rights and other springs of interest resulting from existing and proposed groundwater withdrawals. A previously developed numerical groundwater-flow model was used to quantify potential groundwater drawdown and the capture, or groundwater withdrawals that results in depletion, of natural discharge resulting from existing and proposed groundwater withdrawals within Snake Valley. Existing groundwater withdrawals were simulated for a 50-year period prior to adding the newly proposed withdrawals to bring the model from pre-development conditions to the start of 2014. After this initial 50-year period, existing withdrawals, additional proposed withdrawals, and consequent effects were simulated for periods of 5, 10, 25, 50, and 100 years. Downward trends in water levels measured in wells indicate that the existing groundwater withdrawals in Snake Valley are affecting water levels. The numerical model simulated similar downward trends in water levels. The largest simulated drawdowns caused by existing groundwater withdrawals ranged between 10 and 26 feet and were near the centers of the agricultural areas by Callao, Eskdale, Baker, Garrison, and along the Utah-Nevada state line in southern Snake Valley. The largest simulated water-level declines were at the Bureau of Land Management water-rights sites near Eskdale, Utah, where simulated drawdowns ranged between 2 and 8 feet at the start of 2014. These results were consistent with, but lower

  17. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    Some of the moving rocks are large. This one is about 10 inches tall. Researchers in the late 1960s and early 1970s documented the movements of one very large rock that they named Karen. (The two men named all the rocks after women.) They estimated that Karen weighed 700 pounds. Credit: NASA/GSFC/Maggie McAdam To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  18. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    A small level is used to see if the trail is tilted upward or downward. In most cases where a rock has moved, the trail is tilted very slightly uphill, but the interns don't think this has a noticeable effect on the movement. The compass is included for scale. Photo credit: NASA/GSFC/Leva McIntire/LPSA intern To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  19. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    To investigate the rocks and trails, the interns collect many kinds of data, such as trail length, width, and depth; rock size; magnetic and radiation measurements; and GPS coordinates. The students also photograph the rocks, the trails and the cracks in the mud within and outside the trails. Photo credit: NASA/GSFC/Maggie McAdam To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  20. Structural and lithologic study of northern coast ranges and Sacramento Valley, California

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The pattern of linear systems within the project area has been extended into the western foothill belt of the Sierra Nevada. The chief pattern of linear features in the western Sierran foothill belt trends about N. 10 - 15 deg W., but in the vicinity of the Feather River the trend of the features abruptly changes to about N. 50-60 deg W and appears to be contiguous across the Sacramento Valley with a similar system of linear features in the Coast Ranges. The linear features in the Modoc Plateau and Klamath Mt. areas appear unrelated to the systems detected in the Coast Ranges of Sierran foothill belt. Although the change in trend of the Sierran structural features has been previously suggested and the interrelationship of the Klamath Mt. region with the northern Sierra Nevadas has been postulated, the data obtained from the ERTS-1 imagery strengthens these notions and provides for the first time evidence of a direct connection of the structural trends within the alluviated part of the Sacramento Valley. In addition rocks of Pleistocene and Holocene age are offset by some of the linear features seen on ERTS-1 imagery and hence may record the latest episode of geologic deformation in north-central California.

  1. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah - Draft Report

    USGS Publications Warehouse

    Welch, Alan H.; Bright, Daniel J.

    2007-01-01

    Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.

  2. Spatiotemporal patterns of fault slip rates across the Central Sierra Nevada frontal fault zone

    NASA Astrophysics Data System (ADS)

    Rood, Dylan H.; Burbank, Douglas W.; Finkel, Robert C.

    2011-01-01

    , extension is accommodated within a diffuse zone of normal and oblique faults, with extension rates increasing northward on the Fish Lake Valley fault. Where faults of the Eastern California Shear Zone terminate northward into the Mina Deflection, extension rates increase northward along the Sierra Nevada frontal fault zone to ~ 0.7 mm year - 1 in northern Mono Basin. This spatial pattern suggests that extension is transferred from more easterly fault systems, e.g., Fish Lake Valley fault, and localized on the Sierra Nevada frontal fault zone as the Eastern California Shear Zone-Walker Lane belt faulting is transferred through the Mina Deflection.

  3. Spatiotemporal Patterns of Fault Slip Rates Across the Central Sierra Nevada Frontal Fault Zone

    NASA Astrophysics Data System (ADS)

    Rood, D. H.; Burbank, D.; Finkel, R. C.

    2010-12-01

    normal and oblique faults, with extension rates increasing northward on the Fish Lake Valley fault. Where faults of the Eastern California Shear Zone terminate northward into the Mina Deflection, extension rates increase northward along the Sierra Nevada frontal fault zone to ~0.7 mm/yr in northern Mono Basin. This spatial pattern suggests that extension is transferred from faults systems to the east (e.g. Fish Lake Valley fault) and localized on the Sierra Nevada frontal fault zone as Eastern California Shear Zone-Walker Lane belt faulting is transferred through the Mina Deflection.

  4. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Welch, Alan H.; Bright, Daniel J.; Knochenmus, Lari A.

    2008-01-01

    INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.

  5. Determining the origin of enigmatic bedrock structures using apatite (U-Th)/He thermochronology: Alabama and Poverty Hills, Owens Valley, California

    NASA Astrophysics Data System (ADS)

    Ali, G. A.; Reiners, P. W.; Ducea, M.

    2008-12-01

    The Alabama and Poverty Hills are enigmatic, topographic highs of crystalline basement surrounded by Neogene sediments in Owens Valley, California. The 150-km long Owens Valley, the westernmost graben of the Basin and Range Province, initiated at about 3 Ma, creating ~2-4 km of vertical relief from the Sierra Nevada and White/Inyos crests to the valley floor. Along the valley, the active right-lateral Owens Valley Fault Zone (OVFZ) accommodates a significant portion of Pacific-North American plate motion, creating an oblique dextral fault zone, with localized transpression along minor left-stepovers. The dominantly granitic Mesozoic rocks of the Alabama Hills are bounded by the OVFZ to the east, and the granitic and metavolcanic Mesozoic rocks of the Poverty Hills are located along an apparent 3-km left stepover of the OVFZ. The tectonic origin and geodynamic significance of both these structures are not known, but previously published hypotheses include: 1) transpressional uplifts as OVFZ-related flower structures; 2) down-dropped normal fault blocks; and 3) giant landslides from adjacent ranges. We measured apatite (U-Th)/He ages on 15 samples from the Alabama and Poverty Hills to understand the history of shallow crustal exhumation of these structures, and to potentially correlate them to rocks from adjacent ranges. Apatite He dating typically yields cooling ages corresponding to closure temperatures of ~55-65 °C, corresponding roughly to depths of ~2-3 km in the crust. The majority of apatite He ages from the Alabama Hills ranged from 58-70 Ma, but the far eastern, and lowest elevation sample showed ages of 51-55 Ma. The Poverty Hills shows younger ages of 40-65 Ma and no recognizable spatial pattern. Although the data do not conclusively rule out a transpressional uplift origin of the Poverty Hills, the rocks within them could not have been exhumed from depths greater than ~2-3 km in Owens Valley. Data from both structures are most consistent with down

  6. Ground-water quality in Douglas County, western Nevada

    USGS Publications Warehouse

    Garcia, K.T.

    1989-01-01

    A 182% increase in population within the last 10 years in Douglas County, Nevada, has raised concerns by county officials as to the possible effects land development may have on groundwater quality. Most groundwater in Douglas County meets the State of Nevada drinking water standards. Of the 333 water samples used in this analysis, 6 equaled or were greater than the drinking water standards for sulfates, 44 for fluoride, 4 for dissolved solids, 5 for nitrate as nitrate, 12 for arsenic, 33 for iron, and 18 for manganese. Groundwater in the west-central, northern, and northeastern part of Carson Valley is influenced by geothermal water. Some areas in the county may have septic-tank effluent contaminating the groundwater. Temporal changes in most municipal wells showed no overall trend for dissolved-solids and nitrate concentrations spanning the years 1969-83. However, a municipal well in the Topaz Lake area has shown a general increases in the nitrate concentration from 1961 to 1984, but the concentration does not exceed the drinking-water standard. A future groundwater quality monitoring program in Douglas County would include periodic sampling of primary or heavily pumped wells, long-term trend wells, and supplemental wells. (Thacker-USGS)

  7. Dust Emissions from Undisturbed and Disturbed, Crusted Playa Surfaces: Cattle Trampling Effect

    NASA Astrophysics Data System (ADS)

    Zobeck, T. M.; Baddock, M. C.; van Pelt, R.; Fredrickson, E. L.

    2009-12-01

    Dry playa lake beds can be a significant source of fine dust emissions during high wind events in arid and semiarid landscapes. The physical and chemical properties of the playa surface control the amount and properties of the dust emitted. In this study, we use a field wind tunnel to quantify the dust emissions from a bare, fine-textured playa surface located in the Chihuahua Desert at the Jornada Experimental Range, near Las Cruces, New Mexico, USA. We tested natural, undisturbed crusted surfaces and surfaces that had been subjected to two levels of domestic animal disturbance. The animal disturbance was provided by trampling produced from one and ten passes along the length of the wind tunnel by a 630 kg Angus-Hereford cross cow. The trampling broke the durable crust and created loose erodible material. Each treatment (natural crust, one pass, and ten passes) was replicated three times. A push-type wind tunnel with a 6 m long, 0.5 m wide, and 1 m high test section was used to generate dust emissions under controlled conditions. Clean medium sand was dropped onto the playa surface to act as an abrader material. The tunnel wind speed was equivalent to 15 m/s at a height of 2 m over a smooth soil surface. The tunnel was initially run for ten minutes, with no abrader added. A second 30 minute run was subsequently sampled as abrader was added to the wind stream. Dust and saltating material were collected using an isokinetic slot sampler at the end of the tunnel. Total airborne dust was collected on two 25 cm x 20 cm glass fiber filters (GFF) and measured using a GRIMM particle monitor every 6 sec throughout each test run. Disturbance by trampling generated increased saltating material and airborne dust. The amount of saltating material measured during the initial (no abrader added) run was approximately 70% greater and 5.8 times the amount of saltating material measured on the one pass and ten pass plots, respectively, compared with that observed on the undisturbed

  8. Linear Dunes and Playas, Simson Desert, South Australia, Australia

    NASA Image and Video Library

    1991-12-01

    This image of abstract shapes is comprised numerous subparallel, very long, orange colored linear dunes and patchy grey dry lakes (playas). The dunes are aligned north to south in the great central basin of Astralia (27.0S, 138.0E). The regularity of the dunes is created by the winds blowing from the south. As the dunes advance, jaged edges on the south side of each dry lake are formed while the north side is eroded smooth by the wind and water.

  9. Hydrologic and chemical data for wells, springs, and streams in Nevada, TPS. 1-21 N., and Rs. 41-57 E

    USGS Publications Warehouse

    Robinson, B.P.; Thordarson, William; Beetam, W.A.

    1967-01-01

    Studies of published and unpublished geologic, hydrologic, and chemical-quality data for ground and surface water in central Nevada, Tps. 1 to 21 N. and Rs. 41 to 57 E., Mount Diablo base and meridian, reveal the following information: Rocks exposed in central Nevada are of sedimentary and igneous origin and range in age from Cambrian to Recent. Rocks of Paleozoic age generally are carbonate or clastic, and rocks of Mesozoic age generally are clastic and granitic. Rocks of Tertiary age principally are volcanic, and the valley fill of Quaternary age is alluvial-fan and lake deposits. The rocks are folded, faulted, and highly fractured. Precipitation is closely related to altitude. In general, as the altitude increases the precipitation increases. Most of the streamflow in the valleys originates as snow in the nearby mountains. The streams generally flow only in response to snowmelt and to flash-flood-producing storms. Important chemical quality characteristics of the ground and surface water in central Nevada are hardness, expressed as CaCO3, generally in excess of 120 ppm, and a dissolved-solids content of less than 500 ppm. The principal chemical types of both ground and surface waters are sodium and calcium bicarbonates. The major uses of ground water in central Nevada are for irrigation and stock. Frequency of use of wells in decreasing order is: irrigation, stock, domestic, industrial, municipal, and observation. Of the 606 wells tabulated, 29 have multiple uses. Frequency of use of spring water in decreasing order is: stock, irrigation, domestic, and public facilities. Of the 135 springs tabulated, 5 have multiple uses.

  10. Classification of the LCVF AVIRIS test site with a Kohonen artificial neural network

    NASA Technical Reports Server (NTRS)

    Merenyi, Erzsebet; Singer, Robert B.; Farrand, William H.

    1993-01-01

    We present a classification of an AVIRIS spectral image of the Lunar Crater Volcanic Field (LCVF). Geologic mapping from such data is made possible by distinctive mineral signatures: absorption features and the shape of the spectral continuum. The subtle spectral shape differences between some of the geological units in this scene along with the high dimensionality of the spectral presents a challenging pattern recognition task. We found an artificial neural network powerful in separating 13 geological units based on the full spectral resolution. The LCVF, in northern Nye County, Nevada, was the primary focus of the NASA-sponsored Geologic Remote Sensing Field Experiment in the summer of 1989. It consists of over 100 square miles of Quaternary basaltic pyroclastic and flow deposits. These deposits lie atop ignimbrites and silicic lava flows of Tertiary age and in turn are overlain by Quaternary alluvial and playa deposits. This AVIRIS image was collected on September 29, 1989 at 11:44 at 11:44 PDT. The 256-by-256 pixel subsection in this study contains oxidized basaltic cinder deposits, the southern half of the Lunar Lake playa, and outcrops of the Rhyollite of Big Sand Spring Valley. Vegetation in LCVF is sparse, but locally abundant within washes and near springs.

  11. Flooding in Clark and Lincoln Counties, Nevada, December 2004 and January 2005

    USGS Publications Warehouse

    Ryan, Roslyn

    2006-01-01

    Introduction: A regional storm passed through the Las Vegas Valley, Nevada, on December 28-29, 2004, producing up to 2 inches of rain in a 24-hour period. Due to the intense, sustained rainfall, streamflow along Las Vegas Wash was near the record discharges of July 8, 1999. Additional rainfall in December and in January, combined with an early warming trend, resulted in record flooding along Meadow Valley Wash, Muddy River, and Virgin River, January 10-11, 2005 (figs. 1 and 2). On January 7, this warming trend resulted in about a 15?F (degree Fahrenheit) increase over the previous week (fig. 2). This temperature spike, along with further precipitation, caused much of the snow pack in the surrounding mountain ranges to melt and run off into the valleys. These two factors led to the major flood events in Clark and Lincoln Counties during December 2004 and January 2005. Total flood and storm damage for Lincoln County was estimated at $9.4 million and $4.5 million for Clark County (Manning, 2005). Clark County generally is drained by the Las Vegas and Meadow Valley Washes, and the Muddy and Virgin River systems. Las Vegas Valley is drained by Duck Creek, Tropicana Wash (not in fig. 1), Flamingo Wash, Las Vegas Wash, and several smaller tributaries (fig. 1). Water in these drainages generally flows eastward through Las Vegas to Las Vegas Wash and on toward Lake Mead, an impoundment of the Colorado River. The Virgin River originates in southern Utah, flows past Littlefield, AZ, through Mesquite, NV, and into the Overton Arm of Lake Mead. Meadow Valley Wash flows from Ursine, NV, through Caliente, NV, continues southeast through Moapa Valley, and into the Muddy River at Glendale, NV. The Muddy River flows southeast through Moapa Valley into the Overton Arm of Lake Mead (Kane and Wilson, 2000).

  12. 78 FR 65362 - Notice of Inventory Completion: U.S. Department of the Interior, National Park Service, Capitol...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...; Shoshone-Paiute Tribes of the Duck Valley Reservation, Nevada; Summit Lake Paiute Tribe of Nevada; Tonto... Southern Paiute Tribe of Arizona; Shoshone-Paiute Tribes of the Duck Valley Reservation, Nevada; Summit...-Paiute Tribes of the Duck Valley Reservation, Nevada; Southern Ute Indian Tribe of the Southern Ute...

  13. Origin and Evolution of Li-rich Brines at Clayton Valley, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Munk, L. A.; Bradley, D. C.; Hynek, S. A.; Chamberlain, C. P.

    2011-12-01

    Lithium is the key component in Li-ion batteries which are the primary energy storage for electric/hybrid cars and most electronics. Lithium is also an element of major importance on a global scale because of interest in increasing reliance on alternative energy sources. Lithium brines and pegmatites are the primary and secondary sources, respectively of all produced Li. The only Li-brine in the USA that is currently in production exists in Clayton Valley, NV. The groundwater brines at Clayton Valley are located in a closed basin with an average evaporation rate of 142 cm/yr. The brines are pumped from six aquifer units that are composed of varying amounts of volcanic ash, gravel, salt, tufa, and fine-grained sediments. Samples collected include spring water, fresh groundwater, groundwater brine, and meteoric water (snow). The brines are classified as Na-Cl waters and the springs and fresh groundwater have a mixed composition and are more dilute than the brines. The Li content of the waters in Clayton Valley ranges from less than 1 μg/L (snow) up to 406.9 mg/L in the lower ash aquifer system (one of six aquifers in the basin). The cold springs surrounding Clayton Valley have Li concentrations of about 1 mg/L. A hot spring located just east of Clayton Valley contains 1.6 mg/L Li. The Li concentration of the fresh groundwater is less than 1 mg/L. Hot groundwater collected in the basin contain 30-40 mg/L Li. Water collected from a geothermal drilling north of Silver Peak, NV, had water with 4.9 mg/L Li at a depth of >1000m. The δD and δ18O isotopic signatures of fresh groundwater and brine form an evaporation path that extends from the global meteoric water line toward the brine from the salt aquifer system (the most isotopically enriched brine with ave. δD = -3.5, ave. δ18O = -67.0). This suggests that mixing of inflow water with the salt aquifer brine could have played an important role in the evolution of the brines. Along with mixing, evaporation appears to

  14. Facies analysis of Late Proterozoic through Lower Cambrian rocks of the Death Valley regional ground-water system and surrounding areas, Nevada and California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweetkind, D.S.; White, D.K.

    Late Proterozoic through Lower Cambrian rocks in the southern Great Basin form a westward-thickening wedge of predominantly clastic deposits that record deposition on the early western shelf edge of western North America (Stewart and Poole, 1974; Poole and others, 1992). Regional analyses of geologic controls on ground-water flow in the southern Great Basin typically combined lithostratigraphic units into more general hydrogeologic units that have considerable lateral extent and distinct hydrologic properties. The Late Proterozoic through Lower Cambrian rocks have been treated as a single hydrogeologic unit, named the lower clastic aquitard (Winograd and Thordarson, 1975) or the quartzite confining unitmore » (Laczniak and others, 1996), that serves as the hydrologic basement to the flow system. Although accurate in a general sense, this classification ignores well-established facies relations within these rocks that might increase bedrock permeability and locally influence ground-water flow . This report presents a facies analysis of Late Proterozoic through Lower Cambrian rocks (hereafter called the study interval) in the Death Valley regional ground-water flow system - that portion of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain (fig. 1). The region discussed in this report, hereafter called the study area, covers approximately 100,000 km2 (lat 35 degrees-38 degrees 15'N., long 115 degrees-118 degrees W.). The purpose of this analysis is to provide a general documentation of facies transitions within the Late Proterozoic through Lower Cambrian rocks in order to provide an estimate of material properties (via rock type, grain size, and bedding characteristics) for specific hydrogeologic units to be included in a regional ground-water flow model.« less

  15. Monitoring infiltration and recharge of playa lakes in the Texas Southern High Plains

    USDA-ARS?s Scientific Manuscript database

    Preliminary results from playa lakes monitored by the Texas Water Development Board (TWDB) suggest that a small volume of deep infiltration and recharge to the Ogallala aquifer occurs along the margins of the lake beds, while the majority of infiltration associated with a typical inundation remains ...

  16. The Las Vegas Valley Seismic Response Project: Ground Motions in Las Vegas Valley from Nuclear Explosions at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A; Tkalcic, H; McCallen, D

    2005-03-18

    Between 2001-2004 the Las Vegas Seismic Response Project has sought to understand the response of Las Vegas Valley (LVV) to seismic excitation. In this study, the author report the findings of this project with an emphasis on ground motions in LVV from nuclear explosions at the Nevada Test Site (NTS). These ground motions are used to understand building structural response and damage as well as human perception. Historical nuclear explosion observations are augmented with earthquake recordings from a temporary deployment of seismometers to improve spatial coverage of LVV. The nuclear explosions were conducted between 1968 and 1989 and were recordedmore » at various sites within Las Vegas. The data from past nuclear tests were used to constrain ground motions in LVV and to gain a predictive capability of ground motions for possible future nuclear tests at NTS. Analysis of ground motion data includes peak ground motions (accelerations and velocities) and amplification of basin sites relative to hard rock sites (site response). Site response was measured with the Standard Spectral Ratios (SSR) technique relative to hard rock reference sites on the periphery of LVV. The site response curves indicate a strong basin amplification of up to a factor of ten at frequencies between 0.5-2 Hz. Amplifications are strongest in the central and northern portions of LVV, where the basin is deeper than 1 km based on the reported basin depths of Langenheim et al (2001a). They found a strong correlation between amplification and basin depth and shallow shear wave velocities. Amplification below 1 Hz is strongly controlled by slowness-averaged shear velocities to depths of 30 and 100 meters. Depth averaged shear velocities to 10 meters has modest control of amplifications between 1-3 Hz. Modeling reveals that low velocity material in the shallow layers (< 200 m) effectively controls amplification. They developed a method to scale nuclear explosion ground motion time series to sites

  17. Rates of evapotranspiration, recharge from precipitation beneath selected areas of native vegetation, and streamflow gain and loss in Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Maurer, Douglas K.; Berger, David L.; Tumbusch, Mary L.; Johnson, Michael J.

    2006-01-01

    Rapid growth and development in Carson Valley is causing concern over the continued availability of water resources to sustain such growth into the future. A study to address concerns over water resources and to update estimates of water-budget components in Carson Valley was begun in 2003 by the U.S. Geological Survey, in cooperation with Douglas County, Nevada. This report summarizes micrometeorologic, soil-chloride, and streambed-temperature data collected in Carson Valley from April 2003 through November 2004. Using these data, estimates of rates of discharge by evapotranspiration (ET), rates of recharge from precipitation in areas of native vegetation on the eastern and northern sides of the valley, and rates of recharge and discharge from streamflow infiltration and seepage on the valley floor were calculated. These rates can be used to develop updated water budgets for Carson Valley and to evaluate potential effects of land- and water-use changes on the valley's water budget. Data from eight ET stations provided estimates of annual ET during water year 2004, the sixth consecutive year of a drought with average or below average precipitation since 1999. Estimated annual ET from flood-irrigated alfalfa where the water table was from 3 to 6 feet below land surface was 3.1 feet. A similar amount of ET, 3.0 feet, was estimated from flood-irrigated alfalfa where the water table was about 40 feet below land surface. Estimated annual ET from flood-irrigated pasture ranged from 2.8 to 3.2 feet where the water table ranged from 2 to 5 feet below land surface, and was 4.4 feet where the water table was within 2 feet from land surface. Annual ET estimated from nonirrigated pasture was 1.7 feet. Annual ET estimated from native vegetation was 1.9 feet from stands of rabbitbrush and greasewood near the northern end of the valley, and 1.5 feet from stands of native bitterbrush and sagebrush covering alluvial fans along the western side of the valley. Uncertainty in most ET

  18. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carilli, Jhon T.; Krenzien, Susan K.

    2013-07-01

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  19. The utilization of ERTS-1-generated photographs in the evaluation of the Iranian playas as potential locations for economic and engineering development

    NASA Technical Reports Server (NTRS)

    Krinsley, D. B. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Seasonal monitoring of hydrologic conditions at three playa lakes provides a basis for constructing an annual water inventory for these lakes. Although the extreme variation in the extent of playa lakes must be considered, the principal periods of their fluctuations are generally constant. Playa lakes provide an important water source for arid region needs, and their water can be diverted and stored for use during the long, hot, and dry summer. At their 1973 maxima, approximately 400 million cu m and 794 million cu m of water were available at the lakes at Qom and Neriz playas, respectively. These lakes adjoin areas of moderately dense population that have severe annual water deficits. A preliminary road alignment across the Great Kavir in north-central Iran has been prepared from an analysis of ERTS-1 images of that area from September 2, 1972, through May 12, 1973, a total of 6 scenes. An all-weather road constructed along this alignment could reduce the distance between points north and south of the Great Kavir by as much as 700 km.

  20. Assessment of Satellite-Derived Surface Reflectances by NASA's CAR Airborne Radiometer over Railroad Valley, Nevada

    NASA Technical Reports Server (NTRS)

    Kharbouche, Said; Muller, Jan-Peter; Gatebe, Charles K.; Scanlon, Tracy; Banks, Andrew C.

    2017-01-01

    CAR (Cloud Absorption Radiometer) is a multi-angular and multi-spectral airborne radiometer instrument, whose radiometric and geometric characteristics are well calibrated and adjusted before and after each flight campaign. CAR was built by NASA (National Aeronautics and Space Administration) in 1984. On 16 May 2008, a CAR flight campaign took place over the well-known calibration and validation site of Railroad Valley in Nevada (38.504 deg N, 115.692 deg W).The campaign coincided with the overpasses of several key EO (Earth Observation) satellites such as Landsat-7, Envisat and Terra. Thus, there are nearly simultaneous measurements from these satellites and the CAR airborne sensor over the same calibration site. The CAR spectral bands are close to those of most EO satellites. CAR has the ability to cover the whole range of azimuth view angles and a variety of zenith angles depending on altitude and, as a consequence, the biases seen between satellite and CAR measurements due to both unmatched spectral bands and unmatched angles can be significantly reduced. A comparison is presented here between CARs land surface reflectance (BRF or Bidirectional Reflectance Factor) with those derived from Terra/MODIS (MOD09 and MAIAC), Terra/MISR, Envisat/MERIS and Landsat-7. In this study, we utilized CAR data from low altitude flights (approx. 180 m above the surface) in order to minimize the effects of the atmosphere on these measurements and then obtain a valuable ground-truth data set of surface reflectance. Furthermore, this study shows that differences between measurements caused by surface heterogeneity can be tolerated, thanks to the high homogeneity of the study site on the one hand, and on the other hand, to the spatial sampling and the large number of CAR samples. These results demonstrate that satellite BRF measurements over this site are in good agreement with CAR with variable biases across different spectral bands. This is most likely due to residual aerosol

  1. A water resource assessment of the playa lakes of the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    Texas Water Development Board (TWDB) staff are studying the water-resource potential of playa lakes in the Texas High Plains in partnership with the U. S. Department of Agriculture— Agricultural Research Service and Texas Tech University. Phase 1 of the research seeks to measure the volume of water ...

  2. The effects of climate change on the demand for municipal water for residential landscaping in Southern Nevada

    NASA Astrophysics Data System (ADS)

    Tchigriaeva, E.; Lott, C.; Rollins, K.

    2013-12-01

    We analyze urban residential water demand for Southern Nevada as a part of the Nevada Infrastructure for Climate Change Science, Education, and Outreach project. The Nevada Climate Change project is a statewide interdisciplinary program which has launched joint research, education, and outreach on the effects of regional climate change on ecosystem services in Nevada with a particular focus on water resources. We estimate a random effect multiple regression model of urban residential water demand in order to better understand how residential water use is impacted by weather conditions and landscape characteristics and ultimately to inform predictions of urban water demand. The project develops a methodology of unification for several datasets from various sources including the Las Vegas Valley Water District (LVVWD), the Southern Nevada Water Authority (SNWA), Clark County Assessor, and the National Climatic Data Center (NCDC) resulting in a sample of 3,671,983 observations for 62,237 households with uninterrupted water use history for Las Vegas urban residents for the period from February 2007 to December 2011. The presented results (i) are significantly robust and in accordance with the economics theories, (ii) support basic empirical knowledge of weather and surface influence on water outdoor consumption, (iii) suggest quantitative measurements for predicting future water use due to climate/temperature changes as well as landscape redesign practices, and (iv) provide quantitative evaluation of the effectiveness of the existing water conservation programs by the Southern Nevada Water Authority (SNWA). The further study of conservation programs and analysis of interactions between surfaces and weather using the developed approach looks promising.

  3. Spatial and seasonal patterns of particulate matter less than 2.5 microns in the Sierra Nevada Mountains, California

    Treesearch

    Ricardo Cisneros; Don Schweizer; Haiganoush Preisler; Deborah H. Bennett; Glenn Shaw; Andrzej Bytnerowicz

    2014-01-01

    This paper presents particulate matter data collected in the California southern Sierra Nevada Mountains (SNM) during 2002 to 2009 from the Central Valley (elevation 91 m) into the SNM (elevation 2,598 m). Annual average concentrations of particles smaller than 2.5 µm in diameter (PM2.5) for all sites during this study ranged from 3.1 to 22.2 µg...

  4. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James B. Paces; Zell E. Peterman; Kiyoto Futa

    2007-08-07

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously aroundmore » the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared

  5. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Paces, James B.; Peterman, Zell E.; Futo, Kiyoto; Oliver, Thomas A.; Marshall, Brian D.

    2007-01-01

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values

  6. Status of the Sierra Nevada: the Sierra Nevada Ecosystem Project

    USGS Publications Warehouse

    Erman, Don C.; ,

    1997-01-01

    The Sierra Nevada ecosystem project was requested by Congress in the Conference Report for Interior and related Agencies 1993 Appropriation Act, which authorized funds for a scientific review of the remaining old growth in the national forests of the Sierra Nevada in California, and for a study of the entire Sierra Nevada ecosystem by an independent panel of scientists, with expertise in diverse areas related to this issue. This CD-ROM is a digital version of the set of reports titled 'Sierra Nevada Ecosystem Project, final report to Congress' published in paper form by the Centers for Water and Wildland Resources of the University of California, Davis.

  7. Environmental exposures to agrochemicals in the Sierra Nevada mountain range

    USGS Publications Warehouse

    LeNoir, J.; Aston, L.; Data, S.; Fellers, G.; McConnell, L.; Sieber, J.

    2000-01-01

    The release of pesticides into the environment may impact human and environmental health. Despite the need for environmental exposure data, few studies quantify exposures in urban areas and even fewer determine exposures to wildlife in remote areas. Although it is expected that concentrations in remote regions will be low, recent studies suggest that even low concentrations may have deleterious effects on wildlife. Many pesticides are known to interfere with the endocrine systems of humans and wildlife, adversely affecting growth, development, and behavior. This chapter reviews the fate and transport of pesticides applied in the Central Valley of California and quantifies their subsequent deposition into the relatively pristine Sierra Nevada Mountain Range.

  8. Geomorphology and Tectonics at the Intersection of Silurian and Death Valleys, Southern California - 2005 Guidebook Pacific Cell Friends of the Pleistocene

    USGS Publications Warehouse

    Miller, David M.; Valin, Zenon C.

    2007-01-01

    This publication describes results from new regional and detailed surficial geologic mapping, combined with geomorphologic, geochronologic, and tectonic studies, in Silurian Valley and Death Valley, California. The studies address a long-standing problem, the tectonic and geomorphic evolution of the intersection between three regional tectonic provinces: the eastern California shear zone, the Basin and Range region of southern Nevada and adjacent California, and the eastern Mojave Desert region. The chapters represent work presented on the 2005 Friends of the Pleistocene field trip and meeting as well as the field trip road log.

  9. Paleogeomorphology of the early Colorado River inferred from relationships in Mohave and Cottonwood Valleys, Arizona, California and Nevada

    USGS Publications Warehouse

    Pearthree, Philip; House, P. Kyle

    2014-01-01

    Geologic investigations of late Miocene–early Pliocene deposits in Mohave and Cottonwood valleys provide important insights into the early evolution of the lower Colorado River system. In the latest Miocene these valleys were separate depocenters; the floor of Cottonwood Valley was ∼200 m higher than the floor of Mohave Valley. When Colorado River water arrived from the north after 5.6 Ma, a shallow lake in Cottonwood Valley spilled into Mohave Valley, and the river then filled both valleys to ∼560 m above sea level (asl) and overtopped the bedrock divide at the southern end of Mohave Valley. Sediment-starved water spilling to the south gradually eroded the outlet as siliciclastic Bouse deposits filled the lake upstream. When sediment accumulation reached the elevation of the lowering outlet, continued erosion of the outlet resulted in recycling of stored lacustrine sediment into downstream basins; depth of erosion of the outlet and upstream basins was limited by the water levels in downstream basins. The water level in the southern Bouse basin was ∼300 m asl (modern elevation) at 4.8 Ma. It must have drained and been eroded to a level <150 m asl soon after that to allow for deep erosion of bedrock divides and basins upstream, leading to removal of large volumes of Bouse sediment prior to massive early Pliocene Colorado River aggradation. Abrupt lowering of regional base level due to spilling of a southern Bouse lake to the Gulf of California could have driven observed upstream river incision without uplift. Rapid uplift of the entire region immediately after 4.8 Ma would have been required to drive upstream incision if the southern Bouse was an estuary.

  10. High-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region, California

    NASA Astrophysics Data System (ADS)

    Ponce, D. A.; Mangan, M.; McPhee, D.

    2013-12-01

    A new high-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region greatly enhances previous magnetic interpretations that were based on older, low-resolution, and regional aeromagnetic data sets and provides new insights into volcano-tectonic processes. The surveyed area covers a 8,750 km2 NNW-trending swath situated between the Sierra Nevada to the west and the Basin and Range Province to the east. The surveyed area includes the volcanic centers of Mono Lake, Mono-Inyo Craters, Mammoth Mountain, Devils Postpile, and Long Valley Caldera. The NW-trending eastern Sierra frontal fault zone crosses through the study area, including the active Mono Lake, Silver Lake, Hartley Springs, Laurel Creek, and Hilton Creek faults. Over 6,000 line-kilometers of aeromagnetic data were collected at a constant terrain clearance of 150 m, a flight-line spacing of 400 m, and a tie-line spacing of 4 km. Data were collected via helicopter with an attached stinger housing a magnetic sensor using a Scintrex CS-3 cesium magnetometer. In the northern part of the survey area, data improve the magnetic resolution of the individual domes and coulees along Mono Craters and a circular shaped magnetic anomaly that coincides with a poorly defined ring fracture mapped by Kistler (1966). Here, aeromagnetic data combined with other geophysical data suggests that Mono Craters may have preferentially followed a pre-existing plutonic basement feature that may have controlled the sickle shape of the volcanic chain. In the northeastern part of the survey, aeromagnetic data reveal a linear magnetic anomaly that correlates with and extends a mapped fault. In the southern part of the survey, in the Sierra Nevada block just south of Long Valley Caldera, aeromagnetic anomalies correlate with NNW-trending Sierran frontal faults rather than to linear NNE-trends observed in recent seismicity over the last 30 years. These data provide an important framework for the further analysis of the

  11. Nitrogen content of Letharia vulpina tissue from forests of the Sierra Nevada, California: geographic patterns and relationships to ammonia estimates and climate

    Treesearch

    Sarah Jovan; Tom Carlberg

    2007-01-01

    Nitrogen (N) pollution is a growing concern in forests of the greater Sierra Nevada, which lie downwind of the highly populated and agricultural Central Valley. Nitrogen content of Letharia vulpina tissue was analyzed from 38 sites using total Kjeldahl analysis to provide a preliminary assessment of N deposition patterns. Collections were co-located with plots where...

  12. Aeromagnetic Survey of the Amargosa Desert, Nevada and California: A Tool for Understanding Near-Surface Geology and Hydrology

    USGS Publications Warehouse

    Blakely, Richard J.; Langenheim, V.E.; Ponce, David A.; Dixon, Gary L.

    2000-01-01

    A high-resolution aeromagnetic survey of the Amargosa Desert and surrounding areas provides insights into the buried geology of this structurally complex region. The survey covers an area of approximately 7,700 km2 (2,970 mi2), extending from Beatty, Nevada, to south of Shoshone, California, and includes parts of the Nevada Test Site and Death Valley National Park. Aeromagnetic flight lines were oriented east-west, spaced 400 m (0.25 mi) apart, and flown at an altitude of 150 m (500 ft) above terrain, or as low as permitted by safety considerations. Characteristic magnetic anomalies occur over volcanic terranes, such as Yucca Mountain and the Greenwater Range, and over Proterozoic basement rocks, such as Bare Mountain and the Black Mountains. Linear magnetic anomalies caused by offsets of volcanic rocks permit detailed mapping of shallow faults in volcanic terranes. Of particular interest are subtle anomalies that overlie alluvial deposits at Devils Hole and Pahrump Valley. Alignments of springs along magnetic anomalies at these locales suggest that these anomalies are caused by faults that cut the alluvium, displace magnetic rocks at depth, and eventually influence ground-water flow. Linear magnetic anomalies over the Funeral Mountains appear to coincide with a prominent set of north-northeast-striking faults that cut the Precambrian Stirling Quartzite, rocks that are typically nonmagnetic. The position and orientation of these anomalies with respect to springs north of Furnace Creek suggest that the faults may act as conduits for the flow of water from the north into Death Valley, but the mineralogical cause of the anomalies is unknown.

  13. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    D'Agnese, Frank A.; O'Brien, G. M.; Faunt, C.C.; Belcher, W.R.; San Juan, C.

    2002-01-01

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this 'second-generation' regional model was to enhance the knowledge an understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-state representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration. The Death Valley regional ground-water flow system is situated within the southern Great Basin, a subprovince of the Basin and Range physiographic province, bounded by latitudes 35 degrees north and 38 degrees 15 minutes north and by longitudes 115 and 118 degrees west. Hydrology in the region is a result of both the arid climatic conditions and the complex geology. Ground-water flow generally can be described as dominated by interbasinal flow and may be conceptualized as

  14. Methods for delineating flood-prone areas in the Great Basin of Nevada and adjacent states

    USGS Publications Warehouse

    Burkham, D.E.

    1988-01-01

    The Great Basin is a region of about 210,000 square miles having no surface drainage to the ocean; it includes most of Nevada and parts of Utah, California, Oregon, Idaho, and Wyoming. The area is characterized by many parallel mountain ranges and valleys trending north-south. Stream channels usually are well defined and steep within the mountains, but on reaching the alluvial fan at the canyon mouth, they may diverge into numerous distributary channels, be discontinuous near the apex of the fan, or be deeply entrenched in the alluvial deposits. Larger rivers normally have well-defined channels to or across the valley floors, but all terminate at lakes or playas. Major floods occur in most parts of the Great Basin and result from snowmelt, frontal-storm rainfall, and localized convective rainfall. Snowmelt floods typically occur during April-June. Floods resulting from frontal rain and frontal rain on snow generally occur during November-March. Floods resulting from convective-type rainfall during localized thunderstorms occur most commonly during the summer months. Methods for delineating flood-prone areas are grouped into five general categories: Detailed, historical, analytical, physiographic, and reconnaissance. The detailed and historical methods are comprehensive methods; the analytical and physiographic are intermediate; and the reconnaissance method is only approximate. Other than the reconnaissance method, each method requires determination of a T-year discharge (the peak rate of flow during a flood with long-term average recurrence interval of T years) and T-year profile and the development of a flood-boundary map. The procedure is different, however, for each method. Appraisal of the applicability of each method included consideration of its technical soundness, limitations and uncertainties, ease of use, and costs in time and money. Of the five methods, the detailed method is probably the most accurate, though most expensive. It is applicable to

  15. Aeolian responses to climate variability during the past century on Mesquite Lake Playa, Mojave Desert

    USGS Publications Warehouse

    Whitney, John W.; Breit, George N.; Buckingham, S.E.; Reynolds, Richard L.; Bogle, Rian C.; Luo, Lifeng; Goldstein, Harland L.; Vogel, John M.

    2015-01-01

    The erosion and deposition of sediments by wind from 1901 to 2013 have created large changes in surface features of Mesquite Lake playa in the Mojave Desert. The decadal scale recurrence of sand-sheet development, migration, and merging with older dunes appears related to decadal climatic changes of drought and wetness as recorded in the precipitation history of the Mojave Desert, complemented by modeled soil-moisture index values. Historical aerial photographs, repeat land photographs, and satellite images document the presence and northward migration of a mid-20th century sand sheet that formed during a severe regional drought that coincided with a multi-decadal cool phase of the Pacific Decadal Oscillation (PDO). The sand sheet slowly eroded during the wetter conditions of the subsequent PDO warm phase (1977–1998) due to a lack of added sediment. Sand cohesion gradually increased in the sand sheet by seasonal additions of salt and clay and by re-precipitation of gypsum, which resulted in the wind-carving of yardangs in the receding sand sheet. Smaller yardangs were aerodynamically shaped from coppice dunes with salt-clay crusts, and larger yardangs were carved along the walls and floor of trough blowouts. Evidence of a 19th century cycle of sand-sheet formation and erosion is indicated by remnants of yardangs, photographed in 1901 and 1916, that were found buried in the mid-20th century sand sheet. Three years of erosion measurements on the playa, yardangs, and sand sheets document relatively rapid wind erosion. The playa has lowered 20 to 40 cm since the mid-20th century and a shallow deflation basin has developed since 1999. Annually, 5–10 cm of surface sediment was removed from yardang flanks by a combination of wind abrasion, deflation, and mass movement. The most effective erosional processes are wind stripping of thin crusts that form on the yardang surfaces after rain events and the slumping of sediment blocks from yardang flanks. These wind

  16. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill-Hole Data in Yucca Flat, Nye County, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill-hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin such as alluvial fan, channel, basin axis, and playa deposits.

  17. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  18. MX Siting Investigation. Geotechnical Evaluation. Aggregate Resources Study, Lake Valley, Nevada.

    DTIC Science & Technology

    1981-02-27

    KILOMETERS Mx SITING INVESTIGATION IGURE IPARTMENT OF TNt Ag1 FORCE - GMO 2 -_ONiO NATIONAL INC. FlU It FN-TR-37-f 5 2. Aerial and ground reconnaissance...fine, or crushed rock) and potential construction use ( con - crete and/or road base). TOM. FN-TR -37-f 6 2.0 STUDY APPROACH 2.1 EXISTING DATA Collection...2 the southwestern part of Lake Valley. This formation also pro - vides Class I crushed rock aggregate material in the southern White Rock Mountains

  19. 76 FR 9597 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... the Duck Valley Reservation, Nevada; Sisseton-Wahpeton Oyate of the Lake Traverse Reservation, South...; Shoshone-Paiute Tribes of the Duck Valley Reservation, Nevada; Sisseton-Wahpeton Oyate of the Lake Traverse...; Shoshone-Paiute Tribes of the Duck Valley Reservation, Nevada; Sisseton-Wahpeton Oyate of the Lake Traverse...

  20. Using remote sensing and GIS techniques to estimate discharge and recharge fluxes for the Death Valley regional groundwater flow system, USA

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Turner, A.K.; ,

    1996-01-01

    The recharge and discharge components of the Death Valley regional groundwater flow system were defined by techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were used to calculate discharge volumes for these area. An empirical method of groundwater recharge estimation was modified to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter

  1. Gravity survey of the Nevada Test Site and vicinity, Nye, Lincoln, and Clark Counties, Nevada--interim report

    USGS Publications Warehouse

    Healy, D.L.; Miller, C.H.

    1962-01-01

    The gravity survey of the Nevada Test Site and contiguous areas of southern Nevada and southeastern California (fig. 1) has been made by the U.S. Geological Survey on behalf of the U.S. Atomic Energy Commission.The objective of this study is to delineate and interpret gravity anomalies and regional trends so that the configuration and depth of the buried erosional surface of the Paleozoic rocks may be determined. This buried surface is of utmost importance in understanding the geologic history of the Nevada Test Site region, the thickness and distribution of the overlying volcanic rocks and alluvium, and the movement of ground water. The Paleozoic rocks cause positive gravity anomalies where they outcrop or occur near the surface and negative anomalies where they are buried in valleys or capped by low-density Tertiary volcanic rocks. Gravity trends which extend over the entire area provide a basis for computing the regional gravity gradient. The regional gravity gradient must be removed from the data for geologic interpretation of the paleotopographic surface in any limited area. Knowledge of the thickness of low-density material overlying the paleotopographic surface is useful in several ways. Proposed underground test sites, such as drill holes and tunnels, may be evaluated in terms of rock unit thickness and alluvial cover requirements. Recent work by the Water Resources Division of the U.S. Geological Survey has demonstrated ground-water movement through the Paleozoic rocks in the vicinity of the Nevada Test Site. Therefore, knowledge of the position of buried Paleozoic rocks is important in evaluating (a) the rate and direction of flow of the ground water, (b) ground-water supplies for domestic and industrial uses, and (c) the possibility of radioactive contamination of ground water. Finally, regional gravity trends and paleotopography are useful in working out the structural history of the area in connection with geologic studies now in progress. The purpose

  2. Hydrostructural maps of the Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; Killgore, M.L.

    2002-01-01

    The locations of principal faults and structural zones that may influence ground-water flow were compiled in support of a three-dimensional ground-water model for the Death Valley regional flow system (DVRFS), which covers 80,000 square km in southwestern Nevada and southeastern California. Faults include Neogene extensional and strike-slip faults and pre-Tertiary thrust faults. Emphasis was given to characteristics of faults and deformed zones that may have a high potential for influencing hydraulic conductivity. These include: (1) faulting that results in the juxtaposition of stratigraphic units with contrasting hydrologic properties, which may cause ground-water discharge and other perturbations in the flow system; (2) special physical characteristics of the fault zones, such as brecciation and fracturing, that may cause specific parts of the zone to act either as conduits or as barriers to fluid flow; (3) the presence of a variety of lithologies whose physical and deformational characteristics may serve to impede or enhance flow in fault zones; (4) orientation of a fault with respect to the present-day stress field, possibly influencing hydraulic conductivity along the fault zone; and (5) faults that have been active in late Pleistocene or Holocene time and areas of contemporary seismicity, which may be associated with enhanced permeabilities. The faults shown on maps A and B are largely from Workman and others (in press), and fit one or more of the following criteria: (1) faults that are more than 10 km in map length; (2) faults with more than 500 m of displacement; and (3) faults in sets that define a significant structural fabric that characterizes a particular domain of the DVRFS. The following fault types are shown: Neogene normal, Neogene strike-slip, Neogene low-angle normal, pre-Tertiary thrust, and structural boundaries of Miocene calderas. We have highlighted faults that have late Pleistocene to Holocene displacement (Piety, 1996). Areas of thick

  3. Elastic-wave propagation and site amplification in the Salt Lake Valley, Utah, from simulated normal faulting earthquakes

    USGS Publications Warehouse

    Benz, H.M.; Smith, R.B.

    1988-01-01

    The two-dimensional seismic response of the Salt Lake valley to near- and far-field earthquakes has been investigated from simulations of vertically incident plane waves and from normal-faulting earthquakes generated on the basin-bounding Wasatch fault. The plane-wave simulations were compared with observed site amplifications in the Salt Lake valley, based on seismic recordings from nuclear explosions in southern Nevada, that show 10 times greater amplification with the basin than measured values on hard-rock sites. Synthetic seismograms suggest that in the frequency band 0.3 to 1.5 Hz at least one-half the site amplitication can be attributed to the impedance contrast between the basin sediments and higher velocity basement rocks. -from Authors

  4. Compilation of Stratigraphic Thicknesses for Caldera-Related Tertiary Volcanic Rocks, East-Central Nevada and West-Central Utah

    USGS Publications Warehouse

    Sweetkind, D.S.; Du Bray, E.A.

    2008-01-01

    The U.S. Geological Survey (USGS), the Desert Research Institute (DRI), and a designee from the State of Utah are currently conducting a water-resources study of aquifers in White Pine County, Nevada, and adjacent areas in Nevada and Utah, in response to concerns about water availability and limited geohydrologic information relevant to ground-water flow in the region. Production of ground water in this region could impact water accumulations in three general types of aquifer materials: consolidated Paleozoic carbonate bedrock, and basin-filling Cenozoic volcanic rocks and unconsolidated Quaternary sediments. At present, the full impact of extracting ground water from any or all of these potential valley-graben reservoirs is not fully understood. A thorough understanding of intermontane basin stratigraphy, mostly concealed by the youngest unconsolidated deposits that blanket the surface in these valleys, is critical to an understanding of the regional hydrology in this area. This report presents a literature-based compilation of geologic data, especially thicknesses and lithologic characteristics, for Tertiary volcanic rocks that are presumably present in the subsurface of the intermontane valleys, which are prominent features of this area. Two methods are used to estimate volcanic-rock thickness beneath valleys: (1) published geologic maps and accompanying descriptions of map units were used to compile the aggregate thicknesses of Tertiary stratigraphic units present in each mountain range within the study areas, and then interpolated to infer volcanic-rock thickness in the intervening valley, and (2) published isopach maps for individual out-flow ash-flow tuff were converted to digital spatial data and thickness was added together to produce a regional thickness map that aggregates thickness of the individual units. The two methods yield generally similar results and are similar to volcanic-rock thickness observed in a limited number of oil and gas exploration

  5. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada

    USGS Publications Warehouse

    Caine, Jonathan S.; Bruhn, R.L.; Forster, C.B.

    2010-01-01

    Outcrop mapping and fault-rock characterization of the Stillwater normal fault zone in Dixie Valley, Nevada are used to document and interpret ancient hydrothermal fluid flow and its possible relationship to seismic deformation. The fault zone is composed of distinct structural and hydrogeological components. Previous work on the fault rocks is extended to the map scale where a distinctive fault core shows a spectrum of different fault-related breccias. These include predominantly clast-supported breccias with angular clasts that are cut by zones containing breccias with rounded clasts that are also clast supported. These are further cut by breccias that are predominantly matrix supported with angular and rounded clasts. The fault-core breccias are surrounded by a heterogeneously fractured damage zone. Breccias are bounded between major, silicified slip surfaces, forming large pod-like structures, systematically oriented with long axes parallel to slip. Matrix-supported breccias have multiply brecciated, angular and rounded clasts revealing episodic deformation and fluid flow. These breccias have a quartz-rich matrix with microcrystalline anhedral, equant, and pervasively conformable mosaic texture. The breccia pods are interpreted to have formed by decompression boiling and rapid precipitation of hydrothermal fluids whose flow was induced by coseismic, hybrid dilatant-shear deformation and hydraulic connection to a geothermal reservoir. The addition of hydrothermal silica cement localized in the core at the map scale causes fault-zone widening, local sealing, and mechanical heterogeneities that impact the evolution of the fault zone throughout the seismic cycle. ?? 2010.

  6. The Lawrence Berkeley Laboratory geothermal program in northern Nevada

    NASA Technical Reports Server (NTRS)

    Mirk, K. F.; Wollenberg, H. A.

    1974-01-01

    The Lawrence Berkeley Laboratory's geothermal program began with consideration of regions where fluids in the temperature range of 150 to 230 C may be economically accessible. Three valleys, located in an area of high regional heat flow in north central Nevada, were selected for geological, geophysical, and geochemical field studies. The objective of these ongoing field activities is to select a site for a 10-MW demonstration plant. Field activities (which started in September 1973) are described. A parallel effort has been directed toward the conceptual design of a 10-MW isobutane binary plant which is planned for construction at the selected site. Design details of the plant are described. Project schedule with milestones is shown together with a cost summary of the project.

  7. Ground-water quality and geochemistry of Las Vegas Valley, Clark County, Nevada, 1981-83; implementation of a monitoring network

    USGS Publications Warehouse

    Dettinger, M.D.

    1987-01-01

    As a result of rapid urban growth in Las Vegas Valley, rates of water use and wastewater disposal have grown rapidly during the last 25 years. Concern has developed over the potential water quality effects of this growth. The deep percolation of wastewater and irrigation return flow (much of which originates as imported water from Lake Mead), along with severe overdraft conditions in the principal aquifers of the valley, could combine to pose a long-term threat to groundwater quality. The quantitative investigations of groundwater quality and geochemical conditions in the valley necessary to address these concerns would include the establishment of data collection networks on a valley-wide scale that differ substantially from existing networks. The valley-wide networks would have a uniform areal distribution of sampling sites, would sample from all major depth zones, and would entail repeated sampling from each site. With these criteria in mind, 40 wells were chosen for inclusion in a demonstration monitoring network. Groundwater in the northern half of the valley generally contains 200 to 400 mg/L of dissolved solids, and is dominated by calcium, magnesium , and bicarbonate ions, reflecting a chemical equilibrium between the groundwater and the dominantly carbonate rocks in the aquifers of this area. The intermediate to deep groundwater in the southern half of the valley is of poorer quality (containing 700 to 1,500 mg/L of dissolved solids) and is dominated by calcium, magnesium, sulfate, and bicarbonate ions, reflecting the occurrence of other rock types including evaporite minerals among the still-dominant carbonate rocks in the aquifers of this part of the valley. The poorest quality groundwater in the valley is generally in the lowland parts of the valley in the first few feet beneath the water table, where dissolved solids concentrations range from 2,000 to > 7,000 mg/L , and probably reflects the effects of evaporite dissolution, secondary recharge, and

  8. Nevada NPDES Permits

    EPA Pesticide Factsheets

    In Nevada, EPA’s Pacific Southwest (Region 9) issues all NPDES permits for any discharges on tribal lands. All other NPDES permits are issued by the Nevada Division of Environmental Protection (NDEP).

  9. Numerical investigation of coupled density-driven flow and hydrogeochemical processes below playas

    NASA Astrophysics Data System (ADS)

    Hamann, Enrico; Post, Vincent; Kohfahl, Claus; Prommer, Henning; Simmons, Craig T.

    2015-11-01

    Numerical modeling approaches with varying complexity were explored to investigate coupled groundwater flow and geochemical processes in saline basins. Long-term model simulations of a playa system gain insights into the complex feedback mechanisms between density-driven flow and the spatiotemporal patterns of precipitating evaporites and evolving brines. Using a reactive multicomponent transport model approach, the simulations reproduced, for the first time in a numerical study, the evaporite precipitation sequences frequently observed in saline basins ("bull's eyes"). Playa-specific flow, evapoconcentration, and chemical divides were found to be the primary controls for the location of evaporites formed, and the resulting brine chemistry. Comparative simulations with the computationally far less demanding surrogate single-species transport models showed that these were still able to replicate the major flow patterns obtained by the more complex reactive transport simulations. However, the simulated degree of salinization was clearly lower than in reactive multicomponent transport simulations. For example, in the late stages of the simulations, when the brine becomes halite-saturated, the nonreactive simulation overestimated the solute mass by almost 20%. The simulations highlight the importance of the consideration of reactive transport processes for understanding and quantifying geochemical patterns, concentrations of individual dissolved solutes, and evaporite evolution.

  10. Distrubution of the Endocrine Disruptor Nonylphenol and the Effects of Topographical Sheilding in an Eastern Sierra Nevada Mountain Drainage

    NASA Astrophysics Data System (ADS)

    Lyons, R. A.; Van de Bittner, K.; Morgan Jones, S.

    2013-12-01

    Nonylphenol is a biodegradation product of nonylphenol polyethoxylates, a pervasive compound used in many industrial processes and notably in pesticides as a surfactant. Nonylphenol has been shown to act as an endocrine disruptor at low concentrations. It causes hermaphrodism, birth defects, and high mortality in fish, frogs and other amphibians. The Sierra Nevada Mountains separate the Central Valley in the west from the high desert of Mono Country on the east side of the state of California. The Central Valley represents some of the most heavily cultivated agricultural land in the United States. San Joaquin County alone had an annual pesticide use of over 8 million pounds in 2009 according to the Pesticide Action Network, compared with 4800 pounds in Mono County the same year. Fragile alpine ecosystems in the Sierra Nevadas may be highly susceptible to the effects of endocrine disruptors like nonylphenol. The distribution of nonylphenol is affected by localized topography in a steep walled montane canyon in the Eastern Sierra Nevada Mountains, Convict Creek canyon. The concentration of nonylphenol in snow and surface water increases as the elevation in Convict Creek canyon decreases in an easterly direction from not detectable at the highest elevations to as much as .01mg/L in water and 1.8 mg/L in snow at the lowest elevations. The steep head wall of Convict Creek canyon, facing southeast, provides shielding to the higher elevation lakes from deposition of compounds and particulate matter. As a canyon becomes less steep and broader, more nonylphenol is deposited. Identifying these deposition patterns may assist in determining amphibian and fish populations that are at higher risk of negative impact from these compounds.

  11. Saline Playas on Qinghai-Tibet Plateau as Mars Analog for the Formation-Preservation of Hydrous Salts and Biosignatures

    NASA Astrophysics Data System (ADS)

    Wang, A.; Zheng, M.; Kong, F.; Sobron, P.; Mayer, D. P.

    2010-12-01

    Qinghai-Tibet (QT) Plateau has the highest average elevation on Earth (~ 4500 m, about 50-60% of atmospheric pressure at sea-level). The high elevation induces a tremendous diurnal (and seasonal) temperature swing caused by high level of solar irradiation during the day and low level of atmospheric insulation during the evening. In addition, the Himalaya mountain chain (average height >6100 m) in the south of the QT Plateau largely blocks the pathway of humid air from the Indian Ocean, and produces a Hyperarid region (Aridity Index, AI ~ 0.04), the Qaidam Basin (N32-35, E90-100) at the north edge of the QT Plateau. Climatically, the low P, T, large ΔT, high aridity, and high UV radiation all make the Qaidam basin to be one of the most similar places on Earth to Mars. Qaidam basin has the most ancient playas (up to Eocene) and the lakes with the highest salinity on QT Plateau. More importantly, Mg-sulfates appear in the evaporative salts within the most ancient playas (Da Langtang) at the northwest corner of Qaidam basin, which mark the final stage of the evaporation sequence of brines rich in K, Na, Ca, Mg, Fe, C, B, S, and Cl. The evaporation minerals in the saline playas of Qaidam basin, their alteration and preservation under hyperarid conditions can be an interesting analog for the study of Martian salts and salty regolith. We conducted a field investigation at Da Langtan playa in Qaidam basin, with combined remote sensing (ASTER on board of NASA’s Terra satellite, 1.656, 2.167, 2.209, 2.62, 2.336, 2.40 µm), in situ sensing of a portable NIR spectrometer (WIR, 1.25-2.5 µm continuous spectral range), and the laboratory analyses of collected samples from the field (ASD spectrometer, 0.4 -2.5 µm, and Laser Raman spectroscopy). The results indicate that the materials contributing the high albedo layers in playa deposits are carbonate-gypsum-bearing surface soils, salt-clay-bearing exhaumed Pleistocene deposits, dehydrated Na-sulfates, hydrous Mg

  12. Evaluation of hydrogeology and hydrogeochemistry of Truckee Meadows area, Washoe County, Nevada

    USGS Publications Warehouse

    Cohen, Philip M.; Loeltz, Omar J.

    1964-01-01

    Practically all the ground water of economic importance in the Truckee Meadows area, an alluviated intermontane basin in western Nevada is in the valley fill, which consists of unconsolidated and partially consolidated sedimentary deposits. The Mesozoic and Cenozoic consolidated rocks of the mountains bordering the valley contain some water in fractures and other openings, but they have virtually no interstitial permeability. The permeability of the valley fill is extremely variable. The Truckee Formation, which is the oldest deposit of the valley fill, yields very little water to wells. Permeable lenses of sand and gravel in the valley fill that are younger than the Truckee Formation yield moderate to large amounts of water to wells. The estimated average annual recharge to and discharge from the groundwater reservoir is 35,000 acre-feet. About 25,000 acre-feet of the recharge is from the infiltration of irrigation water diverted from the Truckee River. Most of the discharge is by evapotranspiration and by seepage to ditches and streams. Some water in the area is unsuitable for many uses because of its poor chemical quality. Water in the Steamboat Springs area is hot and has high concentrations of chloride and dissolved solids. Both water draining areas of bleached rock and ground water downgradient from areas of leached rock have high concentrations of sulfate and dissolved solids. Surface water of low dissolved-solids content mixes with and dilutes some highly mineralized ground water. Increased pumping in discharge areas will help to alleviate waterlogged conditions and will decrease ground-water losses by evapotranspiration. Increased pumping near the Truckee River may induce recharge from the river to the ground-water system.

  13. Mapping the Extent of the Lovejoy Basalt Beneath the Sacramento Valley, CA, Using Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    Langenheim, V. E.; Sweetkind, D. S.; Springhorn, S.

    2014-12-01

    The Lovejoy Basalt is a distinctive Miocene (~16 Ma) unit that erupted from Thompson Peak in the northeast Sierra Nevada, flowed southwest across the Sierra Nevada into the Sacramento Valley. It crops out in a few places in Sacramento Valley: (1) near Chico and Oroville on the east side of the valley, (2) Orland Buttes on the west side, and (3) Putnam Peak, some 250 km southwest of Thompson Peak. The basalt is also encountered in drill holes, but its extent is not entirely known. The Lovejoy Basalt is strongly magnetic and, in general, reversely magnetized, making it an excellent target for aeromagnetic mapping. Recently acquired aeromagnetic data (flight line spacing 800 m at an altitude of 240 m) indicate a characteristic, sinuous, short-wavelength magnetic pattern associated with outcrops and known subcrops of Lovejoy Basalt. Filtering of these data to enhance negative, short-wavelength anomalies defines two large bands of negative anomalies that trend southwest of Chico and Oroville and appear to coalesce about 25 km north of Sutter Buttes. Another band of negative anomalies extends north of the junction roughly along the Sacramento River 40 km to Deer Creek. The anomalies become more subdued to the north, suggesting that the Lovejoy thins to the north. Aeromagnetic data also indicate a large subcrop of Lovejoy Basalt that extends 25 km north-northeast from exposures at Orland Buttes. Driller logs from gas and water wells confirm our mapping of Lovejoy within these areas. The sinuous magnetic lows are not continuous south of Sutter Buttes, but form isolated patches that are aligned in a north-south direction south of the concealed Colusa Dome to Putnam Peak and an east-west, 20-km-long band about 15 km south of Sutter Buttes. Other reversed anomalies in the Sacramento Valley coincide with volcanic necks in the Sutter Buttes and Colusa Dome; these produce semicircular anomalies that are distinct from those caused by the Lovejoy Basalt.

  14. Structural and lithologic study of Northern Coast Range and Sacramento Valley, California

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Preliminary analysis of the data received has disclosed two potentially important northwest-trending systems of linear features within the Northern California Coast Ranges. A third system, which trends northeast, can be traced with great uncertainty across the alluviated part of the Sacramento Valley and into the foothills of the Sierra Nevada. These linear features may represent fault systems or zones of shearing. Of interest, although not yet verified, is the observation that some of the mercury concentrations and some of the geothermally active areas of California may be located at the intersection of the Central and the Valley Systems. One, perhaps two, stratigraphic unconformities within the Late Mesozoic sedimentary rocks were detected during preliminary examination of the imagery; however, more analysis is necessary in order to verify this preliminary interpretation. A heretofore unrecognized, large circular depression, about 15 km in diameter, was detected within the alluviated part of the Sacramento Valley. The depression is adjacent to a large laccolithic intrusion and may be geologically related to it. Changes in the photogeologic characteristics of this feature will continue to be monitored.

  15. Sierra Nevada Ecosystem Project

    Treesearch

    C. I. Millar

    1996-01-01

    Sierra Nevada Ecosystems. The Sierra Nevada evokes images particular to each individual's experience of the range. These images take on the quality of immutability, and we expect to find the range basically unchanged from one year to the next. The Sierra Nevada, however, including its rocky foundations and the plants and animals that inhabit it, changes...

  16. Geochemical evidence for diversity of dust sources in the southwestern United States

    USGS Publications Warehouse

    Reheis, M.C.; Budahn, J.R.; Lamothe, P.J.

    2002-01-01

    Several potential dust sources, including generic sources of sparsely vegetated alluvium, playa deposits, and anthropogenic emissions, as well as the area around Owens Lake, California, affect the composition of modern dust in the southwestern United States. A comparison of geochemical analyses of modern and old (a few thousand years) dust with samples of potential local sources suggests that dusts reflect four primary sources: (1) alluvial sediments (represented by Hf, K, Rb, Zr, and rare-earth elements, (2) playas, most of which produce calcareous dust (Sr, associated with Ca), (3) the area of Owens (dry) Lake, a human-induced playa (As, Ba, Li, Pb, Sb, and Sr), and (4) anthropogenic and/or volcanic emissions (As, Cr, Ni, and Sb). A comparison of dust and source samples with previous analyses shows that Owens (dry) Lake and mining wastes from the adjacent Cerro Gordo mining district are the primary sources of As, Ba, Li, and Pb in dusts from Owens Valley. Decreases in dust contents of As, Ba, and Sb with distance from Owens Valley suggest that dust from southern Owens Valley is being transported at least 400 km to the east. Samples of old dust that accumulated before European settlement are distinctly lower in As, Ba, and Sb abundances relative to modern dust, likely due to modern transport of dust from Owens Valley. Thus, southern Owens Valley appears to be an important, geochemically distinct, point source for regional dust in the southwestern United States. Copyright ?? 2002 Elsevier Science Ltd.

  17. Assessing potential effects of changes in water use with a numerical groundwater-flow model of Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Yager, Richard M.; Maurer, Douglas K.; Mayers, C.J.

    2012-01-01

    Rapid growth and development within Carson Valley in Douglas County, Nevada, and Alpine County, California, has caused concern over the continued availability of groundwater, and whether the increased municipal demand could either impact the availability of water or result in decreased flow in the Carson River. Annual pumpage of groundwater has increased from less than 10,000 acre feet per year (acre-ft/yr) in the 1970s to about 31,000 acre-ft/yr in 2004, with most of the water used in agriculture. Municipal use of groundwater totaled about 10,000 acre-feet in 2000. In comparison, average streamflow entering the valley from 1940 to 2006 was 344,100 acre-ft/yr, while average flow exiting the valley was 297,400 acre-ft/yr. Carson Valley is underlain by semi-consolidated Tertiary sediments that are exposed on the eastern side and dip westward. Quaternary fluvial and alluvial deposits overlie the Tertiary sediments in the center and western side of the valley. The hydrology of Carson Valley is dominated by the Carson River, which supplies irrigation water for about 39,000 acres of farmland and maintains the water table less than 5 feet (ft) beneath much of the valley floor. Perennial and ephemeral watersheds drain the Carson Range and the Pine Nut Mountains, and mountain-front recharge to the groundwater system from these watersheds is estimated to average 36,000 acre-ft/yr. Groundwater in Carson Valley flows toward the Carson River and north toward the outlet of the Carson Valley. An upward hydraulic gradient exists over much of the valley, and artesian wells flow at land surface in some areas. Water levels declined as much as 15 ft since 1980 in some areas on the eastern side of the valley. Median estimated transmissivities of Quaternary alluvial-fan and fluvial sediments, and Tertiary sediments are 316; 3,120; and 110 feet squared per day (ft2/d), respectively, with larger transmissivity values in the central part of the valley and smaller values near the valley

  18. Estimates of natural ground-water discharge and characterization of water quality in Dry Valley, Washoe County, West-Central Nevada, 2002-2003

    USGS Publications Warehouse

    Berger, David L.; Maurer, Douglas K.; Lopes, Thomas J.; Halford, Keith J.

    2004-01-01

    The Dry Valley Hydrographic Area is being considered as a potential source area for additional water supplies for the Reno-Sparks area, which is about 25 miles south of Dry Valley. Current estimates of annual ground-water recharge to Dry Valley have a considerable range. In undeveloped valleys, such as Dry Valley, long-term ground-water discharge can be assumed the same as long-term ground-water recharge. Because estimating ground-water discharge has more certainty than estimating ground-water recharge from precipitation, the U.S. Geological Survey, in cooperation with Washoe County, began a three-year study to re-evaluate the ground-water resources by estimating natural ground-water discharge and characterize ground-water quality in Dry Valley. In Dry Valley, natural ground-water discharge occurs as subsurface outflow and by ground-water evapotranspiration. The amount of subsurface outflow from the upper part of Dry Valley to Winnemucca and Honey Lake Valleys likely is small. Subsurface outflow from Dry Valley westward to Long Valley, California was estimated using Darcy's Law. Analysis of two aquifer tests show the transmissivity of poorly sorted sediments near the western side of Dry Valley is 1,200 to 1,500 square feet per day. The width of unconsolidated sediments is about 4,000 feet between exposures of tuffaceous deposits along the State line, and decreases to about 1,500 feet (0.5 mile) west of the State line. The hydraulic gradient east and west of the State line ranges from 0.003 to 0.005 foot per foot. Using these values, subsurface outflow to Long Valley is estimated to be 50 to 250 acre-feet per year. Areas of ground-water evapotranspiration were field mapped and partitioned into zones of plant cover using relations derived from Landsat imagery acquired July 8, 2002. Evapotranspiration rates for each plant-cover zone were multiplied by the corresponding area and summed to estimate annual ground-water evapotranspiration. About 640 to 790 acre-feet per

  19. Cretaceous plutonic rocks in the Donner Lake-Cisco Grove area, northern Sierra Nevada, California

    USGS Publications Warehouse

    Kulow, Matthew J.; Hanson, Richard E.; Girty, Gary H.; Girty, Melissa S.; Harwood, David S.

    1998-01-01

    The northernmost occurrences of extensive, glaciated exposures of the Sierra Nevada batholith occur in the Donner Lake-Cisco Grove area of the northern Sierra Nevada. The plutonic rocks in this area, which are termed here the Castle Valley plutonic assemblage, crop out over an area of 225 km2 and for the most part are shown as a single undifferentiated mass on previously published geological maps. In the present work, the plutonic assemblage is divided into eight separate intrusive units or lithodemes, two of which each consist of two separate plutons. Compositions are dominantly granodiorite and tonalite, but diorite and granite form small plutons in places. Spectacular examples of comb layering and orbicular texture occur in the diorites. U-Pb zircon ages have been obtained for all but one of the main units and range from ~120 to 114 Ma, indicating that the entire assemblage was emplaced in a narrow time frame in the Early Cretaceous. This is consistent with abundant field evidence that many of the individual phases were intruded penecontemporaneously. The timing of emplacement correlates with onset of major Cretaceous plutonism in the main part of the Sierra Nevada batholith farther south. The emplacement ages also are similar to isotopic ages for gold-quartz mineralization in the Sierran foothills west of the study area, suggesting a direct genetic relationship between the voluminous Early Cretaceous plutonism and hydrothermal gold mineralization.

  20. Depositional environments and paleogeography of the Upper Miocene Wassuk Group, west-central Nevada

    USGS Publications Warehouse

    Golia, R.T.; Stewart, John H.

    1984-01-01

    Fluvial and lacustrine deposits of the Miocene Wassuk Group, exposed in Coal Valley, west-central Nevada, are divided into five lithofacies: (1) diatomite, claystone, siltstone, and carbonaceous siltstone deposited in a lake with paludal conditions at the margin; (2) upward-coarsening sequences of sandstone deposited on a delta and fan-delta; (3) channel-form sandstone deposited on a distal braided alluvial plain; (4) clast-supported conglomerate deposited on a proxial braided alluvial plain or distal alluvial fan; and (5) matrix-supported conglomerate deposited on a distal to middle alluvial fan. Petrographic analysis records an upsection change from a predominantly andesitic to a predominantly plutonic provenance. This change, combined with the overall upward-coarsening of the Wassuk Group and the great thickness (2400 m) of the sequence, suggests active uplift and rapid subsidence during deposition of the group. Facies relationships and paleocurrent directions indicate source areas to the south, southeast and west of Coal Valley. The Miocene Wassuk Group was deposited in an intra-arc basin with penecontemporaneous volcanism and tectonic activity. Syndepositional faulting at the southern margin of Coal Valley between 13 and 11 m.y. ago suggests an early episode of northeast-southwest extension prior to the onset of east-west basin and range extension. ?? 1984.

  1. Nevada's Children: Selected Educational and Social Statistics. Nevada and National.

    ERIC Educational Resources Information Center

    Horner, Mary P., Comp.

    This statistical report describes the successes and shortcomings of education in Nevada and compares some statistics concerning education in Nevada to national norms. The report, which provides a comprehensive array of information helpful to policy makers and citizens, is divided into three sections. The first section presents statistics about…

  2. Landsat classification of surface-water presence during multiple years to assess response of playa wetlands to climatic variability across the Great Plains Landscape Conservation Cooperative region

    USGS Publications Warehouse

    Manier, Daniel J.; Rover, Jennifer R.

    2018-02-15

    To improve understanding of the distribution of ecologically important, ephemeral wetland habitats across the Great Plains, the occurrence and distribution of surface water in playa wetland complexes were documented for four different years across the Great Plains Landscape Conservation Cooperative (GPLCC) region. This information is important because it informs land and wildlife managers about the timing and location of habitat availability. Data with an accurate timestamp that indicate the presence of water, the percent of the area inundated with water, and the spatial distribution of playa wetlands with water are needed for a host of resource inventory, monitoring, and research applications. For example, the distribution of inundated wetlands forms the spatial pattern of available habitat for resident shorebirds and water birds, stop-over habitats for migratory birds, connectivity and clustering of wetland habitats, and surface waters that recharge the Ogallala aquifer; there is considerable variability in the distribution of playa wetlands holding water through time. Documentation of these spatially and temporally intricate processes, here, provides data required to assess connections between inundation and multiple environmental drivers, such as climate, land use, soil, and topography. Climate drivers are understood to interact with land cover, land use and soil attributes in determining the amount of water that flows overland into playa wetlands. Results indicated significant spatial variability represented by differences in the percent of playas inundated among States within the GPLCC. Further, analysis-of-variance comparison of differences in inundation between years showed significant differences in all cases. Although some connections with seasonal moisture patterns may be observed, the complex spatial-temporal gradients of precipitation, temperature, soils, and land use need to be combined as covariates in multivariate models to effectively account for

  3. The utilization of ERTS-1-generated photographs in the evaluation of the Iranian playas as potential locations for economic and engineering development. [water-borne sedimentation of playa lakes

    NASA Technical Reports Server (NTRS)

    Krinsley, D. B. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. False-color composites made from ratioed and stretched transparencies, generated from CCT's of ERTS-1, have enhanced hydrologic and morphologic differences within the playa surficial sediments. A composite of ratios 4/6, 5/7,15/61 and 4/7 using blue, red, yellow, and green, respectively, was useful in separating wet, water, and dry areas in the salt crust and for delineating smooth and rough salt where relief was less than 20 cm.

  4. Response to memorandum by Rowley and Dixon regarding U.S. Geological Survey report titled "Characterization of Surface-Water Resources in the Great Basin National Park Area and Their Susceptibility to Ground-Water Withdrawals in Adjacent Valleys, White Pine County, Nevada"

    USGS Publications Warehouse

    Prudic, David E.

    2006-01-01

    Applications pending for permanent permits to pump large quantities of ground water in Spring and Snake Valleys adjacent to Great Basin National Park (the Park) prompted the National Park Service to request a study by the U.S. Geological Survey to evaluate the susceptibility of the Park's surface-water resources to pumping. The result of this study was published as U.S. Geological Survey Scientific Investigations Report 2006-5099 'Characterization of Surface-Water Resources in the Great Basin National Park Area and Their Susceptibility to Ground-Water Withdrawals in Adjacent Valleys, White Pine County, Nevada,' by P.E. Elliott, D.A. Beck, and D.E. Prudic. That report identified areas within the Park where surface-water resources are susceptible to ground-water pumping; results from the study showed that three streams and several springs near the eastern edge of the Park were susceptible. However, most of the Park's surface-water resources likely would not be affected by pumping because of either low-permeability rocks or because ground water is sufficiently deep as to not be directly in contact with the streambeds. A memorandum sent by Peter D. Rowley and Gary L. Dixon, Consulting Geologists, to the Southern Nevada Water Authority (SNWA) on June 29, 2006 was critical of the report. The memorandum by Rowley and Dixon was made available to the National Park Service, the U.S. Geological Survey, and the public during the Nevada State Engineer's 'Evidentiary Exchange' process for the recent hearing on applications for ground-water permits by SNWA in Spring Valley adjacent to Great Basin National Park. The U.S. Geological Survey was asked by the National Park Service to assess the validity of the concerns and comments contained in the Rowley and Dixon memorandum. An Administrative Letter Report responding to Rowley and Dixon's concerns and comments was released to the National Park Service on October 30, 2006. The National Park Service subsequently requested that the

  5. Change in Total Water in California's Mountains and Groundwater in Central Valley During the 2011-2014 Drought From GPS, GRACE, and InSAR

    NASA Astrophysics Data System (ADS)

    Argus, D. F.; Fu, Y.; Landerer, F. W.; Farr, T.; Watkins, M. M.; Famiglietti, J. S.

    2014-12-01

    Changes in total water thickness in most of California are being estimated using GPS measurements of vertical ground displacement. The Sierra Nevada each year subsides about 12 mm in the fall and winter due to the load of rain and snow, then rises about the same amount in the spring and summer when the snow melts, water runs off, and soil moisture evaporates. Earth's elastic response to a surface load is well known (except at thick sedimentary basins). Changes in equivalent water thickness can thus be inferred [Argus Fu Landerer 2014]. The average seasonal change in total water thickness is found to be 0.5 meters in the Sierra Nevada and Klamath Mountains and 0.1 meters in the Great Basin. The average seasonal change in the Sierra Nevada Mountains estimated with GPS is 35 Gigatons. GPS vertical ground displacements are furthermore being used to estimate changes in water in consecutive years of either drought or heavy precipitation. Changes in the sum of snow and soil moisture during California's drought from June 2011 to June 2014 are estimated from GPS in this study. Changes in water in California's massive reservoirs are well known and removed, yielding an estimate of change in the thickness of snow plus soil moisture. Water loss is found to be largest near the center of the southern Sierra Nevada (0.8 m equivalent water thickness) and smaller in the northern Sierra Nevada and southern Klamath Mountains (0.3 m). The GPS estimates of changes in the sum of snow and soil moisture complement GRACE observations of water change in the Sacramento-San Joaquin River basin. Whereas GPS provides estimates of water change at high spatial resolution in California's mountains, GRACE observes changes in groundwater in the Central Valley. We will further compare and contrast the GPS and GRACE measurements, and also evaluate the finding of Amos et al. [2014] that groundwater loss in the southern Central Valley (Tulare Basin) is causing the mountains on either side to rise at 1 to

  6. Subsurface geology of the late Tertiary and Quaternary water-bearing deposits of the southern part of the San Joaquin Valley, California

    USGS Publications Warehouse

    Croft, M.G.

    1972-01-01

    The study area, which includes about 5,000 square miles of the southern part of the San Joaquin Valley, is a broad structural trough of mostly interior drainage. The Sierra Nevada on the east is composed of consolidated igneous and metamorphic rocks of pre-Tertiary age. The surface of these rocks slopes 4?-6? southwestward from the foothills and underlies the valley. The Coast Ranges on the west consist mostly of complexly folded and faulted consolidated marine and nonmarine sedimentary rocks of Jurassic, Cretaceous, and Tertiary age, which dip eastward and overlie the basement complex. Unconsolidated deposits, of late Pliocene to Holocene age, blanket the underlying consolidated rocks in the valley and are the source of most of the fresh ground water. The unconsolidated deposits, the subject of this report, are divided into informal stratigraphic units on the basis of source of sediment, environment of deposition, and texture. Flood-basin, lacustrine, and marsh deposits are fine grained and underlie the valley trough. They range in age from late Pliocene to Holocene. These deposits, consisting of nearly impermeable gypsiferous fine sand, silt, and clay, are more than 3,000 feet thick beneath parts of Tulare Lake bed. In other parts of the trough, flood-basin, lacustrine, and marsh deposits branch into clayey or silty clay tongues designated by the letter symbols A to F. Three of these tongues, the E, C, and A clays, lie beneath large areas of the southern part of the valley. The E clay includes the Corcoran Clay Member of the Tulare Formation, the most extensive hydrologic confining layer in the valley. The E clay underlies about 3,500 square miles of bottom land and western slopes. The beds generally are dark-greenish-gray mostly diatomaceous silty clay of Pleistocene age. Marginally, the unit bifurcates into an upper and a lower stratum that contains thin beds of moderately yellowish-brown silt and sand. The E clay is warped into broad, gentle northwesterly

  7. Two-dimensional, steady-state model of ground-water flow, Nevada Test Site and vicinity, Nevada-California

    USGS Publications Warehouse

    Waddell, R.K.

    1982-01-01

    A two-dimensional, steady-state model of ground-water flow beneath the Nevada Test Site and vicinity has been developed using inverse techniques. The area is underlain by clastic and carbonate rocks of Precambrian and Paleozoic age and by volcanic rocks and alluvium of Tertiary and Quaternary age that have been juxtaposed by normal and strike-slip faulting. Aquifers are composed of carbonate and volcanic rocks and alluvium. Characteristics of the flow system are determined by distribution of low-conductivity rocks (barriers); by recharge originating in the Spring Mountains, Pahranagat, Timpahute, and Sheep Ranges, and in Pahute Mesa; and by underflow beneath Pahute Mesa from Gold Flat and Kawich Valley. Discharge areas (Ash Meadows, Oasis Valley, Alkali Flat, and Furnace Creek Ranch) are upgradient from barriers. Sensitivities of simulated hydraulic heads and fluxes to variations in model parameters were calculated to guide field studies and to help estimate errors in predictions from transport modeling. Hydraulic heads and fluxes are very sensitive to variations in the greater magnitude recharge/discharge terms. Transmissivity at a location may not be the most important transmissivity for determining flux there. Transmissivities and geometries of large barriers that impede flow from Pahute Mesa have major effects on fluxes elsewhere; as their transmissivities are decreased, flux beneath western Jackass Flats and Yucca Mountains is increased as water is diverted around the barriers. Fortymile Canyon is underlain by highly transmissive rocks that cause potentiometric contours to vee upgradient; increasing their transmissivity increases flow through them, and decreases it beneath Yucca Mountain. (USGS)

  8. EnergyFit Nevada (formerly known as the Nevada Retrofit Initiative) final report and technical evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvill, Anna; Bushman, Kate; Ellsworth, Amy

    2014-06-17

    The EnergyFit Nevada (EFN) Better Buildings Neighborhood Program (BBNP, and referred to in this document as the EFN program) currently encourages Nevada residents to make whole-house energy-efficient improvements by providing rebates, financing, and access to a network of qualified home improvement contractors. The BBNP funding, consisting of 34 Energy Efficiency Conservation Block Grants (EECBG) and seven State Energy Program (SEP) grants, was awarded for a three-year period to the State of Nevada in 2010 and used for initial program design and implementation. By the end of first quarter in 2014, the program had achieved upgrades in 553 homes, with anmore » average energy reduction of 32% per home. Other achievements included: Completed 893 residential energy audits and installed upgrades in 0.05% of all Nevada single-family homes1 Achieved an overall conversation rate of 38.1%2 7,089,089 kWh of modeled energy savings3 Total annual homeowner energy savings of approximately $525,7523 Efficiency upgrades completed on 1,100,484 square feet of homes3 $139,992 granted in loans to homeowners for energy-efficiency upgrades 29,285 hours of labor and $3,864,272 worth of work conducted by Nevada auditors and contractors4 40 contractors trained in Nevada 37 contractors with Building Performance Institute (BPI) certification in Nevada 19 contractors actively participating in the EFN program in Nevada 1 Calculated using 2012 U.S. Census data reporting 1,182,870 homes in Nevada. 2 Conversion rate through March 31, 2014, for all Nevada Retrofit Initiative (NRI)-funded projects, calculated using the EFN tracking database. 3 OptiMiser energy modeling, based on current utility rates. 4 This is the sum of $3,596,561 in retrofit invoice value and $247,711 in audit invoice value.« less

  9. Floods of January-February 1963 in California and Nevada

    USGS Publications Warehouse

    Rantz, S.E.; Harris, E.E.

    1963-01-01

    Widespread flooding occurred in central California and northwestern Nevada during January 31 - February 1, 1963, as a result of intense precipitation of about 72 hours duration. The flood-producing storm was of the warm type, with precipitation falling as rain at altitudes as high as 8,000 feet. The heavy precipitation, totaling as much as 20 inches or more in the Sierra Nevada, fell on frozen ground or on the sparse snowpack that existed in the higher altitudes. The response of runoff to rainfall was dramatic, as streams throughout the area rose rapidly. Hardest hit were the basins of the American, Yuba, and Truckee Rivers, where flood peaks either reached record-breaking heights or rivalled the discharges attained in the memorable floods of November 1950 and December 1955. Because of the relatively short duration of the storm, the volume of flood flow in 1963 was not outstanding. Ten deaths were attributed to the storm or flood. Preliminary estimates indicate damage in excess of $16 million in foothill and valley areas, but no attempt has yet been made to assess the heavy damage to highways and drainage structures in the mountain areas. The U. S. Army, Corps of Engineirs estimates that its operation of flood-control facilities prevented additional damage of $236 million. Other reservoirs, operated primarily for water conservation or power production, were also instrumental in preventing damage.

  10. Response of Water Levels in Devils Hole, Death Valley National Park, Nevada, to Atmospheric Loading, Earth Tides, and Earthquakes

    NASA Astrophysics Data System (ADS)

    Cutillo, P. A.; Ge, S.

    2004-12-01

    Devils Hole, home to the endangered Devils Hole pupfish (Cyprinodon diabolis) in Death Valley National Park, Nevada, is one of about 30 springs and the largest collapse depression in the Ash Meadows area. The small pool leads to an extensive subterranean cavern within the regional Paleozoic carbonate-rock aquifer. Previous work has established that the pool level fluctuates in response to changes in barometric pressure, Earth tides and earthquakes. Analyses of these fluctuations indicate that the formation is a sensitive indicator of crustal strain, and provide important information regarding the material properties of the surrounding aquifer. Over ten years of hourly water-level measurements were analyzed for the effects of atmospheric loading and Earth tides. The short-term water-level fluctuations caused by these effects were found to be on the order of millimeters to centimeters, indicating relatively low matrix compressibility. Accordingly, the Devils Hole water-level record shows strong responses to the June 28, 1992 Landers/Little Skull Mountain earthquake sequence and to the October 16, 1999 Hector Mine earthquake. A dislocation model was used to calculate volumetric strain for each earthquake. The sensitivity of Devils Hole to strain induced by the solid Earth tide was used to constrain the modeling. Water-level decreases observed following the 1992 and 1999 earthquakes were found to be consistent with areas of crustal expansion predicted by the dislocation model. The magnitude of the water-level changes was also found to be proportional to the predicted coseismic volumetric strain. Post-seismic pore-pressure diffusion, governed by the hydraulic diffusivity of the aquifer, was simulated with a numerical model using the coseismic change in pore pressure as an initial condition. Results of the numerical model indicate that factors such as fault-plane geometry and aquifer heterogeneity may play an important role in controlling pore pressure diffusion in the

  11. Subsurface Constraints on Late Cenozoic Basin Geometry in Northern Fish Lake Valley and Displacement Transfer Along the Northern Fish Lake Valley Fault Zone, Western Nevada

    NASA Astrophysics Data System (ADS)

    Mueller, N.; Kerstetter, S. R.; Katopody, D. T.; Oldow, J. S.

    2016-12-01

    The NW-striking, right-oblique Fish Lake Valley fault zone (FLVFZ) forms the northern segment of the longest active structure in the western Great Basin; the Death Valley - Furnace Creek - Fish Lake Valley fault system. Since the mid-Miocene, 50 km of right-lateral displacement is documented on the southern FLVFZ and much of that displacement was and is transferred east and north on active WNW left-lateral faults. Prior to the Pliocene, displacement was transferred east and north on a low-angle detachment. Displacement on the northern part of the FLVFZ continues and is transferred to a fanned array of splays striking (west to east) WNW, NNW, ENE and NNE. To determine the displacement budget on these structures, we conducted a gravity survey to determine subsurface basin morphology and its relation to active faults. Over 2450 stations were collected and combined with existing PACES and proprietary data for a total of 3388 stations. The data were terrain corrected and reduced to a 2.67 g/cm3 density to produce a residual complete Bouguer anomaly. The eastern part of northern Fish Lake Valley is underlain by several prominent gravity lows forming several sub-basins with maximum RCBA values ranging from -24 to -28 mGals. The RCBA was inverted for depth using Geosoft Oasis Montaj GM-SYS 3D modeling software. Density values for the inversion were constrained by lithologic and density logs from wells that penetrate the entire Cenozoic section into the Paleozoic basement. Best fitting gravity measurements taken at the wellheads yielded an effective density of 2.4 g/cm3 for the basin fill. Modeled basement depths range between 2.1 to 3 km. The sub-basins form an arc opening to the NW and are bounded by ENE and NNE faults in the south and NS to NNW in the north. At the northern end of the valley, the faults merge with ENE left-lateral strike slip faults of the Mina deflection, which carries displacement to NW dextral strike-slip faults of the central Walker Lane.

  12. 210Po in Nevada groundwater and its relation to gross alpha radioactivity

    USGS Publications Warehouse

    Seiler, R.L.

    2011-01-01

    Polonium-210 (210Po) is a highly toxic alpha emitter that is rarely found in groundwater at activities exceeding 1 pCi/L. 210Po activities in 63 domestic and public-supply wells in Lahontan Valley in Churchill County in northern Nevada, United States, ranged from 0.01 ± 0.005 to 178 ± 16 pCi/L with a median activity of 2.88 pCi/L. Wells with high 210Po activities had low dissolved oxygen concentrations (less than 0.1 mg/L) and commonly had pH greater than 9. Lead-210 activities are low and aqueous 210Po is unsupported by 210Pb, indicating that the 210Po is mobilized from aquifer sediments. The only significant contributors to alpha particle activity in Lahontan Valley groundwater are 234/238U, 222Rn, and 210Po. Radon-222 activities were below 1000 pCi/L and were uncorrelated with 210Po activity. The only applicable drinking water standard for 210Po in the United States is the adjusted gross alpha radioactivity (GAR) standard of 15 pCi/L. 210Po was not volatile in a Nevada well, but volatile 210Po has been reported in a Florida well. Additional information on the volatility of 210Po is needed because GAR is an inappropriate method to screen for volatile radionuclides. About 25% of the samples had 210Po activities that exceed the level associated with a lifetime total cancer risk of 1× 10−4 (1.1 pCi/L) without exceeding the GAR standard. In cases where the 72-h GAR exceeds the uranium activity by more than 5 to 10 pCi/L, an analysis to rule out the presence of 210Po may be justified to protect human health even though the maximum contaminant level for adjusted GAR is not exceeded.

  13. Thickness and geometry of Cenozoic deposits in California Wash area, Nevada, based on gravity and seismic-reflection data

    USGS Publications Warehouse

    Langenheim, V.E.; Miller, J.J.; Page, W.R.; Grow, J.A.

    2001-01-01

    Gravity and seismic-reflection data provide insights into the subsurface stratigraphy and structure of the California Wash area of southern Nevada. This area is part of the Lower Colorado flow system and stratigraphic and structural data are important inputs into developing the hydrogeologic framework. These data indicate that the basin beneath California Wash reaches depths of 2-3 km. The eastern margin of the basin coincides with a system of young (Quaternary and late Tertiary) faults, although both seismic and gravity data indicate that the major basin-bounding fault is 2-3 km west of the mapped young faults. Dry Lake Valley, the adjacent valley to the west, is characterized by thinner basin fill. The basin configuration beneath both California Wash and Dry Lake Valleys based on the inversion of gravity data is unconstrained because of the lack of gravity stations north of 36030?. Broad aeromagnetic anomalies beneath pre-Cenozoic basement in the Muddy Mountains and Arrow Canyon Range reflect Precambrian basement at depths of ~ 5 km. These rocks are probably barriers to ground-water flow,except where fractured.

  14. Potential effects of groundwater pumping on water levels, phreatophytes, and spring discharges in Spring and Snake Valleys, White Pine County, Nevada, and adjacent areas in Nevada and Utah

    USGS Publications Warehouse

    Halford, Keith J.; Plume, Russell W.

    2011-01-01

    Assessing hydrologic effects of developing groundwater supplies in Snake Valley required numerical, groundwater-flow models to estimate the timing and magnitude of capture from streams, springs, wetlands, and phreatophytes. Estimating general water-table decline also required groundwater simulation. The hydraulic conductivity of basin fill and transmissivity of basement-rock distributions in Spring and Snake Valleys were refined by calibrating a steady state, three-dimensional, MODFLOW model of the carbonate-rock province to predevelopment conditions. Hydraulic properties and boundary conditions were defined primarily from the Regional Aquifer-System Analysis (RASA) model except in Spring and Snake Valleys. This locally refined model was referred to as the Great Basin National Park calibration (GBNP-C) model. Groundwater discharges from phreatophyte areas and springs in Spring and Snake Valleys were simulated as specified discharges in the GBNP-C model. These discharges equaled mapped rates and measured discharges, respectively. Recharge, hydraulic conductivity, and transmissivity were distributed throughout Spring and Snake Valleys with pilot points and interpolated to model cells with kriging in geologically similar areas. Transmissivity of the basement rocks was estimated because thickness is correlated poorly with transmissivity. Transmissivity estimates were constrained by aquifer-test results in basin-fill and carbonate-rock aquifers. Recharge, hydraulic conductivity, and transmissivity distributions of the GBNP-C model were estimated by minimizing a weighted composite, sum-of-squares objective function that included measurement and Tikhonov regularization observations. Tikhonov regularization observations were equations that defined preferred relations between the pilot points. Measured water levels, water levels that were simulated with RASA, depth-to-water beneath distributed groundwater and spring discharges, land-surface altitudes, spring discharge at

  15. Sources of phosphorus to the Carson River upstream from Lahontan Reservoir, Nevada and California, Water Years 2001-02

    USGS Publications Warehouse

    Alvarez, Nancy L.; Seiler, Ralph L.

    2004-01-01

    Discharge of treated municipal-sewage effluent to the Carson River in western Nevada and eastern California ceased by 1987 and resulted in a substantial decrease in phosphorus concentrations in the Carson River. Nonetheless, concentrations of total phosphorus and suspended sediment still commonly exceed beneficial-use criteria established for the Carson River by the Nevada Division of Environmental Protection. Potential sources of phosphorus in the study area include natural inputs from undisturbed soils, erosion of soils and streambanks, construction of low-head dams and their destruction during floods, manure production and grazing by cattle along streambanks, drainage from fields irrigated with streamwater and treated municipal-sewage effluent, ground-water seepage, and urban runoff including inputs from golf courses. In 2000, the U.S. Geological Survey (USGS), in cooperation with Carson Water Subconservancy District, began an investigation with the overall purpose of providing managers and regulators with information necessary to develop and implement total maximum daily loads for the Carson River. Two specific goals of the investigation were (1) to identify those reaches of the Carson River upstream from Lahontan Reservoir where the greatest increases in phosphorus and suspended-sediment concentrations and loading occur, and (2) to identify the most important sources of phosphorus within the reaches of the Carson River where the greatest increases in concentration and loading occur. Total-phosphorus concentrations in surface-water samples collected by USGS in the study area during water years 2001-02 ranged from <0.01 to 1.78 mg/L and dissolved-orthophosphate concentrations ranged from <0.01 to 1.81 mg/L as phosphorus. In streamflow entering Carson Valley from headwater areas in the East Fork Carson River, the majority of samples exceeding the total phosphorus water-quality standard of 0.1 mg/L occur during spring runoff (March, April, and May) when suspended

  16. Revised geologic cross sections of parts of the Colorado, White River, and Death Valley regional groundwater flow systems, Nevada, Utah, and Arizona

    USGS Publications Warehouse

    Page, William R.; Scheirer, Daniel S.; Langenheim, V.E.; Berger, Mary A.

    2006-01-01

    This report presents revisions to parts of seven of the ten cross sections originally published in U.S. Geological Survey Open-File Report 2006-1040. The revisions were necessary to correct errors in some of the original cross sections, and to show new parts of several sections that were extended and (or) appended to the original section profiles. Revisions were made to cross sections C-C', D-D', E-E', F-F', G-G', I-I', and J-J', and the parts of the sections revised or extended are highlighted below the sections on plate 1 by red brackets and the word "revised," or "extended." Sections not listed above, as well as the interpretive text and figures, are generally unchanged from the original report. Cross section C-C' includes revisions in the east Mormon Mountains in the east part of the section; D-D' includes revisions in the Mormon Mesa area in the east part of the section; E-E' includes revisions in the Muddy Mountains in the east part of the section; F-F' includes revisions from the Muddy Mountains to the south Virgin Mountains in the east part of the section; and J-J' includes some revisions from the east Mormon Mountains to the Virgin Mountains. The east end of G-G' was extended about 16 km from the Black Mountains to the southern Virgin Mountains, and the northern end of I-I' was extended about 45 km from the Muddy Mountains to the Mormon Mountains, and revisions were made in the Muddy Mountains part of the original section. This report contains 10 interpretive cross sections and an integrated text describing the geology of parts of the Colorado, White River, and Death Valley regional groundwater flow systems in Nevada, Utah, and Arizona. The primary purpose of the report is to provide geologic framework data for input into a numerical groundwater model. Therefore, the stratigraphic and structural summaries are written in a hydrogeologic context. The oldest rocks (basement) are Early Proterozoic metamorphic and intrusive crystalline rocks that are considered

  17. Temporal dynamics of salt crust patterns on a sodic playa: implications for aerodynamic roughness and dust emission potential

    NASA Astrophysics Data System (ADS)

    Nield, Joanna; Bryant, Robert; Wiggs, Giles; King, James; Thomas, David; Eckardt, Frank; Washington, Richard

    2015-04-01

    Salt pans (or playas) are common in arid environments and can be major sources of windblown mineral dust, but there are uncertainties associated with their dust emission potential. These landforms typically form crusts which modify both their erosivity and erodibility by limiting sediment availability, modifying surface and aerodynamic roughness and limiting evaporation rates and sediment production. Here we show the relationship between seasonal surface moisture change and crust pattern development on part of the Makgadikgadi Pans of Botswana (a Southern Hemisphere playa that emits significant dust), based on both remote-sensing and field surface and atmospheric measurements. We use high resolution (sub-cm) terrestrial laser scanning (TLS) surveys over weekly, monthly and annual timescales to accurately characterise crustal ridge thrusting and collapse. Ridge development can change surface topography as much as 30 mm/week on fresh pan areas that have recently been reset by flooding. The corresponding change aerodynamic roughness can be as much as 3 mm/week. At the same time, crack densities across the surface increase and this raises the availability of erodible fluffy, low density dust source sediment stored below the crust layer. We present a conceptual model accounting for the driving forces (subsurface, surface and atmospheric moisture) and feedbacks between these and surface shape that lead to crust pattern trajectories between highly emissive degraded surfaces and less emissive ridged or continuous crusts. These findings improve our understanding of temporal changes in dust availability and supply from playa source regions.

  18. Deposition patterns and transport mechanisms for the endocrine disruptor 4-nonylphenol across the Sierra Nevada Mountains, California.

    PubMed

    Lyons, Rebecca; Van de Bittner, Kyle; Morgan-Jones, Sean

    2014-12-01

    Dust and particulate distribution patterns are shifting as global climate change brings about longer drought periods. Particulates act as vehicles for long range transport of organic pollutants, depositing at locations far from their source. Nonylphenol, a biodegradation product of nonylphenol polyethoxylate, is a known endocrine disruptor. Nonylphenol polyethoxylate enters the environment as an inert ingredient in pesticide sprays, potentially traveling great distances from its application site. This is of concern when a highly agricultural region, California's Central Valley, lies adjacent to sensitive areas like the Eastern Sierra Nevada Mountains. The distribution and transport mechanisms for 4-nonylphenol were investigated in Eastern Sierra Nevada canyons. Regions close to canyon headwalls showed trace amounts of 4-nonylphenol in surface water, snow, and atmospheric deposition. Exposed areas had yearly average concentrations as high as 9 μg/L. Distribution patterns are consistent with particulate-bound transport. This suggests with increasing drought periods, higher levels of persistent organic pollutants are likely. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Water Budgets and Potential Effects of Land- and Water-Use Changes for Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Maurer, Douglas K.; Berger, David L.

    2006-01-01

    To address concerns over continued growth in Carson Valley, the U.S. Geological Survey, in cooperation with Douglas County, Nevada, began a study in February 2003 to update estimates of water-budget components in Carson Valley. Estimates of water-budget components were updated using annual evapotranspiration (ET) rates, rates of streamflow loss to infiltration and gain from ground-water seepage, and rates of recharge from precipitation determined from data collected in 2003 and 2004 for the study and reported in the literature. Overall water budgets were developed for the area of basin-fill deposits in Carson Valley for water years 1941-70 and 1990-2005. Water years 1941-70 represent conditions prior to increased population growth and ground-water pumping, and the importation of effluent. A ground-water budget was developed for the same area for water years 1990-2005. Estimates of total inflow in the overall water budget ranged from 432,000 to 450,000 acre-feet per year (acre-ft/yr) for water years 1941-70 and from 430,000 to 448,000 for water years 1990-2005. Estimates of total inflow for both periods were fairly similar because variations in streamflow and precipitation were offset by increases in imported effluent. Components of inflow included precipitation on basin-fill deposits of 38,000 acre-ft/yr for both periods, streamflow of the Carson River and tributaries to the valley floor of 372,000 acre-ft/yr for water years 1941-70 and 360,000 acre-ft/yr for water years 1990-2005, ground-water inflow ranging from 22,000 to 40,000 acre-ft/yr for both periods, and imported effluent of 9,800 acre-ft/yr for water years 1990-2005 with none imported for water years 1941-70. Estimates of ground-water inflow from the California portion of Carson Valley averaged about 6,000 acre-ft/yr and ranged from 4,000 to 8,000 acre-ft/yr. These estimates compared well with a previous estimate of ground-water inflow across the State line. Estimates of total outflow in the overall water

  20. Nevada's Children, 1996. Selected Educational and Social Statistics--Nevada and National.

    ERIC Educational Resources Information Center

    Horner, Mary P., Comp.

    This report presents selected 1996 educational and social statistics that provide information about the status of children in Nevada. State statistics are in some cases compared to national statistics. The first part presents facts about education in Nevada with regard to student characteristics, enrollment, racial and ethnic populations, high…

  1. Evolution of basin and range structure in the Ruby Mountains and vicinity, Nevada

    NASA Technical Reports Server (NTRS)

    Blackwell, D. D.; Reese, N. M.; Kelley, S. A.

    1985-01-01

    Results from various age dating techniques, seismic reflection profiling hydrocarbon maturation studies, and structural analysis were used to evaluate the Cenozoic deformation in the Ruby Mountains and adjoining ranges (pinyon Range and Cortez Range) in Elko and Eureka Counties, Nevada. Age dating techniques used include potassium-argon ages of biotites from granites published by Kistler et al. (1981) and fission track ages from apatite and zircon. Fission track ages from apatite reflect a closing temperature of 100 plus or minus 20 deg C. Zircon fission track ages reflect a closing temperature of 175 plus or minus 25 deg C and potassium-argon ages from brotite reflect a closing temperature of 250 plus or minus 30 deg C. Thus these results allow a reasonably precise tracking of the evolution of the ranges during the Cenozoic. Seismic reflection data are available from Huntington Valley. Access to seismic reflection data directly to the west of the Harrison Pass Pluton in the central Ruby Mountains was obtained. In addition results are available from several deep exploration holes in Huntington Valley.

  2. MX Siting Investigation Geotechnical Evaluation Verification Study - Cave Valley, Nevada. Volume I. Synthesis.

    DTIC Science & Technology

    1981-10-26

    areas of non- rippable materials may be encountered throughout the northwestern portion of the valley. Laboratory test results and field observations...non- rippable at shallow depths, thereby classifying them in this instance as areas of rock and/or shallow rock. When this occurs, these areas may...OCCUR- Rock is defined as any earth material which is not rippable RING WITHIN 50 FEET 015m) AND by conventional excavation methods. Where available

  3. Reconstructing late Pliocene to middle Pleistocene Death Valley lakes and river systems as a test of pupfish (Cyprinodontidae) dispersal hypotheses

    USGS Publications Warehouse

    Knott, J.R.; Machette, M.N.; Klinger, R.E.; Sarna-Wojcicki, A. M.; Liddicoat, J.C.; Tinsley, J. C.; David, B.T.; Ebbs, V.M.

    2008-01-01

    During glacial (pluvial) climatic periods, Death Valley is hypothesized to have episodically been the terminus for the Amargosa, Owens, and Mojave Rivers. Geological and biological studies have tended to support this hypothesis and a hydrological link that included the Colorado River, allowing dispersal of pupfish throughout southeastern California and western Nevada. Recent mitochondrial deoxyribonucleic acid (mtDNA) studies show a common pupfish (Cyprinodontidae) ancestry in this region with divergence beginning 3-2 Ma. We present tephrochronologic and paleomagnetic data in the context of testing the paleohydrologic connections with respect to the common collection point of the Amargosa, Owens, and Mojave Rivers in Death during successive time periods: (1) the late Pliocene to early Pleistocene (3-2 Ma), (2) early to middle Pleistocene (1.2-0.5 Ma), and (3) middle to late Pleistocene (<0.70.03 Ma; paleolakes Manly and Mojave). Using the 3.35 Ma Zabriskie Wash tuff and 3.28 Ma Nomlaki Tuff Member of the Tuscan and Tehama Formations, which are prominent marker beds in the region, we conclude that at 3-2 Ma, a narrow lake occupied the ancient Furnace Creek Basin and that Death Valley was not hydrologically connected with the Amargosa or Mojave Rivers. A paucity of data for Panamint Valley does not allow us to evaluate an Owens River connection to Death Valley ca. 3-2 Ma. Studies by others have shown that Death Valley was not hydrologically linked to the Amargosa, Owens, or Mojave Rivers from 1.2 to 0.5 Ma. We found no evidence that Lake Manly flooded back up the Mojave River to pluvial Lake Mojave between 0.18 and 0.12 Ma, although surface water flowed from the Amargosa and Owens Rivers to Death Valley at this time. There is also no evidence for a connection of the Owens, Amargosa, or Mojave Rivers to the Colorado River in the last 3-2 m.y. Therefore, the hypothesis that pupfish dispersed or were isolated in basins throughout southeastern California and western

  4. Clean Air Act Permitting in Nevada

    EPA Pesticide Factsheets

    Information on Clean Air Act permitting in Nevada in Nevada and EPA's oversight. Clean Air Act permitting in Nevada is the shared responsibility of one state and two local agencies, along with EPA Region 9.

  5. Magmatic-Tectonic Interactions: Implications for Seismic Hazard Assessment in the Central Walker Lane and Long Valley Caldera Regions

    NASA Astrophysics Data System (ADS)

    Chacko, R.; Hammond, W. C.; Blewitt, G.; Bormann, J. M.

    2014-12-01

    Accurate estimates of fault slip rates based on geodetic data rely on measurements that represent the long-term deformation of the crust. In the Central Walker Lane/Sierra Nevada transition, the Long Valley Caldera region has experienced multiple episodes of uplift and subsidence during the last four decades. The latest episode began in late 2011 and is detectable as a transient signal in the time series of GPS stations around the caldera. These transient signals become more apparent and reveal the extent of the impact on the ambient crustal deformation field of the Walker Lane when the velocity vectors are transformed to a Sierra-Nevada reference frame. Estimating contemporary slip-rates on faults for the purpose of seismic hazard assessment in the region around Long Valley requires detecting and subtracting the transient signals caused by the uplift and subsidence in the caldera. We estimate the geographic extent to which the ambient crustal deformation field is significantly perturbed by ongoing magmatic activity in Long Valley. We present a time variable 3D deformation field constrained by InSAR and GPS observations, and discuss the implications that tectonic-magmatic interaction have for estimates of present-day fault slip-rate. We model the time dependent deformation at Long Valley by analyzing InSAR time series from Envisat and ERS interferograms spanning a period of more than 19 years. We use an analytical volcano deformation source model derived from vertical (GPS) and line of site (InSAR) component of geodetic observations to estimate the horizontal component of the signals associated with magmatic activity beneath the caldera. Previous studies showed that the latest episode of uplift can be modeled with a Mogi source located at a depth of ~6 km with a volume change of 0.03 km3 beneath the resurgent dome. This model predicts a perturbation to the ambient crustal deformation field extending as far as 60 km from the center of the resurgent dome. Thus the

  6. Hydrology and numerical simulation of groundwater movement and heat transport in Snake Valley and surrounding areas, Juab, Miller, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada

    USGS Publications Warehouse

    Masbruch, Melissa D.; Gardner, Philip M.; Brooks, Lynette E.

    2014-01-01

    Snake Valley and surrounding areas, along the Utah-Nevada state border, are part of the Great Basin carbonate and alluvial aquifer system. The groundwater system in the study area consists of water in unconsolidated deposits in basins and water in consolidated rock underlying the basins and in the adjacent mountain blocks. Most recharge occurs from precipitation on the mountain blocks and most discharge occurs from the lower altitude basin-fill deposits mainly as evapotranspiration, springflow, and well withdrawals.The Snake Valley area regional groundwater system was simulated using a three-dimensional model incorporating both groundwater flow and heat transport. The model was constructed with MODFLOW-2000, a version of the U.S. Geological Survey’s groundwater flow model, and MT3DMS, a transport model that simulates advection, dispersion, and chemical reactions of solutes or heat in groundwater systems. Observations of groundwater discharge by evapotranspiration, springflow, mountain stream base flow, and well withdrawals; groundwater-level altitudes; and groundwater temperatures were used to calibrate the model. Parameter values estimated by regression analyses were reasonable and within the range of expected values.This study represents one of the first regional modeling efforts to include calibration to groundwater temperature data. The inclusion of temperature observations reduced parameter uncertainty, in some cases quite significantly, over using just water-level altitude and discharge observations. Of the 39 parameters used to simulate horizontal hydraulic conductivity, uncertainty on 11 of these parameters was reduced to one order of magnitude or less. Other significant reductions in parameter uncertainty occurred in parameters representing the vertical anisotropy ratio, drain and river conductance, recharge rates, and well withdrawal rates.The model provides a good representation of the groundwater system. Simulated water-level altitudes range over

  7. Geologic and paleoseismic study of the Lavic Lake fault at Lavic Lake Playa, Mojave Desert, Southern California

    USGS Publications Warehouse

    Rymer, M.J.; Seitz, G.G.; Weaver, K.D.; Orgil, A.; Faneros, G.; Hamilton, J.C.; Goetz, C.

    2002-01-01

    Paleoseismic investigations of the Lavic Lake fault at Lavic Lake playa place constraints on the timing of a possible earlier earthquake along the 1999 Hector Mine rupture trace and reveal evidence of the timing of the penultimate earthquake on a strand of the Lavic Lake fault that did not rupture in 1999. Three of our four trenches, trenches A, B, and C, were excavated across the 1999 Hector Mine rupture; a fourth trench, D, was excavated across a vegetation lineament that had only minor slip at its southern end in 1999. Trenches A-C exposed strata that are broken only by the 1999 rupture; trench D exposed horizontal bedding that is locally warped and offset by faults. Stratigraphic evidence for the timing of an earlier earthquake along the 1999 rupture across Lavic Lake playa was not exposed. Thus, an earlier event, if there was one along that rupture trace, predates the lowest stratigraphic level exposed in our trenches. Radiocarbon dating of strata near the bottom of trenches constrains a possible earlier event to some time earlier than about 4950 B.C. Buried faults revealed in trench D are below a vegetation lineament at the ground surface. A depositional contact about 80 cm below the ground surface acts as the upward termination of fault breaks in trench D. Thus, this contact may be the event horizon for a surface-rupturing earthquake prior to 1999-the penultimate earthquake on the Lavic Lake fault. Radiocarbon ages of detrital charcoal samples from immediately below the event horizon indicate that the earthquake associated with the faulting occurred later than A.D. 260. An approximately 1300-year age difference between two samples at about the same stratigraphic level below the event horizon suggests the potential for a long residence time of detrital charcoal in the area. Coupled with a lack of bioturbation that could introduce young organic material into the stratigraphic section, the charcoal ages provide only a maximum bounding age; thus, the recognized

  8. NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George

    2013-01-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events. Field measurements at the T-4 Atmospheric Test Site (CAU 370) suggest that radionuclide-contaminated soils may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4more » Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radionuclide-contaminated soils may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). In Area 11, several low-level airborne surveys of the Plutonium Valley Dispersion Sites (CAU 366) show plumes of Americium 241 (Am-241) extending along ephemeral channels (Figure 1, marker numbers 5 and 6) below Corrective Action Site (CAS) 11-23-03 (marker number 3) and CAS 11 23-04 (marker number 4) (Colton, 1999). Plutonium Valley in Area 11 of the NNSS was selected for the study because of the aerial survey evidence suggesting downstream transport of radionuclide-contaminated soil. The aerial survey (Figure 1) shows a well defined finger of elevated radioactivity (marker number 5) extending to the southwest from the southernmost detonation site (marker number 4). This finger of contamination overlies a drainage channel mapped on the topographic base map used for presentation of the survey data suggesting surface runoff as a likely cause of the contaminated area. Additionally, instrumenting sites strongly suspected of

  9. Three-dimensional modeling of the Nevada Test Site and vicinity from teleseismic P-wave residuals

    USGS Publications Warehouse

    Monfort, Mary E.; Evans, John R.

    1982-01-01

    A teleseismic P-wave travel-time residual study is described which reveals the regional compressional-velocity structure of southern Nevada and neighboring parts of California to a depth of 280 km. During 1980, 98 teleseismic events were recorded at as many as 53 sites in this area. P-wave residuals were calculated relative to a network-wide average residual for each event and are displayed on maps of the stations for each of four event-azimuth quadrants. Fluctuations in these map-patterns of residuals with approach azimuth combined with results of linear, three-dimensional inversions of some 2887 residuals indicate the following characteristics of the velocity structure of the southern Nevada region: 1) a low-velocity body exists in the upper crust 50 km northeast of Beatty, Nevada, near the Miocene Timber Mountain-Silent Canyon caldera complex. Another highly-localized low-velocity anomaly occurs near the southwest corner of the Nevada Test Site (NTS). These two anomalies seem to be part of a low-velocity trough extending from Death Valley, California, to about 50 km north of NTS. 2) There is a high-velocity body in the mantle between 81 and 131 km deep centered about i0 km north of the edge of the Timber Mountain caldera, 3) a broad low-velocity body is delineated between 81 and 131 km deep centered about 30 km north of Las Vegas, 4) there is a monotonic increase in travel-time delays from west to east across the region, probably indicating an eastward decrease in velocity, and lower than average velocities in southeastern Nevada below 31 km, and 5) considerable complexity in three-dimensional velocity structure exists in this part of the southern Great Basin. Inversions of teleseismic P-wave travel-time residuals were also performed on data from 12 seismometers in the immediate vicinity of the Nevada Test Site to make good use of the closer station spacing i in that area. Results of these inversions show more details of the velocity structure but generally the

  10. Nevada gaming: revenues and taxes (1945-95).

    PubMed

    DePolo, R; Pingle, M

    1997-01-01

    In 1931, Nevada legalized casino gambling, an act which allowed its "gaming industry" to develop. Because many jurisdictions outside Nevada are now embracing legalized gambling as a path to a brighter economic future and because this proliferation presents Nevada with new challenges and opportunities, it is a good time to review the Nevada experience. Here, the focus is on gaming revenues and gaming tax collections during the 1945-95 period. We find that the growth rate of Nevada's gaming industry has slowed over time, with the relative importance of gaming in the Nevada economy peaking in the late 1970's. The Nevada economy has since been gradually diversifying, something which will increasingly pressure Nevadans to look for government revenue sources other than gaming if current levels of government services are to be maintained.

  11. Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data

    USGS Publications Warehouse

    Nimz, Gregory; Janik, Cathy; Goff, Fraser; Dunlap, Charles; Huebner, Mark; Counce, Dale; Johnson, Stuart D.

    1999-01-01

    Chemical and isotopic analyses of Dixie Valley regional waters indicated several distinct groups ranging in recharge age from Pleistocene (1000a). Geothermal field fluids (~12-14 ka) appear derived from water similar in composition to non thermal groundwater observed today in valley artesian well (also ~14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the range, more extensive interaction with deep seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

  12. Late Quaternary MIS 6-8 shoreline features of pluvial Owens Lake, Owens Valley, eastern California

    USGS Publications Warehouse

    Jayko, A.S.; Bacon, S.N.

    2008-01-01

    The chronologic history of pluvial Owens Lake along the eastern Sierra Nevada in Owens Valley, California, has previously been reported for the interval of time from ca. 25 calibrated ka to the present. However, the age, distribution, and paleoclimatic context of higher-elevation shoreline features have not been formally documented. We describe the location and characteristics of wave-formed erosional and depositional features, as well as fluvial strath terraces that grade into an older shoreline of pluvial Owens Lake. These pluvial-lacustrine features are described between the Olancha area to the south and Poverty Hills area to the north, and they appear to be vertically deformed -20 ?? 4 m across the active oblique-dextral Owens Valley fault zone. They occur at elevations from 1176 to 1182 m along the lower flanks of the Inyo Mountains and Coso Range east of the fault zone to as high as -1204 m west of the fault zone. This relict shoreline, referred to as the 1180 m shoreline, lies -20-40 m higher than the previously documented Last Glacial Maximum shoreline at -1160 m, which occupied the valley during marine isotope stage 2 (MIS 2). Crosscutting relations of wave-formed platforms, notches, and sandy beach deposits, as well as strath terraces on lava flows of the Big Pine volcanic field, bracket the age of the 1180 m shoreline to the time interval between ca. 340 ?? 60 ka and ca. 130 ?? 50 ka. This interval includes marine oxygen isotope stages 8-6 (MIS 8-6), corresponding to 260-240 ka and 185-130 ka, respectively. An additional age estimate for this shoreline is provided by a cosmogenic 36Cl model age of ca. 160 ?? 32 ka on reefal tufa at ???1170 m elevation from the southeastern margin of the valley. This 36Cl model age corroborates the constraining ages based on dated lava flows and refines the lake age to the MIS 6 interval. Documentation of this larger pluvial Owens Lake offers insight to the hydrologic balance along the east side of the southern Sierra

  13. Potential transport pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid northwest China

    NASA Astrophysics Data System (ADS)

    Ge, Yongxiao; Abuduwaili, Jilili; Ma, Long; Wu, Na; Liu, Dongwei

    2016-09-01

    In this paper, the HYSPLIT model, driven with reanalysis meteorological data from 1978 to 2013, was used to understand the potential transport characteristics of dust and salt dust emanating from the playa of Ebinur Lake in arid northwest China. Daily air parcel trajectories were computed forward for 8 days from an origin centered over Ebinur Lake at 100 m above ground level. Air parcel trajectory density plots were mapped for seven levels: 0-100 m agl., 100-500 m agl., 500-1000 m agl., 1000-1500 m agl., 1500-2000 m agl., 2000-3000 m agl., and 3000-5000 m agl. These show that potential dust transport pathways have clear seasonal differentiation. The potential transport distance of dust and salt dust is greatest in spring and summer. In autumn and winter, the potential transport of the high-density air trajectory is below 1000 m traveling a shorter distance. Potential dust transport pathways showed notifying directivity in different seasons and heights. Southeast in spring and summer, and north to northeast in autumn and winter are the two main potential transport channels of dust and salt dust. Accordingly, dust and salt dust from the playa of Ebinur Lake may influence the atmospheric processes and biogeochemical cycles of a vast region. The main area of influence of dust and salt dust is close to the source area, and will significantly accelerate the melting of snow and ice in the Tianshan Mountains. This highlights the urgent need to combine remote sensing, isotope and other methods to further research the transport characteristics of dust and salt dust from the playa of the Ebinur Lake.

  14. Magnetotelluric study of the Pahute Mesa and Oasis Valley regions, Nye County, Nevada

    USGS Publications Warehouse

    Schenkel, Clifford J.; Hildenbrand, Thomas G.; Dixon, Gary L.

    1999-01-01

    Magnetotelluric data delineate distinct layers and lateral variations above the pre-Tertiary basement. On Pahute Mesa, three resistivity layers associated with the volcanic rocks are defined: a moderately resistive surface layer, an underlying conductive layer, and a deep resistive layer. Considerable geologic information can be derived from the conductive layer which extents from near the water table down to a depth of approximately 2 km. The increase in conductivity is probably related to zeolite zonation observed in the volcanic rock on Pahute Mesa, which is relatively impermeable to groundwater flow unless fractured. Inferred faults within this conductive layer are modeled on several profiles crossing the Thirsty Canyon fault zone. This fault zone extends from Pahute Mesa into Oasis Valley basin. Near Colson Pond where the basement is shallow, the Thirsty Canyon fault zone is several (~2.5) kilometers wide. Due to the indicated vertical offsets associated with the Thirsty Canyon fault zone, the fault zone may act as a barrier to transverse (E-W) groundwater flow by juxtaposing rocks of different permeabilities. We propose that the Thirsty Canyon fault zone diverts water southward from Pahute Mesa to Oasis Valley. The electrically conductive nature of this fault zone indicates the presence of abundant alteration minerals or a dense network of open and interconnected fractures filled with electrically conductive groundwater. The formation of alteration minerals require the presence of water suggesting that an extensive interconnected fracture system exists or existed at one time. Thus, the fractures within the fault zone may be either a barrier or a conduit for groundwater flow, depending on the degree of alteration and the volume of open pore space. In Oasis Valley basin, a conductive surface layer, composed of alluvium and possibly altered volcanic rocks, extends to a depth of 300 to 500 m. The underlying volcanic layer, composed mostly of tuffs, fills the

  15. The Las Vegas Sustainability Atlas: Modeling Place-based Interactions and Implications in the Las Vegas Valley Bioregion

    NASA Astrophysics Data System (ADS)

    Ego, H.; McCown, K.; Saghafi, N.; Gross, E.; Hunter, W.; Zawarus, P.; Gann, A.; Piechota, T. C.

    2014-12-01

    Las Vegas, Nevada, with 2 million residents and 40 million annual visitors, is one of the driest metropolitan environments of its size in the world. The metro imports nearly all of its resources, including energy, water and food. Rapid population increases, drought, and temperature increases due to climate change create challenges for planning resilient systems in the Las Vegas Valley. Because of its growth rate, aridity, Las Vegas, Nevada is a significant and relevant region for the study of the water, energy, food and climate nexus. Cities in the United States and the world are seeing increasing trends in urbanization and water scarcity. How does the water-energy-climate-food nexus affect each metropolitan area? How can this complex information be used for resiliency planning? How can it be related to the public, so they can understand the issues in a way that makes them meaningful participants in the planning process? The topic of our presentation is a 'resiliency atlas.' The atlas is a place-based model tested in Las Vegas to explore bioregional distinctiveness of the water-energy-climate-food nexus, including regional transportation systems. The atlas integrates the systems within a utilitarian organization of information. Systems in this place-based model demonstrate how infrastructure services are efficiently provided for the Las Vegas Valley population. This resiliency atlas can clarify how the nexus applies to place; and how it can be used to spur geographically germane adaption strategies. In the Las Vegas Valley, climate change (drought and high sustained temperatures) and population affect water, energy, and food systems. This clarity of a place based model can help educate the public about the resilience of their place, and facilitate and organize the planning process in the face of uncertainty.

  16. Effects of salinity and temperature on respiratory metabolism of Salicornia utahensis from a Great Basin playa

    Treesearch

    Lyneen C. Harris; M. Ajmal Khan; Jiping Zou; Bruce N. Smith; Lee D. Hansen

    2001-01-01

    Plants that live in the desert playas of the Great Basin must simultaneously tolerate very high concentrations of salt and high temperature. This study characterizes the respiratory metabolism of one species growing in this environment. An isothermal calorimetric method was used to measure the dark metabolic heat rate (q) and CO2 production rate (RCO2) of stem tissue...

  17. Land-cover mapping of Red Rock Canyon National Conservation Area and Coyote Springs, Piute-Eldorado Valley, and Mormon Mesa Areas of Critical Environmental Concern, Clark County, Nevada

    USGS Publications Warehouse

    Smith, J. LaRue; Damar, Nancy A.; Charlet, David A.; Westenburg, Craig L.

    2014-01-01

    DigitalGlobe’s QuickBird satellite high-resolution multispectral imagery was classified by using Visual Learning Systems’ Feature Analyst feature extraction software to produce land-cover data sets for the Red Rock Canyon National Conservation Area and the Coyote Springs, Piute-Eldorado Valley, and Mormon Mesa Areas of Critical Environmental Concern in Clark County, Nevada. Over 1,000 vegetation field samples were collected at the stand level. The field samples were classified to the National Vegetation Classification Standard, Version 2 hierarchy at the alliance level and above. Feature extraction models were developed for vegetation on the basis of the spectral and spatial characteristics of selected field samples by using the Feature Analyst hierarchical learning process. Individual model results were merged to create one data set for the Red Rock Canyon National Conservation Area and one for each of the Areas of Critical Environmental Concern. Field sample points and photographs were used to validate and update the data set after model results were merged. Non-vegetation data layers, such as roads and disturbed areas, were delineated from the imagery and added to the final data sets. The resulting land-cover data sets are significantly more detailed than previously were available, both in resolution and in vegetation classes.

  18. Regional variations in water quality and relationships to soil and bedrock weathering in the southern Sacramento Valley, California, USA

    USGS Publications Warehouse

    Wanty, R.B.; Goldhaber, M.B.; Morrison, J.M.; Lee, L.

    2009-01-01

    Regional patterns in ground- and surface-water chemistry of the southern Sacramento Valley in California were evaluated using publicly available geochemical data from the US Geological Survey's National Water Information System (NWIS). Within the boundaries of the study area, more than 2300 ground-water analyses and more than 20,000 surface-water analyses were available. Ground-waters from the west side of the Sacramento Valley contain greater concentrations of Na, Ca, Mg, B, Cl and SO4, while the east-side ground-waters contain greater concentrations of silica and K. These differences result from variations in surface-water chemistry as well as from chemical reactions between water and aquifer materials. Sediments that fill the Sacramento Valley were derived from highlands to the west (the Coast Ranges) and east (the Sierra Nevada Mountains), the former having an oceanic provenance and the latter continental. These geologic differences are at least in part responsible for the observed patterns in ground-water chemistry. Thermal springs that are common along the west side of the Sacramento Valley appear to have an effect on surface-water chemistry, which in turn may affect the ground-water chemistry.

  19. Late Holocene evolution of playa lakes in the central Ebro depression based on geophysical surveys and morpho-stratigraphic analysis of lacustrine terraces

    NASA Astrophysics Data System (ADS)

    Gutiérrez, F.; Valero-Garcés, B.; Desir, G.; González-Sampériz, P.; Gutiérrez, M.; Linares, R.; Zarroca, M.; Moreno, A.; Guerrero, J.; Roqué, C.; Arnold, L. J.; Demuro, M.

    2013-08-01

    The origin and morpho-stratigraphic evolution of the largest playa-lake system (La Playa-El Pueyo) in the Bujaraloz-Sástago endorheic area, located in the semiarid central sector of the Ebro Depression, are analysed. The enclosed depressions are developed on gypsiferous Tertiary bedrock and show a prevalent WNW-ESE orientation parallel to the direction of the prevalent strong local wind (Cierzo). Yardangs have been carved in bedrock and unconsolidated terrace deposits in the leeward sector of the largest lake basins. A sequence of three lacustrine terrace levels has been identified by detailed geomorphological mapping. The treads of the upper, middle and lower terrace levels are situated at + 9 m, + 6 m and + 0.5 m above the playa-lake floors, respectively. Seismic refraction and electrical resistivity profiles acquired in La Playa reveal a thin basin fill (~ 2 m) with a planar base. These data allow ruling out the genetic hypothesis for the depressions involving the collapse of large bedrock cavities and support a mixed genesis of combined widespread dissolution and subsidence by groundwater discharge and eolian deflation during dry periods. The 5 m thick deposit of the middle terrace was investigated in hand-dug and backhoe trenches. Six AMS radiocarbon ages from this terrace indicate an aggradation phase between 3.9 ka and ca. 2 ka. These numerical ages yield a maximum average aggradation rate of 2.6 mm/yr and a minimum excavation rate by wind deflation of 3 mm/yr subsequent to the accumulation of the middle terrace. The latter figure compares well with those calculated in several arid regions of the world using yardangs carved in palaeolake deposits. The aggradation phase between 4 and 2 ka is coherent with other Iberian and Mediterranean records showing relatively more humid conditions after 4 ka, including the Iron Ages and the Iberian-Roman Period.

  20. 76 FR 9603 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... Reservation of Idaho; Shoshone-Paiute Tribes of the Duck Valley Reservation, Nevada; Southern Ute Indian Tribe...-Paiute Tribes of the Duck Valley Reservation, Nevada; Southern Ute Indian Tribe of the Southern Ute...; Shoshone-Bannock Tribes of the Fort Hall Reservation of Idaho; Shoshone-Paiute Tribes of the Duck Valley...

  1. Estimated Ground-Water Withdrawals from the Death Valley Regional Flow System, Nevada and California, 1913-98

    USGS Publications Warehouse

    Moreo, Michael T.; Halford, Keith J.; La Camera, Richard J.; Laczniak, Randell J.

    2003-01-01

    Ground-water withdrawals from 1913 through 1998 from the Death Valley regional flow system have been compiled to support a regional, three-dimensional, transient ground-water flow model. Withdrawal locations and depths of production intervals were estimated and associated errors were reported for 9,300 wells. Withdrawals were grouped into three categories: mining, public-supply, and commercial water use; domestic water use; and irrigation water use. In this report, groupings were based on the method used to estimate pumpage. Cumulative ground-water withdrawals from 1913 through 1998 totaled 3 million acre-feet, most of which was used to irrigate alfalfa. Annual withdrawal for irrigation ranged from 80 to almost 100 percent of the total pumpage. About 75,000 acre-feet was withdrawn for irrigation in 1998. Annual irrigation withdrawals generally were estimated as the product of irrigated acreage and application rate. About 320 fields totaling 11,000 acres were identified in six hydrographic areas. Annual application rates for high water-use crops ranged from 5 feet in Penoyer Valley to 9 feet in Pahrump Valley. The uncertainty in the estimates of ground-water withdrawals was attributed primarily to the uncertainty of application rate estimates. Annual ground-water withdrawal was estimated at about 90,000 acre-feet in 1998 with an assigned uncertainty bounded by 60,000 to 130,000 acre-feet.

  2. Field trip report: Observations made at Yucca Mountain, Nye County, Nevada. Special report No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, C.A.

    1993-03-01

    A field trip was made to the Yucca Mountain area on December 5-9, 1992 by Jerry Frazier, Don Livingston, Christine Schluter, Russell Harmon, and Carol Hill. Forty-three separate stops were made and 275 lbs. of rocks were collected during the five days of the field trip. Key localities visited were the Bare Mountains, Yucca Mountain, Calico Hills, Busted Butte, Harper Valley, Red Cliff Gulch, Wahmonie Hills, Crater Flat, and Lathrop Wells Cone. This report only describes field observations made by Carol Hill. Drawings are used rather than photographs because cameras were not permitted on the Nevada Test Site during thismore » trip.« less

  3. 75 FR 44942 - 2015 Resource Pool-Sierra Nevada Customer Service Region

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-30

    ...The Western Area Power Administration (Western), a Federal power marketing administration of the Department of Energy (DOE), published its 2004 Power Marketing Plan (Marketing Plan) for the Sierra Nevada Customer Service Region (SNR) in the Federal Register on June 25, 1999. The Marketing Plan specifies the terms and conditions under which Western will market power from the Central Valley Project (CVP) and the Washoe Project beginning January 1, 2005, and continuing through December 31, 2024. The Marketing Plan provided for a portion of SNR's resources to be reallocated through a 2015 Resource Pool. On June 3, 2009, Western published a Call for 2015 Resource Pool Applications. On September 28, 2009, Western published a Notice of Extension to file applications. This notice announces Western's proposed allocations of power from the 2015 Resource Pool.

  4. Nevada Kids Count Data Book, 1998.

    ERIC Educational Resources Information Center

    Ford, Paula R.

    This Kids Count report provides information on statewide trends affecting children and families in Nevada. The report is comprised of eight sections: an overview; Nevada's demographic profile; key facts regarding children in the state; Nevada's comparison to the rest of the United States; trends in the state; indicators of child well-being;…

  5. Strain accumulation and rotation in western Nevada, 1993-2000

    NASA Astrophysics Data System (ADS)

    Svarc, J. L.; Savage, J. C.; Prescott, W. H.; Ramelli, A. R.

    2002-05-01

    The positions of 44 GPS monuments in an array extending from the Sierra Nevada at the latitude of Reno to near Austin, Nevada, have been measured several times in the 1993-2000 interval. The western half of the array spans the Walker Lane belt, whereas the eastern half spans the central Nevada seismic zone (CNSZ). The principal strain rates in the Walker Lane belt are 29.6 +/- 5.3 nstrain yr-1 N88.4°E +/- 5.4° and -12.8 +/- 6.0 nanostrain yr-1 N01.6°W +/- 5.4°, extension reckoned positive, and the clockwise (as seen from above the Earth) rotation rate about a vertical axis is 13.6 +/- 4.0 nrad yr-1. The quoted uncertainties are standard deviations. The motion in the Walker Lane belt can then be represented by a zone striking N35°W subject to 16.8 +/- 4.9 nstrain yr-1 extension perpendicular to it and 19.5 +/- 4.0 nstrain yr-1 right-lateral, simple shear across it. The N35°W strike of the zone is the same as the direction of the local tangent to the small circle drawn about the Pacific-North America pole of rotation. The principal strain rates for the CNSZ are 46.2 +/- 11.0 nstrain yr-1 N49.9°W +/- 6.0° and -13.6 +/- 6.1 nstrain yr-1 N40.1°E +/- 6.0°, and the clockwise rotation rate about a vertical axis is 20.3 +/- 6.3 nrad yr-1. The motion across the CNSZ can then be represented by a zone striking N12°E subject to 32.6 +/- 11.0 nstrain yr-1 extension perpendicular to it and 25.1 +/- 6.3 nstrain yr-1 right-lateral, simple shear across it. The N12°E strike of the zone is similar to the strikes of the faults (Rainbow Mountain, Fairview Peak, and Dixie Valley) within it.

  6. Strain accumulation and rotation in western Nevada, 1993-2000

    USGS Publications Warehouse

    Svarc, J.L.; Savage, J.C.; Prescott, W.H.; Ramelli, A.R.

    2002-01-01

    The positions of 44 GPS monuments in an array extending from the Sierra Nevada at the latitude of Reno to near Austin, Nevada, have been measured several times in the 1993-2000 interval. The western half of the array spans the Walker Lane belt, whereas the eastern half spans the central Nevada seismic zone (CNSZ). The principal strain rates in the Walker Lane belt are 29.6 ?? 5.3 nstrain yr-1 N88.4??E ?? 5.4?? and -12.8 ?? 6.0 nanostrain yr-1 N01.6??W ?? 5.4??, extension reckoned positive, and the clockwise (as seen from above the Earth) rotation rate about a vertical axis is 13.6 ?? 4.0 nrad yr-1. The quoted uncertainties are standard deviations. The motion in the Walker Lane belt can then be represented by a zone striking N35??W subject to 16.8 ?? 4.9 nstrain yr-1 extension perpendicular to it and 19.5 ?? 4.0 nstrain yr-1 right-lateral, simple shear across it. The N35??W strike of the zone is the same as the direction of the local tangent to the small circle drawn about the Pacific-North America pole of rotation. The principal strain rates for the CNSZ are 46.2 ?? 11.0 nstrain yr-1 N49.9??W ?? 6.0?? and -13.6 ?? 6.1 nstrain yr-1 N40.1??E ?? 6.0??, and the clockwise rotation rate about a vertical axis is 20.3 ?? 6.3 nrad yr-1. The motion across the CNSZ can then be represented by a zone striking N12??E subject to 32.6 ?? 11.0 nstrain yr-1 extension perpendicular to it and 25.1 ?? 6.3 nstrain yr-1 right-lateral, simple shear across it. The N12??E strike of the zone is similar to the strikes of the faults (Rainbow Mountain, Fairview Peak, and Dixie Valley) within it.

  7. Groundwater quality in the Madera and Chowchilla subbasins of the San Joaquin Valley, California

    USGS Publications Warehouse

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The Madera and Chowchilla subbasins of the San Joaquin Valley constitute one of the study units being evaluated. The Madera-Chowchilla study unit is about 860 square miles and consists of the Madera and Chowchilla groundwater subbasins of the San Joaquin Valley Basin (California Department of Water Resources, 2003; Shelton and others, 2009). The study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 11 to 15 inches, most of which occurs between November and February. The main surface-water features in the study unit are the San Joaquin, Fresno, and Chowchilla Rivers, and the Madera and Chowchilla canals. Land use in the study unit is about 69 percent (%) agricultural, 28% natural (mainly grasslands), and 3% urban. The primary crops are orchards and vineyards. The largest urban area is the city of Madera. The primary aquifer system is defined as those parts of the aquifer corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. In the Madera-Chowchilla study unit, these wells typically are drilled to depths between 200 and 800 feet, consist of a solid casing from land surface to a depth of about 140 to 400 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer system. The primary aquifer system in the study unit consists of Quaternary-age alluvial-fan and fluvial deposits that were formed by the rivers draining the Sierra Nevada. Sediments consist of gravels, sands

  8. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Joe Iovenitti

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  9. Precipitation and runoff simulations of select perennial and ephemeral watersheds in the middle Carson River basin, Eagle, Dayton, and Churchill Valleys, west-central Nevada

    USGS Publications Warehouse

    Jeton, Anne E.; Maurer, Douglas K.

    2011-01-01

    The effect that land use may have on streamflow in the Carson River, and ultimately its impact on downstream users can be evaluated by simulating precipitation-runoff processes and estimating groundwater inflow in the middle Carson River in west-central Nevada. To address these concerns, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, began a study in 2008 to evaluate groundwater flow in the Carson River basin extending from Eagle Valley to Churchill Valley, called the middle Carson River basin in this report. This report documents the development and calibration of 12 watershed models and presents model results and the estimated mean annual water budgets for the modeled watersheds. This part of the larger middle Carson River study will provide estimates of runoff tributary to the Carson River and the potential for groundwater inflow (defined here as that component of recharge derived from percolation of excess water from the soil zone to the groundwater reservoir). The model used for the study was the U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Models were developed for 2 perennial watersheds in Eagle Valley having gaged daily mean runoff, Ash Canyon Creek and Clear Creek, and for 10 ephemeral watersheds in the Dayton Valley and Churchill Valley hydrologic areas. Model calibration was constrained by daily mean runoff for the 2 perennial watersheds and for the 10 ephemeral watersheds by limited indirect runoff estimates and by mean annual runoff estimates derived from empirical methods. The models were further constrained by limited climate data adjusted for altitude differences using annual precipitation volumes estimated in a previous study. The calibration periods were water years 1980-2007 for Ash Canyon Creek, and water years 1991-2007 for Clear Creek. To

  10. Sierra Nevada Science Review

    Treesearch

    Constance Millar; Amy Lind; Rowan Rowntree; Carl Skinner; Jared Verner; Bill Zielinski; Robert Ziemer

    1998-01-01

    In January, 1998, the Pacific Southwest Region and Pacific Southwest Research Station of the Forest Service initiated a collaborative effort to incorporate new information into planning future management of Sierra Nevada national forests. The project, known as the Sierra Nevada Framework for Conservation and Collaboration, will incorporate the latest scientific...

  11. Resistivity structures across the Humboldt River basin, north-central Nevada

    USGS Publications Warehouse

    Rodriguez, Brian D.; Williams, Jackie M.

    2002-01-01

    Magnetotelluric data collected along five profiles show deep resistivity structures beneath the Battle Mountain-Eureka and Carlin gold trends in north-central Nevada, which appear consistent with tectonic breaks in the crust that possibly served as channels for hydrothermal fluids. It seems likely that gold deposits along these linear trends were, therefore, controlled by deep regional crustal fault systems. Two-dimensional resistivity modeling of the magnetotelluric data generally show resistive (30 to 1,000 ohm-m) crustal blocks broken by sub-vertical, two-dimensional, conductive (1 to 10 ohmm) zones that are indicative of large-scale crustal fault zones. These inferred fault zones are regional in scale, trend northeast-southwest, north-south, and northwest-southeast, and extend to mid-crustal (20 km) depths. The conductors are about 2- to 15-km wide, extend from about 1 to 4 km below the surface to about 20 km depth, and show two-dimensional electrical structure. By connecting the locations of similar trending conductors together, individual regional crustal fault zones within the upper crust can be inferred that range from about 4- to 10-km wide and about 30- to 150-km long. One of these crustal fault zones coincides with the Battle Mountain-Eureka mineral trend. The interpreted electrical property sections also show regional changes in the resistive crust from south to north. Most of the subsurface in the upper 20 km beneath Reese River Valley and southern Boulder Valley are underlain by rock that is generally more conductive than the subsurface beneath Kelly Creek Basin and northern Boulder Valley. This suggests that either elevated-temperature or high-salinity fluids, alteration, or carbonaceous rocks are more pervasive in the more conductive area (Battle Mountain Heat-Flow High), which implies that the crust beneath these valleys is either more fractured or has more carbonaceous rocks than in the area surveyed along the 41st parallel.

  12. The influence of faults in basin-fill deposits on land subsidence, Las Vegas Valley, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Burbey, Thomas

    2002-07-01

    The role of horizontal deformation caused by pumping of confined-aquifer systems is recognized as contributing to the development of earth fissures in semiarid regions, including Las Vegas Valley, Nevada. In spite of stabilizing water levels, new earth fissures continue to develop while existing ones continue to lengthen and widen near basin-fill faults. A three-dimensional granular displacement model based on Biot's consolidation theory (Biot, MA, 1941, General theory of three-dimensional consolidation. Jour. Applied Physics 12:155-164) has been used to evaluate the nature of displacement in the vicinity of two vertical faults. The fault was simulated as (1) a low-permeability barrier to horizontal flow, (2) a gap or structural break in the medium, but where groundwater flow is not obstructed, and (3) a combination of conditions (1) and (2). Results indicate that the low-permeability barrier greatly enhances horizontal displacement. The fault plane also represents a location of significant differential vertical subsidence. Large computed strains in the vicinity of the fault may suggest high potential for failure and the development of earth fissures when the fault is assumed to have low permeability. Results using a combination of the two boundaries suggest that potential fissure development may be great at or near the fault plane and that horizontal deformation is likely to play a key role in this development. Résumé. On considère que la déformation horizontale provoquée par un pompage dans un aquifère captif joue un rôle dans le développement des fissures du sol en régions semi-arides, comme la vallée de Las Vegas (Nevada). Malgré des niveaux d'eau stabilisés, de nouvelles fissures du sol continuent de se développer en longueur et en largeur au voisinage de failles dans les bassins sédimentaires. Un modèle de déplacement granulaire tri-dimensionnel, basé sur la théorie de la consolidation de Biot (Biot, M A, 1941, General theory of three

  13. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  14. Stratigraphic evidence for the role of lake spillover in the inception of the lower Colorado River in southern Nevada and western Arizona

    USGS Publications Warehouse

    House, P.K.; Pearthree, P.A.; Perkins, M.E.

    2008-01-01

    Late Miocene and early Pliocene sediments exposed along the lower Colorado River near Laughlin, Nevada, contain evidence that establishment of this reach of the river after 5.6 Ma involved flooding from lake spillover through a bedrock divide between Cottonwood Valley to the north and Mohave Valley to the south. Lacustrine marls interfingered with and conformably overlying a sequence of post-5.6 Ma finegrained valley-fill deposits record an early phase of intermittent lacustrine inundation restricted to Cottonwood Valley. Limestone, mud, sand, and minor gravel of the Bouse Formation were subsequently deposited above an unconformity. At the north end of Mohave Valley, a coarse-grained, lithologically distinct fluvial conglomerate separates subaerial, locally derived fan deposits from subaqueous deposits of the Bouse Formation. We interpret this key unit as evidence for overtopping and catastrophic breaching of the paleodivide immediately before deep lacustrine inundation of both valleys. Exposures in both valleys reveal a substantial erosional unconformity that records drainage of the lake and predates the arrival of sediment of the through-going Colorado River. Subsequent river aggradation culminated in the Pliocene between 4.1 and 3.3 Ma. The stratigraphic associations and timing of this drainage transition are consistent with geochemical evidence linking lacustrine conditions to the early Colorado River, the timings of drainage integration and canyon incision on the Colorado Plateau, the arrival of Colorado River sand at its terminus in the Salton Trough, and a downstream-directed mode of river integration common in areas of crustal extension. ?? 2008 The Geological Society of America.

  15. Thermal history of rocks in southern San Joaquin Valley, California: evidence from fission-track analysis

    USGS Publications Warehouse

    Naeser, N.D.; Naeser, C.W.; McCulloh, T.H.

    1990-01-01

    Fission-track analysis has been used to study the thermal and depositional history of the subsurface Tertiary sedimentary rocks on both sides of the active White Wolf reverse fault in the southern San Joaquin Valley. The distinctly different thermal histories of the rocks in the two structural blocks are clearly reflected in the apatite fission-track data, which suggest that rocks in the rapidly subsiding basin northwest of the fault have been near their present temperature for only about 1 m.y. compared with about 10 m.y. for rocks southeast of the fault. These estimates of heating time agree with previous estimates for these rocks. Zircon fission-track data indicate that the Tertiary sediments were derived from parent rocks of more than one age. However, from at least the Eocene to late Miocene or Pliocene, the major sediment source was rocks related to the youngest Sierra Nevada Mesozoic intrusive complexes, which are presently exposed east and south of the southern San Joaquin Valley. -from Authors

  16. Principal facts for gravity stations collected in 2010 from White Pine and Lincoln Counties, east-central Nevada

    USGS Publications Warehouse

    Mankinen, Edward A.; McKee, Edwin H.

    2011-01-01

    Increasing demands on the Colorado River system within the arid Southwestern United States have focused attention on finding new, alternative sources of water. Particular attention is being paid to the eastern Great Basin, where important ground-water systems occur within a regionally extensive sequence of Paleozoic carbonate rocks and in the Cenozoic basin-fill deposits that occur throughout the region. Geophysical investigations to characterize the geologic framework of aquifers in eastern Nevada and western Utah began in a series of cooperative agreements between the U.S. Geological Survey and the Southern Nevada Water Authority in 2003. These studies were intended to better understand the formation of basins, define their subsurface shape and depth, and delineate structures that may impede or enhance groundwater flow. We have combined data from gravity stations established during the current study with previously available data to produce an up-to-date isostatic-gravity map of the study area, using a gravity inversion method to calculate depths to pre-Cenozoic basement rock and to estimate alluvial/volcanic fill in the valleys.

  17. Hydrogeologic and hydrochemical framework, south-central Great Basin, Nevada-California, with special reference to the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winograd, I.J.; Thordarson, W.

    Intensely fractured Precambrian and Paleozoic carbonate and clastic rocks and block-faulted Cenozoic volcanic and sedimentary strata in the Nevada Test Site are divided into 10 hydrogeologic units. Three of these--the lower clastic aquitard, the lower carbonate aquifer, and the tuff aquitard--control the regional movement of ground water. The coefficients of fracture transmissiblity of these rocks are, respectively, less than 1,000, 1,000 to 900,000, and less than 200 gallons per day per foot; interstitial permeability is negligible. Solution caverns are locally present in the carbonate aquifer, but regional movement of water is controlled by variations in fracture transmissibility and by structuralmore » juxtaposition of the aquifer and the lower clastic aquitard. Water circulates freely to depths of at least 1,500 feet beneath the top of the aquifer and up to 4,200 feet below land surface. Synthesis of hydrogeologic, hydrochemical, and isotopic data suggests that an area of at least 4,500 square miles (including 10 intermontane valleys) is hydraulically integrated into one ground-water basin, the Ash Meadows basin, by interbasin movement of ground water through the widespread carbonate aquifer. Discharge from this basin--a minimum of about 17,000 acre-feet annually--occurs along a fault-controlled spring line at Ash Meadows in east-central Amargosa Desert. Intrabasin movement of water between Cenozoic aquifers and the lower carbonate aquifer is controlled by the tuff aquitard, the basal Cenozoic hydrogeologic unit. Such movement significantly influences the chemistry of water in the carbonate aquifer. Ground-water velocity through the tuff aquitard in Yucca Flat is less than 1 foot per year. Velocity through the lower carbonate aquifer ranges from an estimated 0.02 to 200 feet per day, depending upon geographic position within the flow system.Within the Nevada Test Site, ground water moves southward and southwestward toward Ash Meadows.« less

  18. Commercial geophysical well logs from the USW G-1 drill hole, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Muller, D.C.; Kibler, J.E.

    1983-01-01

    Drill hole USW G-1 was drilled at Yucca Mountain, Nevada Test Site, Nevada, as part of the ongoing exploration program for the Nevada Nuclear Waste Storage Investigations. Contract geophysical well logs run at USW G-1 show only limited stratigraphic correlations, but correlate reasonably well with the welding of the ash-flow and ash-fall tuffs. Rocks in the upper part of the section have highly variable physical properties, but are more uniform and predictably lower in the section.

  19. Geologic map of the Hart Peak Quadrangle, California and Nevada: a digital database

    USGS Publications Warehouse

    Nielson, Jane E.; Turner, Ryan D.; Bedford, David R.

    1999-01-01

    The Hart Peak 1:24,000-scale quadrangle is located about 12 km southwest of Searchlight, Nevada, comprehending the eastern part of the Castle Peaks, California, and most of the Castle Mountains and the northwestern part of the Piute Range, in California and Nevada. The Castle Peaks area constitutes the northeasternmost part of the northeast-trending New York Mountains. The Castle Mountains straddle the California-Nevada State line between the Castle Peaks and north-trending Piute Range. The southern part of the Piute Range, near Civil War-era Fort Piute, adjoins Homer Mountain mapped by Spencer and Turner (1985). Adjacent and nearby 1:24,000-scale quadrangles include Castle Peaks, East of Grotto Hills, Homer Mountain, and Signal Hill, Calif.; also Tenmile Well and West of Juniper Mine, Calif. and Nev. The oldest rocks in the Hart Peak quadrangle are Early Proterozoic gneiss and foliated granite that crop out in the northern part of the quadrangle on the eastern flank of the Castle Peaks and in the central Castle Mountains (Wooden and Miller, 1990). Paleozoic rocks are uncommon and Mesozoic granitic rocks are not found in the map area. The older rocks are overlain nonconformably by several km of Miocene volcanic deposits, which accumulated in local basins. Local dikes and domes are sources of most Miocene eruptive units; younger Miocene intrusions cut all the older rocks. Upper Miocene to Quaternary gravel deposits interfinger with the uppermost volcanic flows; the contact between volcanic rocks and the gravel deposits is unconformable locally. Canyons and intermontane valleys contain dissected Quaternary alluvialfan deposits that are mantled by active drainage and alluvial fan detritus.

  20. Unrest in Long Valley Caldera, California, 1978-2004

    USGS Publications Warehouse

    Hill, David P.; ,

    2006-01-01

    Long Valley Caldera and the Mono-Inyo Domes volcanic field in eastern California lie in a left-stepping offset along the eastern escarpment of the Sierra Nevada, at the northern end of the Owens Valley and the western margin of the Basin and Range Province. Over the last 4 Ma, this volcanic field has produced multiple volcanic eruptions, including the caldera-forming eruption at 760 000 a BP and the recent Mono-Inyo Domes eruptions 500–660 a BP and 250 a BP. Beginning in the late 1970s, the caldera entered a sustained period of unrest that persisted through the end of the century without culminating in an eruption. The unrest has included recurring earthquake swarms; tumescence of the resurgent dome by nearly 80 cm; the onset of diffuse magmatic carbon dioxide emissions around the flanks of Mammoth Mountain on the southwest margin of the caldera; and other indicators of magma transport at mid- to upper-crustal depths. Although we have made substantial progress in understanding the processes driving this unrest, many key questions remain, including the distribution, size, and relation between magma bodies within the mid-to-upper crust beneath the caldera, Mammoth Mountain, and the Inyo Mono volcanic chain, and how these magma bodies are connected to the roots of the magmatic system in the lower crust or upper mantle.

  1. 210Po in nevada groundwater and its relation to gross alpha radioactivity.

    PubMed

    Seiler, Ralph L

    2011-01-01

    Polonium-210 ((210) Po) is a highly toxic alpha emitter that is rarely found in groundwater at activities exceeding 1 pCi/L. (210) Po activities in 63 domestic and public-supply wells in Lahontan Valley in Churchill County in northern Nevada, United States, ranged from 0.01 ± 0.005 to 178 ± 16 pCi/L with a median activity of 2.88 pCi/L. Wells with high (210) Po activities had low dissolved oxygen concentrations (less than 0.1 mg/L) and commonly had pH greater than 9. Lead-210 activities are low and aqueous (210) Po is unsupported by (210) Pb, indicating that the (210) Po is mobilized from aquifer sediments. The only significant contributors to alpha particle activity in Lahontan Valley groundwater are (234/238) U, (222) Rn, and (210) Po. Radon-222 activities were below 1000 pCi/L and were uncorrelated with (210) Po activity. The only applicable drinking water standard for (210) Po in the United States is the adjusted gross alpha radioactivity (GAR) standard of 15 pCi/L. (210) Po was not volatile in a Nevada well, but volatile (210) Po has been reported in a Florida well. Additional information on the volatility of (210) Po is needed because GAR is an inappropriate method to screen for volatile radionuclides. About 25% of the samples had (210) Po activities that exceed the level associated with a lifetime total cancer risk of 1× 10(-4) (1.1 pCi/L) without exceeding the GAR standard. In cases where the 72-h GAR exceeds the uranium activity by more than 5 to 10 pCi/L, an analysis to rule out the presence of (210) Po may be justified to protect human health even though the maximum contaminant level for adjusted GAR is not exceeded. Journal compilation © 2010 National Ground Water Association. No claim to original US government works.

  2. The Southern Nevada Agency Partnership Science and Research Synthesis: Science to support land management in Southern Nevada

    Treesearch

    Jeanne C. Chambers; Matthew L. Brooks; Burton K. Pendleton; Carol B. Raish

    2013-01-01

    This synthesis provides information related to the Southern Nevada Agency Partnership (SNAP) Science and Research Strategy Goal 1 - to restore, sustain and enhance southern Nevada’s ecosystems - and Goal 2 - to provide for responsible use of southern Nevada’s lands in a manner that preserves heritage resources and promotes an understanding of human interaction with the...

  3. Guidelines for model calibration and application to flow simulation in the Death Valley regional groundwater system

    USGS Publications Warehouse

    Hill, M.C.; D'Agnese, F. A.; Faunt, C.C.

    2000-01-01

    Fourteen guidelines are described which are intended to produce calibrated groundwater models likely to represent the associated real systems more accurately than typically used methods. The 14 guidelines are discussed in the context of the calibration of a regional groundwater flow model of the Death Valley region in the southwestern United States. This groundwater flow system contains two sites of national significance from which the subsurface transport of contaminants could be or is of concern: Yucca Mountain, which is the potential site of the United States high-level nuclear-waste disposal; and the Nevada Test Site, which contains a number of underground nuclear-testing locations. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and also to direct further model development and data collection.Fourteen guidelines are described which are intended to produce calibrated groundwater models likely to represent the associated real systems more accurately than typically used methods. The 14 guidelines are discussed in the context of the calibration of a regional groundwater flow model of the Death Valley region in the southwestern United States. This groundwater flow system contains two sites of national significance from which the subsurface transport of contaminants could be or is of concern: Yucca Mountain, which is the potential site of the United States high-level nuclear-waste disposal; and the Nevada Test Site, which contains a number of underground nuclear-testing locations. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and also to direct further model development and data collection.

  4. Beatty, Nevada: A section in U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1983, 1984, and 1985 (WRI 87-4009)

    USGS Publications Warehouse

    Fischer, Jeffrey M.; Nichols, William D.; Dinwiddie, G.A.; Trask, N.J.

    1986-01-01

    A commercial low-level radioactive-waste disposal site has been operating near Beatty, Nevada, about 150 km northwest of Las Vegas, since 1962. The 32-ha site is situated in a desolate region of the Amargosa River Valley, sometimes referred to as the Amargosa Desert. Average annual precipitation is only about 114 mm. The site is underlain by 175 m of unconsolidated, generally coarse-grained, alluvial-fan and flood-plain deposits. The water table is at a depth of 90 m.

  5. MAP OF ECOREGIONS OF NEVADA

    EPA Science Inventory

    USEPA NHEERL-WED scientists, in collaboration with staff from EPA Region 9, the Nevada Division of Environmental Protection, the USDA Natural Resources Conservation Service, the Nevada Natural Heritage Program, the USDA Forest Service, and the USDI Bureau of Land Management have ...

  6. Dust emission thresholds from sodic playas with varying geochemistry and environmental conditions

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; McKenna Neuman, C.; O'Brien, P.

    2014-12-01

    Sodic playa surfaces can be major sources of dust emission but their erodibility depends on the surface salt crust characteristics. Here we determine dust emission thresholds in a wind tunnel for 22 different crusts with varying concentrations of sodium sulphate and sodium chloride. Crusts mimic those on Sua Pan, in the Makgadikgadi Basin, Botswana, which is one of the biggest dust hot spots in the Southern Hemisphere. Crusts were grown by encouraging capillary processes and subjected to several weeks of diurnal temperature variation to enable the development of hydrated and dehydrated salt crystals, along with low density, 'fluffy' sediment beneath the primary (and in some cases, secondary) crust. Spray on crusts and liquefied crusts were also developed for response comparison. Using laser scanning we tracked surface change and crystal growth, which we link to crust type and evaporation rates. We found that under pre-dawn and early morning Sua Pan conditions, crusts were typically non-emissive, but during mid-day temperature and humidity conditions typical of Sua Pan in August and September (dry and peak dust emission season), several crusts became friable and highly emissive above wind velocities of 7 m/s, which agrees with in-situ field observations. Thenardite capillary crusts were the most emissive, in contrast to supply limited, halite liquefied crusts which were relatively stable. Disturbances, or small crust fractures, common on polygonal surface patterns decreased the dust emission threshold values and enabled emission from more stable crusts. Our study confirms the potential of playa surfaces to emit dust without the presence of saltation, and highlights the sensitivity of emission thresholds to crust geochemistry, evaporation rates and temperature and humidity conditions.

  7. Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions

    NASA Astrophysics Data System (ADS)

    Prejean, Stephanie; Ellsworth, William; Zoback, Mark; Waldhauser, Felix

    2002-12-01

    We have determined high-resolution hypocenters for 45,000+ earthquakes that occurred between 1980 and 2000 in the Long Valley caldera area using a double-difference earthquake location algorithm and routinely determined arrival times. The locations reveal numerous discrete fault planes in the southern caldera and adjacent Sierra Nevada block (SNB). Intracaldera faults include a series of east/west-striking right-lateral strike-slip faults beneath the caldera's south moat and a series of more northerly striking strike-slip/normal faults beneath the caldera's resurgent dome. Seismicity in the SNB south of the caldera is confined to a crustal block bounded on the west by an east-dipping oblique normal fault and on the east by the Hilton Creek fault. Two NE-striking left-lateral strike-slip faults are responsible for most seismicity within this block. To understand better the stresses driving seismicity, we performed stress inversions using focal mechanisms with 50 or more first motions. This analysis reveals that the least principal stress direction systematically rotates across the studied region, from NE to SW in the caldera's south moat to WNW-ESE in Round Valley, 25 km to the SE. Because WNW-ESE extension is characteristic of the western boundary of the Basin and Range province, caldera area stresses appear to be locally perturbed. This stress perturbation does not seem to result from magma chamber inflation but may be related to the significant (˜20 km) left step in the locus of extension along the Sierra Nevada/Basin and Range province boundary. This implies that regional-scale tectonic processes are driving seismic deformation in the Long Valley caldera.

  8. Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions

    USGS Publications Warehouse

    Prejean, Stephanie; Ellsworth, William L.; Zoback, Mark; Waldhauser, Felix

    2002-01-01

    We have determined high-resolution hypocenters for 45,000+ earthquakes that occurred between 1980 and 2000 in the Long Valley caldera area using a double-difference earthquake location algorithm and routinely determined arrival times. The locations reveal numerous discrete fault planes in the southern caldera and adjacent Sierra Nevada block (SNB). Intracaldera faults include a series of east/west-striking right-lateral strike-slip faults beneath the caldera's south moat and a series of more northerly striking strike-slip/normal faults beneath the caldera's resurgent dome. Seismicity in the SNB south of the caldera is confined to a crustal block bounded on the west by an east-dipping oblique normal fault and on the east by the Hilton Creek fault. Two NE-striking left-lateral strike-slip faults are responsible for most seismicity within this block. To understand better the stresses driving seismicity, we performed stress inversions using focal mechanisms with 50 or more first motions. This analysis reveals that the least principal stress direction systematically rotates across the studied region, from NE to SW in the caldera's south moat to WNW-ESE in Round Valley, 25 km to the SE. Because WNW-ESE extension is characteristic of the western boundary of the Basin and Range province, caldera area stresses appear to be locally perturbed. This stress perturbation does not seem to result from magma chamber inflation but may be related to the significant (???20 km) left step in the locus of extension along the Sierra Nevada/Basin and Range province boundary. This implies that regional-scale tectonic processes are driving seismic deformation in the Long Valley caldera.

  9. Nevada Underserved Science Education Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicole Rourke; Jason Marcks

    2004-07-06

    Nevada Underserved Science Education Program (NUSEP) is a project to examine the effect of implementing new and innovative Earth and space science education curriculum in Nevada schools. The project provided professional development opportunities and educational materials for teachers participating in the program.

  10. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NNSA /NSO Waste Management Project

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  11. Regional Water-Resources Studies in Nevada

    USGS Publications Warehouse

    Bauer, Eva M.; Watermolen, Shannon C.

    2007-01-01

    Introduction: Water-resources information for the State of Nevada should be readily accessible to community planners and the general public in a user-friendly web environment and should be actively managed and maintained with accurate historic and current hydrologic data. The USGS, in cooperation with State of Nevada and local government agencies, has established a data framework that provides critical hydrologic information to meet the challenges of water resources planning for Nevada.

  12. Updated computations and estimates of streamflows tributary to Carson Valley, Douglas County, Nevada, and Alpine County, California, 1990-2002

    USGS Publications Warehouse

    Maurer, Douglas K.; Watkins, Sharon A.; Burrowws, Robert L.

    2004-01-01

    Rapid population growth in Carson Valley has caused concern over the continued availability of water resources to sustain future growth. The U.S. Geological Survey, in cooperation with Douglas County, began a study to update estimates of water-budget components in Carson Valley for current climatic conditions. Data collected at 19 sites included 9 continuous records of tributary streamflows, 1 continuous record of outflow from the valley, and 408 measurements of 10 perennially flowing but ungaged drainages. These data were compiled and analyzed to provide updated computations and estimates of streamflows tributary to Carson Valley, 1990-2002. Mean monthly and annual flows were computed from continuous records for the period 1990-2002 for five streams, and for the period available, 1990-97, for four streams. Daily mean flow from ungaged drainages was estimated using multi-variate regressions of individual discharge measurements against measured flow at selected continuous gages. From the estimated daily mean flows, monthly and annual mean flows were calculated from 1990 to 2002. These values were used to compute estimates of mean monthly and annual flows for the ungaged perennial drainages. Using the computed and estimated mean annual flows, annual unit-area runoff was computed for the perennial drainages, which ranged from 0.30 to 2.02 feet. For the period 1990-2002, estimated inflow of perennial streams tributary to Carson Valley totaled about 25,900 acre-feet per year. Inflow computed from gaged perennial drainages totaled 10,300 acre-feet per year, and estimated inflow from ungaged perennial drainages totaled 15,600 acre-feet per year. The annual flow of perennial streams ranges from 4,210 acre-feet at Clear Creek to 450 acre-feet at Stutler Canyon Creek. Differences in unit-area runoff and in the seasonal timing of flow likely are caused by differences in geologic setting, altitude, slope, or aspect of the individual drainages. The remaining drainages are

  13. Sierra Nevada Rock Glaciers: Biodiversity Refugia in a Warming World?

    NASA Astrophysics Data System (ADS)

    Millar, C. I.; Westfall, R. D.

    2007-12-01

    also mapped 125 discrete locations of American pika (Ochotona princeps) and found a strong association of pika presence with active and relict RIFs, in particular cirque rock glaciers, valley rock glaciers, and boulder streams. Using the PRISM climate model and a small network of temperature dataloggers from RIF habitats, we present a climate envelope for the pika habitats we surveyed. We propose that the large area of RIFs in the Sierra Nevada over a range of elevations could provide extensive habitat for pika in the warming future. RIFs in general are a group of landforms little studied in high mountains of western North America but of potential increasing importance to hydrologic and ecologic function as climate warms in the future. Millar, C.I. and R.D. Westfall. In press. Rock glaciers and periglacial rock-ice features in the Sierra Nevada; Classification, distribution, and climate relationships. Quaternary International.

  14. Modeling fluid flow and heat transfer at Basin and Range faults: preliminary results for Leach hot springs, Nevada

    USGS Publications Warehouse

    López, Dina L.; Smith, Leslie; Storey, Michael L.; Nielson, Dennis L.

    1994-01-01

    The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.

  15. Hydrogeologic and geochemical characterization of groundwater resources in Deep Creek Valley and adjacent areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada

    USGS Publications Warehouse

    Gardner, Philip M.; Masbruch, Melissa D.

    2015-09-18

    Water-level altitude contours and groundwater ages indicate the potential for a long flow path from southwest to northeast between northern Spring and Deep Creek Valleys through Tippett Valley. Although information gathered during this study is insufficient to conclude whether or not groundwater travels along this interbasin flow path, dissolved sulfate and chloride data indicate that a small fraction of the lower altitude, northern Deep Creek Valley discharge may be sourced from these areas. Despite the uncertainty due to limited data collection points, a hydraulic connection between northern Spring Valley, Tippett Valley, and Deep Creek Valley appears likely, and potential regional effects resulting from future groundwater withdrawals in northern Spring Valley warrant ongoing monitoring of groundwater levels across this area.

  16. Accounting for Consumptive Use of Lower Colorado River Water in Arizona, California, Nevada, and Utah

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Wilson, Richard P.

    1994-01-01

    In the Colorado River valley between the east end of Lake Mead and the international boundary with Mexico (see figure), the river is the principal source of water for agricultural, domestic, municipal, industrial, hydroelectric-power generation, and recreational purposes. Water is stored in surface reservoirs and in the river aquifer---permeable sediments and sedimentary rocks that fill the lower Colorado River valley and adjacent tributary valleys. The hydraulic connection between the river and the river aquifer, overbank flow prior to building of the dams, and infiltration as the reservoirs filled allowed the sediments and sedimentary rocks to become saturated with water from the river. Ratios of isotopes of hydrogen and oxygen in water from wells indicate that most of the water in the river aquifer beneath the flood plain and in many places beneath the adjacent alluvial slopes originated from the river. The water table in the river aquifer extends from the river, beneath the flood plain, and under the alluvial slopes until it intersects bedrock. Precipitation in the surrounding mountains and inflow from tributary valleys also contribute small quantities of water to the river aquifer. Consumptive use of river water in the valley results from evapotranspiration by vegetation (crops and phreatophytes) on the flood plain, pumpage from wells to meet domestic and municipal needs, and pumpage from the river for export to areas in California, Arizona, and Nevada outside of the river valley. Most crops are grown on the flood plain; in a few areas, land on the adjacent terraces has been cultivated. Crops were grown on about 70 percent of the total vegetated area in 1984. Phreatophytes---natural vegetation that obtains water from the river aquifer---covered the remaining vegetated areas on the uncultivated flood plain. Most of the water used for irrigation is diverted or pumped directly from the river and reservoirs. Most of the water used for domestic and municipal

  17. Budgets and chemical characterization of groundwater for the Diamond Valley flow system, central Nevada, 2011–12

    USGS Publications Warehouse

    Berger, David L.; Mayers, C. Justin; Garcia, C. Amanda; Buto, Susan G.; Huntington, Jena M.

    2016-07-29

    The pre-development, steady state, groundwater budget for the Diamond Valley flow system was estimated at about 70,000 acre-ft/yr of inflow and outflow. During years 2011–12, inflow components of groundwater recharge from precipitation and subsurface inflow from adjacent basins totaled 70,000 acre-ft/yr for the DVFS, whereas outflow components included 64,000 acre-ft/yr of groundwater evapotranspiration and 69,000 acre-ft/yr of net groundwater withdrawals, or net pumpage. Spring discharge in northern Diamond Valley declined about 6,000 acre-ft/yr between pre-development time and years 2011–12. Assuming net groundwater withdrawals minus spring flow decline is equivalent to the storage change, the 2011–12 summation of inflow and storage change was balanced with outflow at about 133,000 acre-ft/yr.

  18. Title: Long Valley Caldera 2003 through 2012: Overview of low level unrest in the last decade Authors: Stuart Wilkinson, David Hill, Michael Lisowski, Deborah Bergfeld, Margaret Mangan

    NASA Astrophysics Data System (ADS)

    Wilkinson, S. K.; Hill, D. P.; Lisowski, M.; Bergfeld, D.; Mangan, M.

    2012-12-01

    Long Valley Caldera is located in central California along the eastern escarpment of the Sierra Nevada and at the western edge of the Basin and Range. The caldera formed 0.76 Ma ago during the eruption of 600 cubic kilometers the Bishop Tuff that resulted in the collapse of the partially evacuated magma chamber. Since at least late 1978, Long Valley Caldera has experienced recurring earthquake swarms and ground uplift, suggesting future eruptions are possible. Unrest in Long Valley Caldera during the 1980s to early 2000s is well documented in the literature. Episodes of inflation centered on the resurgent dome in the western part of the caldera occurred in 1979-1980, 1983, 1989-1990, 1997-1998, and 2002-2003, accumulating ~ 80 cm of uplift. Earthquakes of M ≥ 3.0 were numerous in the caldera and in the Sierra Nevada block to the south of the caldera from 1980 through 1983 (800 events including four M~ 6 earthquakes in 1980); in the caldera from 1997 through mid-1998 (150 events); and in the Sierra Nevada block from mid-1998 through 1999 (~160 events) and more modestly from 2002 through 2003 (7 events). In this presentation, we summarize the low-levels of caldera unrest during the last decade. The number of earthquakes in Sierra Nevada block and the caldera has gradually diminished over the last decade. Fifty Sierra Nevada earthquakes had magnitudes 3.0≤M≤4.6. In the caldera, only six earthquakes had magnitudes 3.0≤M≤3.8. A three-month swarm of minor earthquakes (235 events with 0.5≤M≤3.8; most below 2.0) occurred in the caldera in mid-2010. Analysis of continuous GPS data over the last year shows an inflationary pattern within the caldera centered on the resurgent dome, with a maximum uplift rate of ~ 2-3 cm/yr. The rate of deformation is comparable to that of 2002-2003, and well below ~ 70 cm/yr rates observed during the peak of inflation in the late 1990s. Steaming ground and diffuse CO2 discharge has long been a feature of Long Valley Caldera

  19. Inflation of Long Valley Caldera from 1 year of continuous GPS observations

    NASA Technical Reports Server (NTRS)

    Webb, Frank H.; Bursik, Marcus; Dixon, Timothy; Farina, Frederic; Marshall, Grant; Stein, Ross S.

    1995-01-01

    A permanent Global Positioning System (GPS) receiver at Casa Diablo Hot Springs, Long Valley Caldera, California was installed in January, 1993, and has operated almost continuously since then. The data have been transmitted daily to the Jet Propulsion Laboratory (JPL) for routine analysis with data from the Fiducial Laboratories for an International Natural sciences Network (FLINN) by the JPL FLINN analysis center. Results from these analyses have been used to interpret the on going deformation at Long Valley, with data excluded from periods when the antenna was covered under 2.5 meters of snow and from some periods when Anti Spoofing was enforced on the GPS signal. The remaining time series suggests that uplift of the resurgent dome of Long Valley Caldera during 1993 has been 2.5 +/- 1.1 cm/yr and horizontal motion has been 3.0 +/- 0.7 cm/yr at S53W in a no-net-rotation global reference frame, or 1.5 +/- 0.7 cm/yr at S14W relative to the Sierra Nevada block. These rates are consistent with uplift predicted from frequent horizontal strain measurements. Spectral analysis of the observations suggests that tidal forcing of the magma chamber is not a source of the variability in the 3 dimensional station location. These results suggest that remotely operated, continuously recording GPS receivers could prove to be a reliable tool for volcanic monitoring throughout the world.

  20. Late Cenozoic geology and lacustrine history of Searles Valley, Inyo and San Bernardino Counties, California

    NASA Astrophysics Data System (ADS)

    Nathenson, M.; Smith, G. I.; Robinson, J. E.; Stauffer, P. H.; Zigler, J. L.

    2010-12-01

    George Smith’s career-long study of the surface geology of the Searles Valley was recently published by the USGS (Smith, 2009, online and printed). The co-authors of this abstract are the team responsible for completing the publication from the original materials. Searles Valley is an arid, closed basin lying 70 km east of the south end of the Sierra Nevada, California. During those parts of late Pliocene and Pleistocene time when precipitation and runoff from the east side of the Sierra Nevada into the Owens River were much greater than at present, a chain of as many as five large lakes was created, of which Searles Lake was third. The stratigraphic record left in Searles Valley when that lake expanded, contracted, or desiccated is fully revealed by cores taken from beneath the surface of Searles (dry) Lake and partly recorded by sediments cropping out around the edge of the valley. Although this outcrop record is discontinuous, it provides direct evidence of the lake’s water depths during each expansion, which the subsurface record does not. Maximum-depth lakes rose to the 2,280-ft (695 m) contour, the level of the spillway that led overflowing waters to Panamint Valley; that spillway is about 660 ft (200 m) above the present dry-lake surface. Most of this study concerns sediments of the newly described Searles Lake Formation, whose deposition spanned the period between about 150 ka and 2 ka. The outcrop record is documented in six geologic maps (scales: 1:50,000 and 1:10,000). The Searles Lake Formation is divided into seven main units. The depositional intervals of the units that make up the Searles Lake Formation are determined primarily by correlation with subsurface deposits that are dated by radiocarbon ages on organic carbon and U-series dates on salts. Shorelines, the most obvious geologic expressions of former lakes, are abundant around Searles Valley. Erosional shorelines have cut as much as 100 m into brecciated bedrock; depositional shorelines

  1. 75 FR 4582 - Filing of Plats of Survey; Nevada

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... 4500011812; TAS: 14X1109] Filing of Plats of Survey; Nevada AGENCY: Bureau of Land Management, Interior... local government officials of the filing of Plats of Survey in Nevada. DATES: Effective Dates: Filing is... Survey of the following described lands was officially filed at the Nevada State Office, Reno, Nevada, on...

  2. Reexaming Owens Valley: Partitioning of Discrete and Distributed Transtension, Structural Controls on Magmatism, and Seismic Potential within an Active Rift Zone, Eastern California.

    NASA Astrophysics Data System (ADS)

    Levy, D. A.; Haproff, P. J.; Yin, A.

    2016-12-01

    Crustal-scale transtensional deformation is common in intracontinental extensional settings. However, along-strike variations in the geometry, kinematics, and linkages between rift-related faults, along with controls on local magmatic plumbing, remain inadequately examined. In this study, we conducted geologic mapping of active structures within central and northern Owens Valley of eastern California. C. Owens Valley features right-slip oblique deformation accommodated by three discrete north-south-trending faults: (1) the right-slip Owens Valley fault (OVF) and rift-bounding (2) Sierra Nevada Frontal fault (SNFF) and (3) the White-Inyo Mountains fault (WIMF). The OVF also serves as a lithospheric-scale, vertical conduit for asthenospheric-derived magma to migrate upwards and erupt at Big Pine Volcanic Field. Right-slip shear within C. Owens Valley is transferred to the SNFF of N. Owens Valley via the Poverty Hills restraining bend. In contrast to C. Owens Valley, the northern segment is dominated by distributed E-W to NE-SW-oriented extension, evidenced by normal fault scarps throughout Volcanic Tablelands and basin floor. Furthermore, the White Mountain fault which bounds N. Owens Valley to the east consists of a master west-dipping detachment fault that thinned the lithosphere, allowing for asthenospheric upwelling into the crust beneath the western rift shoulder. Subvertical, right-slip faults of the SNFF provide a conduit for magma to erupt on the surface throughout the Long Valley Caldera, Mono-Inyo Craters, and Mono Basin region. Our mapping demonstrates complex strain partitioning of discrete and distributed deformation within an alternating pure and simple shear, transtensional rift zone. Lastly, we present previously unknown relationships in Owens Valley between lithospheric-scale fault systems, seismic potential, and rift magmatism.

  3. Rates and timing of vertical-axis block rotations across the central Sierra Nevada-Walker Lane transition in the Bodie Hills, California/Nevada

    NASA Astrophysics Data System (ADS)

    Rood, Dylan H.; Burbank, Douglas W.; Herman, Scott W.; Bogue, Scott

    2011-10-01

    We use paleomagnetic data from Tertiary volcanic rocks to address the rates and timing of vertical-axis block rotations across the central Sierra Nevada-Walker Lane transition in the Bodie Hills, California/Nevada. Samples from the Upper Miocene (˜9 Ma) Eureka Valley Tuff suggest clockwise vertical-axis block rotations between NE-striking left-lateral faults in the Bridgeport and Mono Basins. Results in the Bodie Hills suggest clockwise rotations (R ± ΔR, 95% confidence limits) of 74 ± 8° since Early to Middle Miocene (˜12-20 Ma), 42 ± 11° since Late Miocene (˜8-9 Ma), and 14 ± 10° since Pliocene (˜3 Ma) time with no detectable northward translation. The data are compatible with a relatively steady rotation rate of 5 ± 2° Ma-1 (2σ) since the Middle Miocene over the three examined timescales. The average rotation rates have probably not varied by more than a factor of two over time spans equal to half of the total time interval. Our paleomagnetic data suggest that block rotations in the region of the Mina Deflection began prior to Late Miocene time (˜9 Ma), and perhaps since the Middle Miocene if rotation rates were relatively constant. Block rotation in the Bodie Hills is similar in age and long-term average rate to rotations in the Transverse Ranges of southern California associated with early transtensional dextral shear deformation. We speculate that the age of rotations in the Bodie Hills indicates dextral shear and strain accommodation within the central Walker Lane Belt resulting from coupling of the Pacific and North America plates.

  4. The Nevada Proficiency Examination Program.

    ERIC Educational Resources Information Center

    Nevada State Dept. of Education, Carson City. Planning, Research and Evaluation Branch.

    The Nevada Proficiency Examination Program was established by the Nevada State Legislature in 1977 to identify students who might require additional assistance to maintain normal academic progress through school and to serve as a minimum competency examination, insuring that each student who receives a high school diploma has met certain minimum…

  5. Upper mantle diapers, lower crustal magmatic underplating, and lithospheric dismemberment of the Great Basin and Colorado Plateau regions, Nevada and Utah; implications from deep MT resistivity surveying

    NASA Astrophysics Data System (ADS)

    Wannamaker, P. E.; Doerner, W. M.; Hasterok, D. P.

    2005-12-01

    In the rifted Basin and Range province of the southwestern U.S., a common faulting model for extensional basins based e.g. on reflection seismology data shows dominant displacement along master faults roughly coincident with the main topographic scarp. On the other hand, complementary data such as drilling, earthquake focal mechanisms, volcanic occurrences, and trace indicators such as helium isotopes suggest that there are alternative geometries of crustal scale faulting and material transport from the deep crust and upper mantle in this province. Recent magnetotelluric (MT) profiling results reveal families of structures commonly dominated by high-angle conductors interpreted to reflect crustal scale fault zones. Based mainly on cross cutting relationships, these faults appear to be late Cenozoic in age and are of low resistivity due to fluids or alteration (including possible graphitization). In the Ruby Mtns area of north-central Nevada, high angle faults along the margins of the core complex connect from near surface to a regional lower crustal conductor interpreted to contain high-temperature fluids and perhaps melts. Such faults may exemplify the high angle normal faults upon which the major earthquakes of the Great Basin appear to nucleate. A larger-scale transect centered on Dixie Valley shows major conductive crustal-scale structures connecting to conductive lower crust below Dixie Valley, the Black Rock desert in NW Nevada, and in east-central Nevada in the Monitor-Diamond Valley area. In the Great Basin-Colorado Plateau transition of Utah, the main structures revealed are a series of nested low-angle detachment structures underlying the incipient development of several rift grabens. All these major fault zones appear to overlie regions of particularly conductive lower crust interpreted to be caused by recent basaltic underplating. In the GB-CP transition, long period data show two, low-resistivity upper mantle diapirs underlying the concentrated

  6. Fallon, Nevada FORGE Geodetic Data

    DOE Data Explorer

    Blankenship, Doug; Eneva, Mariana; Hammond, William

    2018-02-01

    Fallon FORGE InSAR and geodetic GPS deformation data. InSAR shapefiles are packaged together as .MPK (ArcMap map package, compatible with other GIS platforms), and as .CSV comma-delimited plaintext. GPS data and additional metadata are linked to the Nevada Geodetic Laboratory database at the Univ. of Nevada, Reno (UNR).

  7. Concentrating Solar Power Projects - Nevada Solar One | Concentrating Solar

    Science.gov Websites

    Power | NREL Nevada Solar One This page provides information on Nevada Solar One, a configuration. Acciona Energy's Nevada Solar One is the third largest CSP plant in the world and the first plant roads. Project Overview Project Name: Nevada Solar One (NSO) Country: United States Location: Boulder

  8. Evaluating the Spatial Distribution of Toxic Air Contaminants in Multiple Ecosystem Indicators in the Sierra Nevada-Southern Cascades

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Simonich, S. L.; Rocchio, J.; Flanagan, C.

    2013-12-01

    Toxic air contaminants originating from agricultural areas of the Central Valley in California threaten vulnerable sensitive receptors including surface water, vegetation, snow, sediments, fish, and amphibians in the Sierra Nevada-Southern Cascades region. The spatial distribution of toxic air contaminants in different ecosystem indicators depends on variation in atmospheric concentrations and deposition, and variation in air toxics accumulation in ecosystems. The spatial distribution of organic air toxics and mercury at over 330 unique sampling locations and sample types over two decades (1990-2009) in the Sierra Nevada-Southern Cascades region were compiled and maps were developed to further understand spatial patterns and linkages between air toxics deposition and ecological effects. Potential ecosystem impacts in the Sierra Nevada-Southern Cascades region include bioaccumulation of air toxics in both aquatic and terrestrial ecosystems, reproductive disruption, and immune suppression. The most sensitive ecological end points in the region that are affected by bioaccumulation of toxic air contaminants are fish. Mercury was detected in all fish and approximately 6% exceeded human consumption thresholds. Organic air toxics were also detected in fish yielding variable spatial patterns. For amphibians, which are sensitive to pesticide exposure and potential immune suppression, increasing trends in current and historic use pesticides are observed from north to south across the region. In other indicators, such as vegetation, pesticide concentrations in lichen increase with increasing elevation. Current and historic use pesticides and mercury were also observed in snowpack at high elevations in the study area. This study shows spatial patterns in toxic air contaminants, evaluates associated risks to sensitive receptors, and identifies data gaps. Future research on atmospheric modeling and information on sources is needed in order to predict which ecosystems are the

  9. The Southern Nevada Agency Partnership Science and Research Synthesis: Science to support land management in Southern Nevada - Executive Summary

    Treesearch

    Jeanne C. Chambers; Matthew L. Brooks; Burton K. Pendleton; Carol B. Raish

    2013-01-01

    This synthesis provides information related to the Southern Nevada Agency Partnership (SNAP) Science and Research Strategy Goal 1 - to restore, sustain and enhance southern Nevada’s ecosystems - and Goal 2 - to provide for responsible use of southern Nevada’s lands in a manner that preserves heritage resources and promotes an understanding of human interaction with the...

  10. National Uranium Resource Evaluation: Wells Quadrangle, Nevada, Idaho, and Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proffitt, J.L.; Mayerson, D.L.; Parker, D.P.

    1982-08-01

    The Wells 2/sup 0/ Quadrangle, Nevada, Idaho, and Utah, was evaluated using National Uranium Resource Evaluation criteria to delineate areas favorable for uranium deposits. Our investigation has resulted in the delineation of areas that contain Tertiary sedimentary rocks favorable for hydroallogenic deposits in the Mountain City area (Favorable Area A) and in the Oxley Peak area north of Wells (Favorable Area B). Environments considered to be unfavorable for uranium deposits include Tertiary felsic volcanic, felsic plutonic, intermediate to mafic volcanic, Paleozoic and Mesozoic sedimentary rocks, Precambrian rocks, and most Tertiary sedimentary rocks located outside the favorable areas. Present-day basins aremore » unevaluated environments because of a paucity of adequate outcrop and subsurface data. However, the scarce data indicate that some characteristics favorable for uranium deposits are present in the Susie Creek-Tule Valley-Wild Horse basin, the Contact-Granite Range-Tijuana John stocks area, the Charleston Reservoir area, and the Wells-Marys River basin.« less

  11. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irene Farnham

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurancemore » Project Plan, Nevada Test Site, Nevada, Revision 4.« less

  12. Field trip to Nevada test site

    USGS Publications Warehouse

    ,

    1976-01-01

    Two road logs guide the reader through the geologic scene from Las Vegas to Mercury and from Mercury through eight stops on the Nevada Test Site. Maps and cross sections depict the geology and hydrology of the area. Included among the tables is one showing the stratigraphic units in the southwestern Nevada volcanic field and another that lists the geologic maps covering the Nevada Test Site and vicinity. The relation of the geologic environment to nuclear-explosion effects is alluded to in brief discussions of collapse, surface subsidence, and cratering resulting from underground nuclear explosions.

  13. Biodiversity in the Sierra Nevada

    Treesearch

    Dennis D. Murphy; Erica Fleishman; Peter A. Stine

    2004-01-01

    The earliest explorers of the Sierra Nevada hailed the mountain range for its unsurpassed scenery. Although a significant component of that beauty was an especially rich assemblage of plants and animals, it was not until many decades later that the Sierra Nevada's wealth of biodiversity was appreciated fully and documented in earnest. Indeed, by the time...

  14. Temporal Dynamics of Sodic Playa Salt Crust Patterns: Implications for Aeolian Dust Emission Potential

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; King, J.; Bryant, R. G.; Wiggs, G.; Eckardt, F. D.; Thomas, D. S.; Washington, R.

    2013-12-01

    Salt pans (or playas) are common in arid environments and can be major sources of windblown mineral dust, but there are uncertainties associated with their dust emission potential. These landforms typically form crusts which modify both their erosivity and erodibility by limiting sediment availability, modifying surface and aerodynamic roughness and limiting evaporation rates and sediment production. Here we show the relationship between seasonal surface moisture change and crust pattern development based on both remote-sensing and field surface and atmospheric measurements. We use high resolution (sub-cm) terrestrial laser scanning (TLS; ground-based lidar) surveys over weekly, monthly and annual timescales to accurately characterise crustal ridge thrusting and collapse. This can be as much as 2 mm/day on fresh pan areas that have recently been reset by flooding. Over a two month period, this ridge growth can change aerodynamic roughness length values by 6.5 mm. At the same time, crack densities across the surface increase and this raises the availability of erodible fluffy, low density dust source sediment stored below the crust layer. Ridge spaces are defined in the early stages of crust development, as identified by Fourier Transform analysis, but wider wavelengths become more pronounced over time. We present a conceptual model accounting for the driving forces (subsurface, surface and atmospheric moisture) and feedbacks between these and surface shape that lead to crust pattern trajectories between highly emissive degraded surfaces and less emissive ridged or continuous crusts. These findings improve our understanding of temporal changes in dust availability and supply from playa source regions.

  15. Guidance and Counseling Personnel and Programs in Nevada.

    ERIC Educational Resources Information Center

    Nevada Univ., Reno. Research and Educational Planning Center.

    Data were collected on guidance and counseling programs and guidance personnel in Nevada schools. Questionnaires were mailed to all 309 practicing school counselors in Nevada; the response rate was 72%. Guidance counselors in Nevada were primarily female, Caucasian, and middle-aged. Mean number of years as a counselor was 9 years, and most…

  16. Late Quaternary sedimentation on the Leidy Creek fan, Nevada-California: Geomorphic responses to climate change

    USGS Publications Warehouse

    Reheis, M.C.; Slate, J.L.; Throckmorton, C.K.; McGeehin, J.P.; Sarna-Wojcicki, A. M.; Dengler, L.

    1996-01-01

    Well-dated surface and subsurface deposits in semiarid Fish Lake Valley, Nevada and California, demonstrate that alluvial-fan deposition is strongly associated with the warm dry climate of the last two interglacial intervals, and that fans were stable and (or) incised during the last glaciation. Fan deposition was probably triggered by a change from relatively moist to arid conditions causing a decrease in vegetation cover and increases in flash floods and sediment yield. We think that this scenario applies to most of the other valleys in the southern Basin and Range. Radiocarbon, tephra, and a few thermoluminescence and cosmogenic ages from outcrops throughout Fish Lake Valley and from cores on the Leidy Creek fan yield ages of > 100-50 ka and 11-0 ka for the last two periods of alluvial-fan deposition. Mapping, coring and shallow seismic profiling indicate that these periods were synchronous throughout the valley and on the proximal and distal parts of the fans. From 50 to 11 ka, fan deposition ceased, a soil formed on the older alluvium and the axial drainage became active as runoff and stream competence increased. Slow deposition due to sheet flow or aeolian processes locally continued during this interval, producing cumulic soil profiles. The soil was buried by debris-flow sediment beginning at about 11 ka, coincident with the onset of relatively dry and warm conditions in the region. However, ground-water discharge maintained a large freshwater marsh on the valley floor throughout the Holocene. Pulses of deposition during the Holocene are recorded in the marsh and fan deposits; some pulses coincided with periods of or transitions to warm, dry climate indicated by proxy climate records, whereas others may reflect local disturbances associated with volcanism and fires. Within the marsh deposits, much of the clastic material is probably desert loess. In addition, the deposition of coppice dunes within the fan deposits coincides with two dry periods during the

  17. Earth observation taken by the Expedition 28 crew

    NASA Image and Video Library

    2011-08-30

    ISS028-E-035137 (30 Aug. 2011) --- Owens Lake in California is featured in this image photographed by an Expedition 28 crew member on the International Space Station. This photograph highlights the mostly dry bed of Owens Lake, located in the Owens River Valley between the Inyo Mountains and the Sierra Nevada. Shallow groundwater, springs, and seeps support minor wetlands and a central brine pool. Two bright red areas along the margins of the brine pool indicate the presence of halophilic, or salt-loving organisms known as Achaeans. Grey and white materials within the lake bed are exposed lakebed sediments and salt crusts. The towns of Olancha and Lone Pine are delineated by the presence of green vegetation indicating a more constant availability of water. According to scientists, the present-day Owens Lake was part of a much larger lake and river system that existed during the Pleistocene Epoch (approximately 3 million to approximately 12,000 years ago) along the current northeastern border of California with Nevada. Meltwater from alpine glaciers in the Sierra Nevada filled the regional valleys of the Basin and Range to form several glacial lakes that were ancestral to the now-dry lakebeds (or playas) of Owens, Searles Lake, and China Lake. While Searles and China Lakes dried out due to regional changes to a hotter and drier climate over thousands of years, Owens Lake became desiccated largely due to the diversion of Owens River water in the early 20th century to serve the needs of the City of Los Angeles, CA located 266 kilometers to the south. Following complete desiccation of the lakebed in 1926, significant amounts of windblown dust were produced ? indeed, the term ?Keeler fog? was coined by residents of the now largely abandoned town on the eastern side of Owens Lake due to the dust. In addition to adverse health effects on local residents, dust from Owens Lake has been linked to visibility reduction in nearby national parks, forests, and wilderness areas

  18. Fire in the Sierra Nevada

    Treesearch

    Carl N. Skinner; Scott L. Stephens

    2004-01-01

    Fire has been described as both a major ecological force necessary for long-term functioning of Sierra Nevada ecosystems and as one of the greatest threats to human and natural resources (SNEP 1996a). Fire has shaped the terrestrial ecosystems of the Sierra Nevada for millennia. Before the mid-1800s, fires generally were frequent and mostly of low to moderate intensity...

  19. NNSS Soils Monitoring: Plutonium Valley (CAU 366) FY2013 and FY2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Julianne J.; Nikolich, George; Mizell, Steve

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil transport from the Plutonium Valley Contamination Area (CA) as a result of wind transport and storm runoff in support of Nevada Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the contamination areas. The DRI work is intended to confirm the likely mechanism(s) of transport and determine the meteorological conditions that might cause movement of contaminated soils. Emphasis is given to collecting sediment transported by channelized storm runoff at the Plutonium Valley investigation sites. These data will inform closure plans that are beingmore » developed, which will facilitate appropriate closure design and postclosure monitoring. Desert Research Institute installed two meteorological monitoring stations south (station number 1) and north (station number 2) of the Plutonium Valley CA and a runoff sediment sampling station within the CA in 2011. Temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and airborne particulate concentration are collected at both meteorological stations. The maximum, minimum, and average or total (as appropriate) for each of these parameters is recorded for each 10-minute interval. The sediment sampling station includes an automatically activated ISCO sampling pump with collection bottles for suspended sediment, which is activated when sufficient flow is present in the channel, and passive traps for bedload material that is transported down the channel during runoff events. This report presents data collected from these stations during FY2013 and FY2014.« less

  20. A conodont-based standard reference section in central Nevada for the lower Middle Ordovician Whiterockian Series

    USGS Publications Warehouse

    Sweet, W.C.; Ethington, Raymond L.; Harris, A.G.

    2005-01-01

    Ranges of conodonts in stratigraphic sections at five localities in the Monitor and Antelope ranges of central Nevada are used graphically to assemble a standard reference section for the lower Middle Ordovician Whiterockian Series. The base of the series is officially 0.3 m above the base of the Antelope Valley Limestone in the stratotype in Whiterock Canyon (Monitor Range). The top is the level at which Baltoniodus gerdae makes a brief appearance in an exposure of the Copenhagen Formation on the flanks of Hill 8308 in the western Antelope Range. Graphic compilation of the sections considered in this report also indicates that a level correlative with the base of the Whiterockian Series in the stratotype section is 66 m above the base of the Antelope Valley Limestone in its de facto type section on Martin Ridge in the eastern part of the Monitor Range. Ranges, diversity, and the composition of the conodont faunas differ markedly in lithofacies adjacent to the basal boundary of the series; hence we are unable to identify a single conodont species, in a credible developmental sequence, to serve as biological marker of that boundary.

  1. Heat flow in relation to hydrothermal activity in the southern Black Rock Desert, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sass, J.H.; Zoback, M.L.; Galanis, S.P. Jr.

    1979-01-01

    As part of an investigation of the Gerlach NE KGRA (Known Geothermal Resource Area) a number of heat-flow measurements were made in playa sediments of the southern Black Rock Desert, northwestern Nevada. These data together with additional previously unpublished heat-flow values reveal a complex pattern of heat flow with values ranging between 1.0 to 5.0 HFU (40 to 100 mWm/sup -2/) outside of the hot springs area. The mean heat flow for the 13 reported sites in the southern Black Rock Desert is 1.8 +- 0.15 HFU (75 +- 6 mWm/sup -2/). The complexity of the pattern of heat flowmore » is believed to arise from hydrothermal circulation supporting the numerous hot springs throughout the region. The fact that the lowest observed heat flow occurs in the deepest part of the basin strongly suggests that fluid movement within the basin represents part of the recharge for the hydrothermal system. A thermal balance for the system incorporating both anomalous conductive heat loss and convective heat loss from the spring systems indicate a total energy loss of about 8.0 Mcal/sec or 34 megawatts over an estimated 1000 km/sup 2/ region. Consideration of this additional heat loss yields a mean regional heat flow of 2.5 + HFU (100 + mWm/sup -2/) and warrants inclusion of this region in the Battle Mountain heat-flow high (Lachenbruch and Sass, 1977, 1978).« less

  2. Twelve Months of Air Quality Monitoring at Ash Meadows National Wildlife Refuge, Southwestern Rural Nevada, U.S.A (EMSI April 2007)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelbrecht, Johann P; Shafer, David S; Campbell, Dave

    The one year of air quality monitoring data collected at the Ash Meadows National Wildlife Refuge (NWR) was the final part of the air quality "Scoping Studies" for the Environmental Monitoring Systems Initiative (EMSI) in southern and central Nevada. The objective of monitoring at Ash Meadows was to examine aerosol and meteorological data, seasonal trends in aerosol and meteorological parameters as well as to examine evidence for long distance transport of some constituents. The 9,307 hectare refuge supports more than 50 springs and 24 endemic species, including the only population of the federally listed endangered Devil’s Hole pupfish (Cyprinodon diabolis)more » (U.S. Fish and Wildlife Service, 1990). Ash Meadows NWR is located in a Class II air quality area, and the aerosol measurements collected with this study are compared to those of Interagency Monitoring of Protected Visual Environments (IMPROVE) sites. Measurements taken at Ash Meadows NWR over a period of 12 months provide new baseline air quality and meteorological information for rural southwestern Nevada, specifically Nye County and the Amargosa Valley.« less

  3. Geology and mineral resources of the Sheldon-Hart Mountain National Wildlife Refuge Complex (Oregon and Nevada), the Southeastern Oregon and North-Central Nevada, and the Southern Idaho and Northern Nevada (and Utah) Sagebrush Focal Areas: Chapter B in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    Vikre, Peter G.; Benson, Mary Ellen; Bleiwas, Donald I.; Colgan, Joseph P.; Cossette, Pamela M.; DeAngelo, Jacob; Dicken, Connie L.; Drake, Ronald M.; du Bray, Edward A.; Fernette, Gregory L.; Glen, Jonathan M.G.; Haacke, Jon E.; Hall, Susan M.; Hofstra, Albert H.; John, David A.; Ludington, Stephen; Mihalasky, Mark J.; Rytuba, James J.; Shaffer, Brian N.; Stillings, Lisa L.; Wallis, John C.; Williams, Colin F.; Yager, Douglas B.; Zürcher, Lukas

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of selected locatable minerals in lands proposed for withdrawal that span the Nevada, Oregon, Idaho, and Utah borders. In this report, the four study areas evaluated were (1) the Sheldon-Hart Mountain National Wildlife Refuge Complex SFA in Washoe County, Nevada, and Harney and Lake Counties, Oregon; (2) the Southeastern Oregon and North-Central Nevada SFA in Humboldt County, Nevada, and Harney and Malheur Counties, Oregon; (3) the Southern Idaho and Northern Nevada SFA in Cassia, Owyhee, and Twin Falls Counties, Idaho, Elko County, Nevada, and Box Elder County, Utah; and (4) the Nevada additions in Humboldt and Elko Counties, Nevada.

  4. Magnetotelluric Data, Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackie M. Williams; Jay A. Sampson; Brian D. Rodriguez

    2006-11-03

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site northwest of Las Vegas. Most of these tests were conducted hundreds of feet above the ground-water table; however, more than 200 of the tests were near or within the water table. This underground testing was limited to specific areas ofmore » the Nevada Test Site, including Pahute Mesa, Rainier Mesa/Shoshone Mountain, Frenchman Flat, and Yucca Flat. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology, and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (Bechtel Nevada, 2006). During 2005, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data from twenty-six magnetotelluric (MT) and audio-magnetotelluric (AMT) sites at the Nevada Test Site. The 2005 data stations were located on and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend the area of the hydrogeologic study previously conducted in Yucca Flat. This work will help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU – late Devonian to Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) from the Yucca Flat area and west

  5. Environmental changes in Sierra Nevada during the last 6 ky BP inferred from solifluction lobes and lake sediments

    NASA Astrophysics Data System (ADS)

    Oliva, M.; Gómez Ortiz, A.; Schulte, L.

    2009-04-01

    scarcer vegetation cover and activating solifluction. Depending on temperature and moisture conditions, this pattern could also favour the existence of small glaciers in the highest northern cirques; the enhanced periglacial activity made also more efficient gelifraction which provided further material to be mobilized to valley floors by solifluction when snow cover melted. On the other hand, warmer periods tend to slow mass wasting and induce soil formation: during arid phases poor developed soils prevailed (regosols) and in those periods with wetter conditions highly organic soils formed (histosols). Solifluction records also indicate that the LIA has been the wettest and coldest period during the Mid-Late Holocene, with the most rigorous climate conditions from 1590 to 1650 (Rodrigo et al., 1999). This climate variability has shifted vertically the periglacial belt in the massif. During cold and wet periods, our study area was located in the nival ecotone where the scarce vegetation cover enhances erosion and mineral mobilization. By contrast, during warm periods, the nival ecotone moved upwards and our study area was affected by typical processes of the subnival ecotone: soil development was favoured in gentle topographical places with high water availability and the previous sparse vegetation cover became denser, reducing mass wasting effectiveness. Lake sediments point out a clear arid trend initiated around 6 ky BP in Sierra Nevada parallel to the same pattern observed in northern Africa and southeastern Spain since the HWP (Gasse, 2000; Burjachs et al., 2007). Until the Late Holocene, conditions were more suitable to more vegetated headwaters in the southern cirques, which in turns make more difficult solifluction movements. In effect, according to our studied archives, solifluction activity in Rio Seco started during the last 1500-2000 years BP: we have no signs of previous solifluction during the Holocene. The existence of a paleosoil dated 12.973 ± 112 years

  6. Using remote sensing and GIS techniques to estimate discharge and recharge. fluxes for the Death Valley regional groundwater flow system, USA

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Keith, Turner A.

    1996-01-01

    The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.

  7. Selected Educational and Social Statistics, Nevada and National. Form C.

    ERIC Educational Resources Information Center

    Crowe, Kevin

    Selected statistics on health and education in Nevada are presented, mainly for the 1988 and 1989 school years. Some facts are provided about students, teachers, and classrooms in Nevada. The total enrollment in Nevada schools in 1989 was 176,464, which represents an increase by 5% from 168,353 in 1988. Enrollment in Nevada grew at the fastest…

  8. Dynamics of salt playa polygons

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Fourrière, A.

    2014-12-01

    In natural salt playa or in evaporation pools for the salt extraction industry, one can sometimes see surprising regular structures formed by ridges of salt. These ridges connect together to form a self-organized network of polygons one to two meters in diameter, which we call salt polygons. Here we propose a mechanism based on porous media convection of salty water in soil to explain the formation and the scaling of the salt polygons. Surface evaporation causes a steady upward flow of salty water, which can cause precipitation near the surface. A vertical salt gradient then builds up in the porous soil, with heavy salt-saturated water lying over the less salty source water. This can drive convection when a threshold is reached, given by a critical Rayleigh number of about 7. We suggest that the salt polygons are the surface expression of the porous medium convection, with salt crystallizing along the positions of the convective downwellings. To study this instability directly, we developed a 2D analogue experiment using a Hele-Shaw cell filled with a porous medium saturated with a salt solution and heated from above. We perform a linear stability analysis of this system, and find that it is unstable to convection, with a most unstable wavelength that is set by a balance between salt diffusion and water evaporation. The Rayleigh number in our experiment is controlled by the particle size of our model soil, and the evaporation rate. We obtain results that scale with the observation of natural salt polygons. Using dye, we observe the convective movement of salty water and find downwelling convective plumes underneath the spots where surface salt ridges form, as shown in the attached figure.

  9. Hydrogeology of the Faultless site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thordarson, W.

    The Faultless event was the detonation of an intermediate-yield nuclear device on January 19, 1968, at a depth of 975 m below the surface of Hot Creek Valley, Nevada. This report presents details of the hydrogeology of the rubble chimney and radiochemical monitoring in re-entry hole UC-1-P-2SR. The surface location of re-entry hole UC-1-P-2SR is about 91 m north of the emplacement hole, UC-1. Re-entry hole UC-1-P-2SR was drilled to a total depth of about 1097 m. The hole penetrated Quaternary and Tertiary valley-fill sediments above the rubble chimney, as well as Quaternary and Tertiary valley-fill and Tertiary tuffaceous sedimentsmore » within the chimney and rubble-filled cavity. Monitoring of the water level in re-entry hole UC-1-P-2SR indicated that, from 1970 to 1974, the water level was 695 m below land surface. During filling of the rubble chimney from 1974 to 1983, the water level rose slowly to a depth of 335.1 m. The 1983 level was about 167 m below the pre-event level that was about 168 m below land surface. Water with temperatures ranging from 37 to 61/sup 0/C occurred at the bottom of the re-entry hole at depths ranging from 728 to 801 m. A temperature of 100/sup 0/C at a depth of 820 m was projected from temperature logs. The hydraulic connection between the re-entry hole and the rubble chimney is considered poor to fair. Chemical analyses of water samples indicate that the water predominantly was a sodium bicarbonate type. Chemical and radiochemical analyses indicated that, although the constituents generally increased with increasing depth, three distinct water-quality zones have lasted for more than 16 years, even during the rising water level. The hot, radioactive water from the Faultless event apparently rose into the lower zone concomitant with the rising water level, as the rubble chimney was being filled. This general rise was interrupted by the apparently major dilution from colder water descending from the upper zone during 1975 and 1977.« less

  10. Measurements of Dust Devil Lower Structure and Properties, El Dorado Valley, Nevada, June 2002

    NASA Astrophysics Data System (ADS)

    Towner, M. C.; Ringrose, T. J.; Balme, M.; Greeley, R.; Zarnecki, J. C.

    2002-12-01

    We report the results of a recent field campaign in Nevada, USA, carried out to investigate the lower structure (less than 2m) and dust lofting mechanisms of terrestrial dust devils. Over several days, an instrumented platform was repeatedly deployed from the back of a pickup truck into the path of oncoming dust devils. Around 40 events were recorded, including core penetrations of large and small dust devils, close misses and periods of ambient background conditions before and after dust devil events, and during periods of dust devil inactivity. The platform deployed consisted of a 2 by 1m base with a 2m mast and carried a total of 24 instruments. The instrument suite consisted of horizontal wind profiling down to 5mm above surface, vertical wind speed and direction, temperature and pressure profiling, airborne and saltating particle recorders, vertical electric field gradient measurements, and upward looking UV sensors. We present preliminary results of profiles for several events, together with details of ambient conditions required for dust devil formation.

  11. 40 CFR 52.1477 - Nevada air pollution emergency plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Nevada air pollution emergency plan. 52.1477 Section 52.1477 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Nevada § 52.1477 Nevada air...

  12. 40 CFR 52.1477 - Nevada air pollution emergency plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Nevada air pollution emergency plan. 52.1477 Section 52.1477 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Nevada § 52.1477 Nevada air...

  13. 40 CFR 52.1477 - Nevada air pollution emergency plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Nevada air pollution emergency plan. 52.1477 Section 52.1477 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Nevada § 52.1477 Nevada air...

  14. Identification of crude oil source facies in Railroad Valley, Nevada, using multivariate analysis of crude oil and hydrous pyrolysis data from the Meridian Spencer Federal 32-29 well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conlan, L.M.; Francis, R.D.

    Comparison of biological markers of a hydrous pyrolyzate of Mississippian-Chainman Shale from the Meridian Spencer Federal 32-29 well with two crude oils produced from the same well and crude oils produced from Trap Springs, Grant Canyon, Bacon Flats, and Eagle Springs fields indicate the possibility of three distinct crude oil source facies within Railroad Valley, Nevada. The two crude oil samples produced in the Meridian Spencer Federal 32-29 well are from the Eocene Sheep Pass Formation (MSF-SP) at 10,570 ft and the Joana Limestone (MSF-J) at 13,943 ft; the pyrolyzate is from the Chainman Shale at 10,700 ft. The Chainmanmore » Shale pyrolyzate has a similar composition to oils produced in Trap Springs and Grant Canyon fields. Applying multivariate statistical analysis to biological marker data shows that the Chainman Shale is a possible source for oil produced at Trap Springs because of the similarities between Trap Springs oils and the Chainman Shale pyrolyzate. It is also apparent that MSF-SP and oils produced in the Eagle Springs field have been generated from a different source (probably the Sheep Pass Formation) because of the presence of gammacerane (C{sub 30}). MSF-J and Bacon Flats appear to be either sourced from a pre-Mississippian unit or from a different facies within the Chainman Shale because of the apparent differences between MSF-J and Chainman Shale pyrolyzate.« less

  15. Earth Obsersation taken by the Expedition 11 crew

    NASA Image and Video Library

    2005-06-27

    ISS011-E-09680 (27 June 2005) --- Searles Lake, California is featured in this image photographed by an Expedition 11 crewmember on the International Space Station. Searles Lake is known for the abundance of rare elements and evaporite minerals, such as trona, hanksite, and halite formed within its sediments. These minerals dissolve in water or very humid environments. According to NASA scientists who are studying the Space Station photography, during the Pleistocene Epoch (beginning approximately two million years ago), Searles Lake was one of a chain of lakes fed by streamflow from the Sierra Nevada to the west. Lake levels rose and fell dependant on glacial outwash from the Sierra Nevada as climates shifted. Successive layers of sediment were deposited as lake levels fluctuated, preserving an important record of regional climate change. The lakes gradually dried up completely as climatic conditions became hotter and drier (as today), forming a string of enclosed basins with no outlets (playas). This photograph depicts the Searles Lake playa (characterized by white surface mineral deposits) bounded by the Argus and Slate Mountains. The width of the playa is approximately 10 kilometers. The center of the image is dominated by mining operations that extract sodium- and potassium-rich minerals (primarily borax and salt) for industrial use. Minerals are primarily in naturally-occurring brines that are pumped to the surface and evaporated to crystallize the minerals. A large evaporation pond (black) is visible in the center of the image. Further processing concentrates the minerals and removes excess water.

  16. In situ stress and fracture permeability along the Stillwater fault zone, Dixie Valley Nevada

    USGS Publications Warehouse

    Hickman, S.H.; Barton, C.A.; Zoback, M.D.; Morin, R.; Sass, J.; Benoit, R.

    1997-01-01

    Borehole televiewer and hydrologic logging and hydraulic fracturing stress measurements were carried out in a 2.7-km-deep geothermal production well (73B-7) drilled into the Stillwater fault zone. Precision temperature and spinner flowmeter logs were also acquired in well 73B-7, with and without simultaneously injecting water into the well. Localized perturbations to well-bore temperature and flow were used to identify hydraulically conductive fractures. Comparison of these data with fracture orientations from the televiewer log indicates that permeable fractures within and adjacent to the Stillwater fault zone are critically stressed, potentially active shear planes in the current west-northwest extensional stress regime at Dixie Valley.

  17. Nevada Library Directory and Statistics 1996.

    ERIC Educational Resources Information Center

    Nevada State Library and Archives, Carson City.

    This document, a directory of Nevada libraries, is divided into sections for academic and special libraries, school libraries (public and private), and public libraries. Entries for individual libraries typically list key staff, postal and electronic addresses, phone and fax numbers, and hours of operation. Lists of 1996 Nevada Library Association…

  18. A hydrous Ca-bearing magnesium carbonate from playa lake sediments, Salines Lake, Spain

    USGS Publications Warehouse

    Queralt, I.; Julia, R.; Plana, F.; Bischoff, J.L.

    1997-01-01

    Sediments of playa Lake Salines, SE, Spain, contain a carbonate mineral characterized by X-ray diffraction peaks very similar to, but systematically shifted from those of pure magnesite. Analyses (SEM, IR and Raman spectroscopy, DTA, TGA, and ICP) indicate the mineral is a hydrous Ca-bearing magnesium carbonate with the chemical formula (Mg0.92,Ca0.08)CO3??3H2O. Thermal characteristics of the mineral are similar to those of other known hydrated magnesium carbonates. X-ray and electron diffraction data suggests a monoclinic system (P21/n space group) with unit-cell parameters of a = 6.063(6), b = 10.668(5), and c = 6.014(4) A?? and ?? = 107.28??.

  19. Valley-dependent band structure and valley polarization in periodically modulated graphene

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  20. Inventory of amphibians and reptiles at Death Valley National Park

    USGS Publications Warehouse

    Persons, Trevor B.; Nowak, Erika M.

    2006-01-01

    As part of the National Park Service Inventory and Monitoring Program in the Mojave Network, we conducted an inventory of amphibians and reptiles at Death Valley National Park in 2002-04. Objectives for this inventory were to: 1) Inventory and document the occurrence of reptile and amphibian species occurring at DEVA, primarily within priority sampling areas, with the goal of documenting at least 90% of the species present; 2) document (through collection or museum specimen and literature review) one voucher specimen for each species identified; 3) provide a GIS-referenced list of sensitive species that are federally or state listed, rare, or worthy of special consideration that occur within priority sampling locations; 4) describe park-wide distribution of federally- or state-listed, rare, or special concern species; 5) enter all species data into the National Park Service NPSpecies database; and 6) provide all deliverables as outlined in the Mojave Network Biological Inventory Study Plan. Methods included daytime and nighttime visual encounter surveys, road driving, and pitfall trapping. Survey effort was concentrated in predetermined priority sampling areas, as well as in areas with a high potential for detecting undocumented species. We recorded 37 species during our surveys, including two species new to the park. During literature review and museum specimen database searches, we recorded three additional species from DEVA, elevating the documented species list to 40 (four amphibians and 36 reptiles). Based on our surveys, as well as literature and museum specimen review, we estimate an overall inventory completeness of 92% for Death Valley and an inventory completeness of 73% for amphibians and 95% for reptiles. Key Words: Amphibians, reptiles, Death Valley National Park, Inyo County, San Bernardino County, Esmeralda County, Nye County, California, Nevada, Mojave Desert, Great Basin Desert, inventory, NPSpecies.